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Abstract

Protein nuclear magnetic resonance (NMR) chemical shifts are among the most accurately measur-
able spectroscopic parameters and are closely correlated to protein structure because of their depen-
dence on the local electronic environment. The precise nature of this correlation remains largely
unknown. Accurate prediction of chemical shifts from existing structures' atomic co-ordinates will
permit close study of thisrelationship. This paper presents a novel non-linear regression based ap-
proach to chemical shift prediction from protein structure. The regression model employed com-
bines quantum, classical and empirical variables and provides statistically significant improved
prediction accuracy over existing chemical shift predictors, across protein backbone atom types.
The results presented here were obtained using the Random Forest regression algorithm on a pro-
tein entry data set derived from the RefDB re-referenced chemical shift database.







1 Introduction

Any nucleus with spin I = 1/2, when placed in an external magnetic field, will exhibit two spin
states with an energy differential directly proportional to the strength of the applied magnetic field.
Each nucleus, however, is influenced by the electrons in its vicinity and therefore the effective
magnetic field at the nucleus is attenuated depending upon this electronic environment. The chem-
ical shift () is a measure of the electronic shielding that leads to this magnetic field attenuation,
and therefore provides an accurate description of the local electronic environment. Thus, chemical
shifts are among the most fundamental of nuclear magnetic resonance (NMR) spectral parameters.
Chemical shifts are also among the most accurately measurable quantities in NMR spectroscopy
(accuracy up to one part in a billion).

Given these properties of the chemical shift, there has long been an interest in understanding
the nature of the relationship between molecular structure and shift, and applying said knowledge
to infer additional structural information about the molecule under study. Protein molecules too
give rise to NMR spectra in an applied magnetic field in a fashion intricately dependent on their
three dimensional structures. The electronic environment around nuclei in the case of proteins is
influenced by factors such as neighbor anisotropy, ring current anisotropy, hydrogen bond effects,
and through-space electric field effects among others. A graphical representation of the chemical
shift measurements from a standard protein NMR experiment (*H/**N HSQC) is depicted in Fig. 1.
The center of each of the peaks observed in this two-dimensional plot represents two chemical
shifts, the 'H and '°N shifts. The axes of the spectrum are in parts per million (ppm), the standard
unit for chemical shifts.

Knowledge of the chemical shift and insight into the structure-shift relationship is useful in
many contexts. The most obvious application is resonance assignment in the context of an pro-
tein NMR experiment where a model of the target protein’s structure is available[10] (either
via independent X-ray crystallography experiments or comparative modeling). Predicted shifts
may also be used to refine existing structural models. There have also been efforts to infer
low-resolution structure models given just the experimental chemical shifts. Examples include
techniques for secondary structure prediction[16, 18], backbone torsion angle prediction[5], fold
recognition[11, 13, 20], protein-protein docking[6] and modeling ligand interactions[15]. Pre-
dicted shifts, subject to their having acceptable accuracy, may be similarly employed.

Existing approaches to chemical shift prediction from protein structure apply quantum me-
chanical, classical and/or empirical methods to the atomic co-ordinate data. Examples of such
algorithms include SHIFTS[19], SHIFTX[14] and PROSHIFT[12]. SHIFTS takes a quantum mechan-
ical approach and employs a pre-calculated database of tri-peptide shifts (via density functional
theory), while SHIFTX uses a hybrid empirical/semi-classical approach involving pre-calculated
chemical shift hypersurfaces and equations for ring current, electric field, hydrogen bonding and
solvent effects. PROSHIFT uses a neural network trained on ~ 69,000 experimentally determined
chemical shifts. Each of these shift prediction approaches has unique limitations either in terms
of the size and composition of the training and/or test data sets, or due to the general tendency for
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Figure 1: Two-dimensional 1H/'>N Heteronuclear Single-Quantum Coherence (HSQC) NMR
spectra of an E. coli DNA glycosylase, Fpg. (from http://www.emsl.pnl.gov/homes/
msd/bionmr/Buchko_Fpg_poster/Fpg.htm)
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lear ning methods such as neural networks to over-fit training data. We hypothesized that a better
chemical shift predictor could be built by layering an ensemble machine learning algorithm (Ran-
dom Forestg4]) capable of non-linear regression on top of these existing predictors in addition
to expanding the feature set by taking into account numerous empirical structural features such as
solvent accessibility, secondary structure and model quality. This paper presents theresults of such
an exer cise. '

In brief, the non-linear regression approach to chemical shift prediction employing the ensem-
ble machine learning Random Forest algorithm outperformed each of the underlying shift pre-
diction programs (viz. SHIFTS SHIFTX, PROSHIFT) across all six backbone atom types. These
improvements in prediction accuracies were measured in terms of root mean squared error from
experimentally recorded shifts and in the case of the Random Forest algorithm, they ranged be-
tween 3% to ~18% when compared to the best performer amongst the aforementioned prediction
programs. The decrease in error observed was proven to be statistically significant by comparing
the distribution of errors using a standard f-test. Across all atom types, p-values <C 0.001 were
observed.

2 Systemsand methods

2.1 Data assembly

Building a structure-based chemical shift prediction method requires a dataset of protein chains
with experimentally recorded chemical shifts matched to structures solved by NMR or X-ray
crystallography. The principal community repositories of chemical shift and structural (atomic
co-ordinate) data are the BioMagResBank[3] (BMRB) and the Protein Data Bank[l] (PDB) re-
spectively. However, it has been demonstrated that significant chemical shift referencing errors
exist for a substantial portion of the BMRB data. Hence, the dataset used in this project is drawn
from the RefDB[21] database - a carefully re-referenced set of chemical shifts derived originally
from the BMRB. The RefDB also provides a sequence-based mapping to PDB entries for each
set of re-referenced shifts. The sub-set of the RefDB entries selected was free of complexes and
mapped to 454 PDB entries.

Metadata and structural information from each of the 454 PDB entries wer e extracted and each
entry was split up into its constituent fragments. In this context, a fragment is defined as a single
contiguous polypeptide chain present as part of a potentially larger protein structure with multiple
such chains. These fragments were then processed through each of the three chemical shift predic-
tors— PROSHIFT, SHIFTS and SHIFTX. STRIDE[7] secondary structural infor mation was obtained
for each fragment from the S2C[17] database. Additionally, a per-residue solvent exposure term
was calculated using the half-sphere exposure HSE — fi[8] measure. All sructural information
and predicted shifts partitioned by protein backbone atom type were stored in arelational database
using appropriate schema.

A mapping between the residues in a PDB fragment and those in a RefDB entry with ex-
perimental shifts is required to be able to compare the predicted shifts with experimental shifts.
Alignments between the corresponding residue sequences wer e generated using a simple pairwise




Feature Description

aa Amino acid residue
secstr STRIDE secondary structure
solvjexp Half-sphere solvent exposure (HSE — /5) terms

gfri Contribution from preceding residue's backbone torsion angles
gf® Contribution from target residue's backbone torsion angles

Vi Contribution from succeeding residue's backbone torsion angles
cft-i Contribution from preceding residue's type and xi torsion angle
of Contribution from target residue's type and Xi torsion angle

e® Hydrogen bond contributions

rand-coil  Random coil reference shift value

predjshifts Predicted shifts from SHIFTS, SHIFTX and PROSHIFT

Table 1: Feature set employed in regression for protein backbone heavy atoms

dynamic programming alignment agorithm provided by Biopython[2].
2.2 Featureextraction

Chemical shifts can be predicted from structural models in three ways: using quantum mechanics,
classica mechanics, and empirical models. A purely quantum approach is theoretically possible
but, in the case of most macromolecules the size of typical protein structures, computationally
infeasible. Thus, most protein chemical shift prediction methods employ hybrid techniques, com-
bining quantum, classical and empirical approaches in various ways. Examples of such algorithms
include SHIFTS (combines quantum and empirical methods), SHIFTX (combines classical and em-
pirical methods) and PROSHIFT (maps a variety of empirically-determined structural features to
chemical shifts using neural networks). Our approach employs each of these individual predictors
fina predicted shifts as input to a non-linear regression algorithm. Also, the per-residue quantum
mechanical contributions calculated by SHIFTS via density functional analysis of tri-peptides are
independently included in the feature array. Additionally, the secondary structural assignments
and solvent exposure information obtained in the manner described earlier are incorporated on a
per-residue basis. Tables 1 and 2 enumerate the specific features employed in predicting backbone
heavy atom and proton shifts respectively. Fig. 2 is aflowchart depicting the assembly of data and
feature extraction described herein.

23 Regresson usng Random Forests

The proposed regression model has the form :

S = f{xi) | 1)

where S is the estimated chemical shift for the ith nucleus, /() is anon-linear regression function
and Xi is avector whose components encode the variables of the regression model. These variables
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Feature Description

aa Amino acid residue

sec_str STRIDE secondary structure

solv_exp Half-sphere solvent exposure (HSE — [3) terms

ef¢ Ring current contributions from neighboring aromatic rings
ef Electrostatic contributions from nearby point charges

ef4 Peptide group anisotropy

rand_coil  Random coil reference shift value
pred_shifts Predicted shifts from SHIFTS, SHIFTXand PROSHIFT

Table 2: Feature set employed in regression for protein backbone protons

correspond to computable properties in each nucleus’ environment and are essentially the features
described in the section above. The algorithm selected for implementing the regression function in
this set of experiments is Random Forest regression[4]. Random Forest consists of a collection of
regression trees, each regression tree itself being a regression function. Each of these trees predicts
a real value by querying a set number of variables and instances within the regression model.
Each regression tree is thus trained on a different bootstrap sample of both training instances and
features. The Random Forest then averages the predictions made by the trees in the forest to
produce the final output. Random Forest is thus an example of an ensemble method of machine
learning.

Since each base regressor (tree) in the forest trains on a unique randomized sub-set of data and
variables, no single tree over-fits the training data. More formally, statistical learning theory[9]
decomposes error into bias and variance. The goal of every machine learning algorithm is to
reduce both these quantities. Unfortunately, there is a fundamental trade-off between the two, and
most algorithms opt to reduce bias at the expense of variance. High error variance however is a
sign of over-fitting and any algorithm that over-fits its training data will not generalize well to novel
test instances (test error will be high). Random Forest is a variance reduction technique and has
provable properties with regard to resisting over-fitting. In contrast, algorithms such as the neural
networks employed by PROSHIFT have no such guarantee. Additionally, Random Forests are very
efficient to train and test, and have built-in mechanisms for estimating test error and confidence in
each prediction made.

In the experiments described, Random Forests were trained for each nucleus type on the given
set of features and the accuracy of the final predicted shifts was estimated using 10-fold cross-
validation. Chemical shift prediction accuracies are reported for the H*, HY, 15N, 13C*, 13C%and
13C’ backbone atom types in terms of root mean squared error (RMSE) from the experimental
value. These RMSE values are compared to similar values obtained for the three component
chemical shift predictors, PROSHIFT, SHIFTS, and SHIFTX. The p-values of decreases in RMSE are
calculated using a standard z-test to assess the significance of improvements in prediction accuracy.




(SHIFTS)

Random Forest non-inear regression
- training and error estimation

Figure 2: Flowchart depicting the experimental procedure involved in training Random Forest
Tegressors




SHIFTS SHIFTX PROSHIFT ~ RANDOM FOREST
Nucleus Instances RMSE (ppm) RMSE (ppm) RMSE (ppm) RMSE (ppm)

WN 46,991 0.66 0.63 0.58 0.49 (15.5%)
Ha 38,767 0.79 0.36 0.34 0.28 (17.7%)
L5y 40,166 5.29 351 3.44 2.93 (14.8%)
BCce 37,006 1.86 1.64 259 151 (7.9%)
130 29,809 3.13 3.02 3.75 2.93 (3%)
13¢/ 24,253 189 1.40 2.34 1.19 (14.9%)

Table 3: Chemical shift prediction accuracies for individua shift predictors and Random Forest
regression in terms of root mean squared error (RMSE) from experimental values. The valuesin
italics identify the least RMSE value amongst the SHIFTS, SHIFTX and PROSHIFT predictors for
that atom type. The values in bold type identify the best overal predictor, which is the Random
Forest approach for al nuclel. The percentage figuresin parentheses in the Random Forest column
represent the decrease in RMSE as a percentage of the least RMSE value amongst the underlying
predictors.

3 Reaultsand discussion

The database of chemical shifts employed in this exercise consisted of between 24,000 to 47,000
separate chemical shifts depending on the nucleus type. These were mapped to 454 different
protein structures from the PDB. The results obtained by training Random Forest regressors for
each nucleus type (subject to 10-fold cross-validation) are shown in table 3. Prediction accuracies
are reported in terms of root mean squared error (RMSE) from experimental shift values. It is
seen that the Random Forest predictions are 15.5%, 17.7%, 14.8%, 7.9%, 3% and 14.9% more
accurate than the best of SHIFTS, SHIFTX, and PROSHIFT for H?, HN, N, *3C?, 1*C” and **C'
nuclei respectively. Thep-values of these decreasesin RM SE, based on f-tests on theresiduals, are
each <C 0.001, thereby indicating that the decreases in error are statistically significant. Note, that
although the **C’” RMSE value shows only modest improvement (3%) when predicted using the
Random Forest algorithm, a separate experiment (data not shown) where rotameric configurations
served as a feature resulted in an RM SE drop of greater than 7% for the same nucleus. Thisisto
be expected since the configuration of the sidechain and the resultant distribution of the sidechain
electrons likely have a significant influence on the **C® chemical shift. This aso indicates that the
same set of regression features may not be optimal for every type of nucleus.

It is clear from these results that the Random Forest-based non-linear regression approach to
shift prediction promises significant improvements in prediction accuracy over existing methods.
Apart from the resistance of the technique to over-fitting, it is to be noted that the size of the training
data set employed in this exercise is significantly larger than any prior comparable effort. This, in
turn, will dlow this prediction method to better generalize to novel protein structures. Also, given
that Random Forests are extremely efficient to train and each tree in the forest can be grown in
parallel, additional structural variables may be rapidly tested for their contribution to improvement
in shift prediction accuracy. Experiments using B-factors from X-ray crystallographic structures
and discrete per-residue rotamer library categories as additional festures are currently in progress.
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The method reported here is also notable for the fact that it is a hybrid meta-prediction ap-
proach, combining quantum, classical and empirical information about protein structures. Purely
guantum mechanical approaches to shift prediction work well for small molecules but are computa-
tionally infeasible for anything the size of a typical protein structure. Conversely, purely empirical
approaches are unlikely to capture all the complexity inherent in the factors affecting the elec-
tronic environment which finally dictates the chemical shift. The meta-prediction aspect, wherein
predictions from multiple underlying chemical shift predictors (PROSHIFT, SHIFTS and SHIFTX in
this case) are incorporated as input to theregression algorithm, allows for ajudicious combination
of information from both approaches to be incorporated into a single prediction technique. Meta-
prediction approaches have been successfully used in secondary and tertiary structure prediction
and ligand docking. The results obtained indicate that chemical shift prediction is also a suitable
candidate for this approach.

4 Concluson

We have shown that a non-linear regression approach to chemical shift prediction employing a en-
semble machine lear ning approach has the potential to improve chemical shift prediction accuracy
significantly. The ensemble Random Forest algorithm employed is provably resistant to over-fitting
the test data and generalizes well to novel test instances. Thisis demonstrated by the improvement
in shift prediction accuracy seen in the 10-fold cross-validation exercise over existing chemical
shift predictors across all six protein backbone nuclei. Random Forests allow for rapid training of
regressors and are eminently parallelizable, therefore permitting one to explore the protein struc-
tural variable space efficiently. They make feasible the potential training of separate regressors for
varied partitions of the training data set (all NMR structures versus all X-ray structures, per amino
acid typeregressors, per secondary structuretyperegressorsetc.). It ispossiblethat a future variant
on this method will render predictions by using such different regressors internally to predict on
different partitions of the test data.

The availability of arapid, accurate and easily adapted method of chemical shift prediction will
makeit easier to study therelationship between shift and structure. Any techniquethat incor porates
chemical shift prediction, such as NM R resonance assignment, low resolution structure prediction,
fold recognition, protein docking and ligand interaction modeling, will benefit from the increased
accuracy provided by this method. Additionally, the speed of training of the Random Forests will
permit domain-specific regressors to be trained in these endeavors.
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