NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

o

Max-Min Fair Allocation of Indivisible
Goods

Daniel Golovin

June 2005
CMU-CS-05—1445

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We consider the problem of fairly allocating a set of m indivisible goods to n agents, given
the agents’ utilities for each good. Fair allocations in this context are those maximizing
the minimum utility received by any agent. We give hardness results and polynomial time
approximation algorithms for several variants of this problem. Our main result is a bicriteria
approximation in the model with additive utilities, in which a (1 — #) fraction of the agents
receive utility at least OPT/k, for any integer k. This result is obtained from rounding a
suitable linear programming relaxation of the problem, and is the best possible result for
our LP. We also give an O(y/n) approximation for a special case with only two classes of
goods, an (m — n + 1) approximation for instances with submodular utilities, and extreme
inapproximability results for the most general model with monotone utilities.

This research is supported by NSF ITR grants CCR-0122581 and IIS-0121678.

iversioy LiT
Un.\{vr;f'_.h Lt

Ceorsmaril 0

sertay
ST

.
LRSS

Keywords: Fair Allocation, Indivisibilities, Discrete Allocation, Approximation Algo-
rithms, Generalized Assignment, Lexicographic Matchings

L

1 Introduction

Economists have long studied many issues surrounding the allocation of goods and services
under various economic systems (See eg. [5, 22, 24, 32, 33]). The two notions of efficiency
and fairness of allocations have played a central role in this research area. Despite this,
little is known about the computational aspects of finding efficient and/or fair allocations
in markets with indivisible goods - that is, goods that cannot be divided and fractionally
assigned to multiple agents. Previous work in economics on finding fair allocations has fo-
cused largely on the structural properties of markets with indivisible goods, for example,
the existence or non-existence of allocations with various properties [17, 4], or the minimum
amount of money to offset indivisibilities in the market [1,9]. Other early work in operations
research focused on special cases that are tractable [12, 31], e.g. when thereis only one type
of good and general utility functions as in [12], or on exponential time algorithms for general
models [21]. Yet another strain of research focused on techniques to solve general classes
of problems with fairness measures incorporated into the objective function [27, 30]. For
example, Sokkalingam and Anegja [30] solved a variety of optimization problems with lexico-
graphic objective functions, including bipartite matching. Such lexicographically maximal
matchings yelld a fair allocation when there is exactly one good per agent.

In computer science, work on finding fair allocations has focused on graph based problems
and load balancing. For example, Megiddo [23] considered the problem of finding flows in
a graph with multiple sources and sinks that fairly distribute the flow absorbed by each
sink, and Kleinberg, Rabani, and Tardos [16] consider the problem of finding allocations
of bandwidth that ensure fair routing. Fairness in load balancing has been studied for
severa problems, such as scheduling jobs to unrelated machines to minimize the maximum
processing time of any machine [11, 19, 29], and facility location to minimize the maximum
distance from a client to its closest open facility [18].

Other work has focused on the complexity of finding allocations with other properties of
note. For example, Gale and Shapley [10] have investigated stability of allocations, Irving,
Leather, and Gusfield [13] considered finding fair stable marriages, Scarf and Shapley [28]
and Pdl and Tardos [26] have investigated group strategy proofness, and Jain and Vazirani
[15 equitable cost shares. Recently, the question of finding envy-free or envy minimizing
allocations of indivisible goods has been investigated by Lipton et al. [20]. Onthe complexity
side, there has been work investigating the existence and computational complexity of finding
equilibriain markets [6, 7, 8, 14, 28].

In this paper, we investigate the complexity of finding fair allocations in markets com-
posed entirely of indivisible goods. We call an allocation maximizing the minimum utility
received by any agent max-min fair, and differentiate it from the notion of max-min fairness
commonly used in the literature, which requires an allocation to be utility-wise leodcograph-
ically maximum: that is, an allocation in which the minimum utility received by any agent
is maximized, and subject to this, the minimum utility received by the remaining agents is
maximized, and so on. We will call this latter notion of fairness strong max-min fairness. We
investigate this Max-Min Allocation (MMA) problem with several types of utility functions,
e.g. monotone and additive functions (see definitions below). Finding approximate max-min

1

far alocations for agents with additive utilities was consdered independently by Bezakova
and Dani [3], who give arandomized 2 approximation for instances with two agents, and an
(m—n+ 1) approximation for an instance with m goods and n agents. We improve upon
both of these results.

Summary of Results. For MMA with genera monotone utilities, n agents, and m goods,
we show the task of computing an /(n, m) approximation, for any polynomia time com-
putable function f(n,m), is NP—hard and has communication complexity ft(2"m~s), even
with only two agents. These results force us to retreat to the case of smpler utility functions.

In the additive utility model, where the utility of an agent a for good g is denoted u,g, We
give a deterministic algorithm yielding a bicriteria solution that given any fceZ. returns
an alocation giving at least [(1 — \)n\ agents utility at least SEl; Our agorithm is based
on rounding a suitable linear programming relaxation of the problem. We dso note that
this bicriteriaresult is the best result possible for our LP; in genera there does not exist an
alocation rounded from the LP giving [(1 — ~) n] agents utility at least *OPT, for any
fixed k.

Using min-cut and feasible flow techniques, we obtain an O(y/n) approximation for a
variant of MMA in which there are "small" goods that each agent values at zero or one, and
"big" goods that each agent vaues at zero or x, wherex > 1 (thisis caled Big Goods/Small
Goods MMA).

We additionally proveit is NP—hard to (2—€) approximate MMA in the additive utilities
model even with utilitiesin {0,1,2}. Note thereis a 2 approximation in this case, snce it
IS easy to obtain a maxmin approximation where Ug. and X are the maximum and
minimum non-zero utility values, respectively.

We adso show that finding strongly max-min fair alocations for the matching version of
MMA can be used to obtain a (m — n + 1) approximation for MMA instances where each
agent's utility function is submodular. Strongly max-min fair matchings can be found by an
agorithm of Sokkaingam and Anega [30], however we provide an alternative conceptually
sampler agorithm obtained via a reduction to max weight perfect matching. We note in
passing that our (very large) weights are essentially as small as possible for such areduction.

Organization. The hardnessresultsfor MMA are presented in Section 2. The n-approximation
and bicriteria solution for additive MMA, based on LP rounding, arein Section 3. Section 4
contains the O(y/n) approximation for Big Goods/Small Goods MMA, based on flow tech-
niques. Section 5 contains the agorithm to find strongly max-min far matchings, and its
extenson to a (m— n + 1) approximation for submodular MMA. All proofs not appearing

in their relevant sections are in the appendices.

Notation and Definitions. In this paper, n indicates the number of agents, and m the
number of goods. An alocation is a function TT from agents A to sets of goods, such that
{(@ | aG A} isapartition of the goods, Q. A utility function u : Ax 29 —e N, gives the

utility of any agent for any subset of goods. We assume throughout that for any agent a,
t*(a0) = O.

Definition 1. Given a set of n agents A, a set of m goods Q, and a utility function u, the
Max-Min Allocationproblem (MMA) isto output an allocationn maximizing ming4u(a, 7r(a)).

Definition 2. A utility function is monotone if Va G ANSS such that S C S C g,
uaS) < u(@S. A utility function is submodular i/Va € *4VS',S_.C Q, u(a,us) +
u(a, SPI5) <u(a S +u(a S). M tAtfity function is additive zZVa€ A V5 CH il(a S =
J2,es'(®>{9})" I" this case, we write u(a,g) or Uy as shorthand for u(a,{g}). A utility
function is value derived if it is additive, and there exists a function v: Q —+ N such that
Va€ AVg eg, u@ag) G {0,v(g)}.

2 Hardness of Max-Min Allocation
AU relevant proofs not appearing in this section are in Appendix A.

Theorem 1. Max-Min Allocation with general monotone utilities, is NP—hard to /(n, m)
approximate for any primitive recursive function f{n,m), even with only two agents.

Proof. Let SC N be an instance of the Partitioning problem. Let a : 2° —e N be defined
by cr(X) := Yixex= R®%*7 the Partitioning problem is to determine if 3X C 5 such that
<T(X) = ~cr(S). Create a Max-Min Allocation instance with two agents, A = {1,2}, goods
g=SandVX C5 '

_ _J 1 ifa(X) 2 30(5)
u(l,X)—u(2,X)—{ 0 otherwise 2
Clearly, there exists a 1-dlocation iff 3X C 5 such that cr(X) = *&(S). Any alocation that
isn't a 1-dlocation is a O-dlocation, so an /(n, m) approximation algorithm can distinguish
between "yes' and "no" instances of Partition. The claim follows. .

Theorem 2. Max-Min Allocation with general monotone utilities provided by accessto an
oraclerequiresfi,(2"m~'/?) timeto/(n, m) approximatefor any primitive recursivefunction
f(n,m), even with only two agents.

Theorem 2 is a corrolary of the main result of [25], and can be proven directly using
Nisan and Segd's techniques (see Appendix A for details).

In light of the savere ingpproximability of MMA with monotone utilities, we consder
only MMA with submodular, additive, or vaue derived utilities for the remainder of the
paper. However, even in the Big Goods/Small Goods moddl, with the big goods vaued at
zero or two, MMA remains hard.

Lemma 1. Max-Min Allocation isNP—hard to (2— €) approximatefor anye > 0, evenin
theBig Goods/Small Goodsmodel, eveniftheutilitiesarederivedfromvaluesv: g—»{1,2}.

3

3 Additive Max-Min Allocation Via LP Rounding

We congder alinear programming relaxation of the associated integer program for MM A with
additive utilities. Using a deterministic rounding procedure, we obtain an n-approximation
in this fashion, and show that the linear program has integrality gap n. Lastly, we give an
effident algorithm that, given any k G Z+, computes an alocation giving [(1 — F)n] agents
utility at least 7P, and show that this is tight for the LP considered. All relevant proofs
not appearing in this section are in Appendix B.

3.1 ThelLP, and When It Works Well
The fallowing 1P, denoted IP$, represents additive MMA instances precisely.

maximizeA
Ta.q € {0,1}, Vac A, geCG (1)
ZaeAz = 1, Vg € g

> geg¥agXag > A, VveA

A solution X allocates good g to agent a iff X,g = 1. Let IPQ = OPT denote the maximum
A for which the above IP has a solution. Let LPQ denote the LP relaxation obtained by
replacing X,g G {0,1} with 0 < X,g < 1 for @l a and g. Let LPQ denote the maximum
obtainable A in LPQ. We make some observations about this LP.

We first show that if there is a solution X to LPQ, then there is a solution X giving
al agents at least as much utility as they received under X, and has the property that the
undirected graph Gg defined below is a forest. G% has vertex set Vg = AU Q, and edges
E% = {(ag)\xq > 0}. Let U(X) be the vector of utilities recelved by agents under a
fractiona alocation X, sorted in non-decreasing order, and let U%(X) be the i™ component
of U(X).

Lemma 2. Givenfeasible LP, solution X, there is a polynomial time algorithm to compute
a solution X such that for each i, Ui(X) < Ui(X) and G$ is a forest.

Note that the integrality gap of LPQ is infinite. For consder an instance with agents
A= {1,2,...,n} and one good, <? such that every agent values g a n, i.e. Uy = n for
al agents a. Then the best integral alocation is a O-alocation, and the best fractiona
allocation, given by X, = - for dl a G -4, is a 1-dlocation. We circumvent this problem by
defining u%y 1= MiN{K, uy) for KGN, and letting LP(K) be the following LP.

maximizeA
0<z,, <1, Vac A,ge@G 2)
EaeAxag 1 Vg € g

Dogeg UngTag = A, Vae€ A

Let IP(K) denote the corresponding integer program with X, G {0,1}. As before, define
LP(K)* and IP(K)* as the maximum obtainable A for LP(K) and /P(«), respectively. Binary

4

search for the maximum K such that LP(K)* > K. Let K* be this value, and define LP\ :=
LP(K*), IPI = IP(K*). We will work with LPx rather than LP,, and demonstrate that
the integrality gap of LP\ is exactly n. First we must make some observations about LP\
and | Pi. Note that Lemma 2 applies to LPy since it applies to LP, for any MMA instance
J, and for any LPi we can construct an instance V such that LPQ = LP\. Lemma 11 in
Appendix B provesthat IPQ < LP{ = K*.

We can characterize especidly hard instances of additive MMA as those in which some
agent must receive virtualy al of its utility from a single good, by glvmg a constant factor
approximation agorithm if such is not the case.

Lemma 3. Iffor all (a,g) pairs uyy <_f3 « LPQ then there is a polynomial time algorithm,
that returns a (1 — /3)LP* allocation, and hence a j* approximation for IPQ.

We sketch the agorithm as folows Solve the LP, obtaining an optimal solution X.
Convert X to X such that G% is aforest as described in Lemma 2. For each tree T in G*,
root T at any agent arbitrarily. Allocate each agent its children in T.

3.2 A n-Approximation Algorithm

Here we give an upper bound of n to the integrality gap of LP\ by giving an n approximation
algorithm. Cdl an agent c-happy if that agent receives utility at least ¢ under the current
alocation. Let p(T) = W..ATTH'

Algorithm: ALLOCATE()

Solve LP\ optimdly, obtaining solution X.
Convert X to X as described in Lemma 2.
for each tree T of G*
Root T at some agent arbitrarily.
for each agent a of T from the bottom of the tree up (eg. in postfix order)
Allocate an agent a's leaf goods to it.
if an agent is /9(T)-happy under the partial assgnment
then remove it and its lesf children.
else Jalocate its parent to it, as well as its legf children,
Tand remove it, its parent, and its legf children.

Theorem 3. The above algorithmyields an n approximation.

Proof Since LP{ = K*, an optimal solution X gives every agent utility at least «*. WLOG,
assume G% isadngletree T, and n = \An V[T]\. Since we will not need to consder X
further, let X,y be the fractional amount of g that X gives to a Note that agents cannot
be leaves, unless they are alocated al of a good they esteem at K* and nothing ese. In the

latter case, merely allocate them the good the LP did, and nothing else. Otherwise, since the
LP gives them utility at least ft* and (Va, g) Uy < K*, they must get at least some fractional
part of multiple goods. Thus they have degree at least two, and are internal nodes in T.

As the algorithm progresses, an agents' internal children may be removed. An internal
good is removed in this way only when it is allocated to one of its children. We call such an
internal child good taken from its parent, and the (fractional) utility to the parent stolen.
Thus, if good g was taken from agent a by agent 6, then the stolen utility amoimts to UggXag.
The other two components of an agent's utility in T are its remaining children and its parent.
Fix some execution of the algorithm. Let c, be the utility given to agent a by its non-stolen
children in the allocation computed by the algorithm, and let p, be the utility its parent
givesitinT, i.e. if gisthe parent of @, pa = UsgXsg- L€t Sy denote the utility stolen from a
Thus s, + pa + Cy = ft*, since X is an optimal solution to LP\.

An agent a gets less than ” utility iff c, < and a's parent good g is allocated to one
of a's siblings, b. Agent b can only be alocated g if Q, < c; < ~. However, we will show
max{ c,, C}>3- 3 T[E-. Note that a and b must have an agent ancestor since the tree is rooted
at an agent, and thus s, + s& < %¥K* < (1 — ~)’AC* by Lemma4. Further, g can provide at
most ft* utility in total, sop, + pt> < K*, and s, + Ca + pa + & + Q, +pi, > 2K* since X isa
n* fractional allocation. Thus c, + ¢c* > ~-. So every agent gets utility at least ". .

The following lemma is crucial for the proof of Theorem 3.

Lemma 4. Fix any tree T of G*, and root it at an agent. Let n' = \Af) V[T]\. For each
agent a € V[T], let d. be the number of agent descendants of a (excluding a) inT. IfX is
a fractional ft*-allocation, then in any fixed execution of Algorithm ALLOCATEQ, s, < "Mt*
for all agents a.

Proof Consider any tree T in G% and let n' = \An V[T]\. Proceed by induction on d, For
the basis, consider an agent a with d; = 0. It's only children are leaf goods, since G” is
bipartite. Thus s, = 0 < dy/n since only non-leaf goods can be stolen from an agent. For
the induction step, consider an agent a with internal children goods { pi,... ,g} taken by
agents {1,2,... ,£}. Agent i could only have taken good g = g% from a if Q <',‘,;~. By the
induction hypothesis, S < #, thus q +pi + S > ft* implies gy = p; > (1 — ~Trk*. This
in turn implies U,gXeg < "7 * . Therefore the total utility stolen from a is

o

£

N .
Sa = UagXas < « 2 .—'IU- <
i=1 i=1 <
which completes the induction. Note that if d; > O, thenin fact S < %2ft*. .

Lemma 5. The integrality gap of LP\, the maximum oij"p: over all MMA instances, is
exactly n.

3.3 Allowing for Poverty: Bicriteria Solutions

Here we condder the case when there exist other mechanisms to compensate some fixed
fraction of the agents, or when it is acceptable for some of the agents to receive nothing.
Call such agents poor. Given some number of agents that we may mark as poor, we seek
to maximize the minimum utility received by those agents not marked poor. In this, the
main result of the paper, we show that the deterministic algorithm below gives [(1 — £)n]
agents utility at least 2El for any k 6 Z+, and that our LP precludes any better results via
rounding. We annotate the algorithm to smplify the proof. The sgnificance of the tokens
Is explained below.

Algorithm: BICRITERIA-ALLOCATE(fC)

Construct LP\ and find an optimal acyclic solution X for it as in Algorithm ALLOCATE()
for each tree T in G%
Root T at some agent arbitrarily.
for each agent a of T, in postfix order
Allocate an agent a's leaf goods to it.
if ais now *-happy
then remove it and its leaf goods from the graph.
else if giving agent a its parent good p as wel will not make it *--happy
then mark agent a "poor" and remove it and its lesf goods.
if p is currently unallocated
else then dlocate p to a and remove a and al goods alocated to it.
else mark agent a as "waiting for siblings.”
if al of as sblings are either waiting for siblings or have been removed
then Jmark agent a and al its waiting siblings poor, remove them, and add b
~tokens to p's parent agent a, where Utgxaty € (/s*#, ft*|].

The agorithm finds K* and constructs LP\, solves it and converts the solution into an
"acyclic" solution (i.e., one in which Gx is aforest). The agorithm then proceeds up the
tree, ineg. apostorder traversal of the agents, allocating an agent's leaf goodsto it, checking
if this makes it *-happy, and alocating its parent good to it if not. The algorithm continues
in thisway until it cannot make an agent ~-happy in this way, either because its remaining
children and parent are insufficient (denoted event 1), or because its parent has aready been
allocated to some other agent (caled event [1). In either event, smply mark the agent as poor,
remove it and the goods alocated to it, and continue. (We make the distinction between
event | and event 1l only to facilitate the proof.) Idedly, at most Vk fraction of the agents
from each subtree would be marked poor. Sincethisis not the case, an accounting mechanism
is needed, in which subtrees donate and receive agents from other subtrees. The tokensin
the algorithm serve this purpose; each token denotes a donated agent. Thusif don(T) agents
are donated by atree T (i.e. added to some agent's account not in T when an agent in T

7

was removed), rec(T) agents are received by T from other subtrees, and poor(T) agents in
T are marked poor, the algorithm ensures that \An V[T]\ + rec(T) — don(T) > k ¢ poor(T).

Theorem 4. Given any k G Z+, the above algorithm yields an allocation giving at least
\(1 —Vri\ agents utility at least 21,

Given an LP solution X, we say an algorithm respects X if its output allocation n gives
gGQtoaGAoOnly if xg > 0.

Theorem 5. Given any k G Z+ and any optimal LP solution X, no algorithm respecting
X can yield an allocation giving at least [~ — ")ft] agents utility at least *OPT for any
£50.

4 Big Goods/Small Goods Max-Min Allocation.

In this section we consider flow based algorithms. We give an x approximation in the
case that uyy G {0} U [l,x] for some x > 1, and an O(y/n) approximation algorithm for
the Big Goods/Small Goods MM A variant, in which goods can be partitioned into two
sets Q — QB W QS such that for some x > 1, for al agentsa G A, ¢® G GB, ¢° € Gs,
u@@g’) G {0,1} and u(a,g®) G {0,x}. All relevant proofs not appearing in this section are
in Appendix C. We begin with the following observations.

Lemma 6. Max-Min Allocation instances in which u,y G {0,1} for all a G Ag G G can be
solved in polynomial time, using max-flow computations.

Corollary 1. Max-Min Allocation instances in which there existsx > 1 such that u,g G {0} U [1, X]
for alia G A,g G G can be x-approximated in polynomial time, by solving the instance exactly
using utilities Uy = MXN{Uyg, 1}.

The following is a generalization of Hall's theorem that will be needed.

Lemma 7. Given a set A of n agents, nV goods, and additive utilities u,y G {0,1}, let
S ={9ug=1}, § := {g\ Ba G I)(Uug = 1)} = Ugae/5a and /(/) := |5/]. /I
(V7 CA, 170 0)(/(7) > VI\) then there exists a V-allocation on these goods.

Given an instance of Big Goods/Small Goods MMA, with u, G {0, I,x} for al a and
#, we assume that the optimum satisfies OPT G [x, 2x] and that x > y/n. We justify these
assumptions later, in the proof of Theorem 6. For now, let b be the number of agents
receiving big goods in some x allocation (henceforth called "big agents'), and s = n—Db
be the number of agents receiving only small goods in that x allocation (henceforth called
"small agents").

Lemma 8. There is a-polynomial time algorithm that yields a [fJ allocation.

Proof. Let Ap be the set of agents 7 with |S;] < z. The algorithm is as follows: Find a
maximum cardinality matching from big goods to agents containing Ap in the matching,
and allocate the big goods accordingly. Let A% be the set of agents receiving big goods.
Allocate the small goods to the remaining agents, Ac := A — Aj, in the fairest way possible,
via a feasible flow algorithm.

The agents in Ag have utility z. Note that |A%5| > b, so | Ac| < s. Since each agent 7 in
Ac has |Si| > z, (VI C A, I # 0)(f(I) >). We conclude that (VI C Ac)(f(I) = til1))-
Applying Lemma 7 with V' = 7=, there must be a I_Tf;lj allocation on the agents of A¢
using only small goods. Since s > |Ac¢|, and the uqg € {0,1} case is solved exactly, the above
algorithm returns a | £] allocation. O

The O(y/n) approximation algorithm splits up the instance into two subproblems. In
one of these subproblems, a large fraction of the agents (at least 1 — =) will receive big
goods. The other subproblem can be approximated adequately with only small goods. Recall
Sa :={g | uag =1}, S1 := Uqge1Sa, and f(I) := |S;|. The following is a useful subroutine to
find the maximum cardinality subset J C A such that f(J) < c|J|.

Construct a bipartite graph G on the agents and goods, with (a,g) € E[G] if ue = 1,
having unit capacity. Add a sink node ¢ with (g,t) € E for each good g, also having unit
capacity. Finally add a source node s, with edges (s, a) to all agents a of capacity c. Compute
a min-cut, and output the set of agents in the source side of the min-cut.

Algorithm: ROOT-N-APPROX()

comment: Let Ag = {¢| (|S;| < z)}. These agents must be big in any z allocation.

Remove Apg from the instance for now. Let Ag be the set of agents that remain.
Find the max cardinality subset J C Ag such that f(J) < “"i as described above.
comment: Subproblem 1 contains agents in J U Ap, all big goods, and goods in S.

Solve subproblem 1 using the | £| approximation algorithm given above.
comment: Subproblem 2 will involve all the other agents and all the leftover small goods.

Solve subproblem two directly using the flow algorithm.

Lemma 9. The algorithm above yields a | 5=| allocation.

Proof. Consider subproblem 1. Since f(J) < %J;l, in the x allocation fewer than % agents
in J are small. Thus in this instance s < |J|/v/n < n/y/n = /0, and we can obtain a [5]
allocation for the agents in this subproblem (i.e. JU .Ag). Now consider subproblem 2. Let
J := Ag — J. Note that for all K C J, it must be that |Sk — Ss| > :“:. If not, then
f(JUK) < (z|J|/v/n) + (z|K|/+/n). Since |J| + |K| = |J U K|, this would violate the
maximality of J. Applying Lemma 7, there is a [5;] allocation in this subproblem using
only small goods not wanted by any agents in J. Since it uses only small goods, we can solve
it directly using the flow algorithm to obtain such an allocation. (]

9

Theorem 6. There is a polynomial time O(,/n) approzimation algorithm for Big Goods/Small
Goods Maz-Min Allocation.

Proof. Assuming OPT € [z,2z] and z > /n, ROOT-N-APPROX returns a |] allocation,

and so x > /n and OPT < 2z imply [7“”;] > 5= > %%. So under these assumptions, we

obtain a 4/n approximation. We can dismiss these assumptions as follows: If OPT > 2z,
then by Lemma 3, we can obtain a 2 approximation with a LP based algorithm. If z < \/n,
we can obtain a y/n approximation via Corollary 1. Finally, if OPT < z, we can run the
algorithm again using u,, = § if ueg = 7, and u;, = U,y otherwise. O

5 Finding Strongly Max-Min Fair Matchings.

We conclude our algorithmic investigations of MMA with a polynomial time algorithm to
find strongly max-min fair allocations when m = n.

A strongly max-min fair matching is defined as follows. For any allocation =, let U(m) =
{u(a,7(a)) | a € A} be the multiset of utilities received by the agents. Let U(r) € N" be the
vector of utilities in U (), sorted in non-decreasing order. Let U;() denote the i* coordinate
of U(r). We write 7 is fairer than 7, denoted > 7/, if 35 such that U'j(w) > (7_,-(71") and
Vi < j, Ui(n) = U;(n"). We write 7 is as fair as 7', denoted 7 > ' if 7 >= 7’ or U(r) = U(x').
An allocation 7 is strongly maz-min fair if Vo', 7 > n’.

Note that for the special case that m = n, a strongly max-min fair allocation corresponds
exactly to a lexicographically maximal matching in a suitably weighted bipartite graph.
Such a matching can be found in polynomial time via an algorithm of Sokkalingam and
Aneja [30]. We provide an alternative, conceptually simpler algorithm based on reducing
lexicographically maximal matchings to maximum weight matchings. A similiar technique
is used by Irving et al. [13] to find “lexicographically maximum stable marriages.”

The Algorithm: Given a bipartite graph (A, G, E), with edge (a,g) weighted by ugg,
delete all edges (a, g) such that g is not among agent a’s n favorite (highest utility) goods.
Let E’ be the remaining edges. Let V := {uq4|(a,g) € E'} be the set of utility values on the
remaining edges. If u,, is the i*® smallest element of V, let ¢(uqqg) := 7. Define 7 : N —» N
by 7(k) := S_r_, n =) and compute a maximum weight matching on the graph (A4, G, E’)
with edge weights weg := T(¢d(uqg)).

Theorem 7. The above algorithm returns a strongly maz-min fair allocation when m = n.

Proof. In this proof, we equate matchings and allocations, since any allocation that isn’t a
matching is a O-allocation. For a matching M, define its weight to be w(M) = 3_, /\cpr Wag-
It suffices to prove that for any two matchings M and M’, M > M’ implies w(M) > w(M’).
Suppose that M = M’. We will show w(M) —w(M’) > 0.

Let U(M') = Z, U(M) = §. We extend the definition of > to relate pairs of vectors in
R™ whose values are sorted in non-decreasing order in a natural way: @ > b iff (3, Vi <

10

) (o =b{ and a- > 6), and & bif a>- b 01 & = b. Given afixed MMA instance
determining O, let V = {uyg\a e Ajg e Q} as before, and define /(a) = r(<f>(a)) for ae V
and /(&) = $'Lx r(<f>(ai)) fora G V™. We give vectors r, 5* such that x * f A5~ § and
show ti/(M") = /(£) < f(n) < (8 < f(y) = w(M).

Suppose that for all i < fc, Xi = yi and Xk < yk- Let Uk = max”I*}. LeT =
(Xi,X2,..., Xfe_I,Xfe, Umax, Umakx,..., Umax), let $'= (y, S « »., y/t-i, 2ib, 2fc g » - , 1/*). Then,
since / is dtrictly increasing, it is clear that /(X) < f(r) and /(5) < f(y). So it 9UBSxes to
prove f(r) < /(5), which can be done with a strait-forward calculation. D

A (m—n+ 1) Approximation for Submodular Max-Min Allocation. Merdy in-
terpreting an instance of MMA with submodular utilities u as one with additive utilites
U'ag = U(&, {g}) and obtaining a max-min fair matching yields an (m— n+1) approximation
to the origina instance, even though the matching leaves m—n goods unallocated. We defer
the proof of Lemma 10 to Appendix C.

Lemma 10. Given a submodular instance X of MMA, a max-min fair matching M on
utilities vl,g = u(a, {g}) isa (m—n+ 1) approximation to J.

Near Optimality of Edge Weights. Our algorithm uses nearly optimally szed weights.
Consder any function/ : N —e N, obeying thefollowing property: if theweight of amatching,
M, is defined as w(M) = JTV, ; "em f(Uag), then every maximum weight matching is astrongly
max-min far alocation. The proof of the following theorem appears in Appendix C.

Theorem 8. For any function f satisfying the above property, there exists an x such that
f(X)>ﬂn2'2n+l.

6 Conclusions

We have given improved approximation algorithms and hardness results for severa variants
of the problem of finding max-min far alocations of indivisble goods. However, there
remain many interesting open problems pertaining to the allocation of indivisible goods.
For example, there is still alarge gap in the known approximation hardness of the additive
and value derived variants of the Max-Min Allocation problem. The highly constrained Big
Goods/Small Goods variant in particular may yield ingght into at least one core source of
hardness in the problem. Lastly, it remains open whether there exists a way to strengthen
the LP for additive Max-Min Allocation with polynomia time separable constraints, to
overcome the deficiencies inherent in the basic LP formulation.

Acknowledgments. | thank Jon Kleinberg, Anupam Gupta, and Eva Tardos for helpful
discussions and thoughtful guidance, and Kedar Dhamdhere for helpful suggestions. | addi-
tionally thank Jon Kleinberg for a smplified proof of Lemma 7 and Eva Tardos for suggesting
the cycle-canceling proof of Lemma 2.

11

Refer ences

[] Ahmet Alkan, Gabrielle Demange, and David Gale. Fair allocation of indivisible goods and
criteriaof justice. Econometrica, 59(4): 1023-1039, 1991.

[4 Piotr Bennan, Marek Karpinski, and Alexander D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. In 10th Electronic Colloguium on Computational Com-
plexity, Report TR03-049, 2003.

[Ivona Bezékova and Varsha Dani. Allocating indivisible goods. ACM S Gecom Exchanges,
5(3):11-18, 2005.

[4 Steven Brains, Paul Edelman, and Peter Fishburn. Fair divison of indivisible items. Theory
and Decision, 55(2): 147-180, 2003.

[Steven Brains and Alan Taylor. Fair Divison. Cambridge University Press, New York, NY,
1996.

[6] Vincent Conitzer and Tuomas Sandholm. Complexity results about Nash equilibria. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pages
765-771, 2003.

[11 Xiaotie Deng, Christos Papadimitriou, and Shmue Safra On the complexity of equilibria
In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pages
67-71. ACM Press, 2002.

[8 Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani. Mar-
ket equilibrium via a primal-dual-type algorithm. In Proceedings of the 43rd Symposium on
Foundations of Computer Science, pages 389-395. IEEE Computer Society, 2002.

[9 Satoru Fujishige and Zafu Yang. Existence of an equilibrium in ageneral competitive exchange
economy with indivisible goods and money. Annals of Economics and Finance, 3:135-147,
2002.

[10] David Gale and Lloyd Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9-15, 1962.

[11] Ashish God, Adam Meyerson, and Serge Plotkin. Approximate magjorization and far online
load balancing. In Proceedings of the twelfth annual ACM-SAM Symposium on Discrete
Algorithms, pages 384-390. Society for Industrial and Applied Mathematics, 2001.

[12] Toshihide Ibaraki and Naoki Katoh. Resource Allocation Problems: Algorithmic Approaches.
MIT Press, Cambridge, MA, 1998.

[13] Robert W. Irving, Paul Leather, and Dan Gudfidd. An efficent agorithm for the "optima”
stable marriage. J. ACM, 34(3):532-543, 1987.

[14 Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating market equilibria. In
Proceedings of the sixth International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems, 2003.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Kamal Jain and Vijay V. Vazirani. Equitable cost allocations via primal-dual-type algorithms.
In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pages
313-321. ACM Press, 2002.

Jon Kleinberg, Yuval Rabani, and Eva Tardos. Fairness in routing and load balancing. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 568.
|[EEE Computer Society, 1999.

Hideo Konishi, Thomas Quint, and Jun Wako. On the Shapley-Scarf economy: The case of
multiple types of indivisible goods. Journal of Mathematical Economics, 35:1-15, 2001.

Amit Kumar and Jon Kleinberg. Fairness measures for resource allocation. In Proceedings of
the 41st Annual Symposium on Foundations of Computer Science, pages 75-85. IEEE Com-
puter Society, 2000.

Jan Kard Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259-271, 1990.

Richard Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately
fair allocations of indivisible goods. In The ACM Conference on Electronic Commerce, to
appear, 2004.

Hanan Luss. On equitable resource allocation problems: A lexicographic minimax approach.
Operations Research, 47(3):361-378, 1999.

lain McLean and Arnold Urken. Classics of Social Choice. U. Michigan Press, Ann Arbor,
M1, 1995.

Nimrod Megiddo. Optimal flows in networks with multiple sources and sinks. Mathematical
Programming, 7(3):97-107, 1974.

Hervé Moulin. Cooperative Microeconomics. Princeton University Press, Princeton, NJ, 1995.

Noam Nisan and Hya Segal. The communication requirements of efficient allocations and
supporting lindahl prices. In DIMACS Workshop on Computational Issues in Game Theory
and Mechanism Design, 2001.

Martin P4l and Eva Tardos. Group strategyproof mechanisms via primal-dual algorithms. In
Proceedings of the 44th Annual |EEE Symposium on Foundations of Computer Science, pages
584-593. IEEE Computer Society, 2003.

Marc Posner and Chu-Tao Wu. Linear max-min programming. Mathematical Programming,
20:166-172, 1981.

Herbert Scarf and Lloyd Shapley. On cores and indivisibility. Journal of Mathematical Eco-
nomics, 1(1), 1974.

David B. Shmoys and Eva Tardos. Scheduling unrelated machines with costs. In Proceedings
of the fourth annual ACM-SIAM Symposium on Discrete Algorithms, pages 448-454. Society
for Industrial and Applied Mathematics, 1993.

13

[30] P. T. Sokkalingam and Y. P. Angja. Lexicographic bottleneck combinatorial problems. Oper-
ations Research Letters, 23(1-2):27-33, 1998.

[31] Chistopher S. Tang. A max-min allocation problem: Its solutions and applications. Operations
Research, 36(2):359-367, 1988.

[32] Barry R. Weingast and Donald Wittman, editors. Oxford Handbook of Political Economy,
chapter Fair Division. Oxford University Press, 2005.

[33] H. Peyton Young. Equity. Princeton University Press, Princeton, NJ, 1994.

14

A Hardness Proofs

Proof of Theorem 2. This proof is inspired by work in [25]. Let Q be a set of goods with \Q\ = 2k.
Lete S=Q-Sfor 5 C Q. Consider utility functions of type u : A x 29 -> {0,1} obeying the
following property for every a £ Aand SC Q .

0 if \S\ < k
u(a, S) =

1 if \S\ > k
ax (ti(a,5) + I)mod(2) if [5] =k
Consder the utility function for a‘fixed agent, i.e. let u{S) := u(a, 5). A simple argument given
in [25] showsthereto be exactly 2 * / such functions u,. Given any such function u, : 28 —> {0,1}
obeying the above preperty and any sized k set of goods, 5*, we can construct a function uy, : 2" —e
{0,1} such that VS C Q,S + S*, upy(S) = ux(S) and uy(S*) = (Uy(S*) + 1) mod (2). Consder
the instance of MMA with A = {a, b} and utilities u(@S) = uxS), ub,S) = uy(S). WLOG,
assumeit(a, 5*) = 1. Then allocating S* to a and 5* to b is a 1-allocation, whereas everything else
is a O-allocation. To obtain a 1-allocation, any algorithm must thus search for a%* among ()
possiblesige k subsets of Q. This must take fi((**)) oracle accesses, and thus O((*/*)) time. Since
(*) « -L-2%* via Stirling's approximation, any algorithm must take n(2”1(|*|~%/?)) time. Since
any /(n, m) approximation algorithm must compute a 1-allocation, the claim follows. .
Proof of Lemma 1. We reduce (3,B2)-SAT to MMA. (3,B2)-SAT is the set of 3-SAT instances in
which every literal occurs exactly twice. That it is NP—hard follows immediately from [2] in which
MAX-(3,B2)-SAT is shown to be NP—hard even to approximate beyond seme constant. Let F
be a (3,B2)-SAT instance with variables {#i,..~ X} and clauses {Ci,..., Cfc}. Create 2n agents
A= {(xf,y\l <1 <nAvE {true false}}. Let v indicate "not vP Create three groups of goods:
n goods with value 2, QB = {df, » » *sPif}? k " dause’ goodswithmwalue 1, Qc = {<Do e e+ -N}-, &&&
2n — k = A "dummy" goods with value 1, GD = {9?-> s « « >#2nfc}* "/ € utilities are as follows:
u(a,gf) = 2 if a G {(&*, true), (x*, false)}, u(a,gf) = 1 if a = (XJ,v) and the boolean assignment of
Xj tov causes Ci to evaluateto true, and w(a,g) — 1for all a G A; g G GD- All other utilities*/(a, 5)
are zero. Now note that there is a 2-allocation iff F has a satisfying assignment A. For suppose n
isa 2-allocation. Sincetherearen "hig' goods GBJ and 2n "small" goods Gc U £D, a conservation
of utility argument implies TT gives each agent utility exactly two. Thus every goods ¢ G Gc is
allocated to an agent not receiving a big good. It follows that A = {(xi\v)\gf G ?r((xi,v))} is an
assignment satisfying F, since every clause is satisfied by some agent receiving only small goods,
and one of (x*, 0) or (x*, 1) must receive a big good. Conversdly, any allocation A gives a 2-allocation
TT: allocate of to (x*,v) if (x*,v) G A. Let .4B be the agents receiving some big good gf. Allocate
goods in Gc to any agent not in AB obtaining utility one from them, and goods in GD to the
remaining agents with utility less than 2. Let Ac be those receiving utility at least 2 from goods
in Gc- Agentsin AB clearly have utility 2. Further, Asn Ac = 0, and since each literal appears
exactly twicein F, no agent in Ac is allocated more than 2 goods from Gc- Let AD = A—ABMAC.
Collectively, Ap get k-2\Ac\ goods in Gc- Thus 2|,Ai>|-(fc-2].4c|]) = 1{\Ac\ + \Ap\)-k = 2n-fc
goods valued at one by everyone suffices to "fill in the gaps’ and create a 2 allocation. GD does
the trick. Furthermore, if there is no 2-allocation, the optimal isthen at best a 1-allocation. Thus,
for any e > 0, a (2 — €) approximation can distinguish satisfiable instances of (3,B2)-SAT from
unsatisfiable ones, completing the proof. .

15

B LP Related Proofs
B.I Propertiesof LPQ and LP\

Proof of Lemma 2, Supposethereisacycle, C, in Gx- Weremove it without decreasing the utility
received by any agent by pushing flow around C in order to eliminate an edge e as follows. Suppose
C=aigia, 292« * dctfed, whereai,..., a* arethe agentsof thecycle, and#1,..., gk are the goods.
Suppose a\ takes aV's share of gk, i.e. set X\k <— x\k + Xkk- We consider this as aflow, and set
/o = Xkk- To keep ai's utility fixed, a\ gives up u\kXkk utility in the form of g\ to a2- That is,
set X\i <— xn—/1 and #21 <— £21 +/1, where f\ — %£xkk> To keep a2°s utility fixed, 02 gives up
A21/1 utility in the form of p2 to 03, and so on. In general, fc = ~"-/i_i for i > 0. Agent & thus
recaives Uk.k-ifk-i utility from its additional portion of gk-i in exchange for giving its fraction of
0\ to a\. Thus agent &- gains utility uk-ifk-i — u>kkfo- If this quantity is zero, we have a new
allocation achieving the same utilities for each agent, such that Xkk — 0 and so an edge of C has
been removed without adding any edges. If the quantity is positive, &" is better dff than before, and
every other agent has the same utility as before. If the quantity is negative, we can merely reverse
the direction of flow. That is, we give /o units of gk from at to &, /1 units of g\ from 02 to ai,
and so on. If any agent a* does not have f\-\ units of g\-\ to give, we can smply multiplicatively

scale down al flowsby 2V2=*. Thisis acceptable since for eachi andj, fi = c%yjfj for some constant -

C{j. Now theflow is routaile, at least one edge is deleted, the utility of a& increases, and the utility
of the other agents remains the same. Repeating this process at most |J5[Gx]| times, we find a
solution X with G™ acyclic and thus a forest. .

Lemma 11. LP? = K* and 7P;*_< LP{.

Proof. By definition, LP{ = LPk*)* > K*. Note that LP(a)* < LP(j3)* if a < p. Thus if
LP{n*Y = k* + e for some e > 0O, then LP(K* + €)* = K* + g contradicting the maximality of k*.
So LPr = K*. Suppose IP® > LPf, sothat IPQ = K* + e for some e > 0. Restricting the utility
any good gives to any agent to be under IPQ cannot change the vaue of the optimum, and thus
LP(K* + &* > IP(K* + e* = K* + e. This contradicts the maximality of «*, and 0 IP® < LP{.

Proof of Lemma 3. Let LP G {LPo, LP\}. Solution X isoptimal, S0 each agent a receives 3y uagag

LP* utility. Let p bethe parent of ain GJ£, if it exists. The alocation given by the algorithm gives

agent a utility at least LP* - UgpXqp >_LP* - Uy >_LP* - (3« LP* = (1 - (3)LP*. Thus any agent

receives (1 —f3)LP* utility. Additionaly, IPQ< LPR trivialy, and IPQ< LR* by Lemma11, and
Ir- rov:n

so e < 120° PiTg the second part of the clam. .

Proof of Lemma 5. Since Algorithm ALLOCATE() rounds the LP solution to obtain an n approxi-
mation, the integrality gap is at most n. We now show that the integrality gap isat least n. Consider
thefollowing vaue derived MMA instance: A= {1,2,...,n}, Q= G"&Bwhere Gs = {#f 1 ¢+ «>9f}
are small goods with value v(g) = 1, and QB = {gf o o - &} 2"°P'S goods with value v(g) = n.

Setug—nforallaGA gGGB,anduyg = 1ifg= gf anda =i, and uyy = O otherwise. Clearly,
IP* = 1, since some agent will receive only small goods, and each agent only values one smal good
at podgitive utility. However, LP™ > n, since we can allocate gf to agent i for all i, and for each big
good gf, we can allocate of it to agent n, and *~ of it to agent i. Figure 1 shows the associated
LP solution as a graph with edge (a, #) weighted by UagXag. .

16

2

1
In
1 B
1 B
g2 - n-1
n_l n-1 N
2 1

Figure 1: An LP solution with value n. Edges (a,9) are weighted by u,gX,s. Agents are
squares and goods are circles

Proof of Theorem 5. Consider thetree in figure 1. Let T, be that tree with n agent nodes. Given
any fc G Z+, consder an MMA instance with n = dc for some cGZ ., with LP solution X such
that Gx consists of ¢ copies of Tfc Clearly, LP* = fc. Consider any tree IV If the root agent
values all small goods, instead of just one in the case of the proof of Lemma 5, all the small goods
can be given to the root, and the big good gf can be given to agent i. This yields an integral fc
allocation. However, any allocation given by an algorithm respecting X obtains minimum_ utility at
most one. Thus, for such an algorithm to give all non-poor agents utihty at least *OPT = 1 + ¢,
at least one agent from each copy of Tfc must be poor. Thus at least » agents must be poor. But
if€>0then [(L—"")"] = (h—c+ 1) and at most n — ¢ agents are non-poor. So it cannot be
that [(1- ~)n] agents get utility at least "OPT. .

B.2 Bicriteria Related Proofs

Proof of Theorem 4- By Lemma 11, OPT =IPQ*< «*, SO it sufficesto provethat [(1 —)n\ agents
receive utility at least ~-. Suppose the algorithm above runs Algorithm ALLOCATE() and neither
of events | or Il occur. Then the algorithm makes every agent ~--happy, and we are done.

If event | or event Il occur, the algorithm will by then have removed some portion of T from
the instance, declared some agents poor, compensated others, and in the case of event I, stolen
utility from portions of the tree not yet removed. Fix some execution £ of the algorithm, and
suppose that between initialization and the first event in {J,//} the algorithm removes a subtree
of T called Ti, and between future consecutive events it removes subtrees T2,..., T, labelled in
the order they are removed. Thus T = 1Ji*V I P°°" (M) ~ the number of agents in V[T{]
marked poor during execution £, and let A(Ti) := AH V[Ti\. We desire that ~JJ, <): for each
If. Since thisis not always the case, an accounting mechanism is required, so that subtrees with
fc e poor(Ti) = [,4(Ti)| - b can "donate' up to b agentsto subtrees Tj withfce poor (1)) > [-4(1))].
The tokens keep track of such donations in the following way: if the algorithm gives b tokens to
agent a G Tj upon removing the final elements of I*, then Ti is said to donate b agents to Tj. We

17

show that for any i, if Ti donated x agents to another subtree under f and received y agents as
donations from other subtrees under f, then-\j$ffif—,_< j. Thisis sufficient to proﬁﬁ ffi <
Proving all agents not marked poor are ~-happy completes the proof.

For agent a e A(Ti) we define c;, s, and p, as before but on the tree T, := \J;:5Tj. For
example, s, is the utility stolen from a by agents in T,. The quantities ¢, and p, remain the same
as before. Define rec(IT) := J2qea(r.) recs, the number of agents donated to Ti, and define don(T;)
to be number of agents Ti donates to other subtrees. The algorithm maintains two invariants:

: poor(T; 1
1. When ZJ isremoved, Wﬁﬂmé’)'—Ldoﬁﬂ <z

2. For each agent a, (Cq +pa + Sa + recy) > K*.

Thefirst invariant ensures that with the corrections made by the accounting mechanism, each
subtree removed marks at most Vk of its agents poor. The second invariant saysthat the algorithm
compensates agents for "inter-subtree theft" sufficiently so that they still have K* utility if each
token isworth ~ utility.

We proceed by induction up from the leaves of the tree. For the base case, there is nothing
to prove for invariant one, and since rec(7\) = 0 and X is a fractional /~-allocation, invariant two
holds.

For the induction step, we require a generalization of Lemma 4. For the purpose of bounding
s, for a G A(Ti), we can essentially treat tokens in recy/ as descendants of o!\ Define Desc(a’, T)
as the descendants of agent a', not including a’,intree T. Then by Lemma 12,

sa<h- "2 (1+%a)
a'€Desc(a, Tj)
Suppose the algorithm removes the remains of Ti upon the occurrence of event |I. Note (c, +
Pa + $a + *Yrec,) > «*, which implies (s, + " rec,) > K*(1 — £). Applying Lemma 12 yields

K* (1—) < (3a+TreCa)
< XEa’eDesc{a T,)(l + recy) + 4 T recy
= 5 (rec(T:) + |A(T)| - 1)

Thisimpliesrec(Ti) +\A(Ti)\ > k. Since poor(Ti) = 1 and don(Tj) = 0, invariant one is maintained.
Since no utility is stolen from other subtrees, invariant two is maintained.

Lastly, suppose the algorithm removes the remains of TJ upon the occurrence of event |1. Some
good g hasr = 2 children 1,...,r such that Cj < ~ for all i € {1,2,...,r}. Let a be <7s parent
in T, and SUPPOSE UggXag € («* ﬁ"rl «*fle Let 5={1,2,...,r}, and N = |, 4T + rec(Tl) Usmg
invariant two, and-swmming over all agents in S, we obtaln Mt < "25(Ca +Pa + S + x rec,).
Combining Cj <~ for all i with 52,sPa < «* ~ UygXag < K*(1 - " -) yields r«* <~ + K*(1 -
b—‘rl) + H2a€s("a + reco)- With the bound on s, given by Lemma 12, we conclude

5’;%— + n"(l - T) + Y acs(8a + reca)

+T ZaeS E a'cDascla, ’I‘,)(:l + recy)
K (1~ r"1) bo (AT -)+ & rec(T;)
&*(1— 522) + 5 (JA(TY)| + rec(T3))

k(1 — 2;—1) +NZ

rK*

b IA A

18

Thus 7k < N+ (k—b+1)and so N > (r — 1)k + b — 1. Since N is an integer, N > (r — 1)k + b.
The first invariant is maintained because don(T;) = b and poor(7;) = 7 — 1. The second invariant
is maintained as well, because uagT.g < n*%. We conclude that at most 71; fraction of the agents
are marked poor. Finally, the algorithm explicitly guarantees that every agent not marked poor is
"—,:-ha.ppy, and thus the algorithm gives [(1 - %;)n] agents utility at least "—,: O

Lemma 12. For c,,pa,S. and Desc(a,T) defined in the proof of theorem 4, under any fized ez-
ecution of algorithm BICRITERIA-ALLOCATE(), for every agent a in subtree T; removed between
consecutive events,

sa< T > (l4recy)
a’eDesc(a,T;)

Proof. Proceed by induction. Let Yo := 3 y/cpesc(a,r;)(1 + Teca). Lemma 4 takes care of the
base case in which agent a has rec, = 0 and rec,, = 0 for all descendants a’ of a. For the
induction step, Consider an agent a € T;, where T; is one of the trees removed by the algorithm
between events. Suppose agent a has children goods {1,2,...,7} taken by agents {1,2,...,r}
in T;. Agent j could only have taken good j from a if ¢; < Ek: By the induction hypothesis,
sj < 57Y;. Since ¢; +p; + s; + i‘k:recj > k*, it follows that p; > 5% (k — 1 —rec; —Y;), which
implies u,;Z,; < K* — p_, < (1 + rec; +T) The utility stolen from a by agents in 7; is thus
bounded by s, < Z] -1 5 (1 +rec; +75) = a, completing the proof. O

C Other Results

Proof of Corollary 1. Let m* be an optimal solution to the original instance. Use the flow algorithm
given above for the case that all utilities lie in {0,1} with the modified utilities ug, = min{uag, 1}.
Let the resulting output be 7. Suppose the minimum utility received by any agent under n* is V,
i.e. min, u(a,7*(a)) = V. Then min, u'(a,7*(a)) > V/z, and so by the optimality of 7 (in the
modified instance), 7 is a V/z allocation in the modified instance. It immediately follows that = is
a V/z allocation in the original instance, and thus an z approximation. O

Proof of Lemma 7. Consider a flow network with source s, sink ¢, edges (s,a) of capacity V to
for each agent a, edges (g,t) of unit capacity for each good g, and edges {(a, g)|uag = 1} of unit
capacity. Since there exists an integral maximum flow, there is an V allocation iff there is a flow
of value nV. Clearly, a V allocation can be easily obtained from a flow of value nV. So suppose
by way of contradiction that (VI C A, I # 0)(f(I) > V|I|) and there is a cut (S, S) of capacity
cap(S,S) < nV. Let As = ANS. Then for each a ¢ Ag, (s,a) € 8S and contributes V to the cut’s
capacity. Additionally, the agents in As must contribute at least f(Ags) to the cut’s capacity. Thus
cap(S,S) < nV implies |A — As|V + f(As) < nV, and so f(As) < |As|V, a contradiction. O

Proof of Lemma 10. Let M be any max-min fair matching, and n* be the optimal allocation in
the original (submodular) instance. Suppose by way of contradiction that the above claim is
false. By submodularity, for each agent a, and set of goods S u(a,S) < des u(a, g). Label the

agents such that agent i is the i** worst off agent under n*. For each i, U;(n*) < > gen () u(%:9),
and so maxge.+(i){u(i,g)} > IFIW@(”*)' In any non-trivial instance, every agent receives at
least one good in 7*, so no agent receives more than m — n + 1 goods. Let Vis = U;(M) be

19

the minimum utility received by any agent under M. Each agent receives utility at least (m —
n + 1)V + € under 7*, for some ¢ > 0. It follows that for each agent i, maxgene(){u(i,9)} >

(montVite o vy, Th1s contradicts the max-min fairness of M, since some matching M’ C

m—n-+1

{(a, g)|g = arg ma.xge,,.(a){u(a, g)}} obtains a higher minimum utility. O

Proof of Theorem 8. Note that if M is strongly max-min fair with utilities uag, then M is strongly
max-min fair with utilities u,, = ¢(uag); The total ordering on the utilities u,g, and not their values,
determine what the strongly max-min fair allocations are. Thus WLOG we may consider functions
f from {1,2,...,n%} to N. We will show that there exists an < n? such that f(z) > n™ =271,

For fixed a, b, c,n € N, such that 0 < a < n? —2n+1 we construct instance Z,(a, b, c) as follows.
Create n agents A = {1,2,...,n}, and n goods G = {1,2,...,n}. Let uj1 = a, us =cforalli > 1,
and u;; = bif j = (i+1) mod (n). Set the remaining utilities u;; to be in {1,2,...,a—1},5uch that
for each v € {1,2,...,a—1}, u;; = v for some (3, j) pair. This is possible since a—1 < n2—2n. Note
that applying ¢ to the utilities will leave Z,(a, b, c) unaltered if c = b+ 1 = a + 2. Suppose further
thata <b<c<n?—2n+3. Let M = {(i,(i + 1) mod (n))|1 <i<n}, M ={(,1)|1 <i<n}
Note that M is the unique strongly max-min fair matching, and thus must be assigned maximum
weight. In particular, w(M) > w(M’). Observe w(M) = nf(b) and w(M’) = f(a) + (n — 1)f(c).
Thus nf(b) > f(a) + (n — 1)f(c), which implies f(c) — f(a) > n(f(c) — f(b)). Setting b =a +1
yields f(c) — f(a) > n(f(c) — f(a+1)). It follows that for any k < ¢

£(e) = F(1) > n(f(e) = £(2) > n?(f(c) = £(3)) > ... > n*(f(c) — f(k +1))

and in particular, f(c) — f(1) > n°"2(f(c) — f(c — 1)). Clearly, f must be strictly increasing in
the range [1,7% — 2n] (consider instance Z,(z,z — 1,z) with z < n? — 2n to see why), and so

f(c) f(c—1) > 1. It follows that f(c) > n2if 3<c<n?-2n+3, and so f(n? —2n+3) >
n" —2n+1 O

20

e

