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Abstract

We present amoda language for distributed computation which addresses the safety of mobile values as well
as mobile code. The safety of mobile code is achieved with the modality ¢ which corresponds to necessity
of modal logic. For the safety of mobile values, we introduce a new modality O which expresses that
given code evauates to a mobile value. We demonstrate the use of modal types with three communication
constructs: remote evaluation, futures, and asynchronous channels.
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1 Introduction

A digtributed computation is a cooper ative process taking place in a nework of nodes. Each node is capable
of performing a sand-alone computation and also communicating with other nodesto digtribute and collect
code and data. Thus a digributed computation has the potential to make productive use of all the nodesin
the network smultaneoudy. '

Usually a digributed computation assumes a heterogeneous group of nodes with different local re-
sources. A local resource can be either a permanent/physical object available at a particular node (e.g.,
printer, database) or an ephemer al/semantic object created during a sand-alone computation (e.g., heap cell,
abdract datatype). L ocal resources are accessed viather references (e.g., handlefor a database file, pointer
toaheap cdll).

Local resources, however, give rise to an issue not found in stand-alone computations. the safety of
mobile code, or in our terminology, the safety of mobile terms where a term represents a piece of code. In
essence, a node cannot access remote resources in the same way that it accesses its own local resources,
but it may receive mobile terms in which references to remote resour ces are exposed. Therefore the safety
of mobile termsis achieved ether by supporting direct access to remote resour ces (e.g., remote file access,
remote memory access) or by preventing references to remote resources from being dereferenced. This
pape focuses on the second case with the assumption that references to remote resources are allowed in
mobile terms aslong as they are never dereferenced.

One approach to the safety of mobile termsisto build a modal type system with the modality « [1, 12,
9, 13]. Thebadcideaisthat a value of modal type DA contains a mobile term that can be evaluated at any
node. An indexed modal type O"A isused for mobile termsthat can be evaluated at node UJ. By requiring
that a mobile term be from a value of type DA or D"A, we enaure its safety without recourse to runtime
checks.

A type system augmented with the modality e is not, however, expressive enough for the safe commu-
nication of values, i.e., the safety of mobile values. In other words, we cannot rely solely on modal types
A4 and DA to verify that a value communicated from one node to another is mobile (e.g., when a remote
procedure call returns,or when avalueiswritten to achannd). Thereason isthat in general, avalue of type
CM or D"A contains not a mobile value but a mobile term. The evaluation of such a mobile term (with
the intention of obtaining a maobile value) may result in a value that is not necessarily mobile because of
references to local resources created during the evaluation.

Asan example, consider aterm of typeint -> int in an ML-like language:

let

val new reference = ref 0

val f = fn x => x + !newreference
in

f
end

The above teem may be used in building a mobile term of type ¢ (int -> int), since it can be eval-
uated at any node. The resultant value f, however, is not mobile because it accesses a local resource
new.reference. In contras, the following term, also of type int -> int, cannat be used in building
amobile term, but theresultant value is mobile because it does not access any local resource:




| et

val v = !sone_existing reference
val f = fnx == x + v

in
f

end

Hence the modality ¢ isirrelevant to the safety of mobile values, which should now be verified by program-
mers themselves. _

This paper investigates a new modality O which expressesthat a given term evaluates to a mobile value.
The basic idea is that aterm contained in a value of modal type OA evaluates to a value that is valid at any
node. Similarly to Dy,Ag an indexed modal type O*A is used if the resultant value is valid at nodew. To
obtain a value to be' communicated to other nodes, we evaluate a term contained in a value of type O"4 or
Ou,A. In this way, we achieve the safety of mobile values.

Since the mobility of a term is independent of the mobility of the value to which it evaluates, the two
modalities « and O are developed in an orthogonal way:

DA
|

oA - A - OA
|
O.A

We use combinations of « and O to express various properties of mobile terms:
* UOA: evaluates at any node to a value valid at any node.
e [XOCJA: evaluates at any nodeto a value valid at node u.
e [,0OA: evaluates at node u to avalue valid at any node.
e 1,0, A: evaluates at nodeu>to avalue valid at nodea/.

Wefirst develop a modal language AQO by extending the A-calculus with the modalities « and O. We
formulate itstype system in the natural deduction style by giving introduction and elimination rules for each
connective and modality. The modality O requires us to introduce a typing judgment differentiating values
from terms. This typing judgment induces a substitution defined inductively on the structure of the term
being substituted instead of the term being substituted into. We then develop another modal language Ano”
by extending AQO with theindexed modalities D" and O,,.

We also present a network operational semantics for Ano”™ which is capable of modeling distributed
computations. We demonstrate the use of modal types in the network operational semantics with three
communication constructs: remote evaluation, futures, and asynchronous channels. The safety of mobile
terms and mobile values is shown by the type safety of the network operational semantics, i.e., its type
preservation and progress properties.

Depending on the degree of code mobility and data mobility, languages for distributed computation are
classified into four paradigms: client/server, remote evaluation, code on demand, and mabile agents [4]. The
client/server paradigm allows only datato be transmitted to remote nodes. The remote evaluation paradigm
extends the client/server paradigm by allowing both code and data to be transmitted to remote nodes. The
code on demand paradigm is similar to the remote evaluation paradigm, but both code and data are fetched
from remote nodes. In the mobile agents paradigm, autonomous code migrates to remote nodes by itself and

2




aso carriesits state. XQCF belongsto the remote evaluation paradigm asits primary capability i stotransmit
and evauate mobile terms at remote nodes. The two modalities D and O deal with name resolution [5], a
safety issue in languages for distributed computation.

This paper is organized asfollows. In Section 2, we develop the modal language A QO- In Section 3, we
develop the modal language Ano"- In Section 4, we present the network operational semantics and prove
its type safety. Section 5 discusses how to handle local resources in distributed computations and compares
AQCT with other modal languages for distributed computation. Section 6 concludes with future work. See
Appendix for details of al proofs.

2 Modal Language A0

Since AQO isan extension of the A-calculus, wefirst review the type system of the A-caculusin the context
of distributed computations.
The syntax of the A-calculus is standard; we use metavariables A, B for types and M, N for terms:

type A = AZA

term M = XXxAM \M M
vaue \ = XxAM

typing context T = ¢|F,x:A

A variable x with binding x : A is assumed to hold aterm and is not regarded as a value. We use atyping
judgment r h M : A to mean that term M has type A under typing context T:

X.AeT .. Tx:A-M :B . ™-M:ADB T hN: A _
T\-x: A ThXx:AM :ADB * ThMN.B - bL

The /3-reduction rule for the connective D uses a capture-avoiding substitution [M/X]N defined in a
standard way:
(W™CANM -~ [M/X)N

It may be seen as the reduction of atyping derivation in which the introduction rule D\ is followed by the
elimination rule DE. The following proposition shows that the reduction is indeed type-preserving:

Proposition2.1. IfThM : AandT,x: AhN: B, thenTh[M/X]N : B.

In the context of distributed computations, X : A in atyping context T means that variable x holds a
term of type A that is vaid at ahypothetical node where typechecking takes place, which we call the current
node throughout the paper. Then atyping judgment Th M : A means that if typing context T is satisfied,
the evaluation of term M at the current node returns a value V of type A. It does not, however, tell usif M
is amobile term that can be evaluated at other nodes. Nor does it tell usif V is amabile value that is valid
a other nodes. Therefore the above type system is not expressive enough for the safety of mobile terms and
mobile values in distributed computations.

We first develop a modal language An which extends the A-caculus with the modality * to ensure
the safety of mobile terms. AQ is based upon the type system for necessity of modal logic by Pfenning and
Davies[14]. Next we develop another modal language Ao which extends the A-cal culus with the modality O
to ensure the safety of mobile values. XQ and Ao extend the A-calculus in an orthogonal way: the modality
* is concerned with where we can evaluate a given term whereas the modality O is concerned with where
we can use the result of evaluating a given term. Thus we merge An and Ao to obtain the modal language
Ano» which ensures the safety of both mobile terms and mobile values.




2.1 g for term mobility

The idea behind the modality [J is that if a term M is well-typed under an empty typing context, i.e.,
-+ M : A, we can evaluate it at any node. Intuitively M is valid at any node, or globally valid, because it
does not depend on any local resource. Thus we use M in building a value box M of modal type (JA.

The syntax of A is as follows:

type A == -.-|0OA
term M -+ | box M |letbox z = M in M
value V. = ... |boxM

If M evaluates to box M’, then letbox z = M in N substitutes M’, without evaluating it, for z in N.
Now a variable x can hold a term that is globally valid (e.g., letbox z = box M in N). Accordingly we
introduce a mobile typing context A. T is now called a local typing context.

mobile typing context A == -|A,z: A
local typing context I' == -|Iz:A

x :: Ain A means that variable z holds a globally valid term of type A; hence a mobile typing context does
not affect the mobility of a term being typechecked.

We use a typing judgment A;T' - M : A to mean that under mobile typing context A and local typing
context I', term M evaluates to a value of type A valid at the current node.

r:AE€EA or x;AeI‘C A;-FM:A ol A;THFM:OA Az AATHFN:B
A;THz: A var A;TFbox M : A A;T+letboxx=MinN:B

OEe

The rule Cvar replaces the rule Var. The rule [l implies that M is globally valid if it is well-typed under an
empty local typing context and thus no assumption is made on the current node. Therefore the premise of
the rule [l implicitly uses an arbitrary node as the current node in typechecking term M.
The (3-reduction rule for the modality [J uses a capture-avoiding substitution [M/z]N extended in a
standard way:
letboxz =box M in N —pg [M/z]N

As with the connective D, this 3-reduction rule may be seen as the reduction of a typing derivation in which
the introduction rule [l is followed by the elimination rule CJE. The following proposition shows that the
reduction is indeed type-preserving:

Proposition 2.2. IfA;-+- M : Aand A,z :: A;T' + N : B, then A;T'+ [M/z]N : B.

2.2 o for value mobility

The typing judgment of the A-calculus determines if a term is valid at a given node; if the term is well-typed,
it evaluates to a value valid at that node. In contrast, the type system of Ao should be able to check if the
value to which a term evaluates is valid at a given node. This is a property that cannot be verified by the type
system of the \-calculus. Therefore we need an additional typing judgment for the type system of A\o.
As in the type system of A, we split a typing context into two parts. We also introduce a new form of

binding v ~ A:

mobile typing context A = -|A,u~A

local typing context I' == | z:A

v is called a value variable and holds a value; hence it itself is also regarded as a value. v ~ A in A means
that v holds a globally valid value of type A.




We use a typing judgment A; T h M ~ A to mean that M evaluates to a globally valid value of type
A. In order to express that the value is valid at the current node, we use an ordinary typing judgment
A; ThM:A For any language congruct producing local resources, we can use only an ordinary typing
judgment (e.g., for amemory allocation construct which returns pointersto heap cells).

The following typing rules hold independently of the syntax of Ao:

V~AeA w A'r\'V:A
A rh,:.i Vv A;Thv~-A Val

Therule Vvar saysthat a value variablein v ~ A isvalid at the current node. The rule Val conformsto the
definition of the new typing judgment: the premise of the rule Va checksif V is globally valid, in which
case the conclusion holds because V is already a value.

The syntax of Ao is asfollows:

type A = eee |OA
term M = eees |v|drM|letcrv=MinM
value V 1= eee |v|drM

dr M has a modal type OA, where M evaluates to a globally valid value, letcir v = M in N expects M to
evaluate to cr M'; it conceptually finishes the evaluation of M* before substituting the resultant value for v
in Ng since v holds a value.

dr M corresponds to the introduction rule for the modality O. Note that in letcir v = M in N, the type
of M does not determine the form of the typing judgment for the whole term. That is, regardless of the type
of M, there aretwo possibilities for where theresult of evaluating N is valid: at the current node and at any
node. Therefore each ingance of the modality O has one introduction rule and two eimination rules:

A; ThM~-A : A;rhM:Oi A,V~A;T\—N:BN_
A;ThcirM:OAm A;Thlegcrv=MinN:B

Q-ZFI—M-,_OA A21)~A-21“|—N111r\c,

A:T hlagdrv=MinN~B ut

The /~-reduction rule for the modality O reduces letcir v = cir M in N. In this case, we analyze M
instead of N. Thereason is that only a value can be subgituted for v, but M may not be a value; therefore
we analyze M to decide how to trandorm the whole teem o that v is eventually replaced by a value.
Conceptualy N should bereplicated at those places within M wher e the evaluation of M isfinished, so that
M and N are evaluated exactly once and in that order. If M isalready a value V, wereducethe wholeterm
into [VIVIN. Thus we are led to define a new form of subgtitution (M/v)N which is defined inductively on
the gructure of M ingead of Ng and use it in the ~-reduction rule for the modality O:

(VIVN
(letcir xf = M in M'W)N

[VIVIN
letcir V. = M in {M'/V)N

letcir v=dr Min N —>po (M/V)N

Note that we do not define (M M'/V)N because cir M M’ cannot be weU-typed: there is no derivation
of A; Fh M M" ~ A, which would require us to refinetypes of lambda abstractions. In practice, ordinary
type A D OB for M sufficesin conjunction with letcir v = M M' in v to Smulate such a derivation.

As with the connective D, the /3-reduction rule may be seen as thereduction of a typing derivation in
which theintroduction rule Ol isfoUowed by the dimination rule OE. ThefoUowing propostion showsthat
the reduction isindeed type-preserving:




Proposition 23.
IfA; r\-M~AandA,v~A,rhiN: C,thenA; r\-(M/v)N: C.
IfA; ThM~AandAv~A;r\-N~C, thenA,r h(M/v)N~C.

Proof. By induction onthe structure of M (not N).

23 Ano for term mobility and value mobility
Apo isamodal language which incorporates both AQ and Ao. Since AQ and Ao are orthogonal extensions
of the A-calculus, dl their individua properties continueto holdin AQO.

We decide to dlow letbox x = M in N in the typing judgment for value mobility. The decision is based
upon the observation that a subgtitution of a mobile term for x does not prevent N from evaluating to a
mobile value. For example, x may not appear in N at al. Therefore we introduce anew eimination rule for
the modality « as follows:

AT-M:\3A AX:: AThN~B f
A;rhleboxx=MinN~B

Since cir letbox x = M in M' can now be well-typed, we define (letbox x = M in M'/V)N:
(\etboxx = M'mM'/V)N = letboxx = M in (M'/V)N

An easy induction shows that Proposition 2.3 continues to hold. The following proposition shows that the
/"-reduction rule for the modality « continues to be type-preserving:

Proposition 2.4. IfA; - h M : Aand Ax : AT \- N~ B; then A;T h [M/X]N ~ B.

2.4  Primitive types

A primitive type is one for which value mobility is an inherent property. For example, aboolean value, of
type bool, is atomic and does not contain referencesto local resources. Therefore boolean values are dways
globally validand A; T h M : bool semantically implies A ; T hM ~ bool. Under the above type system,
however, value mobility for primitive types should be expressed explicitly by programmers.

As an example, consider a primitive type nat for natural numbers:

type A 1= eee |nat
term M = eee |zero|succM
value V :i= eee |zero|succV

We use the following construct for primitive recursion over nat:

term M ::= e -e | rec M of /(zero) => M //(succx) => M
A:ThM:nat A:ThM:nat
A.n-Mg:" A;;rhMo-A
A;T,x: nat, f(x) :A\- Mi: A A, T ~A T,x: nathMi ~ A Red
A;rhrecMof /(zero) => M, :A e A; Threc M of /(zero) => M, ~4
| /(succ x) => Mi I I(succ x) =» Mi

Now, for any term M such that A ; Fh M : nat, we explictly express its vaue mobility with the following
term M ~, which evaluates to the same value as M and dso satisfies A; T h M~ ~ nat:

M~ = rec M of /(zero) => zero / /(succ x) =" letcir i; = cir f(x) in succ v
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type A = ADA|OA|CA

term M = z|Ax:A M|M M |box M |letboxx =M inM |
v|cir M |letcirv=Min M
value V 1= Az:A.M|boxM |v|cir M
r:A€EA or x:AGI‘C v~AEA Vv A;-FVA Val
ATz A var A;THY: A var ATHFV~A
A;Tz:A-M: B | A TFM:ADB A;THN:A E
ATF x:AM:A>B - ATFMN:B -
A;-FM:A A;THM:OA A,x::A;I‘I—N:BDE
ATFbox M .04 O ATF letboxz = MinN: B
ATHFM:0A Az :ATHNA~B ,
ATFletboxc=MinN~B  LE
ATFM~A ATHFM:0A Ajv~ATHN:B E
ATFard 042 ATFletcro=MinN:B
A;THEM:0OA A,'UNA;FF-NNBOE,

A;TkFletcirv=MinN~B
AT HM : Aprim )
Prim~
A;THM ~ Aprim

Figure 1: Syntax and type system of A\go.

We choose to take advantage of the fact that every term M of a primitive type can be converted into
an equivalent term M~ with value mobility as illustrated above, and introduce the following typing rule in
which value mobility for primitive types is built-in:

A;THEM: Aprim
ATF M ~ Ay 1

Here Aprim is a primitive type (A D A, A, and OA cannot be a primitive type). With the rule Prim~ in
the type system, we can easily express value mobility for primitive types.

The price we pay for the rule Prim~ is that 3-reduction — g is no longer valid: letcir v = cir M in N
may typecheck while (M /v) N is not defined. For example, M = M; M, of type nat satisfies A;T' - M ~ nat
by the rule Prim~, but (M; M2/v)N is not defined. Intuitively the rule Prim~ disguises an unanalyzable
term of a primitive type as an analyzable term.

A quick fix is to reduce letcir v = cir M in N only if M is already a value V:

letcirv=cirVinN —z5 [V/v]N (—p0 redefined)

Note that we write [V/v]N for (V/v)N. Thus, in order to reduce letcir v = cir M in N, we are forced to
reduce M into a value first, instead of analyzing M to transform the whole term. Such a reduction strategy
is reflected in the operational semantics, as we will see in Section 4.

Now we have introduced all typing rules of A\go (See Figure 1.) All the previous propositions, ex-
cept Proposition 2.3, continue to hold for the type system of Ago. The following proposition proves that
A;T = M ~ Ais stronger than A;T'+ M : A:

Proposition 2.5. The following typing rule is admissible:

ATEFMA~A N
A;THM:A




Proof. By induction on the structure of A; V\- M ~ A .

2.5 Example

To express term mobility and va ue mobility for each new construct M, we provide arule for ordinary typing
judgment A;T h M : A and optionally another rule for typing judgment A ; ThM ~A As an example,
consider constructs for memory alocation. We regard a heap cell as alocal resource; hence its pointer is
assumed to be valid only at the node where it is alocated. We use type ptr A for pointers to heap cells
containing vaues of type A. For the sake of brevity, we do not consider typing rules for pointers.

type A = ptrA
tem M ::= newM |read M | write M M
The three constructs work as follows:

e If M evaluatesto avalue V, then new M alocates anew heap cell containing V and returns its pointer
L

* If M evaluates to apointer /, then read M returns the contents of the heap cell pointed to by Z.

e If M evaluates to apointer | and N evauates to avalue V, then write M N writes V to the heap cell
pointed to by | and returns V.

The rules for the ordinary typing judgment reflect how these three constructs work:

A; T\-M:A A.rhM:ptr,4 A, T\-M:ptrA A;T\~_—N:A
A:rhnewM :ptr® NeWw A ThreddM ! "Re8d———A T, hrwite TN IE—A\ ——Write

Thus any of these congtructs is mobile if its argument is globally vaid. For example, box new M (of type
* ptr A) typechecks if M is globally valid, which means that alocating a new heap cell itsalf can be done
a any node. Once we finish evduating new M, however, the result is no longer mobile (because it is a
pointer), which implies that the following rule is not allowed:

A;ThnewM —ptr A (wrong)

Since the value contained in aheap cell is not necessarily globally vaid, we do not alow the following rule:

#———— T (wrong)

A:ThreadM~A"Y *!
The following rule is safe to use because write M N returns the value to which N evaluates:

A;ThM:ptrA A ThN-A
A; T hwriteM N ~ A

Write'
As an example involving primitive types, let us build a mobile term adding two natural numbers. The
following term does not typecheck because variables x and y are not added to the mobile typing context:
Xx: nat. Xy: nat.box (x+Yy)
We can make it typecheck by converting x and y into value variables vy and vy, (using the rule Prim~):
Xx: nat. Xy: nat. letcir v = cir X in

letcir vy = ciry in
box (v + W)

g




The foUowing term copies mobiles terms contained in variables x and y, and the evaluation of the resultant
mobile term may take longer than adding two natural numbers:

Ax: Dnat. Xy: Dnat. letbox x' = x in
letbox y" =y in
box (z' + /)

The following term firg finishes evaluating mobile terms contained in variables x and y:

Xx: Dnat. Xy: Dnat. letbox x* = x in letcir v, = cir x* in
letbox y* —y in letcir v, = cir 2/ in
box (vx + vy)

26 Logicfor AQO

Modal types DA in A”0 use the sametype system for necessity of modal logic of Davies and Pfenning [6,
14]. A minor difference is that our interpretation of the modality ¢ is spatial (CM means that A is true at
every node), whereas their interpretation istemporal or proof-theoretic.

The type system for modal types OA isunusual in that it differentiates values (i.e., terms in weak head
normal form) from ordinary terms, as shown in the rule Val. This differentiation implies that the logic
corresponding to the modality O requiresajudgment that inspects nat only hypotheses in a proof but also
inferences rulesin it. Thus the modality O sets itself apart from other modalities and is not found in any
other logic.

A aubgtitution (M/V)N for the modality O is smilar to (and was inspired by) those subgtitutions for
modal possibility and lax truth in [14] in that it is defined inductively on the gructure of the term being
subgtituted (i.e.,, M) ingead of the term being subdtituted into (i.e., N). In fact, we may even think of
(M/V)N as subgtituting N into M because conceptually N is replicated at those places within M where
the evaluation of M is finished.

We close this section with a discussion of the properties of the modalities « and O. Note that the two
modalitiesinteract with each other, although they are developed in an orthogonal way.

« DADA Xx:DA. letboxy = xiny
A mobileterm isa special case of an ordinary term. :

« DA D DDM4 Xx: DA. letbox y = x in box box y
A mabile term itself is mobile.

 D(A DB)DDADDB xx:D(A D B). Xy: DA. lethox x' = x\x\ letbox y* = y\n boxx'y’

*« OADA Xx:OA. letcir v=xinv
A mobile valueis a special case of an ordinary term.

« OA D OCL4 ' Ax: OA. letcir v = x in dr dr v
A mobile value itself is mobile.

* OADDA XX:OA. letcir v = x in box v
A mobile value is a special case of a mobileterm.

DA D ODA Xx: DA. letbox y = x in dr boxy

box M is a mobile value.




« OA D DOA \x:OA. letcir v = x in box ar v
ar Visamobileterm.

e JOADDI Ax: DOA letbox y = x in box letcir t> = x/ in v
(derivable from DOA D OA D DA)

« CO4 204
IfOQA D OA hdd, DA and OA would be equivalent because of OA D DA and DA D ODA D OA.

3 Modal language Apo™ with indexed modalities

In the definition of Ano, "mobil€' is synonymous with " globally valid": a mobile terem or valueis valid at
any nodein the network. Such amode for distributed computation is adequate if all participating nodes are
assumed to be homogeneous and have the same permanent local resour ces. In agrid computing environment,
for example, amabileterm valid at aparticular remote nodeisalso globally valid and can be evaluated at any
other remote node. For a heterogenous group of nodes with different permanent local resources, however,
A QO becomesinadeguate because amobileterm or valueisnot always globally valid. For example, aclient
node may tranamit to a printer server a " mobile' term for printing a document; such a mobile term can be
evaluated only at printer servers and is not globally valid. Since this notion of restricted mobility is useful
in practice, we extend AQO to allow terms and valuesvalid only at specific nodes.

Themain design issueiswhether or not the type system specifiesanode at which amobileterm or value
isvalid. As an example, consder a mobile te'm M that is valid only at printer servers (e.g., for printing
a document). There are two approaches to expressing its mobility with a type. In one approach, the type
system does not specify the node at which M isto be evaluated; instead it only indicates that there exists a
certain node at which M can be evaluated. In this case, it isthe linker or the runtime system that decides
where to evaluate such amobile term. In the other approach, the type system specifies explicitly the node at
which M isto be evaluated. In this casg, it is the type system that decides where to evaluate such a mobile
term. _

Thefirg approach is attractive because the type system abgracts from any particular network configu-
ration. For example, new printer servers can be deployed into the network and old printer servers can be
removed without changing the type system. The second approach is useful if the network configuration is
datic. For example, if the set of available printer serversis published and never changes, programmers can
pecify a printer server with an appropriate type involving its identifier. In this paper, we adopt the second
approach to extend Ano and leave it as future work to apply thefirst approach.

We extend Ago with two indexed modalities D™ and O™ with the following interpretation:

* A value box M of indexed modal type D*A containsterm M which isvalid at node u>.

* Avaluedr™ M of indexed modal type O"A contains term M which evaluatesto a value valid at node
ur.

Since the type system of Ano is incapable of expressing properties of a term with respect to specific nodes,
wer eplacethe typing judgments of Ano by a new form of typingjudgment A; T h* M ~ A @ u/:

* A;Th* M ~A @u/ meansthat under mabile typing context A and local typing context I\ teem M
at node u> evaluatesto avalue of type A valid at node u/.

* A;TK; M: Aisadorthand for A; T h» M ~ A @ u;, where u) may be thought of as the current
node for typechecking M. Note that it is not a sparatejudgment.
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A mobiletyping context A isdefined asbefore, but alocal typing context T now contains only those binding
relativized to a specific node:

mobiletypingcontext A = ¢ |A, X A|AV~A

local typing context T = AT XAQ@U\T VAQ@u;
e X :: Aiin A meansthat x holds a globally valid term of type A.
e v~Ain A meansthat v holds a globally valid value of type A.
e X A@UJin T meansthat x holdsaterm valid at node a.

 t; ~A @ a; in F meansthat v holds a value valid at node u.

Notethat the use of typingjudgment A; T h M ~ A @ u/ impliesthat aterm may evaluate to a value that
isnot valid at the node at which it is evaluated. For example, aterm may scan alist of handlesfor remote
files and sdlect one; the evaluation is safe aslong as the selected handleis not der eferenced. Werefer to our
new modal languagewith indexed modalitiesasAQO"'.

The syntax of Ano” is asfollows:

type A = ADA\DA\ULA\OA\OMA

tem M = X\ XXIAM \M M \ box M | box® M | letbox x = M in M |
v|drM|cdr®M|lacrv=MinM

value V = XXIAM | box M | box® M \v |dr M \cdr* M

For the sake of amplicity, we reuse letbox x = M in N and letcir v = M in iV to expose terms ingde
box, M' and cir® M' (aswell as box M" and cir M"). Thus both letbox x = box M' in JV and letbox x =
box,, M’ in N subgtitute M for x in AT: dmilarly both letcir v = cir M' in N and letcir v = cir® Mfin AT
first reduce M' to a value, which isthen substituted for vin N.

Figure 2 shows the typing rules of XQCF'e All thesetyping ruleslook smilar to those of AQO, except
that we explicitly annotate every typing judgment with a node at which the evaluation is to take place and
another node at which its end result is valid. For each form V of value, we provide a typing rule for the
judgment A; T h™ V : A only; in order to decide where else V is valid, we use the rule Val”™. Note that
in therule Dlvr, the local typing context T of the conclusion is carried over to the premise (whereasin the
rule DI of Ano» it isreplaced by an empty local typing context). Thisis safe because an arbitrary node a/
(ingtantiated by fresh u/) serves asthe current node in the premise.

Therules Cvarvr and Vvar”™ prevent references to local resources from being dereferenced at remote
nodes. Suppose X : A@ u;eTov*A@u;eT, and u/ » w. In order to "evaluat€' the term in X
(which perhaps contains references to local resources belonging to UJ) at u;\ we should be able to derive
A; Thx~A @u" for acertain node u", which is impossible because of the rule Cvarvr; in order to
"usg' the valuein v (which is perhaps areferenceto a local resour ce belonging to &) at u/, we should be
abletoderive A; V W/ v : A, which isimpossible because of the rule Vvary. Note, however, that we can
derive A-Th™ v~ A@ u;, which implies that a reference to a local resource may be present at remote
nodes aslong asit isnot dereferenced.

As value mobility for primitive types is built-in in the rule Prim~vr, we reduce letcir v = dr M in N
and letcir v =cir® M in N only if M isaready a value, asin Ano. Thus all /3-reduction rules are defined
in terms of an ordinary subgtitution [M/X]N or [V/V]N:

(Xx:ANM —£3 [M/X]N

letbox x = boxM in N ->pn  [M/X]N
letbox x = box® M in N -*pQr [M/X]N
letcir v=dr Vin N ->p, [VIVIN
letcir v=car® Vin N ->p, [VIV|N
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xr.AeA or xA@u>€rrLV v-Ae A or v - A@u>€F
ATVUXA W A ThAVIiA
AThy VA
AT i~y VY W)
A:T,Xx:A@Uh*"M:B . A:ThAM:ADB A.Th*N:A

Vvary

-

freshd A;T\->M: A _ Ajf "M UA AX T ATMNIV~I3@td .
A;TH,box M:0A4 LA T IDUX G = 1 I Y ~ D W W
AT kFys M A Or, ATiwATEUA AT x:>1@J hy JV ~B@dJ
A;TH,box, M:0,4 W A; T h" leboxx =M IinAT ~B @ a/
fresho' ATH, M~AQW Ohyy A;rh,Af;:0i4 At; ~AT\»N~-B@J
A;n-,drAf :0>1 AATh lgdrv=MinJV~B@w
ATH, M~AQfa, | AAL VM O@pA ALV -AG, \WwN =B @ OF’_
AT\, dr >M: O >AN fonw A Trim lgt@riv =N1in v ~B @ 9

A;l"l—anaApn-m@w’ Prim~y (w # w')

CE,,

OE
N

Ffgure 2: Typing rules of AQQOY "

The following propositions imply that all these /3-reductions are type-preserving:

Proposition3.1. //A;T hA M : AandA;Tyx : A@u>"" h* N - B @ ¢t f/*\n A;T h™ [M/X]JV - B @ J.
Propogtion 3.2. 7/A;T K/l Af . AfaranynodeCJ" andA,x :: AAThu N ~ B @d, thenA.Th® [M/X]N ~B@V'.
Proposition33. //A.rh™ V : [da/lw/A;I>-A@J h»JV -B @ u’ rien A;T hn [VN]IV - SQ a.
Propostion 34. IfA;T h™ F : Afaranynodeu" andA,v ~ A*rhu N ~ B @u;', thenAATY-" [VIV]N ~B@V'.

3.1 AQO” asanextension of AQO

Sinceall the/*-reduction rulesof AQO arcincluded in Ano”, any reduction sequencein AQO isalsovalidin
AQO” . Allthetypingrulesof AQO can alsoberewrittenin termsof typingjudgmentsin AQO” ¢ Intuitively
A;Th" M ~A @Jismore expressve than A;Th M : Aand A;T\- M ~ A because u> and J can be
ingantated into arbitrary nodes. Given a local typing context T in Ano, we write [T]" for a local typing
context in Ano” that attaches @ wtoevery bindingx : AinF:

[m" = {x:A@u>\x:A€T}
Thefollowing propostion shows how to interpret typingj udgménts in AQO in termsof thosein Agoc':

Proposition 3.5. I
IfA;r hM: Athen A; [T]" h™ M : Afar any nodew.
IfA; ThM ~A fllen A; [T ' M ~A @ u//” any norfeb ¢ alu/ J.




3.2 Logicfor Agd”

As every typing judgment in And*' is relative to a certain node, the logic for AQO” requires judgments
relativized to nodes. For example, x : A @ w in alocal typing context corresponds to ajudgment that A is
true at node v. Since the indexed modalities D™ and Og; directly internalize nodes within propositions, the
logic for AncT is arestricted form of hybrid logic [2]. ,

The notion of judgment relativized to nodes is also a suitable basis for the semantics of modal logic.
For example, Simpson [15] provides a hatural deduction system for intuitionistic modal logic based upon
relative truth. The fragment of Ano™ without the indexed modalities can be explained in a similar way,
with the assumption that all nodes are visible (or accessible) from each other. This assumption isjustified
because in a distribution computation, all nodes can communicate with each other.

The type system presented in this section is appropriate for understanding the roles of the modalities
e and O and the indexed modalities D* and O”. It is not, however, expressive enough for distributed
computations in which communication constructs may generate terms whose type is determined by remote
nodes. For example, a synchronization variable produced by a future construct (to be explained in the next
section) is essentialy a pointer to aremote node, which determines its type. In the next section, we extend
the type system of AQO” SO that we can typecheck such terms, and aso develop a network operational
semantics which is capable of modeling distributed computations.

4 Apo™ for distributed computation

In this section, we develop an extended type system and a network operational semantics for AQOY . We
demonstrate the use of modal types with three communication constructs: remote evaluation, futures, and
asynchronous channels. We prove the type safety of the network operational semantics, Le.g its type preser-
vation and progress properties, in the presence of these communication constructs. The type safety implies
the safety of mobile terms and mobile values.

4.1 Physical nodes and logical nodes

So far, we have restricted ourselves to physical nodes by interpreting u; as an identifier of a physical node.
For example, u may refer to a printer server or a database server. While appropriate for the type system,
this interpretation poses a problem when we model distributed computations. For example, if a database
server initiates a stand-alone computation for each query it receives, we cannot distinguish between these
stand-alone computations with different node identifiers. Therefore there arises a need for logical nodes,
each of which performs a single stand-alone computation. In order for a physical node to perform multiple
stand-alone computations concurrently, it spawns the same number of logical nodes.
We distinguish between physical nodes and logical nodes as separate syntactic categories:

physical node LJ
logical node 7

A logical node on physical node u; inherits all permanent local resources belonging to UJ. Therefore aterm
valid at physical node u; isvalid at every logical node on a.

We assume two primitives, new 7 and new 7 @ &, for creating logical nodes. V(y) stands for the
physical node with which logical node 7 is associated, as defined below. Note that it is not defined as the
actual physical node where logical node 7 resides:

* new 7 creates a new logical node 7 which may reside at an arbitrary physical node (including the
physical node invoking new 7 itself). If 7 is created with new 7, then ~(7) is afresh physical node
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w (which is different from any existing physical node). '
Example: new <y searches for an idle computer in the network and establishes a logical node + on it.

e new vy @ w creates a new logical node +y at physical node w. If + is created with new v @ w, then
P(7) = w.
Example: new v @ w contacts a database server w and requests a logical node y on it.

We assume that every physical node w publishes a local typing context I which records the type
of its permanent local resources with bindings v ~ A @ w, where v may be thought of as a reference to
a permanent local resource. We require that A not be a primitive type (to ensure the progress property in
Theorem 4.5). We write I'P*™ for the union of all known local typing contexts '™

4.2 Configuration

We represent the state of a network with a configuration C which records the term being evaluated at each
logical node. A configuration type A records the type of the term and the mobility of the resultant value. We
assume that no logical node appears more than once in C and consider C' as an unordered set.

configuration C == -|C,Mat~
configurationtype A := - |Ay~AQuw|Ay~AQx

e M at v in C means that logical node - is currently evaluating term M.

e v~ A @ w in A means that the term at logical node - evaluates to a value of type A valid at physical
node w.

e v ~ A @ x in A means that the term at logical node -y evaluates to a globally valid value of type A.

The extended type system is formulated with a configuration typing judgment C :: A, which means that
configuration C has configuration type A. The network operational semantics is formulated with a configu-
ration transition judgment C = C’, which means that configuration C reduces or evolves to configuration
C'. We first consider the extended type system and then the network operational semantics.

4.3 Extended type system

In order to be able to typecheck those terms whose type is determined by remote nodes, we introduce an
extended typing judgment which includes a configuration type as part of its typing context:

e An extended typing judgment A; A;T' , M ~ A @ ' means that under configuration type A, mo-
bile typing context A, and local typing context I', term M at any logical node on physical node w
evaluates to a value of type A valid at physical node w’. We assume I'’*™ C T', which means that all
references to permanent local resources are public.

e A;A;T'H, M : Ais ashorthand for A;A;T'H, M ~ A Q w.

The rules for extended typing judgments are derived from (and given the same name as) those in Figure 2
by prepending a configuration type A to every judgment A;T'H, M ~ AQ /.
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The configuration typing judgment is defined in terms of extended typing judgments. It has only one
inference rule, which may be regarded as its definition:

for each M at 7 G C,
7~A@UJEA and A; & P*'™ h oy M ~A @ &, or
7~A@-+GAandA;« T"™ hp;) M ~A @ u) for afresh node u>.
CaTA

Tcfg

We assume \C\ = |A| to maintain a one-to-one correspondence between C and A; hence A contains exactly
one element for each logical node in C.

4.4 Network operational semantics

The configuration transition judgment uses evaluation contexts in a call-by-name style; we could equally
choose a cdll-by-value style with another case (Ax: A. M) K for evaluation contexts:

evaluationcontext K ::= W\KM |letboxx = Kin M\
letcirv=KinM\letcirv=cirKinM\ letcirv=cir*KinM

An evaluation context K is aterm with ahole \\ init, where the hole indicates the position where areduction
may occur. The following rule shows how to use the /A-reduction rules of Ano” in the network operational
semantics; —e refers to the one of the /3-reduction rules —tt> —fit> —*/0> ~>/20> ~*&0' of AOcH':

M——>N R,
C,K[M] at 7=> C,K[N] at 7

a3

Note that a configuration transition is nondeterministic, since the rule Rcfg can choose an arbitrary logica
node 7 from a given configuration.

We also need another configuration transition rule to deal with value variablesin r™"". Suppose that a
value variable v is areference to a permanent local resource V of aphysical node u> (hencev~A @ u* e
TP*™A by examPie” Y could be a printing flnction at a printer server u. At alogica node 7 such that
P(y) # u>, v does not need to reduce to V because V is not valid at 7 anyway. If V(y) = u>, however,
v reduces to V by accessing the local resource. Thus, for each bindingv ~A @ u; G Al we define a
reduction

V —germ ¥V

such that V is not another value variable and «; «; r°*"™ i V : A holds. The following rule specifies that a
reference to apermanent local resource reduces to avaue only at the node to which it belongs:

v~ AQwETP™ v —pem V. Ply)=w
C KV at 7=> C,K[V] at 7

Rvalvar

Thustherule Rvalvar ensures that references to permanent local resources are never dereferenced at remote
nodes.

45 Communication constructs

The network operational semantics becomes interesting only with communication constructs; without com-
munication constructs, al logical nodes perform stand-al one computations independently of each other and
the type safety holds trivially. Below we give three examples of communication constructs. Each construct
is defined with extended typing rules and configuration transition rules.
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type A = eee|unit
term M = eee|()|evd M
vaue V =...10
evaluation context K = eee|evdK
T0) A;A;Th"M : DA - AATPMMM I DMA
A;A; Th () sunit Y A;A; Thhevd M unll TR A; AIT i e@vd M unit Tevd®
nett; 7'
C,Nevd boxM] at 7 => C,«{()] a 7, M at ~ Reva
new7' @a;

C, "[eval box/ M] at 7 === C«[()] at 7, M at 4 Reva®

Ftgure 3: Definition of the remote evauation condruct.

451 Remoteevaluation

In order to be able to evaluate a mobile term at aremote node, we introduce a remote evauation construct
eva M. It expects M to evaluate to box N or boxa, N and transmits N to aremote node. Unlike a remote
procedure call, it does not expect the result of evaluating N and immediately returns avalue () of type unit.

Figure 3 shows the definition of the remote evaluation construct. The rule Reva creates a new logica
node 7’ with new 7' because M may be evaluated at any node. In contrast, the rule Reval® creates a new
logical node y with new y @ J because M may be evaluated only at node u/.*

45.2 Futures

A future construct [8] is similar to aremote procedure call in that it initiates a stand-alone computation at a
remote node and al so expects the result. The difference is that it does not wait for the result and immediately
returns asynchronization variable which pointsto the remote node. Whentheresultisneeded, itis requested
through a synchronization operation. |f the remote node has finished the computation, the result is returned;
otherwise the synchronization operation is suspended until the result becomes ready. We can simulate
a remote procedure cal by performing a synchronization operation immediately after evaluating a future
construct. -

Figure 4 shows the definition of the future construct future M. It expects M to be of type DOA, D"OA,
*ONA, or CLOO/A. If M evauates to box N, it initiates a stand-alone computation of letcir v = N inv at
anew logical node 7 created with new 7 and returns a synchronization variable syncvar 7 of type A sync;
if M evauates to box™ AT, it initiates the same stand-alone computation at a new logical node 7 created
with new 7 @ UJ and returns a synchronization variable syncvar 7 of type A sync®. Since N has type OA
or OV A, letcir v = N in v evaluates to a maobile value of type A that is vdid either at any node or at hode
d. The result is requested through a synchronization operation syncwith syncvar 7.

Note that a synchronization variable itself is inherently mobile and we can synchronize with it at any
node. Intuitively it isjust a pointer to a certain logical node and hence is globaly valid. The result of a
synchronization operation may not be vaid at the node where it takes place, but the typing system correctly

*A remote evaluation condruct can be smulated by a future construct; we present the remote evaluation construct
only as a dmple example of usng moda types D"4 and D"A As we will see below, eval M is smulated as
let. = future (lethox x = M in box let. = x in cir ()) in () where let x = M in N is dandard let-binding and _is a wildcard
pattern.
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indicates the mobility of the result. For example, in the rule Tswith’, the result of evaluating syncwith M is
valid only at node u/, which is correctly indicated by @ u/ in the typing judgment of the conclusion.
Therules Tsvar and Tsvar’ show that a configuration type A is necessary in extended typing judgments
in order to typecheck synchronization variables. Since synchronization variables are created only by the
future construct and do not appear in a source program, we need these rules only for proving the type sofety.

type A = - I Async | A sync”
term M = - | future M | syncvar 7 | syncwith M
value vV = - Isyncvar 7
evaluation context K = - Ifuture K I syncwith K
A;A;Fh" M : DOA . A:AFK:M: .04 . .
A A FRfutreM ~ ~sync @ cv* 'Yt ATATF RN futureM ~ A sync @ uF U@
AA TR, M:0O0,~A AATH,M:O,0-A
ATATFK, futureM ~ A'synch @ a* """ A AF I, futureM ~ A synct, @ uF TfUtere@!
y~A@xeA Yy~AQ@J €A ,
AAFMgnva7:Agnc % A AFM gnova 7 Async,, oV
A A Th*MiAsync . A;AFhMM: AMevmers L
A; A; F b synowith M-a@L3x >"''™"  A; A F b synowith M ~ A @ g’ "sWith
new?’ = - - Rfuture
C, N[future box M] at 7 => C, Nsyncvar 7] at 7, letcirv =M invat Y
new T’ @u/ Rf
C, K[future box"/ M] at 7 => C, N[syncvar 7] at 7, letcirv = M int> at 7’ uture®
= Rswith

C, K[synowith syncvar T at 7, VA at 7' => C,K[F] at 7,Va T

Figure4: Definition of the future condruct. »* may beread as "any node"

4.53 Asynchronous channels

An asynchronous channel is a firg-in-first-out buffer containing values communicated among nodes. A
write operation adds a value to the buffer and always succeeds. A read operation removes the oldest value
from the buffer, if the buffer is empty, it waits until anew value is written. We assume that an asynchronous
channd is accessible to every node. This means that a value written to it must be globally valid, which in
turn means that a value read from it is also globally valid. A similar idea can be used to implement shared
variables, for which awrite operation overwrites a single-entry buffer and aread operation leaves the buffer
intact.

We implement an asynchronous channd for type A as a specia node holding a list of values of type
A. The node updates the list when aread or write operation is performed on the channel. It maintains the
invariant that every valuein the list is globally valid.

Figure 5 shows the definition of asynchronous channédls, nil and Vh :: V, both of type A vligt, are
congtructs for lists, newchan” creates anew logical node 7 to implement an asynchronous channel for type
A, and returns a channel variable chanvar 7 of type A chan. A channel variable points to an asynchronous
channel andisglobally valid. The rules Rreadc and Rwritec show how read and write operations manipul ate
the node associated with an asynchronous channel.
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Like synchronization variables for future constructs, channel variables are created only by newchan 4
and do not appear in a source program. Therefore we need the rule Tchanv only for proving the type safety.

type A =eee | Achan | Avlig

term M ::= eee |nil |V::V|chanvar 7 | newchan” | readchan M | writechan M M
value V = eee |nil|V: V]|chanvar7

evaluation context n ::= eee | readchan n | writechan K M | writechan (chanvar 7) n

T o A&- T’\VhA A A; TK N Avig
A AT nil: Avligt | VAl————13" A7 V_T(/ vhcslir
7~Avlst @e+e A
A;A;TK, chanvar 7 :Achan "°"2"Y A; A; T \;, newchan® ~ A chan @ u;* ""°"°
A; A; Th™ M : A chan
A; A: T h” readchan M ~ A @ a;* "'eadc
AjAsrhq; Af : Achan ITAIIA AA;ThAATA A @A )
A; A; T h™ writechan M AT ~A @ ™ Twritec

Tvcon

next; 7'
C, “[newchan?] at 7 ==> C, K[chanvar T'] at 7, nil at V

Rnewc

Rreado

C, Mreadchan chanvar ;'] at 7, V, :: Fraty =>C, K" ] at7,V,at v

Rwritec
C, «[writechan (chanvary) V] at 7, Vi”:: « - :: VA @2 nil at 77 =>

C«[rat7,Viieee Fol Vinlaty

Figure 5: Definition of asynchronous channels, u;* may beread as "any node."

4.6 Type safety

The type safety of the network operational semantics consists of two properties: configuration type preser-
vation (Theorem 4.1) and configuration progress (Theorem 4.5). Configxiration type preservation states that
aconfiguration transition does not alter the type and mobility of the term being evaluated at each node. Con-
figuration progress states that we can apply a configuration transition rule until every node has finished its
stand-alone computation or waits for aresult from another node (by the rules Rswith, Rreadc, and Rwritec).

Theorem 4.1 (configuration type preservation).
IfC ::AandC=> C, thenC :: A'suchthat Ac A"

Proof. By case analysison C => C". There are three cases:

1) Co,K[M] at 7=>Co,K[N] at 7

2) Co,K[M] at 7= »C,, K[N] at 7,AT at

3)Co,K[M]at7,M aty=>C, KN at7,TVat;’

In each case, we show that N preserves the type and mobility of M. In case 3), we also show that N'
preserves the type and mobility of M'. d

Lemma 4.2 (Canonical forms). IfA;-;rP™ h» V - A @ u/, then
V =y,




Aisaprimitivetype,

A= A D A2andV = \xA\.M,
A = UBandV = boxM,

A= UutBandV = boxV/ M,

A = OBandV = drM,

A= 0OufBandV = dr¥/ M,

A = unitandV = (),

A= BsyncandV = syncvar 7,
A = B synqy/ andV = syncvar 7,
A = B chan andV = chanvar 7,
4 =SvligandV = nil,
orA=BvligandV =V, :: 14

Proc/ Supposethat V v and >1 isnot aprimitive type.
IfA= A DA, thenA; ™ V~A@Jisdeived by the rule D\\v, optiondly followed by
therule\zB\W- Hence V = Ax: A\. M.

All the other cases are analogous. .
Lemma 43. IfA; -; r*>%" \-uM~AQwW, then
M=V, M = vandv-A@u;'e T* ™™
M = K[V] andv~ B@ue T"lT'V', M = K[N] whereN —e N/,
M = Adevd box N], ) M = «[eva box™/ N],
M = A[future box AT], M = /c[future box™/ N],
M = ~[syncwith syncvar 7], M = /A[newchans],
M = K[readchan chanvar 7], or M = [c[writechan (chanvar 7) V],

" Proof. By inductiononthe structure of A; «; "™ M M ~ A @ w'. We present one case.

!

case _ANTAMM-A©ghm" "M A Cron e}
If M =V " i; by induction hypothes's, we are done.
M= vadv~Ai,@u; G r*™ cannot happen by induction hypothesis, since the assumption on
I'P*™ requires that permanent local resources not be of aprimitive type.
If M = K[M'] by induction hypothes's where
M' = vandv ~ B @u er~"?,
M'—> N\ or
M" is eval box N\ eval box*" AT, future box N\ future box"f N's syncwith syncvar 7, newchan#,
readchan chanvar 7, or writechan (chanvar 7) V,

then we are done. .
Lemma4.4. IfA; A; Th" K[M] ~A @d, thenthereexist BandJ suchthatA; A; TV-.-M~B@J.
Proof By induction on the Structure of K. D

Theorem 4.5 (configuration progress).
IfC :: A, then either thereexists C' such that C => C’, or C consistsonly ofthefol lowing:
Va 7,
A[syncwith syncvar T'] at 7,
K[readchan chanvar Y\ ® 7>
K[writechan (chanvar 7') V] at 7.




Proof. Suppose C = Co, M at 7. By the rule Tcfg, we have A;;TP*™F, M ~ A Qo' for P(y) = w
and a certain node w’. We do case analysis according to Lemma 4.3. We present one case.
Case M = k[writechan (chanvar v/) V]:

By Lemma 4.4, we have A; -;T'P¢™ |-, writechan (chanvarv) V ~ B @ u".

By the rule Twritec (optionally preceded by the rule Prim ~y if B is a primitive type), we have
A;-;TPe™ - chanvar 4 : B chan.

By the rule Tchanv, we have v/ ~ B vlist @ x € A.

Since C :: A, we have C = Cg, M at v, N at v and A; ;TP*™ bp(,y N ~ B viist @ w* for a fresh
node w*.

N =V, :---:: V, ::nil (where 0 < n), then
0, k[writechan (chanvar ¥') V] at v, V; i1 --- = V,, = nil at Y = Rwritec
o kV]aty, Vi VyuVoanilat v/
Otherwise N # Vj :: --- :: V,, :: nil and M is not further reduced. a

The two cases x[syncwith syncvar 7] at +y and [readchan chanvar v/] at +y in Theorem 4.5 can occur
during a distributed computation. Here is an example of a configuration whose transition gives rise to the
two cases:

syncwith future box cir (readchan newchany) at
= syncwith syncvar 4/ at v, letcir v = cir (readchan newchany,) in v at v/
= syncwith syncvar 4/ at «, letcir v = cir (readchan chanvar v”) in v at v/, nil at v

Here node -y waits for a result from node 4/, which in turns waits for a value to be written to node v”. Since no
value can be written to node ~”, the last configuration is stuck. The case x[writechan (chanvar v) V] at ¢
in Theorem 4.5 occurs only when the term being evaluated at node 4/ cannot be reduced to a list of values
(whether empty or not), as clarified in the proof above. This case, however, does not actually occur because
an asynchronous channel is always initialized as nil by the rule Rnewc and never holds a term that is not a
list.

The type safety of the network operational semantics implies that mobile terms and mobile values are
both safe to use: well-typed terms never go wrong even in the presence of mobile terms and mobile values.

4.7 Example

Consider a network of two nodes S (server) and C (client). Node S has a printer attached to it, and provides
a function print for printing pdf files of type pdf. The printer accepts pdf files written only with local fonts,
and provides a function converts for converting ordinary pdf files into a suitable format. Node C has its
own conversion function convertc.

2™ = fileg ~ pdf @ S, converts ~ O(pdf D Ogpdf) @ S, print ~ pdf D unit @ S
rgm filec ~ pdf @ C, convertc ~ pdf D Ogpdf @ C

We give three examples (similar to those in [9]) to illustrate how to describe tasks in Agc” . All terms below
have type Ogsunit and typecheck at any node. We use syntactic sugar rpc M for syncwith future M.
Printing a pdf file fileg of node S:

boxs (print fileg)
Printing a pdf file filec of node C after converting it with convertc:

letcir v = cirg rpc boxc (convertc filec) in
boxs (print v)
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Printing a pdf file file, of node C after converting it with converts:

boxs letcir v = converts in
letcir v = cirs rpc boxc (v file) in
print v

5 Rdated work

5.1 Local resourcesin distributed computations

In designing a distributed system, there are several ways to handle references to local resources when they
are transmitted (as part of a mobile term) to aremote node. If the underlying system supports direct access
to remote resources, such a reference can be replaced in the remote node by a proxy which automatically
redirects all requests for the resource to the originating node. Oblig [3] adopts such a computation model,
in which local references are replaced by network references in a remote node.

\u& allows references to remote resources in mobile terms, but it also ensures that they are never
dereferenced. In essence, references to local resources become invalid when they are transmitted to remote
nodes, but their validity isrestored when they are brought back to the original node. For example, if aterm
M accesses local resour ces of node u> and returnsa globally valid value of type A, then

syncwith future box™ cir M

can be evaluated at any node: wherever the above term is evaluated, it calls back with the same term M to
node a?, where all referencesin M again point to their corresponding local resources. The same computation
model isused by Mascolo etal. [11] in their treatment of references.

Referencesto remote resour ces, as used in the above two computation models, are suitable for persistent
resources such as printers and databases, but they can be problematic for ephemeral resources which are
eventually destroyed. For example, die presence of referencesto remote heap cells incurs the problem of
distributed garbage collection [7]. An alternative computation model is one that permits no references to
remote resources either by rejecting mobile terms containing such references or by transmitting copies of
local resources along with mobile terms. Facile [10] supports such a computation model, in which local
resources are copied whenever their references (called singular values) are transmitted to a remote node.
Thus the problem with ephemeral resourcesis resolved at an increased cost of transmitting mobile terms.

5.2 Modal languagesfor distributed computation

Borghuis and Feijs [1] present a typed A-calculus MTSN (Modal Type System for Networks). It assumes
stationary services (Leg stationary code) and mobile data, and belongs to the client/server paradigm. An
indexed modal type Of (A —e« B) represents services transforming data of type A into data of type B at
nodeu> (similarlytoD” (A D B) in AQO" ). MTSN isatask description languagerather than a programming
language, since services are all "black boxes" whose inner workings are unknown. For example, terms of
type tex —> dvi all describe proceduresto convert tex filestodvi files. Thusreduction on termsistantamount
to simplifying procedures to achieve a certain task.

Jia and Walker [9] present a modal language A, which belongs to the remote evaluation paradigm.
It is based upon hybrid logic [2], and every typing judgment explicitly specifies the current node where
typechecking takes place. The modalities « and 0 are used for mobile terms that can be evaluated at any
node and at a certain node, respectively.

Murphy etal [13] present a modal language Lambda 5 which addresses both code mobility and resource
locality. It also belongs to the remote evaluation paradigm, and is based upon modal logic S5 where all
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judgments are relativized to nodes. A value of type DA contains a mobile term that can be evaluated at any
node, and a value of type ()A contains a label, areferenceto alocal resource. A label may appear at remote
nodes, but the type system guarantees that it is dereferenced only at the node whereit is valid.

Although theintuition behind the modality « isthe same, A, and Lambda 5 are fundamentally different
from Ano" in their use of modal types DA in remote procedure calls. In both languages, aremote procedure
call, by the pull construct in A.,c and by the fetch construct in Lambda 5, is given a specific node where
the evaluation is to occur, and therefore does not expect a term contained in a value of type DA. Instead
it expectsjust aterm of type DA, which itself may not be mobile but eventually produces a mobile term
valid at any node including the caller node. Theresultant mobile term is delivered to (i.e., pulled or fetched
by) the caller node, which needs to further evaluate it to obtain a value. As such, neither language needs
to address the issue of value mability. In contrast, a remote procedure call in XQC" (by the eval or future
construct) transmits a term contained in a value of type DA and relies on the modality O for return values.
Such use of the modality ¢ is natural in Ano”, since it supports remote procedure calls to unknown nodes.

Moody [12] presents a system which is based upon modal logic S4 and belongs to the remote evaluation
paradigm. The modality ¢ isused for mobile terms that can be evaluated at any node, and the modality O is
used for terms located at some node. Asin Ano"\ remote procedure calls use modal types DA to transmit
mobile terms to unknown remote nodes. Moody's system uses the elimination rules for the modalities *
and 0 to send mobile terms to remote nodes, and does not provide a separate construct for remote procedure
calls. ’

6 Concluson and future work

We present a modal language AQO” which ensures the safety of both mobile terms and mobile values. It
provides a flexible programming environment for various kinds of distributed computations. For example, if
the network evolves dynamically and no permanent local resources are known in advance, only modal types
DA and OA are necessary; if the network is static and every node publishes its permanent local resour ces,
we can program exclusively with indexed modal types D*A and Oo,A

The modality O is useful in Ano” only because the unit of communication includes a value. That is, if
the unit of communication wasjust aterm and did not include a value, the modality O would be unnecessary.
Then, however, the future construct would have to be redefined in a similar way to the pull construct of Arpc
and the fetch construct of Lambda 5, and asynchronous channels would be difficult to implement.

The three communication constructs of AQO” are all defined separately. A better approach would be
to introduce a few primitive operations and then implement various communication constructs using these
primitive operations. For example, we could introduce a send operation for the modality « and a receive
operation for the modality O, and then implement the future construct using these operations. Because of
technical difficulties arising from asynchronous channels, however, we do not adopt this approach and define
all communication constructs separately.

A drawback of Ano” isthat in general, references to ephemeral local resources cannot be transmitted
to remote nodes. As an example, consider a pointer v of type ptr A at a logical node 7 created with new 7.
Node 7 wishes to use v as a shared pointer among all its child nodes, i.e., those nodes created with the eval
and future constructs. No child node, however, even knows the existence of v because the physical node u
in abinding v~ A @ u; is not known statically. (If node 7 was created with new 7 @ u>g then v could be
transmitted to remote nodes.)

To overcome this drawback, we are currently investigating how to augment Ano (not Ano”) with a
modality 0 similar to that of Jia and Walker [9]. The ideaisthat aterm M in dia M of type OA can be
evaluated at a certain node, which is unknown to the type system but known to the runtime system. The use
of the modality O will allow us to dispense with indexed modalies D* and Ou;.
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A Proofsof the properties of AQO

Proposition A.l. .
[IA;ThM: AandA;I\x : Ah N : B, then A;T h [M/X]N : B. .
IfA]Th M : Aand Ar,x: Ah N ~B, then A;F\- [M/X]N ~ B.

Proof By simultaneousinduction on the gructure of of thederivationof A; r,x : Ah N : BandA; T,x: Ah N ~ B,
Proaf of thefirs clause:
Cae N = x: [M/X]N = M
By therule Cvar, A; T,x : Ah N : BimpliesA = B.
A;T h M : ~“impliesA;T h [M/X]N : A.
Therefore A; T h [M/x]N : B.
Cae N =yy " x: [M/XIN =y
By therule Cvar, A; T,x : AhiV : Bimpliesy :: 5eAor 2/: BG I\x : A.
Sincey ™ x,vichavey :: 22 GAory: BGF.
By therule Cvar, A; Thy: B.
Therefore A; T h [AflodV : S.
Cae N = v. [M/XIN = v :
By therule Vvar, A;Tx : A\- N : Bimpliesv~ B e A.
By theruleVvar, A; T hv: B.
Therefore A; V h [M/X]AT: £.
Case N = Xy: B. N\'y ~ x, y not afree variable of M: [M/X]iV = Ay: BL. [M/X]N'
By therule DI, A; I\x : Ah AT: BimpUesA; T,x: Ay: B hN :B" andB = B'D B".
By weakening, A;Th M :A implies A;r,j/:B'hM:A
By induction hypothesis, A; I\y : BYh [M/x] AT : £".
By therule DI, A; Th Ay:S".[M/x]JV : S D B".
Therefore A; V h [M/X]iV : B.
Caxe AT =iVi AT;  [MKXJAT = [M/x]" [MIX]AT,
By therule DE, A; I\x : A h AT: SimpliesA; T,x : AhJVi:B DBandA; T,x: AhAT,: B'.
By induction hypothesis, A; V h [M/x]JVi : B'D Band A; V h [M/XJAT, : S'.
By therule DE, A; V h [M/x]iVi [M/X] AT, : S.
Therefore A; T h [M/x]iV : B.
Caxe AT = box N':  [M/x]N = box [M/x]AT
By therule DI, A;I\x : Ah N : BimpliesA; « h N': B"andB = OB'. -
Since x is not a free variable of N\ we have [M/x]N' = AT.
By therule DI, A; T h box [M/X] AT : «£".
Therefore A; T h [M/X]AT: £.
Case AT = letbox y = ATy in AT, y 7 X,y not afreevariable of M:
[M/XJAT = letbox y = [M/X]Ni in [M/X]AT,
BytheruleDE,A;r ,x: A h AT: .BimpliesA;T,x : Ah N, : DBxand A,y :: £i;1\x: Ah AT, : B.
By weakening, A; Th M : AimpliesA,y :: Si; ThM : A.
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By induction hypothesis, A; T h [M/X]Nx : QBi and A,y :: By T h [M/X]AT, : £.
By therule DE, A; T h letboxy = [M/x] Al in [M/X]AT, : £.
Therefore A; Th [M/X] AT : B.
Caxe AT =dr N':  [M/X]N = dr [M/X]AT'
By theruleOl, A; I\x : Ah N : £impliesA; I\x : Ah N ~J5 and B = OB'.
By induction hypothesis, A; T h [M/XJAT' ~ £'.
By therule Ol, A; T h dr [M/X]TV' : OS'.
Therefore A; T h [M/X]AT: £.
Case N = letair t; = Ni in AT, i; not afreevariable of M:  [M/X]N = letcir v = [M/x]N\ in [M/x] AT,
BytheraleOE,A;r ,x:"hAr:£impliesA;r,x:,4hAri : OBiandA,v ~£i;I1\x : >1h iV, : B.
By weakening, A; Th M : AimpliesA,v~Bi;rhM:A
By induction hypothesis, A; T h [M/x]iVi : OBi and A, r; ~B,\ T h [Af/X]IV, : £.
By therule OE, A; T h letcir t; = [M /x]” in [M/X]iV2 : B.
Therefore A; T h [M/X] AT: B.
Proof of the second clause:
If the rule Prim~ isused to deduce A; T,x : Ah N ~ B:
A;Tx : Ah N : B and B is a primitive type.
By induction hypothesis, A; T h [M/X]AT: B.
By therule Prim~, A; T h [M/x]AT ~B.
Now AT cannot be an application iVi AT, or avariabley.
Caxe AT =V:
By theruleVal, A; I\x : Ah AT ~BimpliesA; s h N : B.
Since x is nat a free variable of Ng we have [M/X]N = N.
By theruleVal, A; T h [M/X]N ~ S.
Case AT = letbox y = iVi in AT, y ™ X, y not afreevariable of M:
[MIX]JAT = letbox y = [M/X]™ in [M/X]AT»
BytheruleDE', A; I\x : Ah AT ~ SimpliesA; T,x: 4h Alx : DBiand A,y :: BAT*x : Ah N, ~ B.
By weakening, A; Fh M : AimpliesA,y :: BATh M : A
By induction hypothesis, A; T h [M/x]Ni : UB\ and A,y :: Bi; T h [M/X]N, ~ B.
By therule DE', A; T h letbox y = [M/X]ATi in [M/X]AT, - B.
Therefore A; T h [MIXJAT ~ B.
Cae N = letcir v = N\ in AT, v not afreevariable of M:  [M/X]N = letcir t; = [M/X]N\ in [M/X] AT,
BytheruleOMA”x : Ah N ~BimpliesA;I\x : Ah M : O#iandA,v ~Bi;r,x: >1h AT, ~B.
By weakening, A; Vh M : AimpliessA,v~B\ThM : A.
By induction hypothesis, A; T h [M/x]Ni : OBi and A,v ~ By, T h [M/X]N, ~ B.
By therule OE’, A; T h letcir v = [M/x]Ni in [M/x]N, ~ B.
Therfore A; T h [M/X]N ~ B. D

Proof of Propodtion 2.2 and Proposition2.4:

Proof. By smulataneousinduction on the gructure of thederivationof A,x :: A, Th N: BandA,x :: A; Th N ~ B,
Proof of Propostion 2.2:
Case N = x: [M/X]N = M
A;-hM:A implies A; « h [M/X]N : A.
By weakening, A; « h [M/X]AT : AimpliesA; T h [M/x]N : A.
A, x 2 A;ThN:BimpliesA = B.
Therefore A; T h [M/X]N : B.
Caxz N = y,y*x: [M/X]N =y

25




By therule Cvar, A,x :: AFhN: Bimpliesy:: BeA,x:: Aory: B€T.
Sincey ™ x,wehavey:: BGAory: BGF.
By therule Cvar, A; Vhy: £
Therefore A; V h [M/X]AT : £
Caxe AT =v. [M/IXIN=vV
By therule Vvar, Ax :: A;T\-N : B impliesv~f? € A, x :: A whichmeansv*BGA .
By therule Vvar, A; T hi;: B.
Therefore A; V h [M/X] AT: B.
Case N = \y: B'. N\y * x, y not afree variable of Af: [M/x]AT = Ay: B'. [M/x]N'
By therule DI, A, x :: A; Th AT: BimpliesA,x :: A; T,y : BBh ™ : B"andB =5 D B”.
By induction hypothesis, A; I\y : S"h [M/x]N' : S’
By therule DI, A; T h Ay: B”. [M/x]N' : B' D B"".
Therefore A; T h [M/X]AT: £.
Case AT = N¢ Ny [M/X]N = [M/X]Nx [M/X]N,
By the rule DE, A, x ::A;ThN : B impliesA, x :: A Th ATy : B'D Sand A,x :: A;,T h AT, : B".
By induction hypothesis, A; T h [M/x]ATx : B D Band A; T h [M/x]AT, : 5°.
By therule DE, A; T h [M/x]JVi [M/X]AT, : B.
Therefore A; T h [M/x] AT: 5.
Case N = box AT [M/X]JAT = box [M/X]AT’
By the rule D\\Ax::A;T\-N:B impUes Ax :: A;- h N : B and B = DB'".
By induction hypothesis, A; « h [M/x]AT". B'.
By therule DI, A; T h box [M/X]AT": DS'.
Therefore A; T h [M/x] AT: 5.
Cas= AT = letbox y = ATi in JVjj, y- X, y not afree variable of M:
[M/XJAT = letbox y = [M/X]Nx in [M/X]JAT,
By therule DE, A, x :: A-Th N : 5impUesA,x :: A;Th Ny : DJ5 and A,x :: Ay i.B*Th N, : B.
By weakening, A; s h M : AimpliesA,y :: 2?%;sh M : A
By induction hypothesis, A; T h [MXJATx : DSi and A,y :: £1; T h [M/X]AT, : B.
By therule DE, A; T h letbox y = [M/X]Ny in [M/X]AT, : B.
Therefore A; T h [M/X] AT: B.
Cae AT =dr A% [MIJAT =dr [M/XJAT’
By therule O, A,x :: AThN : BimpliesA,x :: A;T h AT ~B" and B = OB".
By induction hypothesis, A; T h [M/x] AT’ ~B'.
By theruleOl, A; T h dr [M/x] AT : OS'.
Therefore A; T h [M/X]N : B.
Case AT = letcir v = Ni in AT, i; not afreevariableof M:  [M/x]N = letcir v = [M/X]N\ in [M/X]AT,
By therule OE, A, x :: A;T\- N : ~impliesA,x :: A; Th AN : OfiandA,x :: Av~B"T h AT, : B.
By weakening, A; «chM : A impliesA,v~Si;*h M : A
By induction hypothesis, A; T h [M/X]A%i : 03Bl and A, t; ~Bi; T h [M/X]AT, : S.
By therule OE, A; T h letcir v = [M/x]Ni in [M/X] AT, : B.
Therefore A; T h [M/X]AT: B.
Proof of Propogtion 2.4:
If the rule Prim~ is used to deduce Ayx :: A;Th N ~ B:
A,x o A; T h AT: B and B isaprimitive type.
By induction hypothesis, A; T h [M/x] AT: B.
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By the rule Prim~, A; T h [M/X]N ~ £.
Now N cannaot be an application Ni N, or avariable y.
Case AT = V.
By theruleVad, A, x :: A, ThN~BimpliesA,x :: -4, hN : B.
By induction hypothesis, A; « h [Af/X] AT : B.
By theruleVa, A; V h [M/X]AT - S.
Case AT = letbox y = iVi in AT, y * x,y not afree variable of M:
[M/X]N = letbox </ = [M/IX]N in [M/X]AT,
By therule DE’, A, x:: AThN ~ Bi mphes A, X :: A, T h Nx :DBjandA X:: Ay B1,rhN>~B.
By weakening, A ; «hM:4impliesA,y :: Bi;*h M : A
By induction hypothesis, A; T h [M/X]ATi : DBi and A,y :: Bs; T h [M/X]AT, ~ £.
By therule DE’, A; T h letbox y = [M/a]lVi in [M/a]AT, - B.
Therefore A; T h [M/XIN - B.
Case N = letcir v = JVi in iV, v not afree variable of M: [M/X]N = letcir v = [M/X] Vi in [M/X]JV,
BytheruIeOE7, A, X:: A;ThAr~ BimpUesA,x :: M T hAIk : OBi andA,x :: A,v ~Bi;T h AT, - B.
By weakening, A; * hM : AimpliesA,v~B\;*hM : A
By induction hypothesis, A; T h [M/X]ATi : OJi and A, v - Bi; T h [AfXAT, ~ JB.
By therule OE’, A; T h letcir v = [M/x] Vi in [AfXAT, ~ 5.
Therefore A; T h [M/X] AT - 5. .

LemmaA.2.
A «hF:MNanrf A)v~AThAT : B, IAMA;T h [VN]I\T : B.
IfA;-FV:Aand A,v ~ A;THFN ~ B, then A;rh [VNIV ~ S.

Proof. By simulataneous induction on the structure of the derivationof A, v ~ A; F\- N : BandA,v~A; Th N ~ B.
Proof of the first clause:
Case N = x [VIWIN = x
BytheruleCvar, A,v ~ AY\- N : Bimpliesx :: B G A,v ~Aorx : B E T, whichmeansx :: 5 G A
orx:BGT.
By therule Cvar, A; T hx : B.
Therefore A; T h [VIV]AT: B.
Case N = v [VWIN = V
A;-hV A implies A; « h [VV]N : A
By weakening, A; * h [V/v]~ : AimpliesA; T h [VIV]Ar: A.
AV ~ATh N : BimpliesA = B.
Therefore A; T h [VIV]AT: B.
Case N = w,w "v: [VIVIN = w
By the rule Vvar, A,v ~ A; Fh N : Bimpliesw ~ B e Av ~ A, which meansw ~ B G A.
By therule Vvar, A; Thw:B.
Therefore A; T h [VIV]AT: B.
Case AT = Ax: B". N\ x not afree varisble of V:  [VWV]N = Ax: B'. [VAMN'
By therule DI, A,v - AT hAT: £impliesA,v ~A;T,x : B hAT : BrandB = B’ D B”".
By induction hypothesis, A; T,x : B’ h [V\WV]N' : B".
By therule DI, A; T h Ax: BY [VAMN' : B* D B".
Therefore A; T h [VIV] AT: B.
Case N = Ny Ny [VWIN = [VN]N [VIVIN,
By therule DE, A,v ~ A; Th AT: BimpliesA,v~A: ThAT : B'DBandA,v~A; ThAL : B".
By induction hypothesis, A; T h [VAMATI : B’ D Band A; T h [VNV]N; : B”.
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By therule DE, A; T h [VIV]Ni [VIV]N, : B.
ThereforeA; T h [VIV]AT : B.

Case AT = box N':  [VA]N = box [VMN'

By therule DI, A,v~A; T h AT: BimpliessA,v~A; «h AT B'and B = DB'".
By induction hypothesis, A; « h [VAN": B'.

By theruleDI, A; T h box [V/V]AT : DB'.

ThereforeA; T h [VIV]AT : B.

Case AT = letbox x = Ni in iV, x not afreevariableof Vi [VV]N = letbox x = [VN]Ni in [VIV]N,
BytheruleDE,A,v~ A;T\-N: B implies A,v~ A;ThiVi:OByand A,v - Ax :: Bi;:T hiV, : B.
By weakening, A ; -h F:iimpliesA,x :: Bi;*hV :A .
By induction hypothesis, A; T h [VNJATI : OBy and A, x :: J5i; T h [VIV]N, : B.

By therule DE, A; T h letbox x = [V/V]N; in [VIV]N, : B.
Therefore A; T h [VV]iV : B. '

Case AT =cr N':  [VAN =dr [VNVN'

By therule Ol, A,v~A; ThN : BimpliesA,v~A; ThN ~B and B = OB\
By induction hypothesis, A; T h [VIV] V' ~ JB'.

By therule Ol, A; T h dr [VAMJIA/” : O5’.

Therefore A; T h [VIVIA™: B.

CaseN = letcir w = Ni in AT, w; ” v, it; not afreevariableof V:  [VIV]AT = letcir w = [VAVINI in [VIV]N2
BytheruleOE,A,v~ A;T\- N : BimpliesA,v - A; T hiV; : OBjand Av ~/lit; ~BijTh AT, : J5.

By weakening, A; e h V : AimpliesA,i/; ~Si;«hV : A
By induction hypothesis, A; T h [VAJAN @ OBi. and A, it; ~ By; T h [VN]AT, : B.
By therule OE, A; T h letcir w; = [VIV] ATk in [VN]AT, : B.
Therefore A; T h [VNV]AT: B.
Proof of the second clause:
Iftherule Prim~isused todeduce A,v~i;rhiV ~B:
A,v~"4 T h AT: B and B isa primitive type.
By induction hypothesis, A; T h [VIV]AT: B.
By therule Prim-, A; T h [VIV]AT - B.
Now AT cannot be an application Vi N, or avariable x.
CaseAT =V".
By theruleVal, A,v~"4:n-AT~B impliesA,v ~ A; «h AT: B.
By induction hypothesis, A; ¢« h [VAMJV : B.
By theruleVal, A; V h [VIV]AT ~B.
Case Af = letbox & = N\ in AT, x not afree variable of V:
[VMAT = letbox x = [VIV]N, in [VMAT,
BytheruleDEN"A”-"~ri- AT ~BimpliesA,v ~"4 T h Ny :0OByandA,v ~ 4 ,x :: Bi;TI-AT, ~ B.
By weakening, A; chV : AimpliesA,x :: Bi;*hV: A
By induction hypothesis, A; T h [VMATi : DBi and A, x :: Bx; T h [VNV]AT, ~ B,
By therule DE', A; T h letbox x = [VMATI in [VN]AT, ~ B. -
Therefore A; T h [VAIV - B.

Case AT = letcir w = N\ in AT, w * v,wnot afreevariableof V:  [VIV]AT = letcir w = [VAJATX in [VN]AT,

By therule OE', A,v~ A; Th N ~ BimpliesA,v ~ A;T \- Ni : OBi andA,v ~Att; ~Bi;T hAT, ~B. ~-
By weakening, A; e hV : AimpliessA,w~B\ehV :A

By induction hypothesis, A; T h [VA]iVi : OBi and A,w ~ Bi; T h [VNAT, ~ B.

By therule OE', A; T h letcir tt; = [VA]IVi in [VN]AT, ~ B.

Therefore A; T h [VMAT ~ B. g
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Proof of Propostion 2.3:

Proof. By induction on thegructure of M.
Proof of thefirst clause:
Ca= M = V: (MAMN = [MN]N
By theruleVa, A;Fh M ~ AimpliesA; «h M : A
By LemmaA.2, wehave A; F h [MNV]N : B.
Therefore A; F h (MiV)N : B.
Cae M = lethox x = Mi in M» (MWVN = letbox x = Mi in {M2/V)N
By therule DE’, A; Th M - A impliesA; T h Mi : HL4iandA,x ::Ai;rhM, ~A
By weakening, Av ~ A;T \- N : BimpliesAyv ~Ax :: Ai;F h N : B.
By induction hypothesison M2, A, x :: A\; F h (M2/V)N : B.
By therule DE’, A; F h letbox x = M, in (Mz/V)N : B.
Therefore A; T h (MIV)N : B.
Case M = ledir it; = Mi in M2 (M/V)N = letcr w = Mi in {M2/v)N
By therule OE', AATh M ~ AimpliesA; Th My : OMiandA”*~ii;n-M,~A
By weakening, Av ~ A;T\- N : B implies Av ~ Aw ~ Ai;T \- N : B.
By induction hypothesson M2, A,w ~ J4l; F h (M2/v)N : B.
By therule OE', A; T h letcir w = My in (M2/V)N : B.
Therefore A; T h (M/V)N : B.
Proof of the second clause:
Cae M = V: (MiV)N = [MN]N
By theruleVa, A, T hM ~ AimpliesA; «h M : A
By LemmaA.2, we have A; T h [AfMJJV ~ B.
Therefore A; T h (MIV)N ~ J5.
Cae M = lethox x = Mi in M2 (MAVN = letbox x = Mi in (M2/V)N
By therule DE’, A; T h M ~”~4impliesA; T h Mi : QAi and A,x :: Ai; Th M, ~A.
By weakening, Av ~ A;T \- N ~ B in*liesA,v ~Ax :: Ai;T h N ~ B.
By induction hypothesson M2, A, x :: A\; F h (M2/v)N ~ B.
By therule DE', A; F h letbox x = My in (M2/V)N ~ B.
Therefore A; F h (M/V)N ~ S.
Cae M = lecir it; = Mi in My: (MIV)N = letdr it; = Mi in (MJ/V)AT
BytheruIeOE7,A; FhM ~AimpliessA;FhMi : OMiandA,w~"1;Fh M, ~A
By weakening, A,v~A;FIl-iV~5implies Av ~ Aw ~ Ai;F\- N ~ B.
By induction hypothess on M2, A, w ~ At; T h (M2/v)N ~ B.
By therule OE’, A; F h letcir it; = M, in (Mo/V)N ~ S.
Therefore A; F h (M/iV)N ~ 5.

Proof of Proposgtion 2.5:

Proof. By induction on the gructure of the derivation of A; Fh M ~ A
A;-F A
CaSe -A—’I‘T fZVal and M =V:
By weakening, A;-\-V : A impliesA;F h V : A
Therefore A; Fh M : A
AF h Mi @ HAI A x D AgT\-MA A
CaSe A FhletboxX = MI1inM ,~ "~ PE" and M = letbox X = Mi in M:
By induction hypothesison A, x == Ai; Fh M, ~A, wehave A, x :: JMX;Fh M, : A
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By the rule OOE, A;T' - letbox z = M; in M5 : A
Therefore A;T'+ M : A.
A;FI"M1:OA1 A,’UNAl;Pf—Mg"VA , R .
A;Tkletcirv=MiinMy~ A OF’ and M = letcirv = M, in My:
By induction hypothesis on A, v ~ A;; ' My ~ A, wehave A,v ~ Ay;T + M, : A,
By the rule OF, A;T" | letcir v = M; in M> : A.
Therefore A;T'+ M : A.
A;TEFM:A
Case m Prim~
The premise gives A;T' - M : A. O

Case

B Proofs of the properties of \gJ3"

Proof of Proposition 3.1:
Lemma B.1. [M/z]V is a value.
Proof. By case analysis of V. O

Proof. By induction on the structure of the derivation of A;T,r: AQ W’ +, N ~BQ /.
If N = V and the rule Valy, is used to deduce A;I',z: AQwW"F, N~ BQu"

AT,z:AQuw’+, N:B.

By induction hypothesis, A; T &, [M/z]|N : B.

By the rule Cvary, A; T, [M/z]N ~ B Q ' because [M/z]N is a value by Lemma B.1.
If the rule Prim~y is used to deduce A; T,z : AQuw” +, N~ B Q@Qu'":

A;T,z: AQuw”, N : B and B is a primitive type.

By induction hypothesis, A; T" -, [M/z]N : B.

By the rule Prim~y,, A;T' -, [M/z]N ~ B@Q /.
Now we assume that the rules Cvary;, and Cvaryy are not used todeduce A;F,z: AQuW'+, N~ BQ@QW'.
Case N=z: [M/z][N=M

By the rule Cvary, A;T,z: AQW’+, N ~ BQuw implies A=Bandw =’ =u".

A;T v M : Aimplies A;T b v [M/z]N : A.

Therefore A; T+, [M/z]N ~ BQ W'.
Case N=y,y#z: [M/z]N=y

By therule Cvary, A;T, 2 : AQuW”H, N ~B@uw' impliesy :: B€E Aory: BQweT,z: AQuJ",
andw = u'.

Since y # z,wehavey:: B€ Aory: BQuw€T.

By the rule Cvary, A;T F, v : B.

Therefore A;T' +,, [M/z]N ~ B @ /.
Case N=v: [M/z]N=v

By the rule Vvary, A;T,2: AQw"”, N ~ BQ@ W' impliesv ~ B€ Aorv~BQuweTl,z: AQuw”",
and w = o/'.

Since v # z,wehavev~ B€ Aorv~BQuw €T.

By the rule Warwy, A;T H, v : B.

Therefore A;T -, [M/z]N ~ B Q W'.
Case N = \y:B’. N, y # z, y not a free variable of M: [M/z|N = \y:B'.[M/z]N’

By the rule Dly, A;T,2: A@QuWw”F, N ~ B@w implies A;T,z: AQuW",y: B Quwt, N': B”,
B=B > B’ andw =u'.
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By weakening, A;T" -+ M : Aimplies A;T,y: B Qw bt M : A.
By induction hypothesis, A; T,y : B’ Qw -, [M/z]N' : B".
By the rule Dy, A;T +, Ay:B'. [M/z]N’' : B’ D B".
Therefore A;T -, [M/z]N ~ BQ W'.
Case N = N1 N22 [M/:c]N = [M/x]Nl [M/.’L‘]NQ
By the rule DEy, A;T,z: AQ@uw’'+, N~ BQw' implies A;T,z: AQw”"+,N;: B DB,
AT, c: AQuW',No: B,andw =o',
By induction hypothesis, A; '+, [M/z|N; : B D Band A;T'+,, [M/z]N> : B'.
By the rule SEw, A; T F, [M/z]Ny [M/z]N> : B.
Therefore A; T+, [M/z]N ~ B @ /.
Case N =box N’: [M/z]N = box [M/z|N’
By the rule Oly, A;T,z: AQuW”+, N ~ BQu' implies A;T',z: AQuw’"+, N': B, B=0OB,
and w = w’ where w* is a fresh node.
By induction hypothesis, A; ' b« [M/z]N': B’.
By the rule Oy, A; T+, box [M/z]N’ : OB'.
Therefore A;T +,, [M/z]N ~ B QW'
Case N =box,« N: [M/z]N = box,+ [M/z]N’
By therule Oly,, A;T,z2: AQuWw” H, N ~ B@uw implies A;T,z: AQuW’+,» N : B,B=0,B,
andw = u'.
By induction hypothesis, A;T' b+ + [M/z]N': B’.
By the rule Oy, A;T +,, box,+ [M/z]N': O, B'.
Therefore A;T +,, [M/z]N ~ BQ W'
Case N = letbox y = N; in N, y # z, y not a free variable of M:
[M/z]N = letbox y = [M/z] Ny in [M/z] N,
If the rule OEy is used to deduce A;T,z: AQuW"+, N~ B QW'
Alz: AQJW'+, N~BQJ implies AT, z:AQuW'+, Ny : OB and
Ay:B;;TLx:AQuwW"H,N,~BQUu'.
By weakening, A;T' F,» M : Aimplies A,y :: By; T, M : A.
By induction hypothesis, A;I' b, [M/z]N; : OBy and A,y :: By;T'+,, [M/2]N; ~ B @ /.
By the rule OEw, A; T+, letbox y = [M/z]N; in [M/z]N3 ~ B @Q /.
Therefore A;T -, [M/z]N ~ B Q /.
If the rule OJE};, is used to deduce A;T,z: AQuwW"+H, N~ B@J/,
AT, z:AQJ"+, N~B@dJ implies AT, 2: AQuW'F, Ny : OBy and
ATr: AQW",y: B Quw*, N~ BQ@uW.
By weakening, A;T' - » M : Aimplies A;T,y: By @uw* F» M : A.
By induction hypothesis, A; T' -, [M/z]N; : O,+Biand A;T,y : By Qw* +,, [M/z]Nys ~ B@ W',
By the rule OEy,, A;T k-, letbox y = [M/z]N; in [M/x]N; ~ B @ /.
Therefore A;T -, [M/z]N ~ B Q /.
Case N =cir N': [M/z]N = cir [M/z]N’
Bytherule Olyy, A;T,z: AQw”’+, N ~ B@ W impliesA;T,z: AQw"+, N' ~ B @Qu*, B=0B,
and w = w’ where w* is a fresh node.
By induction hypothesis, A; ' b, [M/z]N' ~ B’ @ w*.
By the rule Oly, A;T' -, cir [M/z]N’ : OB’.
Therefore A;T +,, [M/z]N ~ B Q u'.
Case N =cir,~ N': [M/z]N =cir,» [M/z]N’
By the rule Oly,, A;T,z: A@Quw”F, N~ B@uw' implies A;T,z: AQw"+, N ~ B’ @ w*,
B=0O,B,andw = /.
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By induction hypothesis, A; F h™ [M/X]N" ~ B' © u*.
By the rule OI'*, A; F K, dr \M/x]N': O"B".
Therefore A; F hn [M/X]IN ~B@d.
Case N = letcir v = Nt in AT, v not afreevariableof M:  [M/X]N = letcir v = [M/X]JATi in [M/X]N,
If the rule OEjy is used to deduce A; F,x : A©@d h, N~B ©d,
A\T x: A@d'\-,;N~ B@d implies A;F,x: A©d h” N,: OSi and
AtLt-Si; TX:Aod \-,N,~B©Od.
By weakening, A; F hA/ M : A impliesA,v~B\F W/ M : A
By induction hypothesis, A; F h™ [M/X]ATi : OBi and A, i; ~ J5i; T h™ [AfixJiVA ~ B@u'.
By therule OEvr, A; T h™ letcir v = [M/X]N% in [M/X]AY, ~B @d.
Therefore A; T h™ [M/X]N - B @ u'.
Iftherule OE” isused todeduce A; T,x: M @d iV ~5@ &',
ATx:"@a" " AT~B@a’ impUes A;Tx:A@d \-, N, : O,*Bi and
ATa :A@d,v-Bi@u;*\-y;N2~-B@ d.
By weakening, A; F N/ M : *MimpliesA; F,v~B\ @a* ™/ M : A.
By induction hypothesis, A; F h™ [Afix]dVi : Oa;*A! and A; F,v ~B\ @ a* h* [M/IXJAT, ~S @ a".
By therule OE”, A; F h* letcir v = [M/X]N, in [M/X]AT, ~S @ d. '
Therefore A; F h™ [M/X]N ~ B@xd. D

Proof of Propostion 3.2:

Procd/ By induction on the gructure of the derivation of A, x :: A; Fh® AT ~B @d.
If AT = V and theraleVa\, isused todeduce A, x :: A; Fh" AT ~J50 d:

Az A;THN: B,

By induction hypothesis, A; F h*/ [M/x]N : B.

By the rule Cvarws A; F h" [M/X]N ~ B @ d because [M/X]N is a value by LemmaB.I.
Iftherale Prim~vr isused todeduce A,x :: A; Fh" AT ~B © d:

A x " Fh™ AT: B and Sisaprimitivetype.

By induction hypothesis, A; F h [M/X]N : B.

By the rale Prim~vr, A; F h [M/x] AT ~ B@d.
Now we assume that the rales Cvarvr and Cvarvr are not used todeduce A, x :: A; T h AT ~B @d.
Caxe AT =x:  [M/X]N =M

By therale Cvarvr, Ax :: A]T h* N ~B @d impliesA = B and u) = d.

A;F\-yn M : AimpliesA; Fh™ M : A

Therefore A; F h [M/X]IN ~B@d.
Cae N = yy " x [M/X]N =y .

By therale Cvarvr, Ax :: AAFh* N~B O u/ impliesy:: B G Ax::Aory:BoOw G F, and
L =d. '

Sncey * x, wehavey::BG Aorj/:jB@a;Gr.

By theraleCvarns A; F\-, y : B.

Therdfore A; F hr [M/X]N ~B@xd.
CaeN = v [M/X]N = v

By therule Vvarvr, A,x .: AA Th" AT~B @ u;’ impliesv~BG A, x::Aoov~B@a, G F, and
u)=d.

Sincev N x, wehavev~BG Aorv~B@we .

By therule Vvarvr, A; F h" i;: B.

Therefore A; F ™ [M/X] N ~B@d.
Cae N = Xy: B. N\y ~ x, y not afreevariableof M:  [M/x]AT = Ay: B". [M/X] N’
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N

By therule DI*, A, x :: AT h* AT - B @u;impliesA, x :: ATy : B' @ u> K, AT: B\B=B'D B",

and u = d,
By weakening, A; F h*/ M : AimpliesA; I\y : B' @a /M : A
By induction hypothesis, A;T,y : B" @ Luh® [M/X]N' : B".
By therule D\, A; F h* A</:B. [M/XJAT’ : B' D B".
Therefore A; F h [M/X]N ~ B@d.
Ca= N = Ny Ny [M/X]N = [M/X]Nyx [M/X]N,
By the rule DEy, AX:AFAMMN~-5@d impliess A,x: A;Fh"Ni:B DBy
A,x 2 AT h® AT, : BY, andu> = d.
By induction hypothesis, A; F h™ [M/x]N+ : B' D Band A; F h™ [M/X]N, : B'.
By therule DEw, A; F hy [M/X]Ni [M/X]N, : B.
Therefore A; V hy, [M/X]N - B & d.
Case AT = box N':  [M/X]N = box [M/x] AT
BytheruleDlvr, A,x :: A;T h* N ~ B@dimpliesA, x :: AY\-* N' : B\B = QB’,andu; = d
whereOJ* isafreshnode.
By induction hypothesis, A; T ™ [M/x] AT" B,
By therule U\,> A; T h* box [M/X]AT’ : DB'.
Therefore A; T h [MIXIAT ~B @ d.
Case AT = box™* N':  [M/X]N = box** [M/X]AT’
By the rule DI”*, Ax :: ATh* N~B @d implies A,x :: A;Th* AT : B\ B = D"B’, and
w=u.
By induction hypothesis, A; T ™ [M/x]AT" B’.
By therule DI"*, A;: T h* box™* [M/XJAT’ : UAB'.
Therefore A; T h [M/x] AT ~ B@d.
Cae N = letbox y = Ni in AT, y * X,y not afree variable of M:
[M/XJAT = letbox y = [M/X]Ny in [M/X]N;
If the rule DEvr isused todeduce A, x :: A: Th* N ~i? @ a’,
AX:AFhAT~B@d implies A, x: A Thh Al : QBI and
A2 "% BLx '\ AF4Gi N, " B @ w’.
By weakening, A; FYA" M : AimpliesA,y :: BAF W/ M : A.
By induction hypothesis, A; F h™ [M/X]N\ : OBi and A,y :: £4; F h [M/X]JAT, ~B @ d.
By therule DE”, A; F h™ letbox y = [M/X]Ni in [M/X]AT, ~B @d.
Therdfore A; F h™ [M/X]JAT - B @ d.
If therule DE’” isused todeduce A, x :: AFh" N~B @ a’,
AX:AFhMAT~B@d implies Ax A FhM AN QI3 and
A,x: A Fy:B,@v h" AT, ~B @c".
By weakening, A; F h™I M : AimpliesA; F,y : B\ @w* h*/ M : A.
By induction hypothesis, A;F h™ [M/x]Ni : D*Bi and A; F,y : B, @LJ* h™ [M/X]AT, ~J5 @ a’.
By therule DE'?, A; F h" letbox y = [M/X]Ny in [M/x]AT, ~J5 @ d.
Therefore A; F h™ [M/X]N ~ B @d.
Case AT =dr AT: [M/x]AT =dr [M/x]AT’
By therule OI™, A,x ;. A; Fh™ AT ~B @dimpliesA,x :: A; Th" N' ~B' @u>*y B = OB\ and
u) = d whereg* isafresh node.
By induction hypothesis, A; F h* [M/X]N' ~ B" @ a*.
By theruleOl, A; F h* dr [M/XJAT’ : OB’.
Therefore A; Fh [M/X]AT ~B @ &a".
Cae N = dr™ AT-  [M/X]N = dr™* [M/XJAT’
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By the rule OI'Y, AXx:ATh*"N~B@u/ implies A,x:: AThMN ~ B! @ a*,
5=0"B',anda = a".
By induction hypothesis, A; F h* [M/x]AT’ ~B’ @ a*.
By therule OI'?, A; F \-, dr [M/X)N": O.B".
Therdfore A; F h™ [M/XIN ~B@u'.
Case AT = letcir v = Nx in AT, t; not afreevariableof M:  [M/X]N = letcir v = \M/X]N\ in [M/x] AT,
If therule OEvr isused to deduce A, x :: A;Fh* N~j? @ &',
AX:"MFK: N~B @w implies A X MT hN AT OS5 and
Av~Bix :: AjTho, AT, ~ B @ J.
By weakening, A; F Ky/ M : AimpliesA,v~BW\T h,// M :
By induction hypothesis, A; T hy [M/X]N\ : OBi and A,v ~By; T h* [M/X]JAT, ~B @ a’.
By the rule OE”r, A; V hy letcir v = [M/X]Ni in [M/X]N, ~ B@V'.
Thaefore A; T h™ [M/XIN ~ B @ J.
If the rule OE™ isused to deduce A, x = A; T h"N~B @J,
A XA Vh™AT ~J5@J implies A,x AT h™ ATy : 0ys*Bs and
A XA Tow~B,@a* h" AT,~-B@a;”.
By weakening, A; Fh™I M : AimpliesA; F,t; ~Bi @a* h"/ M : A,
By induction hypothesis, A; F h* [M/x]Vi : O™ B, andA; F,v~S @ a* h* [M/X]AT, ~B @ a".
By therule OE™, A; F h” letcir v = [M/X]Nx in [M/x]N, ~ B @a;’.
Therefore A; F b [M/X]iV - S @ J. U

Proof of Proposition 3.3:

Proof. By induction on the structure of the derivation of A; F,v~A @ u;”" h* JV ~B @a,’.
If N is avalue and therule Val” isused to deduce A; F,v~A @J h* AT ~B @ a".

A;T,v—A@u;" \-,.<N:B.

By induction hypothesis, A; F hey [VIV]JV : B.

By therule Cvarvr, A; F h* [VIV]N ~ S @ J because [V/V]N is a value by LemmaB.I.
If the rule Prim~vr isused todeduce A; F,v~A @J'\-, N~B @ u;":

AF,v~A@a&" \-,N:BandB is a primitive type.

By induction hypothesis, A; F h [VIVIN : B.

By therule Prim~vr, A; F h™ [VN]IV ~B @ J.
Now we assumethat therules Cvar® and Cvarvr arenot used todeduceA; F,v~A @a"” h* N ~B @ a?.
Cae AT =x:  [VNMJIV =X

BytheruleCvarvr, A;F,v ~A @ a” h AT ~B @ a;'impliesx ::BG Aorx : B@ueTyv~A @u/
andu)=a;".

Sncex M v, wehavex::BGAorx:B@a;Gr.

By therule Cvarvr, A; F h™ x : B.

Therefore A; F h™ [FNMJAN - B @ J.
Cae AT =v. [VNIN =V

By therule Vvarvr, A; F,v~A @J*h* AT ~B @ J impliesA=Bandu; =a’ = a/.

A;FhM F o AimpliessA;F h™ V : B.

Therfore A; F h* [VVIN ~S @ &,
Cae N = ww ™ v [VWVIN = w

BytheruleVvarty,A;F,i; ~A @a” h AT ~B @a’impliesK; ~ B G Aorit; ~B @ a; €F,v~"4@a;”,
anda =u;’.

Sincew * v, wehaveti;~BG Aor*"~B@o;Gr.

By theruleVvar™, A; F h” it; : B.
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Thedoe A; T \-, [VIVIN ~B@J.
Cae N = Xx:B'. AT, x not afree variable of V: [VVIN = Ax: B'. [VIV]N'
By therule Dlw, A;Tv ~A Qu/'h, N ~5 @ v impliesA; \v~4 @ u/'x : B @u\-, N' : B",
B=B'DB",andu=u'".
By weakening, A; T hy V : AimpliesA; T,x : B' @u \-," V : A.
By induction hypothesis, A; T,x : B' @u \-, [VWVIN' : B".
By therule D\,, A; T \-, Ax:£'. [VWN": B' D B".
Therefore A; T hy, [VIVIN ~ B @ J.
Case N = Ni N [VIVIN = \VNV]Ni [VIV)N,
By the rule DEw, A;T,V~A@J'\-,N~B @J impUes A;T,u~A@w" h* Ni : B' D B,
A; T,v—-™M@u" hyiV,:B',andw=g;".
By induction hypothesis, A; T \-, [V/V][Ni : B' D Band A; T h, [VIV[N, : £'.
By therule DE™, A; T h [V;JVi [FVIAT, @ B.
Therefore A; T hy, [VIVIN ~5 @ ul/.
Cax=e AT = box AT [VA&;]JIV = box [V/v]™'
By therule D\,, A;T,t; ~A @u" hy N~B @ u/impliesA; T,v~A @w" h* V' :B',B = OB’
and u; = u/ wherew* isafresh node.
By induction hypothesis, A; T\-** [VAVN': B'.
By the rule U\,, A; V h, box [VIV)N' : DB'.
Therefore A; T h™ [VIV]N ~B@u>'.
Case AT = box™ N:  [VN]N = box* [VNV]N'
By theruleDI'", AATV~A @J h* iV ~B @ a impUesA; T,v ~y4 @u/' !-,,. N' :B'B = DB/,
andu>=0.
By induction hypothesis, A; T I-,,. [V/u]A” : B".
By therule DI, A; T h™ box® [VNVN' : DN.B'.
Thedoe A;T\-, [VIVIN ~B@u;'.
Case N = letbox x = Ni in A%, x not afree variable of V:
[VWIN = letbox x = [VV]* in [VIV]N;
If therule DEvr isused todeduce A; T,v~A @w" h, AT ~B @ &',
AT v~-A@a'h"AT~-B@a' implies AT, v~-A@a" h™ ATi : DBi and
AXx :: Bi;Tv- A@J ty, AT, ~ B @ J.
By weakening, A; F h" V : AimpliesA,x :: BAT\-*t V : A
By induction hypothesis, A; T \-, [V/V]Ni : DBi and A,x :: B\; T hy [V/V]N, ~B @ J.
By therale DEw, A; T h” letbox x = \VNV]Ni in [VIWjA* ~B @ J.
Therefore A; T hy, [VIVVN ~ B @ J.
Iftherale DE” isused todeduce A; \v~"4 @ J h» AT ~B @ J,
A; T,v-A@u;" \-,,N~B@u;' impUess  A;T,v~A@u>" h, Vi : DwBi and
ATv~AQW,z: Bl @Quw*, Ny~ B@ul.
By weakening, A; T \-,» V : AimpliesA; T,x : Bi @ u* M/ V : A.
By induction hypothesis, A; T hy, [FMATx : DABiand A; T,x : Bi @u* h,, [FMAT, ~B @ <.
By therale DE'?, A; T hy, letbox x = [V/VINI in [V/U]AT, ~B @J.
Therefore A; T hy, VMWV ~B @ ul/.
Case AT =dr AT:  [VAVIN = ar [VAN'
By the rule Olw, A; Tv~A @Uu" \-.W N~B @ <J implies A;Tu~A@J \-, N ~B" @u*,
B = OB', and OJ = <J wherea* isafresh node.
By induction hypothesis, A; T \-, [VIV[N' ~B' @ w*.
By therule O\,, A; T h,, dr [VAN' : OB"'.
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Therefore A;T h, [VIV][N ~B@u'.
Cae N =cir® N:  [VAIN = dr** [VIN'
By the rule O\'y, A;T,i;: ~4@u/'K,N~B ©J implies A;Tv~ A@d \-» N' ~B' @ a%
B = Ou*B'gand u; = a/.
By induction hypothesis, A; T h* [VMAT’ ~ £ © a*.
By theruleOI’A, A; T \-, dr [V/v]” : CV#'.
Therefore A; T h™ [V/VIN ~B@d.
Cae AT = letcir w = Ni in iV, w*v,w not afree variable of V: [VIVIN = letair it; = [VIV]Ni in [VIV] Ny
If the rule OEvr is used to deduce A; \v ~A© u/’ K, AT ~50 a’,
A T,i;,~MMoOou hiV~501J implies A;T,v~A®©a’h iVi : OBi and
Aw-Si;T,v~A©u"K, iV, ~S© ul.
By weakening, A; T ™/ V . M impliesA,it; ~Si; T h/ V : A.
By induction hypothesis, A; T h™ [VWV]NiI : O”"i and A, w ~ .Bi; T h™ [VIVIN, ~ B@V'.
By therule OE”, A; T h”™ letcir w = [VIV]NI in [VIV]N, ~ B © a’.
Therefore A; T W, [VIV]AT -5 @7,
If the rule OE™ is used to deduce A; \v~ A ©a” h* iV ~S© al,
A;T,v~"0a'1-"N~B @u' implies A;l1\v~A ©u" \-, N; : O"Bx and
A;T,v~A©a" it ~5i©a* " AL ~B© &
By weakening, A; T h/ V': AimpliesA; T,it; ~Bi © a* h/ F : A.
By induction hypothesis, A; T h™ [VIVINi : Og* Siand A; T,it; ~ 51 © u* h™ [VV]JA®, ~B © a’.
By the rule OE™, A; T h” letcir n; = [VAiVi in [VV]N, ~B@cJ'.
Therefore A; T h™ [VIVIN ~B@V'. ' D

Proof of Propodtion 3.4

Proc¢/ By induction on the sructure of the derivation of A,v ~A; Th" N~ B @ «'.
If N isavalue and therule Valjy isused to deduce A,v~A; T\-, N~ B © a/:
Av~ATH, N:B,
By induction hypothesis, A; T h™ [VIV]N : B.
By therule Cvarjy, A; T h™ [VIVIN ~ B @ a/ because [F/V]JV isavalue by LemmaB.I.
If the rule Primvr isused to deduce A,v~A; Th* AT~B®© a".
A,v~"4 F h™ AT: i? and B isaprimitive type.
By induction hypothesis, A; T h™ [VIV]N : B.
By therule Prim~w, A; T h™ [VIV]AT ~B © u/.
Now we assume that the rules Cvarvr and Cvar” are not used to deduce A,v~A; ThA N~B @ u;”.
Caxe AT =x. [VN]IV=a
By therule Cvar™, A,v ~A; Th AT ~B©O© a impliesx::i? G A,v~Aorx:B@o? G T, and
uJ - cJl.
Since x * v, we have x::J5G Aorx:B@(j Gr.
By therule Cvarvr, AjTh” xiB.
Therdfore A; T h* [VAMJIV - B @ &'
Cae N =v: \WNN=V
By therule Vvarvr, A,v ~A; Th* AT ~B © g’ impliessA =5and a; = &'
A; T\~u» V: AimpliesA; Th™V : B.
Therefore A; T h™ [VW]N ~ B © a/.

Cae N = w,w "v: [VIVIN = w
By theruleVvarw, A, t; ~A; T h AT ~S@dimpliesit;~5GA,v~"4orit;"-B@a;Gr, ad
u) = (JU".
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Since w * v, we have w~-B(z Aorw~B@weT.
By theruleVvarvr, A; T h™ w : B.
Therefore A; T h™ [VNV]N -B@uJ'.
Case N = \x: B'. AT’, x not a free variable of V: [VIVIN = Xx:B'. [VIV]N'
BytheruleDIvr, A,v - A;T h* AT ~B Q UJ'impliesA,v ~A;I\x: B’ @u; K; A" : B"B=B"D B",
anda =a'.
By weakening, A; T Ky/ V : AimpliesA; T,x : B'@UJ M/ V : A.
By induction hypothesis, A; I\x : B' © UJ h™ [VIV[N' : B".
By therule D\,, A; r K, Ax: B". [V>]iV’ : B' D B".
Therefore A; T h* [FIV]AT - B @ J.
Case AT = Ny Na: [VIVIN = \WAWANX [VIV]N,

By therule DEw, A,v~A; Th" N~B @JimpliesA,v~A; Tt Ny : B DB,Av~ATh" Ny :

anduJ=0J'.
By induction hypothesis, A; T h* \WAVNi : B’ D Sand A; T h” [V/i]]iV, : S'.
By therule DEw, A; T h™ [FNV]iVi [VIVIIV, : B
Therfore A; V b [VIVIN - J5 Q o).
Case AT = box AT [VAV]N = box [V>]Ar’
BytheruleDIvr, A,t>~ Ajrh™ AT ~B @ &’ impliesA, v ~ AAh~* AT B\B = OB\andu; = J
whereUJ* isafreshnode.
By induction hypothesis, A; T K * [FfjAT : B'.
By therule Dl,,, A; T h* box [VAMAT’ : DJB".
Therefore A; T h™ [VVIN ~B @ UJ'.
Case AT = box** AT [VN]N = box™* [VNVN'
By the rule DI'*, A,v~A; Th* AT ~B @UJ' implies A,v~A; T h™* AT B\ B=D"B’, and
ul = Uj.
By induction hypothesis, A; T "* [VIV]N' : B'.
By the rule DI"*, A; T h* box™* [VVIN': DAB"'.
Therefore A; T h™ [VIV]N -B@uJ'.
Case AT = letbox x = Ni in A?, x not afree variable of V:
[VWVIN = letbox x = [VNJVi in [VNVIN,
Iftherule DE” isused todeduce A,v~A; T h* AT ~B @ &/,
Aii~AThAT~S@u’ implies A, v~A; Th" Al : DBI and
AXx:Si,v~A; Th" A, ~B @&
By weakening, A; T ™/ V : AimpliesA,x :: Bi; T h\IV . A.
By induction hypothesis, A; T h* [VA]JVi : DBi and A, x :: B,; T h* [VAMJIV, ~B @ u;”.
By therule DE”, A; T \-, letbox x = [VV]iVi in [VIV]N, ~B @UJ'.
Therefore A; T h™ [VIV]N ~-B@uJ.
If therule DE™* isused todeduce A,v~A; Th* AT~B @a’,
AV~A; Th AT~B@UJ implies A, v~A; Th" AT, : DAMBI and
A,i;~A;T,x:Bi @a* h" AL ~BO &’
By weakening, A; Th™/ V ;. AimpliesA; I\x : Bi © a* W/ V : A.
By induction hypothesis, A; T h™ [VIV]Ni : DM* By and A; r,x : By © UJ* \-y [VIVIN, ~ B@UJ".
By therule DE’*, A; T h” letbox x = [VAV)Ni in [VIV]AT, ~B © &a".
Therefore A; T h™ [VMAT - B @ .
Case AT = dr AT [VA]N = dr [VNV]N'
By theruleOlvr, A,v ~ A; T h* A» ~B © g’ impliesA,t; ~A; T h* AT ~B’ © a*, B = OB’, and
UJ=UJ" wherea* isafreshnode.
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By induction hypothesis, A; T K, [VAMN' ~ B @ u*.
By therule O\,, A; T h,, dr [VMAT' : OB,
Thedae A; T h™ [VIVIN ~ BQ@Qu;'.
Caee N = dr™* AT:  [VAN]N = dr™* [VAV]iV’
By the rule OV,, AV~ATh"AT~B @ a’ implies A,v~A;Th" N ~ B @ w*,
B = O,*B’andu; = ul.
By induction hypothesis, A; T h* [VIV]AT ~ B” @u*.
By therule OI"*, A; T h* dr [VIV]AT”. O~B’.
TherdforeA; T h, [VIV]AT ~B @ v’
Case N = letcir w = iVi in AT, whv,wnot afreevariableof V. [VIV]AT = letcir w = [VAV]NI in [V/v] N
If therule OE” isused todeduce A,v ~A: Th* AT ~B @ a’,
AV~"MThhAT~B@a’ implies AV ~ A;T h™ Ni : OBI and
A,w~Bi,v~A; Th" AT,~B @tc".
By weakening, A; T h™/ V : AimpliesA,w~BW\T h*/ V : A.
By induction hypothesis, A; V h* [VNVjA® : OBi and A,w ~ B,; Th* [VN]JA®, ~B @ &".
By the rule OEvr, A; T h* letcir A = [VAVNI in [VMAT, ~B @ &
Therfore A; T h™ [VMAT ~B @ J.
Iftherule OE™ isused to deduce A,v ~A; Th* AT ~B @ &/,
- AV~ Fh N~-B@U implies A, v~A; Th N\ : O'Bi and
AV~ F,w~Bi @& h" A ~B@a;’.
By weakening, A; T M/ V : “impliesA; T,ti; ~B\ @a* hy// V : A
By induction hypothesis, A; T h [VNV]Ar, : OMBiand A; I\w; ~B, @ a* h* [VNMAT, ~B @ &a".
By therule OE™, A; T h” letcir » = [VNV]Ny in [VMAT, ~B @ J.
Therefore A; T h™ [VIVIN ~ B @ J. D

Proof of Propostion 3.5:

Proof. By smultaneous induction on the gructure of the derivation of A; ThM : Aand A;TI-M ~A
(Below wereuse metavarible M and type A)
X :Ae A or X:NAGT

(_Zase—ﬁ- Thx * A Var
x::AeAorx : AeT impliesx :: AeAorx: A@Qu>e [T]".
Then,

X::AGA or x:A@u)G[r]¥
ANES Foz: A

Cvary

. v~AeA
Case A_;ThVLA_VVBr :
v ~ "4 G A implies v-A€Aorv~-A@uje \Tf.
Then,
V~AGA_ or v-r4@we [l
A; [IT \-»vA

Vvarw

A;-FV:A
Case Wﬁal

By induction hypothesison A; e h V : A, wehaveA; s "/ V : A.
By weakening, A; ¢ h V : M impliesA; [r]* h V : A,




Then,
A JITI:yV: A
A [r"HyV~-AO0a"

Val,,

Cas A;T,2:A-M: B .y
AtHAaa:aAam: ADE )
By induction hypothesison A; T,x : Ah M : B, we have A; [F]", x :A®u\-,M:B.
Then, AT, 2:A@uwh, M: B

Arf K,AX:AM:ADB PV

A; T\-M:ApB A;T\—-N:A
Case A;T\-MN:B bE -
By induction hypothesison A; T\- M : A D B, wehave A; [T]"' h™ Af : AD B.
By induction hypothesison A; Fh A™ : A wehaveA; [F]" h" jV @ A.
Then,

A;r]" \-uM :ADB  A; [T]"hy NV : A SE
ANTI\-,MN:B W

Case I‘—'h boxM PBX DI

Bylnductlon hypothesison A; « |- M : A, wehaveA; « h*/ M : J4.
By weakening, A; e Ky M : AimpliesA; [T]" h,/ M : A.

Then,
A;’[Dr‘}V/V\FKt&oW pa B

A;rhM:Di AX::A;ThN:B
Case Arh)etboxa -M'ﬂlV:b
By induction hypothesison A; T\- M : OA, wehave A; [T]" hy, M : DA.
By induction hypothesison A, x :: A;T\- N : B, wehave A, x :: A; [T]" h" N : B.
AX:A; [T]" hy N : Bisequivaent to A, x :: A; [TF\-.u. N ~B @ w.
Then,

DE :

A;[r]" h M : DA Aa: A [T]" hy N—gQo
A; [T]Y h™ letboxx =M in N~B @u
A; [r]”’ K, letbhox x = MiniV~;B@a;isequivalent to A; \Tf \-,, letboxar = M in JV :
A M :DA A X :A;T\-N-B
Case A.THletboxz =MiniV~B vtox
By induction hypothesison A; T h M : OA, wehave A; [T]" \-, M : OA.

By induction hypothesison A, x :: A; Th N ~B, wehave A, x :: A; [r]l" AT ~S@u'.
Then,

oE .,

ATV R DM - CL1 A X AL FHNAT — Rn|> OE,,
A; [r]™ K, Ietboxx—MlnAT ~B@o;’

A;T1M~A
case A:rhcirM:0A °'
By induction hypotheison A; T \- M ~ A, wehave A; [r]"* h M ~ A @ ul/.
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Then,
A;T“F, M~AQW

A; [T by cir M : OA

Olw

A;THFM:0A A,v~ATHFN:B
A;THletcirv=MinN:B
By induction hypothesis on A;T'+ M : OA, we have A; [T']“ -, M : OA.
By induction hypothesis on A, v ~ A;'+ N : B, we have A,v ~ A; [[“ +, N : B.
A,v~ A;[Il“HF, N : Bisequivalentto A,v ~ A; [T+, N~ BQuw.
Then, .
A;T“H, M:0A Ajv~ANYF, N~BQuw
A;T“F, letcirv=MinN~BQu OFw

A;[I“ ky, letcirv = M in N ~ B @ w is equivalent to A; [[']“ -, letcirv = M in N : B.
A;THFM:0A Av~ATHN~B .

ATFletdro=MinN~B  COF
By induction hypothesis on A;T'F M : OA, we have A; [T')“ F, M : OA.
By induction hypothesis on A,v ~ A;T'+ N ~ B, wehave A,v ~ A; [+, N~ B QW'
Then,

Case

Case

A;TM“F,M:04 Av~ATMN“H,N~BQJ
ATk, letcirv=Min N ~BQdu

OEw

AT M : Aprim
A;THM ~ Aprim
By induction hypothesis on A;T'F M : Aprim, we have A; [ b, M @ Aprim,.
Then,

Case Prim~ :

AT Fy M 2 Aprim
ATy M~ Aprim Quw

7 Prim~w

C Proofs of the type safety of \qd"

Proposition C.1.
IFA 0T M:Aand A; AT, 2: AQW' b, N ~BQuW, then A; A;T +, [M/z]N ~ B QW'

Proof. By induction on the structure of the derivation of A; A;T,z: AQuw” F, N ~BQuw'. O
Proposition C.2.

IfA; A;T v M : Aforanynodew” and A; A,z :: A;TH, N ~BQuW, then A\; A;T H, [M/z]N ~ B QW'
Proof. By induction on the structure of the derivation of A; A,z :: A;T'H, N ~ BQ@uW'. O -
Proposition C.3.

IFA; ATV :Aand A;A;T,v~ AQuw”F, N~ BQuW, then \; AT+, [V/v]N ~ B QW s
Proof. By induction on the structure of the derivation of A; A;T,v ~ AQuw" +, N~ B QW' O
Proposition C.4.

IfFA; AT v V 2 Aforanynodew” and A; A,v ~ A;TH, N ~ B@W, thenA; A;T F, [V/v]N ~ B @ W'
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Proof. By induction on the structure of the derivation of A; A,v ~ A;T'+, N~ B @ W' O

Proofs of Propositions C.1 to C.4 are similar to those of Propositions 3.1 to 3.4. Cases for communica-
tion constructs are also straightforward, as substitutions on communication constructs are all structural:

M/2]) = 0
[M/z]eval N = eval [M/z]N
[M/z]|future N = future [M/z]N
[M/z]syncvary = syncvary
[M/z]syncwith N = syncwith [M/z]N
[M/z]nil = nil
M/z|Vy :: Vo = [M/z]V} :: [M/z]V,
[M/z]chanvar v = chanvar vy
[M/x]newchany = newchany
[M/z]readchan N = readchan [M/z]N

[M/z]writechan Ny No = writechan [M/z]N; [M/z]|N>

Lemma CS5. IfA;A; T, M ~AQw' and M — N, then A; A;TH, N~ AQ W,

Proof. By induction on the structure of the derivation of A; A;T' +,, M ~ A @ «/. (Below we reuse metavari-

ble M and type A.)
MATH,M : Aprim
Case
MATH, M~ Aprim, Quw

By induction hypothesis, A; A;T' F, N : Aprim.

By the rule Prim~w, A; A;T H, N ~ Aprim @ W'
Now we now assume that the rule Prim~y is not used to derive A; A;T'H, M ~ AQ /.
Case (A\z:A.N) M —3~ [M/z]N:

The only possible derivation is:

AMAT,2: AQwk,N:B |
A;A;I‘Fw/\z:A.N:ADBDW ANATH, M:A
AATH,(A:ANYM: B

- Prim~w (w # o') :

DEw

By Proposition C.1, A; A;T' -, [M/z|N : B.
Case letbox £ = box M in N — 30 [M/z]N:
The only possible derivation is:

fresho” A;ATHM:A Ol
A;A;TH,box M :0OA W AAz:ATH, N~BQ@uW
A; AT H, letboxz =box Min N ~BQduW

OEw

By Proposition C.2, A; A;T' F, [M/z]N ~ B @Q /.
Case letbox = box,» M in N — gy [M/z]N:
The only possible derivation is:

ANATHAM:A ar
A;A;TH box,r M:OprA — W AAT,z:AQW'F, N~BQdW
A; A;T H,, letbox £ = box,» Min N ~ B @ «'

By Proposition C.1, A; A; T+, [M/z]N ~ B@ /.
Case letcir v = cir Vin N—gq[V/v]N:
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The only possible derivation is:

MATHAV:A v
freshus" A AT\ V-A@J O‘:'fM
A A;TH,cirV :OA v

AAv ~ AAT\.uN ~ B Qu/ OF
A:A:TH, letcirv = A\rVilN  ~ B@U. w

By PropostionC.4, A; A; Th™ [VVIN~B @ &'
Case letcir v = drJ/ F in N-+p,i [VIV]N:
The only possible derivation is:

A ~ "
MATH,V~AQw Oty

A; A;T h™ cr™ F: QYA A A T,v-AdUu;\,.N—-B@u; OE.’
A;A T lecirv=cir* FiniV~£@u/ W

FromA;A; ThV~A@u/\wehave A; A; VY V: A wheheru> = Jtora ~ a?.
By Proposition C.3, A; A; T * [VAV]N ~B@vu;'.

Lemma C.6.

Consider twoterms Mo and NQ suchthat A; A; T MQ ~AQ @LJO impliesA; A; Th No ~A) @ aco
/<?rany Aoandao.

IFA;A; ThyM-A @u/, thenfor any K suchthat M = K[M], itholdsA; A; ThK[N,] ~A@ J.
Proof. If K = O, then M = M, and K[AT] = AT, Hence A; A; ThAK[N] ~A @&’ holdsby the
assumption on Mo and iV,

Suppose n A [], which meansthat M~ x> M v, and M ~ V.

Now we apply induction on the structure of A; A; Th M ~ A @ u/. (Bdow we reuse metavarible M
andtype A.) o~
AjAJ T MA prim . ]
W A M - Aprin @ Prim~w (w # ') , M = x[Mp]:
By induction hypothesis, A; A; TK, K[Ng] : Aprim-
By therule Prim~vr, A; A; T h K[iV] ~ >lprim @ o',

CaSe

N\
Cae [-_\IAIrQ,IVI/QIAI\g DEUn -M/\=K[MoA=K['Mo||V:
By induction hypothesison A; A; TK, M : >1 D S, wehave A; A; T ™ «[iVq] : AD B.
By therule DEw, A; A; T \-y, K'[N;] N: B, and K'[N;] N = K[Ny].
AATH, M:OA4 AAX 2 AT- N ~-B@u' O
A; &;T H, letboxz = MiniV~,B@u;’ we
letbox a = M in W =K[M,] = lethox X =K'[M,] in N:
By induction hypothesison A; A; T H, M : DA, wehave A; A; T i «[iVQ] : DA.

By theruleDE®, A; A; T\-y letbox X = K'[Ng] inV — B @ LS, andletbox X = K'[Ng] inV = K[IV].
Ca= OE'\y is dmilar to Case DEX.

A AT\- .M : OA A-Av~ AT\-uN ~ BQuU/ OE,,
A A rhyletcirv = MiniVvV—-i?@a;'
Ifletcirt; = M in W = K[M] = letcir v = K'[Mg] in and M = K'[My),
By induction hypothesison A; A; T K, M : OA,wehaveA; A; T\-y K[NQ\ : OA.
By theruleOE", A; A; T HM letcir v = K'[Ng] inV — B @ u/, andletcir v = K[V iV = K[V].
Ifletcirv=MinJ =K[MQ] = letcirv = cirK'[MQ] in and M = cirK'[av/y],

Case
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wu AW AAFhK[Mo] A@AOIW.

We have —
A; A; Fhtair /d[Afo] . O @ .
By induction hypothesis on A; A; F h” K![MQ] ~A@J, wehave A; A F \-, K[Nj] ~ A
Then,
Feh T A ATFRKNg ~Aoa ©
A; A;F I-, cr K[NQ] : OA WA AN ~ AT -, AT ~ g@u OE
and letcir v = cir KNG} ;ifr IV, 3eiNg]= Cir K[No) in AT - B @ J w

If letcirv = M in N = K[MQ] = letcir v = cir/ K [MO] in Nand M = cirY/ K'[MQ],
Thereisno rule for deriving A; A; F h M : OA.
Case OFYy is similar to Case OEyw.
AAT 1A ,
Case _AiAir‘H’-‘_va"u_n_iI Teval eval M _ A = eval H[Mo]:
By induction hypothesison A; A; T h M : DA, wehave A; A; F h™ K[NO] : DA
By therule Teval, A; A; F h™ eva KNy : unit, and eva K[Ng = K[Ng.
Case Teva® is similar to Case Teval.
AANTE M: EI
Case 2 7TA— N b Tfuture , future M = K[MO] = futureK[MQ\:
A: A F h" future M ~ Awnc@a, !
By induction hypothesison A; A; Fh™ M : DOA, we have A; A; F h™ KN : DOA.
By therule Tfuture, A; A; F h” future K'[N;] ~ A sync @ u*g and future K'[NO] = K[N].
Cases TfutuTIﬁLpIurgAr Tﬁxytgyﬁ@ are similar to Case Tfuture.
Case 77— O T-S—5 Tswith , syncvv|th M = K[MQ] syncwith K\MQ}:
A A Fh syncwith M ~A @ v v LW
By induction hypothesison A; A; F h™ M : A sync, wehave A; A; F h™ KNy : "™ sync.
By the rule Tswith, A; A; F h™ syncwith K'[AT] ~ A @ a*, and syncwith K'[N] = /[iV].
Case Tswithis-simitarte-Case-Fswith——
Case A A:F h" newchan® ~Achan @ a* """ € :
Thereispp K sph thgineychan™ = KIMQ] and K 77 \\.
Case a.a.r n)readdian M| "I gr reade oreadehanM = +|Mes] = readchan KMg:
By induction hypothesison A; A; F h* M : A chan, wehave A; A; F h™ K'[AT : A chan.
By therule Treadc, A; A; F h” readchan KTiVo] ~ A @ a*, and readchan KiV{ = K]iV(].
Case LA FIMM : Achan e a’ AJAFhhiv~A@u’
A; A; F ™ writechan M N - » @ a* Twritec :
If writechan M N = K[M, = writechan n'[Mg] NandM = K’[M],
By induction hypothesison A; A; F h™ M : A chan, we have A; A; F \-y K[Ng] : Achan
By the rule Twritec, A; A; F h” writechan K[N N ~ A @ g*, and writechan K'[N;] N = /diVh].
If writechan M N = K[M¢] = writechan M K/[M,] and iV = K'[M,] where M = chanvar 7,
By induction hypothesison A; A; Fh* W ~ A @ u;’, we have A; A; F h" KN ~ A@U;".
By the rule Twritec, A; A; F h” writechan M KI[N,] ~ A @ u;*, and writechan M KTive] = K[iV{].
D

Lemma C.7.
fC,Ma7:A7~A@uandA,7~M@a; e« FP"" hp7) AT~A @ U
thenC,Na7: A 7~>1@ a.

Proof CMa7:A,7~"4@UJimpliesthat foreacchM’ aty G C,
7-A"@a GA,7-A@UJandA, 7~ @ u; - F*"* hyyy M~ A" 04, or
y ~A @x Ay~ AQu@nd A ;  ; FPP" hAy) M/~ A @ g for afiesh node g”.
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By therule Tcfgand A, 7 ~A @ u;  T*™ hp7) AT ~A @&, wehave C, IV at 7 A, 7~ @u.
D

Lemma C.8.
fCMat7: A 7~"@caw/ A 7~,4@-¢; .rP"™hpz N ~A@ wfor afresh node u>,
thenC,Nat7:: A, 7~-A@*.

Pro CCMat7: A 7~ @ eimpliesthat foreachM’ a V G C,
7~ 4 @< eA7T~-A@candA,7~A @« ™ I"ply) M ~A"@J, or
7~N"@+eA7~>1@andA,7~A @« + 1™ hy7,) M ~A” @ a” for afresh node u;”.
By therule Tcfgand A, 7 ~A @ «; % r°* ™ hp(7) AT ~"1 @&, wehave CCATat 7 = A, 7~ @-.
D

Proof of Lemma 4.4:.

Proc/ By induction on the structure of n.
CaseK = \\:
B=Aanda’ =al.
If K =77 [], it sufficesto consider those casesin which therule Prinv®vr isnot usedtodeduce A; A F h™ K[M] ~ A@ U;';
if the rule Prim~vr is used, we repeat the same case analysis on the premise of the rule.
Case K = no Mo:
By the rule DEw and induction hypothesis on KQ.
CaseK = lethox x = KQ in Mo:
By therule » E* or DE, and induction hypothesis on KO-
CaseK = letciri; = AD in Mo:
By therule OE” or OE’” and induction hypothesis on KO-
Case K = letcir v = cir KO in Mo:
By the rules OEvr and Olvr and induction hypothesis on KQ.
CaseK =letcirv =cir® KO in Mo:
By the rules OEl,, and Ol and induction hypothesis on «o.
Caseeva K8\
By therule Tevd or Teval® and induction hypothesis on KO.
Case future /cp:
By the rule Tfuture, Tfuture®, Tfuture’, or Tfuture®’, and induction hypothesis on K§.
Case syncwith K8\
By the rule Tswith or Tswith” and induction hypothesis on «o.
Case readchan «o:
By the rule Treadc and induction hypothesis on «o.
CasewritechanKQMQ:
By the rule Twritec and induction hypothesis on KO.
Case writechan (chanvar 7) /op:
By the rule Twritec and induction hypothesis on «o- E

Proposition C.9 (Weakening).
Suppose

C:X

A..rPP"h,M: A

u; = V{"g where 7 is notfound in A.
ThenC,Mat7::A,7~-A@a.
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Proof.
fM atV GCandV ~A'© JGA,
By the rule Tcfg, A; « ™ \-yyy M' ~ A@ J
By weakeningon A, wehave A, 7 ~>1 @ U\ *; r"*™ Hj>(/) M' ~ A @ u;’
fM'ati GCandV ~Al ©« G A,
By therule Tcfg, A; +; P*"" h,y) M7 ~ A" Q u/ for afresh node u/.
By weakening on A, we have A, 7 ~ M @ u;; « rPo™ Ayy) M ~ A @ o
For M at 7,
By weakening A; &, T**™h "M : A, wehave A, 7~A @ 5. sTP*™F, M : A
Thatis, A, 7~A @a; " h,;y M ~A@u.
ThereforeC,M at 7 :: A, 7 ~ A @ & by therule Tcfg.

LemmaClIO.
g
CMa7:A7T~A,@a,
,")KNAY@W,"K A, @*, ,FMFP(.Y)N A’Y@a,,
] AT7T~Ay @a i ~ Ay/ @*: PEM iy V' ~ Ay/ @ (**/< an arbitrary node u*o
then
CNat7,ATaty = A, 7~ A, @u;7 ~Ay/ @~.

Pro/ FromC,M a7 = A, 7 ~Ay @ 5
foreach Mo at 70 G C,
70~A0 @0 GAandA,7~Ay @u; « TP™ ~ Ao @0j, Or
D~AQ @ GAadA,7~A; @a; «TP*™ I-p(7,) Mo ~ Ag @ "0 for an arbitrary node wp.
By weskeningon A, 7 ~ Ay @ it>,
A, 7~A; @U,i ~Ay @« * """ Hp(rg Mo ~ A, @ O, OF
A7T~A; @a, T ~Ayl @-*; * "™ Hp(s) Mo ~ Ao @ u>o for an arbitrary node 0.
By therule Tcfg, wehave C,Nat 7, N at T’ = A, 7~A; @a,7 ~ Ay @-.

Lemma C.II.
/1
CMat7: A 7~Ay @&,
A7T~Ay @ T '-Ay @Uu", rpe””\-vr.)vaAy@w,
AT7~Ay @Quw,i ~Ay/ ©a" P M h,y)iV ~Ay @a,
then
C,Nat7,ATaty = A,7~A;©a,7 ~Ayl ©u.

Lemma C.12.
If
CMat7: A 7" Ay © e,
A, 7~Ay ©«, 7" ~Ayl/ ©«; % P"™ hp(;) AT ~A; © u* /or ali arbitrary node us+,
A, 7~Ay ©« 7 ~Ayl ©*; « rP*™ hp(y) N' ~ Ay/ © a* /or ali arbitrary node a*,
then
C,ATat7,AT atyY = A, 7~ Ay, © ¢, 7 ~Ay © .

Lemma C.13.
¥
CMat7:A7~Ay @-,
A, 7~Ay ©s, i ~Ayl © U’ o T**"m hp(7y iV ~ Ay © u* /or an arbitrary node a*,
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AT~Ay @+ i~" @al; 1°™ hyy AT ~ Ayl @/,

then
C,Nat7,ATatY : A, 7~Ay @*, 7' ~ Ay @ a.

Proof Similar to the proof of Lemma C.I0.

Proof of Theorem 4.1:

Proof By case analysis of C => C". (Below we reuse all metavariables.)
n M——+NL
Case C K[M] at 7=+ C,K[JV] at 7
IfC,K[M] at7:: A 7-Ay @wythenA,7-Ay @a; * P hy7) «[M] ~Ay @ a.
SinceM —e« Ng Lemmas C.5 and C.6 imply A, 7 ~ "4; @ u>; »; r**'™ he(7) «{i\T] ~ Ay @ u;.
By Lemma C.7, wehave C,K[JV] at 7 :: A, 7~ Ay @ V.
IfC,AC[M] at 7 :: A, 7-Ay @, thenA,7~Ay @=; »r’*™h,7) K[M] ~Ay @ a; for afreshnode

6 :

SinceM —> AT, Lemmas C.5and C.6 imply A, 7 ~"4; @ «; *; r°*"™ hp(7) qIV] ~Ay @ w.
By LemmaC.8, wehaveC, «[iV] at 7 :: A, 7 ~Ay @ .
nett; V
Case - .
C, «[eval box M] at 7 =+ C,«[()] at 7, M at </ Reval :
IfC,"[eval box M] at 7 :: A, 7 ~A; @ a,thenA, 7~ A; @ a; «; TA'™ hp(7) K[eval box M] ~ A; @ 4.
By Lemma 4.4, eval box M typechecks:

freshw A, 7 ~ A, @a;;-!"™ hr M @ A
AT7T~Ay @w; «r"*"" hp7y box M : OA
A 7T~A; @w; +; TA"" hy7) eval box M : unit

Oy

Teval

SinceA,7~A; @a; +; T"™ hy7y () @ unit,
A T~A; @a; o TP™" hp(s) «[()] ~ Ay @ a; by Lemma C.6.
By Lemma C.7,
C«(lat7:A7~A @ a.
From
Ck«(Qlat7::A7~A; @a,
A, 7~Ay @a; « "™ hA M : A wherewe let a/ = V(*)o
wehaveC,K[()]at 7, M atV :: A,7~Ay @a, T’ ~ A @ u> by Proposition C.9.
The case for C, «[eval box M] at 7 :: A, 7 ~ A; @ «is similar, except that we use Lemma C.8 instead

of Lemma C.7.

N newY @J
Case X — T —7 y Reval® :

C, /geval box®/ M] at 7 => C,K[()J at 7,M at y

The proof is similar to Case Reval, except that we use u/ without creating a fresh node.

Case New'y Rfuture :
1t CVGIHIPESLBR AN a7 7 7R, /AR, Yhefl A7 7SRV @ M INphaBt Y, K [future box M] ~ A; @ a.
By Lemma 4.4, future box M typechecks:
freshu' A,;-AyOnrIPemE , M :0A
A, 7~Ay @a; e+ rP*"™ hy7) box M : DO.4
A, 7T~A; @ e *; T**™ \~v<a) future box M ~ A sync @ u;

Oly-
7 Tfuture

or
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freshd A, 7~Ay @a; «r°" hr M : OMA
A 7-Ay @LJY; % T " hyzy boxM : DCVA
A,7-Ay Q a; I'P*™ hp (7 future box M~ A synq,,, @ a*

H

Tfuture

In thefirst case,
A, 7~A; @a; - TP*™ bp(y Adfuture box M] ~ A; @ &,
A, 7~A; @ e rPM —p(;) future box M ~ A sync @ a* for an arbitrary node u;*,
A7~A; @a; TP A/ M : OA for afresh node J,
A 7~Ay @ a; TP h,/ letcir v=M inv~A @a* for an arbitrary node a;*,
and we let J = P(¥).
By weakeningon A, 7~ A; @ &,
AT~A;@a, 7 ~A @-«; TP Fp(,y K[future box M] ~ A; @ a,
A7r§ AL @&, 7 ~A @-»;-;TPe™ Fp(y) future box M ~ A sync @ & for an arbitrary node v*g
A7T~AL @a,7 ~A@e; ;TP letcir t; = M inv ~ A @ u* for an arbitrary node u;*.
By the rules Tsvar and Valvr»
AT~A @a, 7 ~A@-.; TP™bp(,) syncvar y ~ A sync @ a* for an arbitrary node a*,
By Lemma C.6,
AT~A; @a,7 ~A @« TP ™ Fpryy synovar V] ~A; @ &,
By applying Lemma CIO to
C,K[future box M] at 7 :: A, 7 ~ A; @ 5
A7~ @a, 7 ~A @-«; = rPem Fp(y) Alsyncvar V] ~ Ay @ g,
AT~ @a, 7 ~A @ 5TP™ Fy letcir v = M in x: ~ A @ a* for an arbitrary node a*,
we have C, /syncvar 7] at 7, letcir v=Minvat 7' :: A, 7 ~ AN @a, T ~M@-.
In the second case, we prove C, Adsyncvar T] at 7, letcir v=MinvatV :: A,7~Ay @a, 7 ~A @w";

the proof is similar to thefirst case, except that we use LemmaC. 11.

The casefor C, Mfuture box M] at 7 :: A, 7 ~A; @ * is similar, except that we use Lemmas C.12 and

C.13.
Case —— newV @al Rfuture® :

C, K[future box*/ M] at 7 => C, M[syncvar YJ at 7, letcir v =M inv at v/
The proof is similar to Case Rfuture, except that we use u* without creating a fresh node.

Case C, K[syncwlth syncvar V] at 7,V at ;/ => C, K[V] at 7, V at vV RsWith :

If C, K[syncwith syncvar 7] at 7, F at 7":: A, 7 ~Ay @u;, T' ~ Ay/ @ u;’, then
AT~A; @7 ~Ayl @\ 1P ™ hp(y) /c[syncwith syncvar Y] ~ Ay @ w,
A7T~2@a, 7 ~Ayl @ic’ « T ™ hyz/) V ~ Ay @ &

By Lemma 4.4 and therules Tsvar’ and Tswith’,

A, T~ Ay @a? 7 ~ Ayl @a';+; r°*™ h”(7) syncwith syncvar V ~ Ay @ a”.

If P(v) = a’ (whether Viri) = P(* }or not),

A 7T~A;Qa,; ~Ay @&’ + T ™ h,7y V - Ayl @ &’ by the rule Valyy.

KEP() #uw
A7~A; @a,7 ~Ay/ @a’,+ P ™, V : Ay/ by therule Val*, and
A7T~A;, @W, 7 ~Ayl @u;" o rPem Fpyy V ~ Ayl @ ~' by the ruleVahy.

By Lemma C.6,

AT~-A;@a, T ~Ay @al; 5 T " Fpiyy &[V] ~ Ay @4,
By Lemma C.7,
C.klviat7,Vaty tA7~A4,@ 5 ¥ ~Ay @a'
The casefor C, K [syncwith syncvar y] at 7,V at T' ;2 A, 7 ~ A, @u>V ~Ayl @eissmilar.
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The casesfor
C, [dsyncwith syncvar Y\ at 7,V aty :: A, 7~Ay @,y ~ Ay @ a? and
C, Msyncwith syncvar Y\ at 7,V aty :: A,7~Ay @*,y ~Ayl @ *
are also amilar, except that we use Lemma C.8 ingead of Lemma C.7.
new 7'
Case C, /dnewchan™] at 7 =>¢ C, «[chanvar 7] at 7, nil at y R
If C,Anewchan®] at 7 :: A, 7 ~Ay @ &, then
A, 7~A; @a; + PM™ I"p(y) “[newchan®] ~ Ay @ UJ.
By weakeningon A, 7 ~ Ay @ &,
A7T~Ay @a,7 ~Avlig @*; & T**X|"p(;) *[newchan*] ~Ay @ u).
By Lemma 4.4, newchan” typechecks:

newc :

A 7~Ay @a,y~Avlig @« ™" " 1~-p(y) newchan” ~ A chan @ a* Thewe

By therules Tchanv and Val*,

A7~Ay @a, 7 ~Avlis @« * r°®™ hp(7) chanvar y ~ A chan @ a*
By Lemma C.6,

A 7T~Ay @a, 7 ~Avlig @« » r°™ h, 7y K[chanvar y] ~ Ay @ u.
By therule Tvnil and Val®,

A7~A;, @a,y~Avlig @« « TP™ Ap(4/) nil ~*4vlig @ CF for an arbitrary node a*.
By applying Lemma CI O to

C,K[newchan] at 7 :: A, 7 ~ " @ Ug

A 7T~Ay @a,y ~Avlist @e«; ; r P" hy7) Mchanver y] - Ay @ a;,

A7~A; @a,7 ~Mvlist @*; « rA™ A~y(Y) ™ ~ A vlis @ a* for an arbitrary node a*,
we have

C,Mchanvar y] at 7,nilaty :: A, 7~A; @a,y ~"4vlis @ e.
The casefor C, Ktnewchan®] at 7 :: A, 7 ~ A; @ isdmilar, except that we use Lemma C.12.

Case c, M[readchan chanvar y] at 7,V, :: yraty =>C,K ~] at 7,14 at 7* R"eadc .
If C, Mreadchan chanvar 7] at 7, V& :: Vtaty i A, 7~A; @a,7 ~Ay/ @ *, then
A 7~Ay @a,7 ~Ayl @« *; T2 I"">() readchan chanvar y] ~ Ay @u),
A 7~A; @Qu;, 7'~ Ayl @*;;rP" ™ hy/) VA 2 VE ~ Ayl @ a* for an arbitrary node a*.
By therules Valvr and Tvcon,
Ayl = A vlist,
A7T~A;, @u>7 ~Ayl @ sTA™ hy7) VA ~ A @ U*,
A7T-Ay @u, 7 -Ayl @« - TP\~ V; - Ay/ @ &*.
By Lemma 4.4 and therules Tchanv and Treadc,
A7~A;, @a,7 ~Ayl @-=; « r™* f~p(;) readchan chanvar y ~ "4 @ a*,
By Lemma C.6,
Ay ~A QWY ~ Ay @ ;TP ™ bpyy k[Va] ~ Ay @ w.
By Lemma C.7,
C«VyatiM :: Fay: A 7~A;@ay”™ Ay @ .
By Lemma C.8,
C,/[dvh] at 7,y;ati :: A,7~"4; @a,y ~Ay @ -.
The case for C, M[readchan chanvar Y\ at 7, VA :: Vtati : A, 7~"4; @+, y ~Ay @~ is dmilar,
except that we use Lemma C.8 ingead of Lemma C.7.
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The two caseswith Y ~ Ay @ u/ for some node u/ are impossible because of the rule Tchanv.

Case © «[writechan (chanvar Y) V] at 7, V\ :; eee :: Vi nilatY =>
C/V]a7,Vi:ieee::Vy:VinlayY
If C, «;[writechan (chanvary) V] at 7, Viz--- VA inilaty :: A, 7~Ay @ a,y ~Ay @ e, then
AT~A, Qg 7' ~ Ay @.; «TP*™ pey Jwritechan (chanvar Y) V] ~ Ay @ a;,
AT~Ay @&, 7 ~Ay @-; TP bpyn Vi il ese il Vil ~Ay @ a* for an arbitrary node

By therulesVavr and Tvcon,
Ayl =Mvlig,
AT~"; @a, 7 ~Ayl @« TP rpy Vi ~ A @uw?,

AT~A; QUM ~AY @« TP ™ bpin Vy ~ A@ g,
By Lemma 4.4 and therules Tchanv, Twritec, and Valy,,
A 7~Ay @a;,7 ~ Ayl @ «; »; TN'™ hp (7 writechan (chanvar y) V ~ A @ L,
AT~A, @a,7 ~Ayl @+ T hy+) V~A@a*,
AT~A; @a, 7 - MI@;os TA™ hpr/) V ~ A @a*.
By Lemma C.6,
A7~A; @0,y ~Ayl @-; ;TPom th} K[V] ~ A’Y @ a.
By LemmaC.7,
C,[V]at7,vL ieeeFrounilaty A 7~A, Quw, 7 ~Ay @ .
By therules Valvr, Tvcon, Tvnil,

A7 - Ay @o;,yy~ AN @@; 3 TP\ \ Vi a2 Fpi Voonil ~ Ay @ v*.
By LeanmaC.8, _
C,q{Flat7,Viz---2VaiVinlaty A 7~A, @a,y ~Ayl @*.
Thecasefor C, Awritechan (chanvar y) V] at 7,Vyi--- 2 VA sV onlatY D AA7~A; @,y ~Ay @

is Smilar, except that we use Lemma C.8 instead of Lemma C.7.
Thetwo caseswith Y ~ Ay/ @ &/ for some node & are impossible because of the rule Tchanv.
< ~A@u)ETP*" V-pe™ V Pfr)=U)
r_TJ' I

f ——f—— Rvalvar :
C,/dv] at 7=~ C,K[vJ at 7
IfC,K[V]at7:: A 7~Ay @ J, then
A, 7-Ay @a/; +; T ™ hy7) K[V] ~A; @V
Sincev ~A @Qu e TA'™ and A (7) = a,
A 7-Ay @a'; & T*>" \-y) v A
By the assumption on V and weakening,
A7-Ay @a/; ;TP"" hr V : A
o B
Sr}kc,e7 _(Qy @LDP:]\ P s K[V] ~ A, @u; by LenmaC.6.
By LemmaC.7,

CK[V 70 A 7 ~A A ,
The’c;s;f;lrtc K[V],at 7. 7A@7~’\4"' @ « issmilar, except that we useLemmaC.8 instead of LemmaC.7.

Case

Proof of Lemma 4.3:

Proof. By induction onthegructurecf A; «; I'**™ -+ M ~ A @ u/. (Below wereuseall metavariables)
Case Cvarwy: :
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impossible.
Case Vvary:
M=v,w=d,andv~ A Qu €TP™,
Cases Dly, Oly, Oy, Olyr, Ok, T(), Tsvar, Tsvar’, Tvnil, Tvcon, Tchanv:
MzXﬁ$MF1fA
A;,;i“p,erm o ‘;)N AQ o Valy (w # o) :
IfV =v,thenv ~ A QW' € T'P*™ by the rule Vvary .
AP, M:ADB A;TP*™ N:A
c A, TP AT N:B
EM=V #o,
M = Xz:A. M’ by Lemma 4.2.
MN = (Dl{(Az:A.M’) N]and (A\z:A. M') N — [N/z|M’.
fM=wv,
v~ AD BQ@uw € I'P*™ by the rule Vvary .
MN=(]N)vJandv~AD BQuw e IP™
IfM £V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ @Qw € TPe™,
M' — N',or
M’ is eval box N, eval box,» N’, future box N’, future box,» N’, syncwith syncvar 7, newchang/,
readchan chanvar v, or writechan (chanvar ) V'.
Then we let M N = (k N)[M’].
Ajreemi M :0OA A,z A;TP*™H, N~BQuW
A;;TPe™ |, letboxz =M in N ~ B Q@ W
M=V #uv,
M = box M’ by Lemma 4.2.
letbox z = M in N = ([])[letbox z = box M’ in N] and letbox z = box M’ in N — [M’/z]N.
fM=wv,
v~ [OA @Qw € I'P*™ by the rule Vvary, .
letbox z = M in N = (letbox z = [ in N)[v] and v ~ A @ w € T'Pe™,
IfM#£V,
M = k[M’] by induction hypothesis where
M =vandv~ A’ Quw € I'Pe™,
M’ — N’ or
M is eval box N’, eval box,» N’, future box N’, future box,» N’, syncwith syncvar -y, newchanp/,
readchan chanvar v, or writechan (chanvar ) V”.
Then we let letbox £ = M in N = (letbox z = x in N)[M’].
Case JEy;, is similar to Case OEy.
A;TPem i M:0A Aj-,v~A;TP™E, N~ BQdJ
Case A TP letcrv=MinN ~BQu
M=V £,
M = cir M’ by Lemma 4.2 and

Case

SEw

Cas

DEW :

Case

Ewi

freshw* A TPE™ o MY~ A @ w*
A;;TPe™ | cir M’ : OA

Olw

DEM =V £,
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letcir v =M in N = (Q)[letcir v = ar V' in N] and letcir v =dr Vin N — [V'/V]N.
2) M" = v" isimpossible.

M’ = K[M"] by induction hypothesis where
M" =v' and V' ~A'@QU>E T** ™
M" —> N\ or
M" is eval box N\ eval box™" N\ future box N\ future box*// TV, syncwith syncvar 7, newchan”/,
readchan chanvar 7, or writechan (chanvar 7) V".
Then welet letcir v=M if N = (letcir t> = cir K in AT)[M7].
IfM =il
vrOi@a; G TPY™ by therule Vvar”.
letcirv =M jn N = (letcirt; = Q in JV)[t/] and v ~ Oi4 @ a; G TP*'™,
KM#V,
M = K[M*] by induction hypothesiswhere
M =v andVv' - Al @u> € T*™,
M' —> N', or
M'is eval box N\ eval box// AT, future box iV’, future box*// A™, syncwith syncvar 7, newchan”,
readchan chanvar 7, or writechan (chanvar 7) V.
Then we let letcir v=M \n N = (letcir t> = AC in N)[M'].
Case OE'” is similar to Case OEw, except that Subcases 1) and 2) are now combined as follows:
KM = W
letcir v =M in N = (Q)[letcir v = dr™* V in iV] and letcir v = dr** V' in JV —e [V'V]N.
;s - prim
A; TP b, M~ Aprim Q w
H M =V 7" v by induction hypothesis, we are done.
M =vandv~Apri, @u G r°*™ cannot happen by the assumption on I'P*™.
If M = Ac[MT by induction hypothesis where
M =vandv~A' @wG rPe™
M’ —e iV’ or
M! is eval box N\ eval box/ A", future box N\ future box*// AT’, syncwith syncvar 7, newchan”/,
readchan chanvar 7, or writechan (chanvar 7) W\
then we are done.

Case j Primeyy (w7 ) :

CasC A; e TP™ H, eval M : unit "¢V "
M=V #uv,
M = box M' by Lemma 4.2.
evd M = (Q)[eval box M'].
If Af = «,
t; ~DA @UJ € TP*" by theruleVvar”.
evad M = (eval D)[v] andv ~D"4 @ w 6 I'Pe™,
fM#YV,
M = K[M'] by induction hypothesiswhere
M'=uandv~A' @u>€rPI™m,
M"'—>» AT, or
M' is eval box N', eval box"," AT, future box AT, future box*w N', syncwith syncvar 7, newchan”s
readchan chanvar 7, or writechan (chanvar 7) V.
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Then we let eval M = (eval k)[M].
Case Teval@Q is similar to Case Teval.
s Fo M :00O

Case Tfuture :

A; - TPe™ |, future M ~ A sync @ w*
M=V #v,
M = box M’ by Lemma 4.2.
future M = ([])[future box M’].
fM =,
v~ 0OOA @Qw € I'P*™ by the rule Vvary.
future M = (future [])[v] and v ~ OOA Q w € T'Pe™,
fM#£V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ @w € TP,
M' — N',or )
M’ is eval box N’, eval box,,» N’, future box N’, future box,» N’, syncwith syncvar v, newchanp;,
readchan chanvar +, or writechan (chanvar ) V.
Then we let future M = (future x)[M’].
Cases Tfuture@, Tfuture’, and Tfuture@’ are similar to Case Tfuture.
A;;TPe™ |, M : Async .
Case A; - TPe™ |, syncwith M ~ A @ w* Tswith :
IfM =V #wv,
M = syncvar 7 by Lemma 4.2.
syncwith M = ([])[syncwith syncvar v].
fM =,
v ~ A sync @ w € I'P*™ by the rule Vvaryy.
syncwith M = (syncwith [])[v] and v ~ A sync @ w € TPe™,
M £V,
M = k[M’] by induction hypothesis where
M =vandv~ A" Quw € TP*™,
M’ — N',or
M’ is eval box N, eval box,» N’, future box N’, future box,» N’, syncwith syncvar +, newchanp,
readchan chanvar +, or writechan (chanvar v) V.
Then we let syncwith M = (syncwith x)[M].
Case Tswith’ is similar to Case Tswith.
Case A;.;TP*™ |-, newchany ~ A chan @ w
newchang = ([])[newchan].
A;;TPe™ |, M : A chan
Case
A; - TPe™ | readchan M ~ A Q w
KM=V #uv,
M = chanvar v by Lemma 4.2.
readchan M = ([])[readchan chanvar 7).
IfM =v,
v ~ A chan @ w € T'P*™ by the rule Vvary .
readchan M = (chanvar [])[v] and v ~ A chan @Q w € T'P*™,
M #£V,
M = k[M’] by induction hypothesis where
M =vandv~ A" Qw € TPe™,
M' — N/, or

+ Thnewc .

— Treadc :
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s

M’ is eval box N\ eval box" N\ future box N\ future box”// AT’, syncwith syncvar 7, newchan”s
readchan chanvar 7, or writechan (chanvar 7) V.
Then we let readchan M = (readchan /A[M].
Ay,irPe€rmp®v."chan  freshd A; P h, N~A@ "
case A; o F*"" h~ writechan M AT ~ A @ :*
IfM =
M = chanvar 7 by Lemma 4.2.
DIEN=V'#£7,
writechan M N = ([]) [writechan (chanvar 7) V].
2) If N = v' is impossible.
HEN £V,
N = «[N'] by induction hypothesis where
N'=VandV -A @a G rP*™,
JV'— «IV7,or
N" is eval box N\ eval box*/ JV", future box N\ future box,» N", syncwith syncvar V,
newchan”/, readchan chanvar Y, or writechan (chanvar y) V".
Then we let writechan M N = (writechan (chanvar 7) K)[N].
IfM=uw,
v~Achan @ u G rP*™ by the rule Vvary.
writechan M N = (writechan \\ N)[v] and v ~ A chan @ w GrP®'™,
HEM#AV,
M = K[M ‘] by induction hypothesiswhere
M' = vandv~A'@u;e rP¥™
M —>iVv’ or
M’ is eval box AM, eval box" AT, future box TV, future box*// iV, syncwith syncvar 7, newchan”',
readchan chanvar 7, or writechan (chanvar 7) V.
Then we let writechan M N = (writechan K N)[M']. .

Twntec :

Proof of Theorem 4.5:

Proof.
Suppose C = Co, M at 7. By therule Tcfg, we have A; ; TM'™ A M - A @ &’ for ~(7) = a; and a
certain node a/. By Lemma 4.3, we consider the following cases:

M=V #uv

M = v (where v ~ A@u;" e rPe™)

M = k[V], v~ B @u> e r**'™ and

V-B@(G{Gr™™ VopemV Ply)=w
Co,K[V]at 7=>Co,K[F] at 7

Rvalvar

]
<
I

K[N] where AT — N\ and

N — N
Co,K[N]Jat 7=>Co,«[iV]at 7

Rcfg
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M = «eval box N] and

new 7' Reval
Co,tf[eval box N] at 7 =» C,, *[()] at 7, AT at v evel
M = *devd box*" N] and
new 7 @u/'

Co. Ideval box™] AT] at 7 =» Co{()] at 7, AT atV "o"a®.

M = /c[future box iV] and

: new 7'
Co, M[future box AT] at 7 => Co, «[syncvar 7 at 7, letcir i; = AT in v at vV Rfuture,

M = K[future box*// N] and

newV @uJ"
Co, /dfuture box*/ N] at 7 ==> Co, A[syncvar T'] at 7, letcir v= N'mv at v/

Rfuture©@

<
I

/"N synowith syncvar y] and V at T’ ~ Co- (g, M at Y € Co and M is not a value)

M = *[syncwith syncvar 7'], V at V € Co, and

- Rswith
Co, /c[syncwith syncvar 7'] at 7 =£> Co, K[V] at 7 SWi .

M = A[newchan”] and
new V R
Co, K[newchan£] at 7 => Co, M chanvar 7'] at 7, nil at Y newe,
M = KJreadchan chanvar Y].
By Lemma4.4,

A; s TAY™ ho readchan chanvar Y ~* @ a".
By therule Treadc (optionally preceded by therule Prim~* if B is a primitive type),
A; e« TP hA chanvar Y : B chan.
By therule Tchanv,
i ~Bvlis @« € A.
SinceC :: A,
C=CoMat 7,AT a 7' and A; «; TA'™ h,,;/) AT ~ IB vlist @ g* for afresh nodea*.

- N=V;,:V;and
I ¥

CQ, ~readchan chanvar Y] at 7, V~ :: Vi at Y => Co'K{*h] @ 7>~*2'y
- AT N 14 . V..

Rreadc
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* M = AMwritechan (chanvar Y) V).

By Lemma 4.4,

A; : rA'™ h, writechan (chanvar 7') V ~ B Q &;".
By therule Twritec (optionally preceded by therule Pr\xr\~w if -B isa primitive type),

A; o, TP"™ ho, chanvar 7' : £ chan.
By the rule Tchanv,

7 ~5vlig @+ G A.
SinceC :: A,

C=C"M at 7,AT atyand A; ; TAl™ hp) A" ~Bvlig @ a* for afresh node uA

-N=Vi:ie- - V,:nland

Rwritec
CO, [c[writechan (chanvar y) F] at 7, Vi :: s-« 2 V, iz nil at y =» W
CIK[V]at 7,Fi :: see i Fy i Fuonlati
- =YAVi i--00 Vpionil
Therefore, if thereexistsno C" such that C ==> C", C consists only of the following:

Fat 7,
fc[syncwith syncvar y] at 7 (where V at y 0 C),
K[readchan chanvar y] at 7 (where Vh :: T4 aty 0 C),

nil aty ~ C). D

cwritechan (chanvar y) F] at 7 (where Fi ::eee:: V, ::
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