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Abstract. Programs in the artificial intelligence domain impose unusual requirerments on

-cantrol structures. Production systems are a control structure with promising attributes

for building generally intelligent systems wilh large knowledge bases. This paper presents
examples to illustrate the unusual position taken by production systems on a number of
control and pattern-matching issues. Examples are chosen to illustrate certain powerful
features and to provide critical tests which might be used to evaluate the etfectiveness of
new designs,

1. Introduction

There are a number of common control usases in programs in the artificial
intelligence (Al) domain that impose requirements on control structures. Production
syslems (PSs) are a control structure with promising attributes for building generally
intelligent systerns with large hnowledge bases. The PS approach to a numher of control
issues is unusual and is sufficienlly novel to warrant a delailed discussion. This paper
gives a number of examples of the constructs used for control in some exisling PS
imptementations of Al systems.

Examples are also used here to justify a number of design fcatures of particular PS
languages. That is, examples-are chosen to illustrale certain powerful features and io
provide critical tests which might be uscd to evaluate the effectivencss of new designs.
This concern for explicit, deteiled design justification arises from a perceived failure of
language designers within Al to communicate such aspects  for existing designs.
Justification lends to be neglected balh for basic language principles and for low-leve!
language features such as pattern-malching primitives. Because of a number of specific
objections to the PS approach historically, the evaluation of PSs as an Al tanzuage has
been done with more than the usual care (Rychener, 1976). This paper draws on that
evaluation experience.

1.1. Hislory and Definition

The use of PSs in Al derives from research in several fields of computer science.
Their invention as a formal specification of algorithms dales from the mid-1940s, as Post
productions or Markov algorithms (Minsky, 1967). Floyd-Evans produciions are a variant
on the PS concepl used for parsing programming languages (Evans, 1964). Most
significantly, PSs have been adapted lo the task of modeliing human memory and problem-
solving processes (Newell, 1972; Newell ang Simon, 1972). Within Al, there have been a
number of successful projects involving PSs or similar rule-based architectures, to various
degrees: Waterman’s (1970) poker learning program, the Heuristic DENDRAL program

(Buchanan and Sridharan, 1973), and Shortliffe’s MYCIN medical diagnosis program {(Davis
et al., 1975), '
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Al & PL _ Introduction : 1.1

A PS is a sel of condition-action rules representing an algorithmic procedure on
some domain. A rule, or production, applies to an element of the domain whenever its
condition is true. The application of the production results in executing its action,
producing another domain element. In Al applications, the domain is typically a space of
symbolic models of situations. A production’s condition is a conjunction of schematic
palterns for symbol structures, and its aclion is an unconditional sequence of additions,
modifications, replacements, and deletions of symbol structures. Sequences of symbolic
changes, resulling when productions are applied to a model, are taken to correspond to
the modelied system’s dynamic behavior, '

To narrow the scope to a practical or definite computational tool requires the
specification of a production system architecture. Such an architecture has four
components: Working Memory, Production Memory, a recognize-act cycle, and a procedure
for resolving conflicts between competing productions.

Working Memory is the structure containing the dynamic knowledge state of the
system, referred to above as a model of a situation. Abslractions of Working Memory
elements are the primary constituents of production conditions, and manipulations of
Working Memory elements are the primary constituents of production actions. Specifying
the Woerking Memory places constraints on the attributes of its elements and on the
relaticnships between elements,

Production Meinory contains all of the productions, and its specification defines
allowable forms for productions and their relationships within the memory structure.
Production aclions usually include operators for modifying the Production Memory.

- The recognize-act cycle serves to controf the application of productions. The usual
form is that first a recognition occurs, i which a production or a set of productions is
found to have its conditions satisfied with respect to the present Working Memory. The
recognifion usually involves matching abstract forms to specific elements. Then a selection
from the recognized set is made, and the corresponding sequences of actions are
performed. Performing the actions results in a new Working Memory state, and the cycle
starts over with another recognition.

The selection from the set of recognized productions is according fo conflict
resolution principles. These principles are usually based on the static structure of
Working Memory or Production Memory, or on dynamic aspects of the system’s operation
such as recency of addition.

The particular architecture and language used here is called OPS (Forgy and
McDermott, 1976). Production Memory in OPS is an unstructured, unordered set of
productions. Working Memory is likewise an unordered set of list structures, without
duplications. It is bounded in size, by deleting elements whose last assertion occurred
more than some arbitrary number of system actions in the past (currentiy 300).

For conflict resolution the following rules apply, in order (McDermott and Forgy,
1977).
1. Refraction: a production is not fired twice on the same data {instantiation of a pattern)
unless some par! of that data has been re-inserted into Working Memory since the
previous firing. This prevents most infinite loops and other useless repetitions.

2 ‘ 1.1
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2. lexicographic recency: the production using the most recently inserted etements of
“Working Memory is preferred. "Most recent” is determined lexicographically, ie., if

there is a tie on the most recent element used, the next-most recent elements are
compared, and so on. This rule serves to focus the attention of the system very
sfrongly on more recent events, allowing current goals to go to completion before
losing control.

3. Special case: a production is preferred that has more conditicns, including negative
conditions which do not match to specific memory elements. Most of the meaning of
having one production be a special case of ancther is captured by rule 2, since a
special case that uses more data than a gencral one is lexicographically more recent

by the OPS definition). Preferring special cases to general ones follows the
expectation that a specific method is more appropriate to a situation than a more
general one.

4. Production recency: the more recently created production ts preferred. This is used
only in systems that grow by adding productions dynamically and only in the case of
productions with identical conditions. In such a context, the more recent production is
taken as more appropriate. ‘

5. Arbitrary: a sclection is made among multiple matches to the same production using the
same data. ' '

As a matter of practice, confiict resolution rarcly requires more than the first two rules.

OPS has several olher distinguishing features. The pattern matching allows a limited
form of segment variables, namely, a variable may match an indefinite-sized tail of a list.
The Paltern-And (Pand) feature allows an expression to be matched to several patterns,
and then bound to a vartable. OPS allows complex nezative conditions to be specified, for
instance, including the negation of an cnlire production condition within the condition of
ancther production. Productions in OPS are compiled into an efficient network form, rather
than interpreted. OPS has an operator for adding productions {o Production Memory
which have been formed (in ferms of an appropriate dala structure) in Werking Mamory;
such addilions are done directly into the compiled network during the runtime eycle.

The foliowing section will explain the OPS notation as examples are introduced.

In addition to the definilion of our PS given above, aur approach has a number of
distinctive features. A major part of our approach fies in representation assltimplions,
Working Memory, though large, is considered to be short-term only. All long-term facts
and inlerconnections between them (e.g. semantic networks) are stored as productions.
Thus all augmentation of a PS by itself is done by forniing new productions. The way that
action develops from the PS differs from some others in being a forward recognition-
driven cycle, rather than a backward-chaining, goal-driven cycle, as in the MYCIN system
(Davis, et al, 1975). The system is conlrolled by siznals and symbot structures in the
global Working Memory, called goals, which are included explicitly in production conditions
when appropriate. This is in contrast to MYCIN and {o DENDRAL (Buchanan and Sridharan,
1973). The PS architecture is used as the total system, rather than having it be one of a
number of procedural components. Other systems have employed additional, non-PS
procedures for such activities as modifying and analyzing the PS. Working Memory is
arbitrary list structures in an extensive database-like structure, with a vast majority of
items explicitly stored rather than represented as computable predicates. Production
conditions make use of general pallern-matching capabilities, as is cecmmon in other recent
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Al languages (Bobrow and Raphael, 1374). Though the general architecture derives from
concern for human cognition (Newell, 1972, Newell and Simon, 1972), little consideration is

‘given to psychological constraints.

2. Examples of Control Requirements

The examples in this section demonstrate the effect of conflict resolution principles
and of pattern-matching primitives on the ease of achieving control. Control in PSs is
primarily through goals in Working Memory. A goal is loosely defined to encompass:

1, a description of the purpese or desired final stale of processing, or a specification of a
problem operator to be applied; thus it is a focus, or something to come back to during
processing; there may be tests (productions} associated with a goal, to ensure that it is
properly achieved; , :

2. possible relations to other goals, e.g. subgoal-supergoal;

3. a history of attempts to achieve the goal, and of their resulls;

4. associated methods, operators, data objecls, heuristics, and priority orderings.

The following is an example of a goal:
(PUTON SET (HAKT) SET-3 ON BLGCK-4)

This might be read: "want to puton the set Set-3 on Block-4"; “puton” is a specific
operafor for the system in which the goal occurs. Goals and other Working Memory
elements are represented, by convention, as lists (in Lisp notation) whose first two
positions give the main goal class {e.g. PUTON SET), whose third position gives a "modality™
{e.g. (WANT)), and whose remaining positions are a description. This example is a simple
form, having only the first component of the above definition. More complex goals and
other examples of simple goals are discussed below.

Productions assert such coniro! goals to achieve sequencing between steps in a
process, to coordinate hierarchies of control, to evoke methods to achieve subgoals, and to
control iterations. Qther productions respond to such goals, taking account of both their
content and the surrounding Working Memory data context. Goals may vary in complexity
from single list structures to complex Working Memory and Production Memory
combinations. Longer-term control can be achieved by adding productions to Production
Memory that can respond to such goals. There is an OPS action to facilitate this.

The following discussion of conirol is based primarily on analysis of the PS
implementations of a number of "classical® Al programs (Rychener, 1976} Bobrow’s
Studen!, Feigenbaum’s Epam, GPS of Newell et al, a King-Pawn-King chess endgame
program, and a natural language understanding program coupled with a toy blocks
problem-solving program as done by Winograd.
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2.1. Sequencing_and Subroulining

Sequencing is performing the sleps of a process in a specified order. Because PSs
are sequenced only by the recognize-act cycle, in which potentially a large set of
productions are candidates for firing, there is both the need for explicit sequencing by
Working Memory goals and the opportunity for developing forms of seguencing not
available in conventional control structures,

Subroutining is the suspension of a process while essential secondary results are
obtained by some other process. This encompasses such mechanisms as the conventional
subroutine and the evocation of a subgoat in lhe process of achieving a goal
Conventionally, this action causes the establishment of a local control and data context,
such that the subroutine has limited access lo the environment. But in PSs, only the
control context is local, while the data context remains the global Working Memory. The
control context is local only to the extent that the “subroutine” mainlains its own control
goals and continues to react to them in a dominant way according to the conflict resolution
principles.  In the OPS archilecture, at least, subreoutines composed of subsets of the
entive PS cannot be established by any siructural means.

There are seven ways that such control is achieved.

1. Direct sequencing by gosls between sets of productions: Each production in a seot of
productions to perform a step in a complex decision process includes as an action a goal
that cvokes the next step. Such goals are stated generally, as opposed to being
production-specific signals. 1t is a characteristic of Al domains that long unconditional
scquences of actions are rarc. At least {his is the case when - Al programs are
impicmientied as PSs, which is a fairly high tevel of expression. That is, it is common lo
altcrnate, at a high rate, tests of conditions with state-changing actions. (But this is {o he
expected, given the nature of intellivence.) Thus, it is common thal sequencing between
sels of productions is required to arrive at a complicaled decision, with each step in the
sequence contributing to some aspect. For example,

S1 (PUTON SET (UANT) =S ON =09
(SET NEMBER (HAVE TRUL) =M QF =5)
(OBJCECT SIZE (HAVE TRUEY =X QF =)
(HOT (SET HMENBER (HAVE TRUE) =N 0F =%}
(OBJECT SIZE (HRVE TRULY »% OF =N) )
——> (PUTON OBJLCT (UANT) =11 DN =0)

An OPS production consists of a name (in this case S1), a list of conditions {the first four
lists, headed by PUTON, SET, OBJECT, and NOT, in S1), an arrow “-->" and a list of actions
(the second PUTON element is 1he only one in S1) terminated by ", In order to fire, the
condition of a production is matched lo Working Memory (in the conventional pattern-
match sense), setling up a correspondence of condition elements to memory elements
(which usually includes the binding of variables in the conditions to tokens within memory
elements). Then, using that correspondence to instantiate them, the actions of the
production are performed. Unless otherwise defined, an action is a simple inserticn of the
instantiated element into Working Memory. The most common other action is DELETE
which removes an element from Working Memory.

*
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Pattern variables are denoted by a variety of prefixes: for ordinary ones which can
have values bound to them or which, when bound, must match that value; "#" for those
“that match anything other than the value bound; “>" and "<" that match if the value to be
matched is greater than or less than the value bound to the variable, respectively. "NOT"
specifies that the pattern match fails if an attempt to match the elements in its scope
succeeds. ‘

S1 is part of a process to put a set of objects onto another object, in a toy bloecks world
environment. It responds to the main "puton" goal {first condition), selects a member of
the set to be put (second condition), and force the selected member to be the one with the
greatest size (third and fourth conditions; the "NOT"” says there is no other set member
“with a greater size). The action of Sl is to assert a subgoal to "puton” the object selected
from the set. (This is a simplified version which ignores subtleties of bookkeeping and
maintaining progress through the set of ohjects.) For instance, S1 would match,

(PUTON SET (WANT) SET-3 ON BLOCK-4)
(5£7 HEMBER (HAVE TRUE) BLOCK-1 OF SET-3)
(OBJECT SIZE (HAVE TRUE} i5 OF BLOCK-1)

and insert a goal,
(PUTON OBJECT {WANT) BLOCK-1 ON BLOCK-4)

S! is supposedly part of a multi-step process, each step of which makes some decision or
selection and lhen directly evokes the next step. For instance, it might be: select the
larges! set member, verify that space is available to put it on, select the exact location,
and do the actual put. Each such step might involve several productions (or evocations of
subgoals for more complicated processing), to handle the various conditions possible in the
enviroriment. ’

In general, the examples to be presented are just isolated parts of a large Production
Memory. There are usually a number of productions with similar conditions, responding to
similar goals under various contexts, etc. What is presented here can only be informal
hints about the surrounding memory context and problem environment. Also, productions
are sometimes simplified slightly to emphasize the essential control aspects.

2. Fall-back control: A process evokes another by some goal structure, and along with
that asserts a continuation signal, which, when it eventually becomes dominant in conflict
resolution by its recency, evokes whatever is to follow. For this case, the results
. developed by the evoked process to satisfy its own goals are not used directly by the
continuation in the evoking process. (Variations are given below.)

$2 (GRASP ORJECT (MANT) =R}

{GRASPING DBJECT (HAVE TRUE) =B2 3 =B}
—~> (GETRIDOF DBJECT (LANT) =R2)

(GRASP OBJECT (UANT (STEP 2)) =B) ;

527 (PICKUP OBJECT (HANT) =B3
~-> {GRASP DBJECT (HANT) =B)
(RRISE HAND (HANT)Y)
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The goal in 52 is to grasp an object. $2 gives the case where the hand is already
Brasping some other object, so that a goal to get rid of the other object is necessary. The
"$" notation in the second condition stands for “patlern-and®, a conjoiner of two patterns.
That is, "8" forces both "=B2" and "#B" to match the same token from the Working Memory
etement. In this case, it amounts to allowing lhe variable B2 to be bound during the match
to anything except the value bound fo B, The two goals that are actions in $2 are to be
ordered in terms of recency, with the leftmost one being the more recent. That is, in OPS,
actions within the same production are given distinet "times” with respect to conflict
resolution, and are ordered in decreasing recency from left to right. - The effect in this
case is that the GETRIDOF goal becomes dominant first, and later on, control falls back {o
focus on the GRASP goal. Nolice that the GRASP goal is stated as a continuation of the
main GRASP goal, a5 denoted by the (STEP 2) marker in the modality posilion,

S27 gives another goal, 10 pick up something., It breaks the goal info two subgoals, GRASP
and RAISE, which are sequenced by their order in the production. Note that there is no
continuation of the main goal as in $2, as a result of the adequacy of the two subgoals
given, both tg solve the task completely, and to do so without further testing of conditions
“between the two sfeps, = : '

3. Direct result usage: A process evohkes anothar, and perhaps asserts a continuation
goal, bul unlike the precedirz, the continuation makes direct use of results of the evoked
process, so that continuation cccurs as soan as sufficient results are developed by the
evoked process. Note that using the Working Memory recency conflict resolution principle
allows some eventual "fall-back™ {o the evolod process, which might give rise to yet more
resulis, in case the evoked process is left uniinisied by the initial resuli-use continuation.

53 (GRASP DBJECT (HANT (STCP 2)) =B}

(GRASPING NRJECT (HAVE TRUEM)
—=> (MOVE HAND (UANTY 70 =p)

(GRASP GRJECT (UANT (STEP 2¥) =R) ;
S3 continues the method 1o achieve {he GRASP goal by responding o a GRASPING meniory
element with nothing in the fourth position. Nole that S3 becomes dominant as a result of
a new GRASPING element, while generally the GRASP QRJECT goal coniinuation would not
yet be dominant. The more general case of this form of production would involve
recognizing results developing from a scloction or generation of elements, under the
conditions that the elements can be further processed without waiting for more of the
same elements to be created. The following shows an alternative.

4. Held result usage: A process evokes another, and its continuation makes use of results
of the evoked process, but the continuation is held from proceeding until all of the resulls
of the evoked process are developed. This might be necessary, for example, when some
comparison or selection is to be made from among them. This is ensured through a
Working Memory element thal is less recent than the process evocation, and whose
eventual becoming dominant in conflict resuluiion results in firing a production that asserts
the continuation goal.
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52" (GRASP OBJECT (MANT) =B)
(GRASPING CBJECT (HAVE TRUEY =B2 § =B)
——> (GETRIDDF ORJECT (MANT) =82) ‘
(GRASP OBJECT (HOLD (STEP 23) =B) ;

S4 (GRASP ORJECT (HOLD (STEP 2)) =B
=~> (GRRSP OBJLCT (MANT (STEP 2)) =B} ;

52" is a minor variant of 52, with HOLD in the second action in place of WANT. Here S4
responds only to the HOLD goal, so that the WANT s not emitted until it becomes dominant,
all by ilself. This ensures that all action started by the GETRIDOF goal in $2" goes to
completion before continuing, since ihat action will all be more recent than the held goal
This would be proper o a context where an entire set of objects, say, were to be
generated beafore continuing, ' ' '

5. Complex goals as focus of control: Goals in an organized process such as heuristic
search can be composed of a number of possibly optional attributes. Such goals represent
major processing states, and an execulive is required to manage the goals, evaluating
progress, measuring difficulty, propagating success and  failure, ordering their
consideration, and allocating processing effort.  Such an executive can, however, be
achieved with a relatively small number of produclions {see the discussion of a PS for GPS,
Rychener, 1976). The atiributes, kept as separate elements in Working Memory (due to
the variation in their relevance to different goals, it would be cumbersome to keep them
together in one), are held together by association, through a token for the goal, GOAL-5 in
the following:

(GOAL OBJECT (HAVE TRUE) GORL-5 ARRABNGEMENT-3)

(GORL SUPER (HAVE TRUE) GORL-5 GORL-2)

(CORL DIFFERENCE (HOVE TRUE} GORL-5 (LEFT SIDE LCW}
(GOAL STATUS (HARAVE TRUE) GOAL-5 SUSPENDED)

(GOAL. TYPE (HAVE TRUE) GORL-5 TRAHSFORIH

Goal attributes can be used to give AND-OR structuring lo a collection of goals, and can
indicate how the search is to continue when a success or failure occurs. Such goals need
to be in Working Memory when active, but are most conveniently stored in Production
Memory on becoming less active. Such storage simply involves collecting the attributes
for a goal into a single action side of a new production, to be evcked by the name token
of the goal, on demand (presumably that token is included in the attribule of some other
goal, and has become relevant to further progress). The PS approach to backtracking is,
first, to avoid it wherever possible by analyzing the problem and including more
intellipence as heuristics and domain knowledge. But when necessary, it can be easily
achieved within such a complex poal framework, by making explicit the information on
avaitable alternatives at choice points in the search, and by augmenting the executive to
make use of it (see Rychener 1976 for an exampie of how this worked out in practice).

6. Fork-join: Because tight control is not required, the work on several goals can proceed
as if asynchronously. (A realistic simutation of this might occur if conflict resotution were
loosened to allow more than one produclion firing per cycle) Some process evokes a
number of others ("fork™), and they cach develop their results incrementally, reacting to
things in the total Working Memory state. The “join" consists of a production to test that

& ‘ 2.1
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esults are obtained by the various processes. Sometimes more control is necessary to
ensure they all! complete before other productions become aclive: a test production
recognizes some part of the desired resulls and re-evokes the incomplete aspects, by re~
asserting their goals, thus making them more recent and dominant according to conflict
resolution. Scquencing goals as in the fall-back control case above can be uscd to evoke
the checking of validity of the “join". Such signals would not dominate until the other
actions had run their course, )

7. Default/Update: Steps in a decision are organized as an initial step in which a defauit
answer is established in Working Memory, and then other productions are allowed to
modify that result according to various special-case conditions. As in fork-join, sequencing
goals can be used to enable {the next stage of processing to take place.

57 (FIND BOUNDARY (WUANT) LONER (RANGE 1 48) (IROUND 17)
--> {FIND BOUNDRRY (HAVE RESULT) LCUER 1 (RRNGE 1 17))
(FIND BOUNDRRY (HRNT) HIGHER (RRNGE 1 4G RRCUND 17) 4

S7* (FIND BOUNDARY (MAVE RESULT) LOMER =N (RAMGE =R1 -R2}) & =C1
(OBJECT LOCRTION (HAVE TRUE) sH & <R2 § =11 FOR =0)

——> (FIND DDUNDRRY (HAVE RESULT) LOHER =M (RANGE =R1 =R2))
(DELETE =C1) |

Here, the problem is to find the object wilh the highost location near a poaint within a
range, a simplified one-dimensional case of the problc:.' of {inding space to place an cbject
in a region. This can be done more concisely in the one-dimensional case than is exhibiled
here, but this default approach is useful in more complox higher-dimensional cases, where
the various cases arising prohibit expression as a singie complex condition. The goal to
tind the higher boundary (second action in §7) represents a continvation aclion thal wili
take over after any update productions fire.

2.2. HMeralion and Possibilities Generalion

Heration is a process in which lhe same steps are repeated a number of times as
dictaled by the members of some given sel of data ubjecls. Generation of possibilities is a
converse process, creating a set of objects according to existing memory context or
constraints. Generalion poses control problems when it occurs in a context in which some
olher process is secking the generation of an eclement with particular properiies or
consequences, whereupon the generation stops. Often the test for whether generation is
to stop involves considerable computation, so that there is a problem of maintaining for
the generator memory of ils status wilh respect to internal control and the set heing
gencrated.

1. Deliberate loops: Iteration takes place under the control of an explicit goal. The looping
goal appears in each production, and is re-asserted into Working Memory at each iteration
to maintain its dominance with respect 1o conflict resolution. In practice, the produclions
mipht be separated into "body” productions, which do the main work of the loop, and
"bookkeeping” productions, which update status infarmation and test for termination.
Allernatively, each production can contain both the body and bookkeeping portions (a less
modular form). An example of the separaled form:
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Il (HORD LIST (NANT GATHERY SPECIAL IN =C} %
(CHUNK TEXT (HAVE TRUE)Y =C =W .=X) & =C2
~~> {HORD LIST (WANT GATHER (STEP 2)) SPECIAL =W)
=C1 ’ ‘
(CHUNK TEXT (HAVE TRUE) =C .<X)
(DELETE =C2)

Ci

il

11’ (HORD LIST C(HANT GATHER (STEP 2)} SPECIAL =W) $ =Cl
(HORD CLRSS (HAVE TRUEY SPECIRL OF =H)
(HORD LIST (GRTHERING) SFECIAL .=X) & =C3

——> (HRORD LI5T (GRTHERING) SPECIAL .=X =H)
(DELETE =Cl1} (DELETE =C3) ;

I1" (WGRD LIST (HANT GATHER) SPECIAL IN =C} %
(CHUNK. TEXT (HAVE TRUE) =0)
(WORD LIST {(GRTHERING) SPECIAL .=X) % =C3
——> (HORD LIST (HAVE TRUE) SPECIAL .=X)
(DELETE =C3) (DELETE =Ci) ;

3

Ct

The loop is to collect ail the words in the text of a "chunk” {hat are of type "special” into a
separate word list. I1 and 11" are the bookkeeping produclions {the latter being the
termination), and 11’ is the body of the loop. Il and I1® alternate in firing until the
termination condition occurs, detected by I1". A new notation element is ", which is used
fo mark segment variables, variables that match an arbitrary list tail (ordinary variables
only match a single list element). Note that the occurence of "=C1" in the action side of Il
causes a re-inserlion into Working Memory of the goal of the production, an act necessary
in general to keep the loop productions dominanl in conflict resolution.

Generally, such an iteration structure is used when the body of the loop consists of many
productions, making it more awhward to Include the bookkeeping actions in all the body
productions as would be simple to do in this example {essentially, combining 11 and 117,
dropping the "step 2" goal). ‘

2. Single-production iterations: Only one thing is done over the iteration, so that a single
production expresses the aclion al each point along with loep bookkeeping. Typically, this
is used to emit subgoals for each eleinent of a set, along with a re-assertion of the
iteration goal; it is also used o collect elements into a list in some order, where the
newly-updated list serves to re-evoke the single produclion and continue the foop. It
shouid be clear from the preceding example how such a form is achieved.

3. Parallel iteration: This is looping in which the iteration takes place as a result of having:
conflict resolution allow more than one production firing per cycle, rather than under the
control of explicit looping goals. The productions specifying the action are written as if
for a single object in a set, and the multipte firing ensures that all elements are processed.
This has been used {Rychener, 1976) in generating language for replies in natural
language programs {(e.g. for several similar descriptive noun phrases at the same time), in
expanding in breadth-first fashion transitive data refalions (cf. spreading activation in a
semantic nelwork), in simple combinatorial generation processes, where a single condition
is fulfilled by a number of generated possibilities, and in other uncomplicated iterations.
There are two kinds of this parallel iteration, just as for the deliberate iteration above:
single-production and muitiple-production. This capability is not part of OPS at present.
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4. Generation of possibilitics: As mentioned above, the main problem with this process is

maintaining a memory of lhe status of the gencrator, especially those items already
generated and those remaining to be generated. There are a large number of ways to
handie this, due to the inherent fiexibility of the PS architecture, particutarly its two
memories. For instance, possibilities can be kept in Working Memory, and erased as tried,
if the set is relalively smelij possibilities can be generated as needed, by specitic
productions, with Working Memory storing what has already been tried; and productions
can record the elements already generaled, so that a simple generalor of all elements,
followed by crasure of the elements already generated, followed by a selection from the
remaining elemenis, can suffice. ' C

There are a number of decisions to make in forming a generator and thus there is a space
of flexible ways of responding to the problem: whether lo save the elements already
generated or those not yel generated; whethsr to save them as preductions or as Working
Memory elemenls; whether fo save the efements in a single memory structure or
separalely (for productions, elements might be accessible individually with the seleclion
pre-determined by explicit conditions, or all in the same production, with a further
selection necessary after firing the production); whether a production is set up fo assert
desircd elements or erase those already generated (assuming the full se! is in Working
Memory); whether {o generale the entire sel or somehow parlition it for more gradual
gencration; whether the set should be conputed and stored, or recompuied on domand,
and whether to update the status of the yeneralor by crasure from Working Memory, by
supcrscding an existing production with an updated one, or by adding clements to Working
Memory that have te be tested and excluded in further production matching within the
gencralor.

2.3, Hierarchical organization

There are three mechanisms used to achieve some kind of hierarchy: the stpergoal-
subgoal relationship represented by productions that respond to a goal by setling up
subgoals; attaching tags to dala items, amounting to pointers for a praph structure; and
organizing processes in a boltom-up hierarchy, where cach level is evoked as results from
the lower level are developed. The first mechanism has already received atiention in the
examples above.

The second mechanism is used to keep track of tree-structured expressions, as
might be used to represent linear algebraic equations {cf, Bohrow’s Student). It is also
used more generally fo keep track of poal slructures. As an example, suppose a senfence
in an algebra word problem were being parsed to form an arithmelic expression. The main
operator in the sentence would cause the text to be split into left and right operands, and
then those would be further parsed to determine {heir cxpressions. Labels might be set
up to record the relation belween the operands and the containing expression as follows:

(EXPR LRBEL (KAVE TRUEY LEFT CHUNK-5 PRREMT CHUNE-3)
(EXPR LRBEL (HRAVE TRUL) RIGHT CHUNK-G PARENT CHUNE-3)
(EXPR OPERATOR (HRVE TRUE) TINES FOR CHUWK-3)

Suppose the chunks of text for the left and right halves were parsed to produce,
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(CHUNK EXPR (HAVE TRUE) CHUNK-5 (PLUS X Y))
{CHUNK EXPR (HAVE TRUE) CHUNK-B 2}

Then a production can recognize this and combine the results:

HI  (CHUNK EXPR (HRVE TRUE} =Cl =El)
(EXPR LRBEL (HAVE TRUEY LEFT =C1 PARENT =C}
(EXPR LRBEL (HRVE TRUE} RIGHT =C2 PRRENT =C)
{EHUNK EXPR (HRVE TRUE) =C2 =E2)

{EXPR DPERATOR (HAVE TRUL) =0 FOR =C}
-~» {CHUNK EXPR (HAVE TRUE} =C (=0 =El =E2)} ;

Here, the wvarious tags have served to record the structure, and the variable
bindings have used the {ags to recover it in the {inal expression. The taps are ad hoc, in
the sense that other systems of tags are used for other tasks, e.g. maintaining goal
interrelationships as mentioned above. But the PS approach allows flexibility of choice to
meet task demands. E ‘

The third hierarchy mechanism, bottom-up organization, is used in processing natural
language text, representing lexical, syntactic, semantic, and pragmatic levels of processing.
Like the first mechanism above, it is represented in Production Memory as connections
between the results produced by a level in the hierarchy and the data and goals of the
next higher fevel. For instance, a word recognhized at the lexical level is given a word
class, which then can bo used al a grammalical fevel to check that the class occurs
appropriately for the grammatical context; the success of the grammar check {represented
in Working Memory as the resulting grammatical {function performed by the word) then
icads to the lowest-level semanlic consequences, and so on. Nate that this is counter o a
siyle that would establish goals to apply the various knowledge levels. Rather, the
triggering of a level is directly dependeat on fower-level resuils. In many cases, the
higher tevels are evoked only after a number of words have been processed, aliowing a
suitable higher-level result to be assembled (see Rychener, 1976, for details).

2.4. Sete_ction

The power of the PS match is exploited in complex selections, which occur quite
freqguently in Al tasks. These selections typically cenjoin a number of conditions, each of
which narrows down the sel of mafching candidates. Two powerful means for facilitating
this narrowing down are: the use of computable predicates on the values bound to match
variables (as opposed to pattern matches that simply bind variables to values from
corresponding Warking Memory items); and the use of a "maximal” {("minimal!"} operator,
which selects from a set of possible variable bindings during the match the one that is
maximal (minimal) according to a computable predicate. The maximal (minimal) operator
corresponds exaclly to the narrowing-down concept, and it expresses concisely what
would otherwise be a complex logical condition. At present, the maximal and minimal
operators are not implemented in OPS. The ">" and "<" variable prefixes occurring in some
examples above are special cases of the use of computable predicates in the match. OPS
does have more generality in this respect than is indicated in examples here.

Some examples of complex sclections:

12 ' 2.4



Al @ PL Examples of Control Requirements 2.4

1. Seiection of an old goal in GPS: This complex test involves conjoining the following
tests: the goal is type Reduce; the goal is not in state "methods-exhausted”; the goal is
minimal according to its difficuity; the goal’s supergoal is not an apply type goal where
there also exisls such a goal whose supergoal is a transform type goal; and the goal is
minimal (or equivalently maximal) according to some arbitrary predicate whose function is
to select from a set of otherwise-equivalent chaices - in OPS, one arbitrary way is
automatically provided in the lexicographic evenl recency order, which distinguishes
between elements according to their tirme of asscrtion.

This complex selection can be represented by the production,

€1 (SELECT GORL (IANT) OLDY
(GORL TYPE (HRVE TRUEL) =G REDUCE)
(NOT (GDAL STATUS (HAVE TRUE) <G METHODS-EXHRUSTED) )
(GORL DIFFICULTY (HRVE TRUE) =G =N}
(MINTHMRL =N GRERTERP)
(GOAL SUPER (HAVE TRUE} =G =62)
(HOT (GONL TIYPL (HRAVE TRUEY =G2 APPLY)
(GORL. TYPE (HRAVE TRUE) =G 3 =G3 REQIICE) :
(HOT (GOAL STATUS (HAYE TRYUE) =G3 HETHUDS EXKAUSTED)Y )
(GORL DIFFICULTY (HAVE TRUD) =63 =M)
(GOAL SUPFR (HAVE TRUE) =G3 =G&)
(GOAL TYPL (HAYE TRUEY =G& TRANSFORID )
(RAINITAL =& ARRITRARYM)
~=> (SELECT GDAL (HAVE RESULT) =5)

Note that the next-le-the-last clauce in thae solection to bo aone, ax stated informally
above, has an awhwird expression as the seventh condition in Cl. The mavimal and
minimal operators are designed to avoid such code, but are not sufficiently powerful in this
case. For instance, fhe first "minimal” cordition in C1 is equivalent to "not: a reduce poal,
not methods-exhausted, with difficulty less than n".  This exampie’s principal lesson,
perhaps, is that the NOT operalor as formulated here is very powerful in expressing
scleciions.  Though maximal and minimal supplement its pawer, there may be stil botter
“primitives.

2. Select a block to put next in a stack: This test involves: the block has net already been
tried, for this stack; the block is not already on the stack; this block is maximal on block
size of such btocks; this block is minimal on some arbitrary predicate (cf. the last test in 1.
above).

This selection and the following one are made more complicated than they seem because
the size of a block is not stored exphatly in Working Memory but is always computed as a
function of the three linear dimensions of the hlock (this is an arbitrary restriction
inherited from the blocks problem-solving PS previously implemented; it is kept here to
Hlustrale a requirement for the power of maximal). The actual size function used can
depend on the coniexl. In this case, the hetght of the block is irrelevant, for instance.
The condition here is expressed,

MAXIMAL (PLUS =X =Y} CRERTERP)_

That is, the pair such that their sum is minimal is wanted, where X and Y are bound during
the match to the length and width of the block, :
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3. Select a block to move to make space: This involves: the block is on the block on which -

space is to be made; the block is large enough so that moving it wilt create the needed
amount of space; the block has minimal size among such blocks; the block is minimal
according to some arbifrary predicate (cf. the last test in 1. above).

3. Summary

The purpose of this extended presentation and discussion of delailed examples has
been to exhibit a number of useful control requirements for testing new PS designs., The
aspects of control teuched on hare are considered basic, especially for Al applications, and
are rather different from control censtructs in more conventional langauges. This is due
both to domain characteristics and te the unique perspective imposed by using PSs.”
Surveying the examples presented, the contribulion to contral by the use of Working
Memory recency as a- conflict resclulion principle {rule 2 in Section 1.1} is central. It
allows the expression of conirol demands as global goals, avoiding the ad hoc inter-
production signals that plagued early PS programming attempts. The goals used here
achiecve control using conventions that are uniform over all such goals, rather than private
lo pariicular productions. A secondary purposc has been to present evidence that PSs
have openness and flexibility in the varicties of control achievable in Al programs, (o an
extent surpassing conventional controt structures.
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