
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Control Requirements for the Design 

of Production System Architectures 

Michaei D. Rychener 
June 1977 

Department of Computer Science 
Carnegie-Mellon University. 

Pittsburgh, PA 15213 

This paper has been submitted for presentation at the AI ® PL Symposium, ACM SIGART -
SIGPLAN, Rochester, NY, August, 1977. 

This research was supported in part by the Defense Advanced Research Projects Agencv 
under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific 
Research. 

S/o, ? * c £ 

i j 7 7 



AI <s> PL 

Table of Contents 

SECTION PAGE 

1 Introduction 1 
1.1 History and Definition 1 

2 Examples of Control Requirements 4 
2.1 Sequencing and Subroutining 5 
2.2 Iteration and Possibilities Generation 9 
2.3 Hierarchical organization • . 11 
2.4 Selection 12 

3 Summary 14 
3.1 Acknowledgments 14 

4 References 14 

cvi • . ; 

3 . . CAatf l i^^-'- ' 



AI <s> PL 

Abstract. Programs in the artificial intelligence domain impose unusual requirements on 
control structures. Production systems are a control structure with promising attributes 
for building generally intelligent systems with large Knowledge bases. This paper presents 
examples to illustrate the unusual position taken by production systems on a number of 
control and pattern-matching issues. Examples are chosen to illustrate certain powerful 
features and to provide critical tests which might be used to evaluate the effectiveness of 
new designs. 

1. Introduction 

There are a number of common control usages in programs in the artificial 
intelligence (AI) domain that impose requirements on control structures. Production 
systems (PSs) are a control structure with promising attributes for building generally 
intelligent systems with large Knowledge bases. The PS approach to a number of control 
issues is unusual and i.s sufficiently novel to warrant a detailed discussion. This paper 
gives a number of examples of the constructs used for control in some existing PS 
implementations of AI systems. 

Examples are also used here to justify a number of design features of particular PS 
languages. That is, examples are chosen to illustrate certain powerful features and to 
provide critical tests which might be used to evaluate the effectiveness of new designs. 
This concern for explicit, detailed design justification arises from a perceived failure of 
language designers within AI to communicate such aspects for existing designs. 
Justification tends to be neglected both for basic language principles and for low-level, 
language features such as pattern-matching primitives. Because of a number of specific 
objections to the PS approach historically, the evaluation of PSs as an AI language has 
been done with more than the usual care (Rychener, 1976). This paper draws on that 
evaluation experience. 

1.1. History and Definition 

The use of PSs in AI derives from research in several fields of computer science. 
Their invention as a formal specification of algorithms dates from the mi.d-1940s, as Post 
productions or Markov algorithms (MinsKy, 1967). Floyd-Evans productions are a variant 
on the PS concept used for parsing programming languages (Evans, 1964). Most 
significantly, PSs have been adapted to the task of modelling human memory and problem-
solving processes (Newell, 1972; Newell and Simon, 1972). Within AI, there have been a 
number of successful projects involving PSs or similar rule-based architectures, to various 
degrees: Waterman's (1970) poker learning program, the Heuristic DENDRAL program 
(Buchanan and Sridharan, 1973), and Shortliffe's MYCIN medical diagnosis program (Davis, 
et al., 1975). 

1 1.1 



AI PL Introduction 1.1 

A PS is a set of condition-action rules representing an algorithmic procedure on 
some domain. A rule, or production, applies to an element of the domain whenever its 
condition is true. The application of the production results in executing its action, 
producing another domain element. In AI applications, the domain is typically a space of 
symbolic models of situations. A production's condition is a conjunction of schematic 
patterns for symbol structures, and its action is an unconditional sequence of additions, 
modifications, replacements, and deletions of symbol structures. Sequences of symbolic 
changes, resulting when productions are applied to a model, are taken to correspond to 
the modelled system's dynamic behavior. 

To narrow the scope to a practical or definite computational tool requires the 
specification of a production system architecture. Such an architecture has four 
components: Working Memory, Production Memory, a recognize-act cycle, and a procedure 
for resolving conflicts between competing productions. 

Working Memory is the structure containing the dynamic knowledge state of the 
system, referred to above as a model of a situation. Abstractions of Working Memory 
elements are the primary constituents of production conditions, and manipulations of 
Working Memory elements are the primary constituents of production actions. Specifying 
the Working Memory places constraints on the attributes of its elements and on the 
relationships between elements. 

Production Memory contains all of the productions, and its specification defines 
allowable forms for productions and their relationships within the memory structure. 
Production actions usually include operators for modifying the Production Memory. 

The recognize-act cycle serves to control the application of productions. The usual 
form is that first a recognition occurs, in which a production or a set of productions is 
found to have its conditions satisfied with respect to the present Working Memory. The 
recognition usually involves matching abstract forms to specific elements. Then a selection 
from the recognized set is made, and the corresponding sequences of actions are 
performed. Performing the actions results in a new Working Memory state, and the cycle 
starts over with another recognition. 

The selection from the set of recognized productions is according to conflict 
resolution principles. These principles are usually based on the static structure of 
Working Memory or Production Memory, or on dynamic aspects of the system's operation 
such as recency of addition. 

The particular architecture and language used here is called OPS (Forgy and 
McDermott, 1976). Production Memory in OPS is an unstructured, unordered set of 
productions. Working Memory is likewise an unordered set of list structures, without 
duplications. It is bounded in size, by deleting elements whose last assertion occurred 
more than some arbitrary number of system actions in the past (currently 300). 

For conflict resolution the following rules apply, in order (McDermott and Forgy, 

1977). 
1. Refraction: a production is not fired twice on the same data (instantiation of a pattern) 

unless some part of that data has been re-inserted into Working Memory since the 
previous firing. This prevents most infinite loops and other useless repetitions. 

2 1.1 



AI * PL Introduction L I 

2. Lexicographic recency: the production using the most recently inserted elements of 
" Working Memory is preferred. "Most recent" is determined lexicographically, i.e., if 
there is a tie on the most recent element used, the next-most recent elements are 
compared, and so on. This rule serves to focus the attention of the system very 
strongly on more recent events, allowing current goals to go to completion before 
losing control. 

3. Special case: a production is preferred that has more conditions, including negative 
conditions which do not match to specific memory elements. Most of the meaning of 
having one production be a special case of another is captured by rule 2, since a 
special case that uses more data than a general one is lexicographically more recent 
(by the OPS definition). Preferring special cases to general ones follows the 
expectation that a specific method is more appropriate to a situation than a more 
general one. 

A. Production recency: the more recently created production is preferred. This is used 
only in systems that grow by adding productions dynamically and only in the case of 
productions with identical conditions. In such a context, the more recent production is 
taken as more appropriate. 

5. Arbitrary: a selection is made among multiple matches to the same production using the 
same data. 

As a matter of practice, conflict resolution rarely requires more than the first two rules. 

OPS has several other distinguishing features. The pattern matching allows a limited 
form of segment variables, namely, a variable may match an indefinite-sized tail of a list. 
The Pattern-And (Pand) feature allows an expression to be matched to several patterns, 
and then bound to a variable. OPS allows complex negative conditions to be specified, for 
instance, including the negation of an entire production condition within the condition of 
another production. Productions in OPS are compiled into an efficient network form, rather 
than interpreted. OPS has an operator for adding productions to Production Memory 
which have been formed (in terms of an appropriate data structure) in Working Memory; 
such additions are done directly into the compiled network during the runtime cycle. 

The following section will explain the OPS notation as examples are introduced. 

In addition to the definition of our PS given above, our approach has a number of 
distinctive features. A major part of our approach lies in representation assumptions. 
Working Memory, though large, is considered to be short-term only. All long-term facts 
and interconnections between them (e.g. semantic networks) are stored as productions. 
Thus all augmentation of a PS by itself is done by forming new productions. The way that 
action develops from the PS differs from some others in being a forward recognition-
driven cycle, rather than a "backward-chaining, goal-driven cycle, as in the MYCIN system 
(Davis, et al., 1975). The system is controlled by signals and symbol structures in the 
global Working Memory, called goals, which are included explicitly in production conditions 
when appropriate. This is in contrast to MYCIN and to DENDRAL (Buchanan and Sridharan, 
1973). The PS architecture is used as the total system, rather than having it be one of a 
number of procedural components. Other systems have employed additional, non-PS 
procedures for such activities as modifying and analyzing the PS. Working Memory is 
arbitrary list structures in an extensive database-like structure, with a vast majority of 
items explicitly stored rather than represented as computable predicates. Production 
conditions make use of general pattern-matching capabilities, as is common in other recent 

3 1.1 



AI s PL Introduction 1.1 

AI languages (Bobrow and Raphael, 1974) . Though the general architecture derives from 
concern for human cognition (Newell, 1972 , Newell and Simon, 1972 ) , little consideration is 
given to psychological constraints. 

2* Examples of Control Requirements 

The examples in this section demonstrate the effect of conflict resolution principles 
and of pattern-matching primitives on the ease of achieving control. Control in PSs is 
primarily through goals in Working Memory. A goal is loosely defined to encompass: 
1. a description of the purpose or desired final state of processing, or a specification of a 

problem operator to be applied; thus it is a focus, or something to come back to during 
processing; there may be tests (productions) associated with a goal, to ensure that it is 
properly achieved; 

2. possible relations to other goals, e.g. subgoal-supergoal; 
3. a history of attempts to achieve the goal, and of their results; 
4. associated methods, operators, data objects, heuristics, and priority orderings. 

The following is an example of a goal: 

(PUTON SET (WANT) SET-3 ON BLOCK-4) 

This might be read: "want to puton the set Set-3 on Block-4"; "puton" is a specific 
operator for the system in which the goal occurs. Goals and other Working Memory 
elements are represented, by convention, as lists (in LISP notation) whose first two 
positions give the main goal class (e.g. PUTON SET), whose third position gives a "modality" 
(e.g. (WANT)), and whose remaining positions are a description. This example is a simple 
form, having only the first component of the above definition. More complex goals and 
other examples of simple goals are discussed below. 

Productions assert such control goals to achieve sequencing between steps in a 
process, to coordinate hierarchies of control, to evoke methods to achieve subgoals, and to 
control iterations. Other productions respond to such goals, taking account of both their 
content and the surrounding Working Memory data context. Goals may vary in complexity 
from single list structures to complex Working Memory and Production Memory 
combinations. Longer-term control can be achieved by adding productions to Production 
Memory that can respond to such goals. There is an OPS action to facilitate this. 

The following discussion of control is based primarily on analysis of the PS 
implementations of a number of "classical" AI programs (Rychener, 1 9 7 6 ) : Bobrow's 
Student, Feigenbaum's Epam, GPS of Newell et al., a King-Pawn-King chess endgame 
program, and a natural language understanding program coupled with a toy blocks 
problem-solving program as done by Winograd. 

4 2. 



AI * PL Examples of Control Requirements 2.1 

2.1. Sequencing and Subroutining 

Sequencing is performing the steps of a process in a specified order. Because PSs 
are sequenced only by the recognize-act cycle, in which potentially a large set of 
productions are candidates for firing, there is both the need for explicit sequencing by 
Working Memory goals and the opportunity for developing forms of sequencing not 
available in conventional control structures. 

Subroutining is the suspension of a process while essential secondary results are 
obtained by some other process. This encompasses such mechanisms as the conventional 
subroutine and the evocation of a subgoal in the process of achieving a goal. 
Conventionally, this action causes the establishment of a local control and data context, 
such that the subroutine has limited access to the environment. But in PSs, only the 
control context is local, while the data context remains the global Working Memory. The 
control context is local only to the extent that the "subroutine" maintains its own control 
goals and continues to react to them in a dominant way according to the conflict resolution 
principles. In the OPS architecture, at least, subroutines composed of subsets of the 
entire PS cannot be established by any structural means. 

There are seven ways that such control is achieved, 

1. Direct sequencing by goals between sets of productions: Each production in a set of 
productions to perform a step in a complex decision process includes as an action a goal 
that evokes the next step. Such goals ate stated generally, as opposed to being 
production-specific signals. It is a characteristic of AI domains that long unconditional 
sequences of actions are rare. At least this is the case when • AI programs are 
implemented as PSs, which is a fairly high level of expression. That is, it is common to 
alternate, at a high rate, tests of conditions with state-changing actions. (But this is to be 
expected, given the nature of intelligence.) Thus, it is common that sequencing between 
sets of productions is required to arrive at a complicated decision, with each step in the 
sequence contributing to some aspect. For example, 

S i (PUTON SET (l-JONT) =S ON =0) 

. (SET MEMBER (HfiVE TRUE) = M OF =S> 
(OBJECT SIZE (HfiVE TRUE) =X OF =11) 
(NOT (SET MEMBER (HRVE TRUE) =N OF =S> 

(OBJECT SIZE CURVE TRUE) >X OF =N) ) 
—> (PUTON OBJECT (1IRNT) =M ON =0) ; 

An OPS production consists of a name (in this case SI), a list of conditions (the first four 
lists, headed by PUTON, SET, OBJECT, and NOT, in SI), an arrow " - > " , and a list of actions 
(the second PUTON element is the only one in SI), terminated by ";". In order to fire, the 
condition of a production is matched to Working Memory (in the conventional pattern-
match sense), setting up a correspondence of condition elements to memory elements 
(which usually includes the binding of variables in the conditions to tokens within memory 
elements). Then, using that correspondence to instantiate them, the actions of the 
production are performed. Unless otherwise defined, an action is a simple insertion of the 
instantiated element into Working Memory. The most common other action is DELETE, 
which removes an element from Working Memory. 

5 2.1 



i 
AI <* PL Examples of Control Requirements 2.1 

Pattern variables are denoted by a variety of prefixes: for ordinary ones which can 
have values bound to them or which, when bound, must match that value; V " for those 
that match anything other than the value bound; ">" and "<" that match if the value to be 
matched is greater than or less than the value bound to the variable, respectively. "NOT" 
specifies that the pattern match fails if an attempt to match the elements in its scope 
succeeds. 

SI is part of a process to put a set of objects onto another object, in a toy blocks world 
environment. It responds to the main "puton" goal (first condition), selects a member of 
the set to be put (second condition), and force the selected member to be the one with the 
greatest size (third and fourth conditions; the "NOT" says there is no other set member 
with a greater size). The action of SI is to assert a subgoal to "puton" the object selected 
from the set. (This is a simplified version which ignores subtleties of bookkeeping and 
maintaining progress through the set of objects.) For instance,. SI would match, 

(PUTON SET (URNT) SET-3 ON BLOCK-4) 

(SET MEMBER (HRVE TRUE) BLOCK-i OF SET-3) 

(OBJECT SIZE (HRVE TRUE) 15 OF BLOCK-i) 

and insert a goal, 

(PUTON OBJECT (WRNT) BLOCK-i ON BLOCK-4) 

SI is supposedly part of a multi-step process, each step of which makes some decision or 
selection and then directly evokes the next step. For instance, it might be: select the 
largest set member, verify that space is available to put it on, select the exact location, 
and do the actual put. Each such step might involve several productions (or evocations of 
subgoals for more complicated processing), to handle the various conditions possible in the 
environment. 

In general, the examples to be presented are just isolated parts of a large Production 
Memory. There are usually a number of productions with similar conditions, responding to 
similar goals under various contexts, etc. What is presented here can only be informal 
hints about the surrounding memory context and problem environment. Also, productions 
are sometimes simplified slightly to emphasize the essential control aspects. 

2. Fall-back control: A process evokes another by some goal structure, and along with 
that asserts a continuation signal, which, when it eventually becomes dominant in conflict 
resolution by its recency, evokes whatever is to follow. For this case, the results 

. developed by the evoked process to satisfy its own goals are not used directly by the 
continuation in the evoking process. (Variations are given below.) 

S2 (GRRSP OBJECT (WANT) =B> 
(GRRSPING OBJECT (HRVE TRUE) =B2 $ *B> 

— > (GETRIDOF OBJECT (URNT) =B2) 
(GRRSP OBJECT (URNT (STEP 2)) =B) ; 

52* (PICKUP OBJECT (WRNT) =B) 
> (GRRSP OBJECT (URNT) =B) 

(RRISE HRND (URNT)) ; 

6 2.1 



A I <8> P L Examples of Control Requirements 2.1 

The goal in S2 is to grasp an object. S2 gives the case where the hand is already 
grasping some other object, so that a goal to get rid of the other object is necessary. The 
"$" notation in the second condition stands for "pattern-and", a conjoiner of two patterns. 
That is, "$" forces both "=B2" and V B " to match the same token from the Working Memory 
element. In this case, it amounts to allowing the variable B2 to be bound during the match 
to anything except the value bound to B. The two goals that are actions in S2 are to be 
ordered in terms of recency, with the leftmost one being the more recent. That is, in OPS, 
actions within the same production are given distinct "times" with respect to conflict 
resolution, and are ordered in decreasing recency from left to right. The effect in this 
case is that the GETRIDOF goal becomes dominant first, and later on, control falls back to 
focus on the GRASP goal. Notice that the GRASP goal, is stated as a continuation of the 
main GRASP goal, as denoted by the (STEP 2) marker in the modality position. 

S2' gives another goal, to pick up something. It breaks the goal into two subgoals, GRASP 
and RAISE, which are sequenced by their order in the production. Note that there is no 
continuation of the main goal as in S2, as a result of the adequacy of the two subgoals 
given, both tq solve the task completely, and to do so-without further testing of conditions 
between the two steps. " 

3, Direct result usage: A process evokes another, and perhaps asserts a continuation 
goal, but unlike the preceding, the continuation makes direct use of results of the evoked 
process, so that continuation occurs as soon as sufficient results are developed by the 
evoked process. Note that using the Working Memory recency conflict resolution principle 
allows some eventual "fall-back" to the evoked process, which might give rise to yet more 
results, in case the evoked process is left unfinished by the initial result-use continuation. 

S3 (GRASP OBJECT (MflNT (STEP 2)) =B> 

(GRASPING OBJECT (HAVE TRUE)) 

~-> (MOVE HAND (URNT) TO rp.) 

(GRASP OBJECT (WANT (STEP 3)) -B) ; 

S3 continues the method to achieve the GRASP goal by responding to a GRASPING memory 
element with nothing in the fourth position. Note that S3 becomes dominant as a result of 
a new GRASPING element, while generally the GRASP OBJECT goal continuation would not 
yet be dominant. The more general case of this form of production would involve 
recognizing results developing from a selection or generation of elements, under the 
conditions that the elements can be further processed without waiting for more of the 
same elements to be created. The following shows an alternative. 

4. Held result usage: A process evokes another, and its continuation makes use of results 
of the evoked process, but the continuation is held from proceeding until all of the results 
of the evoked process are developed. This might be necessary, for example, when some 
comparison or selection is to be made from among them. This is ensured through a 
Working Memory element that is less recent than the process evocation, and whose 
eventual becoming dominant in conflict resolution results in firing a production that asserts 
the continuation goal. 

7 2.1 



A I <s> P L Examples of Control Requirements 2.1 

S2 M (GRRSP OBJECT (WRNT) =B> 

(GRRSPING OBJECT (HRVE TRUE) =B2 $ *B) 

—> (GETRIDOF OBJECT (WRNT) =B2) 

(GRRSP OBJECT (HOLD' (STEP 2)) =B) ; 

S4 (GRRSP OBJECT (HOLD (STEP 2)) =B> 

—> (GRRSP OBJECT (URNT (STEP 2)> =B) ; 

S2" is a minor variant of S2, with HOLD in the second action in place of WANT. Here S4 
responds only to the HOLD goal, so that the WANT is not emitted until it becomes dominant, 
all by itself. This ensures that all action started by the GETRIDOF goal in S2" goes to 
completion before continuing, since that action will all he more recent than the held goal. 
This would be proper to a context where an entire set of objects, say, were to be 
generated before continuing. 

5. Complex goals as focus of control: Goals in an organized process such as heuristic 
search can be composed of a number of possibly optional attributes. Such goals represent 
major processing states, and an executive is required to manage the goals, evaluating 
progress, measuring difficulty, propagating success and failure, ordering their 
consideration, and allocating processing effort. Such an executive can, however, be 
achieved with a relatively small number of productions (see the discussion of a PS for GPS, 
Rychener, 1976). The attributes, Kept as separate elements in Working Memory (due to 
the variation in their relevance to different goals, it would be cumbersome to keep them 
together in one), are held together by association, through a token for the goal, GOAL-5 in 
the following: 

(GORL OBJECT (HRVE TRUE) GORL-5 RRRRNGEMENT-3) 
(GORL SUPER (HRVE TRUE) GORL-5 GORL-2) 
(GORL DIFFERENCE (HRVE TRUE) GORL-5 (LEFT SIDE LOW)) 
(GORL STRTUS (HRVE TRUE) GORL-5 SUSPENDED) 
(GORL TYPE (HRVE TRUE) GORL-5 TRANSFORM) 

Goal attributes can be used to give AND-OR structuring to a collection of goals, and can 
indicate how the search is to continue when a success or failure occurs. Such goals need 
to be in Working Memory when active, but are most conveniently stored in Production 
Memory on becoming less active. Such storage simply involves collecting the attributes 
for a goal into a single action side of a new production, to be evoked by the name .token 
of the goal, on demand (presumably that token is included in the attribute of some other 
goal, and has become relevant to further progress). The PS approach to backtracking is, 
first, to avoid it wherever possible by analyzing the problem and including more 
intelligence as heuristics and domain knowledge. But when necessary, it can be easily 
achieved within such a complex goal framework, by making explicit the information on 
available alternatives at choice points in the search, and by augmenting the executive to 
make use of it (see Rychener 1976 for an example of how this worked out in practice). 

6. Fork-join: Because tight control is not required, the work on several goals can proceed 
as if asynchronously. (A realistic simulation of this might occur if conflict resolution were 
loosened to allow more than one production firing per cycle.) Some process evokes a 
number of others ("fork"), and they each develop their results incrementally, reacting to 
things in the total Working Memory state. The "join" consists of a production to test that 

8 2.1 



AI 0 P L Examples of Control Requirements 2.1 

results are obtained by the various processes. Sometimes more control is necessary to 
ensure they all complete before other productions become active: a test production 
recognizes some part of the desired results and re-evokes the incomplete aspects, by r e ­
asserting their goals, thus making them more recent and dominant according to conflict 
resolution. Sequencing goals as in the fall-back control case above can be used to evoke 
the checking of validity of the "join". Such signals would not dominate until the other 
actions had run their course. 

7. Default/Update: Steps in a decision are organized as an initial step in which a default 
answer is established in Working Memory, and then other productions are allowed to 
modify that result according to various special-case conditions. As in fork-join, sequencing 
goals can be used to enable the next stage of processing to take place. 

S7 (FIND BOUNDARY (URNT) LONER (RANGE 1 48) AROUND 17) 
—> (FIND BOUNDARY (HAVE RESULT) LCUER 1 (RANGE 1 17)) 

(FIND BOUNDARY (URNT) HIGHER (RANGE 1 40) AROUND 17) j 

S7> (FIND BOUNDARY (HRVE RESULT) L01IER =N (RRNGE -R l rR2)) $ =C1 

(OBJECT L0CRTI0N (HRVE TRUE) >N $ <R2 $ =11 FOR r.O) 

~ > (FIND BOUNDARY (HRVE RESULT) LONER =H (RRNGE -R l =R2)) 

(DELETE ^Cl) j 

Here, the problem is to find the object with the highest location near a point within a 
range, a simplified one-dimensional case of the problem of finding space to place an object 
in a region. This can be done more concisely in the one-dimensional case than is exhibited 
here, but this default approach is useful in more complex higher-dimensional cases, where 
the various cases arising prohibit expression as a single complex condition. The goal to 
find the higher boundary (second action in S7) represents a continuation action that will 
take over after any update productions fire. 

2.2. Iteration and Possibilities Generation 

Iteration is a process in which the same steps are repeated a number of times as 
dictated by the members of some given set of data objects. Generation of possibilities is a 
converse process, creating a set of objects according to existing memory context or 
constraints. Generation poses control problems when it occurs in a context in which some 
other process is seeking the generation of an element with particular properties or 
consequences, whereupon the generation stops. Often the test for whether generation is 
to stop involves considerable computation, so that there is a problem of maintaining for 
the generator memory of its status with respect to internal control and the set being 
generated. 

1. Deliberate loops: Iteration takes place under the control of an explicit goal. The looping 
goal appears in each production, and is re-asserted into Working Memory at each iteration 
to maintain its dominance with respect to conflict resolution. In practice, the productions 
might be separated into "body" productions, which do the main work of the loop, and 
"bookkeeping" productions, which update status information and test for termination. 
Alternatively, each production can contain both the body and bookkeeping portions (a less 
modular form). An example of the separated form: 

9 2.2 



AI <s> PL Examples of Control Requirements 2.2 

I I (WORD LIST (WANT GATHER) SPECIAL IN =C) $ =C1 
(CHUNK TEXT (HAVE TRUE) =C *U .=X) $ =C2 

— > (WORD LIST (WANT GATHER (STEP 2)) SPECIAL =W) 
=Ci 

(CHUNK TEXT (HAVE TRUE) =C ,=X) 
(DELETE =C2) ; 

Il> (WORD LIST (WANT GATHER (STEP 2)) SPECIAL -W) $ =Ci 

(WORD CLASS (HAVE TRUE) SPECIAL OF =!•]) 

(WORD LIST (GATHERING) SPECIAL ,=X) $ =C3 

—> (WORD LIST (GATHERING) SPECIAL .=X =W) 

(DELETE =Ci> (DELETE =C3) j 

I I " (WORD LIST (WANT GATHER) SPECIAL IN «C) $ =C1 
(CHUNK TEXT (HAVE TRUE) =C) 
(WORD LIST (GATHERING) SPECIAL ,=X) $ =C3 

— > (WORD LIST (HAVE TRUE) SPECIAL .=X) 
(DELETE =C3) (DELETE = C1) ; 

The loop is to collect all the words in the text of a "chunk" that'are of type "special" into a 
separate word list. II and II" are the bookkeeping productions (the latter being the 
termination), and IT is the body of the loop. II and IV alternate in firing until the 
termination condition occurs, detected by II". A new notation element is ".", which is used 
to mark segment variables, variables that match an arbitrary list tail (ordinary variables 
only match a single list element). Note that the occurence of "=C1" in the action side of II 
causes a re-insertion into Working Memory of the goal of the production, an act necessary 
in general to keep the loop productions dominant in conflict resolution. 

Generally, such an iteration structure is used when the body of the loop consists of many 
productions, making it more awkward to' include the bookkeeping actions in all the body 
productions as would be simple to do in this example (essentially, combining II and II', 
dropping the "step 2" goal). 

2. Single-production iterations: Only one thing is done over the iteration, so that a single 
production expresses the action at each point along with loop bookkeeping. Typically, this 
is used to emit subgoals for each element of a set, along with a re-assertion of the 
iteration goah, it is also used to collect elements into a list in some order, where the 
newly-updated list serves to re-evoke the single production and continue the loop. It 
should be clear from the preceding example how such a form is achieved. 

3. Parallel iteration: This is looping in which the iteration takes place as a result of having 
conflict resolution allow more than one production firing per cycle, rather than under the 
control of explicit looping goals. The productions specifying the action are written as if 
for a single object in a set, and the multiple firing ensures that all elements are processed. 
This has been used (Rychener, 1976) in generating language for replies in natural 
language programs (e.g. for several similar descriptive noun phrases at the same time), in 
expanding in breadth-first fashion transitive data relations (cf. spreading activation in a 
semantic network), in simple combinatorial generation processes, where a single condition 
is fulfilled by a number of generated possibilities, and in other uncomplicated iterations. 
There are two kinds of this parallel iteration, just as for the deliberate iteration above: 
single-production and multiple-production. This capability is not part of OPS at present. 

10 2.2 



A I e PL Examples of Control Requirements 2.2 

4. Generation of possibilities: As mentioned above, the main problem with this process is 
maintaining a memory of the status of the generator, especially those items already 
generated and those remaining to be generated. There are a large number of ways to 
handle this, due to the inherent flexibility of the PS architecture, particularly its two 
memories. For instance, possibilities can be kept in Working Memory, and erased as tried, 
if the set is relatively small; possibilities can be generated as needed, by specific 
productions, with Working Memory storing what has already been tried; and productions 
can record the elements already generated, so that a simple generator of all elements, 
fol lowed by erasure of the elements already generated, followed by a selection from the 
remaining elements, can suffice. 

There are a number of decisions to make in forming a generator and thus there is a space 
of flexible ways of responding to the problem: whether to save the elements already 
generated or those not yet generated; whether to save them as productions or as Working 
Memory elements; whether to save the elements in a single memory structure or 
separately (for productions, elements might be accessible individually with the selection 
pre-determined by explicit conditions, or all in the same production, with a further 
selection necessary after firing the production); whether a production is set up to assert 
desired elements or erase those already generated (assuming the full set is in Working 
Memory); whether to generate the entire set or somehow partition it for more gradual 
generation; whether the set should be computed and stored, or recomputed on demand; 
and whether to update the status of the generator by erasure from Working Memory, by 
superseding an existing production with an updated one, or by adding elements to Working 
Memory that have to be tested and excluded in further production matching within the 
generator. 

2.3. Hierarchical organization ' • 

There are three mechanisms used to achieve some kind of hierarchy: the supergoal-
subgoal relationship represented by productions that respond to a goal by setting up 
subgoals; attaching tags to data items, amounting to pointers for a graph structure; and 
organizing processes in a bottom-up hierarchy, where each level is evoked as results from 
the lower level are developed. The first mechanism has already received attention in the 
examples above. 

The second mechanism is used to keep track of tree-structured expressions, as 
might be used to represent linear, algebraic equations (cf. Bobrow's Student). It is also 
used more generally to keep track of goal structures. As an example, suppose a sentence 
in an algebra word problem were being parsed to form an arithmetic expression. The main 
operator in the sentence would cause the text to be split into left and right operands, and 
then those would be further parsed to determine their expressions. Labels might be set 
up to record the relation between the operands and the containing expression as follows: 

(EXPR LRBEL (HRVE TRUE) LEFT CHUNK-5 PARENT CHUNK-3) 
(EXPR LRBEL (HRVE TRUE) RIGHT CHUNK-6 PARENT CHUNK-3) 
(EXPR OPERRTOR (HRVE TRUE) TIMES FOR CHUNK-3) 

Suppose the chunks of text for the left and right halves were parsed to produce, 

11 2.3 



AI <s> PL Examples of Control Requirements 2.3 

(CHUNK EXPR (HAVE TRUE) CHUNK-5 (PLUS X Y)) 
(CHUNK EXPR (HAVE TRUE) CHUNK-6 2) 

Then a production can recognize t.his and combine the results: 

H i (CHUNK EXPR (HAVE TRUE) =C1 =E1) 

(EXPR LABEL (HAVE TRUE) LEFT =Ci PARENT =C> 

(EXPR LABEL (HAVE TRUE) RIGHT =C2 PARENT =C) 

(CHUNK EXPR (HAVE TRUE) =C2 =E2) 

(EXPR OPERATOR (HAVE TRUE) =0 FOR =C) 

— > (CHUNK EXPR (HAVE TRUE) =C (=0 =Ei =E2)> ; 

Here, the various tags have served to record the structure, and the variable 
bindings have used the tags to recover it in the final expression. The tags are ad hoc, in 
the sense that other systems of tags are used for other tasks, e.g. maintaining goal 
interrelationships as mentioned above. But the PS approach allows flexibility of choice to 
meet task demands. 

The third hierarchy mechanism-, bottom-up organization, is used in processing natural 
language text, representing lexical, syntactic, semantic, and pragmatic levels of processing. 
Like the first mechanism above, it is represented in Production Memory as connections 
between the results produced by a level in the hierarchy and the data and goals of the 
next higher level. For instance, a word recognized at the lexical level is given a word 
class, which then can be used at a grammatical level to check that the class occurs 
appropriately for the grammatical context; the success of the grammar check (represented 
in Working Memory as the resulting grammatical function performed by the word) then 
leads to the lowest-level semantic consequences, and so on. Note that this is counter to a 
style that would establish goals to apply the various knowledge levels. Rather, the 
triggering of a level is directly dependent on lower-level results. In many cases, the 
higher levels are evoked only after a number of words have been processed, allowing a 
suitable higher-level result to be assembled (see Rychener, 1976, for details). 

2.4. Selection 

The power of the PS match is exploited in complex selections, which occur quite 
frequently in AI tasks. These selections typically conjoin a number of conditions, each of 
which narrows down the set of matching candidates. Two powerful means for facilitating 
this narrowing down are: the use of computable predicates on the values bound to match 
variables (as opposed to pattern matches that simply bind variables to values from 
corresponding Working Memory items); and the use of a "maximal" ("minimal") operator, 
which selects from a set of possible variable bindings during the match the one that is 
maximal (minimal) according to a computable predicate. The maximal (minimal) operator 
corresponds exactly to the narrowing-down concept, and it expresses concisely what 
would otherwise be a complex logical condition. At present, the maximal and minimal 
operators are not implemented in OPS. The ">" and "<" variable prefixes occurring in some 
examples above are special cases of the use of computable predicates in the match. OPS 
does have more generality in this respect than is indicated in examples here. 

Some examples of complex selections: 

12 



A I *> P L Examples of Control Requirements 2.4 

1. Selection of an old goal in GPS: This complex test involves conjoining the following 
tests: the goal is type Reduce; the goal is not in state "methods-exhausted"; the goal is 
minimal according to its difficulty; the goal's supergoal is not an apply type goal where 
there also exists such a goal whose supergoal is a transform type goal; and the goal is 
minimal (or equivalently maximal) according to some arbitrary predicate whose function is 
to select from a set of otherwise-equivalent choices - in OPS, one arbitrary way is 
automatically provided in the lexicographic event recency order, which distinguishes 
between elements according to their time of assertion. 

This complex selection can be represented by the production, 

C l (SELECT GORL (URNT) OLD) 

(GORL TYPE (HRVE TRUE) =G REDUCE) 

(NOT (GORL STRTUS (HRVE TRUE) = G METHOOS-EXHAUSTEO) ) 
(GORL DIFFICULTY (HRVE TRUE) =G =N> 
<MINIf1RL = N GRERTERP) 
(GORL SUPER (HRVE TRUE) = G =G2) 
(NOT (GORL TYPE (HRVE TRUE) =G2 RPPLY) 

(GORL TYPE (HRVE TRUE) *G $ =G3 REDUCE) 

(NOT (GORL STRTUS (HRVE TRUE) =G3 METHODS-EXHAUSTED) ) 
(GORL DIFFICULTY (HAVE TRUE) =G3 -N) 
(GORL SUPER (HRVE TRUE) ^G3 =G4) 
(GORL TYPE (HAVE TRUE) =G4 TRANSFORM) ) 

(MINIMAL -G ARBITRARYP) 
—> (SELECT GOAL (HAVE RESULT) -G) j 

Note that the next-to-the-last clause in the selection to be done,- as stated informally 
above, has an awkward expression as the seventh condition in C l . The maximal and 
minimal operators are designed to avoid such code, but are not sufficiently powerful in this 
case. For instance, the first "minimal" condition in C l is equivalent to "not: a reduce goal, 
not methods-exhausted, with difficulty less than n". This example's principal lesson, 
perhaps, is that the NOT operator as formulated here is very powerful in expressing 
selections. Though maximal and minimal supplement its pov/er, there may be still better 
primitives. 

2. Select a block to put next in a stack: This test involves: the block has not already been 
tried, for this stack; the block is not already on the stack; this block is maximal on block 
size of such blocks; this block is minimal on some arbitrary predicate (cf. the last test in 1. 
above). 

This selection and the following one are made more complicated than they seem because 
the size of a block is not stored explicitly in Working Memory but is always computed as a 
function of the three linear dimensions of the block (this is an arbitrary restriction 
inherited from the blocks problem-solving PS previously implemented; it is kept here to 
illustrate a requirement for the power of maximal). The actual size function used can 
depend on the context. In this case, the height of the block is irrelevant, for instance. 
The condition here is expressed, 

(MRXIMRL (PLUS =X. =Y) GRERTERP) 

That is, the pair such that their sum is minimal is wanted, where X and Y are bound during 
the match to the length and width of \he block. 

13 2.4 



AI PL Examples of Control Requirements 2.4 

3. Select a block to move to make space: This involves: the block is on the block on which 
space is to be made; the block is large enough so that moving it will create the needed 
amount of space; the block has minimal size among such blocks; the block is minimal 
according to some arbitrary predicate (cf. the last test in 1. above). 

3. Summary 

The purpose of this extended presentation and discussion of detailed examples has 
been to exhibit a number of useful control requirements for testing new PS designs. The 
aspects of control touched on here are considered basic, especially for AI applications, and 
are rather different from control constructs in more conventional langauges. This is due 
both to domain characteristics and to the unique perspective imposed by using PSs. 
Surveying the examples presented, the contribution to control by the use of Working 
Memory recency as a conflict resolution principle (rule 2 in Section L I ) is central. It 
allows the expression of control demands as global goals, avoiding the ad hoc inter-
production signals that plagued early PS programming attempts. The goals used here 
achieve control using conventions that are uniform over all. such goals, rather than private 
to particular productions. A secondary purpose has been to present evidence that PSs 
have openness and flexibility in the varieties of control achievable in AI programs, to an 
extent surpassing conventional control structures. 

3.1. Acknowledgments 

Allen Newell provided the initial motivation for exploring the power of PSs as 
programming languages. Lanny Forgy and John McDermott implemented the OPS language 
used in this paper, improving on past PS designs. 

This research was supported in part by the Defense Advanced Research Projects 
Agency under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of 
Scientific Research. 

4. References 

Bobrow, D. G. and Raphael, B. R., 1974. "New programming languages for artificial 
intelligence research", Computing Surveys, Vol. 6: 3, pp. 153-174. 

14 4. 



AI 0 PL References ILrilllllMIHI1!lll;IIIL IIIL'il'lll II (lllll 4. 
3 fiMfiE DDS71 

Buchanan, B. G. and Sridharan, N. S,, 1973. "Analysis of behavior of chemical molecules: 
Rule formation on non-homogeneous classes of objects", Proc. Third International 
Joint Conference on Artificial Intelligence, pp. 67-76. Also Stanford AI Memo 215, 
Stanford University Computer Science Department. 

Davis, R., Buchanan, B. and Shortliffe, E., 1975. "Production rules as a representation for a 
knowledge-based consultation program", Report STAN-CS-75-519, Memo AIM-266. 
Stanford, CA: Stanford University, Computer Science Department. 

Davis, R. and King, J., 1975. "An overview of production systems", Report 
STAN-CS-75-524, Memo A1M-271. Stanford, CA: Stanford University, Computer 
Science Department. 

Evans, A., 1964. "An ALGOL 60 compiler", in Goodman, R., Ed., Annual Revievj of Automatic 
Programming, Vol. 4, pp. 87-124. New York, NY: Pergamon Press. 

Forgy, C. and McDermott, J., 1976. "The OPS reference manual", Pittsburgh, PA: 
Carnegie-Mellon University, Department of Computer Science. 

McDermott, J. and Forgy, C, 1977. "Production system conflict resolution strategies", in D. 
A. Waterman and F. Hayes-Roth, Eds., Pattern-Directed Inference Systems, New York, 
NY: Academic Press. Forthcoming. 

Minsky, M., 1967. Computation: Finite and Infinite Machines, Englewood Cliffs, NJ: 
Prentice-Hall. Chapter 12. 

Newell, A., 1972. "A theoretical exploration of mechanisms for coding the stimulus", in 
Mciton, A. W. and Martin, E., Eds., Coding Processes in Human Memory, pp. 373-434. 
Washington, DC: Winston and Sons. 

Newell, A. and Simon, H. A., 1972. Human Problem Solving, Englewood Cliffs, NJ: 
Prentice-Hall. 

Rychener, M. D., 1976. "Production systems as a programming language for artificial 
intelligence applications", Pittsburgh, PA: Carnegie-Mellon University, Department of 
Computer Science. 

Water man, D. A., 1970. "Generalization learning techniques for automating the learning of 
heuristics", AI, Vol. 1, pp. 121-170. 

15 4. 


