Abstract

We present CLL, a concurrent programming language that symmetrically integrates functional and concur-
rent logic programming. First, a core functional language is obtained from a proof-term assignment to a
variant of intuitionistic linear logic, caled FOMLL, via the Curry-Howard isomorphism. Next, we intro-
duce a Chemical Abstract Machine (CHAM) whose molecules are typed terms of this functiona language.
Rewrite rules for this CHAM are derived by augmenting proof-search rules for FOMLL with proof-terms.
We show that this CHAM is a powerful concurrent language and that the linear connectives ®, 3, ©, —0
and S correspond to process-calculi connectives for parallel compasition, name restriction, internal choice,
input prefixing and external choice respectively. We aso demonstrate that communication and synchro-
nization between CHAM terms can be performed through proof-search on the types of terms. Finally, we
embed this CHAM as a construct in our functional language to alow interleaving functiona and concurrent
computation in CLL.

Contents

1 Introduction 3
2 /CLL: Functional Programmingin CLL 4
21 Paadle Evduationin Expressons L 13
22 TypeSdaety. . . . 13

23 Examples . . . 17

3 /CLL: Concurrent Logic Programmingin CLL 21
31 Introducing/CLL. . . = 22
311 Structura Rulesfor Monadic Vaues and Synchronous Connectives = = . 23

312 Functiona Rulesfor In-place Computation~ 25

313 Summay of Structural and Functional Rules =~~~ = . . 25

3.14 Reaction Rules for Term Vaues and Asynchronous Connectives 25

32 Programming Technique: Credting PrivateNames .~ 34

33 Example: Encodingtheyr-cdculus 37
34 Typesfor /CLL CHAM Configurations 40
35 Comparing process-calculi and /CLL. .~ 43

4 Full-CLL: Integrating/CLL and /CLL 44
4.1 TypeSafety. 46

5 Programming Techniques and Examples 47
51 Example: A Concurrent Fibonacci Program 47
5.2 Programming Technique: Buffered Asynchronous Message Passing | 50

53 Example: Seve of Eratosthenes = 52
54 |Implementing Buffered Asynchronous Message Passing using Functions . . .~ . . . = . . | 55
55 Programming Technique: Synchronous Message Passing| 58

56 Example: One Cell Buffer. 60
57 Programming Technique: Synchronous Choices . =~ 60
571 Input-input Choice 62

572 Output-output Choice 63

573 Input-output Choice =~ 64

58 Example Read-WriteMemory Cell. 66

6 Discussion 67
Acknowledgment 68
References 68

1 Introduction

There are severa ways to design atyped concurrent programming language. We may start from a syntax and
operational semantics for the terms of the language and add types in order to guarantee certain properties of
typed terms. Such properties include but are not limited to type-safety, deadlock freedom and several secu-
rity properties. Examples of such languages are typed variants of the 7r-caculus [20, 21, 22], join-calculus
[16], CML [31] and Concurrent Haskell [28]. A completely different approach is to begin from alogic and
lift it to a type system for a programming language using the Curry-Howard isomorphism. Proof-terms that
are witnesses for proofs in the logic become the terms of the programming language and proof normaliza-
tion corresponds to the operational semantics. This approach has been successfully applied to the design of
functional programming languages. When we come to the concurrent paradigm where we allow creation of
processes executing in paralel and communicating with each other through one of several mechanisms like
shared memory, message queues or synchronization constructs like semaphores, monitors and events, at-
tempts to design languages using the Curry-Howard isomorphism have mostly been theoretical. Most work
[1, 2] in this direction is restricted to classical linear logic [18] and away from practice.

A completely different meeting point for logic and concurrent programming is concurrent logic program-
ming [34]. In this approach, one uses parallelism inherent in proof-search to design a logic programming
language which simulates concurrent process behavior. Asis usua with al logic programming, only pred-
icates and logica propositions play a part in programming and proof-terms are not used. Examples of
languages of this kind are Concurrent Prolog[33] and FCP[23].

In this report, we use both the Curry-Howard isomorphism and proof-search to design a concurrent program-
ming language from logical principles. We call this language CLL (Concurrent Linear Language). Our un-
derlying logic is afirst-order intuitionistic linear logic where al right synchronous connectives (®, ©,1,3)
are restricted to a monad. We refer to this logic as FOMLL (First-Order Monadic Linear Logic). Using
linear logic to build the type system for a concurrent language seems a natural choice since processes are
linear entities. Ever since Girard's first work on linear logic [18], deep connections between linear logic
and concurrency have been suggested. For example, Abramsky develops a concurrent computational inter-
pretation of classical linear logic in [1]. FOMLL differs from the logic used by Abramsky in two essential
ways. Firgt, itisintuitionistic. Second, it is equipped with amonad. We use amonad in FOMLL because
concurrent computations have effects like deadlocks and the monad separates pure functiona terms from -
fectful concurrent computations, enabling us to prove atype-safety theorem. This use of monads goes back
to Moggi's work [26] and similar uses of monads in concurrent languages like CML, Concurrent Haskell
and Facile [31, 28, 17]. FOMLL has also been used in the Concurrent Logical Framework [35] which has
been used to represent severa concurrent languages [12].

We design CLL in three steps. First, we construct a purely functiona language (called/CLL forfunctional
CLL) by adding proof-terms to FOMLL./CLL admits basic linear functional constructs like abstraction,
linear pairing, digunctions, replication and recursive types, recursion and first-order dependent types. It
also alows paralelism - parts of programs may be evaluated in paralel. However, there is no primitive
for communication between parallel processes. In the second step, we embed/CLL in a concurrent logic
programming language caled /CLL (logic programming CLL). The semantics of this logic programming

! Abramsky's work [1] mentions some computational interpretations of intuitionistic linear logic also. However, these are
sequential, not concurrent, interpretations and are not of much interest in the context of this report.

language are presented as a Chemical Abstract Machine (CHAM) [4,5, 7]. Moleculesin /CLL CHAM con-
figurations are terms of/CLL annotated with their types. Rewrite rules for these CHAM configurations are
derived from proof-search rules for FOMLL. /CLL differs from other logic programming languages in two
respects. First, we use the forward style of proof-search, not the traditional backward style. Second, proof-
terms obtained during proof-search play a computational rolein /CLL, which is not the case with other logic
programming languages. /CLL is a powerful concurrent language that can encode al basic concurrency
constructs like input and output processes, parallel composition for processes, choices, communication and
even n-way synchronization. In the third step, we embed /CLL back in/CLL as alanguage construct. This
makes functional and concurrent logic programming symmetric in the language. Since /CLL configurations
produce side effects like deadlocks, we restrict ll CHAM configurations to the monad in/CLL. The resul-
tant language is calledfull-CLL. We sometimes drop the prefix 'full’ if it is clear from context.

An implementation of full-CLL in the Concurrent Logical Framework is available from the author's home-
page at http: //www. cs. cmu.edu/~dg.

The contributions of this work are as follows. First, we show that proof-search in logic has an interest-
ing computational interpretation - it can be viewed as a procedure to link together programs to form larger
programs, which can then be executed. Working with FOMLL, we aso show how proof-search can be ex-
ploited to add concurrency constructs to a programming language. Second, we demonstrate how functional
and logic programming can be symmetrically integrated in a single framework that alows interleaving func-
tional computation and proof-search. Third, we establish that functional and concurrent programming can
be integrated symmetricaly in atyped setting. In particular, we describe a method that allows concurrent
computations inside functional programs to return non-trivial results, which can be used for further func-
tional evaluation. Finaly, we show that there is a correspondence between various concurrent constructs
like parallel composition, name restriction, choices etc. and connectives of linear logic like ®, 3 and &.

Organization of the report In section 2 we present the syntax, types and semantics of/CLL. We prove
a type-safety result for this language and illustrate the expressiveness of our paralel construct with some
examples. In section 3 we build the concurrent logic programming /CLL and prove a type-preservation
result for it. /CLL isintegrated with/CLL as a monadic construct to obtain fiill-CLL in section 4. We prove
atype-safety theorem for the whole language. A number of examples to illustrate the constructs in full-CLL
are presented in section 5. Section 6 discusses related work and concludes the report.

2 ICLL: Functional Programmingin CLL

Syntax. As mentioned in the introduction, /CLL is the functiona core of CLL. It is designed from an
underlying logic (FOMLL), which under the Curry-Howard isomorphism corresponds to the type system.
Hence the syntax of types is presented first. We assume a number of sorts, which are finite or infinite sets of
index refinements (index terms are denoted by t). Index variables are denoted by i. See [36] for a detailed
description of index refinements. Sort names are denoted by 7 and its variants. Atomic type constructors
denoted by P and its decorated variants have kinds which are given by the grammar:

K == Type

We assume the existence of at least one infinite sort, namely the sort of channel names. This sort is called

4

chan. Channels are denoted by the letter k and its decorated variants. We assume the existence of some
implicit signature that gives the kinds of all atomic type congtructors.

Typesin CLL arederived from a variant of first-order intuitionistic linear logic [35, 13, 19] called FOMLL.
We classify types into two categories based on the top level type congructor. |If the top level congructor is
atomic, &, —, —o or V, we call the type asynchronous following Andreoli[3]. In a sequent style presentation
of linear logic, the right rules for asynchronous congtructors are invertible, whereas their left rules are not.
If the top congructor is!, ®, 1, ©, 3 or //, we call the type synchronous. In sharp contrast to asynchronous
connectives, right rules for synchronous connectives are not invertible, whereas their left rules are. All
synchronous types are restricted to a monad, whose constructor is denoted by {...}. Types are generated by
the following grammar:

AB = (Asynchronous types)
Ph...t, (Atomic types)
| AkB (With or additive conjunction)
| A"B (Unrestricted implication)
| A-oB (Linear implication)
| (S (Monadic type)
| Vi: 7.4 (Universal quantification)
&g T (Synchronous or monadic types)
A (Base synchronous types)
| S ®5, (Tensor or multiplicative conjunction)
] 1 (Unit of tensor)
I S0S (Additive digunction)
| \A (Replication or exponential)
| fiaS (Iso-recursive type)
| 3i:7.5 (Existential quantification)
| a (Recursive type variable)

For proof-terms, we distinguish three classes of terms. "Puré' terms, sometimes simply called terms, de-
noted by Ng represent proofs of asynchronous types. Proofs of synchronous types are represented by two
classes of syntax: monadic terms, denoted by M and expressions denoted by E. In general, monadic terms
are constructive; they correspond to introduction rules of synchronous connectives. Expressions correspond
to elimination terms and are the site of all parallelism in/CLL, as discussed later. The whole monad is
presented in ajudgmental style [29]. The syntax of terms and expressions in the language is given below.
We assume the existence of three digoint and infinite sets of variables - term variables denoted by x, t/,...,
recursion variables denoted by u, v,... and " choice" variables denoted by £, c,...

Terms, N m= X (NN T TN | naN | XN | Xx.N \NiNANi" N\ {E}
| A >YNWN [

NIM ®M,!l 11inIM\inr M\\N

| fold(M) T ul fiuM I [t,M] I Mi|cM>

Monadic terms, M

Expressions, E = M |_let {p} = NinE \ Ei\E»
patterns, p o= x| 11 pi®p<21 pilc/>21 '#1 [hp] | £21d(p}

For elimination of the synchronous connectives, ®, ©, 1,3 and /x, weuse let constructions similar to [10]. As
opposed to usual elimination rules, which correspond to natural deduction style eliminations, the use of lets

5

gives rise to rules corresponding to left sequent rules of the sequent calculus. Choice variables {(,s,...}
are used to distinguish case branches for eliminating the connective &. For a detailed description of this
treatment see [10]. For clarity, we sometimes annotate bound variables and fo1d constructs with their types.

Type System. We use four contexts in our typing judgments: ¥ (index variable context), I' (unrestricted
context), A (linear context) and ¥ (recursion context). The grammars generating these contexts are:

Y o= |8 iy
r == |Iz:A
A = -|A/p:S ifp=>S
UV o= |0, u:S

The judgment p = S, read as “p matches S™ is described in figure 1. Subsequently, it is assumed that
whenever p : S occurs in a context, p = S. Given a context, the variables it defines are called its defined
variables, dv. Related concepts are defined linear variables, d1v and defined index variables, div. These
are precisely described in figure 2. Given a context X;T'; A; ¥, we assume that the sets dv(T"), dv(4A),
dv(¥), div(X) and div(A) are all pairwise disjoint. We use four typing judgments in our type system:

S;A9FHN:A

S0 M#S

S ;AW EHE - S
Xk tiy

The last judgment is external to the language and we do not specify how we check the well-sortedness of
refinement terms. We simply assume the following properties of this judgment:

1. Substitution: If ¥ F ¢t:yandX,i:v F ¢/ :+/,then T + ¢ [t/7]: v
2. Weakening: If X - t:~,then¥ 2:v F ¢t: 1.
3. Strengthening: If ¢ :~ F t:~vand? &€ ¢t,then X + ¢:~.

The other three typing judgments assume that all types in I'; A and ¥ are well-formed with respect to the
refinement term context ¥. The type P t; .. .t, is well formed in X if Kind(P) = ~v; ...y, — Type and
Y F t;:y fori =1...n. The well formedness of other types is obtained by lifting this relation in the
standard way. The typing rules for fCLL are given in figures 3, 4, 5 and 6. It may be observed here that
there is no @ — L rule for terms similar to the rules & — Ljs and & — L (see figure 6) because we do not
allow choice branches in pure terms. This is done because we found that in practice choice branches in pure
terms are never needed.

Operational Semantics. We use call-by-value semantics for fCLL. However, certain constructs have to be
evaluated lazily due to linearity constraints and the presence of a monad. For example, pairs at the level
of terms have to be lazy because the two components of a pair share the same linear resources and only
the component that will be used in the remaining computation should be evaluated. Thus evaluation of
the components of a pair is postponed till one of the components is projected. The monad is also a lazy
construct because it encloses expressions, whose evaluation can have side effects. We do not evaluate the
body of a functional abstraction (Az.N, Az.N and Ai.N), since evaluation is restricted to closed terms,

6

x = A Iz =14

p=3S
1=>1 iip = 3i,:7-5

Pi=>9 P2=>5 P=> S(jj,aS@))
Pi®p=>9®5, fold(p) => /xa.5(a)

=5 p=>5
p¢pz =» 51 © 5,

Figurel:p=> S

av(x) = {x} av(\x) = {x}
dv(pi ®P2) = dv(pi) U dv(pz) dv(l) = <f>
dv(pilcp2) = {C} U dv(pi) U dv(pz) dv([i,p]) = dv(p)
dv(fold(p)) = dv(p)

dv(-)=<f> dav(l',z : A) = av(T) U {z}
dv(A,p: 5) =dv(A) U dv(p) dv(*,u: 5) =dv(¥) U {u}
av(E)=<f)

div(x) = {x} div(Ix) = cf>

div(pi ®py) = dliv(pi) Udlv(py) dlv(l)=4>
div(pi[*pz) =dlv(pi) Udiv(pz) div([i,p]) = div(p)
div(fald(p)) = dlv(p)

div(-) =0 div(A,p : 5) = dlv(A) U dv(p)
div(F) =0 div(®) = (f>

div(E) =0

div(x) = » div(!x) = <j>

div(pi ® P2) = div(pi) Udiv(py) div(l) =2
div(pil;p2) = div(pi) Udiv(pz) div([i,p]) = {i}
div(fold(p)) = div(p)

div(-) = (f> div(A,p: 5) =div(A) U div(p)
div(F) =0 div(®) =0
div(¥) = <f> div(E) = dom(E)

Figure 2: Defined variables of patterns and contexts

Hypl Hyp2

ZrxAV \- x: A ETx:A-V hx: A
ST, A; ™ I- Ny : Al E;T;A;™ h iV, : "2
S;r;A;N h (Ny,N3): A:1&As G

ETAY hIV:Akd, E.p-At' h AT: Ju&ds
ULAT h mN Ay S;i";A,—P \- 2AT : n o

Ll AAMVEN:B [+T;A,z: AV h AT B

—o-|

SIA* h AX.V:A-A St AA h AxiV iA— B

Sr:A:A h AhiA—E ETL;¥ F AT, :A
E;r.A-Vr - NiN; :B

E:r;Ai* hAT,:A—0B S]MAs* T AhA
E;F;Al,Ag;\I’ [Nx"‘NQ:B nE

ISTF AR\~ L5 {85y

i iTHGANP R ANA
E;T;A* I- Al (7TAT V¥ 1, A

SrA;¥ h AT :Vi:7.A() Sk ity
E;r;A;* h N[t] : At

v-E

Figure 3: Type system for Terms

S50:AT h N:A »
LAY EN#A

Hyp3 R
v u:SFu & 50qW F 141

#
SrT-Ar*hM , 81 SIFA2* F My#5,
Sr:AisA2V h My e M #5: ®s,

fol

AT M#S5 ‘R A0 M 4
SrA# h inlM#5i€)5, E:;r;A:* hinr M# 5i©5;

&-Re
S5V hN:A
IhT; <0 F IN#1A™

5=naS(@ =;rLA# H M#s(g
ETMN;« F fold(M) #5

fold:R

E;Iy ¥, v*:5 h M#S -
2;r.-;* hnu.M"s

E;rA* n M #X(b) Eht:y
S0 00 F [< Afl #3i :7.5(i)

Figure 4: Type system for Monadic Terms

ET:AN\- M#S .
S;rrA;* hMH-5*"

I;TALt h- iV{S ST, A,p:SEFE+ &
E;r;Ai,Az;* hlet{p} =NinE -h 5

{(}E

Figure5: Type system for Expressions

T%Z =N AM#SE -f S

S, TXAAV H TwZ " LAp i Si,P2-2'* hh T%Z
TTAXNAN h T%Z Er;Ap ®P2 SiesSa;* hT %z

SSTA* hT%Z EiFiALp- Si.a5(@)i< h T% 2
EirAl:1* hTwZ ~ ETAfold(p) :/xa5(@);* h T%Z

E2:7F,Ap:5* hT%Z
E;T;A,[i,p] :3t:7.S;* I-T%Z

3-L{ €T.T.A,p, %, 2)

X:r;A,pi:5i;" h Mi #5 E:T; Aopy : Syitt h MZ#S@
LA pcp2: S1 985 ¥ F M| Ma# S

L ps

A p :S; W E - 8 LA, p2: 8% h £, -h 5 o
A pp2: 516558 F By By + 8

Lg

Figure 6: Type sysem : Lt rules for patterns

monadic terms and expressions only. We call aterm, monadic term or expression closed if it has no free
variables. Apart from these restrictions, dl other constructs in/CLL (®,_inl, inr,!, fold and existentials)
are evaluated eagerly. Vaues for/CLL are described below:

Term values, V = XN\ XN\ {E} \ (Vi, V) | Ai.N
Monadic values, M, ::= V|My ® My, \ 1 |inl M, \iinr My \ \V _fold M, | [t, M\]

There are no values at the expression level, because expressions evaluate to monadic values. We define two
operations on terms, monadic terms and expressions of/CLL: left™ and right”, which are the left and
right case branches for the choice variable C respectively. Figure 7 defines some of the interesting cases
of these operations. The definitions for the remaining syntactic constructors are obtained by lifting these
definitions homomorphically. Thus left.(x) = X, left{(XxN) = Xxleft<;(N)g left.(iVi Ny) =
lefto(7Vi) leftc(iVy), leftc(Ali 3My) = left(Afi) ® left.(My), left.({"}) = {left.(£)}, etc.
The result of substituting a monadic value M, for a pattern p of the corresponding "shape" in aprogram T
(subst(M/p, T)) is given in figure 8. This subgtitution is defined by induction on the structure of the pat-
tern p. The base subgtitutions [V/X] and [t/i] are the usual capture avoiding substitutions for free variables
and free index variables respectively.

The call-by-value evaluation rules for/CLL are given in figures 9, 10 and 11. We use three reduction
judgments - N —s N, M i> M and E A+ E. Therules are standard. We alow reductions of M\
and M» to interleave when we reduce M\ ® M,. Thus the two components of a tensor may be evaluated
in parallel. For reasons mentioned earlier, pairs and the monad at the term level are evduated lazily. The
reduction rules for abstractions and applications are standard call-by-value.

10

lefto(Afi|cM2) = Mi lefto(Mi|eM,) = lefto(Mi)|clefts(Al,) e” C
lefto(Ey|cEa) = By left¢(E1|cEs) = left (£a)left(£2) «=xC

leftc(let {p} = N inE) = (let {p} = left(IV) inleftc(£)) (C & dv(p))

rightc(M ich 2) =M; rightc(M xleM 2) = rightc(M i)lerightc(M 2) e” C
rightC(ElicEg) = Fy rightc (ElleEg) = I‘ightc (El)lerightg (Ez) eF# (¢

right.(let {p} = N inE) = (let {p} =right(iV) inrightc(S)) (C " dv(p))

Figure 7: Choice projedtionsfor/CLL

T::=JV|Af | £
subst(I/1,T) =T subst(y/x, T) = T[VIX]
subSt (1/1x, T) = subst(V/a;, T) subst([t, MJ/[i,p], T) = subst(Afu/p, T[t/i\)
subst@GM /(p1lcp2),r) = subst(M,/pi,left(T))
subst(tar M,,/(pi|cp2),r) = subst(M,/pz,right(T))
subst(M;,; ®My/p! ®P2,T) = 8Tib8t(My2/p2svbst(Myi/pi,T))
subst (kM ;)f-tefp). T) = Subst(My/p,T)

Figure8: Qubditution of monadic valuesfor patterns

AT -> AT N - N — g

—

TTIAT > m N’ 7T.N - moN'
~ Om P
— N AT, -»N, T
w2 {Nh
iVi— N[. Ar, TV . : : o AAPP
. i — . i :
N - N{ N ANy — Né L Y - XLAPP
—LAPPi — 362 -
Nl ~N2_> Af{*AA V"*NZ - V AJ'VZI (AX.AT) V — N[V/&?]

N -+ N' — AAPP

NM -~ AT W (A TAQ[t] — ATV
Figure 9: Reduction for teemsg N -+ N'

N AN
N ~ N

N -* N’
AN *-+ \N'

—T

> >

M; ™ M[Mo, N ML

—_—

~ 0,

Mi®M ,»>M{®M 2 MigM,«>Mi®M 2

M ~ MF M ~ M?
. . 7 Hml . . /A02
inlM h> inlM intM »> inrM

M.>M"
foldM H” foldM'

= FOLD

MAM

[t, M] — [t.,M’] = p,u.M — MLUU,M/H] —

Figure 10: Reduction for monadicteaems M 1= A/

M H+ M’ - - <. LETRED
M A> M"T A" —tet W} = {Mi,}dA E' <> subst(M,/p,E)

N -+ N — LET;
let{p}=ATinE " let{p}=N'inE

E ~ Ef —e LET,
let {p} = {E} inEi > let {p} ={g’} inE"

Figure 11: Reduction for expressions, E <-+ E'

12

Contextsfor expresson evaluation:

CD = [l
| let{ p}
| let{p}

NxnC[]
{Cl[1}znE

Reduction rules:

M H> M Mclosed .
C[M] -+ C[MT]

(et {p} = {M} in E) dosd
Cllet {p} = {My}in E] " C[subst(M\/p, E)]

N -> N N closed

— LETRED

- LET}

Cllet{p} = N*nE] ~ Cjlet {\ = N' in E]
Figure 12; Generdized evduation rulesfor expressons

2.1 Parallel Evaluation in Expressions

Consider the following expression when dv(pi) D fv(N2) _ (p.
E = let{p} =Alin
let {pz} = N2 in£"

If E is a closed expression, then according to the rules in figure 11, it is evaluated as follows. First Ni is
evaluated to a term of the form {E\}. Then E\ is evaluated to a monadic vdue My, of shape p\. This
monadic vaue is then substituted for p\ in the expression_let {2} = A”_in E'. Subsequently, N, is
evaluated. But by the given condition N2 is a closed term. Hence subst(My/pi, N,) = N, and therefore
there is no need to postpone the evaluation of N2 until N\ is completely evauated. We may interleave or
pardlelize the evaluation of N\ and iV,, without affecting the result of the computation. This idea alows
us to generalize the evauation rules for expressions to those shown in figure 12. The generalized rules for
evaluating expressions are presented using evaluation contexts on expressions. We obtain parallel evalua
tion from these rules using the following heuristic - if E is a closed expression and E = Ci[Ei] = CjE)]
where Ei and E;, are closed and non-overlapping sub-expressions of Ey then E\ and E, may be evauated
in paralel.

Even though these generalized rules alow parts of expressions to evaluate in parale, they provide no
primitive for communication between simultaneoudly evaluating sub-terms. In section 3, weintroduce /CLL,
which is a concurrent logic programming language that allows asynchronous message passing between
parallel processes.

2.2 Type-Safety

We establish the type-safety theorem for/CLL by proving progress and preservation theorems. The progress
theorem dtates that atyped term is either a value or it can step further. The preservation theorem says that

13

E;r;AN=Er;A,l :1 ‘=“IIE;T,X:A;A«: ET.A,\W\A

-©

E0A D S, S =5 A,p1@p2: 51 @5 -

Sz:7.r;Ap:S(i) <EET;A,[i,p] : S:7.5(i)

= -fold

E; T; A p: 5(/xab(a) <=E; T; A fald(p) : fia.Sa))

—.rer E;T,A<=E[T;A’ ET;A'«=E"r’/;A"
ET.A«=E T A ETAA=E r A"

+—=:-TRANS

Figure 13; Context entallment, S; T; A «<= E'; T A’

reduction of atyped term under the evaluation rules preserves its type. Together these two imply type-safety
i.e. any typed term either evaluates to a value or diverges indefinitely. In order to establish these theorems,
we need afew results.

Notation 1. Weuse T % Ztodenote any of iV : A, M#50rE = S

Definition 1 (Context Entailment). Therelation E; T; A «= S'; H; A", read as S; T; A entailsE”; T; A",
is shown in figure 13.
Lemma 1 (<== properties).
1. IfE;T;A<=S;T,A then SD E'andTDT.
2. IfST; A <= E"; T'; A, then
@ dv(r) U dv(A) = dv(r’) U dv(A7)

(b) div(A) = div(A7)
(© div(S) Udiv(A) = div(E) U div(A7)

336V ETA* h T%ZandE T;A <™ ST A’, then P can be extended to a derivation
P::E".r";A";* h T% Zusingtherues® - L, 1-L,3-L,!-Landfold- L only.

4. (Weskening) If E; T;: A <= S"; T"; A’, then
@ E.E";r;AnrS S rh AT
© sr,r’ANE r kAT
© S T;AA"<=S";T /A", A”
Proof. In each case by induction on the given derivation E; T; A <= S"; T, A”.

Definition 2 (Height of a derivation). The height of a derivation V, height(P) is defined to be the length
of longest path from the conclusion to any lesf.

14

Lemma 2 (Weakening). If ¥;T'; A; ¢ + 1, then
L. Z,i:vTA,0 + 4.
2. ;0,2 A A0 F 4.
3.5, 00 u: S F 9.

Proof. By induction on the given derivation.

Lemma 3 (Left inversion).
1. IES:T;A,p:1:0 F o, thenp =1and Z;T; A; U F o),
2. HS;T;A:p:!A: U + o, thenp =lzand T: T,z : A;A; ¥ F .
3. K X;T;A,p: A; ¥ + 4, thenp = z.
4. Z:T;A,p: 51 ®82; ¥ + ¢, thenp=p; @poand ;T A,py : S1,p2: S2; ¥ F 2.
5 HS;T;A,p:3:4.5;9 + ¢, thenp=[i,py]and Z,¢: y;[5A,p1 : S; ¥ F 9.

6. HX;I5A,p: 5185 ¥ F o, thenp = p1|cp2, &1 A, pr - Si; ¥ F lefte(v) and ;T3 A, po
S2; ¥ + right (¥). (Left (N : A) = left((N): A, etc)

7. UZ;T;A,p: pa.S(a); ¥ + ¢, then p = fold(p’) and ;T A, p' : S(pua.S(a)); ¥ + 2.

Proof. Each statement may be separately proved by induction on the given typing derivation.

Lemma 4 (Strong right value inversion).

1. KD :: ;A9 + V : A — BthenV = Az.N and there is a derivation D’ :: ;T :
A;A; ¥ + N : Bwith height(D’) < height(D).

226D = S;TA; ¢ + V: A — BthenV = Az.N and there is a derivation D’ =: ;T A,z :
A; ¥ + N : Bwithheight(D’) < height(D).

3. D ETA;9 + Vo A&Bthen V = (N7, No) and there are derivations D, :: ;T A; W + Ny ¢
AandD; :: ;T;A; U + N; : Bwithheight(D;) < height(D) and height(Ds) < height(D).

4. D :: S;T;A;0 + V. {S} then V = {E} and there is a derivation D’ :: ;T A; ¢ + E + S
with height(D’) < height(D).

5 ¥D = S T;A0 F Vi Vi 4.A(R), 7 € Tthen V = Ai : v.N(2) and there is a derivation
D :Zi:y;5A; ¥ F N(2) : A() with height(D’) < height(D).

Proof. Each statement can be proved separately by induction on the given typing derivation.

Lemma 5 (Right monadic value inversion).

. ST A8 F My #Athen M, =Vand ;T A0 - Vi A

15

2. If£Er;A# h My# U, then M, =IFadfoome S ad T, H;Tx~ \- V: Aad
E'.rV<*=S;r;A.

BIST,A;$ h M, #S ®S,, then M, = My, ® My, and for some E', ', A"y A%, the fallowing
threehold:

@ S'jr'rAJ, «= ET,A

(b) E'jT'jAi;* h A/,,"5!

© S'.r;A%# h M #5,
4. IfE;r.A;tf h My, #1,then M, = 1 andfor omeE ad ", E'; T'; » «= S.r.A.
5 fET;A;* h M, #S© 5,, then one of the falowing holds

@ M, =inIM~andE;r;A;* h M\#S

(b M, =inrM£andE;r;A;# h M\#S

6. IfTST,A;* h My#3i : -y.5i), then M, = [t, MY ad for ome S, TadA', the following
three hold:

@ S.r;ANE A
bE Nht:7
(© E%r;A%* h M#S1)
7. 1fS;r.A;# h M, #/za.S(a), then M, = fald(AM) ad S; T; A;* h M', # S(ixa.S{a)).
Proof. In each case by induction on the given typing derivation.
Lemma 6 (Strong right inverson for expressons).

1. fV: S;T;A" h M +- SthenthaeexigsV :: ST; A;* |- M # 5with height{V) <
height(D).

2. IfP:: S;T;A;* h let {p} = Nin£" -- 5', then there exis V,T', A\, A';, SPi,D, such that
@ E'jrjAi. AN *= S T;A
(b) X - Sr'; Aj* h N {5} andheight(Pi) < height(P)
(© P, “E"r;As,p: 5 # h £ = 5and height(X>,) < height(P)
Proof. By induction on the given typing derivation.
Lemma 7 (Subgtitution).
1. IfP::S;r;A;# h V: AandV :: ET; A',a?: AV \- T% Z,thenS;r. A,A";* h T[V/X] % Z.
2. IfS h t:zandP'::S,i:7;r;A;* h T(t) %Z(@i).thenE.r[*/*;A[t/<];*[*/*! " T(t)%Z(t).

3. IfPirSjrjA;* h Ak #5andP' :: S.r-A',p: S;* h T%Zthen
S T,A A * h substCM™p, T) % Z.

4. 1f2>:E;r;;tt h F:Aand2’ 1 S;1>: A;A* h T%Z, then E;T; A", tf h T[VIX]%Z.
5. IfAE;r..;* h M#SandD’ :: E;T; AT, ¥tE. 5 h T% Z, thenS.r. A", * h T[M/U]%Z

Proof. Statements (1), (2), (4) and (5) can be proved by induction on derivation V. To prove (3), we use
induction on the derivation P, lemmas 2 and 3 and statements (1) and (2).

Lemma 8 (Preservation).
1 1fS:r;A:* h NAandN -> TV, then E;T; A; tf h iV : A
2. 1fS;r.A;* h M#5andM ~ M’ then E;T; A;# h M’ #5.
3. IfEr;A:* hf-r 5and£ ~> £, then E;T; A;# h E' 1 5.

Proof. By simultaneous induction on the height of the given typing derivation, using lemmas 7,6 and 4. For
the case of expressions, we perform a sub-induction on the evaluation context C[] and use lemma 6.

Lemma 9 (Progress).
1 1fS=::- h VA, theneither iV = V or for someiV’, AT > iV
2. If S; e e:¢ h M #5, then eéither M = M, or for some M\M ~ M.
3. IfE; e e« h .E A 5, then either £ =M, or for some£’, E° — E.

Proof. By induction on the given typing derivation.

Theorem 1 (Type-Safety).
1L IfSeee h N:AandN -+* AT then either AT = V or there exists AT” such that AT -> AT".
2. IfE e e h M#5and M >->* M\ then either M’ = M, or there exists M" such that M7 ~ M"".
3. 1fS e e h E'+ 5and £ ~ EY, then either £7 = M, or there exists E" such that EY -~ E".
Proof. By induction on the number of steps in the reduction. The statement at the base case (no reduction)
is the same as the progress lemma (lemma 9). For the induction step, we use preservation (lemma 8).
2.3 Examples

In this section we explain program construction in/CLL through a number of examples. We present these
examples in ML-like syntax. We assume that we have named and recursive functions, conditionals and
datatype constructions at the term level, which may be added to/CL L presented above in a straightforward
manner.

Divideand Conquer. Our first example is agenera divide and conquer program. Let us suppose we have a
type P of problems and atype A of solutions. A genera divide and conquer method assumes the following
input functions:

1. divide : P — P x P that divides a given problem into two subproblems, each of which is strictly
smaller than the original.

17

2. istrivial: P—e bool that decides if the input problem is at its base case.
3. solve : P —> Athat returns the solution to abase case problem.

4. merge : A — A —e A that combines solutions of two subproblems obtained using divide into a
solution to the original problem.

In/CLL, we have no product type (which would be present in a non-linear language). So we encode
the product type as A x B = {\A < \B}. Then we have the following divide and congquer function,
divAndConquer:

divAndConquer =
X(divide) : P -» {IP<g!P}. \(istrivial) : P -» bool.
X(solve) : P-+ {LI}. X(merge) : A->A->{L4}. Ap: P.
if_(istrivial p) then so/ve p
else

{
let {Ipi®!'p2] — divide pin
let {!s} = divAndConquer divide istrivial solve merge p\ in
let {\s2} = divAndConquer divide istrivial solve merge p24in
let {\s} = merge s\ 52.n
Is

The return type of divAndConquer is {\A}. Observe that in this program, the two | et eliminations corre-
sponding to the two recursive calls may occur in parale i.e. the terms divAndConquer divide istrivial
solve merge p\ and divAndConquer divide istrivial solve merge p2 can be evaluated simultaneously.
This is because the second term does not use the variable s\. Therefore the program above attains the paral-
lelism that is expected in a divide and conquer approach.

Bellman-Ford algorithm. We now present aparallel implementation of Bellman-Ford algorithm for single
source shortest paths in directed, non-negative edge-weighted graphs. Assume that a directed graph Q has
n vertices, numbered 1,..., n. For each vertex we have a list of incoming edges caled the adjacency list
of the vertex. Each element of the adjacency ligt is a pair, the first member of which is an integer, which
is the source vertex of the edge and the second member is a non-negative real number, which is the weight
of the edge. The whole graph is represented as a list of adjacency lists, one adjacency list for each vertex.
During the course of the algorithm, we have approximations of shortest distance from the source vertex to
each vertex. These are stored as alist of reals. The type of thislistiscdled di stlist.

type distlist = {lred} list

type adjlist = {lig> !red} list
type edgelist = {ladjlist} list

The following function finds the ith element of alist 1.

18

val find: falist = int = 'a
find =
AZ'a list. A :int.
if (i=1) then head(® else find(tail @) (i- 1)

The main routine of the Bellman-Ford algorithm is a relaxation procedure that takes as input a vertex, v
(which in our case is completely represented by the adjacency list, al. The exact vertex number of the
vertex is immaterial), a presently known approximation of shortest distances to al vertices from the source
(called dI), the present known approximation of the shortest distance from the source to v and returns a new
approximation to the shortest distance from source to v.

val relax: adjlist — distlist —» real — {!real}
relax =
X(al) radjlist. X(dl) rdistlist. Ad:real.
case(al) of
- > (19

I (a:al) =>

letfv<g)w} = a in
let{'d} = find dl v in

iet{!d"} =* relax a dl din
Imin(d*, d’ + wj)

Thecdls find dZ vad relax a dZ d can be reduced in pardld in the aove function. The man
loop of the Belman-Ford dgorithm is a function relaxal |, that applies the function rel ax to dl the
vertices. To maeke the code smpler, we assume that this function actudly takes as argument two copies of
the distance list. To make the code more presentable, we drop the A-caculus notation and use sandard ML's
fun notation.

val relaxall: edgelist —e distlist —e distlist —> {ldistlist}
fun relaxall [] [] dl = {![]}
| relaxall (al:d) (d:dV)) =

{
let{!az'} = al din
let\d} = din
let{!dl} = relax aVv dl d! in
!Z% = relaxall el dv dl in
} ({1} 2

19

In the above function, the calls relax al’ dl d and relaxall el dl’ dl can be reduced in parallel
This results in simultaneous relaxation for the whole graph.

Suppose now that our source vertex is the vertex 1. Then we can initialize the distlist to the value
[0, 00, ...,00]. Using this initial value of the dist1ist, we iterate the function relaxall n times. The
resultant value of distlist is the list of minimum distances from the source (vertex 1) to all the other
vertices. The function BF below takes as input a graph (in the form of an edgelist) and returns the
minimum distances to all vertices from the vertex 1.

fun BF (el: edgelist) =
(* makedistlist: int — {ldistlist} *
let fun makedistlist 0 = {![]}
| makedistlist k =

{

let{ll} = makelist (k—1)

= I({loo} = 1)

}

(* loop: int — distlist — {ldistlist} *)
fun loop 0 dl = {ldi}
| loop k dl =
{
let{ldl'} = relaxall el dl dl
in
loop (k—1) dI
}

(* length: ’a list — {lint} *)
fun length [] = {!0}
| length (z:1l) =
{
let{llen} = length(l)
in
(1 +len)

let{In} = length el in
let{!l} = makedistlist (n—1) in
let{!dl} = loop n ({!0}::1) in

\dl

end

20

3 /CLL: Concurrent Logic Programmingin CLL

As mentioned in the introduction, an alternate paradigm used for concurrent languages is concurrent logic
programming [34]. In this paradigm, proof-search in logic smulates computation and assignment to vari-
ables as well as communication are implemented through unification. Concurrency is inherent in such a
setting because many parts of a proof can be computed or searched in paralel. We use similar ideas to
create a concurrent logic programming language that allows concurrent computation of terms. We call this
language /CLL.

/CLL differs significantly from other logic programming languages. Traditionally, logic programming uses
only logical propositions and predicates but no proof-terms. Even if proof-terms are synthesized by the
proof-search mechanism, they are merely witnesses to the proof found by the search. They play no compu-
tationa role. In sharp contrast, we interpret proof-terms as programs and use the proof-search mechanism
to link programs together. This linking mechanism is directed by the types of the terms that can be viewed
as logical propositions through the Curry-Howard isomorphism. The whole idea may be viewed as an ex-
tension of the Curry-Howard isomorphism to include proof-search - in computational terms, proof-search
corresponds to linking together programs using their types. For example, if Vi : A—o B and iV, : Ag then
the proof-search mechanism can link Ni and iV, together to produce the term Ni * iV, : B. /CLL extends
this ideato dl the connectives in FOMLL, and is rich enough to express most concurrency constructs.

We present /CLL as a Chemical Abstract Machine (CHAM)[4, 5]. The moleculesin /CLL CHAM configu-
rations are/CL L programs annotated by their types. The rewrite rules for these CHAM configurations are
derived by modifying the inference rules for a proof-search method for FOMLL. One question that remains
at this stage is which proof-search method we use for FOMLL and we answer this question next.

Proof-search in logic can be implemented in two different but related styles. In the backward style, search
is started from the proposition to be proved as the goal. Each possible rule (assumption of the form A —> B)
that can be used to conclude this goa is then considered and the premises of the rule applied become the
subgoals for the proof-search. This process of matching a goa against the conclusion of arule and making
the rule's premises the subgoals for the remaining search is called backchaining. It is continued till the set
of goals contains only axioms or no more rules apply. In the former case, the (sub) god is provable. In
the latter case, the (sub) goal cannot be proved and the proof-search must backtrack and find other possible
rules to apply to some earlier goals in the search. There is an inherent non-determinism in this proof-search
mechanism - at any step, one may apply any of the possible rules whose conclusion matches the goal at
hand. This kind of non-determinism is called don 't-know non-determinism. Since there is a possibility of
backtracking if abad rule is applied, search strategies are complete in the sense that proof-search will always
find a proof of a proposition that is true. Most logic programming languages like Prolog use this style of
theorem-proving.

A very different approach to proof-search is to start by assuming that the only known facts are axioms and
then apply rules to known facts to obtain more facts which are true. This can be continued till the goal to be
proved is among the facts known to be true, or no new facts can be concluded. In the former case, proof-
search succeeds whereas in the latter case it fails. The process of applying arule to known facts to obtain
more facts in calledforward chaining. In this style, search is exhaustive and does not require backtracking.
This is known as theforward or inverse style of theorem-proving. One important aspect of the forward style

21

in linear logic is that the facts obtained during this method are also linear. As a result, each fact may be
used to conclude exactly one more fact and subsequently be removed from the set of known facts. Thisre-
introduces non-determinism in the facts we choose to conclude. It aso introduces the need to backtrack if we
want completeness. However, in some applications, incompleteness is acceptable and the forward method is
implemented without backtracking. Such implementations work as follows. At any stage, the proof-search
procedure non-deterministically picks up any of the facts that it can conclude and continues. Such a proof-
search procedure is non-deterministic in a sense different from don't-know non-determinism. The procedure
simply concludes an arbitrary selection of facts and terminates, without caring about the goal. Hence this
non-determinism is caled don 't-care non-determinism. A large number of concurrent logic programming
languages use this non-determinism because it closely resembles non-deterministic synchronization between
parallel processes in process calculi. We aso choose to use this method of proof-search for /CLL. In our
case, using this method is even more advantageous because we use proof-search to link programs together
and execute them. Backtracking in such a setting is counter-intuitive and computationally expensive.

Our computation strategy for /CLL CHAM configurations is as follows. Each CHAM configuration is
started with a certain number of type-annotated terms and a goa type. Once started, the configuration is
alowed to rewrite according to a specific set of non-deterministic rules, which are based on forward chaining
rules for proof-search in FOMLL. We do not backtrack. If ever the CHAM configuration reaches a state
where it has exactly one term of the goal type, computation of the /CLL CHAM configuration succeeds, else
it fails. Thus we use don 't-care non-determinism and CHAM configurations can get stuck without reaching
the goal. As aresult, we do not have aprogress lemmafor /CLL as awhole. However, we develop anotion
of types for CHAM configurations and prove a type-preservation lemma for CHAM rewrite moves. This
preservation lemma implies a weak type-safety theorem for /CLL CHAM configurations. This theorem
states that individual fCLL terms in /CLL CHAM configurations obtained by rewriting well-typed CHAM
configurations are either values or they can reduce further. As before, we are interested in the execution of
closed terms only and we assume that terms in /CLL CHAMSs do not have free variables in them. In order
to demonstrate the expressiveness of /CLL, we present atrandation of an asynchronous 7r-calculus [6] to it.
Examples of more sophigticated programs in /CLL are described in section 5.

3.1 Introducing /CLL

We introduce constructs and rewrite rulesin /CLL step by step. Informally described, our CHAM solutions
consist of/CLL terms labeled by their types. We use the notation A for such solutions.

A = « [AN:AAM#5|ALE =5

The rewrite rules on these solutions fal into three categories. The first one, called structural rules alow
rewrite of monadic values. These rules, in general, are derived from the left rules for synchronous connec-
tives of a sequent style presentation of FOMLL. Like their logical counterparts, they are invertible. They
correspond to heat-cool rules in the CHAM terminology. However, like other well-designed CHAMSs, /CLL
uses these rules in the forward (heating) direction only. We use the symbol — for structural rules oriented in
the forward direction.? The second set of rules isfunctional rules that alow in-place computation of terms
using the evduation rules for/CLL. These rules do not affect the types of terms as shown in lemma 8. They
are not invertible and correspond to administrative moves in CHAMs. We denote functional rules using the

traditionally, the symbol 2z isused to denote heat-cool rulesin CHAMS, in order to emphasize their reversbility. We use —
ingead of * to emphasize that /CLL usesthese rulesin the forward direction only.

22

symbol -». Thefina set of rules is derived from left rules for asynchronous connectives of FOMLL. These
rules are called reaction rules because of their close connection to reaction rules in CHAMs. Reaction rules
are also non-invertible. They are denoted by —>. We do not have any rules corresponding to right sequent
rules of asynchronous connectives, because from the point of view of a programming language they corre-
gpond to synthesis of abstractions (functions) and additive conjunctions (choices). For example, consider
the following typing rule.

£r.Az:,4;# h N: B
E:T:A:* h XxN: A -0B

—o-|

If used as arule in a proof-search, the proof-term Xx.N is synthesized by the proof-search mechanism.
However, from the point of view of a programming language, this proof-term is a function whose exact
behavior is not known and hence we do not use the above and similar rules in our proof-search.

311 Structural Rulesfor Monadic Values and Synchronous Connectives

As mentioned earlier, structurd rules are derived from left rules for synchronous connectives and like ther:
logica counterparts, they are invertible. For practical reasons, we use them in the forward direction only.
The principal terms on which they apply are aways monadic values. We systematicaly derive structural
rules for al synchronous connectives by looking at the corresponding typing rules.

Multiplicative Conjunction, (®). Consider the left rule for tensor in FOMLL:
A, p : S1,pe i 550 o
E:r;A,pi®p,:5"i®5,;* |- ~
This rule is invertible, as proved in lemma 3. In order to derive a CHAM rewrite rule from this rule, we

substitute a monadic value M, for pi ®p,. Since the typeis S ® 52, M, = My; ® My,. This gives us the
following structura rule: :

A, My ® M) #(Si ®S) -A A, Mys #Si, My #S,
Linear Unit (1). Reasoning as above, we arrive a the following rule for the unit:
ALi# - A
Additive digunction (©). Consider the left rule for additive digunction:

E;r;A,pi:Si;tf h E; -. S E;T;Apy : So; tf h E; - S -
L0 A, mip2: 518 5:% F Ey|¢cE v S

Lg

From the invertibility of this rule it follows that whenever we can use Si © S; to prove some conclusion S,
we can also use ether Si or S; to prove S. Operationdly, this decision can be made using the actual term
that hastype Si © S,. Ifit hastheforminl Mi, then we use Si and if it has the form inr M,, weuse S,.
This intuition gives us the following two rewrite rules;

55_@le# (Sl @52) - [Sst#Sl

A,inrM #(SiffiS,) -A A,My#S,

23

Thus © acts as an internal choice operator in our language.®

Iso-recursive type (fj,a.§a)). We use the following rule for iso-recursive types.
A fold(M,) # na.S@a) -+ AMy # S{pa.S(a))
Existential quantification (3). The l€ft rule for exigtentiads is:

E,2:7.r;A,p:5;* h L
E;r;A\[1,p]:3i:7.S;tf h

This rule suggests that in our rewrite system we add a context S of index variables and the rule below. We
use the symbol | to separate different kinds of contexts in CHAMS.

E|A,[t,M,]#3<:7.5(1)) ~ E,i:7|A,M,#S(i)

While attractive from a logical point of view, such arule is not sound for a programming language. Firgt,
M, does not have type S(i). Instead it has the type St). Thus the right hand side of this rewrite rule is
"ill-formed". Second, we have completely lost the abstracted term t, which is not good from a programming
perspective. The other aternative shown below is "type correct” but eliminates the abstraction over t, which
is contradictory to the idea of using the 3 quantifier.

A [t,M] #3:: Hi) ~ A, M, #Ht)

To correctly implement this rule, we keep the abstraction t/i in a separate context of substitutions. We
denote this context by a.
a»=.|ath:7

Our correct rewriteruleis:
E|*|A,[t,M]#3i:7.S(i) - E,*:7|ajtli:7|A,My#5(t)" (i fresh)

If we have a configuration E | & | A, M, # 5, then M, has the type JaJ, where § 4] is the result of apply-
ing the substitution & to 5. Since nested existentials may be present, the i chosen at each step is fresh. An
important invariant we maintain while evaluating /CLL CHAM configurations is that terms, monadic terms
and expressions in CHAM solutions are always closed under B i.e. if T % Z e A in aCHAM configuration
El&T 1A, thenfv(T) ndom(&) = <t>. Thus the subgtitutior a is meant to be applied only to types, not to
proof-terms.

Exponential (!). Consider the left rule for exponentias:

E;F,x: A;A\NI>hi\) "
DA AT F oy

This rule suggests that we introduce a new solution f of unrestricted valuesi.e. values that may be used any
number of times. Due to typing restrictions in/CL L, al such values must have asynchronous types.

f = « \tV:A

*Theproof-termsinl M, and inr_M, play an important rolein the use of theserules. In linear logic without proof-terms, it is
not possible to conclude S\ and 52 from an assumption S\ 0 52.

24

The corresponding rewriteruleis:
Elalf|A IF#L4 > “XatV AA

Type Ascription. Once an expression evauates to a monadic value or a monadic term of type A evaluates
to avalue, we need to be able to change its type ascription in order to evaluate further. Thisis achieved by
the following rules.

S|6|IFIA F#A -> © 2&tAVA
T|&|T 1AM, & 5 -> S|<r|f|A,M #5

3.1.2 Functional Rulesfor In-place Computation

We aso need some rules to dlow evaluation of terms and expressions to reduce them to values. One such
rule is the following:
N-* N
E[2r|f|A,iV:A - S|<x|f|A, N : A

The type preservation lemma (lemma 8) guarantees that if N has type A, then so does N'. The remaining
rulesin this category are:

M- M

slalf [A,M # 8§ - SIK7|fIA,M'#5
ENE

TI6IT|AE + 5 -»E[a|f|A£ 55

3.13 Summary of Structural and Functional Rules

We summarize al the structural and functiona rules in figure 14.

3.1.4 Reaction Rulesfor Term Valuesand Asynchronous Connectives

Consider a sequent style presentation of the asynchronous connectives of FOMLL (&, —a — V). The left
or elimination rules for such a presentation are given in figure 15. Using these rules, we can derive one
possible set of CHAM reaction rules for /CLL, as given below. These logic rules are not invertible and the
corresponding CHAM rules are irreversible. As we shall see, these rules are too general to be useful for
concurrent programming, and we will replace them with adifferent set of rules later.

E|(7|f,V:A|A —> Ela|f,V AAVA
Slolt |A (N N2) s Aikdy — SI<TIF|A N 1 A,
SIS |T A (N No) : A1&As —* S|2r|f|AIV2: A

X\a\nA{E}:{S} —-e ER|f|AJE- 5

E\&\t\&,Vi:A-0B,V,: A —> E\ajfjA,V, V,: B

Sjalf,V,: AAAV,: A->B —« S|&\T,V,: A\A,V,V,: B
El-t:7

S|o|T1A,N Vi 7. A6 — S\A\T\A,N[t] : A{t)

25

CHAM solutions

A = AN:A A ,M#5|AE + S
f = -tVA
a 1= \at/i:7
CHAM configurations
s|&|T]A

Structural rules, £ 2| f|A = & [TV] A’

SIGITIA, (My, ® M) # ($1®82) = E|6|T|A, M, # 51, Mo, # S

S)eIf|A1#1 —~ Z|8|T|A

LIoIT] inl M, # ($1982) — E|cT|f | AMy # 5x

SIS7IfIA.INr M y#(5ie5,) - > » Elalf[AMy #S;

E|*[fIA fold(M,,)#Aia.,.S(@) — S[|a|f|A.M, # Sfiaa))

Llalt |a AtaMg)#8 (i) > E,i:ofFt/iio | F]AMy #S3)
S|6IT|A 1F#IA - T OXWEVALA
TIFITIA,V#4 — T}s|IT|AV:A
E|af|A,M, - 5 - E|af|A,M #5

Functional rules, S1alfIA -* E&] f]A

N — N -
SIGIFIA, N A > S[r|f \AN' A

M HH M’ —
Elalf |[A,M#5 ~> S|a|f|A,M"'#5
E — F e

S|o-|f\AE H- 5 -» S|(3-[f[A, A" = 5

Figure 14: Structural and Functional rules for the CHAM

26

Contexts

r=-r,"
A n= A\AJA\AS
if, ;= S\VA

T A - o

YT AAA -
LA - A TETA4A S ¢

INAA — o AR — o
T A ALB — v S:T:A A&B — o

oA, — A I AB — @
E;F;Al,AQ,A"OB - lb

5T — A S5TAB — o
I T:AA—- B — v

Tk oty LA AR — ¢ AS - 8
DAV v AGR) — ¢ I, 0A,{S} - 5

Figure 15: Sequent calculus left rules for asynchronous connectives

27

These simple rewrite rules, however, allow too much non-determinism to be useful in a programming lan-
guage. For example, consider the following configuration which uses an index refinement by sort v on the
types A and B:

kiymey|- |- |Vi: A(k), Va: (Vi:7.A(5) — {B(9)})

We expect the reaction to go as follows:

kiymeyl-1-1VicA(KR),Va: (Vi 7.AG) — {B()})
— kiyumen] -] Vi AGKR),Va (K] : A(k) — {B(K)}
Foyomeyl -1 Vi AGKR), VS : A(k) — {B(k)}
|- 1V3 ~ Vi: {B(k)}

—»*

— k:iy,m:v]|-
However, there is another possible sequence of reactions that gets stuck:

kiy,menl- |- Vi AR), V: (Vi v.AF) — {B(i)})
— k:iy,mivl- |- Vi Ak), Va [m] s A(m) — {B(m)}
—»* k:iym:vy]| -] |Vai:AKk), VY : A(m) — {B(m)}

At this point the CHAM configuration cannot react further. This problem has occurred because we chose a
wrong term (m) to instantiate the universal quantifier at the first step. In order to rectify this situation, we
use chaining of reactions i.e. a “look-ahead” to see what reactions to perform. One important problem at
this stage is to decide how much look-ahead to perform. At one extreme, we have seen that performing no
look-ahead at all is not a good forward chaining strategy. The other possible extreme is to perform complete
look-ahead, i.e. to predict all reaction steps needed to reach the desired goal. Unfortunately, this problem
is undecidable. Therefore, we choose a solution which lies between the two extremes. We let each reaction
chain correspond to exactly one focusing step in a focused theorem prover for our underlying logic.

Focusing in proof-search [3] was introduced as a method of reducing the search space of proofs. Tradition-
ally, focusing is used in backwards proof-search only. However it is possible to use focusing in a forward
chaining procedure (see for example [14]). Here we will try to combine focusing and forward reasoning to
obtain reaction rules for ICLL CHAM configurations that do not have the problem mentioned above. We
will start by combining forward chaining and focusing for FOMLL without proof-terms. Later we will add
proof-terms to our rules to obtain the reaction rules for /CLL.

Focusing with forward chaining in FOMLL. In a forward chaining procedure new facts are concluded
from known facts based on some rules. At any point of time in a forward chaining procedure, a certain
set of linear facts and a certain set of unrestricted facts are known to be true. We denote these using the
conventional notation A and I" respectively.

A = A,

| AAAS
r == -|IA

Since we are working at first order, the known facts can be parametric in some indexes. We record these
indexes explicitly in a context of parameters, X.

You= - | By

28

We represent the facts known at any time using the notation S;F; A. Now the principal judgment in a
forward chaining procedure is arewritejudgment E; F;, A —> S'; F'; A", which means that given the facts
E; F; A, we can conclude the facts E'; F'; A”. In thisjudgment, E\ F' and A’ are outputs. As it turns out,
since we are dealing only with asynchronous connectives here, S and F do not change in this judgment.
Thus we can write this judgment more explicitly as S;F; A —> S;F; A'. We have aready seen some
examples of rules of this judgment(with proof-terms) earlier. We abandoned these rules because they are
ineffective for linking programs. The rules we saw earlier are reproduced below without proof-terms.

A A &A; - I IA A

E;F; A,A]&AQ - E;F;A,Ag

Y IAA—-RB A — L T:AB

> T AAMA—-B — ET AAB
EF ity

LT A Vi v.A(7) — I A Af)

As we saw, these rules are too general in the sense that they allow too many possible computations, al of
which are not desirable. Going back to our example of the computation that got stuck, we observe that we
wanted to forward chain the two types A(K) and Vi : 7-A(i) —° {B(i)} to conclude {B(k)}. This required
instantiation of the second type with k to obtain A(k) —o {B(k)} and then an dimination of —o to obtain
{B(K)}. However, using the rules presented above, we could also instantiate Vi : 7~A(i)) —© {B(i)} with m
instead of k and reach a deadlock. As we noticed, we need to perform alook-ahead, or a certain amount of
reasoning to decide that we have to ingtantiate the second type with k, not m. This kind of look-ahead can
be done using focusing. Rather than arbitrarily selecting m or k to instantiate Vz : 7~A(i)) —= {B(i)}s we
begin afocuson Vz : 7~A(i) —o {B(i)}. Once this type is under a focus, we perform backwards reasoning
with backtracking on this type to decide what to do till we have either successfully concluded a fact, or we
have exhausted all possibilities.

We present a focused forward chaining procedure for FOMLL (without proof-terms) in two steps. In the
first step, we present some focusing rules that alow us to conclude a single fact of the form {S} from a set
of facts E; F; A. Thisjudgment is written E; F; A —> {5} . In the second step, we modify some of these
rules to abtain afocusing forward chaining procedure for FOMLL. The principal judgment of this procedure
isas mentioned before-S;F; A —e E;F;A".

Concluding single facts with forward chaining in FOMLL. We begin with the first step i.e. we present
focusing rules that alow us to conclude a single fact of the form {S} from a set of facts S; F; A. This
process consumes the factsin A. Figures 16 and 17 show four related judgments. All rules in these figures
are used backwards. The rules in figure 16 will later be replaced by a new set of rules to obtain a focused
forward chaining procedure for FOMLL.

The principa judgment in figure 16 is S;F;, A — {S}. We read this judgment as follows - "if we can
deduce E; F; A — {5} from the rulesin figures 16 and 17 using backward reasoning, then in a forward
chaining procedure we can conclude the linear fact {5} from the unrestricted facts in F and the linear facts
in A". Thus thisjudgment allows us to combine forward and backward reasoning. The proposition {S} is
an output of thisjudgment. In order to deduce S; F; A —e {5}, we must first focus on afact in either F
or A. Thisis done using one of the two rules that conclude E; F; A —> {S}. Once we have focused on
aformula, we move to the second judgment in figure 16 - E; F; A; A => {5}. The proposition A at the

29

Contexts

T = -A\TA
A = <] Ai4|A,5
ST,A > {S} (Inputs E, I\ A; Output: {5})
SV-A-A —+> IQ\ V-P A-A- A — SQ\
— —1 —
X T;AA -. {5} E.r,";A -> {5}

E;T;A;A =» {S} (Inputs S, T, A, yi; Output: {5})

--HYP _Sht:) ETAA®MD = {5 _
ZT5{St = St AVIiTA(i) = {5}

5 A A =« {5} y S;r;A;i, => {5}
T A A& 4, = {5} E.r;A; Aj&As = {S}

—&3

=ua -NP S;r;Azi? = {5}
41,49, P — B = {5}

. -y P LT, A;B = {5} _
;TA,P - B = {5}

Figure 16: Focused l€ft rules for asynchronous connectives (Part 1)

30

E;rA >p P (Inputs: E, I\ A, P; Outputs: None)
S"'p.A.A_<. I VL'P AL A. A p

STAA 54 P ST,AA -4 P

E;T,A;A =>, P (Inputs. E, T, A, A, P; Outputs None)

=4 —HYP Yty E;F;A;A(t) =4 P =4 -V
;TP =4 P LA Vi v.AG) =4 P

T;T5AAr =4 P S TiA42 =24 P

= &y =4 —&g

LA ALA =4 P Sr:AMi&"N2 = -P

A AP S;riAxE =4 P
A, P -—oB =4 P

=4 = =

- -4 P SrA g P
5 T;A;PP—B =4 P

A=

Figure 17: Focused left rules for asynchronous connectives (Part 11)

31

end of the three contexts is the formulain focus. {5} is an output in thisjudgment also. In thisjudgment,
we keep eliminating the top level connective of the formula in focus till we are left with a single formula
of the form {5} . Thisformula {5} becomes the output of the judgment. If this does not happen, we must
backtrack and find some other sequence of eliminations to apply.

In order to eliminate an implication (—o or —e), we have to show that the argument of the implication is prov-
able. Thisrequires the introduction of the auxiliary judgments shown in figure 17. They are E; F, A —" P
and E; F; A; A =>A P. The symbol A in the subscript of =>A and —" stands for auxiliary. Thesejudg-
ments are exactly like those in figure 16 with three differences. First, the conclusion is an atomic propo-
sition P instead of {5}. The proposition must be atomic because as mentioned earlier, our backwards
reasoning does not use any right rules. Second, these judgments are not principal; even if we can conclude
E;F;, A —" P, the forward chaining procedure cannot conclude P from the unrestricted facts F and the
linear facts A. Thejudgments of figure 17 can be used only to prove that the formula needed in the argu-
ment of an implication actually holds. Third, the conclusion of the sequent, P, is an input in the auxiliary
judgments. On the other hand, the conclusion {S} is an output in thejudgments of figure 16.

There are some remarks to be made here. The principal judgment S; F;, A —> {5} aways has afact of
the type {5} in the conclusion. Thus the forward chaining procedure always concludes facts of the form
{S} when it uses focusing. Further, backward search never eliminates a monad in focus. Thus the monad is
also the constructor where backwards reasoning stops. Having such a clear demarcation of where backward
reasoning stops is essential in writing correct programs.

Forward chaining rules for FOMLL. So far we have seen how we can combine focusing with forward
chaining to successfully conclude a single fact from a number of given facts. We now come to the sec-
ond step. We use the rules in figures 16 and 17 to obtain a forward chaining procedure for FOMLL. As
mentioned earlier, the principal judgment we want to obtain is E; F; A —e E;F; A”. Thisjudgment is
to be read as follows - "given the parametric index assumptions in S and the unrestricted facts I\ we can
conclude the linear facts A' from the linear facts A". We adready know how to conclude a single fact from
a given st of facts. Now we alow this deduction to occur in any arbitrary context. We want to say that
if E;F; A -* {5}, then we can conclude E, E"; I\F"; {5}, A" from the facts S, S"; INF"; A, A" for
arbitrary E", F' and A". We can integrate this closure under contexts directly into the backwards search
rules. To do that, we reformulate the rules of figure 16. These modified rules are shown in figure 18. A
step-by-step explanation of the transformation of rules is given below.

We begin by changing thejudgment E; F; A —> {5} toE; F; A —e E; F; A'. There aretwo rulesto derive
this new judgment, both of which are shown in figure 18. Thisjudgment is the principal forward chaining
judgment for FOMLL and the context A'is an output. Next werevise thejudgment E; F; A; A => {S}. We
change thisto S; F; A; A => S;F; A'. We do this one by one for al the rules. Inthe rule => -HYP (see
figure 16), we conclude {S} if we have focused on { £} . Since we are now implementing aforward chaining
rewritejudgment, we can change this to the unconditional rewriterule S; F; A; {S => E; F, A, {S. Inthe
rule => —V (figure 16), we instantiate auniversally quantified term in focus as we move from the conclusion
of the rule to the premises and the right hand side of the sequents in the second premise and conclusion is
the same. This gives us the following revised rule:

S ht:y E;F;A;A(t) => E;F;A"
S;FAVZ:7-4(*) = LA

32

Contexts

r = -rA
A = \AA\A,S
S;T,;A -+ E;T; A’ (Inputs: E, I\A; Output: A"
STAA = LAY S:TVAAA = BT A L
ET:A,4 -> ET;A’ E:F,4,A -> ST,A’
ET,A;A = ET, A (Inputs: E,F, A, A; Output: A"

= ~HYP Sht:; E:F,Z\A(L) = I A

SFA{5 =ET,A{5} ErANVZ () = LA

IhAA = 5THA T A A = I A

—& = —&ra

ST 0 AkAy, = T A TiliA A KA, = ST A

T A -4 P Ay B = 5T A .
YT AL AP —oB = T A

— —o

Ex.- =4 P A B = A -
LA P—B = LT A

- —

Figure 18: Judgments—> and => for forward chainingin FOMLL

Therules => —&i and => —&, can be modified similarly (see figure 18). For the rules => — —o and
=»— Nwe need to replace the {5} in the right hand sides of the sequents by S; T; A’. In this manner we
can revise the entire system in figure 16 and obtain the system in figure 18. Thejudgments —" and =" in
figure 17 are auxiliary and do not change.

In summary, the rules of figures 17 and 18 are focused rewrite rules for a forward chaining procedure for
FOMLL. Theprincipa judgmentisE: T: A —> E; T; A" (figure 18). Itisused asfollows. If using backward
reasoning we can conclude thejudgment E; T; A —> E; F; A', then in aforward chaining procedure for
FOMLL, we can conclude the linear facts A’ from the linear facts A, if the unrestricted context has the the
facts F. Further, this conclusion is parametric in the assumptions in E. As remarked earlier, the backward
search procedure constructs the set of facts A”. We now augment these rules with proof-terms to obtain
reaction rules for CHAM configurations.

Reaction rulesfor CHAMs. We augment the rules in figures 18 and 17 with proof-terms to obtain focused

33

reaction rules for /CLL-CHAMSs. These new rules are shown in figures 19 and 20. Thejudgments —e, =>,
—>A and =>A we obtained by adding proof-terms to thejudgments —; =>, —" and =>" respectively. We
also add the context of substitutions a to al our judgments. This process is straightforward. As an illus-
tration, we explain some of the rules. In the rule ==> —&i, we have afocus on aformula A1& A2, whose
proof-term is N. As we reason backwards, we replace A1&-A2 by Ai and its withess N by TTI Ny whichis a
proof of A\. In the rule ==> —V, we instantiate the proof NofV/i: 7~A(i) by a concrete index term. Since
we assumed earlier that index variables in the domain of & must not occur in terms inside configurations, we
instantiate N with t[a] instead oft.* Observethat N [t[aY] has the type -A (Q[£*] if N hasthe type Vi : *y.A(i)
andt: 7. Therule —e —{} is anew rule to eliminate the monadic constructor, as mentioned earlier. Itis
instructive to compare figures 18 and 17 with figures 19 and 20 respectively.

As for the case of FOMLL, these rules are conditional rewrite rules for CHAM configurations that use
backward reasoning and focusing. The principal judgment here isE |a|f|A — E|a|f | A" The
interpretation is the same as before - if we can conclude thejudgment E |'a|f |A — E|a&|f j] A" using
backward reasoning, then the CHAM configuration E |2\ t | A rewrites to the configuration S|a|f | A’
using a single reaction step.

The type P in thejudgment E |2\t |A =>A N’ P ™ust be atomic because we do not use right rules
for asynchronous connectives in our proof-search. One consequence of this is that all arguments passed to
functions during the focusing steps have atomic typesi.e. in the rules => 0 and => o, the term Wi
is forced to have an atomic type P (see figure 19). In order to pass vaues of other types to functions during
the linking steps, the values must be abstracted to atomic types. This requires an extension of the language
with suitable primitives like datatypes asin ML.>

This completes our discussion of rewrite rules for /CLL CHAMs. In summary, there are three types of
rewrite rulesin /CLL: structural (—>) functional (-») and reaction (—>). Structural and functiona rules are
shown in figure 14. Reaction rules require some backward reasoning. They are shown in figures 19 and 20.

3.2 Programming Technique: Creating Private Names

We illustrate here how to use the existential quantifier to create fresh names. Suppose we have a constant
Oy : 7 inthe sort 7. Now consider atyped monadic term of the form [c7, M?)] # 3i : 7.5(2). If thisterm
isput in asolution, the only way it rewrites is using the rule » —3:

E[(7|f|A [c7,M(c7)]#3i:7.5(2) - E, k : *W&,Cylk : 7|T | A,M(c7) # SK)

In the type (i) on the right hand side, c¢; has been abstracted by k which is a fresh name by the side
condition on thisrewriterule. In effect, we have created afresh name k of sort 7. We can use this mechanism
to create more private names using the same name ¢; for the index term again and again. Based on thisidea,
we define a new language construct as follows.

priv A7 in M # Sk =
ley, Mley/k]] # 3i: 7-5(2)

“Since thisrule is used backward, t is determined through unification in a practical implementation. Thusin practice thisruleis
implemented as follows. Wereplace i with a unification variable X to obtain the type A(X). Unification on types determines the
exact index term t that subgtitutes X. Then we ingantiate N with t[].

®Datatypes can also be implemented by introducing existential, recursive and sum types at the level of pureterms.

34

EIZIfIA — £|<|f|A (Inputs E, a,f, A; Output: A')

EI7|f \AWV:A == E|(7|f |A
X\af\AvV A —> S|a|f|A"

—_= =1

Y&\ AAV A =» EafVv AA
2atV CAA —e E\&\tV : A A

—_— = =2

— -}
S|a|f|A,{£}:{5) —> SlalflA,» r 5

S|6|TJAIN:A = £]a]|f|A (Inputs E, & f, A, iV, A; Output: A")

=> -HYP

£|<r|r|AliV: {5} =+ E|&r|r|A,iV: {5}

Shti; Slo-fJARVIt[a]]:A(t) = Slalf|A" _
Slalf|[A[A”:VZ: 1.4G) — Sla| T A’

E|F|A|TIN: Ai = « E |Zani A
E |a|fIAfiV: Airfen ,=>S|* |f |A’

= i

SIAIfIAILIV: A2 = « 5 |2TIf| A’
Elalf|AliV al k? 2= -s\alt |A'

i\a\t\A, ~aN,:P Salf|Azlivo-N AN Efalf|A
S|<r|f |Ai,A,|IV,:P-0" =+ Elb-IflA"

E|Q7|f] - —>ANI:P iNaAWAWZN! : A =« S|&|T|4A
S|alf |AliVa:P->~ = S|alf|A"

= - —

Figure19: Reaction rulesfor the CHAM (Part 1)

35

S|s|IT|A —4 N:P (Inputs: £, 5,1, A, P; Output: N)

SIGITIA|V: A =4 Z|6|T| A
SI6IT|A,V:A —4 N:P

—p — =4 -1

|60,V AlJA|V : A =4 Z|6|1,V: A A’
S|, V:AJ]A —4 N:P

A — =y -2

S|GIT|JAIN':A =4 N:P (Inputs: ,5,T', A, N’, A, P; Output: N)

=>4 —HYP

SI6IT] - |[N:P =4 N:P

SkHt:y Z|SITIA|IN [t[6]]: A(t) =>4 N: P
S|G|ITJA|N :Vi:y.AG) =>4 N: P

=>4 -V

S|6IT|Alx N': Ay =>4 N: P
SIGITIA|N : Aj&Ay =>4 N: P

=a —&

EI&'f"AIﬂ'gN’:AQ A4 N:P
SI6|IT|A|N : Ay&Ay =>4 N: P

=>4 —&2

SI6IT1A, — 4 N : P Z|6|T|A2|No"Ny: A =>4 N: P
S16IT AL A2 | Ng: P oA =4 N: P

=4 — —°

S| — 4 NP Z|6|T|AIN2 Ny :A =4 N: P
S|IGITJA|Ny: P A =4 N: P

=4 - —

Figure 20: Reaction rules for the CHAM (Part II)

36

Syntax

A = "X(Yi... Yn) \ X(V1... Yn).P (Actions)
C = ,4|C+C (Externd Choice)
p = C\P\WP]|i/xXP]|O (Processes)
CHAM solutions
m = P|i/xS (Molecules)
5 = 0]5y{mn} (Solutions)
Equationson termsand solutions
Cy + (02 -+ 03) = (Cl =+ CQ) + 5
C\ + Cg = Ch+Cy
w.P = wPlyx y¢gP
wS = uygyX y¢gSs
CHAM semantics
ey1--.y)-P +C1, &21...2n+Ca — Pla/m].. . [z/yn]
vx.P — ux{P}
w.SP — wvz.(SWw{P})
PX|P2 —_ P13P2

0

Figure 21: The 7r-calculus. syntax and semantics

The typing rule for this construct is

Lk:vT AT h M#S5(k)

E;r;A;* h (privk: 7in M #5fe) # 3i : 7-5(i)

3.3 Example: Encodingtherr-calculus

In this section, we show an encoding of variant of the 7r-calculus [6] in /CLL. The syntax and semantics
of the 7r-calculus we use are shown in figure 21. The encoding we choose for this calculus is based on an
encoding of asimilar calculusin MSR [11]. We assume that the signature for our language contains afamily

of type constructors out, forn = 0,1, These have the kinds:

outo
outi
out?2

chan — Type
chan — chan—Type
chan — chan — chan — Type

37

Assume also that we have afamily of constants puto, put;.... having the types:

outy : Vx: chan. outo x
outj : Vx: chan.Vjfi : chan. outi x W\
out, : Vx:chan. Vi : chan. Vy2° chan. out2 x y\ 22

In effect, for any n, and any &i,..., ko+\ : chan, out, K\... fc,+i is actudly a singleton type i.e. the
only closed value of this type is_out, [K\]... [fc,+i]. Let us adso assume a family of destructor functions
destroyout _which have the types: :

destroyout : Vx: chan. ogtox—o {1} .
destroyout1 : VX : chan. Vjfi : chan. outi x W\ —o {1}

destroyout, : Vx: chan. Vji : chan. V22 chan. out2 x 21 22 —° {1}

The corresponding reduction rule is:

destroyout, [fci]... [fei+] ~ (out,, [hi]... [fe:#l) -> {1}

We now trandate the 7r-cdculus into our language. Every 7r-caculus term is trandated into a type and a
term. These trandations are shown in figure 22. Let fn(A)e fn(C) and fn(P) stand for the free names
contained in an action, choice and process respectively. Then the following typing lemma holds.

Lemma 10 (Typing of trandated terms).
1. fn(A) :chan;-;-;- H "ANAAA
2. fn(C) : chan;e;»;» h'C": ~C"?
3. fn(P):chan;.;s- ~ 'PM'PA
Proof. By induction on the structure of the 7r-caculus term A, C or P.

Definition 3 (Trandation of Tr-terms). We define the trandation, (P) of a 7r-term P as the CHAM config-
uration fn(P) : chanl « | « |"P"#/P.

To illustrate how reductions occur in this framework, consider the 7r-process, P = Tx(y) + Ci)\ (x(*).0+
C2). The trandation of this process at types and termsis:

npn = (outi xyk ""Ci"®) @ ((Vz: chan. outi x z-0 {1}) & TC>™
TP = (%1 [.’L‘] [y]:rcl-'> & (Nl (I),rC2_1>

where iVi(x) is an abbreviation defined as follows:

N\(X) = Az: chan. Am: outi X z
{
let {1} =destroyout [X] [Z "m
inl

}

38

Trandation into types

ﬂ-:‘_c(yla “an y‘n>_n
"_33(91: LR 5yn)'P-n

out, x 2/1... y,
Vy1...yn :chan outp Ty1 ...y — {" P}

TCy 4+ Co" = T M&ETCT
"(P = 1
ﬂ_P]_‘PQ_" - IIIIHIlll ® frpzun
Ty PT = 3x : chan. P""
Trandation into terms

CE Y1, .- yn)” = outy [[yil.. [ydj
“x(y1,.--y¥n).P7 = Ajli... 2, : chan. Am : out, Xyi..Yn

let {1} =destroyout _[X] [vi]... [Ya] ~m

in

pn
}

ey + Gyt = {r‘Clﬂ, rC2j)
oo = 1
FP1‘P2'1 — F'Pl_1 ® I'_P2'1
Cyz. P = priv x: chanin'P7

Figure 22: Trandation of the vr-cdculus

39

The process P reduces to 0 in the 7r-caculus. Correspondingly we have the following reduction sequence
on the trandated term:

(Py = x:chan,y:chan|-]-[I"P"#"P"
— zx:chan,y: chan| - | - [{out, [z] [y],"C17} # (out; zy & "C1 M),
(N1(z),"C2 ™) # ((vz : chan. outy z 2 — {1})&V
=% z:chan,y:chanl -l t(out.l[x] [y),"Cu"): (out! sy & ™Cy™),
(Nipoj 02" @ ((Vz : chan. outi xz — {1}) k "c-*)

: chan,y : chan| « | « | fa (Vi(x),"C2™) [4] ~ (m1 {eut! [X] [y]-"~r)): {i} (1)
tchan,y : chanl « | - | {Let {1} =destroyout; [x] [y]™ (euts [x][y])in1} :{1}
schany: chanl « | | (let{1} = destrayout; [x] [y] ~ (guts [X] [y]}in1) r1 (2
: chan,y : chanl » | - ldet{} ={}inD~ 1
;chan,y i chanl e |- |11
:chan,y:chanl « | - || #1
: chan,?:chanl « | - |-

The reaction steps here have been marked (1) and (2). Step (2) is the eimination of {...} in the monad.
Step (1) requires some backwards reasoning and the exact proof that allows this step is shown in figure 23.
All rules used in this proof are from figure 19. It is instructive to observe that chaining of reactions alows
us to smulate the correct behavior of external choice in the 7r-caculus. The remaining steps in the above
reduction are either structural rearrangement () or functional evaluation (-»).

8 &8 8 8 & &8

The rewrite steps shown above show how 7r-caculus reductions are simulated in the trandation. The exact
formulation of a correctness result for the trandation requires a notion of observation on /CLL-CHAM
configurations, which is a subject of future research.
3.4 Typesfor /IGLL CHAM Configurations

Since terms in /CLL CHAM configurations dready have types with them, we need to create ajudgment
like E;T;A;* h E |a]|f]| A in order to type /CLL CHAM configurations. The obvious intu-
ition of splitting resources in A for dl terms in A does not not work. For example, consider proving
e A h o]\ :AX : A when A— X\®X, : Al ®A,. Intuitively, we want this to be provable
but A is a singleton and cannot be split. From such observations, we arrive at the following definition.

Definition 4 (/CLL typingrelation). Let E' |a\t\ A be aCHAM configuration. Let A = Ti % Zy... Th % Z,
andf = Vi :A;..Vp ' An. We sy that E;T; A;* h SI<f [f | A iff there exist Ai... A,, T' and £"
such that the following conditions hold:

1 £"DFE

2. £".r';AL AL <= EjTA

3. Forescht/i: 7Ga,i:7GEadE" ht7
4. Forl<i<n,E';T;A;.* hT;%Z[4

5. Forl <j <mX";r";V h Vj : Aj[d]

40

X : chan,y : chan
(M (IV~x),A)) M * X (ut! [[yI"CD) : {1}

~Nm

== 4 -HYP

E| |- |- \m(gWt: [X] [y],'Ci") : outi xy
;».A
m (RUtiNM,"CD:outi X2/

Ele|e|*]|(au! [X] [y],"C{") :outix\y&™C:™

= 4 —in

D, =
=>A
7Ti(outi [X] [y],'Ci") : outi xy .
i m—a
21 - 1« I (out! [¥ [y],"C") :out! xyk™Cy"
A

Zri(outi [{] [j/],"Cr) : outi xy

v, El- 11 - 1om@nx),'C2%) V" (M (outi W [y]/"CT»:{1} =~7 :TYP
e - 1el(auti[x] [v],"Ci") : outi # os 7
(Ni(2),7C'2%)] : outixy -{ 1} .

] -1« (outi [\ [y],'Ci") : outix y&Ci"" o _ .

1TIGV;i (X),'Co--): (V2 : chan. outi 2 B .

Ef- 1 +1(auti[x] [y].'Ci"): outior y&ACIN ’
(iVi{z),"™ CD : (Vz: chan. outixz—0 {1} & "C;"*) 7 L

D1 el e Llouti W B'Ci" : outi xyk "'Ci"",

.

{(N1(x),"C,") : (Vz: chan. outi xz-0{1} & n-"-n)

Figure 23: Main reduction step for w-caculus example

41

Weasosay that £, T; A; * h £7[<7|f|A|N : Aiff £T; A;» |- ENatAN : A.

This definition essentially allows the context A to be split into several contexts, one for each of the termsin
A.

Lemma 11. Let £ |a|f | A be a CHAM configuration. L& A =T, %Z.. Tn % Z,, f = Vg :
Ai..Vn An and suppose there exist A, Ai... A,, T, £ and * such that the following hold:

LED £.
2. Foreachti:7Gai:7€£and£E I- t1 7
3 Foreachl<i<n£T;A;$hT, % Zig
4. Foreach1<j<m,£T;* hV}:~[CT]
5. £;r;A;# h N: A[4]
Then,
1. EjrjAi-.-An;* h £|27|f|A.
2. £;r;AVATLLL ALY h £ LTIFIAPDV A
3. IfE|XTIf|AliV: A =>4 N: P, then £.r. A, A,... Apni# |- iV': P[A\
4. If£'|CT|f|A —>N (V':P,thenf.r;A:1...A;# |- N' : P[3).
Proof. Proof of (1) and (2) is immediate from definition 4. Proof of (3) and (4) follows by a mutual induc-
tion on the given rewrite derivation.
Lemma 12.
1LIfE£r.A;* h £la\f|AadE|a|f|A - E |&\f|A, thn£ C S ad
S.r;A;* h S1alf'lA".
2. If£;r;A;* h £]a|f|Aand E |2r|f|A -» £]|a|f| A", then §T; A;* h S|a|f|A".
3. IfEr;A;# h S|<r|f|A|IV' : >IandS|‘a|f|A\N‘: A =>" N: P, thenf; T; A;* h iV :
PLT].
4. 1fS.r;A;* h £\&[f|Aand S\a\f| A ZAN VP then E; T A * h IV : P[4].

5. If£;r;A;tf h S|a|f|AivV:AandS|(T|f|A]iV:r = £]&]|f]|A, then
£1.A;* h £|(7|f|A".

6. IfEr;A;# h Etat\A andS|27|f|A —> £]<r|f[A, then £T; A;* h “Z\a\t\A'".

Proof. Proof of (1) follows from lemma 5. (2) isimmediate from lemma 8. (3) and (4) follow from lemma
11 and lemma 1(3). For (5) we use induction on the derivation of the given rewrite relation and lemma 11.

(6) follows immediately from (5).

42

Definition 5 (/CLL CHAM moves). We define a/CLL CHAM rewrite move =Us=" = -HJ-» U —-o.
=4* denotes the reflexive-transitive closure of =t.

Lemma 13 (/CLL preservation). If S;T; A;* h E|<J|f|A and S|Zr|f|A =T E'1& |f'1A’, then
SCS’andE’;r.A;# h E’|<r"|t| A"

Theorem 2 (Type-safety for termsin /CLL CHAMS). IfE; ¢ ;¢ h E|51f|AandE[a\f|A =T
S’1&1 " | A7, then for any typed/CLL term T % Z in A’, it is the case that T is a vaue or T reduces to
some T

Proof. Using lemma 13, S’;+;«;¢« h E [cr'|f | A’ Let A’
tion 4, there exist S”, T, Ai,..., A, such that S”;r"; Ai,..., A, <= S’;e;e andforeach 1 <i < n,
S, T A+ h T% Zi[a]. Now from lemma 1 it is clear that T’ = » and Ai = ... = A, = .. Thus, for
echl<i<n E™eee h T{ %Z[a]. Using the progress lemmafor/CLL (lemma?9), each Ti must
either be avaue, or it can reduce further.

T« % Zi>..., Ty % Z, By defini-

(| VAN|

3.5 Comparing process-calculi and /CLL

As seen from the encoding of the 7r-caculus in section 3.3, /CLL can encode severd basic concurrency
primitives. In fact, there is a correspondence between the constructs of process-calculi like the 7r-caculus
and congtructors of /CLL. Various common constructs of process-calculi, together with their equivalents in
ICLL are listed below.

1. Processes. In general, we view monadic terms and expressions as processes in CHAM solutions.

2. Parallelism. Apart from parallelism introduced for expressions in section 2.1, monadic terms of the
form Mi ® M.2 can be viewed as processes reducing in paralel. Similarly, termsin CHAM solutions
can be viewed as processes executing in parallel.

3. Communication channels. Communication channels can be simulated in /CLL using index refine-
ments of afixed sort (chan) as we do in section 3.3.

4. Input prefixing. The language constructs Az.iV, \x : P.N and Ax : P.N together with the associated
types Vi : 7.A P —e B and P —0 B provide encodings for input processes.

5. Asynchronous output. Any value V of (possibly refined) atomic type P can be viewed as an output
term without continuation because it can be linked to a term of type P —o0 B as an input. If the
vaue V : Pislinear, then this corresponds to an output that has to be used as an input to exactly one
program. If itis unrestricted, then it can be used as input to any number of programs. Such an output
term corresponds to an asynchronous broadcast.

6. Name restriction. We showed in section 3.2 that channels can be made private using abstraction
semantics of the 3 quantifier. The priv construct defined in that section can be used to create private
channgl namesin CHAM executions.

7. Choices. The type constructor & and the associated term constructor (iVi, V2) act as an externa
choice operator in our logic programming language. The proof-search procedure can project out one
component of a choice if it can be used to complete a link step. The type constructor © and the
monadic term constructors inl and inr can be used to smulate interna choicein /CLL..

43

Process-caculus construct Equivaent /CLL construct

Process, P Monadic term(M), expression(2£)

Parallel composition, P\\P2 Af1I®M,#SI® S,

Communication channel Index refinement of sort chan

Input prefixing, x{y).P AN :Vi:7A XxN:P-+BadXxN:P-0B
Asynchronous output, Xy Linear assumption N : P where P is atomic
Name redtriction, vx.P priv x : chaninM # 3x : chan.S
Interna choice inNfM#S 0SS, intM#S © S0
Externa choice, C\ + C, (N1,N,):AkA,

n-way input N:P 0. -0P, 0B

Communication and synchronization | Proof-search

Figure 24: Correspondence between process-cdeuli and /CLL

8. n-way input. Due to chaining of linking steps in the /CLL, we have a mechanism for n-way input in
/CLL. For example, areceiver of type Pi —o P, —0 B always synchronizes smultaneoudy with two
senders of types Pi and P».

9. Communication and synchronization. Communication and synchronization in /CLL occurs using
reaction steps (—>).

For an illustration of these constructs in /CLL, the reader is referred to the encoding of the 7r-cdculus in
section 3.3. Figure 24 shows a summary of the above correspondence between process-calculi constructs
and /CLL connectives.

4 FuII-CLL: Integrating/CLL and /CLL

/CLL described in section 2 is purely functional. Even though it admits some parallelism in the tensor and
evaluation of expressions, it is essentially free from effects. The concurrent (logic) programming language
/CLL described in section 3 alows an additiona layer of concurrency over/CLL. In this section we integrate
in the other direction - we dlow concurrent logic programming to occur insde/CLL programs. Since
concurrent computations can deadlock and get stuck, they are not free from effects. As aresult, we confine
such concurrent evaluation to the monad only. We extend the grammar for expressions with an additiona
congruct as follows.
E ;= ...|link(E -+ S 10 G

where G ::= A|\A| 1 and Aisany asynchronous type. G is caled agoa type. Observe that G is a subset
of the family of types. We do not dlow arbitrary types as goals for reasons described later. The typing rule
for the link congtruct is the following.
E;T:A;* hE -r-S
S;r;A;# h ek (E + 9 teG + G

It is assumed in the above rule that G is well-formed in the context E. The link congtruct is dways
evaluated in the context of index variables E in which it is well-typed. To evaluate E; link (E = 5) ta. G

LEXTE
LtV 1\

44

we dart anew ICLL CHAM configuration with only theterlm E s 5initi.e. wegart withE |« |+ |E = 5.
Then we let this configuration rewrite according to all the rules in figures 14, 19 and 20 until it saturates
i.e. no morerewrite rules apply. If the configuration never saturates, computation runs forever and the link
construct does not terminate. If the configuration saturatesin S' |a|f | A, then the computation of the link
construct succeeds iff one of the following conditions holds.

1. G=Aand A =V : A Then the whole construct evaluatesto S'; V.

2. G=Ag A =+ and thereexistsV : A G f. In this case the whole construct evaluatesto E'; V.
3. G=\A, A =« and there exists V : A € f. Then the whole congruct evaluates to S'; W.

4. G=1and A = «. In this case the whole construct evaluates to E'; 1. ‘

If none of these conditions hold, then the computation fails and evaluation deadlocks. The above conditions
are summarized in the following evaluation rules.

= LINK - 1

ST\ \E + g=i* Z\aIWWA
E:link(E +S)toA<- T4V
S» \\E «+ S =i* ¥|&|1V A
S;link (E + S)toA« T4V
|-\ + S=t* s|<TIF,V A
s link(£ = 5)to!i - &4V
Z\-\-\E HS =* ¥|&|T]-
E;link(£ s 5tol *> E'; 1
where =£ = —" U -» U —>, asin d€finition 5. It isimplicitly assumed in these rules that any CHAM

configuration on the right of =3* is saturated (it cannot be rewritten using the relation z=t). We also lift the
evaluation relation E <—> E' from figure 12 to include the context E.

ww L/N/C -2

— L/iVK -3

— LINK -4

E <>E!
. E — o F

At this point we can explain why we redtrict the goal G in the construct link (E <+ 5) to. G to the st
{A,\A, 1}. Thereason for disallowing arbitrary goals is that for goal types other than {A, L4,1}, compu-
tation of the link construct will always fail because saturated CHAM configurations cannot contain terms
having those types. Suppose, for example, we allow thetype G = Si ® 52 asa goal. In order for evaluation
to succeed with Si ® 52 as a goal, the CHAM rewriting would have to end in a configuration E" fa\ 11A
where A = M # S ® 52, for some M. However, this is impossible because at this point the CHAM con-
figuration cannot be saturated. We can prove this as follows. By the progress theorem, either M is a value,
or it can reduce further. If M is a value, it has to be of the form My; ® My, and in that case we can apply the
rule -* —® on the CHAM configuration. If M can reduce further, then the whole CHAM configuration can
reduce using therule -» — i— Thusan ICLL CHAM configuration cannot end with a monadic term of type
Si <g>S2in A. Similar arguments show that a CHAM configuration cannot saturate if it has a program of any
synchronous type in it. For the particular set of goals, {"4, \A, 1}, it is possible for CHAM computations to
succeed without any synchronous types in them. Thus we limit goals to this set. Limiting goal types to the

45

=t {A, L4, 1} may seem like abig restriction but in practice we found that other goal types are never needed.

We call the resultant language with the 1ink construct full-CLL or CLL for brevity. FuU-CLL symmetri-
caly integrates functional and concurrent logic programming. Concurrent logic programming can be nested
inside/CL L programs using the Iink construct. On the other hand, the functional rewrite rules in CHAMs
dlow functiona evaluation inside concurrent logic programming. Execution of full-CLL programs occurs
in interleaving phases of functional evaluation and concurrent logic programming.

An important remark related to programming in full-CLL is that it is essentia that the top-level construct
of any program that performs concurrent computation be an expression. This is because al concurrency in
full-CLL is restricted to the 1ink construct which is an expression, and evauation of expressions coerced
into terms is lazy (recal that {E} is avalue in CLL). If the top-level construct of a program is aterm or a
monadic term, then nested expressions in the program will never be evaluated, and hence the program will
not perform any concurrent computation.

4.1 Type-Safety

Since the |ink construct may get stuck, full-CLL does not have a progress lemma at the level of expres-
sions. However the monad in CLL islazy and thislemma still holds at the level of terms and monadic terms.
We also have atype preservation lemma at the level of terms, monadic terms and expressions. Type-safety
lemmas and theorems for full-CLL are given below.

Lemma 14 (Preservation).
1. If£r;A;# h N:AandAT -« N\thenE; T;A;* h N : A
2. IfE.r.A;tf h M#5andM H> M', then E;T; A;* h M# S
3. IfErA;# h E + SandE;£E < E";£,thenSC S andS'.r; A;* h E % S

Proof. In this case we use induction on the given derivation to simultaneoudly prove this and lemmas 12
and 13.

Lemma 15 (Progress).
1. IfE;;- h N : A then either N = V or for some V', N -> N.
2. IfS; %%, ¢ h M #5, then either M = M, or for some M', M »» M".
Proof. By induction on the given typing derivation. As expected, there is no progress lemma at the level of
expressions.
Theorem 3 (Type-Safety).
1. IfS e h N:AandN ->* N\ theneither N' = V or there exists N" such that N' -> N".

2. 1fS e h M#SandM e+ M\ then either M' = M, or there exists M" and such that
M i-* M".

46

Proof. By induction on the number of steps in the reduction, asfor/CLL.

In full-CLL, nested /CLL-CHAM configurations contain full-CLL programs in place of/CLL programs.
This has a dignificant effect on theorem 2 of section 3.4, which must be modified for /CLL-CHAM con-
figurations that contain full-CLL programs. Since the proof of theorem 2 uses progress (lemma 9), which
no longer holds for expressions in full-CLL, we expect to obtain only a weaker type-safety property for
CHAMSs embedded in full-CLL. Indeed, we can prove only the following theorem.

Theorem4(Type-safetyfortrms in CHAMSs in full-CLL). If 25;-;-;- h £|<r|f|AandE|(7|f|A =t*
E'| &1 f | A", then for any typed full-CLL term T % Z in A", it is the case that T is an expression or T is
avalue or T reduces to some T

The only reason full-CLL programs get stuck is that the forward chaining procedure in some nested 1ink
congtruct fails to reach its stated god. In al practical problems that we encountered, we found that it was
possible to write full-CLL programs in away that embedded 1i nk constructs aways succeed in producing
the desired god. An exploration of methods and techniques to prove the correctness of fiill-CLL programs
formaly is left to future work.

5 Programming Techniques and Examples

In order to illudtrate the relatively new style of programming that CLL requires, we devote this section to
developing programming techniques and examples of programs in full-CLL. The concurrency primitives
aready present in full-CLL are very smple (but expressive) and in order to write useful programs we need
to build library code that implements more conventional concurrency primitives like buffered-asynchronous
message passing, Synchronous message passing, non-deterministic synchronous choices etc. We present this
library code as a set of macros. The reasons for using macros in place of functional abstractions are clarity
and brevity. The functional abstraction mechanisms in CLL (A, A and A) are expressive enough to alow
us to rewrite al the library code in this section as functions instead of macros. However, doing so results
in more complicated implementations and types for the abstractions. Thus we use macros for library code
in place of functions. Just as an illustration, we describe the implementation of the primitives for buffered-
asynchronous message passing using functions instead of macros in section 5.4.

Many of the examples in this section are based on similar programs in John Reppy's book Concurrent
Programming in ML [32]. As aconvention, we write all macro names in boldface.

5.1 Example: A Concurrent Fibonacci Program

In this section we build a concurrent program to compute Fibonacci numbers. For this and subsequent
examples, we assume that our language has fundamenta functiona constructs like basic types (integers,
int and booleans, bool), datatypes (4 la ML), recursion at the level of terms and conditional if-then-else
congtructs. All these may be added to the language in a straightforward manner. Fibonacci numbers are
defined by the following equations.

fib©) = 1
fibl) = 1
fibn) = fib(n-1) +fibn-2) n> 2

47

fun fib (n) =
if (n=0) then {!1}
else if (n=1) then {!1}
else

~—

let {In1} =fib (n—1)
let {Ing}=fib (n—2)
in

!(n1 +n2)

—

Figure 25: The function fib

fun fibc (n) =
if (n=0) then {1}
else if (n=1) then {1}
else

~

G

~—~~

(fibc (n—1) ® fibc (n—2) ® Anp:int. Ang:int. {!(n; +n2)})
+ ({lint} ® {!int} ® (int — int — {lint}))
) to lint

Figure 26: An incorrect function fibc

We can write a parallel version of the function £ib as shown in figure 25. This function does not use
any communication between processes executing in parallel and may be derived from the more general
divAndConquer function described in section 2.3. It has the type int — {lint}.

Figure 26 shows a concurrent, but incorrect implementation of £ib. The function fibc has the type
int — {!int}. Given n > 2, we spawn a CHAM with three threads. The first two threads recursively
compute fib(n—1) and fib(n — 2). These two computations may spawn nested CHAM:s during evaluation.
Such nested CHAMs are distinct from each other and terms in different CHAMs cannot interact. The third
thread is a synchronization thread that waits for the results of these two computations and adds them together
to produce the result. This synchronization is performed automatically by the CHAM. As mentioned earlier,
this implementation is incorrect and the reason for incorrectness is described below.

In the function fibc, there are four ways for the CHAM to proceed after fibc(n — 1) has evaluated to a
value {!N;} and fibc(n — 2) evaluates to a value {!N2}. In one case, n; gets instantiated to the result of

48

evauating N+ and n, to the result of evaluating Na:

1 10 Khivijillint ™M rllint},

Ani @int. Any o int. {{(ni + 72} :int —e int —e {lint}
—>2 1 t I\Ni 5 lint,\V, =-lint,

\n\:int. Angint. {{(ni +ny)} rint—>int—> {!int}

-2 [1IVa#lint, Wo#lint,
\n\:int. Any:int. {I(ni +ny)} :int—>int—e {lint}
=»* 1 [WVi#lint, 'Vo# lint,
Ani:int. Any:int. {!(ni+ny)} :int—eint—e {!int}
A2 1P PViint,V2:int|Ani oint. Any:int. {I(ni +ny)} :int—>int-»{lint}
—> 1 CIVitint,Voint|[((Ani :int. Any:int. {!(ni +ny)}) Vi Vo) : {!int}
ASZ LIV int, Vo s int [{I(Vi + Vo)) {lint}

In the second case the instantiations are swapped - ni is instantiated to V, and n; is instantiated to V+.
Assuming that + is commutative, the result of both possible programs is the same and correct. However,
observe that since Vi and V, are unrestricted values in the configuration, it is possible to instantiate both n1
and n, with either one of Vi and V,. This gives us two more possible incorrect computations. One of these
is shown below.

A2 el e |Vi:int,V2:int|Ani‘int. Any:int.{!(ni +ny)} :int—>int—>{lint}
—> - IViint,Vo:int|[((Ani :int. Any @ int. {{(m+ny)}) Vi Vi) : {lint}
A Vi sint, Vo sint [{I(Vi + V) {lint}

We can use index refinements to correct this function. Assume that we have atype constructor i nt . chan —>
Type and the constructor-destructor pair refineint and fetchint with the typing rules

E h k: chan E;T;A;*hN:int_I
——
E;T;A;* hrefineint[K] ~(N) : intk
E h A: chan E:T:A;* h Niintk _
int—E
E; T;A;* h fetchint [A] ~(N) : int

and the reduction rules
N=~ N
fetchint [A] " AN -« fetchint [K] ~N'
N-> N
refineint [A] »A™ -~ refineint [K] ~N'

fetchint [K] ~ (refineint [A] ~n) ~> n

The function fibc' shown in figure 27 is a correctly implemented concurrent version of fib that takes
as input a channel name k and an integer n and returns fib(n) refined by channel name k i.e. the vaue
(refineint [A] ~ (fib(n))). It hasthe type VA : chan. int —> {!{int A.)}. Inthis case there is exactly one
possible program execution.

49

fun fibc' [K] (n) =
if (n=0) then_ {!(refineint [k] " 1)}
else if_(n=1) then {!(refineint [k] ~ 1)}

else
{
link
(
(
priv k\: chan in
priv ks e chan in
fibc' [ki] (n-1)
® fibc’ [fg] (n-2)
® Ani :int fci. An, :int fc,.
{!(refineint [A] ~ ((fetchint [K\] ~ n{) + (fetchint [k)] ~ ny))}
)
+ k1 :chan. 3ks: chan. ({{EE k1)}® (130T k2)}®
(int fci -= int fc,—- {1(int K)})
) 1o I(int k)
}

Figure27: Thefundion fibc'

5.2 Programming Technique: Buffered Asynchronous M essage Passing

We assume that we have a conditional if-then-else construct for terms, monadic terms and expressions. This

construct has the form if_N then T\ else T, (T stands for any of A", M or E). The associated typing and
reduction rules are shown below.

T = ... _| if NthenT, else T,

E;T;A;* h AT:bool EAAT;* h T, %Z EJTIA* h T, %Z
: it — then — else
IT;A,A%Y b jfivthenTi elseT, % Z
N — N
I A" then Tielse T, ~ if AT then Ti else>
iftri/ethenTi elseT, ™ Ty
if/a/sethenTielseT, > T,

We now build a library of programs in CLL to allow us to write programs that use asynchronous, queue
based message passing. For every channel name k that is to be used for communication of values of the
asynchronous type Bg we introduce a first-in, first-out queue of elements of type B into our CHAM solution.
In order to distinguish various queuesin a CHAM solution just by their types, we refine the queue type with
channel names. Queues have the following abstract specification.

abstype queue®: chan —+ Type with
empty: Vi : chan. queueg i

50

push: Vi : chan. queueg i —0 B —e queues i
isempty: VZz': chan. queueg i —o0 {!bool ® queueg i}
pop: Vi:chan. queueg i —o {!i?® queueg i}

top: Vi:chan. queue” i —o {!i?® queue* z}
destroy: Vi:chan. queueg i —o0 {1}

The above firgt-in, first-out queue may be implemented using data structures like ML-style lists, which
we assume are present in our language. The exact details of the implementation are not relevant to our
discussion. A more important fact is that queues are linear objects in CHAM solutions, and hence can
be used to capture the notion of state of communication on a particular channel. On the other hand, the
data within the queue is non-linear and can be used multiple times. One can also design a different model
of communication in which the data in the queue is linear. For any queue of type queue k, we view the
elements in the queue as messages that are pending to be read on channel k. Message sending in this model
is asynchronous in the sense that a sender simply appends its message to the end of a message queue and
continues execution. It does not wait for a receiver to receive the message. Thus we can define a 'send'
macro:

asyncsend(fc, iV : B);M # 5 =
\q: queue™ k. {(push [K] " g N) <g> M}

Intuitively, the above macro should be read as "send the result of evduating N on channel k and continue
with the process M".° If we define the type Asyncsend(fc, B, S = queues k —o {queueg k ® 5}, then
the derived typing rule for asyncsend is

S h fcichan E;IV;fr h N: B E.r.A;fr h M#S
E;T;A;* h (asyncsend(it, N : B);M # 5) # Asyncsend(A;, B,5)

The corresponding receive macro is harder to create. Suppose we warnt to bind x to a value received on the
channel k in the monadic term M. Then we need to wait till there is a message pending on the message
gueue for channel k. This we do by repeatedly synchronizing with the associated queue and checking for
non-emptiness. If the queue is empty, we leave the queue and keep waiting. If it is non-empty, we pop the
gueue, bind the value popped to x and return the popped gqueue to the solution. The following receive macro
implements this.

asyncrecv x: B on k in M # 5 =
fiu. foldasyncrecv(s-"s)- Ag: queues k.
[
let {& ®q} = isempty [K] =~ qdn
if b then inl (U2
else _
let {\x®q'} =pop [Kl ~ g in
w M £ Q")
}
Thetype Asyncrecv is defined as follows

Asyncrecv(fc, B, S = jia. queues k —o { (a® queues k) ® (S® queues k)}

®N may not be a value and might be evaluated in paralld with M itsdf. Since evaluation of pure terms has no side effects, the
exact point of evaluation of iV does not matter.

5l

The derived typing rule for this macro is:

S h A: chan Er,rif;e;# h M#S
E T, o* I" (aynaecv x:BonHNM : S) #Asyncrecv(fc, B, S

asyncrecv

Next we define amacro to actudly creste a private channd name for communication. This macro uses the
previoudy defined macro priv . In addition to cregting the private channd name, it also creates a new
queue to be usad for communication on the channd. Thisis done by acdl to the function empty from the
specification of the type queueg.

privasyncchan k in M # Sk) =
priv k:chan in (M ® (empty [K])) # (Sk) ® (queueg K))
If we define the type Privasyncchan(i?, k. Sk)) = 3k : chan.(5 ® queueg K)g then the typing rule for
the above congtruct is’
£,fc:chan;r;A;# h M # SK)
E; T; A;* h (privasyncchanfcin M # Sfc)) # Privasyncchan(£, k.§Kk))

Findly we define a deanup macro that destroys the message queue associated with a channd. This macro
is used when the channd is no longer needed for communication. Once this macro is used on a channd,
subsequent atempts to send or receive on the channd will deadlock.

destroyasyncchan kM # 5 =
Xq: queueg k. {_let {1} =destroy [k] © qg_n M }

privasyncchan

If we define Destroyasyncchan(fc, B, § = queueg k —o {5}, then we have the following derived typing
rule

E h ferchan E;T;A;* h M#S
E; T; A;* h (destroyasyncchanfc; M # S) # Destroyasyncchan(Ar, B, S

All the above condructs are summarized in figure 28. We often omit type annotations from these congtructs
if they are dear from the context.

destr oyasyncchan

53 Example: Sieve of Eratosthenes

We build a concurrent verson of the seve for Eratosthenes for filtering prime numbers from a sequence
[2,...,n]. This example uses the asynchronous message passng mechanism described earlier. For this ex-
ample, the messages we send on channdls are integers and hence the queue data Structure described earlier
uses B = int. We omit the type annotetion int from the type queue; ;. We begin with a function thet
sends al numbers from 2 to iV on channd k. Let us assume we have a specid integer called END which
we useto sgnd end of dataon a(message) queue. Thisfunction cdled integersuptoisshownin figure
29. It hasthetype Vit : chan. int —e {/iaAsyncsend(fc,int, 1 © {a})}.

If wedlow integersupto [k] N to execute in a CHAM, then each recursive call of the loop adds anew in-
teger to the queue assodiated with channd k. Eventualy the condition n > N succeeds and integersupto

"We use the notation k.S(k) to indicate that k is bound in the type Privasyncchan(B, k.S(k)).

52

Types

Asyncsend(fc, i ?,S) = queue”® k -6 {queueg k ® S}

Asyncrecv(fc, B, S) =/xa queuegk —6 {(a®queue” fc) ©(5®queuegk)}
Privasyncchan(B, A . S(fc)) =3A : chan.(5(fc) ®queuegh)

Dest royasyncchan(fc, 5,5) = queueg k —o {5}

Macr os
asyncsend(/:, AT .B);Af # 5 =
\q: queues k. {(push [K] © g N) & M}

asyncrecv x: B on k in M # S =

L. iguujncrecv(k,B,S)' Ag: queuep

{
let {\b®g’} =isempty [f[d * ~ in
if (6=true) then inl (U®(d)
else
let {\x®q"}=pop [K] ~ g Ln
inr(M®~7%
}

privasyncchan Hn M # S(k) =
priv A;:chan in (M ® (empty [A]) # (B(fc) ® (queue® A)

destroyasyncchan k;M # 5
{det {

Xq: queue® k. 1} = destroy [A] © q.in M }

Typing Rules

E h A::chan SjT:* h A*: B Er;A;#h M#5
E;T;A;* h (asyncsend(fc, A" : B);M # 5) # Asyncsend(A:,B,5)

asyncsend

S h A: chan S.rox:gi;;" h M#S
E;r;;* H (asyncrecvx : BonkinM : S) #Asyncrecv(A:, £, 5) Itk
S;A::chan;r;A;» h M # S(k)
| E; T; A;* h (privasyncchan k in M # 5(A:)) # Privasyncchan(;B, A:5AY))
E h A: chan E:T:A;» h M#5
E; T; A;* h (destroyasyncchan A; M # 5) # Destroyasyncchan(A:, 5,5)

—- privasyncchan

destroyasyncchan

Figure28: Maaosfor agnchronouscommunication

(* integersupto: WMc: chan. int —e {"aAsyncsend(&,int,1© {a})} *)
fun integersupto [fc.chan] (iV:int) =

(* loop: int—> {"aAsyncsend(A:,int,1© {a})} *)
let val loop (n:int) =
Mm.!sy‘ncsend(k,i{ﬁ,}@ o
if (n>N) then
asyncsend(fc,E7VT>); inl 1
else
asyncsend(fc, n); inr (loop(n + 1))
!
in
loop 2
end

Figure 29: The function integersupto

terminates with inl 1. Note that other asyncsend and asyncrecv cals on the channe k can be inter-
leaved. For example, if at some point of time, the message queue on k hasintegers 2. .. 10, then some other
process may use the macro asyncrecv up to nine times on channel k before any more integers are sent by
integersupto. Next we write afilter function which given an input channel inp, an output channel out
and aprime p, filters the integers on inp for numbers not divisible by p and writes the output to channel out.
This function is shown in figure 30. It has the type Vinp : chan. Vout: chan. int —> {F(inp, out)}.

Next we come to the program sieve which takes an input channel inp and an output channel out and filters
the input channel for dl integers that are relatively prime to their predecessors on the same channel. These
filtered integers are written to the channel out. This program is shown in figure 31. It has the type {Winp :
chan. Vout : chan. {R(inp, out)}} where R(inp, out) is the type:

type R(inp,out) =
Asyncrecv(mp, int,
Destroyasyncchan(mp. int, Asyncsend(cmt, int, 1))
© Asyncsend(ou*. int.Privasyncchan(int, k.({F(inp, K} ® R(k,out))))

)

The type R(inp, out) is not aregular recursive type since it cannot be expressed using the standard recursive
construct jia.S. Instead, it requires recursive definitions or recursive type binders at kinds higher than
Type. Either may be added to the language without much technical difficulty. Recursive definitions, in
particular, can be added using the standard fold construction as follows. Under the assumption that we
have a definition R{i\...i,) = 5, where the synchronous type 5 may mention R again, we have the
following typing rules:

E;:T:A;* h M#5
E;F;A;‘I’ h fOldH(“...in)(M) #R(%ltn)

foid-R'

54

type F(inp,out) =
fiex. Asyncrecv(mp, int, Destroyasyncchan(inp, int, Asyncsend(otx£, i nt, 1))©
(a © Asyncsend(out, int, a)))

(* filter:Vinp: chan. Vout : chan. int —e {F(inp, out)} *)

fun filter [inp] [out] p =

{
Hu. ﬂﬁ'(inp,wt)
asyncrecv n:int on inp in
H (n= END)
then inl
destroyasyncchan inp in asyncsend(crv/t, END); 1
else inc
if (n mod p= 0) then inlLw
) else nr (asyncsend((7U£, n); w)

Figure30: Thefudionfilter
X;T;,Ap:SV H 7 gL
T34, f0ldp;, syP) : R(@1 .- in); ¥ h 7

The statement I et {!/} = {\u} in_... in the body of sieve binds / to a pure term which has the same
behavior and type as the recursive variable u. We integrate al the functions together to produce a single
function primes that takes a channel name out and an integer N and produces as output a single queue
of type queue out containing all primes up to N. This function is shown in figure 32. It has the type
Vout : chan. int —> {queue out}.

5.4 Implementing Buffered Asynchronous M essage Passing using Functions

As mentioned in the introduction to section 5, it is possible to rewrite al the macros for buffered asyn-
chronous message passing presented in section 5.2 as functions. In this section we present the functional
equivaents of al the macros of section 5.2. Similar transformations can be applied to al macros presented
in later sections. The purpose of doing this is to establish that the library code presented here can be rep-
resented using the abstraction mechanisms in CLL, and the use of macros is merely a convenience rather
than a necessity. We start by writing an equivalent functiona representation of the macro asyncsend(see
figure 28). As can be seen, this macro requires three arguments - a channel name k, a value N of type B
to send on the channel and a continuation M of type S The type of asyncsend (kN : B); M # Sis
Asyncsend(fc, B, S). This suggests the type for the corresponding functiona abstraction: Vk : chan. B —e
{5} —o Asyncsend(fc,i?,5). We observe three facts here. First, the argument of type B is unrestricted
because we want values passed on channels to be unrestricted. Second, we have to pass M after enclosing
it in amonad because due to syntactic restrictions in CLL, we cannot pass monadic terms as arguments.
Hence the second argument of the functional abstraction is of type {5} instead of S Third, since we do not
have polymorphism in CLL, we need a separate function for each pair of types (B,S). All these functions

55

type R(inp,out) =
Asyncrecv(inp, int,
Destroyasyncchan(inp, int, Asyncsend(out, int, 1))
@ Asyncsend(out, int, Privasyncchan(int, k.({F (inp, k)} ® R(k,out))))
)

(* sieve: {Vinp:chan. Vout: chan. {R(inp,out)}} *)

sieve =

{

pu. Ainp : chan. Aout : chan.

{
let {!f} ={lu} in
f—-c&gR(inp,out)
asyncrecv p:int on inp in
if (p=END)
then inl
(destroyasyncchan inp in asyncsend(out, END) in 1)
else inr
asyncsend(out, p); privasyncchan k in
(filter [inp] [k] p) ® (f [K] [out])

Figure 31: The program sieve

(* primes: Vout: chan. int — {queue out} *)
fun primes [out: chan| (N :int) =

let {f}=sieve in
link
(
privasyncchan k in (integersupto (k] N) ® (f [k] [out])
+ Privasyncchan(k, int, {ua.Asyncsend(k, int,1 @ {a})} ® {R(k, out)})
.) to queue out

Figure 32: The function primes

56

look exactly the same, except that they have different types. Assuming fixed types B and 5, the function
asyncsend' is shown below. It hasthe type VA : chan. B — {5} —o0 Asyncsend(fc, B, S).

fun asyncsend' [A :chan] (N:B) (M:{S) =
Xq : queueg k.

let {m} =M in
(push [K] g N) ® m
}

Now we consider the macro asyncrecv . This macro takes two arguments - a channel name k on which input
isto be received and amonadic term M of type Sthat has afree variable x of type B that is to be bound to the
input value received on the channel k. We can represent the second argument, M, as afunction of type B —>
{5}. This gives us the type of the functiona abstraction corresponding to asyncrecv : VA : chan. (B —>
{5}) — {Asyncrecv(A;, B, 9}. We observe that the return type of this function is { Asyncrecv(fc, i?, 5)}
instead of Asyncrecv(A;, i?, S because Asyncrecv(A;, B, S is a synchronous type and owing to syntactic
restrictions in CLL, it cannot be returned directly by afunction. The functional abstraction asyncrecv'
is shown below. It hasthetype VA : chan. (B —> {5}) — { Asyncrecv(Ar, B,5)}.

fun asyncrecv' [A :chan] (M:B— {§) =

{ .
HU. _foldasyncrecv(m2)s)- Ag:queueg K.
{
let {& ®d} = isempty [A] ~ (?dn
At (6 = trwe) then inl (it ® g
else
Let {Ix®g"} =pop [fd * ¢
let {m} =M x in
inr (rd’ ® g%
}
}

Next we come to the macro privasyncchan . This macro takes as argument a monadic term M of type S(K)
where A: is a parameterized channel name (see the typing rule for privasyncchan in figure 28). In terms
of abstractions, such a monadic term can be represented by the type VA : chan.{5(A:)}. The functiona
abstraction privasyncchan that corresponds to the macro privasyncchan ' is shown below. It has the
type VA, : chan{5(A:)}) —o {3k : chan{5(A:) @ queueg AZ}}. Itisingructive to compare this function
and its return type to the macro privasyncchan and the type Privasyncchan(i?, k.9K)) respectively.

fun privasyncchan' (M: (VA : chan.{S(A)})) =
priv k: chen in
{

let {m}=M [K in
(m ® (empty [K])) # (SK ® (queues K))

57

Findly we condder the macro destr oyasyncchan . This macro takes two arguments - a channd name k and
acontinuation M of type 5. Writing an equivdent functiona representation for this macro is sraightforward
and is shown bdow. The function destroyasyncchan' shown bdow has the type Vit : chan. {S —o
Destroyasyncchan(fc, B, S).

fun destroyasyncchan' [k:chan] (M : {S}) =
\q : queue” fc.

{
let {1} =destroy [K] ~ q
let (M =M in m
}
Thus the abstraction mechanismsin CLL are expressive enough to alow usto write all the macros presented
so far as functions. However, the bodies and types of these functions are more complicated than those of the
corresponding macros. For the sake of conciseness and clarity we present the remaining library code only
as macros. It should, however, be kept in mind that all these macros can be represented as functions as well.

5.5 Programming Technique: Synchronous M essage Passing

The communication primitive in CLL is inherently asynchronous. The basic communication primitive is to
use the theorem prover to link together a function of type P —o B and a vaue of the input type P using the
rule => 0. In this case the value itsalf is consumed and hence senders have no continuation i.e. they are
asynchronous. In section 5.2, we built a library of macros to extend this communication primitive to alow
queuing of messages on a channel. However, communication was asynchronous in the sense that senders
received no confirmation that the message sent had been received before they were alowed to continue
evaluation. Now we build a library of macros to implement synchronous communication, where senders
receive confirmation that their message has been received before they are alowed to continue execution.
As expected, this requires implementation of a protocol over the primitive asynchronous communication.
The protocol we choose is based on a protocol in [6] to implement the synchronous 7r-caculus (without
choices) in the asynchronous 7r-caculus. It works as follows. Suppose a sender 5 wants to sends avaue V
to receiver R on channel k. S and R create a private channel each. Let us cal these u and t respectively.
First, 5 sends the channal name u to R on channel k. Once R knows the channel name u, it sends back the
channel name t on the channel uto S S now forks - in one thread it sends V to R on t and in the other it
resumes execution with its continuation. R on receiving V ont resumes its own execution. In 7r-caculus
notation, this trandation is represented as follows.

((KV.PY) = ™ (feulu(*).(* V|«P'»)) 1)
«fc(v).P» = utk(u).(utkt(y).((P))) (@)
In order to implement this protocol, we assume that we have the constructor-destructor pairs (outq, destroyout)

and (out,o destroyout 1) and the corresponding kinds outo and outi from section 3.3. The signature for
these congtants is reproduced below.

outo : chan—>Type

outi : chan => chan — Type

put, : \/x: chan. outo#

out! : Vx: chan. W : chan. outi xy
destroyout, : Vx: chan. outox -2 {1}

destroyout; : Vx: chan. W : chan. outi xy—e {1}

58

We aso need a datatype to encode data being sent on channel k. Our signature for this datatype is

dat a# : chan — Type
datag : Vx: chan. B—e dat a# x

undata® : Vx:chan. data#t x —0 B

The corresponding reduction rules are:

undatar [K] ~ (datag [K] ~V) -> V

N -« N
datar [K] ~N -+ datar [K] ~N'
N -+ N

undatag [K|~N —e undatag [K] ~N'

The actual implementation of the send and receive macros uses the same encoding as in section 3.3. The
synchronous send macro, caled syncsend is defined below.

syncsend (it,N: B);M # 5 =
priv u: chan in
(cut,] [4]) ®
'f‘t : chan. Ac:outi U t.

' let {1} =destroyout; M [{] ' ¢
in

}
Let us define the type Syncsend(fc, B,) as follows.

fdatas [t] ~N) & M

Syncsend(fc, B, S§) = 3u: chan. ((outi ku) ® (V* : chan. out! wt” {(datapt) ® §}))

The derived typing rule for this construct is

S h A::chan E:T:A;* h M#5 E:r;A";* h AT: B
syn
E;T;A, A" * h (syncsend(fc, AT : B); M # 5) # Syncsend(fc, B, 5)

The definitions syncsend and Syncsend correspond to the trandation of the right hand side of equation
(2) according to the rulesin figure 22. The corresponding synchronous receive macro is the following.

syncrecv y: B on k in M # 5 =
priv t: chan in
Au : chan. Ac: outi k u.

{
et {1} =destroyout, [K [u] =~ cin
tout! [u] [®
\y' : data# £.

type BufB(readwrite) = /da.Syncrecv(write, B, syncsend('read, B, a)
(* oneCellBuffere : Vread : chan. Vwrite : chan. {Buf B{read, write)} *)

fun oneCellBuffer# [read : chan] [write: chan] =

{
fm. -f-o-LdBufB(rcad>1i;ritc)
syncrecv X : B on write in
syncsend(read, x); w
}

Figure 33: The function oneCel IBuf fer

let {y} = {undatas [t] ~ y}
in M

}
We define the type Syncrecv(fc, B, 5) as follows.
Syncrecv(A:7 B, § = 3t : chan. Vu : chan. outi ku—o {(outi ut) @ (data"¢— {S}}

Then the derived typing rule for syncrecv is

E h A:: chan E;T;A)y: X * h M#S
N Sy
E;T;A;* h (syncrecvy: BonkinM# S # Syncrecv(fc, 5,5)

ncrecv

Again, this encoding is actualy the trandation of the right hand side of equation (2) according to the rules
in figure 22.

5.6 Example: One Cell Buffer

Using the synchronous send and receive methods defined earlier, we define a one cell buffer®. This buffer
operates on two channels read and write which are used to read and write to the buffer. When the buffer
is empty, sending a vaue on write has the effect of storing this value in the buffer. Subsequently, attempts
to write to the buffer block, until some process reads the buffer on channel read. After the buffer is read,
attempts to read block until the buffer is written to again. This implementation is shown in figure 33.

5.7 Programming Technique: Synchronous Choices

Choice in the context of concurrent programming refers to a primitive that alows the system to non-
deterministically choose from one of several possibilities. The candidates for the choice may be values,
events (like send and receive) or processes. Usudly, the choice is based on some criteriai.e. not dl of the

8A one cdll buffer is also called an M-structure.

60

possibilities are considered as possible candidates for selection. The simplest notion of choice is internal
choice, where the executing process spontaneously selects from several possible alternatives and continues
with one of these. In our system, the type S © 52 represents internal choice between processes. A monadic
term of this type may evaluate to a monadic value of type S\ or 52. The environment in which the process
computes plays no role in this sdlection. Thus this kind of choice is internal. Another very useful kind
of choice is external. This is a choice resolved by the environment, based on some selection criteria. In
process-calculi like TT, severa variants of external choice have been suggested. Most of these are based
on selecting some input or output action. For example, in the synchronous 7r-calculus [24, 25], there is an
associative and commutative (AC) choice operator \\ and a syntactic class C to represent external choice
between input and output actions’.

C := x(y).P\xy.P\Ci\\C,

The semantics of this operator are as follows.

(x(y).P QCi) | (2P 0 Cp) -* P[Zy] |F

A choice may be resolved by the environment in favor of an action if there is a corresponding co-action. In
[27] it is shown that this kind of choice is strictly more expressive than internal choice and primitive in the
sense that it cannot be implemented in a system without some similar construct. The concurrent program-
ming language CML provides similar constructs called choose and sel ect.

In the case of asynchronous process-calculi (concurrent systems where senders have no continuation) like
the asynchronous 7r-calculus, mention of external choice operators in literature is rather limited. Most of
these choice operators alow choice between input processes only.

C = {y).P\C, + C, ()]
X(y).P + d\xz - P[zly]

As shown in [27], this choice operator is dso strictly less expressive than the external choice operator in
synchronous calculi mentioned earlier. /CLL is also an asynchronous language. As seen in section 3.5,
the pairing congtruct (iVi, N,) and the associated type constructor & act as an external choice primitive in
/CLL because forward chaining can project out either Ni or N, from a pair (iVi, Ny)g if it can be used to
complete areaction step. From the trandation in section 3.3, we see that our choice construct corresponds
to the following choice operator in the asynchronous 7r-caculus.

C ::= X(y).P\>X\C; + C;

X(¥).P+ C)\(xz+ C3) - Pl2y]

Clearly this operator is at least as expressive as the input-only choice operator in equation (3). We now show
that this operator can be used to implement a complete synchronous external choice operator \\ in CLL. The
encoding is not obvious and we present it case by case. Throughout this section, we use analogy with the
7r-cdculus to describe constructions abstractly.

®This choice operator is called + in the original paper. Wecall it [] to avoid syntactic ambiguity.

61

57.1 Input-input Choice

We implement a choice between two receivers. Suppose we have two synchronous receivers, k1(3/1).P and
ko{y,)-P2- Using equation (2), the trandations of these two receivers into the asynchronous 7r-caculus are

é(Myi;. Pi)> = wti-M«i). («q*i | him)- ((Pi »)
(ka(y2)- P2) = V. h(Wp). (Gotz | ta(y2). ((P2 »)

This suggests the following trandation for synchronous input-input choices.

{{ka(y1)-Pi\\ka(y2).P2)) = (Vtx-Vtz-
(k1 (). (taty | 81(gn)- { 2o)} +
(fca(«2). ("2¢2 | t2(y2)- { P2)))
-)

We can now define the operator syncchoice;, that allows us to choose synchronoudly between two re-
celvers. It isjust a trandation of the above term into CLL. We use notation from the language PICT
[30] to denote events in a choice. k?(y : B).M denotes the event of receiving a value of type B on
channel k and binding it to y in M. Observe that the event k?(y : B).M differs from the process
syncrecv y : B on k in M in that the latter will execute on its own. The former, on the other hand,
is notation for a potential communication.

SynCChOice” [klf)(yl : B|)M| # Si, sz)(yz . Bz)Mz # Sz] =
priv t\ : chan in
priv t, :chan in
<
AN : chan. Ac:outi K\ U\

{
let {1} =destroyout , [hi] [u{\ * c in
out, M [ti]) ®
)A(y[: datag, f;.
{
let {V1} = {undatag [t:] ~ ¥i}
in Mi
}
b)
Aus : chan. Ac: outi ko uo.
{ let {1} =destroyout, [*4 [~ cin
outi [u] [t]) 3
S(yfz : datap, to.
{
IS* {22} = {undatag, [] ~ 22
in M2
}
}

62

The typing rule for this macro is

S I- ki :chan ST, Ay - 0i. ¥ H Afl #5< i=1,2

(SYNCCNOICE,; [K2(VL © B).ML # 5121 A3 2, S2).Mo # 57])
Syncchoicen(kl, By, 51, k2, B, 52)

syncchoice,,

Pl MFAVR N o

where Syncchoicerr is defined as

Syncchoicew('.fc ’ 3 5 5;.32,82) =
3*1: chan. 3*2« chan.
(Mg :chan. outi k\ u\ —e {(outi u\ t\) ® (data*t\ -8 {S})}) &
(Vug : chan. outi k, "2 —° {(outi u,%) (g (altas, &-— {%)})

5.7.2 Output-output Choice

Now we implement a synchronous choice between two senders. As for the case of receivers, we begin by
considering two senders kiNi.Pi and fc,iV..P, in the synchronous 7r-caculus. Their trandations to the
asynchronous 7r-calculus are

(rNL PLY) = vun (o |w(t). G [{P0D)
{kaNo. P2 Y = wuo. (koug | ua(ta). (2N2 | {(P 1))

From these we obtain the following trandation for output-output choice.

(((th-Pl)\\(kzl\Tz-PZ)-)) = VUy.VUy.
(_ -
(klul +-k2U2) I
(ui(ts)-GaN1 | ((Pa))) + uxts){ioN2 1 ((P2)}))
)

This encoding works because in order for communication to proceed with the term on the right, the first
communication must occur with K\WU\ or fc,w,. Once this has happened, the other option is eliminated from
the choice. As an example, suppose that a receiver receives u\ onki before a receiver communicates on
A, Then the term £,u; is eliminated and since w, is private, no process can communicate with the term
W2(<2-(*¥2/2 | ((P2)))* Thisterm gets eliminated when the receiver on K\ replies on u\. Thus we can define
a synchronous choice macro for output as shown below. As before, we use PICT notation to denote events
in the choice. AV : B);M denotes the event of sending N of type B on channel k and continuing with
the process M.

syncchoicegs [k : B));M; # 5, kil(No : Bo);M, # S =
priv u\ : chan in
priv u, : chan in
(out! [fd] [ui], Qut! [ky] [u]) ®
{
Aty : chan. Ac: outi u\ t\.

{
let {1} = destroy out{ \u\] [t\] " ¢

In

63

(datag, [t1] ~ N1) ® M,

} s

Ats : chan. \c: outy usg to.

{
let {1} =destroyout [us] [ta] ~ ¢
in
(data32 [tg] B Ng) ® Moy

)

The typing rule for this macro is
Y. F k; : chan ST A0 F M, #S; S TA U + N, : B;
(syncchoicegs [k1!(N1 : By); My # S1, k2!(Na : Ba); My # Ss))
Syncchoicegs(k1, B1, 51, k2, B2,.S2)
where the type Syncchoicess(ky, Bi,.S1, k2, B2, S2) is defined as

Syncchoicegs(k1, B1, S1, k2, B, S2) =
Ju; : chan. Jus : chan.
((outy k1 u & outy ko ug) ®
((Vt1 : chan. outy u; t; — {(datap, t;) ® S1}) &
(Vt2 : chan. out; ug ty —o {(data32 t2) ® SQ})))

syncchoicegs

DA AT -

5.7.3 Input-output Choice

Consider a receiver k1(y;).P1 and a sender kaNo.P,. The translations of these to the asynchronous -

calculus are
(ka(y1)- 1)) = vt ky(w). (@t [ta(y1). (P)
(koNo. P) = wvug. (koug | ua(te). (]2Na | (P2))))

We can combine these two terms in a choice as follows.

{ (k1(31)- P1) [| (koNo. Po)) = vty vus.
(
(k1(wa). (@it [t2(y1). (PL) + koug) |
ug(t2). (B2N2 | (P2)
)

Though this encoding is correct in the m-calculus, we cannot implement it in CLL because we encode
choices using the type connective &, and hence the two components of a choice must use the same linear
resources. This is not the case here since there is a choice between (k1 (u1). (@1t; | t1(y1)- { P1) and koua
in the above equation. An alternate encoding that balances all resources is shown below. This encoding is
incorrect because it has an atomicity problem, which is described after the encoding.

((k1(y1)-P1) [(k2N2.P2)) = vty vus.

kous |
(k1(u1). (tat1 | t1(3n). (Pr)
+ ua(t2). (B2N2 | { P2))))

The atomicity problem in this encoding is the following. Consider the scenario where there is a receiver
on &2 and a sender on K\ i.e. both actions in the choice can be sdlected. Since there is areceiver on k<i,
the term £2"2 can communicate with it. If the process k\{u\). (T\M\ \ t\(yi). ((P\))) communicates with
the sender on K\ before the receiver on &2 can reply on U2, the choice is resolved and the continuation
N2(*2)- ("2721 ((P2))) iseliminated. This deadlocks the partial communication on k.

One way to eliminate this problem is to deactivate the input process ki(ui). (uiti | £1(2/1). ((Pi))) once
A2/2 has communicated. This can be done by creating a private channel wA and requiring the input process
to obtain a signal on that. One such encoding is shown below. As we shdl see later, an internal communi-
cation can occur in this encoding, and hence it does not work in the 7r-caculus. However, in CLL, we can
implement this encoding using 3-way synchronization.

{ Ger(wn)-Pr1) [(keN2.Po) > = vl vuz- v,
(
Wi() + A202) |
(W1{)- kr(w1)- (@ata [1(pn)- (P2)
+ 112(«2).(*27 2| ((ft»))

As mentioned earlier, the atomicity problem does not arise in this encoding because once £22 communi-
cates, Wi () is diminated and hence the input process cannot communicate. However, this encoding suffers
from an internal communication problem. The term on the right side above can perform a communication
within itsef and reduce, thus resolving the choice internaly.

Vi\. VU2- VWA,
(
(Wi() + "2"2) | . Vi\. vup. vy,
(wi(). ki(ui). (utti I ti(yi). ((Pi) (Prouz | ua(ta). (B2N2 | { P2)))
o U212).(2NA(P2)

Thus this encoding does not work in the 7r-calculus. However, in CLL, we can chain reactions together.
In particular, successive inputs can be chained together i.e. we can force two senders to synchronize si-
multaneously with areceiver. If we chain together the two inputs in wi(). fci(wi). ..., then this internal
communication on WA cannot occur without the presence of a sender on k\. Conversaly, no sender on k\
can communicate with this term unless A () is also present. Thus this encoding works for CLL. We build a
macro based on this encoding as follows.

syncchoice;s [fa?jfi : i?1).Mi # Si, kN, : B2);M, # 52] =
priv t\ : chan in
priv U2 : chan in
priv.w\ : chan in

((m.l_to L], quts ['Z [2) ®

Ac : outo wA.
Ku\ : chan. Ac: outi K\ u\.
{

65

let {1} = destroyout s [ki] [m] = c
let {1} = destroyout® [wi] *~ d in

:\ya :datag, t1.
{

let {j/i} = {undatag, [t1] ~ %}
inMi

}
y) |
AL, : chan. Ac: outi u, t,.

{ .
tet {1} = destroyout, ['F [¢
H

(datap . [t] * W) ® My
)

The typing rule for this construct is

E hfcf: chan ST:A"* h N, : £
TTHAA

s A ALy (syncchoice s [fci?i/i : Bi).Mi # Si, AJlV, . B)\M, # S;])
T . #Syncchoice,.(fci,Bi,Si,fe,B;,Si)

syncchoicers

where the type Syncchoices(fci, Bi, *S, A, B»,5,) is defined as follows.

Syncchoicers(k1, B1, 51, k2, B2, 82) =
33 : chan. 3w, : chan. 3wi : chan
((outo WA & outifc, ¥ ®
((outo wA —o Vt/i : chan. outi K\ u\ -o {(outi U\ t\) ® (data™ t\ —o {Si})}) &
(V*2° chan. outy uz t2 — {(datag, t2) @ S52})))

The input-output choice construct described here can be generalized to an arbitrary number of senders and
receivers. The extension is straightforward and we €elide the details here. We also observe that the choice
macros presented here can be used in conjunction with the macros syncsend and syncrecv defined earlier.
However, separate channels must be used for synchronous and asynchronous communication i.e. channels
used for calls on syncsend or syncrecv must not be used for calls on asyncsend or asyncrecv and
vice-versa.

58 Example: Read-Write Memory Cell

We construct aread-write memory cdll to illustrate the choice mechanism designed above. A read-write cell
is aprocess that remembers one single value. It listens to requests to read the value stored on channel read
and to write (change) the value in the cell on channel write. Since a single write can be followed by severd
reads, the value stored in the cell hasto be non-linear. Further, we assume that the cell is aways created with

66

type CdlB(read, write) = /,ta.Syncchoxcers(write, {IB}, {{a}}, read, B, {a})
(* memoryCellg : Vread : chan. Vwrite : chan. B —e {Cell*{read, write)} *)

fun memoryCellg [read: chan] [write: chan] (v: B) =

{
iiucellg(read,mite)
syncchoice,s
[
\{Nrite?(x : {\B})-
let {y} =x in
memoryCellg [read] [write] y
relaad\(y:JB); memoryCellg [read] [write] v
]
}

Figure 34: The function memoryCell

a value stored in it.*® Figure 34 describes a function memoryCell that creates a memory cell on channels
read and write and initializes it with the value v.

6 Discusson

CLL is a concurrent language designed from logical principles. In the process of designing CLL, we have
accomplished four main objectives. First, we have shown that proof-search in logic has an interesting com-
putational interpretation - it can viewed as a procedure to link together programs to form larger programs.
This may be viewed as an extension of the Curry-Howard isomor phism to include proof-search procedures.
Second, we have obtained a symmetric integration between functional and logic programming. /CLL is
purely functional. /CLL introduced in section 3 embeds this functional language in a concurrent logic pro-
gramming language that performs proof-search on types of programs and then links programs together. In
section 4 we embed the /CLL back into/CL L, making the integration between functional and logic pro-
gramming symmetric. Execution of programs in full-CLL proceeds in interleaving phases of functional
evaluation of programs and proof-search to link parts of programs. To the best of our knowledge, thisis the
first time that functional and logic programming have been integrated in this manner. :

CLL isalso a symmetric integration of functional and concurrent programming in atyped setting. /CLL in
section 3 adds concurrency to the functional language/CLL. Full-CLL allows /CLL CHAMs to be created
and nested inside functional evaluation through the link construct, thus making the integration symmetric.
The idea of integrating functional and concurrent programming is not new. The blue-calculus [8], CML

YThisisin sharp contrast with memory cells called I-sructures which are created empty and have a write-once, read-many
semantics. See [32] for a description of I-smctures.

67

[31, 32], JoCAML [15], PICT [30] and Facile [17] dl integrate functional and concurrent programming.
All these languages have both functional and concurrent features and are typed. However, there are severa
differences between these languages and CLL. First, al these languages have a "flat" model for concurrent
processes, i.e. there is asingle global configuration in which all parallel processes execute simultaneoudly.
When a function creates a sub-process, the process is automatically lifted and placed in this globa con-
figuration. This process can then fredy communicate with al other processes. Thus communication and
synchronization cannot be localized to specific parts of programs. In sharp contrast, each call to the link
construct in CLL creates a separate configuration for concurrent processes.** Processes within a configu-
ration can communicate and synchronize with each other, but processes in separate configurations cannot
(for an illustration, see the example of Fibonacci humbers in section 5.1). Another consegquence of having
a single configuration for processes in existing concurrent functional languages is that concurrent compu-
tations (processes) do not return values to functional terms directly. This has to be done indirectly through
the message passing mechanism of the language. In CLL, on the other hand, a concurrent computation
started using the link construct directly returns aresult that can be used in the remainder of the functional
computation. This results in a significant difference in the structure of programs written in CLL and other
languages. It also makes the integration between functional and concurrent programming more symmetric
in CLL. The third difference between CLL and blue-calculus, CML, JoOCAML, PICT and Facileis that every
process in CLL has a distinct type that provides definite information about the behavior of the process. For
example, aprocess of type S ® 52 is aparallel composition of two processes of types S and 52- On the
other hand, typing for processes in the other concurrent languages mentioned above is weak and process
types provide no information about the behavior of processes. In Facile, PICT and JOCAML processes have
no types at al. The type system only checks that each individua functional term in a process has a type.
In the blue-calculus, al processes in the globa configuration must have the same type. In CML, processes
are not explicitly visible; they are only observable through side-effects like communication. We believe that
having informative types on processes will make it easier to reason about correctness of CLL programs.

The fourth contribution of CLL is an exploration of connections between process-calculi constructs and
connectives of linear logic in the context of programming language design. As seen in section 3.5, the lin-
ear logic connectives <, 3, &, ©, —0 and atomic propositions correspond to process-calculi constructs of
parallel composition, name restriction, external choice, interna choice, input prefixing and asynchronous
output respectively. Further, communication channels can be simulated using index refinements and syn-
chronization and communication between processes can be performed using proof-search. Thus there is a
correspondence between linear logic connectives and process-calculi constructs and proof-search in linear
logic and communication in process-calculi. Abramsky's work on computational interpretations of linear
logic [1] and the MSR framework [11] also explore similar connections between linear logic and concur-
rent computation but as opposed to CLL they do not use this correspondence to construct a programming
language. As far as we know, this is the first time that such connections have been used explicitly in a
programming language.

Acknowledgment

The author expresses his sincere thanks to Frank Pfenning for his guidance, comments, suggestions and
ideas that have been invaluable to the creation of CLL and this report.

" The ambient calculus [9] allows creation of several separate nested configur ations for processes. However, the ambient calculus
lacks functional programming and emphasizes process mobility and cannot be compared to CLL directly.

68

References

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]
[9

[10]

[11]

[12]

[13]

[14]

[15]

Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
[1(1-2):3-57, 1993.

Samson Abramsky, Simon Gay, and Rajagopal Nagargan. Specification structures and propositions-
as-types for concurrency. In G. Birtwistle and F. Moller, editors, Logicsfor Concurrency: Structure vs.
Automata—~Proceedings ofthe VHIth BanffHigher Order Workshop, volume 1043 of Lecture Notesin
Computer Science. Springer-Verlag, 1996.

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297-347, 1992.

Gerard Berry and Gérard Boudol. The chemical abstract machine. In Proceedings of the ACM Sympo-
sium on Principles of Programming Languages, pages 81-94. ACM, January 1990.

Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Computer Science,
96:217-248, 1992.

Gérard Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702, INRIA SofiaAntipoalis,
1992.

Gérard Boudol. Some chemical abstract machines. In A Decade of Concurrency, volume 803 of LNCS,
pages 92-123. Springer-Verlag, 1994.

Gérard Boudol. The 7r-caculusin direct style. Higher Order Symbol. Comput., 11(2): 177-208, 1998.

Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the ambient calculus. Inf. Comput,
177(2): 160-194, 2002.

Serenella Cerrito and Delia Kesner. Pattern matching as cut elimination. In Logic in Computer Science,
pages 98-108, 1999.

Iliano Cervesato. The logical meeting point of multiset rewriting and process algebra. Unpublished
manuscript. 2004. Available electronically from http://theory.stanford.eduTiliano/forthcoming.html.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent logical framework
[1: Examples and applications. Technica Report CMU-CS-02-102, Computer Science Department,
Carnegie Méllon University, May 2003.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of linear
logic. Technica Report CMU-CS-03-131, Computer Science Department, Carnegie Mellon Univer-
Sty, 2003.

Kaustuv Chaudhuri. Focusing the inverse method for linear logic. Unpublished Manuscript. 2005.
Available dectronically from http://www.cs.cmu.edurkaustuv/papers/lics05.pdf.

Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for objective-caml. In ASAMA '99:
Proceedings of the First International Symposium on Agent Systems and Applications Third Interna-
tional Symposium on Mobile Agents, page 22. |EEE Computer Society, 1999.

69

[16] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit typing alaML for thejoin-

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

calculus. In Proceedings of the 8th I nternational Conference on Concurrency Theory, pages 196-212.
Springer-Verlag, 1997.

Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A symmetric integration of con-
current and functional programming. I nternational Journal of Parallel Programming, 18(2): 121-160,
1989.

Jean-Yves Girard. Linear logic. In Theoretical Computer Science, volume 5, pages 1-102, 1987.

Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Proceedings of TAP-
SOFT'87, vol 2, volume 250 of Lecture Notes in Computer Science, pages 52-66, 1987.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. 1n Proceedings ofthe
28th ACM SIGPLAN-SI GACT symposium on Principles of programming languages, pages 128-141.
ACM Press, 2001.

Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Report TRO3-
0007, Department of Computer Science, Tokyo Institute of Technology, October 2003.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst, 21(5):914-947, 1999.

C. Mierowsky, S. Taylor, E. Shapiro, J. Levy, and S. Safra. The design and implementation of flat
concurrent prolog. Technical Report CS85-09, Department of Computer Science, Weiszmann Institute
of Science, 1985.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes part 1. Technica
Report ECS-LFCS-89-85, Edinburgh University, 1989.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes part 2. Technica
Report ECS-LFCS-89-86, Edinburgh University, 1989.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92,
1991

Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asynchronous
pi-calculus. In Symposium on Principles of Programming Languages (POPL), pages 256-265, 1997.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell. In Proceedings of the
23rdACM SI GPLAN-SIGACT symposium on Principles of programming languages, pages 295-308.
ACM Press, 1996.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical.
Structuresin Comp. ScL, 11(4):511-540, 2001.

Benjamin C. Pierce and David N. Turner. Pict: a programming language based on the pi-calculus. In
Proof language, andinteraction: essaysin honour of Robin Milner, pages 455—4%4. MIT Press, 2000.

John H. Reppy. CML: A higher concurrent language. In Proceedings of the ACM SGPLAN 1991
conference on Programming language design andimplementation, pages 293-305. ACM Press, 1991.

70

[32] John H. Reppy. Concurrent programming in ML. Cambridge University Press, 1999.

[33] Ehud Shapiro, editor. Concurrent Prolog: Collected Papers, volume 1-2. MIT Press, Cambridge, MA,
1987.

[34] Ehud Shapiro. The family of concurrent logic programming languages. ACM Comput. Surv.,
21(3):413-510, 1989.

[35] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical framework
I: Judgements and properties. Technical Report CMU-CS-02-101, Computer Science Department,
Carnegie Médlon University, May 2003.

[36] Hongwei Xi and Frank Pfenning. Dependent types in practica programming. In Procéedings of the
26th ACM SSGPLAN-SGACT symposium on Principles ofprogramming languages, pages 214-227.
ACM Press, 1999.

71

