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Abstract

In this paper, we consider the problem of reconstructing near-perfect phylogenetic trees using binary char-
acters. A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree.
The algorithm for reconstructing a perfect phylogeny for binary characters is computationally efficient but
impractical in most real settings. A near-perfect phylogeny relaxes this assumption by allowing characters
to mutate a constant number of times. We show that if the number of additional mutations required by the
near-perfect phylogeny is bounded by q, then we can reconstruct the optimal near-perfect phylogenetic tree
in time 2°(q ^nm2 where n is the number of taxa and m is the number of characters. This is a significant
improvement over the previous best result of nm°^2°^q2r2^ where r is the number of states per character
(2 for binary). This improvement could lead to the first practical phylogenetic tree reconstruction algorithm
that is both computationally feasible and biologically meaningful. We finally outline a method to improve
the bound °^



1 Introduction

One of the classical problems of computational biology is to reconstruct an evolutionary tree for a set of
taxa based on character data. Parsimony is one of the widely used metrics to solve the problem. It has been
known to be particularly useful in the case when the evolutionary tree reconstructed is over a short period of
time.

We borrow some of the following definitions and notations from [5]. The input to the problem is gen-
erally represented by a matrix / where rows R are strings of states corresponding to taxa. The columns
C = {1, • • • , m} are referred to as characters. The set of states corresponding to any character c is denoted
by Ac, therefore every taxon s e A\ x • • x Am. In a phylogenetic tree, each vertex v corresponds to a
taxon and has an associated label l(v) e A\ x • • • x Am- We use the terms phylogeny, phylogenetic tree or
just tree interchangeably.
Definition 1: A phylogeny for a set of n taxa R is a tree T( V, E) with the following properties:

1. if a taxon seR then s E l(V(T))

2. for all (rz, v) E E{T), H(l(u),l(v)) = 1 where H is the hamming distance

Definition 2: The length of a phylogeny T, length(T) = \E(T)\.
Definition 3: The penalty of a phylogeny T is defined as

penalty{T) = length(T) -
cec

Minimizing the length of a phylogeny is the problem of finding the most parsimonious tree, a well known
NP-complete problem [6]. A phylogenetic tree T constructed on input /, is called a perfect phylogeny if
penalty(T) = 0. As summarized by [5], reconstructing a perfect phylogeny was proved to be NP-haid
independently by Bodlaender et al. [2] and Steel [10]. This led researchers to work on either sophisticated
heuristics (for e.g [7], [3]) or solve optimally for fixed parameter versions of the problem (for e.g, [1],
[9]). Gusfield considered an important special case of the perfect phylogeny problem, when the number
of states is bounded by 2. We call such a tree as a binary perfect phylogeny. Gusfield showed that binary
perfect phylogenies can be reconstructed in linear time [8]. Lagergren and Fernandez-Baca, considered the
problem of reconstructing near-perfect phylogenies [5]. The assumption of a 'near'-perfect phylogeny is
that penalty(T) is small for the most parsimonious tree. Their algorithm runs in time nm°^2°^q2r2\
where r is the number of states per character, q is the penalty, n is the number of taxa and m is the number
of characters.
Our Results: In our work, we consider an important special case of the problem when r = \AC\ = 2. The
case when r = 2 is primarily important because Single Nucleotide Polymorphisms (SNPs) are bi-allelic.
We can therefore use the algorithm for reconstructing trees where the taxa are DNA sequences and the
characters are SNP markers. We show that if the penalty of the most parsimonious phylogeny is bounded
by q, then we can reconstruct the phylogenetic tree in time 2°^nm2. In section 4 we briefly describe how
this time-bound can be improved to q°^nm2. More details on the improved algorithm will be available in
[4]. Our algorithm is almost entirely self-contained and its understanding requires only some fundamental
theorems on phylogenetic trees. Although some existential proofs are hard, the algorithm itself is not very
complicated to implement. We also expect the algorithm to perform significantly better in practice than the
worst case bounds.



1. create a conflict graph G s.t there exists a bijection c : V(G) *-+ C and (tx, v) E E(G) iff
\Gc(uMv)\ =4

2. find Q with |Q| < 2q s.t Q is a set of columns corresponding to the vertex cover of G, return
nil if none exists

(a) for all trees T s.t there exists an onto function / i : E(T) »->• Q

i. for each vertex v eV(T)

A. find the subset of rows b(v) 'compatible' to v
B. build a perfect phylogeny Tv for the set b(v)

C. replace v with tree Tv

D. complete the tree by linking all the Tv's

ii. if cost(T) < min thenTf = T,min = cost(Tf)

(b) return Tf

Figure 1: Overview of the algorithm

2 Overview of the Algorithm

We first sketch the outline of the algorithm and then explain the details of each step in subsequent sections.
Specifically, given an input / and a penalty q the algorithm finds most parsimonious phylogeny with penalty
at most q or nil if none exists. The following definitions are useful:

Definition 1 The set of gametes Gij restricted to two characters i,j is defined as: Gij = {(fc,i)|3r E

Definition 2 Two columns i, j E C are said to contain (all) four gametes when \Gij\ =4

A high level pseudo-code of the algorithm is given in 1. The following sections elaborate on each of the
steps of this pseudo-code which we will refer to as the main pseudo-code.

Pre-processing It is well known that the most parsimonious phylogeny reconstructed is imperfect if and
only if the input / contains the four-gamete property. Before running our algorithm, we pre-process the
input as follows. We remove all the columns that that have only single state (i.e. they do not mutate at all).
We then look for the pairs of input columns i , j for which \Gij\ = 2. In such a case, both the columns
contain the same information. We remove one of the two columns from the input. We show in the Appendix
(Theorem 12) that this preprocessing steps does not alter the overall running time or the correctness.

At the end of pre-processing, we have the input / that satisfies \Gij\ > 3 for all columns i, j.
Conflict graph G and the vertex cover-columns Q: A conflict graph G corresponding to input / is
constructed as follows. Each vertex v E V(G) of the graph represents a character c(v) E /. An edge (u, v)
is added if and only if all four gametes are present in c{u) and c(v). The function /i : E(T) *-± C maps
mutation events to the character that mutates. Note that in any phylogeny if ji(u, v) = c then l(u)[c] ^

Kv)[c].
To find the vertex cover, we use the classical 2-approximation algorithm. We set Q to be the set of

columns corresponding to the vertex cover returned by the algorithm. We assert that there exists no g-near
perfect phylogeny if \Q\ > 2q.



Tree T with edges e labeled If £ - {1, 8} Skeleton j(7) where
with /He) thick edges f € E«7) )

Figure 2: A phylogenetic tree and its associated skeleton. The bit vec-
tors of the species are left out for simplicity.

Lemma 1 There exists no q-near-perfect phytogeny if\Q\ > 2q.

Proof: First notice that for any pair of characters (i, j) s.t \Gij\ = 4 the tree T should contain either two
edges e, e' such that /x(e) = /i(e') = i or /i(e) = ji(e') = j. If \Q\ > 2q then there exists no vertex cover
of size q. This implies that there exists at least one edge (u, v) E E{G) s.t neither c(u) nor c(v) mutates
multiple times in T, a contradiction. •

For the step 2a of the pseudo-code, we enumerate by brute force all possible trees T that mutate the
columns in Q at least once.

Definition 3 A vertex v is bad w.r.t a pair of characters (i, j) and a set of columns Q, ifi,j £ Q and

From now on we adhere to the following naming convention. The tree T (used in step 2a that mutates
the columns in the vertex cover Q is referred to as the skeleton tree. The vertices of the a skeleton tree T
are referred to as super nodes, since an entire tree replaces each of these nodes in a final phylogenetic tree.
Figure 2 shows an example of a phylogenetic tree along with its skeleton.

3 Details

3.1 Finding a compatible set for all vertices

This is the most complicated step of the algorithm. We want to partition the rows of the input matrix such
that each super node v is assigned a subset of 'compatible' rows b(v). By arbitrarily rooting the tree T, the
structure of the tree defines the bits for the characters in Q. We can think of every super node v in the tree
being tagged with the states &i, &2»' " ? b\Q\ and use the notation t(v) to denote the tag. Note that t(v) is the
same as l(v) restricted to the columns of Q. We can therefore partition the set of rows if the tags t(v) are all
unique. The problem arises when two super nodes say v\, V2 are both assigned the same tags - and therefore



the same subset of rows S. We need to further partition S into two sets S\ and 52 one for each v\ and V2-
We need several lemmas to determine how to make this partition.

Definition 4 We use the notation VVl iV2 (T) to be the path between (and including) vertices (or super nodes)
v\ and V2 of any tree T.

Note that if v\,V2 are super nodes and T is the phylogeny (not skeleton), then the notation VVl,V2(T)
is used to denote the path in the tree T that connects super nodes v\ and V2 of the corresponding skeleton
s(T).

The proof for the following theorem is given in Appendix 4.

Theorem 2 If there exists a q-near-perfect phylogeny that has bad vertices (w.r.t Q) then there exists a
q-near-perfect phylogeny that does not contain any bad vertices (w.r.t Q).

For the rest of the paper, we fix an optimal phylogeny T^t that does not contain any bad vertices. We
will impose additional restrictions on T^ later.

Corollary 3 In Toptt if there exists two edges e = (v\, ^2) and d — (^3, v±) such that fi(e) = n(ef) then for
allcolumnsj £ Q, \{e G 7\*,V3(Topt)| ji(e) = j}\ is even and therefore l{vi)[i] = l(vA)[i]forall i £ Q.

For any phylogeny T, the skeleton of T, s(T), with respect to a set of columns Q (vertex-cover) is the
tree of super-nodes where each super node is attached to edges e € T s.t /i(e) G Q. A super node can
be viewed as a set of vertices of the final phylogenetic tree and therefore gives us the following obvious
properties of containment. For a super node v\ E s(T), we say that edge e = (u, v) G v\ iff u € v\9 v G v\
and (tx, v) G E(s(T)). Similarly, we say that column j G v\ if 3e G v\ s.t n(e) = j.

Definition 5 Two super nodes v\ and V2 ofs(T) are tag-adjacent if

L t(v\) = t(v2) and

2. there exists no super node V3 G VVliV2 {s(T)) such that t(v^) =t(v\)

Definition 6 Two super nodes v\ and V2 of s(T) are paired-tag-adjacent if there exists no super node
v$ G VVuV2(s(T)) such thatt(v3) = t(vi) ort{v3) = t{v2)

Definition 7 An edge e G E(T) or column /i(e) is distinguishing w.r.t a phylogeny T if for any two tag-
adjacent super nodes v\ and V2, \{ef G VVliV2 (T)\fi(e') = /i(e)}| is odd.

It is easy to see that for the optimal near-perfect phylogeny T^ there exists a distinguishing edge for
every pair of tag-adjacent super nodes.

3.1.1 Partition

We can define equivalence classes Vt(v) containing super nodes based on the equality of tags t(v) of super
nodes. It is straightforward to partition the rows R for each equivalence class of super nodes. This is
performed by just examining the tags of each equivalence class. The pseudo-code in Figure 3 provides
the details of the steps necessary to compute the partitions. At any point in time, the partition algorithm
maintains a partition P( V^) for each equivalence class. Each recursive call refines one of the partitions of
one of the equivalence classes. Just to avoid excessive notations we will use P{Vti) = {Si, • • • , S*} for all
i. It should be obvious from the context as to which equivalence class 5, belongs to. We say that a column
i partitions a set Sj if there exists two rows n, T2 G Sj such that r\ [i] = 0 and r2[t] = 1. The partition can
be written as Sjo = {n G Sj\ri[i] = 0} and Sh = {r2 G Sj\r2[i] = 1}.

An overview of the approach is to first discover the distinguishing columns that partition two different
equivalence classes but only mutates once in T ^ . In the second step we guess the distinguishing columns



that partition two different equivalence classes and mutates multiple times. The columns guessed are added
to the skeleton so that the skeleton expands in size.

The value mark(v) denotes our guess of whether or not the super node v contains any real vertices
in Tppt. The value is set to 'real' if we guess that there exists at least one real vertex in v and 'steiner'
otherwise. A partition P( V^) is complete when the number of sets in P( V*.) is equal to the number of super
nodes v in Vti with mark(v) — real, that is: |P(Vt,.)| = \{v £ Vti\mark(v) = real}|.

The partition function initially finds the set Z>2 consisting of columns that refines the partition in two
different equivalence classes. If |2?21 > g + 1 , then the function picks an arbitrary set of q + 1 columns and
performs 2(q+l) recursive calls on partition induced by each column in the set on two different equivalence
classes that the column refines. If I-D2I < <7, then the function guesses all the mutations of the columns in
Z>2 and adds them to s(T). Note that each added edge splits a single super node into two new super nodes.

At the end of the function partition, we add mutations and expand the skeleton. Before the expansion
the set Z?2 was empty. The following Lemma proves that it remains empty even after the skeleton expands.
Moreover, it remains empty throughout the execution of function use-interface which will be described
shortly.

Lemma 4 lfD<i is empty at any time, then it remains empty when expanding the skeleton by the addition of
non-vertex cover columns (specifically in steps 3ay 3c of function partition described in Figure 3 and step 5
of function use-interface described in Figure 4).

Proof: For the sake of contradiction, assume that D2 was empty and later became non-empty. Let c be a
column in D<i- Let t\ and <2 be the two tags that are split by c. Note that if the £1 and t<i are different on the
columns in Q, then the column c would have been found in function partition (Figure 3) itself. Therefore
it must be the case that t\ and t<i are identical on columns in Q. Since £1 and t<i are identical on columns
in Q, the algorithm found a column d that distinguishes them. Now note that c and d together must form 4
gametes. This is a contradiction to the fact that neither c nor d belongs to Q.

•

Correctness:
A partition PiV^) = {Si, • • • , 5*} is defined to be good, if it can be refined by further partitions (no

merges/unions) into that of T ^ . The set of partitions {P(Vtl), • • • , P(Vtp)} is good if every partition is
good.

The correctness can be proved inductively by making the claim that if the argument set of partitions
is good for a function call of partition then the arguments for at least one of the recursive calls is good.
Consider any one function call to partition and assume inductively that its argument is good We recursively
perform partition in step 4(b)ii. If \D2\ > q + 1 then there exists at least one column i e D<i that mutates
only once in T ^ . A column i that mutates only once induces a partition on P(V^) only when two super
nodes (of the same equivalence class V^) contain e with fi (e) = i in the path connecting them or if i mutates
inside a super node v E Vtj. We know however that i partitions at least two different equivalence classes
Vtj, Vtj,. Since i mutates once, it can mutate inside the super node of at most one of V^ or Vt., and lie in the
path connecting two super nodes of the other equivalence class. We recurse on both the partition induced
on P(Vtj) and P(Vtjf). Moreover, since the arguments of partition is good, the partition induced by using i
on at least one of Sj G P(Vtj) or Sj € P(Vtj,) is good. This completes the recursive case. The other case



function partition (P{Vtl),--- ,P(Vtp), int list selectedCols )

1. ifVi, P(Vr
ti) is complete then

(a) guess the assignments of the partitions Si to the super nodes of the skeleton

(b) expland the skeleton into S' st columns in selectedCols mutate once and the expanded
tags of the super nodes are compatible with the rows assigned

(c) return Sf

2. let D2 be the set of columns st, V i G D2> 3>ij , 3k st i partitions S* E P(Vtj)

3. i f |£> 2 |<9 + l

(a) guess multiple mutating columns among set D2 and add to skeleton

(b) guess the assignments of the partitions Si to the super nodes of the skeleton

(c) expland the skeleton into Sf such that columns in selectedCols mutate once and the
expanded tags of the super nodes are compatible with the rows assigned

(d) guess mark(v) for all super nodes v G Sf corresponding to the expanded skeleton

(e) use-interface ( S')

4. else

(a) consider any Df
2 Q D2 s.t IJ^I = 9 + 1

(b) V i e D'2 and for any two j s.t 3S* E P(Vtj), i partitions S*

i. lctP(Vtj) = (P(Vtj)\{Sk})U{Sk0}U{Skl}

ii. partition (P(V t l ) , • • • , P{Vtp)9 selectedCols U {i} )

Figure 3: Algorithm to partition and assign rows of the input to super nodes



function use-interface (skeleton S)

1. let D\ be the set of columns s.t, V i; G D\, 3ij, s.t i partitions R(Vj).

2. select some Vj that is incomplete

3. select a lowest pair v\,V2 G Vj of tag-adjacent super nodes, such that mark(v\)
mark(v2) = real

4. if 3/i G Du vs G V? and t74 G V^/, for some t1 ^ t77 and * ^ t7, t" such that

(a) morfc(v3) = marfc(174) = real

(b) /i partitions J?(VV) U R(V?>)

(c) ^t7i,v2 (5) and VV3,V4 (S) share a super-node in S

(d) (vi, vs) and (v2, V4) are paired-tag-adjacent then

5. guess extension Sf of skeleton 5 by mutating column h (once or multiple) times

6. guess mark(v) for super nodes adjacent to mutation(s) of h

7. use-interface ( S*)

Figure 4: Algorithm to fi nd interface edges and extend the skeleton

is when we guess all multiple mutations among columns i that partition at least two different equivalence
classes in step 3a. Since the size of the set of columns from which we guess is bounded by q9 this step can
clearly be performed in O(2q) time to find the columns mutating multiple times and 2°^q°^ to place the
edges in the skeleton tree. Note that we also guess the number of times a column mutates.

The step lb expands the skeleton by adding columns of selectedCols.
As before, the edges of the expanded skeleton define the tags associated with each super node. We now

assign for each super node a partition S{. While making this assignment it could be the case that the number
of partitions is less than the the total number of super nodes. Specifically, two super nodes of the same tag
are assigned the same partition. However, the number of distinct tags in the skeleton should be equal to
the number of partitions. This step can be naively implemented by once again enumerating all skeletons
using the columns of the current skeleton and selectedCols. We can then discard any skeleton that is not
compatible to the set of partitions. The running time for extending the skeleton and assigning the rows can
be bounded as follows. The recursion tree has height q, and any function call to partition makes at most
2(q + 1) recursive calls. Therefore the number of leaves of the recursion tree is bounded by 2q{q + l)q.
Each leaf nock contains at most q columns in its list selectedCols. Since the number of trees with 2q vertices
is bounded by 2°^qo(<q\ step lb can be implemented in 2°^q°^ time. This assures that the total time
spent by partition function is bounded by 2°^q°^q\

3.1.2 Interface

For discovering distinguishing edges, we are just left with the last case - distinguishing columns that mutate
once or more but partition only one equivalence class. We define R{Vt) Q R for any equivalence class Vt to
be the set of rows that match tag t. A vertex v of phylogeny T is called real if l(v) G R - informally if the
label of the vertex is present in the input (equivalently, the vertex is non-steiner).

Consider the partition defined by T^t on any one equivalence class Vt of super nodes. We say that a



column i is an internal column if the partition induced by i on R{Vt) is not good (similar to the definition
used in function partition). Informally, this implies that edge e with n(e) = i is present inside some super
node v e Vt and there exists real vertices r,r' G v s.t r[i] = 0 and r'[i] = 1. We define a column that is
not internal as interface. Note that an interface column induces a good partition. Informally a distinguishing
interface edge is present in the path between two connected components of real vertices of the super nodes
u, v G Vt s.t there exists real vertex r G ti, r[i] = 0 and real vertex r' G v, r^i] = 1.

Definition 8 A pair of tag adjacent super nodes v\ and V2 is defined to be a lowest pair in s(Topt) if there
exists a vertex x such that for all super nodes v$ G siTopt) with t(v3) = t(vi), x G VVliV3(Tapt) and
x G VV2iV3 (Topt). The vertex x is called the branch point ofv\ and V2.

Figure 5: Application of transform p. Note that the bits of steiner ver-
tex v changes at positions c and d after the transform.

Transform pc <J

We now describe a very simple transform pc^ that operates on any tree T and is defined over two
columns c, d and a steiner vertex v. To apply transform pc?c/ on steiner vertex v, all vertices v1 such that v1

is the only real vertex in Vvy (T) should satisfy the following property. There exists edge e G VVjt/ (T) s.t
/x(e) = c or /x(e) = c*. An example of when such a transform can be applied is shown in Figure 5. For all
such paths from v to t/, the transform replaces the first mutation of c with c' and vice-versa. The result after
applying the transform is shown in Figure 5. Clearly, the transform does not change the cost of the tree.

Lemma 5 In T^t, for every lowest pair super nodes vi, V2 G Vt with branch point x such that every
distinguishing column ofv\ and V2 is an interface column, there exists at least one distinguishing interface
column h with the following properties:

L column h partitions R{Vt)

2. 3vs G Vff, V4 G Vfti, t ^ t7, if1 s.t v\, v$ and V2, t>4 are paired-tag-adjacent and h partitions R(Vf) U
R{Vt") and



3. the paths VVl ,V2 (sC7^)) and VV^VA ($(2^)) share a super-node

Proof: First note that the column h that partitions R(Vtr)UR(V?') can only partition it into {R( V?), R(Vf')}.
This is because h induces a partition only in one equivalence class Vt and t ^ if, *". For the same reason
t' ^t". Throughout the proof of the lemma, the distance between two vertices (or edges) on a tree is simply
the number of edges in the path connecting the vertices (or edges).

We know that for an optimal phylogeny, there has to exist at least one distinguishing edge h for v\
and V2- Let u\ and U2 be the vertices in v\ and V2 respectively, that lie on either ends of VVl^V2(Topt).
Therefore h has to mutate odd number of times in exactly one of VUl ̂ {Topt) and VXiu2 (Topt)- Without loss
of generality assume that it mutates an odd number of times in VUi,x- Consider the edge e closest to u\
such that fi(e) = h. In Tapt if the path from e to u\ consists entirely of degree 2 steinei* vertices, then the
mutation of e can be incrementally swapped with the mutation of the neighboring edge, until the mutation
of h is moved inside super node v\. Note that swapping adjacent edges of a degree 2 steiner vertex is just a
trivial application of p on the vertex. After several applications of p9 column h is no longer distinguishing
between v\ and V2 in the new optimal solution.

If the path from e to ui contains a vertex w of degree greater than 2, then every branching path from w
leads to a real vertex (since steiner vertices can not be a leaf). Consider any such real vertex r, the super
node in which r lies cannot have tag t since it contradicts the assumption that v\ and V2 are a lowest pair.
Now consider the case when for all such real vertices r, the path VWir(Topt) contains a mutation of h. Using
transform p, the mutation of h can be swapped with neighboring edges until it is adjacent to w. Once again
let e be the edge adjacent to w9 st /x(e) = h. Let e' G VUux-, e ^ e' be another edge adjacent to w. We can
now apply transform p^)^ on vertex w. The result of the transform is that the mutations of h and /i(e')
swap positions. We can therefore keep applying transform p to move the mutation of h closer to u\. There
are only two cases when we can not apply the transform any further. In both the cases described below, we
find super node V3 that contains a real vertex.
Case 1: If the path from e to u\ contains a real vertex r, that belongs to a super node vs say, then
t(vs) ^ t(vi), since we assumed that v\ and V2 are tag-adjacent.
Case 2: If the path from e to u\ contains a vertex w of degree greater than 2, that contains a branch leading
to a real vertex r G V3, where £(^3) / t{v\) such that the path from w to r does not contain a mutation of h.
Note that £(^3) 7^ £(*>i) since v\ and V2 are a lowest pair.

Now consider the edge e G ^Ul^r(Topt) such that p(e) = h and the distance of e from v\ is the largest.
Using a series of transforms p we can move the mutation of h towards x. Once again with a similar argument
we can either claim that there exists a real vertex r' in a super node u± that either lies in the path from e to
a; or is in the induced tree of w which lies in the path from e to x. If this is the case, then r and r' are two
real vertices separated by an odd number of mutations of h. Also, t(v\) ^ ^(^3), £(#4). This satisfies all the
properties of the lemma.

Now consider the case when the mutation of h can be moved so that it is adjacent to x. Now consider
any vertex cover column c that mutates an odd number of times between x and V2. There has to exist at least
one such edge since x can not belong to a super node of tag t as v\ and V2 are tag-adjacent. Consider the
edge e' such that p,(e') = c and the distance from e' to V2 is maximum. First assume that all the vertices
in T>u2,x{TOpt) arc of degree 2 and steiner. Clearly now, using the trivial p transform, the mutation of c can
be moved so that it is adjacent to x. We can now perform transform pc^ on x to obtain a new optimal tree
where the mutations of h and c adjacent to x have switched places. Note that the condition of pCih requires
that every path from a: to a real vertex contains either a mutation of h or a mutation of c. This can be proved
as follows for the optimal tree T ^ . Consider any path from x to the first real vertex r' that is in a super
node V4. If t(v±) = t(v2) then the path from x to V4 should contain an odd number of mutations of c, since
the path from x to V2 contains an odd number of mutations of c. If £(^4) ^ tfa), then the path from x to v±



should contain an odd number of mutations of h9 otherwise r' and r that lie in v$ and v± respectively satisfy
the properties of the Lemma. After applying pCjh, we can move the mutation of h inside v2 since all the
vertices are degree 2 the result of which is that h is no longer distinguishing between v\ and v<i.

The last case that is left to analyze is when the path from x to e' contains either real vertices or steiner
vertices of degree greater than 2. If it contains a real vertex r ' , then r* along with r satisfy the properties
of the Lemma. If there exists a vertex w that has degree greater than 2, then the induced subtree rooted
at w contains real vertices, and all paths to real vertices should contain a mutation of h (otherwise we can
use the real vertex along with r to satisfy the properties of the lemma). Therefore /xistse"' E VXiU2 wit*1

/i(e;//) = h9 since otherwise we can move the mutation of h using a series of p transforms so that it is
adjacent to x. This is a contradiction to optimality since we already have e adjacent to x with fi(e) — h.
Therefore, we can directly apply transform p^c on vertex x. We can then move the mutation of h into u<i
with a series of p transforms.

Putting everything together, we have die fact that if for any distinguishing column h there exists no
super nodes that satisfy the properties of the lemma, then the edge corresponding to the mutation of h can
be moved such that it is no longer distinguishing. Furthermore, no new column becomes distinguishing in
this process. We can continue this argument for every distinguishing column. If none satisfy the properties
of the lemma, then eventually the first and last vertices of the path VVl ,V2 (Topt) are identical, a contradiction
to optimality. •

Lemma 5 proves that for every pair of tag-adjacent super nodes, there exists at least one distinguishing
interface edge that has the properties that the pseudo-code uses to identify them in step 4 of function use-
interface. However the converse that only distinguishing interface edges have the property is not true.
We will however prove that rally internal edges that mutate multiple times could satisfy the properties.
Intuitively, this proves that not too many internal columns are falsely identified as interface columns. Note
that at step 4 of the pseudo-code column h partitions V% and also partitions R(Vf) U R(Vt"). If h is an
internal column, then there exists internal edge e" in some super node v E Vt s.t /i(e") = h. Super node
v £ VVZ,VA because we assumed that (v\,v$) and (^2,^4) are paired-tag adjacent. Assume that h lies in
VU3,u4 in Topt where u3 G V? and n4 G Vf. Note that for h to partition R(Vf) U R{Vt») it has to be the case
that both 1*3 and U4 contain at least one real vertex. Note that one of 1x3 or U4 could be v$ or v± respectively.

Consider the two paths Vv^Uz and 7\4jl*4 (shown in Figure 6). If h mutates just once, then it should be
the case that the mutation ofh9 edge e", should lie in one of the two paths. This is however a contradiction
since h now partitions two equivalence classes Vt and one of Vt* or Vf (since V3, U3, V4 and U4 each contain
at least one real vertex in Topt). Therefore, it is not possible to add an internal column to the set I unless it
mutates more than once in T ^ .

At each recursive call, we either find a column that mutates only once thereby partitioning rows into two
super nodes or discover multiple mutant edges. Therefore the depth of the recursion is bounded by O(q).
Since the degree of any node of the recursion tree is bounded by 2qqq

y a naive analysis gives a bound of
2°(q2)q°^2) number of calls to the function use-interface.

At the end of the recursive calls, one of the leaves of the recursion tree corresponds to the expanded
skeleton of Topt- Note: We showed that the depth in the recursion tree of the leaf that corresponds to the
expanded skeleton of Topt is bounded by cq for some constant c. Therefore we can safely terminate the
recursion at depth cq.

3.2 Linking perfect phytogenies
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Figure 6: Proof that column h has to mutate multiple times to be an
internal column that also satisfi es the properties of a distinguishing in-
terface column.

function link-trees ( skeleton S)

1. For each leaf super-node Si of 5 do

(a) build perfect phylogeny on the vertices in 5,

(b) let Pi <r- the set of vertices of Si

(c) for each mutation in Si do

i. if S \ Si contains only a single state (say 0) on column c,
then remove all in Pi that contain 1 on column c

(d) "guess" a vertex w from Pj, and let wf be obtained from w by mutating the vertex
cover between Si and p(Si).

(e) add w1 to p(Si and remove the leaf Si from S

2. repeat step 1 until 5 is empty

Figure 7: Algorithm to build the tree using the skeleton and partition

We now show how to complete the the near-perfect phylogeny once the correct partition on the super
nodes have been computed (step 2(a)iD of the main pseudo-code). Note: Let the initial skeleton built
using the vertex cover columns in step 2a of the main pseudo-code be S. Assume that S is isomorphic to
s(Topt). Since s(Topt) does not contain any bad vertices and is optimal, all the supemodes contain perfect
phytogenies.

Lemma 6 Every super node u of the skeleton s^^pt) contains a perfect phylogeny.
Proof: For the sake of contradiction, assume not. Consider edges e, e' G u with /i(e) = n(e') = c. Consider
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the path V connecting edges e and e'. There exists no column d £ Q that mutates an odd number of times in
V according to Corollary 3.1. By the definition of the super-nodes and skeleton we know that there exists no
edge e E u with fi(e) = c if c G Q. For optimality, we can not have two vertices v and v' with l(v) = l{vf).
Therefore there can not exists edges e and e' as stated. •

Using the partitions of the expanded skeleton T, we can find the partitions for the skeleton S. For the
rest of the paper, we will work with skeleton S rather than T. We lose some information in this step, but
it keeps the analysis simple. We now show how to construct a perfect phylogeny for the rows assigned to
a super node of S. For any pair of columns that mutate within a super node, there can be at most three
gametes. We can now reconstruct a unique perfect phylogeny within each super node as follows. If two
columns induce two gametes, then we can arbitrarily remove one of them. If two columns induce just one
gamete then we can remove both the columns. After this step, every pair of columns contain exactly three
gametes. Therefore a unique perfect phylogeny can be built. We can now add back columns i that were
removed since (z, j) induced only two gametes. This is done by adding the mutation of i adjacent to the
mutation of j. The relative ordering of i and j are determined based on which of the third gamete between
i and j is present in the input (and absent from the rows of this super node). Hence we can build a unique
perfect phylogeny that does not contain any bad vertices.

The notation p(v) is used to denote the parent of a vertex v in a directed tree. In the following section
the term subtree T (say rooted at v) of the rooted tree T ^ , is used to refer to the induced tree T rooted at
vertex v obtained by removing the edge (v,p(r;)) from T ^ .

Lemma 7 In the rooted tree T ^ , consider any induced subtree Tf. IfT^^1 contains vertices v and vf

such that l(v)[c] = 0 and l(vr)[c] = 1 then there exists at least one edge e s.t /x(e) = c in Topt\T
t

Proof: Assume not, then the mutation of column c occurs in T'. But T' and Tapt\Tf are connected by a
single edge. Therefore, TaptXr1 contains only one of either 0 or 1 in column c, contradiction.

Corollary 8 If both T" and Tapt\Tf each contain a pair of vertices v, v' s.t l(v)[c] = 0 and l(v')[c] = I for
some column c then there are at least 2 edges e, e' G T^t $-* A*(e) = /i(e') = c.

Note that in the rooted Topu the perfect phylogeny inside each super node u can be decomposed into
a minimal connected component of perfect phylogeny on real vertices T£, called core tree. The edges in
TU\TJ are called peripheral edges. There could be several connected components of peripheral edges inside
each super node. Note that all interface edges are peripheral edges. At this point, it is easy to compute
the unique core tree, which is just the perfect phylogeny on the rows that have been partitioned to any
super node. For this last part of the proof, we will be considering the optimal tree T^ with the following
additional property: no super node u (except the root) contains a degree two vertex that is adjacent to both -
a peripheral edge and the vertex cover edge connecting u to super node p(u).

Lemma 9 There exists an optimal tree T^pt that contains no vertex v in super node u with the property that
degree(v) = 2 and v is adjacent to both an peripheral edge and the vertex cover edge connecting u to super
node p(u).
Proof: Assume not, then consider the optimal tree T^ that contains the minimum number of vertices v
with the above property. One edge adjacent to v is the vertex cover edge say ev, with say /i(ev) = k. The
second edge connects to a vertex v1 inside super node u and let /i(v, v') = /. Now we can flip the ordering
of mutations of e^ and (v, t/) such that ^(e^) = I and /i(v, v') = k to obtain a new tree T ^ . Note that this
is just a trivial operation of transform p^i on steiner vertex v. It is easy to see that the only pair of columns
in v of T^t that could contain a new gamete not present in the original tree T^t contains one column of
the vertex cover. Therefore in T ^ , all the vertices are good (assuming they were in the original tree). The
number of vertices in the super node p(u) increased by one and the number of super nodes in u decreased
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by one since v was previously part of u and now is part of p{u). Therefore the number of vertices with the
property given in the claim decreased by one, a contradiction to the assumption.

•

In s(Topt), consider a super node ti, that has children super nodes ci, • • • ,c*. The goal is to discover
all the edges of T^ bottom-up. Let 5, be the tree present inside the super node c* in T ^ . Note that we
are using the super node Si to refer to the super node of both the skeleton S and that of $ ( 7 ^ ) . Let 5J be
the subtree of T^pt rooted on a vertex of a, obtained by removing the vertex cover edge connecting Ci to u.
Note that the tree S[ restricted to the nodes of c, is I} .

Assume inductively that we have computed the trees inside super nodes Si descendants and all the of Si.
In otherwords the subtrees 5t- of T^ have been found. Now we proceed to construct the tree inside super
node u. Note that this amounts to building the core tree of u and connecting vertices of u to vertices in 5t as
in Tapt (which is equivalent to computing the peripheral edges). Consider one by one each of the trees S%.
We start by adding all vertices of Si into a selected set P. At any time if \P\ < q, then we have completed
processing Si. If not, then for each mutation of column c in Si, we check if S\Sf

{ contains both states 0 and
1 on c. If so, we ignore c. By claim 7, the fact that there are at most q multiple mutations for any character
c and that Si is a perfect phytogeny, we ignore at most q mutations of £,. If not, then wlog say 0 is the only
state in column c that occurs in S\T[. If any vertex in T* contains a 1 in column c and is present in P, then
we remove it from P.

Claim 10 Only the selected vertices in P can be vertices ofT^ that connects Ci ton.

Proof: There exists exactly one edge e = (vo, ^i) , s.t fi(e) = c in Si. The edge e partitions Si into Sf and
S} based on the value on the column c and assume VQ E Sf and v\ G 5 / . For the sake of contradiction
assume that in T^t, a vertex v from S\ connects to u via the vertex cover edge. Clearly every path to a real
vertex in Tapt\S[ from v contains an edge e' = (v[, v'o) with /i(e') = c.

Consider the edges e' that is the first mutation of column c in every path from e to a real vertex in
Topt\Si- Let M be the set of columns that mutate in the path connecting vo and v. Since there are no
bad vertices, all mutations of columns except vertex cover, between e and er occur even number of times.
Therefore, specifically vo and v'o are identical in all the columns in M. Therefore, connecting VQ instead of
v to u via vertex cover and deleting all mutations of M that occurs in the path between e and e' results in a
tree of smaller cost, a contradiction to optimality. •

We continue by finding sets P for each of 5*. Now, using exhaustive search, we pick one by one every
possible way of selecting a vertex from each of the selected sets P for each of S%. One would be the correct
set of vertices as used in T^. For each v selected from Si, we mutate the column corresponding to the
vertex cover edge between super nodes Ci and u and add to set A. We now add A to the super node u and
re-construct the perfect phytogeny of u. It follows from the claim that we have now completely identified
the tree in u. It is easy to implement the above procedure in q°M time.

Theorem 11 The new algorithm solves the q-near-perfect phytogeny problem in O(2°^q2\nm + n2)) time.

Proof: The proof follows from the above lemmas and Theorem 2. •

4 Discussion

We now give a quick summary of how the running time can be improved to q°^nm2. The only step that
needs to be improved is u s e - i n t e r f a c e . Intuitively, instead of building the skeleton top-down, we can
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construct it bottom-up as follows. Assume that we have a skeleton T\ and we complete the use-interface
step as described above to obtain a tree where the super nodes have unique tags. Let this final skeleton
be T2. We are now going to show that we can arrive at tree T using a modified routine of use-interface.
It is easy to guess the final topology of the skeleton T2 in time q°^ even before executing the function
u s e - i n t e r f a c e since T2 has O(q) edges. Let this unlabeled tree be T'. We can guess the labels /i(e)
for all edges e G T where /i(e) is either a vertex cover column or a column found in function partition.
This gives us a partially labelled tree T", where the only unlabeled edges are those that were found using the
old u s e - i n t e r f a c e function. Note that in the current tree T', the connected components of unlabeled
edges are exactly the super nodes of the skeleton T\. We can now execute the u s e - i n t e r f a c e function
as described above, except that we do not add mutations of columns h into an existing skeleton (as in step
5). Instead we guess all unlabeled edges e G T' such that n(e) = h. If we guess that column h mutates
i number of times, then this step can be performed in time (?), where p is the number of unlabeled edges
currently in the tree. As before we perform u s e - i n t e r f a c e on each guess recursively. The following
recursion bounds the number of calls to u s e - i n t e r f a c e when the current tree has p unlabeled edges:

This recursion can be solved for T(p) = q2q. Note that the new function u s e - i n t e r f a c e , exactly
explores the same trees as the old function. This is just a tighter analysis of the running time obtained by
making sure that we don't repeatedly explore the same tree several times. Such a bottom-up construction
can be extended to include the partition function as well. The algorithm now becomes simple to implement,
since we can guess the final skeleton's topology up front and just guess the labels of the skeleton as the
algorithm progresses.
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Appendix A: Proof of Theorem 12

Theorem 12 It is possible to construct a q-near-perfect phytogeny on the original input (before preprocess-
ing) using the above algorithm.

Proof: Let / be the original input and / ' be the pre-processed input If there is a tree with penalty q on / ,
then there exists a tree with penalty at most q on J ; . Since the above algorithm goes through all trees with
less than q penalty, we can add back the deleted columns and check if the penalty is still less than q. In
order to show that such an algorithm will find an optimal tree, we need to prove that there always exists an
optimal tree with this structure.

Consider any optimal tree T on the input / . Consider two identical columns a and bin I. We claim that
we can modify the optimal tree in such a way that only the mutations of a or b are changed and the resulting
tree will have all the mutations of a and b adjacent to each other. Suppose a mutation of a doesn't have a
mutation of b adjacent to each other, then the vertices between them are steiner. Therefore, we can apply the
transform ro to the neighborhood of steiner vertices. As a result of the transform, we get the mutations of
a and b adjacent to each other. This also shows that the number of mutations of a and b in tree T is exactly
same. •

Appendix B: Proof of Theorem 2

In this section, we prove Theorem 2. Recall that a vertex v is bad w.r.t a pair of columns (6, c) if it has a
gamete for that pair which doesn't appear in the input. Theorem 2 asserts that there is an optimal tree which
doesn't have any bad vertices, i.e. all its vertices have gametes that appear in the input.

The main idea is to take any optimum solution and to transform it into one which has the above property.
This is achieved through a series of transformations that reduce the number of bad vertices. We first prove
some simple facts about the OPT solution.

Definition 9 We call a column c clean in a tree T, if all the vertices ofT are good w.r.t (c,x) for all columns
x.

Fact 13 If the column x is clean in the tree T and y is any other column, then the following properties hold:

1. Between any two mutations of column x, there is an even number of mutations of column y.

2. Between any two mutations of column y there is an even number of mutations ofx.

Definition 10 Let u be a bad vertex w.r.t (6, c). We define the bad neighborhood of the vertex u w.r.t (6, c)
to be

Nb,c(u) = {v \v is bad w.r.t (6, c) & all vertices on the path u -» v are bad w.r.t (6, c)}.
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Definition 11 The boundary ofNbiC(u) is the set of edges that connect vertices in NbiC(u) to the rest of the
tree T.

Fact 14 N^c(u) is the connected component of bad vertices of tree T containing u.

Fact 15 The boundary ofN^c{u) consists of only the mutations of columns b and c

Claim 16 The optimal tree contains equal number of mutations of columns b and c

Proof: If not then the following transformation reduces the number of mutations in the tree. This contradicts
the optimality of the tree. •

Transform r We now describe our transform that reduces the number of bad vertices in the optimum
tree. Consider all the vertices in the optimum tree that are bad w.r.t (6,c). Let Vi, V2,... , V* denote the
bad neighborhoods w.r.t (6,c). The transform Tb (resp. r c) changes Vi , . . . , V* simultaneously as follows:
delete the mutations of column b (resp. c) from the boundaries of the bad components and replace every
mutation of c on the boundaries by a mutation of c followed by a mutation of b (resp. replace b by 6c). Let
T1 denote the tree obtained by applying the transform r& on tree T. Note that both T and T1 are optimal
trees.

We prove the following two properties about the transform r .

Lemma 17 After applying the transform r& (or rc), all vertices of the tree T1 are good w.r.t (6, c).

Proof: The vertices that were good w.r.t (6, c) stay good even after the transform r&. All the bad vertices
w.r.t (6, c) were replaced by good vertices during transform T&. SO no bad vertices are left. •

Fact 18 If the tree T does not have any bad vertices w.r.t (c, x\ then the resulting tree T' after applying
transform r& will not have any bad vertices w.r.t (c, x).

Lemma 19 If the column x is clean, then the transform T& will not create any bad vertices w.r.t (6, x).

Proof of Theorem 2: Consider a lexicographic order on the columns c\, C2, — We start with an optimum
tree T. We first make column c\ clean by considering bad vertices w.r.t (CI,CJ) for each t and applying
transform T^ . Note that the transform r^ will only affect pairs (c*, cy). It does not create bad vertices w.r.t
(ci, Ci'). From Lemma 17, it follows that at the end of this step column c\ will be clean.

Now inductively assume that columns c i , . . . ,Cj are clean. Next we look at all the bad vertices w.r.t
(cj+i, ĉ ) (for i > j + 1) for each i and apply transform r^. Note that the transform r^ doesn't create
any bad vertices w.r.t (cj9Cj/). Moreover, by Lemma 19, we can say that the resulting tree has columns
c i , . . . , Cj clean. Moreover, it follows from Lemma 17 that at the end of this step the column Cj+i is also
clean.

Therefore, in the end all the columns are clean. In other words, there are no bad vertices in the tree. •

We prove the Lemma 19 through the following series of claims.

Claim 20 If the column x is clean in the tree T, then mutations ofx in T are all outside UiVi or all inside.
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Proof: For the sake of contradiction, assume that there is a mutation of x inside V\ and another one outside
UiVi. Consider a path between these two mutations. It is easy to see that either 6 or c mutates odd number
of times between the two mutations of x. This contradicts the fact that x is clean. •

Claim 21 Transform r& does not create odd number of mutations ofb between two mutations of a clean
column x.

Proof: Using the result of Claim 20, we consider following two cases.

case 1 (All x 's are outside) Consider a pair of mutations of x. If it doesn't have any mutation of b or c
between them, then their parity will not change. If there were an even number of mutations of 6 in between,
then in transform r&, an even number of mutations (twice the number of bad neighborhoods on the path) will
get deleted and hence the parity won't change. If there were an even number of c's, then two mutations of b
will be added for every bad neighborhood on the path. Overall, parity does not change.

case 2 (All x 's are inside) In this case, every c gets replaced by cb. Since there were even number of 6's
and c's an even number of 6's get created and an even number of 6's get deleted between any pair of x's.
Thus the parities do not change. •

Remark 1 Claim 21 is required only if the column x mutates multiple times in the optimal tree.

Note that in transform r& only 6's are deleted or added. So a similar claim for c holds automatically.

Claim 22 The tree T1 resulting from transform T\> does not leave odd mutations of a clean column x 's
between two mutations ofb's.

Proof: We show that between every adjacent pair of mutations of b in tree T', there are even number of
mutations of x. For the sake of contradiction assume that a pair of 6's has odd number of re's in tree T1

resulting after the transform r& was applied. Let b\ and 62 denote the two mutations of 6 that sandwich an
odd number of mutations of x. Note that both 61 and 62 cannot be preset in the tree T. Without loss of
generality, assume that 61 was created in tree T". Therefore, there is a mutation of column c next to 61. Call
itci.

In the tree T, the column x was clean. Since the transform 77, does not change in mutations of c, no
mutation of x is sandwiched between two mutations of c in the new tree T'.

If 62 is a new mutation added to tree T', then let C2 be a mutation of the column c which is next to 62 in
the tree T'. In this case, the odd number of mutations of 2; are sandwiched between c\ and C2 which is not
possible. Therefore 62 is present in the tree T.

We use Claim 20 to separate following two cases.

case 1 (All x 's are outside) Let N^c denote the bad neighborhood where 61 was created. Let 61 be a
mutation of 6 that was deleted from the boundary of iV&?c. Then the path from 61 to c\ in tree T contains no
mutations of x, while the path from c\ to 62 contains an odd number of mutations of x. Therefore, in tree T
there are an odd number of mutations of x between 61 and 62, which contradicts the fact that x was clean in
treeT.

17



case 2 (All x 's are inside) Note that 62 could not have been on the boundary of a bad neighborhood in the
tree T, otherwise it would have been removed in the tree T'. Since all the mutations of x were inside bad
neighborhoods, at least one of the neighborhoods on the path from 61 to 62 had an odd number of mutations.
If this bad neighborhood is the one where 61 was created in the transform, then the path 61 to 62 includes
the mutation c\. In T", all the vertices are good w.r.t (b, c). Hence there must be another mutation of c (call
it C2) between 61 and 62- Note that the path c\ and C2 contains an odd number of mutations of x. This is
a contradiction. Therefore, the bad neighborhood containing odd number of mutations of x is not the one
where 61 was created. But in that case, consider the path from 61 to 62 in the old tree T. It must have
entered and exited the bad neighborhood via mutations of b. Thus the odd number of mutations of x were
sandwiched between two mutations of b in the old tree T. This is a contradiction to the fact that x was clean.

•
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