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Abstract

In this paper, we consider the problem of reconstructing near-perfect phylogenetic trees using binary char-
acters. A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree.
The agorithm for reconstructing a perfect phylogeny for binary characters is computationally efficient but
impractical in most real settings. A near-perfect phylogeny relaxes this assumption by allowing characters
to mutate a constant number of times. We show that if the number of additional mutations required by the
near-perfect phylogeny is bounded by g, then we can reconstruct the optimal near-perfect phylogenetic tree
in time 2°(“*nm? where n is the number of taxa and m is the number of characters. This is a significant
improvement over the previous best result of nmeA2°A%">A where r is the number of states per character
(2 for binary). Thisimprovement could lead to thefirst practical phylogenetic tree reconstruction algorithm
that is both computationally feasible and biologically meaningful. We finally outline a method to improve
the boundto ¢ °“nm?2.




1 Introduction

One of the classical problems of computational biology is to reconstruct an evolutionary tree for a set of
taxa based on character data. Parsimony is one of the widely used metrics to solve the problem. It has been
known to be particularly useful in the case when the evolutionary tree reconstructed is over a short period of
time.

We borrow some of the following definitions and notations from [5]. The input to the problem is gen-
eraly represented by a matrix / where rows R are strings of states corresponding to taxa. The columns
C= {1, ,m} arereferred to as characters. The set of states corresponding to any character cis denoted
by A, therefore every taxon s e A\ x ¢ .« x Am. In aphylogenetic tree, each vertex v corresponds to a
taxon and has an associated label 1(v) e A\ x ¢ « « x Am- We use the terms phylogeny, phylogenetic tree or
just tree interchangeably.

Definition 1: A phylogeny for a set of n taxaRis atree T(V, E) with the following properties:

1. if ataxon seR then s E I(V(T))
2. foral (rz,v) E E{T), H(I(u),I(v)) = 1 where H is the hamming distance

Definition 2:  The length ofa phylogeny T, length(T) = \E(T)\.
Definition 3: The penalty of a phylogeny T is defined as

penalty{T) = length(T) - Y_({4c| - 1)

cec

Minimizing the length of aphylogeny isthe problem of finding the most parsimonious tree, awell known

NP-complete problem [6]. A phylogenetic tree T constructed on input /, is called a perfect phylogeny if
penalty(T) = 0. As summarized by [5], reconstructing a perfect phylogeny was proved to be NP-haid
independently by Bodlaender et al. [2] and Stedl [10]. This led researchers to work on either sophisticated
heurigtics (for eg [7], [3]) or solve optimally for fixed parameter versions of the problem (for e.g, [1],
[9]). Gusfidd considered an important special case of the perfect phylogeny problem, when the number
of states is bounded by 2. We call such atree as a binary perfect phylogeny. Gusfield showed that binary
perfect phylogenies can be reconstructed in linear time [8]. Lagergren and Fernandez-Baca, considered the
problem of reconstructing near-perfect phylogenies [5]. The assumption of a 'near'-perfect phylogeny is
that penalty(T) is small for the most parsimonious tree. Their agorithm runs in time nm°A2°/%2
where r is the number of states per character, q is the pendty, n is the number of taxa and mis the number
of characters.
Our Results: In our work, we consider an important specia case of the problem whenr = \Ac\ = 2. The
case when r = 2 is primarily important because Single Nucleotide Polymorphisms (SNPs) are bi-alelic.
We can therefore use the agorithm for reconstructing trees where the taxa are DNA sequences and the
characters are SNP markers. We show that if the penalty of the most parsimonious phylogeny is bounded
by g, then we can reconstruct the phylogenetic tree in time 2°~nn. In section 4 we briefly describe how
this time-bound can be improved to g°nm?. More details on the improved agorithm will be available in
[4]. Our agorithm is aimost entirely self-contained and its understanding requires only some fundamental
theorems on phylogenetic trees. Although some existential proofs are hard, the algorithm itself is not very
complicated to implement. We also expect the algorithm to perform significantly better in practice than the
worst case bounds.




1. create aconflict graph G st there exists a bijection ¢ : V(G) *-+ C and (tx,v) E E(G) iff
\Gc(qu)\ :4

2. find Q with |Q| < 2qg st Q isaset of columns corresponding to the vertex cover of G, return
nil if none exists

(@ for all trees T st there exists an onto function /i: E(T) »» Q

i. for each vertex v eV(T)
A. find the subset of rows b(v) '‘compatible’ to v
B. build a perfect phylogeny T, for the set b(v)
C. replace v with tree T,
D. complete the tree by linking al the T,'s
ii. if cost(T) < min thenT; = T,min = cost(Ty)
(b) return T

Ftgure 1. Overview of the dgorithm

2 Overview of the Algorithm

We first sketch the outline of the algorithm and then explain the details of each step in subsequent sections.
Specificaly, given an input / and apenaty q the algorithm finds most parsimonious phylogeny with penalty
at most g or nil if none exists. The following definitions are useful:

Definition 1 The set of gametes Gij restricted to two characters i,j is defined as: Gij = {(fc,i)|3r E
R,rii] = k,r[j] =1}

Definition 2 Two columnsi,j E C are said to contain (all) four gametes when \Gij\ =4

A high level pseudo-code of the algorithm is given in 1. The following sections elaborate on each of the
steps of this pseudo-code which we will refer to as the main pseudo-code.

Pre-processing It is well known that the most parsimonious phylogeny reconstructed is imperfect if and
only if the input / contains the four-gamete property. Before running our algorithm, we pre-process the
input as follows. We remove al the columns that that have only single state (i.e. they do not mutate at all).
We then look for the pairs of input columns i,j for which \Gij\ = 2. In such acase, both the columns
contain the same information. We remove one of the two columns from the input. We show in the Appendix
(Theorem 12) that this preprocessing steps does not alter the overall running time or the correctness.

At the end of pre-processing, we have the input / that satisfies \Gij\ > 3 for all columnsi, j.
Conflict graph G and the vertex cover-columns Q: A conflict graph G corresponding to input / is
constructed as follows. Each vertex v E V(G) of the graph represents a character c(v) E /. Anedge (u, V)
is added if and only if al four gametes are present in ¢{u) and c(v). The function /i : E(T) *-+ C maps
mutation events to the character that mutates. Note that in any phylogeny if ji(u,v) = cthen I(u)[c] *
Kv)[c].

To find the vertex cover, we use the classical 2-approximation algorithm. We set Q to be the set of
columns corresponding to the vertex cover returned by the algorithm. We assert that there exists no g-near

perfect phylogeny if \Q\ > 2q.
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Figure2: A phylogenetic tree and its associated skeleton. The bit vec-
tors of the gpecies are | eft out for smplicity.

Lemma 1 There exists no g-near-perfect phytogeny if\Q\ > 2q.

Proof: First notice that for any pair of characters (i,j) st \Gij\ = 4 the tree T should contain either two

edges e, € such that /x(e) = /i(e').= i or/i(e) = ji(e') =j. If\Q\ > 2q then there exists no vertex cover
of size q. This implies that there exists at least one edge (u,v) E E{G) st neither c(u) nor c(v) mutates
multiple timesin T, a contradiction. .

For the step 2a of the pseudo-code, we enumerate by brute force all possible trees T that mutate the
columnsin Q at least once.

Definition 3 A vertex v is bad w.r.t a pair of characters (i,j) and a set of columns Q, ifij £ Q and

()], Hv)lF]) ¢ Gij.

From now on we adhere to the following naming convention. The tree T (used in step 2athat mutates
the columns in the vertex cover Q is referred to as the skeleton tree. The vertices of the a skeleton tree T
are referred to as super nodes, since an entire tree replaces each of these nodes in afinal phylogenetic tree.
Figure 2 shows an example of a phylogenetic tree along with its skeleton.

3 Details

3.1 Findingacompatible set for all vertices

Thisis the most complicated step of the algorithm. We want to partition the rows of the input matrix such
that each super node v is assighed a subset of ‘compatible’ rows b(v). By arbitrarily rooting the tree T, the
structure of the tree defines the bits for the characters in Q. We can think of every super node v in the tree
being tagged with the states &i, &2 " ?b\Q\ and use the notation t(v) to denote the tag. Note that t(v) isthe
same as | (V) restricted to the columns of Q. We can therefore partition the set of rows if the tags t(v) are all
unique. The problem arises when two super nodes say W, V2 are both assigned the same tags - and therefore




the same subset of rows S. We need to further partition Sinto two sets S and 52 one for each W and V2-
We need several lemmas to determine how to make this partition.

Definition 4 We use the notation Vysiv2 (T) to be thepath between (and including) vertices (or super nodes)
W and V2 ofany tree T.

Note that if W,V2 are super nodes and T is the phylogeny (not skeleton), then the notation Vi,v(T)
is used to denote the path in the tree T that connects super nodes W and V2 of the corresponding skeleton
s(T).

The proof for the following theorem is given in Appendix 4.

Theorem 2 If there exists a g-near-perfect phylogeny that has bad vertices (w.r.t Q) then there exists a
g-near-perfect phylogeny that does not contain any bad vertices (w.r.t Q).

For the rest of the paper, we fix an optimal phylogeny T"t that does not contain any bad vertices. We
will impose additional restrictions on T# later.

Corollary 3 In Topy ifthere exists two edges e = (W, 2) and d = (3, v+) such that fi(e) = n(€') thenfor
allcolumng £ Q, \{e G 7\*,y3(Topt)|ji(e) = j}\ iseven and therefore I{vi)[i] = I(va)[i]forall i £ Q.

For any phylogeny T, the skeleton of T, s(T), with respect to a set of columns Q (vertex-cover) is the
tree of super-nodes where each super node is attached to edges e € T st /i(e) G Q. A super node can
be viewed as a set of vertices of the final phylogenetic tree and therefore gives us the following obvious
properties of containment. For a super node W E s(T), we say that edgee = (u,v) GWIiffu€ Wwv G W
and (x,v) G E(s(T)). Similarly, we say that columnj G W if 3e G W st n(e) =j.

Definition 5 Two super nodes W and V2 ofs(T) are tag-adjacent if
L t(W) = t(v2) and
2. there exists no super node V3 G Vviiv2{s(T)) such that t(v") =t(W\)

Definition 6 Two super nodes W\ and V2 of §(T) are paired-tag-adjacent if there exists no super node
V3 G Vwuw2(S(T)) such thatt(vs) = t(vi) ort{vs) = t{w,)

Definition 7 An edge e G E(T) or column /i(e) is distinguishing w.r.t a phylogeny T if for any two tag-
adjacent super nodes W\ and V2, \{€' G Vaiivz (Ti(€) = li(e)}|isodd.

It is easy to see that for the optimal near-perfect phylogeny T" there exists a distinguishing edge for
every pair of tag-adjacent super nodes.

3.1.1 Partition

We can define equivalence classes Vi(,) containing super nodes based on the equality of tags t(v) of super
nodes. It is straightforward to partition the rows R for each equivalence class of super nodes. This is
performed by just examining the tags of each equivalence class. The pseudo-code in Figure 3 provides
the details of the steps necessary to compute the partitions. At any point in time, the partition algorithm
maintains a partition P(V") for each equivaence class. Each recursive call refines one of the partitions of
one of the equivalence classes. Just to avoid excessive notations we will use P{V;) = {S, ¢+ , S} for al
i. It should be obvious from the context as to which equivalence class 5, belongs to. We say that a column
i partitions aset § if there existstworowsn, T2 G § such that r\[i] = O and r2[f] = 1. The partition can
bewrittenas §, = {n G S\ri[i] = 0} and S, = {r, G S\r,[i] = 1}.

An overview of the approach is to first discover the distinguishing columns that partition two different
equivalence classes but only mutates once in T . In the second step we guess the distinguishing columns
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that partition two different equivalence classes and mutates multiple times. The columns guessed are added
to the skeleton so that the skeleton expands in size.

The value mark(v) denotes our guess of whether or not the super node v contains any real vertices
in Tops. The value is set to ‘real’ if we guess that there exists at least one real vertex in v and ‘steiner’
otherwise. A partition P(V%,) is complete when the number of sets in P(V}; ) is equal to the number of super
nodes v in V;, with mark(v) = real, thatis: |P(V;;)| = |{v € V;;|mark(v) = real}|.

The partition function initially finds the set D, consisting of columns that refines the partition in two
different equivalence classes. If | D3| > ¢ + 1, then the function picks an arbitrary set of ¢ + 1 columns and
performs 2(q+ 1) recursive calls on partition induced by each column in the set on two different equivalence
classes that the column refines. If | D2| < g, then the function guesses all the mutations of the columns in
D, and adds them to s(T'). Note that each added edge splits a single super node into two new super nodes.

At the end of the function partition, we add mutations and expand the skeleton. Before the expansion
the set Dy was empty. The following Lemma proves that it remains empty even after the skeleton expands.
Moreover, it remains empty throughout the execution of function use-interface which will be described
shortly.

Lemma 4 If D, is empty at any time, then it remains empty when expanding the skeleton by the addition of
non-vertex cover columns (specifically in steps 3a, 3c of function partition described in Figure 3 and step 5
of function use-interface described in Figure 4).

Proof: For the sake of contradiction, assume that D, was empty and later became non-empty. Let c be a
column in Ds. Let ¢, and ¢, be the two tags that are split by c. Note that if the ¢, and ¢ are different on the
columns in @, then the column ¢ would have been found in function partition (Figure 3) itself. Therefore
it must be the case that ¢, and ¢, are identical on columns in (). Since t; and ¢, are identical on columns
in @, the algorithm found a column d that distinguishes them. Now note that ¢ and d together must form 4
gametes. This is a contradiction to the fact that neither ¢ nor d belongs to ).

a

Correctness:

A partition P(Vy,) = {S1,--- , Sk} is defined to be good, if it can be refined by further partitions (no
merges/unions) into that of Toy. The set of partitions {P(V4,),--- , P(V;,)} is good if every partition is
good.

The correctness can be proved inductively by making the claim that if the argument set of partitions
is good for a function call of partition then the arguments for at least one of the recursive calls is good.
Consider any one function call to partition and assume inductively that its argument is good. We recursively
perform partition in step 4(b)ii. If [D2| > ¢ + 1 then there exists at least one column i € D5 that mutates
only once in Top. A column ¢ that mutates only once induces a partition on P(V;;) only when two super
nodes (of the same equivalence class V;,) contain e with p(e) = i in the path connecting them or if ¢ mutates
inside a super node v € V;;. We know however that 7 partitions at least two different equivalence classes
Vi th, . Since ¢ mutates once, it can mutate inside the super node of at most one of V; ; or th, and lie in the
path connecting two super nodes of the other equivalence class. We recurse on both the partition induced
on P(V;) and P(th, )- Moreover, since the arguments of partition is good, the partition induced by using 3
on at least one of S; € P(V;;) or §j € P(V,,,) is good. This completes the recursive case. The other case
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function partition ( P(V4,),--- , P(V;,) , int list selectedCols )
1. if Vi, P(V;,) is complete then

(a) guess the assignments of the partitions S; to the super nodes of the skeleton

(b) expland the skeleton into S’ st columns in selectedCols mutate once and the expanded
tags of the super nodes are compatible with the rows assigned

(c) return S’
2. let Dy be the set of columns st, Vi € Dy, 315, Ik st ¢ partitions Sk € P(V3;)

3. if D] < g +1

(a) guess multiple mutating columns among set D5 and add to skeleton
(b) guess the assignments of the partitions S; to the super nodes of the skeleton

(c) expland the skeleton into S’ such that columns in selectedCols mutate once and the
expanded tags of the super nodes are compatible with the rows assigned

(d) guess mark(v) for all super nodes v € S’ corresponding to the expanded skeleton
(e) use-interface ( S')
4. else
(a) consider any D C Dy s.t |Dj| =g+1
(b) Vi € Dj and for any two j s.t 3Sx € P(V4;), i partitions S

i. let P(V;) = (P(V; )\{Sk}) U {Sko} U {Sk. }
ii. partition ( P(V3,),--- ,P(V4,), selectedCols U {i} )

Figure 3: Algorithm to partition and assign rows of the input to super nodes
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function use-interface (skeleton S)
1. let D\ be the set of columns st, V'i; G D\, 3ij, sti partitions R(Vj).
2. select some Vj that isincomplete

3. sdect a lowest pair WV2 G Vj of tag-adjacent super nodes, such that mark(W) =
mark(v2) =

4. if3/i GDuvs G V? andt7, G V*, for somet! At and * ~ t/, t" such that

(@ morfc(v3) = mafc(174) = real

(b) /i partitions JAVV) U R(V?>)

(c) M7iv2(5) and Vy/3,v4 (S shareasuper-nodein S
(d) (vi, vs) and (v», V4 are paired-tag-adjacent then

5. guess extension S of skeleton 5 by mutating column h (once or multiple) times
6. guess mark(v) for super nodes adjacent to mutation(s) of h

7. use-interface ( S¥)

Ftgure4: Algorithm tofi nd interface edges and extend the skeleton

is when we guess al multiple mutations among columns i that partition at least two different equivalence
classesin step 3a. Since the size of the set of columns from which we guess is bounded by g this step can
clearly be performed in O(2% time to find the columns mutating multiple times and 2°Ag°” to place the
edges in the skeleton tree. Note that we also guess the number of times a column mutates.

The step Ib expands the skeleton by adding columns of selectedCols.

As before, the edges of the expanded skeleton define the tags associated with each super node. We now
assign for each super node a partition §[. While making this assignment it could be the case that the number
of partitions is less than the the total number of super nodes. Specifically, two super nodes of the same tag
are assigned the same partition. However, the number of distinct tags in the skeleton should be equal to
the number of partitions. This step can be naively implemented by once again enumerating al skeletons
using the columns of the current skeleton and selectedCols. We can then discard any skeleton that is not
compatible to the set of partitions. The running time for extending the skeleton and assigning the rows can
be bounded as follows. The recursion tree has height g, and any function call to partition makes at most
2(q + 1) recursive calls. Therefore the number of leaves of the recursion tree is bounded by 2%q + 1)°.
Each leaf nock contains at most g columnsinits list selectedCols. Since the number of trees with 2q vertices
is bounded by 2°°q®<% step Ib can be implemented in 2°°g°" time. This assures that the total time
spent by partition function is bounded by 2°Aq°%\

3.1.2 Interface

For discovering distinguishing edges, we arejust left with the last case - distinguishing columns that mutate
once or more but partition only one equivaence class. We define R{Vt) Q Rfor any equivalence class Vt to
be the set of rows that match tag t. A vertex v of phylogeny T is called real if I(v) G R - informally if the
label of the vertex is present in the input (equivalently, the vertex is non-steiner).

Consider the partition defined by T"t on any one equivalence class Vit of super nodes. We say that a




column i is an internal column if the partition induced by i on R{Vt) is not good (similar to the definition
used in function partition). Informally, this implies that edge e with n(e) =i is present inside some super
node v e Vit and there exists real verticesr,r' G vstr[i] = Oand r'[i] = 1. We define a column that is
not internal as interface. Note that an interface column induces agood partition. Informally adistinguishing
interface edge is present in the path between two connected components of real vertices of the super nodes
u,v G Vt st there existsreal vertex r G ti, r[i] = 0 andreal vertexr' G v, rri] = 1.

Definition 8 A pair oftag adjacent super nodes W and V2 is defined to be a lowest pair in s(Topt) ifthere
exists a vertex x such thatfor all super nodes v& G siTopt) with t(vs) = t(vi), X G Vuiva(Ts) and
X G V2iva(Topt). Thevertexxiscalled the branchpoint of\A and V2.

Flgure 5: Application of transform p. Note that the bits of steiner ver-
tex v changes at positions ¢ and d after the transform.

Transform p. <J

We now describe a very simple transform pc® that operates on any tree T and is defined over two
columns ¢, d and a steiner vertex v. To apply transform pe»./ on steiner vertex v, al vertices v' such that v*
isthe only real vertex in V,y (T) should satisfy the following property. There exists edge e G Vy;+/ (T) st
Ix(e) = cor/x(e) = ¢*. An example of when such atransform can be applied is shown in Figure 5. For al
such paths from v to t/, the transform replaces the first mutation of ¢ with ¢' and vice-versa. The result after
applying the transform is shown in Figure 5. Clearly, the transform does not change the cost of the tree.

Lemmab In T, for every lowest pair super nodes vi, V2 G Vt with branch point x such that every
distinguishing column of\ and V2 is an interface column, there exists at least one distinguishing interface
column h with thefollowing properties:

L column h partitions R{Vt)

2. 3vs G VIf, VA G Viti, t A t/, if' st W, v$ and V2, t4 arepaired-tag-adjacent and h partitions R(Vf) U
R{Vt") and




3. thepathsViy wv2(SC')) and Vi N\va ($(27)) shareasuper-node

Proof: First note that the column h that partitions R(Vtr)UR(V?") can only partition it into {R(V?), R(Vf)}.
This is because h induces a partition only in one equivalence class V; and t » if, *". For the same reason
t' M". Throughout the proof of the lemma, the distance between two vertices (or edges) on atree is simply
the number of edges in the path connecting the vertices (or edges).

We know that for an optimal phylogeny, there has to exist at least one distinguishing edge h for W
and V2- Let u\ and U2 be the vertices in W and V2 respectively, that lie on either ends of Viy"\a(Topt).
Therefore h has to mutate odd number of timesin exactly one of Vi, {Topt) and Vyu, (Topt)- Without loss
of generality assume that it mutates an odd number of times in Vi, x- Consider the edge e closest to u\
such that fi(e) = h. In Tapt if the path from e to u\ consists entirely of degree 2 seing* vertices, then the
mutation of e can be incrementally swapped with the mutation of the neighboring edge, until the mutation
of h is moved inside super node W. Note that swapping adjacent edges of adegree 2 steiner vertex isjust a
trivial application of p on the vertex. After severa applications of ps column h is no longer distinguishing
between W and V2 in the new optimal solution.

If the path from e to ui contains a vertex w of degree greater than 2, then every branching path from w
leads to area vertex (since steiner vertices can not be aleaf). Consider any such real vertex r, the super
node in which r lies cannot have tag t since it contradicts the assumption that W and V2 are alowest pair.
Now consider the case when for all such real vertices r, the path Viyr(Topt) contains amutation of h. Using
transform p, the mutation of h can be swapped with neighboring edges until it is adjacent to w. Once again
let e be the edge adjacent towg st /x(e) = h. Let € G Vyx-, € € be another edge adjacent to w. We can
now apply transform pM™ " vertex w. The result of the transform is that the mutations of h and /i(€')
swap positions. We can therefore keep applying transform p to move the mutation of h closer to u\. There
are only two cases when we can not apply the transform any further. In both the cases described below, we
find super node V3 that contains areal vertex.

Case 1. If the path from e to U\ contains a rea vertex r, that belongs to a super node vs say, then
t(vs) M t(vi), since we assumed that W and V2 are tag-adjacent.

Case 2: If the path from e to U\ contains a vertex w of degree greater than 2, that contains a branch leading
to areal vertex r G V3, where £("3) / t{\W) such that the path from w to r does not contain a mutation of h.
Note that £("3) 7" £(*>i) since A and V2 are alowest pair.

Now consider the edge e G "y (Topt) such that p(e) = h and the distance of e from W is the largest.
Using a series of transforms p we can move the mutation of h towards x. Once again with asimilar argument
we can either claim that there exists area vertex r' in a super node ut that either lies in the path from e to
& or isin the induced tree of w which lies in the path from e to x. If thisis the case, then r and r' are two
real vertices separated by an odd number of mutations of h. Also, t(\W) » A(*3), £(#4). This satisfies all the
properties of the lemma

Now consider the case when the mutation of h can be moved so that it is adjacent to x. Now consider
any vertex cover column c that mutates an odd number of times between x and V2. There hasto exist at least
one such edge since x can not belong to a super node of tag t as W and V2 are tag-adjacent. Consider the
edge € such that p,(€) = ¢ and the distance from €' to V2 is maximum. First assume that all the vertices
in T u2,x{Topt) arc of degree 2 and steiner. Clearly now, using the trivial p transform, the mutation of ¢ can
be moved so that it is adjacent to x. We can now perform transform p* on x to obtain a new optimal tree
where the mutations of h and ¢ adjacent to x have switched places. Note that the condition of pgh requires
that every path from a: to areal vertex contains either amutation of h or amutation of ¢. This can be proved
as follows for the optima tree T~. Consider any path from x to the first real vertex r' that is in a super
node V4. If t(vt) = t(v2) then the path from x to V4 should contain an odd number of mutations of ¢, since
the path from x to V2 contains an odd number of mutations of c. If £("4) ~ tfa), then the path from x to v+




should contain an odd number of mutations of hg otherwise r' and r that lie in v$ and v+ respectively satisfy
the properties of the Lemma. After applying pcn, We can move the mutation of h inside v, since al the
vertices are degree 2 the result of which isthat h is no longer distinguishing between W and v<i.

The last case that is |eft to analyze is when the path from x to € contains either real vertices or steiner
vertices of degree greater than 2. If it contains areal vertex r', then r* aong with r saisfy the properties
of the Lemma. If there exists a vertex w that has degree greater than 2, then the induced subtree rooted
at w contains real vertices, and all paths to real vertices should contain a mutation of h (otherwise we can
use the real vertex along with r to satisfy the properties of the lemma). Therefore /xistse™ E V2 Witt!
li(e") = hy since otherwise we can move the mutation of h using a series of p transforms so that it is
adjacent to x. This is a contradiction to optimality since we aready have e adjacent to x with fi(e) — h.
Therefore, we can directly apply transform p”. on vertex x. We can then move the mutation of h into u<i
with a series of p transforms.

Putting everything together, we have die fact that if for any distinguishing column h there exists no
super nodes that satisfy the properties of the lemma, then the edge corresponding to the mutation of h can
be moved such that it is no longer distinguishing. Furthermore, no new column becomes distinguishing in
this process. We can continue this argument for every distinguishing column. If none satisfy the properties
of the lemma; then eventually the first and last vertices of the path V\s ,v2 (Topt) areidentical, acontradiction
to optimality. .

Lemma5 proves that for every pair of tag-adjacent super nodes, there exists at least one distinguishing
interface edge that has the properties that the pseudo-code uses to identify them in step 4 of function use-
interface. However the converse that only distinguishing interface edges have the property is not true.
We will however prove that rally internal edges that mutate multiple times could satisfy the properties.
Intuitively, this proves that not too many internal columns are fasely identified as interface columns. Note
that at step 4 of the pseudo-code column h partitions V% and also partitions R(Vf) U R(Vt"). If his an
interna column, then there exists interna edge €" in some super node v E Vt st /i(e") = h. Super node
Vv £ Vvz,va because we assumed that (W,v$) and (*2,"4) are paired-tag adjacent. Assume that h liesin
Vus,Us in Topt whereus G V? and ny G Vf. Note that for h to partition R(Vf) U R{Vt») it hasto be the case
that both 23 and U4 contain at least one red vertex. Note that one of 23 or U4 could be v$ or v+ respectively.

Consider the two paths V,/*yz and 7\4* 4 (shown in Figure 6). If h mutates just once, then it should be
the case that the mutation ofhg edge €", should lie in one of the two paths. This is however a contradiction
since h now partitions two equivalence classes Vit and one of Vt* or Vf (since V3, U3, V4 and U4 each contain
a least one real vertex in Topt). Therefore, it is not possible to add an internal column to the set | unless it
mutates more than once in T".

At each recursive call, we either find acolumn that mutates only once thereby partitioning rows into two
super nodes or discover multiple mutant edges. Therefore the depth of the recursion is bounded by O(q).
Since the degree of any node of the recursion tree is bounded by 2°g"%, a naive analysis gives a bound of
2°(*»g°™) number of calls to the function use-interface.

At the end of the recursive calls, one of the leaves of the recursion tree corresponds to the expanded
skeleton of Topt- Note:  We showed that the depth in the recursion tree of the leaf that corresponds to the
expanded skeleton of Topt is bounded by cq for some constant c¢. Therefore we can safely terminate the
recursion at depth cq.

3.2 Linking perfect phytogenies
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Figure 6: Proof that column h has to mutate multiple times to be an
internal column that also satisfi es the properties of a distinguishing in-
terface column.

function link-trees ( skeleton S)
1. For each leaf super-node S of 5 do
(@) build perfect phylogeny on the verticesin 5;
(b) let Pi <r- the set of vertices of S

(¢) for each mutationin S do

I. if S\ S contains only a single state (say 0) on column c,
then remove al in Pi that contain 1 on column ¢

cover between S and p(9).
(6) add w' top(S and remove the leaf S from S

2. repeat step 1 until 5 is empty

(d) "guess" avertex w from Pj, and let W be obtained from w by mutating the vertex

Ffgure 7: Algorithm to build the tree usng the skeleton and partition

We now show how to complete the the near-perfect phylogeny once the correct partition on the super
nodes have been computed (step 2(@)iD of the main pseudo-code). Note: Let the initial skeleton built
using the vertex cover columns in step 2a of the main pseudo-code be S Assume that Sis isomorphic to
S(Topt). Since s(Topt) does not contain any bad vertices and is optimal, all the supemodes contain perfect

phytogenies.

Lemma 6 | Every super node u ofthe skeleton sV'pt) contains a perfect phylogeny.

Proof: For the sake of contradiction, assume not. Consider edges e, € G uwith/i(e) = n(e') = c¢. Consider
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the path V connecting edges e and €'. There existsno columnd £ Q that mutates an odd number of timesin
V according to Corollary 3.1. By the definition of the super-nodes and skeleton we know that there exists no
edge e E u with fi(e) = cif ¢ G Q. For optimality, we can not have two vertices v and v with I(v) = I{V/).
Therefore there can not exists edges e and €' as stated. .

Using the partitions of the expanded skeleton T, we can find the partitions for the skeleton S. For the
rest of the paper, we will work with skeleton Srather than T. We lose some information in this step, but
it keeps the analysis ssmple. We now show how to construct a perfect phylogeny for the rows assigned to
a super node of S. For any pair of columns that mutate within a super node, there can be at most three
gametes. We can now reconstruct a unique perfect phylogeny within each super node as follows. [If two
- columns induce two gametes, then we can arbitrarily remove one of them. If two columns induce just one
gamete then we can remove both the columns. After this step, every pair of columns contain exactly three
gametes. Therefore a unique perfect phylogeny can be built. We can now add back columns i that were
removed since (z,j) induced only two gametes. This is done by adding the mutation of i adjacent to the
mutation of j. The relative ordering of i and | are determined based on which of the third gamete between
i andj is present in the input (and absent from the rows of this super node). Hence we can build a unique
perfect phylogeny that does not contain any bad vertices.

The notation p(v) is used to denote the parent of a vertex v in adirected tree. In the following section
the term subtree T (say rooted at v) of the rooted tree T, is used to refer to the induced tree T rooted at
vertex v obtained by removing the edge (v,p(r;)) from T .

Lemma 7 In the rooted tree T”, consider any induced subtree T. 1fT™ contains vertices v and V/
such that I(v)[c] = 0and I(V)[c] = 1 then there exists at least one edge e st /x(€) = cin T\ T

Proof: Assume not, then the mutation of column ¢ occurs in T'. But T' and Tapt\T' are connected by a
single edge. Therefore, TaptXr* contains only one of either 0 or 1 in column ¢, contradiction.

Corollary 8 Ifboth T and Tapt\T' each contain a pair ofvertices v, V' stl(v)[c] = OandI(V)[c] = Ifor
some column cthen thereare atleast 2 edges e, € G Tt $* A*@ =/i(e') =c.

Note that in the rooted Topu the perfect phylogeny inside each super node u can be decomposed into
aminima connected component of perfect phylogeny on real vertices T£, caled core tree. The edges in
Ty\TJ are called peripheral edges. There could be several connected components of peripheral edges inside
each super node. Note that al interface edges are periphera edges. At this point, it is easy to compute
the unique core tree, which is just the perfect phylogeny on the rows that have been partitioned to any
super node. For this last part of the proof, we will be considering the optimal tree T with the following
additional property: no super node u (except the root) contains adegree two vertex that is adjacent to both -
aperipheral edge and the vertex cover edge connecting u to super node p(u).

Lemma9 Thereexistsan optimal tree T"pt that contains no vertex v in super node u with the property that
degree(v) = 2 and v isadjacent to both an peripheral edge and the vertex cover edge connecting u to super
node p(u). '

Proof: Assume not, then consider the optimal tree T" that contains the minimum number of vertices v
with the above property. One edge adjacent to v is the vertex cover edge say e, with say /i(e,) = k. The
second edge connects to a vertex v* inside super node u and let /i(v, V') = /. Now we can flip the ordering
of mutations of e* and (v, t/) such that ~(e*) = | and/i(v, V) = kto obtain anew tree T". Note that this
isjust atrivial operation of transform pMN on steiner vertex v. It is easy to see that the only pair of columns
in v of T that could contain a new gamete not present in the originad tree Tt contains one column of
the vertex cover. Therefore in T, all the vertices are good (assuming they were in the original tree). The
number of vertices in the super node p(u) increased by one and the number of super nodes in u decreased
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by one since v was previously part of u and now is part of p{u). Therefore the number of vertices with the

property given in the claim decreased by one, a contradiction to the assumption.
[ ]

In s(Topt), consider a super node ti, that has children super nodes ci, * * » ,c*. The goal is to discover
al the edges of T" bottom-up. Let 5, be the tree present inside the super node c* in T”. Note that we
are using the super node S to refer to the super node of both the skeleton Sand that of $(7”). Let 5J be
the subtree of T"pt rooted on a vertex of a, obtained by removing the vertex cover edge connecting Ci to u.
Note that thetree S restricted to the nodes of ¢, is 1} .

Assume inductively that we have computed the trees inside super nodes S descendants and all the of S.
In otherwords the subtrees 5- of T" have been found. Now we proceed to construct the tree inside super
node u. Note that this amounts to building the core tree of u and connecting vertices of u to verticesin 5; as
in Tapt (which is equivalent to computing the peripheral edges). Consider one by one each of the trees .
We dtart by adding all vertices of S into a selected set P. At any timeif \P\ < g, then we have completed
processing S. If not, then for each mutation of column cin S, we check if SS{ contains both states 0 and
1 onc. Ifso, weignore c. By claim 7, the fact that there are at most g multiple mutations for any character
candthat S is aperfect phytogeny, we ignore at most g mutations of £,. If not, then wlog say 0Ois the only
state in column c that occurs in SIT[. If any vertex in T* contains a 1 in column c and is present in P, then
we remove it from P.

Claim 10 Only the selected vertices in P can be vertices of T that connects Ci ton.

Proof: There exists exactly one edge e = (vo, *i), stfi(e) = cin S. The edge e partitions S into & and
St based on the value on the column ¢ and assume VQ E S and W G 5/. For the sake of contradiction
assume that in T"t, a vertex v from S\ connects to u via the vertex cover edge. Clearly every path to a real
vertex in Tapt\§ from v contains an edge € = (V[, Vo) with /i(e") = c. '

Consider the edges € that is the first mutation of column c in every path from e to a real vertex in
Topt\S% Let M be the sat of columns that mutate in the path connecting vo and v. Since there are no
bad vertices, all mutations of columns except vertex cover, between e and € occur even number of times.
Therefore, specifically vo and V', areidentica in all the columns in M. Therefore, connecting VQ instead of
v to u via vertex cover and deleting all mutations of M that occurs in the path between e and € resultsin a
tree of smaller cost, a contradiction to optimality. .

We continue by finding sets P for each of 5*. Now, using exhaustive search, we pick one by one every
possible way of selecting a vertex from each of the selected sets P for each of S%. One would be the correct
st of vertices as used in T*. For each v selected from S, we mutate the column corresponding to the
vertex cover edge between super nodes Ci and u and add to set A. We now add A to the super node u and
re-construct the perfect phytogeny of u. It follows from the claim that we have now completely identified
thetree in u. It is easy to implement the above procedure in g°M time.

Theorem 11 The new algorithm solves the g-near-perfect phytogeny problem in O(2°2A\nm + n?)) time.

Proof: The proof follows from the above lemmas and Theorem 2. .

4 Discusson

We now give a quick summary of how the running time can be improved to g°*nn?. The only step that
needs to be improved isuse-interface. Intuitively, instead of building the skeleton top-down, we can
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congruct it bottom-up as follows. Assume that we have.a skeleton T\ and we complete the use-interface
sep as described above to obtain a tree where the super nodes have unique tags. Let this final skeleton
be T2. We are now going to show that we can arrive at tree T using a modified routine of use-interface.
It is easy to guess the final topology of the skeleton T2 in time g°* even before executing the function
use-interfacesnce T2 has O(q) edges. Let thisunlabeed tree be T'. We can guess the labels /i(€)
for all edgese G T where/i(e) is dther a vertex cover column or a column found in function partition.
Thisgivesusapartially labelled tree T", wherethe only unlabded edges are those that were found using the
old use-inter facefunction. Note that in the current tree T', the connected components of unlabeled
edges are exactly the super nodes of the skeleton T\. We can how executethe use-inter facefunction
as described above, except that we do not add mutations of columns h into an existing skeleton (asin sep
5). Ingead we guess all unlabeled edgese G T' such that n(e) = h. If we guess that column h mutates
I number of times, then this step can be performed in time (?), where p is the number of unlabeled edges
currently in the tree. As before we perform use-inter face on each guess recursively. The following
recursion bounds the number of callstouse-inter facewhen the current tree hasp unlabeed edges.

?
T(p) < Y p'Tlp—i)
i=1

This recursion can be solved for T(p) = ¢®. Note that the new function use-interface, exactly
explores the same trees as the old function. Thisisjust atighter analyss of the running time obtained by
making sure that we don't repeatedly explore the same tree several times. Such a bottom-up congruction
can be extended to include the partition function aswell. The algorithm now becomes smple to implement,
since we can guess the final skeleton's topology up front and just guess the labels of the skeleton as the
algorithm progr esses.
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Appendix A: Proof of Theorem 12

Theorem 12 It is possible to construct a g-near-perfect phylogeny on the original input (before preprocess-
ing) using the above algorithm.

Proof: Let I be the original input and I’ be the pre-processed input. If there is a tree with penalty g on 1,
then there exists a tree with penalty at most ¢ on I'. Since the above algorithm goes through all trees with
less than ¢ penalty, we can add back the deleted columns and check if the penalty is still less than q. In
order to show that such an algorithm will find an optimal tree, we need to prove that there always exists an
optimal tree with this structure.

Consider any optimal tree T" on the input . Consider two identical columns a and b in 1. We claim that
we can modify the optimal tree in such a way that only the mutations of a or b are changed and the resulting
tree will have all the mutations of a and b adjacent to each other. Suppose a mutation of a doesn’t have a
mutation of b adjacent to each other, then the vertices between them are steiner. Therefore, we can apply the
transform 7, to the neighborhood of steiner vertices. As a result of the transform, we get the mutations of
a and b adjacent to each other. This also shows that the number of mutations of a and b in tree T is exactly
same. a

Appendix B: Proof of Theorem 2

In this section, we prove Theorem 2. Recall that a vertex v is bad w.r.t a pair of columns (b, ¢) if it has a
gamete for that pair which doesn’t appear in the input. Theorem 2 asserts that there is an optimal tree which
doesn’t have any bad vertices, i.e. all its vertices have gametes that appear in the input.

The main idea is to take any optimum solution and to transform it into one which has the above property.
This is achieved through a series of transformations that reduce the number of bad vertices. We first prove
some simple facts about the OPT solution.

Definition 9 We call a column c clean in a tree T, if all the vertices of T are good w.r.t (c, z) for all columns
.

Fact 13 If the column z is clean in the tree T and y is any other column, then the following properties hold:
1. Between any two mutations of column z, there is an even number of mutations of column y.

2. Between any two mutations of column y there is an even number of mutations of .

Definition 10 Let u be a bad vertex w.r.t (b, c). We define the bad neighborhood of the vertex u w.rt (b, c)
to be

Nyc(u) = {v | v is bad w.r:t (b,c) & all vertices on the path u — v are bad w.r:t (b, c)}.
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Definition 11 The boundary of N c(u) is the set of edges that connect vertices in Ny .(u) to the rest of the
tree T.

Fact 14 N, .(u) is the connected component of bad vertices of tree T containing u.
Fact 15 The boundary of Ny, .(u) consists of only the mutations of columns b and c.
Claim 16 The optimal tree contains equal number of mutations of columns b and c.

Proof: If not then the following transformation reduces the number of mutations in the tree. This contradicts
the optimality of the tree. O

Transform 7 We now describe our transform that reduces the number of bad vertices in the optimum
tree. Consider all the vertices in the optimum tree that are bad w.r.t (b,c). Let V1, V5,... , Vi denote the
bad neighborhoods w.r.t (b, c). The transform 7y, (resp. 7.) changes Vj,... , Vi simultaneously as follows:
delete the mutations of column b (resp. ¢) from the boundaries of the bad components and replace every
mutation of ¢ on the boundaries by a mutation of ¢ followed by a mutation of b (resp. replace b by bc). Let
T denote the tree obtained by applying the transform 7, on tree T". Note that both 7" and 7" are optimal
trees.
We prove the following two properties about the transform 7.

Lemma 17 After applying the transform T (or 7.), all vertices of the tree T' are good w.r:t (b, c).

Proof: The vertices that were good w.r.t (b, c) stay good even after the transform 7,. All the bad vertices
w.r.t (b, c) were replaced by good vertices during transform 7,. So no bad vertices are left. O

Fact 18 If the tree T does not have any bad vertices w.r.t (c,z), then the resulting tree T’ after applying
transform T, will not have any bad vertices w.rt (c, ).

Lemma 19 If the column z is clean, then the transform Ty, will not create any bad vertices w.r.t (b, z).

Proof of Theorem 2: Consider a lexicographic order on the columns c1, c2, ... . We start with an optimum
tree T. We first make column c; clean by considering bad vertices w.r.t (c;,¢;) for each 1 and applying
transform 7,. Note that the transform 7., will only affect pairs (c;, civ). It does not create bad vertices w.r.t
(¢1,¢ir). From Lemma 17, it follows that at the end of this step column c; will be clean.

Now inductively assume that columns c;, ... ,c; are clean. Next we look at all the bad vertices w.r.t
(¢j+1,¢i) (for i« > j + 1) for each 4 and apply transform 7.,. Note that the transform 7., doesn’t create
any bad vertices w.r.t (cj,cyr). Moreover, by Lemma 19, we can say that the resulting tree has columns
c1,- .. ,cj clean. Moreover, it follows from Lemma 17 that at the end of this step the column ¢, is also
clean.

Therefore, in the end all the columns are clean. In other words, there are no bad vertices in the tree. O

We prove the Lemma 19 through the following series of claims.

Claim 20 If the column  is clean in the tree T, then mutations of « in T are all outside U;V; or all inside.
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Proof: For the sake of contradiction, assume that there is amutation of x inside VA and another one outside
UiVi. Consider apath between these two mutations. It is easy to see that either 6 or ¢ mutates odd number
of times between the two mutations of x. This contradicts the fact that x is clean. .

Claim 21 Transform r& does not create odd number of mutations ofb between two mutations of a clean
column X.

Proof: Using the result of Claim 20, we consider following two cases.

case 1 (All x'sare outside) Consider a pair of mutations of x. If it doesn't have any mutation of b or ¢
between them, then their parity will not change. If there were an even number of mutations of 6 in between,
then in transform r&, an even number of mutations (twice the number of bad nelghborhoods on the path) will
get deleted and hence the parity won't change. If there were an even number of ¢'s, then two mutations of b
will be added for every bad neighborhood on the path. Overall, parity does not change.

case2 (All x'sareinside) In this case, every c gets replaced by cb. Since there were even number of 6's
and c's an even number of 6's get created and an even number of 6's get deleted between any pair of x's.
Thus the parities do not change. .

Remark 1 Claim 21 isrequired only ifthe column x mutates multiple times in the optimal tree.

Note that in transform r& only 6's are deleted or added. So asimilar claim for ¢ holds automaticélly.

Claim 22 The tree T resulting from transform T\> does not leave odd mutations of a clean column x's
between two mutations ofb's.

Proof: We show that between every adjacent pair of mutations of b in tree T', there are even number of
mutations of x. For the sake of contradiction assume that a pair of 6's has odd number of ress in tree T*
resulting after the transform r& was applied. Let b\ and 62 denote the two mutations of 6 that sandwich an
odd number of mutations of x. Note that both 61 and 62 cannot be preset in the tree T. Without loss of
generdity, assume that 61 was created intree T". Therefore, thereis amutation of column ¢ next to 61. Call
itci.

In the tree T, the column x was clean. Since the transform 77, does not change in mutations of ¢, no
mutation of x is sandwiched between two mutations of c in the new tree T'.

If 62 is anew mutation added to tree T', then let C2 be a mutation of the column ¢ which is next to 62 in
thetree T'. In this case, the odd number of mutations of 2; are sandwiched between ¢\ and C2 which is not
possible. Therefore 62 is present in the tree T.

We use Claim 20 to separate following two cases.

case 1 (All x's are outside) Let N*. denote the bad neighborhood where 61 was created. Let 61 be a
mutation of 6 that was deleted from the boundary of iV&, Then the path from 61 to ¢\ in tree T contains no
mutations of x, while the path from c\ to 62 contains an odd number of mutations of x. Therefore, intree T
there are an odd number of mutations of x between 61 and 62, which contradicts the fact that x was clean in
treeT.
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case2 (All x'sareinside) Note that 62 could not have been on the boundary of a bad neighborhood in the
tree T, otherwise it would have been removed in the tree T'. Since all the mutations of x were inside bad
neighborhoods, at least one of the neighborhoods on the path ffom 61 to 62 had an odd number of mutations.
If this bad neighborhood is the one where 61 was created in the transform, then the path 61 to 62 includes
the mutation c\. In T", all the vertices are good w.rt (b, c). Hence there must be another mutation of c (call
it C2) between 61 and 62- Note that the path ¢\ and C2 contains an odd number of mutations of x. Thisis
a contradiction. Therefore, the bad neighborhood containing odd number of mutations of x is not the one
where 61 was created. But in that case, consider the path from 61 to 62 in the old tree T. It must have
entered and exited the bad neighborhood via mutations of b. Thus the odd number of mutations of x were

sandwiched between two mutations of bin the old tree T. Thisis a contradiction to the fact that x was clean.
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