
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-80-134

30- < i<+

The Design of a Network-Based ¿ . 3
Central File System

Mike Accetta

George Robertson

M. Satyanarayanan

Mary Thompson

August 1980

Abstract

The file system described here will be the primary means by which a variety of computers connected together
by a local network will share files with each other. The spectrum of computers using this network will range
from mainframes supporting time-sharing to personal computers. The services provided by the central file
system include the storage, migration and archiving of files, the naming and sharing c f files and directories,
and the authentication of users. This document presents an overall view of the services provided by the facility
and describes the primitives used in accessing it. The system described here is being implemented in the
Department of Computer Science at Carnegie-Mellon University. However, the design is intended to be
applicable to any installation whose computers are linked by a local network, and which possesses a large-
capacity archival storage system.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
35')7. monitored by the Air Force Avionics L< boratory Under Contract F33615-78-C-1!51.

The views and conclusions contained in diis document are those of the authors and should not be
interpreted as representing the official pol ties, either expressed or implied, of die Defense Advanced
Research Projects Agency or die US Government.

University Libraries
Carnegie fVleiion University
Pittsburgh PA 1 5 2 1 3 - 3 8 9 0

Table of Contents

1 . Overv iew 1

1.1 Introduction 1
1.2 Functions of the CFS 2
1.3 Communication with the CFS 3

2. Genera l Design 5

2.1 Authentication Server 5
2.2 File Server 7
2.3 Name Server 13
2.4 Archive Server 18

3. Pr imit ive operat ions 21

3.1 Common characteristics 21
3.2 Authentication Server primitives 21
3.3 File Server primitives 28
3.4 Name Server primitives 39

Acknowledgements 4 9

1. File header f ields 51

I I . S torage M a p Format 5 3

I I I . Page Size Tab le 5 5

IV. Format of the GAF 5 7

V. Summary of Pr imit ives 5 9

References 6 3

1

1 . Overview

1.1 Introduction

The Central File System (CFS) has been designed as a back-end file system for the computing environment

in the Department of Computer Science at Carnegie-Mellon University. This environment currently consists

of a variety of machines such as PDP-lOs [2], VAX-ll/780s [3], PDP-l ls [4] and Altos [13] connected together

by a local network [8]. The Spice [12] machines currently under development will be added to this

environment when they become available. The file systems supported by the operating systems on these

computers span a wide spectrum.

The CFS will provide a central facility on which local file systems may store files and from which they may

retrieve them. Files on the CFS are accessible to all machines on the local network. Besides permitting

sharing of files, the CFS will also provide a means of indefinitely archiving the current and past versions of all

such files.

The major use of the CFS will be made by the various local file systems acting on behalf of their respective

users and not generally by any particular user directly. The CFS does not distinguish between human users

and programs which use the CFS just as human users would. Consequently the word "user" will be used in

the rest of this document to designate any entity that uses the CFS.

The design of the CFS, while unique as a whole, draws upon ideas from a variety of existing file systems.

The directory structure is based on that of the UNIX file system [11]. The notions of stable storage and

transactions are based on work done at Xerox [7, 6] and IBM [5]. The Multics [9] and Hydra [1] file systems

have also had an influence on the design of the CFS. Finally, the promise of extremely high storage density

write-once media such as video disks [15] has influenced the archival and migration features of the CFS, and

encouraged the notion of invariant files.

The prototype system will be implemented on a VAX under the UNIX operating system but completely

distinct from the existing UNIX file system on the machine. The first two file systems to be interfaced to the

CFS will be the VAX UNIX file system and the Spice file system [14] with the plan of eventually connecting

all of the machines in the environment. The two initial local file systems will make use of the CFS in slightly

different ways. UNIX will treat the CFS as a central storage area for common system files and as the primary

backup and archiving area for general files. 'Hie Spice file system, on the other hand, is being designed with

the intent of providing the Spice user with a local file system which resembles the CFS as closely as possible.

2

1.2 Functions of the CFS

The CFS provides users with a wide variety of services. The degree to which these services are used is left

completely up to local file system implementations. CFS services will be provided over the network by three

server processes: a File Server which provides access to the physical data in files, a Name Server which

supports a directory structure, and an Authentication Server which handles the initial connection protocol

between users and the CFS, and establishes the authenticity of the former. Also present, but invisible to

users, will be an Archive Server which interacts with the File Server to handle automatic archiving and

migration functions. The Interprocess Communication facility (IPC) [10] will be the sole means of

communication between users and the CFS, and between the components of the CFS.

At the lowest level, the CFS will provide the common storage mechanism for files from all users. It will

support files with differing data characteristics (such as text, and 8-, and 36-bit binary), to simplify the sharing

of compatible data between a variety of local file systems, and will provide a central location for the storage of

mailboxes, bulletin boards, documents, data bases, and other shared files. It will also provide a common

archiving mechanism for retaining all files in perpetuity and for recovering any file through normal file access

operations.

A noteworthy feature of the CFS is that it permits simulation of file accesses by processes. As described in

section 2.2.1, users may request file operations such as read and write on the simulating process. The fact that

the "file" is really a process can be made totally transparent to users by ensuring that the process responds

appropriately to all file access requests.

The Name Server provides a service which will primarily be used for naming files. However, it is possible

to use it as a mechanism for naming entities other than files. For example, it can be used to provide system-

wide names for IPC ports. This use of the CFS is described in more detail in section 2.3.2.

At a higher level, the CFS may be viewed as an extension to each local file system. The standard operations

of creating and deleting files, reading and writing file data, updating file statistics and changing access rights

are all basic functions of the CFS. They may be combined by the local file systems in whatever manner is

convenient, extending from completely caching local copies of CFS files through modifying files in place on

the CFS. The functions of a local file system can be integrated with those of the CFS in a manner which

presents the user with a single, homogeneous interface.

The CFS supports concurrent sharing of files via transactions. All of the read and write requests within a

transaction are collected together such that any changes are made indivisibly as a single unit when the

transaction is completed. The transaction mechanism is primarily intended for synchronizing concurrent

updates in shared file applications.

3

1.3 Communication with the CFS

All communication with the CFS is accomplished through IPC messages between authenticated ports on

the CFS and host machines. As explained in the IPC document [10], a port is essentially a queue of messages

with many senders but only one receiver. Most of the ports used in CFS will have only one sender and one

receiver. An authenticated CFS port is one for which the identity of the senders and the receiver is

established to the satisfaction of the CFS. Network security guarantees that a port remains authenticated

between the initial verification and the deallocation of the port

A message to the CFS consists of one or more typed parameters which specify the service being requested.

Messages are passed back and forth across the network via network IPC servers on each machine, and are

passed on to user processes by local IPC mechanisms. This is done in a manner which completely conceals the

fact that a destination or source port is actually on a remote machine. In addition, any network security and

authentication necessary to prevent the forging of access to remote ports is ultimately the sole responsibility of

the network servers and not of any particular user process.

By using such a transparent network IPC mechanism, the CFS presents the user with a uniform interface,

independent of specific network topology and distribution of CFS functions. User processes view the CFS

simply as a collection of other local processes and communicate with them via the local IPC mechanism. The

actual CFS services may be distributed with reasonable ease across multiple processes, machines, and

networks as the need arises, and this can be done completely without the knowledge of users.

4

1

2. General Design

5

2.1 Authentication Server

2 .1 .1 Establ ishing a connect ion

In order to use the services of the CFS, a user must first establish a secure connection with i t This

connection is established by sending a login message, consisting of a CFS user name and password, to a public

port of the Authentication Server. Depending on the local file system, this login connection may be

established explicitly at the request of the user or implicitly when a user logs in to the local machine. As a

result of a successful login, three authenticated ports are established and returned: one to the File Server,

another to the Name Server, and the third to the Authentication Server. These ports are used for all further

communications with the CFS.

The connection to the CFS is terminated by sending a logout message to the Authentication Server por t

This deallocates the File, Name, and Authentication Server ports and closes the connection in an orderly

manner. This may involve closing open files and aborting transactions. The CFS connection may also be

broken implicitly by events such as a time-out due to local machine crash. In these cases too, the connection

is terminated appropriately.

2 . 1 . 2 Access Groups

Protection in the CFS is enforced via the notion of access groups. An access group defines a subset of users

to whom privileges may be collectively awarded or from whom these privileges may be collectively revoked.

Access groups are partitioned into two classes: primary access groups and secondary access groups. Each user

of the CFS is the sole member of exactly one primary access group. Since there is a one-to-one relationship

between primary access groups and users, the terms "user" and "user's primary access group" will be used

interchangeably in this document. Secondary access groups are created by users and differ from primary

access groups in two ways:

1. Secondary access groups may not login to the CFS, and

2. A secondary access group may contain more than one user.

A user may belong to any number of secondary access groups, and at any instant of time, the protection

environment of a user is defined by the union of the rights of all the access groups of which he is an enabled

member at that instant. The notion of disabled member is used to permit a user to deliberately deprive

himself of certain rights; for example, while debugging a file manipulation program, a user may not wish to

have Write privileges on a sensitive file.

6

Associated with every access group is a CFS data structure called the group attribute file or GAF (see

appendix IV). The GAF contains all relevant information about that access group, and is uniquely identified

by an integer called the access group ID.

Every access group also has a name that identifies it uniquely. In the case of a primary access group, this is

the name by which the corresponding user logs in to the Authentication Server, and in the case of a secondary

access group, this is the name by which that access group is referenced. Access groups may be renamed;

however, their IDs cannot be altered. Every user is automatically a member of the group called ALL, which

consists of all CFS users.

When a user logs in to the CFS, each of the IPC ports returned to him has associated with it a list

containing all the access groups of which the user is an active member. Enabling or disabling of access groups

by the user causes these lists to be appropriately modified. As described in sections 2.2.3 and 2.3.4, the Name

Server and File Server use these lists in order to control access to files and directories.

While primary access groups are restricted to having exactly one member, there is no restriction on either

the number or type of members of secondary access groups. One implication of this generality is that it is

possible to construct a hierarchy of secondary access groups. This is done by defining a secondary access

group to consist of a set of other secondary access groups (or a mixture of primary and secondary access

groups). Thus, if A and B are two access groups, one can define C to consist of these two access groups. Every

member of either A or B is automatically a member of C. Adding or deleting a member from A or B thus

implicitly adds him to C or deletes him from C. The relationship "is a member of9 is thus a transitive one.

Consequently, the reflexive transitive closure 1 of this relationship applied to any access group yields a list

containing every member, direct or indirect, of that group. When a set of access groups is enabled by a user,

the union of the corresponding transitive closures yields the list of groups to be used in access checks. Thus,

the set of rights that a user has on any entity is the union of the rights that his currently enabled access groups

have on that entity.

This construction of the transitive closure (referred to as "flattening") of a user's access list is done at login

time and any time a user enables or disables an access group. Thereafter, the flattened access list is associated

with the ports to the File Server, Name Server and Authentication Server.

Primary access groups can only be created and deleted by the System Administrator whereas secondary

access groups can be created and deleted by users. An access group's attributes are protected against

unauthorized modification by an access control list mechanism. Each access group has an access control list

associated with it. This list consists of a set of access group IDs iind the rights that each of them has on that

access group. The set of access rights are:

Vor brevity, the phrase "transitive closure" will mean "reflexive transitive closure" in the rest of this document

7

AddMcmbers members may be added to the group

RemoveMcmbers members may be removed from the group

DeleteGroup the group may be deleted

GetG roup Access the access control list for the group may be read

SetGroupAccess the access control list for the group may be modified

2.2 File Server

2 .2 .1 File organizat ion

A file is stored on the CFS as an ordered collection of data units divided into pages containing a fixed

number of these data units. The size of each data unit as well as the number of data units per page depend on

the data characteristics of the file (see section 2.2.2 and appendix III). The CFS supports file operations at the

grain of data units. However, operations which deal with whole pages arc likely to be more efficient. A file

may contain holes corresponding to data pages which have never been written. Attempts to read data from a

hole are detected and reported to the requesting user. These pages are not actually allocated storage on the

CFS.

To permit efficient storage and retrieval of data from the archive, an additional structure is imposed on

files. A contiguous set of pages which may be stored in or retrieved from the archive independent of the rest

of the file is called an archival unit (abbreviated archit). There are no a priori restrictions on the size of archits.

As a consequence of the fact that files may contain holes, it is possible for the archits in a file to be of the

different sizes. It is expected that for most small files without holes, the entire File will be a single archit.

Larger files will typically consist of a number of archits, their maximum size being specified by the creator or

suitably defaulted by the CFS. It should be noted that archits are present purely for efficiency. A user may

choose to completely ignore the fact that a file really consists of a set of archits. The CFS maintains

information regarding the dates and times of last modification and access of each archit in a file. Depending

on the file usage pattern, it is quite possible for some parts of a file to be present on secondary storage while

others are only available on archive — this fact is completely transparent to the user.

A file may be stored in either standard storage or stable storage [6]. The data pages of a file stored in

standard storage are recorded in only one place on the CFS while die data pages of a file stored in stable

storage are recorded in two different places on the CFS. Files stored in stable storage are less likely to be

damaged during a system crash than are files stored in standard storage, however, they are also more

expensive to store and change. Consequently, most files will be stored in standard storage. Only extremely

important files will be stored in stable storage. The storage locations of stable pages arc chosen so as to reduce

8

the chance that both copies can be damaged at the same time (e.g. on different platters of a disk pack in case

of a head crash). The two physical copies of any stable logical page are always written by the File Server in

the same order so that they can be brought into agreement after a crash when they are not identical.

All I/O operations on files are expressed in terms of the position, in units of file storage, at which to begin

the I/O and the number of units to transfer. I /O which extends beyond the current size of the file adds new

data to the end of the file on writes (depending on the access permission) but is disallowed on reads.

Every file is uniquely identified by its file ID (FID). The FID is a unique integer which is generated by the

CFS when the file is created and is never changed thereafter. FID's are the only means by which files are

identified to the File Server. A given FID always refers to the same file (although its data may change), and is

never reused.

The File Server accepts an IPC port in lieu of an FID. All file access requests for that "file" are routed to

the port by the File Server. It is the responsibility of the process receiving on that port to interpret' these

requests and to act accordingly. Replies from the process are sent directly to the requestor. This is the

mechanism by which the File Server supports the notion that files may be active entities (i.e., processes) rather

than passive information structures.

2 .2 .2 File Propert ies

Files stored in the CFS are described by four properties, each of which is orthogonal to the others. These

are:

Mutability
Possible values: {Variant, Invariant}

The mutability of a file determines whether the data in that file can be altered after file
creation. An invariant file can never have its data altered whereas variant files can be so
altered. In practice it is expected that the majority of files will be invariant. A series of
(logical) modifications to an invariant file will be reflected as a series of invariant file
creations. Thus, the familiar actions of reading a file, editing it and overwriting the original
copy will be accomplished by reading an invariant file, editing it and creating a new
invariant file corresponding to the edited version of the original.

The version mechanism provided by the name server (see section 2.3.3) will bear the
burden of keeping track of the invariant files corresponding to successive versions of a
filename. The use of the name server is, of course, optional — local file systems and
higher-level mechanisms on host computer systems may choose to keep track of versions
themselves.

Variant files are intended primarily for use in database applications, where it is
inappropriate to recopy the entire file when modifying it. Concurrent updates of such files
are possible and mechanisms to guarantee the indivisibility of updates arc provided by the
CFS.

9

Both the CFS and the local file systems can make many simplifying assumptions about
invariant files. Consequently, some operations on invariant files will be more efficient than
the corresponding operations on variant files.

Storage Characteristics
Possible values: {Standard, Stable}

rrhis property describes how well a file is protected from hazards such as disk crashes.
Since files are archived soon after their creation on the CFS, standard storage is adequate
for most purposes. In case of a disk crash, lost files can be recovered from the archive. But
because there is a finite delay between die creation of copies on disk and archive, a disk
crash which occurs between the creation of the two copies could cause the unrecoverable
loss of a file. Particularly valuable files should therefore be stored in stable storage.

Data Characteristics
Possible Values: {Universal text, 8-bit binary, 16-bit binary, 32-bit binary, 36-bit binary}

The CFS will be connected to a variety of machines with different word sizes, and different
software conventions regarding text files. By suitably setting the data characteristics of a
file, a user can express operations such as read and write in terms of data units that are
meaningful to that file rather than expressing diem always in units such as bytes. The
mapping of these data units into die internal storage format of the CFS is totally
transparent to the user. Appendix HI specifics the number of data units per page for
different data types.

Advisory File Type

Possible Values: { any of a set of user-defined types }

This property is primarily for the use of higher-level mechanisms in host computers and
corresponds to the notion of types in programming languages.

It should be noted that the type of a file is not of interest to the CFS — it is present
primarily for use by local file systems and higher level mechanisms on local computers.
The allocation of types is not the responsibility of the CFS. The installation using the CFS
has to have some external mechanism that manager the allocation and deallocation of v .
and prevents conflicts. One suggested way of handling tliis is to have a special directory on
the CFS to which all users have LookUp and CreateName access. To create a new type, a
user could create a file and enter a description of die type in that file. He could then try to
enter the FID of this file as version one of the type name in the special directory. If die
EnterName succeeds, the user has effectively allocated himself a new type; the FID of die
type description file becomes a unique identifier for the type. If the enter fails, the user
knows diat the type name has already been allocated. He may examine the corresponding
type description file to see if that type meets his requirements. If it does he may use that
type, otherwise he can choose a new name and try again.

10

2 .2 .3 Access control •

Corresponding to each file is an associated access control list, which is a mapping from access groups to

access rights on the file. When a user requests an operation on a file, the File Server examines the entries

corresponding to each of the user's enabled access groups in the access control list of that file. If any of these

access groups possesses sufficient rights to perform the requested operation on the file, the access check

succeeds and further processing of the request occurs. Otherwise access is denied.

The access rights for a particular access group are defined by a collection of bits describing the operations

which may legally be performed on the file by members of that access group. The set of access bits for a file is

divided into system access bits and auxiliary access bits. Logically, one can view a file as having two access

control lists: system and auxiliary. System access bits are interpreted by the File Server. Auxiliary access bits

are stored on the CFS but normally have no meaning to the File Server; tiiey are interpreted only by the

programs or subsystems using them. The Name Server and the Authentication Server use auxiliary access bits

on directories and GAFs to implement their own access checks.

The system access bits are:

• Read existing data may be read

« Write existing data may be written

• Extend new data may be added to the end of the file

• Truncate existing data may be removed from the end of the file

• Purge the file storage may be physically deallocated

• ReadHeader most fields of the file header may be examined

• WriteHeader selected fields of the file header may be modified

• GetSysAccess the system access control list may be examined

• GetAuxAccess the auxiliary access control list may be examined

• SctSysAccess the system access control list may be modified

• SetAuxAccess the auxiliary access control list may be modified

2 . 2 . 4 Synchronizat ion

The CFS provides one implicit and two explicit mechanisms for synchronizing file operations.

The first explicit mechanism, supported for both variant and invariant files, is an Advisory Semaph

associated with each file. As the name suggests, this semaphore is purely advisory in function. The C

11

manipulates it in response to user requests but does not heed the semaphore in any other way. The primary

purpose of this semaphore is to permit higher level mechanisms in host systems to synchronize their file

operations. When the advisory semaphore on a file is set, the ID of the user requesting this operation is

returned. Only this user may reset die advisory semaphore. When setting the semaphore, a user must specify

the maximum length of time for which it should remain set. If the semaphore is not reset widiin this interval

by the user, die CFS automatically resets it. The CFS does not provide for queueing of requests to set a

semaphore. If a requested operation on a semaphore cannot be immediately carried out, it is up to the

requestor to negotiate the release of the semaphore with the current holder.

For variant files, a second explicit synchronization mechanism is provided. A series of reads and writes to a

subset of the pages of the file may be grouped together in a Transaction. The CFS guarantees that a

transaction is executed as one indivisible unit Modifications to a file, requested widiin a transaction, are not

carried out until the transaction is ended. Thus, a transaction may be aborted any time before it is ended,

widiout any changes to the file. Transactions may be read or modify (i.e., write, extend or truncate)

transactions and take a list of pages as an argument. At any instant there may be at most one modify

transaction or multiple read transactions per page — the CFS ensures this by comparing the page list supplied

at the start of a transaction with the page lists of transactions in progress. There are no time-outs on

transactions; a transaction is terminated only when it is explicitly ended by the user or when the connection

between the user and the File Server is broken.

A file has to be opened for transactions before read or modify transactions may be initiated on it Since

variant files can be modified outside of transactions (direct writes on the entire file are possible), the Open

primitive has to perform implicit synchronization if consistency is to be ensured. This is best described by the

following table:

12

R M R'

R X X

M X X x ' X

R' X

IVT X* X

A failure on open can either result in a queuing of the open request by the CFS 01 a failure code return,

depending on parameters specified in the open request by the user process.

2 . 2 . 5 File headers

Ml information stored by the CFS for a f ie is recorded in its file header which is kept in stable storage.

This includes everything from the file owner and access statistics to pointers to the actual data pages of the

file. A file is accessed through its file header, which in turn is located by using the FID as a virtual index into

tht table of file headers for the entire system. All operations on a file are performed based on the information

stored in die file header. The primitives provided by the File Server are those which create, modify, and

delete file headers and the files they represent.

\ file header consists of a series of fixed and variable length fields. Some of these fields are directly

modifiable by user processes while others are only implicitly modifiable by the File Server on behalf of its

users; appendix I specifies which fields may DC modified direcdy by users. Most fields may be examined by

user processes although some arc internal to the File Server and completely hidden from external view. A file

header contains the following fields:

File ID (for redundancy check and file system crash recovery).

F i e properties the four properties that characterize this file (sec section 2.2.2).

Si/e the number of units of data contained in the tile. The s i /cof the unit is determined by the
data characteristics of the liic, discussed in section 2.2.2.

The entry in row £, column j is an X iff an operation of type i will fail when the file has been

opened by another process for operation j .

R = Open for Read
M = Open for Modify; i.e., for write, extend or truncate
R* = Open for read transactions
M* = Open for modify transactions;

i.e., for write, extend or truncate transactions

13

Archit size the maximum number of pages per archit. All die archits in this file, except the very last
archit or those adjacent to holes, will be of this size.

Author ID the primary access group (see section 2.1.2) of the creator of the file.

Creation date the date and time of the creation of the file (set only once per file).

Data access date the date and time of the last access to the file (set when the file is opened).

Data modification date
the date and time of the last modification made to the data in the file (set when closing a
file after opening it for modification, or when completing a transaction that has modified
the file).

Header modification date
the date and time of the last modification to selected fields of the file header.

Advisory semaphore
for use by higher level mechanisms in local systems (see section 2.2.4). This is set to the
primary access group id of the current holder of the semaphore.

Semaphore expiration time
the date and time that the semaphore will be automatically reset if it is not explicitly reset.

File print name a name specified when a file is created outside of any directory or the name under which
the file is first entered into the directory hierarchy (see section 2.3.5).

Transaction count the number of modify transactions or closes after opens for modification which have been
successfully completed on this file since its creation (see section 2.2.4).

Access control list a description of the access restrictions associated with the file (see section 2.2,3).

LFS information a block of data supplied by a local file system when storing files on the CFS (multiple local
file systems may store information in this field only by common agreement as to the format
and content).

File storage map physical storage information. This is implemented as a set of entries, one entry per archit
Each entry contains pointers to the corresponding data on secondary and archive storage.
Archival information such as date of last access and date of last modification is also present
in each entry. Appendix II describes the format of each entry.

2.3 Name Server

2 .3 .1 Overv iew

The Name Server provides three primary functions:

14

1. It maps names chosen by users to unique identifiers/

2. It provides a directory structure that aids users in organizing their files in a logical manner.

3. It aids sharing of files by supporting shared directories and provides control over die extent of this
sharing.

These services are provided completely independently of the services provided by the File Server.

Consequendy, it is possible to use the Name Server as a repository of names that have nothing to do with files.

One such use, described in section 2.3.2, is to provide a network-wide naming scheme for IPC ports. Other

uses of the Name Server are left to the imagination of the reader and the ingenuity of users.

The directory structure supported by the CFS is superficially similar to that in the UNIX file system [11].

This directory hierarchy can be viewed as a rooted graph with non-terminal nodes corresponding to

directories and terminal nodes corresponding to names of entries in directories. An arbitrary path from the

root to a leaf specifies the entry name at the leaf unambiguously. Similarly, an arbitrary path from the root to

an internal node unambiguously specifies a directory. Such a specification of a file or directory name is called

a pathname and is written as a 4C followed by the names, in order of traversal, of nodes encountered while

traversing that path, the 4>' character serving as a name separator. For convenience, the Name Server

supports the notion of a current directory. This directory is specified by the user, and its pathname is logically

prefixed to all pathnames specified without a leading character.

2 . 3 . 2 St ructure of a d i rectory

Conceptually, a directory is a list of entries, each entry being a mapping from a entry name to a typed entry

value. In the great majority of cases the entry value will be of type FID. This represents the simplest situation,

where a name in a directory is directiy mapped to the FID of a file. Since entries are merely mappings, it is

perfectly possible and meaningful for a given file to have many names associated with it, in the same or

different directories.

Subdirectories have entries of type directory in their parent directories. When parsing a pathname which

contains a subdirectory name, the Name Server simply looks for the name of the subdirectory in the directory

currendy being searched and makes it die new search directory (provided of course that it is a directory). If

there are many subdirectories in the pathname, this procedure is recursively repeated until an entry which is

not of type directory is encountered. At this point, with the one exception described below, the corresponding

entry value is returned as the result of the name lookup.

A second type of entry value is Symbolic Link. A symbolic link is the pathname of an entry in some

In most cases this can be interpreted as "translates the name of a file to its FID.'

15

directory and is used like a macro in a programming language. When the Name Server encounters a symbolic

link while trying to resolve a name reference, it continues the search using the pathname corresponding to the

symbolic link, thereby effectively performing a macro expansion. This may be applied recursively. To assist

in locating errors, die Name Server provides a lookup function which does not perform this macro expansion

of symbolic links.

Another type of entry value is IPC port. An IPC port may be associated widi a name in a directory for two

reasons. One use of this feature is to provide a simple name, IPC port mapping service so that users who wish

to share IPC ports can remember names rather than IPC ports. Looking up an agreed-upon name in the CFS

directory structure will yield an IPC port which can tiien be used for whatever purposes are necessary.

Alternatively, an IPC port may be entered in a directory with the intention of simulating a file. All file access

messages intended for the "file" will be rerouted by die File Server to the designated IPC port. The process

controlling the port can then respond to these messages as appropriate to simulate file access.

To assist users who wish to use the Name Server for non-standard purposes, a special entry type called

UserDefined is recognized by the Name Server. Entries of this type are integers whose values are neither

checked nor interpreted by the Name Server. Entries of this type may be entered or looked up in directories

just as entries of type FID. It is expected that higher-level mechanisms will check and interpret these entries

suitably.

2 .3 .3 Vers ions

The naming mechanism supported by die Name Server reflects the expectation that most users will view

individual files as being members of file families rather than as isolated entities. This is particularly true

because the use of invariant files will typically lead to the creation of a sequence of files, closely related yet

distinct from each other. As mentioned in section 2.2.2, editing an invariant file will result in a new invariant

file; diese two files are certainly distinct, yet diey only represent two snapshots in the life history of what

would be called a file in conventional file systems.

The Name Server captures this view by composing a full entry name from two parts: a family name and a

version number. The family name is a text string that identifies a family of entry names. Version numbers are

integers used to distinguish between members of a family. The version numbers of the members of a family

reflect the chronological order in which the members were entered into die directory.

It is often the case that a user wishes to refer to the latest member of a family without bothering to

remember or find out what its version number is. The Name Server therefore adopts the convention diat a

family name widiout a version number refers to die highest existing version. It also adopts the convention

that a version number of 0 refers to the oldest, existing version. Further, if no version number is specified

when entering a name in a directory, the entry created will have its version number set to one larger dian the

16

highest existing version of that family. If a version number is specified, it has to be larger tiian the highest

existing version.

It should be borne in mind that the proper use of version numbers is up to the user. A malicious (or merely

foolish) user may enter totally unrelated files as versions of a family. Or he may enter members of a family in

an order that does not reflect their actual age — version numbers will dien be of dubious value.

2 . 3 . 4 Directory access rights

The current implementation of the directory structure will store directories through the File Server in stable

storage as variant files. The Name Server uses the auxiliary access bits of a directory to define a set of

directory access rights which it uses to control access to the directory.

These directory access rights are:

Lookup the directory may be searched for names

CreateName new names may be added to the directory

DeleteName names may deleted from the directory (see section 2.3.6)

GetDirAccess the directory access control list may be examined

SetDirAccess the directory access control list may be modified

GetDefAccess the default directory access control list may be examined

SetDefAccess the default directory access control list may be modified.

Access checks on directories are performed by the Name Server in a manner analogous to that performed

by the File Server on files, as described in section 2.2.3. Only the Name Server will have system rights such as

read or write on a directory file.

Unlike conventional file systems, there is no notion of "ownership" of a directory. All access control is

done via the access control list of the directory, and this list may be used to give a set of users equal rights on

the directory. In some sense one can say that the "owners" of a directory are the access groups which have all

rights on the directory. Thus, a set of users may collectively "own" a directory and share its use.

To assist in the sharing of files, every directory contains system and auxiliary default access control lists.

The purpose of the default access control lists is to automatically modify the access control lists of files entered

in that directory by users who have SetSysAccess or SetAuxAccess rights on the file. This modification takes

place as follows:

17

• If no previous version of the name exists, the default access control lists are merged with the
existing access control lists of the file.3 For the system access control list to be modified the user
must possess SetSysAccess rights; for the auxiliary access control list to be modified he must
possess SetAuxAccess rights. If the user possesses only one of these rights, only die corresponding
access control list is modified.

• If a previous version exists, the access control list from the previous version is merged with the
existing access control list of the file. This is subject to the same access restrictions mentioned
above.

A set of users having access to a common directory may set up the default access lists so that the mere entering

of a name in that directory causes the corresponding file to be accessible to everyone in that set If a user who

does not have SetSysAccess or SetAuxAccess rights on a file enters it in a directory, the corresponding access

control list of the file remains unchanged.

2 .3 .5 Creat ing new names

Files are created through the File Server independently of the directories in which they may reside. At the

time that a name is entered into a directory, the Name Server checks to see if the name already exists in that

directory. The behavior of the Name Server depends on whether a version number is specified as part of the

name to be entered:

• A version number is specified:
If the version number of the new name is less than or equal to that of the highest existing version,
the entry is rejected. Otherwise the new entry name, entry value pair is entered in the directory.

• No version number is specified:
A version number which is one larger than the highest existing version of the name is given to the
new entry. If no previous version of the name exists, a version number of 1 is given to the new
entry.

If the name maps to an entry value of type FID, the Name Server modifies the access control list of the

corresponding file in the following way:

• A previous version of the name exists:
The access control list for the most recent version is merged with that of die new version if the
currendy enabled access groups have appropriate rights on the file being entered. If the new
version is to have more restricted access than the previous one, an explicit operation to restrict the
access must be performed.

• No previous version of the name exists:
The default access control list for the directory is merged with that of the file if the currendy
enabled access groups have appropriate rights on the file being entered. If the file being entered
should have more restricted access than that specified by the default access control list, an explicit
operation must be performed to restrict the access.

In this context "merged1* means that the resultant access control list is a union of the default access control list and the original access
control list on the file.

18

If the name being entered is not of type FID, no access control list modification is attempted by the Name

Server.

If the print name field of the file header is still unspecified when a file is first entered into a directory, it will

be filled in with the entered name, provided the user has WriteHeader permission on the file.

The Name Server requires CreateName permission in the directory before a new name will be entered in a

directory. For invariant files, the creator must also possess Write permission on the previous version, if one

exists. This will be the only time that Write permission has any meaning for invariant files.

2 . 3 . 6 Delet ing names

Since the CFS is intended to provide a permanent archive facility for all files, the traditional file deletion

semantics is hardly appropriate. The standard CFS delete operation is simply a Name Server fiinction which

never deallocates any file storage. Thus, only entry names are deleted when it is necessary to clean up a

directory. The file storage is simply allowed to migrate off-line through disuse. When a name is deleted from

a directory, it is still retained in that directory, with a delete flag set. A subsequent undelete of die name

causes the delete flag to be reset and it appears as if the name was never deleted at all. The actual removal of

deleted names is accomplished by an ExpungeName operation on the directory. Once expunged, the

corresponding entry name and entry value associations can only be recovered from the Name Archive (see

section 2.3.7). However, the file itself is not removed from the file storage and may still be accessed via its

FID.

2 . 3 . 7 Recover ing expunged names

Corresponding to every directory is a Name Archive. This is a variant file to which only the Name Server

has access rights. Each time a name is entered in a directory, it is also entered in the corresponding Name

Archive, along with its entry value and die date and time of entry. The Name Archive is never deleted or

truncated, even if the corresponding directory is. The Name Server supports a name retrieval service which

can be used to recover the entry value that corresponded to a given pathname on a certain date and time.

Since directories themselves have entries in their parent directories, this recovery mechanism will work even if

some of the directories present in a pathname no longer exist. To use this retrieval service, a user must possess

LookUp rights on the directory from which the pathname is to be retrieved.

2.4 Archive Server

The primary function of the Archive Server is to maintain, on tertiary storage, copies of all files ever created

by the File Server on secondary storage. The design of the Archive Server is based on the premise that

extremely large (of die order of 10 1 0 bits per platter) random access write-once memories such as video disks

19

will be commercially available in the near future. The Archive Server will be run on a processor connected to

the rest of the CFS via the network. Pending the availability of video disks, die Archive Server will use

magnetic tapes and disks to simulate video disks.

The only component of the CFS that is aware of the presence of the Archive Server is the File Server. The

relationship between secondary storage on the File Server and tertiary storage on the Archive Server is

analogous to that between cache and main memory when a write-through caching strategy is used.

Alterations to secondary storage cause tertiary storage to be updated. However, unlike a write-through cache,

interactions between secondary and tertiary storage are asynchronous. There can be indeterminate delays

between the queuing of a request by the File Server and its execution by the Archive Server. During this

period the File Server may continue to attend to user processes and queue further requests to the Archive

Server. On completion of a request, the Archive Server nodfies the File Server of this fact.

The organization of information on tertiary storage is such that it is possible to recover every file that was

successfully archived, even if all secondary storage is lost This is achieved by archiving not only the contents

but also the headers of files and by maintaining, in tertiary storage, a mapping table that maps FIDs to tertiary

file header addresses.

For efficiency, however, pointers to data on tertiary storage are maintained in the file headers on secondary

storage. Consequentiy, the File Server can request the Archive Server to retrieve data from specific addresses

on tertiary storage --- no dme-consuming FID-to-fileheader-to-data mappings have to be done by the Archive

Server.

The unit of data transfer between secondary and tertiary storage is an archit. When a file is created by the

File Server, a request to archive this file is spooled, awaidng attention by the Archive Server. Once archived,

the File Server may erase any of the archits of the file from secondary storage with the assurance that it can

retrieve that archit from the Archive Server at any time.

Invariant files need only be archived once, since diey are never altered after creation. Variant files,

however, have to be archived each time they are changed; i.e., each time a modify transaction is ended or a

variant file open for modification is closed. Of course, only diose archits diat have actually been changed

need to be archived.

The File Server uses a migration policy to erase from secondary storage those files which are not likely to be

accessed for a "long" time. The definition of "long" is a policy decision based on parameters such as the

demand for secondary storage, the characteristics of tertiary storage, and die long-term file access patterns.

The migration algorithm uses die past access pattern of the file to migrate those files which are least likely to

be used in die near future. To conserve secondary storage, file headers may also be migrated. However,

archive retrieval requests can be much more efficient if the tertiary addresses of the relevant archits are

20

available on secondary storage. Consequently, the migration algorithm ensures that a file has been unused for

a much longer period of time for its header to be migrated, than for its archits. Since archits of a file are

independently migratable, it is quite possible for rarely-used archits of a file to be absent from secondary

storage, while frequendy-used archits are present. Accessing a migrated archit will automatically cause it to

be retrieved from tertiary storage. The only indication that a user will have of this event is a real-time delay in

the completion of his request to access data in that archit

21

3. Primitive operations

3.1 Common characteristics

All requests of the CFS are made through IPC messages sent to ports of the File, Name or Autiientication

Servers. All request messages have a standard format. Each message consists of a message ID, a reply port,

and one or more request parameters. The message ID is some value chosen by the user process. The CFS

servers use this ID to identify the request when responding to messages. It will normally be updated by the

user process for each new request so that sequential requests may be easily distinguished. The reply port

specifies the destination for responses from the CFS. When a server responds to a request, the response

message is sent to the specified reply port

All requests have a request code which specifies the type of request being made. This is followed by a

sequence of typed input parameters, which are interpreted according to the request code. Since each

parameter is typed, the primitives support optional parameters.

Response messages from the CFS also have a common form. Each contains the source port from which the

message was sent, the message ID of the request invoking the response, the completion code of the request,

and one or more typed result values. The completion code specifies either diat die request was successfully

completed or that the request could not be completed successfully due to some error. When a completion

code of Success is returned, the result values (if any) are the results of the completed operation. If an error

occured, the completion code indicates the reason for the failure.

This request/reply message protocol is entirely asynchronous. User processes need not wait for a

completion response from the CFS before proceeding. However, it is the responsibility of these processes to

insure that no dependent actions are attempted before a completion response is received from the CFS.

3.2 Authentication Server primitives

3 .2 .1 General Overv iew

The Authentication Server primitives provide the verification mechanisms used in establishing connections

with the CFS and manipulating access groups.

22

3 .2 .2 Primit ives for establ ishing and breaking a connect ion

Logging in to the CFS

RequestCode: Login

Parameters: user name - a name which uniquely identifies each user. This is the same as the name of
the primary access group to which the user belongs.

password - the password of die primary access group corresponding to the user.

Result: File Server port - an IPC port for communication with the File Server.

Name Server port - an IPC port for all communication with the Name Server.

Authentication Server port -an IPC port for all further communication with the
Authentication Server.

Completion Code: success - Login successful

failure - User name not recognized or password incorrect

The Login request is used to establish a connection with the CFS. It verifies the authenticity of the user

and creates and returns three ports for further communication: one to the File Server, one to the Name

Server, and one to the Authentication Server. It associates the access group information from the GAF for

die user with these ports so that it is available for access checks when necessary.

Logging off the CFS

RequestCode: Logout

Parameters: none

Result: nothing

Completion Code: success - Logout successful

The Logout request is used to break the connection previously established with the Login request. It is sent

to the Authentication Server port created at login time and causes the connection to be closed down and the

File, Name and Authentication Server ports to be deallocated. When the connection is broken all current

open files are implicitly closed. Files which were open for transactions arc closed with the abort flag set, odiers

are closed normally.

23

3 . 2 . 3 Access group manipulat ion pr imit ives

Changing a primary access group password

RcquestCode: ChangePassword

Parameters: user name - the name of the primary access group whose password is to be altered.

old password- the old password for the access group.

new password - the new password for the access group.

Result: nothing

Completion Code: success - password changed

invalid password - old password incorrectly specified

invalid access group - specified access group does not exist

The ChangePassword request is used to to change the password for a primary access group. The old

password must be supplied as a parameter before the new password may be changed. The System

Administrator, however, need not supply the old password.

Enabling access groups

RcquestCode: EnableAccessGroup

Parameters: access group name • the name of the access group to be enabled.

permanent flag - a flag indicating whether or not the access group should be permanently
enabled.

Result: nothing

Completion Code: success - access group enabled

failure - user is not a member of the access group

The EnableAccessGroup request is used to activate an access group from the list of access groups to which

the user belongs. Only the set of enabled access groups for a connection is used when checking access rights

on a file. If the permanent flag is off, the access group is enabled only for die duration of the connection. If

the permanent flag is on, the access group is enabled across logins, until explicitly disabled by the user.

Disabling an access group

24

RequestCode: DisableAccessGroup

Parameters: access group name - the name of the access group to be disabled.

permanent flag - a flag indicating whctiier or not the access group should be permanently
disabled.

Result: nothing

Completion Code: success - access group disabled

failure - user is not a member of the access group

The DisableAccessGroup request is used to remove an access group from the protection environment of the

requesting user. If the permanent flag is off, the access group is disabled only for the duration of the

connection. If the permanent flag is on, the access group is disabled across logins, until explicitly enabled by

the user.

Creating a new access group

RequestCode: CreateGroup

Parameters: access group name - the name to be given to this group for unique identification.

access group type - primary or secondary

full name (optional) - the full, descriptive name of the access group, used only for
informational purposes

Result: access group ID - the FID of the GAF for the newly created access group.

Completion Code: success - new access group created

duplicate name - an access group whose name is access group name already exists.

access violation - only the System Administrator may create primary access groups

The CreateGroup request is used to create a new access group. The same primitive is used to create both

primary and secondary access groups. However, only the System Administrator may create primary access

groups. The access control list of the newly-created access group gives the creator all Authentication Server

rights and gives no rights to anyone else. If the access group created is a primary access group, its password is

set to null.

Deleting an access group

25

RcquestCode: DeleteGroup

Parameters: access group name - the name of the access group to be deleted

Result: nothing

Completion Code: success - access group deleted

access violation - the user does not have DeleteGroup rights on this access group

nonexistent group - the specified access group does not exist.

The DeleteGroup request is used to delete an access group. Anyone possessing DeleteGroup rights on this

access group is allowed to delete the group. Only the System Administrator may delete primary access

groups.

Renaming an access group

RcquestCode: RenameGroup

Parameters: old name - die current name of the access group

new name - the new name of the access group

Result: nothing

Completion Code: success - access group renamed

access violation - the user does not have DeleteGroup rights on this access group

duplicate name - the new name specified already exists

nonexistent group - the specified access group does not exist.

The user must possess DeleteGroup rights on an access group in order to rename it. The System

Administrator may rename any access group.

Adding members to an access group

RcquestCode: AddToGroup

Parameters: access group; - the name of die secondary access group to be modified.

access group2 - the name of die access group to be added.

Result: nothing

26

Completion Code: success • access group2 made a member of access group7

access violation - the user does not possess AddMember rights on access groupl

redundant addition - access group2 is already a member of access group 1

invalid access group • one of the specified access groups does not exist

The AddToGroup request is used to add a member to a secondary access group. The added member

initially has access group 1 disabled in its GAF. A user must possess AddMember rights on an access group in

order to add members to it.

Removing members from an access group

RequestCode: RemoveFromGroup

Parameters: access groupl • the name of the secondary access group to be modified.

access group2 • the name of the access group to be removed

Result: nothing

Completion Code: success - removal successful

access violation - the user does not possess RemoveMember rights on access groupL

not a member - access group2 is not currendy a member of access groupl

invalid access group - one of the specified access groups does not exist

The RemoveFromGroup request is used to remove members from a secondary access group. Removal of

currendy logged in members takes effect only when they log out or when they perform an action that causes

their flattened access list to be recomputed.

Mapping Access Group Names to IDs

RequestCode: TranslateGroupName

Parameters: access group name - the name of the access group whose ID is desired

Result: access group ID - the ID of access group name

fiill name - the full name of the access group

Completion Code: success - the given name was successfully translated

27

invalid name - the given name does not belong to any access group

Mapping group IDs to names

RequestCode: TranslateGroupID

Parameters: access group ID - the ID of the access group whose name is desired

Result: access group name - the name of the access group whose ID was supplied

full name - the full name of the access group

Completion Code: success - the translation was successful

invalid ID - the given ID does not refer to an existing access group

Listing the members of a secondary access group

RequestCode: ListMembers

Parameters: access group name - name of the secondary access group whose members are to be listed

transitive closure flag - when this flag is set, both direct and indirect members of the access
group are listed. Otherwise only direct members are listed.

list option flag - when set to ID% only access group IDs will be returned in member list,
when set to names, only access group names will be returned; when set to both, a list of
name, ID pairs will be returned

Result: member list - a list of of access groups which are members of this secondary access group.
This may contain both primary and secondary access groups. The format of this result
depends on list option flag

Completion Code: success - the members have been listed

nonexistent group - the secondary access group specified does not exist.

Listing the membership of an access group

RequestCode: ListMembership

Parameters: access group name (optional) - name of the primary or secondary access group whose
membership in secondary access groups is to be listed. If none is specified, this parameter
defaults to the current primary access group.

transitive closure flag - when this flag is set, both direct and direct membership of the
access group is returned. Otherwise only direct membership is returned.

28

list option flag - when set to ID, only access group IDs will be returned in membership list;
when set to names, only access group names will be returned; when set to both, a list of
name, ID pairs will be returned

Result: membership list - die list of access groups of which access group name is a member. This
list will contain only secondary access groups. Each entry in die list is marked enabled or
disabled. The format of this result is determined by list option flag.

Completion Code: success - die membership list has been generated.

nonexistent group - the access group specified does not exist.

3,3 File Server primitives

3 .3 .1 Genera l overview

The primitives provided by the File Server are used to directly modify file characteristics and contents.

When a file is opened, an IPC port is returned by die File Server. This port is used in a manner similar to a

file channel in conventional systems. Requests to read, write or close the file are sent to this port by the user.

The file to be operated upon is thus implicitiy identified by the port on which these requests are received.

Other primitives require an explicit FID parameter to identify the file in question.

As was mentioned in section 2.3.2, it is possible to have IPC ports play the role of FIDs. File Server

primitives will accept IPC port IDs wherever a FID is expected. All such requests will be forwarded to the

process receiving on that port; replies from that process will go direcdy to the requesting user. The File

Server merely plays the role of a middleman, making it appear to die user that he is operating on a file. In the

descriptions of the primitives themselves, no mention is made of the use of IPC ports instead of FIDs — keep

in mind, however, that it is possible to use diem and that the File Server treats them as described above.

Many of the primitives assume the existence of a file input pointer and a file output pointer. These are

logical pointers into the file specifying where the next data unit is to be read from or where the next data unit

is to be written.

3 . 3 . 2 File input and output pr imit ives

Opening a file

RequcstCode: OpenFile

Parameters: FID - die file ID of the file to be opened.

queue request flag - a fiag which determines the action to be taken if die open fails due to
die file being already open in a conflicting mode

29

mode - the mode in which the file is to be opened. This is some combination from the set
read, write, extend, and truncate.

use transactions flag - if true, the file is opened for transactions in the mode specified by
mode.

Result: IPC port - the port to which subsequent I /O request messages for the file should be sent

Completion Code: success - the open was successful

request queued- the file was already open in a conflicting mode and queue request was true.

conflict - the file was already open in a conflicting mode and queue request was false.

access violation - the requesting user tried to open the file in a mode for which he does not
possess rights.

The OpenFile request is used to initialize an existing file for reading and/or writing. If the open request is

successful, an IPC port is generated and returned. This port is then used as die destination port for all

subsequent I/O request messages for the file. The file input and output pointers are set to the first data unit

of the file. The mode parameter must match the access rights granted to some currently enabled access group

by the access control list of the file. The CFS checks to see if the file is already open in a conflicting mode, as

described in section 2.2.4. If a conflict exists, the action taken depends on queue request: when true, die

request is queued and success will be sent by the CFS to the user when the open succeeds (this message is in

addition to the reply message sent immediately). Until then the IPCport cannot be used for any file operation

except CloseFile.

Reading file data

RequestCode: ReadFile

Parameters: data unit count - the number of data units to read from the file starting at the indicated
position.

position (optional) - the data unit position in the file at which to begin the read. If no
position is specified, die file input pointer is used.

Result: data - the data units read from the file. This will never be more than the amount of data
requested by the data unit count but may be less if the read began or extended past the
end of die file or if a hole was encountered.

data length - the actual number of data units read; this will be equal to data unit count
unless a hole or end of file is encountered.

hole length - the length of the hole skipped after reading data.

Completion Code: success - read was successful

30

EOF- the file was positioned at the end of the file at the start of the read

nonexistent data - the file was positioned at or within a hole at the start of the read.

• file not open - the file is not yet open

mode violation - this file has not been opened for read

transaction violation - the file is open for transactions but the data to be read is not within
the pages reserved by this transaction

The ReadFile request reads the file associated with the port receiving die request and returns die requested

data units. In the most general case, a read consists of reading data followed by a hole. The file input pointer

is updated to point to the data unit following the last data unit read, or the end of the hole if one was

encountered. The port must have been opened for read when it was created. If the file was opened for

transactions, the read may only be performed within a transaction. The EOF and nonexistent data

completion codes are returned only if the file was positioned at the end of a file or within a hole at the

beginning of the read operation. In other cases the user must use data length and hole length to check

whether a hole or the end of file was encountered during the read.

Writing a file

RequestCode: WriteFile

Parameters: data - the data to be written to the file starting at the indicated position.

position (optional) - the position (expressed in number of data units) in the file at which
to begin die write. If no position is specified, the file output pointer is used.

Result: nothing

Completion Code: success - the data was successfully written

file not open - this file is not yet open

mode violation - the file is not open for modification, or it was not open for extend and the
write would have extended die file.

transaction violation - the file is open for transactions and some of the data written would
have been on pages not reserved for this transaction.

The WriteFile request writes data to the file associated with the port receiving the request. The file output

pointer is updated to point to the data unit following the last data unit written. rlTie port must have been

opened for write to overwrite data which currently exists and for extend to wTite new data past die current

end of file. If the file was opened for transactions, diis operation may only be performed within a transaction.

31

Positioning file pointers

RequcstCode:

Parameters:

Result:

PositionFile

input offset - the signed offset, expressed in data units at which to position the file input
pointer. The offset is expressed with respect to a base defined by the next parameter.

input offset base - specifies the base with respect to which the input offset is specified. A
value of start signifies that the offset is with respect to the beginning of the file, current
signifies that is is with respect to the current posidon, and end signifies that it is with
respect to the end of the file.

output offset - the offset, expressed in data units, at which to posidon the file output
pointer. The offset is expressed with respect to a base defined by die next parameter.

output offset base - similar to input offset base

new input pointer- absolute value of new posidon of input pointer.

new output pointer- absolute value of new posidon of output pointer.

Completion Code: success - the resultant pointers are within the current bounds of the file. The output
pointer may be set to a point beyond the end of the file provided the file has been opened
for extend.

failure - one or both pointers were set to a value outside the current bounds of the file.
This code is also returned if the file was not open for read and an attempt was made to set
the input pointer, or if the file was not open for write or extend and an attempt was made
to set the output pointer. The pointers are not altered.

file not open - the file is not yet open

The PositionFile request updates the file I /O pointers for the file associated with the port receiving the

request. The port must have been opened for write, or extend to position the output pointer, and read to

position the input pointer. The resultant input pointer should always be within the current bounds of the file.

If the file is opened for extend the output pointer may be set to a position beyond the end of the file;

otherwise it too must be set to a position within the current limits of the file.

Truncating a file

RequestCode: TruncateFile

Parameters: new length (optional) - the new size of the file, in data units. If not specified the current
position of die file output pointer will be taken as the new end of the file.

Result: nothing

Completion Code: success - the file has been truncated to the desired size.

32

invalid limit - the new value specified is beyond the current end of the file.

access violation - the file is not open for truncate

file not open - the file is not yet open

The TruncateFile primitive is used to truncate a file. The file must have been opened to permit truncate.

The new size of the file may be explicitly specified or inferred by the File Server to be the current output

pointer position. The resulting size of the file should be less than or equal to the current size.

Specifying a transaction

RcquestCode: StartTrans

Parameters: page list - the list of page range, mode pairs to be in the transaction. Each page range will
be set to permit operations of the type specified in the corresponding mode.

queue request flag - a flag which determines the action to be taken by the CFS when one or
more of the pages requested is already in use, in a conflicting mode.

Result: transaction ID • the ID of a newly created transaction.

Completion Code: success - transaction was initiated.

request queued- some of the specified pages were being used by another transaction in a
conflicting mode; this request has been queued.

conflict - some of the specified pages were being used by another transaction in a
conflicting mode; this request has not been queued.

mode violation • the file was not opened to permit one of die modes specified in page list,

file not open - the file is not yet open

The StartTrans request is used to initiate a transaction on the file associated with the port receiving the

request. Page list is a list of pairs of the form (pj:qr m}), (p^q2 m^ ... where the p s and qs represent the

starting and ending page numbers of a page range and the m s represent the mode in which the corresponding

page range will be used. Ranges must not overlap, each p must be less than or equal to the corresponding <?,

and all the p's and qs must be less than maximum number of pages of the file, unless the corresponding m

contains extend. A value of END for a q means "the rest of the file". This is particularly useful for

extend transactions. No other currendy existing transaction on the same file may overlap any of the pages in

page list in a conflicting mode. The action taken by the CFS in case such a conflict exists, depends on queue

request. If true, die request is queued. When the pages are available a message indicating success is sent to this

user; this message is in addition to the reply message sent immediately.

33

Augmenting a transaction

RcquestCode: A ugmentTrans

Parameters: page list - the list of page range, mode pairs to be added to the transaction. Each page
range will be added to permit operations of the type specified in the corresponding mode.

queue request flag - a flag which determines the action to be taken by the CFS when one
or more of the pages requested is already in use, in a conflicting mode.

transaction ID - the ID of the transaction to be augmented

Result: nothing

Completion Code: success - specified pages were added to the transaction in the requested modes

request queued- some of the specified pages were being used by another transaction in a
conflicting mode; this request has been queued.

conflict - some of the specified pages were being used by another transaction in a
conflicting mode; this request has not been queued.

mode violation - the file was not opened to permit one of the modes specified in page list,

nonexistent transaction - the specified transaction ID is invalid.

file not open - the file is not yet open

The AugmentTrans request is used to add pages to a transaction on die file associated with the port

receiving the request. Page list is a list of pairs of the form (pf.qr m J, (p^q? mj, ... where the ps and qs

represent the starting and ending page numbers of a page range and die m's represent the mode in which the

corresponding page range will be used. Ranges must not overlap, each p must be less than the corresponding

q, and all die ps and qs must be less than maximum number of pages of the file, unless the corresponding m

contains extend. No other currendy existing transaction on the same file may overlap any of die pages in page

list in a conflicting mode. The action taken by the CFS in case such a conflict exists, depends on queue

request. If true, the request is queued. When the pages are available, they are marked as being in use by this

user and a reply indicating dieir availability is sent to this user. This is in addition to the reply message sent

immediately.

Terminating a transaction

RequestCodc: EndTrans

Parameters: transaction ID - die transaction ID of the transaction to be completed.

abort flag - a flag indicating whether or not the changes made within die transaction
should be aborted.

34

Result: nothing

Completion Code: success - the specified transaction was successfully ended

nonexistent transaction • the specified transaction ID is invalid.

The EndTvans request is used to completed transaction on the file associated with the port receiving the

request. The transaction to be terminated is indicated by the transaction ID. If die abort flag is off, and if the

file was modified, the transaction count of die file is incremented and all of die changes made within the

transaction are indivisibly performed on the file. If the abort flag is on, then die transaction is aborted and

none of the changes made within the transaction are actually made on the file.

Closing a file

RequestCode: CloseFile

Parameters: abort flag - a flag indicating whether or not the I/O associated with the file should be
aborted.

Result: file modification date - indicating the modification date stored by the CFS in the file
header.

Completion Code: success - always

The CloseFile request is used to release the open file channel associated with die port receiving the request

and deallocate the port. It implicidy completes all uncompleted transactions active for the file port. If the file

was in the process of being created, it is made available for access through the File Server. When the abort

flag is on, any uncompleted transactions for the port are instead aborted without any changes to the file and, if

the file was being newly created, it is deallocated and discarded without becoming part of the CFS. The file

modification date is returned primarily for use by local file systems, which require it to ensure consistency of

local copies of files.

Creating a new file

RequestCode: CreateFile

Parameters: storage characteristics - the class of storage in which the file should be recorded. This is
either standard \f the file should be stored in standard storage or stable if the file should be
stored in stable storage.

data characteristics - one of universal text, 8-bit binary, 16-bit binary, 32-bit binary or 36-
bit binary.

mutability - the file class to which the file belongs. This is either variant or invariant.

35

advisory file type (optional) - the file type to be assigned to the file.

print name (optional) - a name to be recorded for the file in its file header. This name may
also be set by the Name Server when the file is entered into a directory if no name has yet
been specified. When the file will never be entered in any directory, this name may be
useful in recording its identity.

archit size (optional) - the size of the archival unit expressed in pages. If absent, a suitable
default is chosen by die File Server.

Result: IPC port - a port opened for read, write, truncate and extend to which all subsequent file
I/O requests should be sent.

FID - the file ID of the newly created file. This FID may be stored by die user process but
will not be recognized by the File Server until the file port is closed.

Completion Code: success - always

The CreateFile request is used to create a file on the CFS. It allocates a file header and file ID for a new file

and initializes the header as follows. The file properties and print name arc set according to the parameters.

The file size and transaction count are zeroed. The advisory semaphore information is cleared and the local

file system block and storage map are initialized empty. The access, creation and modification dates are set to

the current date and time. The author ID is filled in with the user ID and an access control list is supplied

which grants all permissions to the primary access group and none to anyone else. An IPC port for writing the

file is generated and returned. If a file is an invariant file, this is the only time that it will be possible to write

data to it.

3 .3 .3 File header manipulat ion pr imit ives

Reading the file header

RequestCode: GetHeader

Parameters: FID - the file ID of the header to be read

field mask-a bit vector describing the fields of the header to be returned. Bit n
corresponds to field n of the header (see appendix I). If the corresponding bit of the field
mask is on, that field of the header is returned.

Result: header fields -each field of the file header specified by the field mask is returned. The
fields are returned in numeric order and each is typed as to its contents.

Completion Code: success - requested fields have been returned

invalid FID - die FID specified does not refer to an existing file

36

access violation - the enabled access groups do not possess access rights to read the file
header.

The GetHeader request reads the file header and returns the specified fields. It requires ReadHeader

permission on the file.

Changing the file header

RequestCode: SetHeader

Parameters: FID - the file ID of the header to be changed.

field mask - a bit vector specifying the fields of the header to be changed (as in the
GetHeader request).

Result:

fields - the new values for the specified fields of the header.

header modification date - the date entered by the File Server into the corresponding file
header field. This value is used by local file systems for synchronizing local copies of file
headers.

Completion Code: success - the requested fields have been modified

invalid FID - the specified FID does not refer to an existing file.

access violation - the enabled access groups do not possess rights to modify die file header

The SetHeader request is used to update particular fields of the file header. It requires WriteHeader access

permission in die access control list of the file. Only certain fields of the file header may be changed with this

request (see appendix I).

Reading the access control list

RequestCode: GetAccess

Parameters: FID - the file ID of the access control list to be read.

sys/aux flag - if set to sys the system access control list for the file is retrieved; if set to aux
the auxiliary access control list is retrieved; both causes both lists to be retrieved

Result: access control list - the access control list of die file. If sys/aux flag is set to sys or aux, a
list of two-tuples consisting of access group ID, access rights pairs is returned. If the
sys/aux flag specifics both lists, a list of dircc-tuplcs consisting of access group ID, system
rights and auxiliary rights is returned.

Completion Code: success - die access control list was successfully read.

37

invalid FID - the FID specified does not refer to an existing file

access violation - the enabled access groups do not possess rights to read die specified
access control list of this file. GetSysAccess rights are needed to read the system access
control list and GetAuxAccess rights are needed to read the auxiliary access control list.

Changing the access control list

RequestCode: SetAccess

Parameters: FID - the file ID of the access control list to be updated.

sys/aux flag - if set to sys the system access control list is modified; if set to aux the
auxiliary access control list is modified; both causes both access control lists to be modified

rights list - the new access rights for the corresponding access group(s). If sys/aux flag is
set to sys or aux, this consists of a list of access group, access rights pairs. If the flag is set
to specify both system and auxiliary rights, this list consists of a set of three-tuples
corresponding to access group IDs, system rights and auxiliary rights.

Result: nothing

Completion Code: success - the access control list was successfully modified

invalid FID - the FID specified does not refer to an existing file.

access violation - the user does not possess sufficient rights to modify the specified access
control list of this file. SetSysAccess rights are needed to set the system access control list
and SetAuxAccess rights are needed to set the auxiliary access control list.

The SetAccess request is used to update the access rights for one or more access groups in the access control

list of a file. If the access rights are null, the access group is completely removed from the access control list of

the file. If die access rights are non-null and the access group is already on the access control list, the new

rights arc substituted for the old rights. If the access rights are non-null and the access group is not currendy

on the access control list, the access group is added to the access control list widi the specified access rights.

Checking access on a file

RequestCode: CheckAccess

Parameters: FID - the FID of the file to be checked

access group list (optional) - the list of IDs of the access groups whose rights are to
merged for the purposes of this check. If absent, the set of currendy enabled access
groups is used.

Result: rights mask - a bit mask corresponding to system and auxiliary rights.

38

Completion Code: success - the rights list for the specified access groups on the file have been returned

invalid FID - the specified FID does not belong to an existing file

access violation - the set of currentiy enabled access groups does not have Get Access
privileges on this file

The CheckAccess primitive is used to check the access that any arbitrary collection, of access groups have on

a file. The Get Access privilege is needed to perform this check unless the access groups being checked are the

currentiy enabled ones.

3 . 3 . 4 Miscel laneous pr imit ives

Setting the Advisory Semaphore

RequestCode: SetSem

Parameters: FID - the ID of the file whose semaphore is to be set

timeout period - the length of time after which the CFS should automatically reset the
semaphore if it is not explicitly reset.

Result: current holder - the ID of the user who has the semaphore set.

expiration time - the time at which the semaphore will time out

Completion Code: success - the semaphore was originally clear and was set by this call

failure - the semaphore was already set.

invalid FID - the FID specified does not refer to an existing file.

access violation - the currentiy enabled access groups do not have read access on the file.

The Advisory Semaphore on the file is set. If the semaphore is already set, the semaphore expiration time

and the ID of the user who currentiy has it set are returned. The semaphore will automatically be reset if it is

not explicitly reset within the time period specified. The user must possess read rights to the file.

Resetting the Advisory Semaphore

RequestCode: ResetSem

Parameters: FID - the ID of the file whose Advisory Semaphore is to be reset.

Result: nothing

39

Completion Code: success - the semaphore has been reset

failure - the requesting user did not have the semaphore set

invalid FID • the specified FID does not refer to an existing file.

access violation - the currendy enabled access groups do not have read rights on the file

The ResetSem request is used to reset the semaphore associated with the specified file. Only the user who

set the semaphore may reset it.

Purging file storage

RequestCode: PurgeFile

Parameters: FID - the file ID of the file to be purged.

Result: nothing

Completion Code: success - the file was successfully purged

invalid FID - the FID specified does not refer to an existing file

access violation - the enabled access groups do not possess the right to purge die file.

The PurgeFile request is used to completely purge a file from the CFS file storage facility. It requires purge

permission in the access control list of the file. This request completely destroys the file and deallocates its file

header and storage map. It is intended primarily for use in destroying sensitive files and should rarely be

used. Once purged, a file cannot be recovered even from archive. If a file is purged while users have it open,

an abort will be sent to the open file ports.

3.4 Name Server primitives

3 .4 .1 Genera l overview

The Name Server provides primitives to map names to their entry values, to create and delete directories,

and to control access to directories.

The directory structure has already been described in detail earlier. To recapitulate, a pathname consists of

a sequence of zero or more directory names separated by *>' characters followed by a terminal name. The

pathname is interpreted to begin at the root of the directory hierarchy if it begins widi a character, and

from the current directory otherwise. ITie version number of a name consists of a character followed by

some sequence of digits. The version number defaults to die highest existing version number when none is

40

explicitly specified in the name. A version number of 0 is taken to mean the oldest existing version. Note that

this defaulting of version is done by only three primitives: LookUpName, EnterName and CreateDir. All

other primitives require explicit version numbers. A pathname which terminates in a non-leaf node identifies

a directory.

Entry names accepted by the Name Server may be of arbitrary length and may contain any printable ASCII

characters other than '*', '<\ '>', and T . Two primitives, ScanNames and ScanArchivedNames permit

wildcarding in the terminal component of die pathnames that they accept as input. Two forms of wildcarding

are recognized. A T character in a name will match exactly one arbitrary ASCII character. A represents

an arbitrary number of ASCII characters. Both forms of wildcarding may be used within one name.

3 .4 .2 Name manipulat ion pr imit ives

Looking up names

RequestCode: LookUpName

Parameters: pathname - the name to be looked up (may not contain wildcard characters)

Result: entry value - the value and the full pathname of the corresponding entry.

Completion Code: success - the name was successfully looked up.

not found- the specified name was not found.

directory • pathname refers to a directory; Result is undefined.

access violation - the user does not have Lookup rights on the directory in which the
lookup was attempted

This function provides a simple way to look up a name. If any entry value encountered during the parsing

of pathname is of type Symbolic Link, a macro expansion is performed using the value of that entry in place of

the corresponding name in pathname. If the final result is of type FID or IPC Port, the corresponding FID or

IPC port is returned. If it is of type Directory no result is returned, but Completion Code specifies the fact that

a lookup on a directory name was attempted. If pathname does not contain a version number, the most

recent version is assumed. If a version number of 0 is specified, the oldest version is assumed.

Scanning names

RequestCode: ScanNames

Parameters: pathname - die patimame to be looked up (may contain wildcard characters in the terminal
component).

41

name status - whether active names, deleted names or both are to be considered

previous name (optional) - the final name returned from the last call to ScanNames (see
explanation below).

name count (optional) - the maximum number of name, entry value pairs to return.

Result: entry value list - the fully expanded names and entry values of the next set of names in the
directory hierarchy which match pathname.

actual name count - the actual number of name, entry value pairs returned.

Completion Code: success - the given pathname was successfully scanned

access violation - the user does not possess LookUp rights on the directory to be scanned

illegal pathname - wildcards were found in pathname at other dian the terminal component

The ScanNames request is used to map name expressions to entry values. This primitive differs from mere

iteration on LookUpName in that, the latter expands Symbolic Links in the terminal component of pathname

whereas ScanNames does not The directory hierarchy is searched for file names matching the given name.

Depending on the value of name status, only active names, deleted names or botii are considered. If more

than one name matches because wildcard characters were included in the name then all are returned up to the

limit specified in the request. If no limit is specified, infinity is assumed. The actual number of names listed

is returned in actual name count. ScanNames behaves as a generator of names matching the specifications. If

previous name is specified, generation continues after that name. Otherwise generation begins at die very first

matching name. If no version number is specified, then die highest existing version of the name is returned.

If the version number is wildcarded, dien all existing versions of the name are returned. Note that

wildcarding is permitted only in the terminal component of pathname. Names corresponding to directories

will be returned with type directory but will have undefined values.

Entering a name in a directory

RequestCode: EnterName

Parameters: pathname - the name to be entered into the directory structure (no wildcards).

FID - the file ID to be entered widi the name

or

IPC port - the IPC port to be entered with die name

or

symbolic link - the symbolic link to be entered.

42

or

UserDefined type value - an arbitrary integer value

or

directory name - the name of a directory to be entered

Result: new name - the full pathname, including version number, actually entered.

Completion Code: success - pathname was successfully entered

conflicting version - the version number specified in pathname is less than or equal to that
of an already existing version

access violation - the user does not possess CreateName rights in the directory in which the
name is to be entered (i.e., in the penultimate component of pathname). If a version of the
same name already exists and corresponds to an invariant file, the user must also possess
Write privileges on the file.

The EnterName request is used to place a name and entry value pair in the directory structure. It requires

CreateName permission in the directory within which the name is being entered. If an existing version of the

name corresponds to an invariant file, Write privileges on the file are needed. If a previous version of the

name already exists in the directory and no version number is specified in pathname, the name is entered with

the next higher version number. If a previous version of the name already exists and a version number is

specified in the name, then it must be greater than the highest version number so far. If no previous version

of the name has ever existed, then version one is assigned if none is specified in pathname, otherwise the

specified version is used.

Removing a name from a directory

RequestCode: DeleteName

Parameters: pathname - the name to be deleted.

Result: nothing

Completion Code: success - the name was successfully deleted

nonexistent name - the name specified does not exist

access violation - the user docs not possess DeleteName rights on die directory from which
the name is to be deleted.

The DeleteName request is used to delete a name from a directory. It requires DeleteName permission in

the directory. The name is marked as deleted, but remains in die directory.

43

Restoring a deleted name

RequestCode: UndeleteName

Parameters: pathname - the name to be undeleted.

Result: nothing

Completion Code: success - the name was successfully deleted

nonexistent name - the name specified does not exist

access violation - the user does not possess DeleteName rights on die directory from which
the name is to be restored.

The UndeleteName request is used to restore a deleted name. It requires DeleteName permission on the

directory in which the entry resides.

Expunging deleted names

RequestCode: ExpungeNames

Parameters: pathname - name of the directory from which files are to be expunged.

entry names (optional) - the names of the entries to be expunged from pathname.

Result: nothing

Completion Code: success - the expunge was successful

not deleted - some of the names specified were not deleted names in the directory. No
expunging is done.

access violation - the user does not possess DeleteName rights on the directory from which
die name is to be deleted.

The specified names are expunged from the directory. If no names are specified, all deleted names are

expunged. The only way to ircover the expunged name-FID associations is via the Name Archive. The user

must possess DeleteName permission in the directory for this operation to succeed.

Retrieving archived names

RequestCode: Scan A rchivedNames

Parameters: pathname - the name to be scanned for; may be wildcarded

start lime - a date and time which determines the maximum age of the names scanned;

44

here "age" is determined by the date of entry in the directory whose name archive is being
scanned

end time - a date and time which determines the minimum age of the names scanned; here
"age" is determined by the date of entry in the directory whose name archive is being
scanned

name count (optional) - the maximum number of name, entry value pairs to be returned.
If this parameter is not specified, infinity is assumed.

Result: entry value list - a list of the names, entry values and creation entry dates corresponding to
pathname between start time and end time

actual name count - the actual number of name, entry value pairs returned.

Completion Code: success - the entry values were successfully retrieved

access violation - the user does not possess Lookup rights the directory whose name archive
is being scanned

Retrieves the entry values corresponding to the given name between the specified dates and times. The

user must possess Lookup rights on the directory whose name archive is begin scanned.

3 .4 .3 Directory manipulat ion pr imit ives

Creating a directory

RequestCode: CreateDir

Parameters: pathname - the name of the directory to be created.

Result: nothing

Completion Code: success - the directory was created

access violation - the enabled access groups do not have CreateDir permission in the parent
of the directory to be created.

invalid name - one of die directories in pathname does not exist.

conflicting version - the version number specified in pathname is less than or equal to that
of an existing version of the name.

The CreateDir request is used to add new directories to the directory hierarchy. It requires

CreateName permission in the parent of the directory to be created. The directory is created widi die access

control list and default access control list both copied from the parent directory. In addition, the creator is

given SetDirAccess rights on the directory. An empty Name Archive is also created for this directory.

45

Reading the directory access control list

RequestCode: GetDirAccess

Parameters: directory name - the name of the directory whose access control list is to be read.

access control list - the access control list of the directory.

Result: nothing

Completion Code: success - the access control list is returned

invalid name - directory name does not refer to a directory, or one of the directories
specified in the pathname is nonexistent

access violation - the enabled access groups do not have GetDir Access rights on the
directory.

The GetDirAccess request is used to retrieve the access control list associated widi a directory. It requires

GetDir Access permission in the directory whose access control list is being read.

Changing the directory access control list

RequestCode: SetDirAccess

Parameters: directory name - the name of the directory whose access control list is to be updated.

rights list - the list of access ID, access rights pairs to be added to the access control list

Result: nothing

Completion Code: success - the access control list was successfully modified

invalid name - directory name either does not exist or does not refer to a directory

access violation - the user does not possess SetDirAccess on die directory

The SetDirAccess request is used to update the access rights for one or more access groups in the access

control list of a directory. It requires SetDirAccess permission in the directory whose access control list is

being changed. If the access rights are null, the access group is completely removed from the access control

list of the file. If the access rights are non-null and die access group is already on the access control list, the

new rights are substituted for the old rights. If die access rights are non-null and die access group is not

curremly on the access control list, the access group is added to the access control list with the specified access

rights. The directory access rights arc specified in sccdon 2.3.4.

46

Checking access to a directory

RequestCode: CheckDirAccess

Parameters: directory name - the name of the directory to be checked

access group list (optional) - the list of IDs of the access groups whose rights are to
merged for the purposes of this check. If absent, the set of currentiy enabled access
groups is used.

Result: rights mask - a bit mask specifying some subset of die directory access rights

Completion Code: success - the rights list for the specified access groups on the directory has been returned

invalid directory name - the specified name does not belong to an existing directory

access violation - the set of currentiy enabled access groups does not have GetDir Access
privileges on this directory

The CheckDir Access primitive is used to check the access that any arbitrary collection of access groups have

on a directory. The GetDirAccess privilege is needed to perform this check.

Reading the default access control list

RequestCode: GetDefAccess

Parameters: directory name - the name of the directory whose default access control list is to be read.

sys/aux flag - if set to sys the default system access control list is retrieved; if set to aux the
default auxiliary access control list is retrieved; both causes both lists to be retrieved.

Result: access control list - the default access control list of the directory. If the sys/aux flag is set
to sys or aux, this consists of a list of access group, access rights pairs. If the flag is set to
both, this list consists of a set of three-tuples corresponding to access group IDs, system
rights and auxiliary rights.

Completion Code: success - the access control list was successfully returned

invalid name - directory name either does not exist or does not refer to a directory

access violation - the enabled access groups do not possess Lookup on the directory

The GetDef Access request is used to retrieve the default access control list associated with a directory. It

requires GetDef Access permission in the directory whose default access control list is being read.

Changing the directory access control list

RequestCode: SetDefAccess

47

Parameters: directory name - the name of the directory whose default access control list is to be
updated.

sys/aux flag - if set to sys the default system access control list is modified; if set to aux the
default auxiliary access control list is modified; both causes both lists to be modified.

rights list - the new access rights for the corresponding access group(s). If the sys/aux flag
is set to sys or aux, this consists of a list of access group, access rights pairs. If the flag is
set to both, diis list consists of a set of three-tuples corresponding to access group IDs,
system rights and auxiliary rights.

Result: nothing

Completion Code: success • the access control list was successfully modified

invalid name - directory name either does not exist or does not refer to a directory

access violation - the enabled access groups do not possess SetDefAccess rights on the
directory

The SetDef Access request is used to update the access rights for one or more access groups in the default

access control list of a directory. It requires SetDef Access permission in the directory whose default access

control list is being changed. If die access rights are zero, the access group is completely removed from the

default access control list of the directory. If the access rights are non-zero and the access group is already on

the access control list, the new rights are substituted for the old rights. If die access rights are non-zero and

the access group is not currently on die access control list, the access group is added to the access control list

with the specified access rights.

Checking default access on a directory

RequestCode: CheckDefAccess

Parameters: directory name • the name of the directory to be checked

access group list (optional) - the list of IDs of the access groups whose rights are to
merged for die purposes of this check. If absent, the set of currendy enabled access
groups is used.

Result: rights mask - a bit mask specifying some subset of the file access rights

Completion Code: success - the default rights list for the specified access groups on the directory have been
returned

invalid directory* - die specified name does not belong to an existing directory

access violation - the set of currently enabled access groups docs not have GetDefAccess
privileges on diis directory

48

The CheckDefAccess primitive is used to check the default access that any arbitrary collection of access

groups has on a directory. The GetDefAccess privilege is needed to perform this check.

Changing the current directory

RequestCode: ChangeDir

Parameters: directory name - the name of the directory to be used as the new current directory for all
names searches.

Result: nothing

Completion Code: success

The ChangeDir request is used to change the name of the directory used as the ctirrent directory for the

connection.

49

Acknowledgements

The 'authors wish to acknowledge the contributions of Rick Rashid and Gene Ball, who took part in a

number of the design meetings and critiqued the final design. They also wish to express their appreciation to

the members of the Department of Computer Science, in general, and the members of the Spice group, in

particular, for their comments on the design and on this document.

50

51

I. File header fields

The following table specifies the fields of the file header and indicates which of them may be explicitly or

implicidy altered. The four primitives SetHeader, SetAccess, CreateFile, SetSem and ResetSem allow a user

to cxplicity alter certain fields. Certain other fields are implicidy set by the primitives CreateFile, OpenFile,

CloseFile, EndTrans, SetHeader, SetAccess and EnterName.

SetHeader SetAccess CreateFile Set/Reset Sem Implicit

File ID
1

File Properties:
Mutability X

Storage Characteristics X
Data Characteristics X

Advisory File Type X X

File Size 1 . 3 , 4

Archit Size X 1

Author ID 1

Creation Date
1

Data Access Date
1,2

Data Mod. Date 1 , 3 , 4

Header Mod. Date 1,3,4,6,7

Aivisory Semaphore X

Sem. Expiration Time X

File print name X X 5

Transaction count 1,4

Access control list X 1.5

Local file system info. X
Storage Map 1 , 3 , 4

Legend for Implicit

1. CreateFile

1 OpenFile

3. CloseFile

4. EnaTrans

5. EnterName

6. SetHeader

7. SetAccess

52

53

II. Storage Map Format

The storage map consists of a list of archit descriptors. Each such descriptor contains the following fields:

• Starting page number

• Length of archit in pages

• Date and time archit was last modified

• Date and time archit was last accessed

• Date and time archit was last archived

• Pointer to secondary storage copy of archit; the pointer is typed to indicate whether it points to a
contiguous set of physical pages or to a non-condguous set of physical pages via a page table.

• Pointer to tertiary storage copy of archit: the pointer is typed to indicate whether it points to a
contiguous set of physical pages or to a non-contiguous set of physical pages via a page table.

The file header itself is the very first archit in the file; archival information about the header is found in this

archit

54

III. Page Size Table

Data Type

8-bit binary

16-bit binary

32-bit binary

36-bit binary

Universal text

No. of Data Units per page

512

256

128

102

V.

56

57

IV. Format of theGAF

For every access group

Access Group Name

Full Name

Access Group ID

Group Type

Password

Direct Members List

Direct Membership List

in the system there is one GAF file containing the following information:

a unique name that identifies this access group. For primary access groups this is
the login name of the corresponding user.

the full descriptive name of the access group. For primary access groups this will
be the full name of the corresponding user; consequently it may not be unique.

a unique integer that identifies this access group. Used instead of Access Group
Name wherever a fixed length identification is needed for the access group, such
as in the access control list of files. The FID of the GAF is used as the access
group ID in die current implementation.

(Primary/Secondary)

For primary access groups this is the login password. Not present for secondary
access groups.

the list of direct (i.e., without applying transitive closure) members of this access
group

the list of access groups of which this access group is a direct member; the entry
for each such access group in this list is flagged Enabled or Disabled

58

59

V. Summary of Primitives

The following is a summary of the primitives provided by the CFS. Optional parameters are underlined.

Alternatives for a given parameter are enclosed within curly brackets; only one of these alternatives may be

selected. The page on which the primitive is fully described appears within square brackets.

Authentication Server Primitives

[22;

[22;

[23

[23;

[23

[24;

[24;

[25

[25

[26

[26;

[27

[27

[27

Fi

[28;

[29;

[30;

[31

[31

Login (user name, password) => (File Server port, Name Server port, Authentication Server port)

Logout ()•=*()

ClmngePasswordf user name, old password, new password)=>()

EnableAccessGroup (access group name, permanent flag) => ()

DisableAccessGroup (access group name, permanent flag) ()

CreateGroup (access group name, access group type, full name) => (access group ID)

DeleteGroup (access group name) => ()

RenameGroup (old name, new name) => ()

AddJoGroup(access groupr access group2) => ()

RemoveFromGroup (access groupJt access group2)=> ()

TranslateGroupName (access group name) => (access group ID, full name)

TranslateGroupID (access group ID)^ (access group name, full name)

ListMembers (access group name, transitive closure flag, list option flag)=> (member list)

ListMembership (access zrouv name, transitive closure flag list option flag) (membership st)

e Server Primitives

OpenFile (FID, queue request flag mode, use transactions flag) => (IPC port)

ReadFile (data unit count, position) =* (data, data length, hole length)

Write File (data, position) ==» ()

PositionFile (input offset, input offset base, output offset, output offset base) => (new input
pointer, new output pointer)

TruncateFile (new lenzth) => ()

60

[32] StartTrans(page list, queue request flag) => (transaction ID)

[33] AugmentTrans (page list, queue request flag transaction №)==> ()

[33] EndTrans(transaction ID, abort flag)=* ()

[34] CloseFile (abort flag) =» (file modification date)

[34] CreateFile (storage characteristics, data characteristics, mutability, advisor\> file type, print
name, arch it size) => (IPC port, FID)

[35] GetHeader(FIDf field mask)=>(header fields)

[36] SetHeader(FID, field mask, fields) ==> (header modification date)

[36] Get Access (FID, sys/aux flag) =* (access control list)

[37] SetAccess(FID, sys/aux flag, rights list)=> ()

[37] CheckAccess (FID, access zrouv list) => (rights mask)

[38] SetSem (FID, timeout period) => (current holder, expiration time)

[38] ResetSem(FID)=*()

[39] PurgeFile(FID)=*()

Name Server Primitives

[40] LookUpName (pathname) =* (entry value)

[40] ScanNames (pathname, name status, previous name, name count) => (entry value list, actual name
count)

[41] EnterName (pathname, {FID, IPC port, symbolic link, UserDefined type value, directory name})=> (new
name)

[42] DeleteNarne (pathname) => ()

[43] UndeleteName (pathname) => ()

[43] ExpungeNames (pathname, entry names) => ()

[43] ScanArchivedNames (pathname, start time, end time, name count)=> (entry value list, actual name
count)

[44] CreateDir(pathname) => ()

[45] GetDirAccess (directory name, access control list) => ()

[45] SetDirAccess (directory name, rights list) =» ()

[46] CheckDirAccess (directory name, access zrouv list) => (rights mask)

[46] GetDefAccess (directory name, sys/auxflag) => (access control list)

[46] SetDefAccess (directory name, sys/auxflag rights list) => ()

[47] CheckDefAccess (directory name, access zrouv list) => (rights mask)

[48] ChangeDir(directory name) =» ()

62

<

63

References

[1] Almes, G. and Robertson, G.
An Extensible File System for Hydra.
In Proceedings of the 3rd International Conference on Software Engineering. IEEE, May, 1978.

[2] DECSystemlO Technical Summary
Digital Equipment Corp., Maynard, Mass., 1977.

[3] VAX-11 Architecture Handbook
Digital Equipment Corp., Maynard, Mass., 1979.

[4] PDP-11 Processor Handbook
Digital Equipment Corp., Maynard, Mass., 1979.

[5] Gray J.
Notes on Data Base Operating Systems.
Technical Report RJ2188(30001), IBM, February, 1978.

[6] Israel, J., Mitchell, J. and Sturgis, H.
Separating Data from Function in a Distributed File System.
In D. Lanciaux (editor), Proceedings of the Second International Sysmposium on Operating Systems.

IRIA, Rocqencourt, France, October, 1978.

[7] Lampson, B.W.
Atomic Transactions.
In Lecture Notes for the Advanced Course on Distributed Systems - Architecture and Implementation.

Institut fur Informatik Technische Universtat München, Munich, Germany, March, 1980.

[8] Metcalfe, R.M. and Boggs, D.R.
Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications of the ACM 9(7), July, 1976.

[9] Organick, E.I.
The Multics System: an Examination of its Structure.
MIT Press, Cambridge, Mass., 1972.

10] Rashid, R. F.
An Inter-Process Communication Facility for Unix.
Technical Report CMU-CS-80-124, Department of Computer Science, Carnegie-Mellon University,

March, 1980.

Ritchie, D. M. and Thompson, K.
The UNIX Time-Sharing System.
Bell System Technical Journal, July-August, 1978.

department of Computer Science, Carnegie-Mellon University,
roposal for a Joint Effort in Personal Scientific Computing,
igust 1980.

\cker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F. and Boggs, D.R.
: A personal computer.
nical Report CSL-79-11, Xerox Palo Alto Research Center, August, 1979.

file:///cker

64

[14] Thompson, M., Robertson, G., Satyanarayanan, M. and Accetta, M.
Spice File System.
Technical Report, Department of Computer Science, Carnegie-Mellon University, to appear 1980.

[15] White, R.M.
Disk Storage Technology.
Scientific American 243(2), August, 1980.

