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ABSTRACT 

This dissertation demonstrates the implementation and evaluation of parallel algorithms on 

C.mmp, a multiprocessor computer system. Initial attempts to demonstrate the performance of 

a simple parallel algorithm yielded unexpectedly large performance degradations from the 

theoretical calculations. This unexpected result spawned a study of the Cmmp system to 

discover and measure the major sources that perturbed the performance of the parallel 

algorithm. The performance study was conducted at several levels: 

- Basic hardware measurements 

- Runtime performance of Hydra, Cmmp's operating system 

- Overall performance of a particular application: a parallel rootfinding algorithm. 

The results of this study identified six major sources of performance pertubation. The six 
sources, in order of importance, were: 

- Variations in the compute time to perform the repetitive calculation 

- Memory contention caused by finite memory bandwidth 

- The operating system's scheduling processes can become a bottleneck 

- Variations in the individual processor speeds 

- Interrupts associated with I/O device service routines 

- Variations in the individual memory bank speeds. 

The effects that synchronization can have on the performance of a parallel algorithm w e r e 

examined apart from the sources mentioned above. Several alternative synchronization 

primitives were studied. For each, the speed in performing the basic semaphore operations 

as well as the effect on the performance of the rootfinding algorithm were measured. The 

type of semaphore primitive selected to perform the synchronization of the rootfinding 

processes drastically affected the performance of the algorithm, A threshold for the practical 

application of each semaphore was determined from the measurements of the rootfinding 

algorithm. 

This insight into the C.mmp environment was applied toward a more complex application— 

the HARPY speech recognition system. Parallelism was incorporated into the algorithm by 



decomposing the large task into a sequence of computationally smaller sub-tasks. Each 

sub-task was implemented as a collection of indentical cooperating processes. 

Inefficient allocation of work to processes, and synchronization between sub-tasks resulted 

in under utilization of the processors. Performance of the algorithm was improved in three 

subsequent refinements to the initial implementation. The contribution to performance from 

each enhancement was disscused and measured separately. 

The final implementation of HARPY on C.mmp was compared to a version of the algorithm 

developed for a DEC PDP-KL10 uniprocessor. At maximum parallelism, eight processes, the 

C.mmp implementation performed the speech recognition task 302 faster than the 

uniprocessor. 
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1. I n t r o d u c t i o n 

The purpose of this research is to demonstrate how to write parallel programs that 

effectively use the multiple computers in a multiprocessor. Developing strategies for 

incorporating parallelism into algorithms has been an area of intense interest for quite some 

time, e.g., [Avriel and Wilde 66], [Karp and Miranker 68], [Rosenfeld and Driscoll 6 9 ] , [Heller 

7 6 ] , [Thompson and Kung 76] , [Baudet, Brent and Kung 77] and [Baudet 78] . However, until 

v e r y recently, only simulation and analysis techniques were available for demonstrating the 

effectiveness of a parallel algorithm. 

With the emergence of multiprocessor computer systems that provide users with the 

facilities for constructing parallel algorithms, CM* and C.mmp 1, the verification of an 

algorithm's performance is in its implementation. Initial attempts to demonstrate the 

performance of a simple parallel algorithm [Fuller and Oleinick 76] yielded unexpectedly large 

degradations in the algorithm's performance. These degradations were not the result of an 

e r ror or inefficiency in decomposing the problem into cooperating processes. Rather, several 

non-algorithmic sources were determined to be the source of the degradations. This result 

indicates that in order to develop effective parallel algorithms for multiprocessors, it is 

necessary to be aware of the target machine's performance characteristics. 

Presently, the task of writing effective parallel software is an ad-hoc procedure of 

constructing code for a unique machine. Since multiprocessors are almost as different from 

one another as they are from uniprocessors, it is difficult to apply insight gained from writing 

parallel software for one multiprocessor to another machine. However, by documenting the 

performance of various implementations of several algorithms on one machine, we can 

demonstrate the effectiveness of various strategies at capturing parallelism. 

One style of parallel programming for multiprocessors involves tightly coupled cooperating 

processes. Several decomposition strategies exist that use this approach, among them 

pipelining and partitioning [Jones 78} In both cases, simultaneously executing processes 

must interact frequently. Since interprocess communication constitutes an overhead, tightly 

coupled systems exhibit performance degradations proportional to the amount of process 

interaction among the processes. Thus, in order to maintain high performance, one must 

reduce both the overheads of interprocess communication and the amount of process 

interaction. 

1 C.mmp and C M . ar t multiprocessors developed at Carnegie-Mali on University. [Jones 78] , [Fuller 7 8 ] , [Wulf end Bel) 
7 2 ] , [Swan, Fuller, and Siewiorek 77 ] 
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The user has little power to reduce the overhead of interprocess communication. Since 

processes are created and maintained by the operating system, interprocess communication is 

permitted in only a few well defined ways. The user is given a selection of primitives 

provided by the operating system with which he can build his own communication 

mechanisms. However, the performance of the communication mechanism is directly 

influenced by the performance of the operating system's primitive. 

Moreover, writing effective parallel software requires an awareness of more than just the 

overheads involved In interprocess communication. We adopted the following two phase 

strategy for uncovering the major influences on performanc^: 

1. Develop a simple parallel algorithm as a vehicle for conducting a performance 
study on C.mmp. 

2. Use this test program to measure the effects on performance stemming from 
both the hardware and the operating system. 

A brief introduction to the C.mmp environment, both hardware and operating system is 

contained in chapter two. In addition, chapter two contains the development and theoretical 

performance calculations for the simple parallel algorithm. 

The investigation into the sources of performance perturbation is presented in chapter 

three. 

Since synchronization is a fundamental parallel programming issue, chapter four is devoted 

entirely to studying the effects of synchronization on performance. The performance of 

various synchronizaton primitives is conducted at two levels: the speed in performing the 

basic synchronization operations and the impact each primitive has on the performance of the 

rootfinding algorithm. 

In chapter five, we apply the insights gained from the initial investigation toward 

developing complex tightly coupled systems. By decomposing a complex task into a sequence 

of simpler sub-tasks, and then implementing these sub-tasks as task forces[Jones 7 8 ] of 

cooperating processes, we efficiently focus compute power to speed up the execution of the 

task. To demonstrate the effectiveness of this approach we use it to implement a parallel 

version of the Harpy speech recognition system[Lowerre 76]. 

An initial decomposition of the algorithm is successively refined in three implementations. 

In each iteration, some aspect of performance is improved. This incremental enhancement of 

the algorithm enables us to measure the performance improvement contributed by each 

enhancement. 
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Chapter six contains a summary of the measurements and results of this investigation. The 

initial measurements of the multiprocessor and the results to come out of the rootfinder study 

are summarized. The performance of the task force approach to parallel programming is 

evaluated based on the results of the various implementations of the Harpy algorithm. 

Finally, areas for further research are discussed. 
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2 . A n I n t r o d u c t i o n to C . m m p a n d T h e R o o t f i n d i n g A l g o r i t h m 

2.1 An Introduction to C.mmp 

The basic structure of C.mmp, as shown in the PMS diagram of figure 1, is that of the 

canonical multiprocessor. A detailed description of C.mmp is provided in the original article 

on C.mmp by Wulf and Bell [1972], but the following description should provide a sufficient 

background for this investigation. 

C.mmp is organized as a system of 16 central processors (Pc's) that share a centrally 

located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc's are 

completely asynchronous computing elements: 5 are PDP-11/20*s and the remaining 11 are 

PDP- 11 /40 's . They are connected to the shared primary memory through a 16 x 16 

crosspoint switch. The operation of the switch is similar to a 16 port memory in that up to 

16 memory transactions can be performed simultaneously. I/O devices, unlike memory, are 

associated with an individual processor. Thus, for example, an I/O request to a device on 

Pc[0], perhaps a disk, is performed by the requesting Pc by sending an interprocessor 

interrupt to Pc[0] causing initiation of the appropriate I/O interrupt service routine on Pc[0]. 

Hydra is C.mmp's general-purpose multiprogramming operating system [Wulf et aL, 1974; 

Levin et aL, 1975] . It is a collection of basic or kernel mechanisms such as memory 

management, process dispatching, and message passing. Upon this core, an arbitrary number 

of systems created from these mechanisms can co-exist simultaneously. Hydra is organized 

as a set of re-enterant procedures that can be executed by any of the processors. In fact, 

several processors can simultaneously execute the same procedure. This concurrency is 

accomplished by placing locks around the operating system's critical data structures. These 

locks maintain mutual exclusion where necessary. 

2.2 Description of the Rootfinding Algorithm 

The purpose of this study is to present quantitative performance results for implementing 

parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum 

of problems, we have chosen to study various implementations of a single problem in order to 

observe and measure in depth the performance tradeoffs in the implementation process. 

Two criteria that our case study problem had to meet were: the problem must be complex 

enough to have interesting implementation tradeoffs and simple enough to permit the focus of 

attention on implementation issues rather than algorithm issues. The candidate problem we 
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finally selected is the rootfinding task. 

We have chosen to consider this problem not because it particularly well-suited for parallel 

solution, but rather because it is a relatively straight forward task that requires a significant 

amount of inter-process communication. According to Stone[l973], algorithms like the 

rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number 

of processes fall into a class of problems at best considered poor candidates for parallel 

processing. However, the underlying control structure present in this procedure, that of the 

synchronous parallel algorithm, is representative of many parallel decompositions of 

otherwise serial algorithms. For this reason, it is worthwhile to understand the nature of the 

control structure and to study the influences on its performance. 

Specifically, we will consider the problem of finding the root of a monotonically increasing 

function in a bounded region. If we assume no special information about the behavior of the 

function, the best procedure for a uniprocessor under these circumstances is a binary search. 

An obvious decomposition of the binary search into n parallel processes on a multiprocessor 

is to evaluate the function simultaneously at a equidistant points within the bounded region. 

The optimal placement of the n processes on the interval is known [Kung 1976] , but to 

minimize the complexity of the algorithm in order to focus on the synchronous control 

structure, we will use the less than ideal, but good, technique illustrated in figure 2. The n 

parallel processes perform function evaluations at the n points that divide the interval into 

n+ i equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that 

contains the root is the sub-interval with opposite signs for F(x) at its end points. The other 

sub-intervals are discarded and the procedure repeats this basic iteration until one of the 

function evaluations is within €, i.e. an acceptably small interval close to zero, of the 

zero-crossing. 

For the measurements presented here, the function we are evaluating is the normal 

integral: 

F < x ) ' v ^ / x e x P ( - V 2 t 2 ) dt - h (2.1) 

For x < 2.32 the following truncated power series was used to evaluate F(x): 

(2.2) 

and for larger x we used the continued fraction: 

l / ( x + l / ( x+2/( x+3/( « - . . . ) ) ) ) - h (2.3) 

We selected this normal integral because it is an important transcendental function that 

exhibits two characteristics important to our measurement studies: it requires an extensive 

amount of computation, and the type and length of computation are data dependent. 
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In order to evaluate the performance of our implementations of the rootfinding algorithm, 

we first calculate the theoretical, or overhead-free, performance curves. 

The basic cycle in the rootfinder is the independent evaluation of the function by each of 

the cooperating processes and, upon finishing, the communication of each process with the 

other processes by posting the results of its function evaluation. Notice that the new 

interval is not located until all of the processes have posted their results*. When the last 

process finishes its function evaluation, it assumes the jobs of finding the new root-containing 

interval and waking up all of the waiting processes. This basic cycle we call a STAGE. 

Under ideal conditions the cooperating processes in the rootfinder would exhibit the 

execution behavior found in figure 3. Each process performs a function evaluation 

independently. They all finish at the same instant and, after a very brief bookkeeping 

calculation, perform a new F{x) calculation on an interval reduced by l / ( n + l ) . In practice, we 

seldom find this to be the case. The fluctuations in performance stem from sources intrinsic 

to the multiprocessor as well as the rootfinding program. 

*The new interval is located a . .oon as the .ub-int.rvel i . bounded, but a f »m w . have opted for 
straightforward algorithm In order to focus on the implementation issues. 

a more 
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3 . Sources of Performance Fluctuation 

3*1 Introduction 

Three distinct sources of performance fluctuation are: the variation in the amount of 

computation required to perform a function evaluation, the individual hardware elements* 

performance characteristics, and the operating system. We will identify the nature and 

measure the magnitude of each of these sources starting with the variation in the F(x) 

calculation since it is the most straight forward of the three. 

3.2 The Variation in the F(x) Calculation 

The elapsed time to perform a function evaluation is data dependent. The distribution of 

the compute time is shaped approximately Normal as shown is figure 4. The mean is about 

100 milliseconds with almost an equal number of samples on each side of the mean*. Thus, 

we might model the expected finishing time for a process performing an F(x) calculation to be 

a random variable with a Normal distribution. As other functions would have other compute 

time distributions, we derive the theoretical performance for the constant and exponential 

cases also. 

Let the time taken by the i**1 stage in the rootfinding procedure be the random variable Tj. 

Since all of the processes are performing the same calculation, each process executes for a 

random amount of time, t (see figure 5), taken from some distribution. Since all of the 

processes must finish their function evaluations before the new sub-interval is located 

T ± » MAX( t v t 2, t 3, ... , t n ) (3.1) 

From elementary order statistics the expected value of the largest order statistic in random 

samples of n from a parent distribution with continuous strictly increasing cumulative 

distribution function P(x) is 

E< x ( n ) ) = jT« n x C p ( x > f 1 dp(x> <3'2> 

If we know nothing about the distribution of the tj other than the mean a and standard 

deviation the expected value of the largest order statistic Tj, reduces to 

On an 1 1 / 2 0 procasaor 
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This bound can be replaced in the exponential case by the equality 
n-1 

E( T n ) = I ( j ) .J^IL. 
j=0 (j+l) 

For the Normal case we consult Teichroew*s[1956] tables for the expected value of the 
largest order statistic drawn from the N<0,1) distribution. 

When the expected value of the compute time is a constant, equation 3.3 Is replaced by the 

simple equality E(Tj) • a. 

If we are interested in the performance speedups obtained when we put more processes 

to work finding roots, we need to estimate the average time to locate a root as a function of 

the number of processes. Since every iteration in the rootfinding procedure reduces the 

interval of uncertainty, L, by a factor of rt*i it takes Cei/i/ig(Log n < f j L) iterations to locate the 

root in a bounded interval of length L Thus, in our example let Rj denote the number of 

iterations necessary to arrive within * of the root using i processes. For our choice of €, 

R»{54, 34 , 27, 23 , 2 1 , 19, 18, 17, 16, 16, 15, 15,...} iterations. It takes the same number of 

iterations to locate the root using nine and ten or eleven and twelve processes because the 

number of iterations to locate the root must be an integer. Thus, little is to be gained by 

incorporating many processes in the procedure. In this study the maximum number of 

processes we will use is nine. 

We can estimate the runtime of the rootfinder to be the following: 
R n 

Runtime(n) - £ T k « R n * E( T n ) ( 3 . 5 ) 
k=l 

Often we will be interested in the speedup achieved through parallelism. We will use the 

following formula to calculate speedup: 

_ • . , v Runtime (1) 
Speed up (n) - ( 3 < 6 ) 

Figure 6 is a plot of the speedup vs. number of processes for the following three 

distributions: 

Distribution Mean Standard Deviation 

Constant 1000 0 
Normal 1000 278 

Exponential 1000 1000 

The curves are not smooth because the Ceiling function in the equation for the number of 
iterations to perform yields an integer value. 
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This figure contains calculated no-overhead performance curves for three sample F(x) 

distributions with standard deviations ranging from 0 to u. The performance range is from 

negligible speedup when the compute time for the function evaluation is exponentially 

distributed to more than a factor of 3.3 speedup for nine processes when the distribution of 

the F{x) calculation is a constant. The Normal curve between these extremes closely 

approximates the actual F(x) distribution and is included for comparison. 

Another way to view this data is to plot speedup for the nine processes case v*. the ratio 

standard deviation/mean as was done in figure 7. This figure clearly shows the impact of the 

variance on the performance pf the rootfinding procedure. When the coefficient of variation 

is much greater than one, no speedup can be obtained by incorporating multiple processes in 

the rootfinding task. 

Now we compare the calculated no-overhead performance of the rootfinder to measured 

data observed on the machine. In order to measure performance as a function of the 

distribution of the F(x) compute time a synthetic rootfinder was developed because we did 

not want to limit our investigations to particular distributions too early in the experiment. 

The nature of the calculation was still the real function evaluation; however, the length of 

time spent computing was adjustable to reflect the distribution under consideration. 

Figure 8 graphs performance in terms of elapsed time as a function of the number of 

processes for three distributions of the F(x) calculation. In each case we compare theoretical 

performance to measured data. Since the means of the three distributions were not identical, 

the data points for the single process Instantiation do not coincide. Thus, In this graph 

comparisons across distributions can be only relative approximations.* What is important here 

is how close the measured curves are to their theoretical curves. 

For each single process instantiation the measured and theoretical curves are far apart. 

This discrepancy is because any perturbation the process experiences will be additive and 

will lengthen the basic cycle time. 

As we incorporate more processes the constant distribution diverges the most from the 

theoretical while- the exponential diverges the least. The reason for this behavior is that 

perturbations experienced by the processes will tend to increase the variance of the 

underlying distribution. However, a small change in the variance of the constant distribution 

will be a much larger relative change than a similar change to the exponential distribution. 

That the observed data doesn't agree closely with the calculated curves is evidence that 

other influences on performance exist in addition to the distribution of the compute time. In 

the following sections we discuss measurements that uncover the other factors influencing 
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performance. 

3.3 The Variation in Performance of Individual Hardware Elements 

The fluctuations in performance caused by the hardware will always be present because 

Hydra allocates C.mmp's resources dynamically. While a user cannot accurately predict the 

exact performance of his processes, he can estimate the magnitude of the fluctuation in 

performance by measuring the variation in the performance of the individual hardware 

elements. 

3.3.1 Processor Related Variations 

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers. 

In table 1 we have summarized the basic performance difference between the processors by 

comparing their execution of the F(x) calculation without the presence of Hydra. Each 

processor performed the calculation 100 times in the same memory port. The number of 

MSYIVTs^ was counted and the elapsed time measured. These figures appear in the first and 

second columns. The third column of figures is the processor speed relative to Pc[0]. 

Pc Model ElaDsed Time (seel kMsvn's/sec Relative to Pcroi 
0 11 /20 15.559 443.3 1.000 
1 11 /40 10.413 662.4 •1 .494 
2 11 /40 9.985 690.8 1.558 
3 11 /40 9.745 707.8 1.596 
4 11 /20 16.144 427.2 0 .963 
5 11 /40 10.060 685.7 1.546 
6 11 /40 10.238 673.7 1.519 
7 11 /40 9.829 701.8 1.582 
8 11 /20 14.867 463.9 1.046 
9 11 /40 10.022 688.3 1.552 

10 11 /40 10.173 678.0 1.529 
11 11 /40 10.001 689.7 1.555 
12 11 /40 10.129 681.0 1.536 
13 11 /40 10.005 689.4 1.555 
14 11 /20 14.965 460.9 1.039 

15 11 /20 14.999 459.9 1.037 

Table 1 Speed Variations Among Cmmp's Processors 

Naturally, a process on an 11 /40 should execute faster than a similar process on an 1 1 / 2 0 . 

•^MSVN is the DEC name for the sifnal that indicataa a rtquest ia bainf made for the Unibua . Since only the 
jceasor is making requests the number of MSYNs is the numbsr of memory raqueata mada by the processor. 
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Notice that even among processor of the same type there can be more than a 57. difference 

in speed. 

Because two types of processors are used in C.mmp, the strategy of dynamically assigning 

processes to processors is complex. It is not sufficient to schedule a "ready" process to the 

best processor available. The following scenario demonstrates why. 

Suppose the rootfinding processes are performing their function evaluations and are 

finishing at random times. After several have finished one would expect to find some idle 

11 /40 's and computing 11 /20 's* . A good scheduler should handle its resources better. The 

idle 11 /40 's should "steal- the processes computing on the l l / 2 0 * s . Naturally, this 

philosophy assumes that a context swap can be performed quickly. Process stealing is the 

scheduling policy on C.mmp. 

3.3.2 Memory Related Variations 

3.3.2.1 Technology Differences 

Cmmp's centrally located primary memory is also a source of fluctuation in performance. 

The memory is divided into 16 modules, or banks. Each bank can service memory requests 

independently. However, the relative speeds of the banks are different because they contain 

different types of memory. At the time of this study, five banks contained semiconductor 

memory and 11 contained magnetic cores. Table 2 summarizes the speed differences of the 

memory banks. In this experiment Pc[15] performed the F(x) calculation 100 times in each 

memory bank. Theelapsed times appear in the table. 

During the course of our study the number of processors running in ths system verted day to dey. The processor 
configuration during the experiment with the synthetic rootfinder waa 10 P D P - l l / 4 0 ' s and 3 POP-11/20*a. Since w e 
never used more than nine proceasors to perform the F(x) calculation, all of our processes ren exclusively on the 
1 1 / 4 0 ' s . However, the problem is real. If we could have incorporated more than ten processes into the rootfinding 
procedure w e would have had to deal with it. Later experiments in thia paper measure the impact of the 
non homogenous processor configuration aa the number of available 11/40'a frequently waa less then nine. 

http://IMPLE.Mt.NI
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Ma Technology Time (sec.) kMsvn's/sec Relative to Mproi 
0 core 15.243 452.5 1.000 
1 core 14.943 461.6 1.020 
2 core 15.127 456.0 1.007 
3 core 14.999 459.9 1.016 
4 core 15.087 457:2 1.010 
5 semiconductor 15.950 432.4 0 .955 
6 core 15.272 451.6 0 .998 
7 core 15.402 447.8 0 .989 
8 semiconductor 15.887 434.2 0 .959 
9 semiconductor 15.858 434.9 0 .961 

10 semiconductor 15.860 434.9 0 .961 
11 semiconductor 15.855 435.0 0 .961 
12 core 15.070 457.7 1.011 
13 core 15.155 455.1 1.005 
14 core 15.034 458.8 1.013 
15 core 15.013 459.4 1.015 

Table 2 Speed Variation among Cmmp's Memory Banks 

Even among memory banks of the same technology, speed varies. These variations are 

small however, and are caused primarily by variations in the length of cable connecting a 

memory bank to the crosspoint switch and in the timing circuitry for individual memory 

modules. 

3.3.2.2 Memory Bandwidth and Memory Interference 

The previous experiments show the rates at which individual processors and memories can 

communicate. Another important characteristic is the maximum bandwidth of a memory bank. 

This rate will determine how many processors can compete for cycles in a single memory 

bank before the bank is saturated with requests. In this experiment all of the processors 

simultaneously executed the tight loop in the same memory bank. Two banks of different 

types were chosen to be representative of their respective technologies. 

The results in table 3 indicate that performance degradation will occur if more than two or 

three processors are competing for cycles in a memory bank. This result implies that sharing 

code, a common practice to conserve memory space, will result in slower execution. 

Semiconductor 1.49*10^ memory refs/sec. 
Core 1 .71*10 e memory refs/sec. 

Table 3 Maximum Memory Bandwidth 
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In tables 4 through 6 we illustrate the performance degradation that results from sharing 

code. All of the measurements were performed on Pc[0]. In each case 100,000 total cycles 

w e r e sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN to 

S S Y N 1 , a complete memory cycle. 

Table 4 is the control sample where we monitored the memory accesses while the system 

was idle. Although the vast majority of cycles were in the 500fu . to ius. range there w e r e 

some cycles that were greater than 14u*. This difference occurs because a processor that 

doesn't have a process to execute runs a task called the "idle job". The idle job consists of a 

WAIT instruction followed by the code that checks to see if a process is available to execute. 

This piece of code contains a critical section guarded by a mutual exclusion busy-wait loop. 

Since all of the processors are sharing this code and trying to gain exclusive access to the 

critical section, a great deal of memory contention occurs and the memory cycle lengths grow 

longer. We will use this table to compare the performance of the rootfinding processes when 

they execute from one common code page and when each has a private code page. 

Table 5 contains the results for when each of the processes executes from a private code 

page. Comparing this table to table 4 we make two observations: while the average memory 

cycle length has increased slightly, relatively little difference exists between the two tables; 

the one category where a noticeable change does occur is the long (> 5.0 us.) cycles. Less 

than half as many long cycles now occur because the processors are kept busy executing the 

rootfinding processes. 

Compare these two tables to the results in table 6 where all of the processes share one 

common code page. Again we make two observations: the average memory cycle length has 

dramatically increased by 3007,; more important still is that the percentage of long cycles (> 

5.0 as.) has increased from .0862 in table 4 to 15.62, over two and one-half orders of 

magnitude more. This degradation in the basic cycle time will offset and eventually reverse 

speedup obtained by incorporating multiple processes in the rootfinding procedure. 

*SSYN is the DEC name for the signal that indicates the completion of a bua transfer 
module uses to tell the processor that the memory access is completed 

I t is the stfnal the memory 
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MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0 . 5 0 0 0 ~0 
0.5 - 1.0 65652 7787 14089 9 0 2 
1.0 - 2.0 9470 1926 8 0 
2.0 - 5.0 63 6 2 0 

5.0 -14 .0 63 6 10 0 
14.0-50.0 5 2 0 0 

> 50.0 0 0 0 0 

Table 4 Histogram for Idle System 

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0 . 5 0 0 0 0 
0.5 - 1.0 65827 7461 11024 8 2 2 
1.0 - 2.0 12705 1133 3 8 0 
2.0 - 5.0 894 5 4 10 0 

5.0 -14 .0 28 3 0 0 
14.0-50.0 1 0 0 0 

> 50.0 0 0 0 0 

Table 5 Histogram with Private Code Pages 

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0.5 0 0 0 0 
0.5 - 1.0 52784 6504 9404 7 6 1 
1.0 - 2.0 10810 689 102 0 
2.0 - 5.0 3059 201 84 0 

5.0 -14 .0 14291 843 287 0 
14.0-50.0 174 4 3 0 

> 50.0 0 0 0 0 

Table 6 Histogram with Common Code Page 

Figure 9 captures the impact of the finite memory bandwidth problem on the rootfinding 

procedure. We have graphed the elapsed time to locate 50 roots vs. the number of 

processes for two implementations of the rootfinding procedure. The dashed curve results 

when a single copy of the code page is shared. The solid curve is the performance when the 

cooperating processes each have a copy of the code in a private memory bank. 

This graph also can provide some insight into the speed vs. space tradeoff. If we compare 

the speedup over the single process instantiation for both the shared and no-sharing 

versions of the rootfinder, we find that the no-sharing version has a maximum speedup of 

2.60 using nine processes while the shared version's performance peaks at 1.53 using three 
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Figure 9 Performance Degradation Due to Finite Memory Bandwidth 
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processes. Neglecting the single global data page we have a achieved a 1702 increase in 

speed at the cost of a 3007. increase in size. In this study memory is plentiful and we 

squander space for speed. 

One solution to the speed vs. size tradeoff is to interleave the central memory on the low 

order bits rather than the high order bits. This solution would tend to scatter memory 

requests more evenly across the 16 banks. To maintain availability it might be necessary to 

organize the store as four banks of 4-way interleaved memory. A second solution is to give 

each processor a cache to work with. This solution is currently being implemented on Cmmp. 

3.4 Operating System Related Performance Fluctuations 

3.4.1 Introduction 

The operating system also perturbs the performance of the rootfinding procedure. 

Although C.mmp was intended to be a multi-user multi-programming facility, it is possible to 

use the machine in a dedicated single user mode. In this mode of operation, the user can 

minimize any interference from Hydra by simply not doing anything that requires operating 

system assistance. Most of the measurements in this study were made in this way. However, 

certain functions, i.e. scheduling of processes and I/O interrupts, must be performed by Hydra 

and cannot be avoided. The contribution to performance fluctuation from these basic 

operating system functions is measured and discussed in the following sections. 

3.4.2 The Kernel Tracer 

The Kernel Tracer is a software monitor that can obtain information about significant 

activity on C.mmp under the Hydra operating system. Since it is a software monitor, the 

Tracer does perturb the timing data it attempts to measure. However, this perturbation can 

be compensated for in the post-processor software. 

The Tracer can monitor such things as: context swaps which occur when a processor 

changes from executing one process to executing another, semaphore activity, process starts 

and stops, operating system requests (Kernel Calls) and a multitude of other events. Events 

defined by user programs also may be traced. 

The data is collected in real time and later processed off-line. Numerous post-processing 

programs produce various forms of output: process or processor dumps, time-line execution 

histories, and various statistical analysis packages. 

All of the Tracer data that follows is in the form of a processor time-line execution history. 
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We use various symbols in the trace to encode events in order to compact the data. Table 7 

contains these symbols and their meanings. Each row of the trace represents the activity on 

a processor. The time in seconds appears along the bottom edge. We will discuss in detail 

the first trace that captures the impact of I/O interrupts on performance. 

3.4.3 I /O Devices and Interrupts 

Random interrupts from I/O devices and processors contribute to performance fluctuations 

in the rootfinder processes. Unlike the memory, I/O devices are not centrally located and 

accessable through an n x m crosspoint switch. Oevices are associated with a particular 

processor. Thus, for example, a read or write from a disk on Pc[0]*s Unibus must be 

performed by processor 0 regardless of which processor initiated the request. Since 

interrupts are serviced by stealing cycles from the currently executing process, large 

fluctuations in compute times can be found for processes running on processors with I /O 

devices. 

In figure 10, interrupts associated with I/O perturb the performance of the rootfinding 

processes. C.mmp's processor configuration during this trace was Pc[0, 3, 4, 5, 6, 7, 8, 9, 1 1 , 

12 , and 13] , The processors appear from left to right as columns of the trace. Pc[0, 4, and 

8 ] are P D P - l l / 2 0 s and the rest are PDP-11/40s. Processes(35, 43 -50 ) are the nine 

rootfinding processes. Process 29 and the DAEMON are other processes that happened to be 

awake at the time. These two processes are doing things that cause a substantial amount of 

I /O. The following discussion describes how this I/O activity perturbs the rootfinding 

processes. 

A previous iteration finishes at 0.612 seconds into the trace. Process 50 , P(50), on P c [ l l ] 

was the last to finish its calculation (the activity on Pc[6] is P{29)) and begins to wake its 

sleeping companions by unlocking their semaphores. One by one the processes wake up and 

begin to perform the next iteration. P(50) finishes waking up all the processes { P(49) was 

the last to wake up at .641 ) and begins its own function evaluation. One by one the 

processes finish their calculations and post their results, after which they "Pn their 

semaphores and wait for the beginning of the next iteration. When they block on the 

semaphore they are removed from the processor ( e.g. CSW for P(45) on Pc[5] at .700). Four 

of the processors have large chunks of time shaded between brackets. This shading and 

brackets denotes an interrupt service routine performing I/O to a device on that Pc's Unibus. 

Interrupt service routines can consume between 1 and 15 milliseconds of time. This causes 

the rootfinding process on that Pc to arrive at the synchronization point late, thus 

lengthening the STAGE time. 



PROCESS N : PROCESS »N IS RUNNING 

- CSW - : A CONTEXT SWAP 

IOT »X : SPECIAL TYPE OF KERNEL KALL 

KALL #X : KERNEL KALL «X 

RET X : RETURN VALUE FROM A KERNEL KALL 

£ : START OF AN INTERRUPT AT LEVEL N 

J : INTERRUPT SERVICE ROUTINE EXECUTION . 

"2 • ENO OF AN INTERRUPT 

EVENT X : USER DEFINED EVENT X OCCURS 

P : P OPERATION ON A SEMAPHORE 

V : V OPERATION ON A SEMAPHORE 

DAEMON : OPERATING SYSTEM PROCESS 

| j | | | : IDLE TIME 

Table 7 Tracer Symbols 



Figure 10a Perturbations from Interrupts 
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For example, P(49) on Pc[8] is interrupted at .681 for 13 milliseconds and then again at 

. 707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709 

and finishes its function evaluation at .728 uninterrupted. Since it Is the last process to 

finish, it assumes the jobs of finding the new root containing sub-interval and dispatching the 

processes to perform the next iteration. 

In this example the interrupted process was delayed enough to become the last process to 

finish, thus lengthening the STAGE time. However, P(46) on Pc[13] was also interrupted 

during its function evaluation for approximately 21 milliseconds yet it was not the last to 

finish and did not cause the STAGE time to lengthen. This is another advantage the 

multiprocess implementation of the rootfinding procedure has over its uniprocess counterpart. 

In the single process instantiation the interrupt time is additive and each occurence lengthens 

the iteration. In the multiprocess version, only the interrupt time associated with the last 

process to finish is additive. 

3.4.4 Kernel Processes and Special Functions 

Operating system requests are frequently handled by special high priority Kernel 

processes and as such perturb the cooperating rootfinder processes by stealing processors. 

Of particular interest are the processes that perform scheduling. Because synchronization of 

communicating processes can involve rescheduling the processes, the special scheduler 

processes can become bottlenecks causing performance degradations. 

During the trace of figure 11 , C.mmp's processor configuration was Pc[0, 2, 4, 5, 6, 7, 8, 9, 

10 , 1 1 , 12, and 13]. Of these, 4 and 8 are 11/20's (so is Pc[0]) and are the third and seventh 

blank columns with no execution history. Since enough processors of the prefered ( 1 1 / 4 0 ) 

t ype were available the l l / 2 0 * s were never used. Similarly Pc[12] was not needed. 

In this trace processes 18, 19, 20, 2 1 , 22 are rootfinding processes. Processes 1 and 2 

are Kernel scheduling processes, and process 14 is the Tracer process. 

P(22) on Pc[10], the last process to finish the previous function evaluation, initializes the 

necessary parameters for the next iteration. At 285 ms. into the trace (.285) it begins to V 

its sleeping companion processes, and at .309 it begins its own function evaluation (event 

# 3 7 2 ) . 

Meanwhile P(2) on Pc[6], scheduling process, wakes up CSW at .293 and begins to perform 

the task of actually waking up the processes that process 22 has just V-ed. It is a relatively 

painful task involving several semaphore operations and several Kernel calls per process. 
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Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348 . 

approximately 60 ms. after process 22 performed the V operation. 

To expedite the costly wake up procedure, processes 1 and 2, the scheduling processes, 

cooperate to start and to stop the rootfinding processes. Moreover, by the time they get 

around to starting process 2 1 , the last process that is to wake up, three of the other 

rootfinding processes have already finished their function evaluations and have gone back to 

sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V 

to wake process 2 1 . 

Another side effect related to the operating system that can affect the performance of 

cooperating processes is the round-robin scheduling of processes under Hydra. This 

traditional policy is implemented using the notion of "time-sliced" intervals of execution to 

provide equal service to all tasks. Occasionally a process exhausts its time slices and must 

ask for more. This request can take more than 150 milliseconds to execute. Whether or not 

the time-slice end anomaly will perturb the performance of the cooperating processes 

depends upon the average duration of the function evaluation and the frequency of the 

time-slice end condition. In this study a process must consume 10 one half second slices 

before encountering the time-slice end condition. 

Figure 12 is the distribution of the elapsed time to perform an F(x) calculation in the 

presence of Hydra. The long tail in the distribution is a result of the time-slice end condition 

occurring for the process performing the function evaluation. 

3.5 Summary 

The sources of performance fluctuation we have discussed can be classified into one of 

three types— application, hardware, or operating system related. In the table below we rank 

the sources of perturbation by their potential for causing performance fluctuations. Each 

source is measured and the observed range calculated by dividing the maximum measurement 

by the minimum observed value. The larger the range, the more potential for performance 

fluctuation. 

In the next section we eliminate several sources of perturbation In order to measure the 

performance of various synchronization primitives. We do this by carefully selecting 

processors and memory banks to execute the rootfinding program. 



Figure 12 Distribution of the Time to Calculate F(x) in the Presence of HYDRA 
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Rank Type Source Measurement Range 

1 Application F(x) Calculation Function Evaluation 1 : 3.4 

2 Hardware Memory Contention Average Cycle Length 1 : 3 . 0 

3 Operating System 
• 

Kernel Processes Bottlenecking of 
Scheduling Processes 

1 : 2.8 

4 Hardware Processors Speed 1 : 1.6 

5 Operating System, I/O Devices and 
Interrputs 

F(x) Calculation 
Degradation 

1 : 1.3 

6 Hardware Memories Speed 1 : 

Table 8 The Sources of Performance Perturbation 
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4. The Effect of Sychronization on Performance 

4.1 Introduction 

Newell and Robertson[1975] identified seven programming issues for multiprocessor 

computer systems. One of these, synchronization, is a fundamental problem with cooperating 

processes in any environment. Since it has great impact on the performance of a parallel 

algorithm, we will measure the performance and discuss the tradeoffs of the various 

synchronization mechanisms available to the C.mmp user. 

Until now, we have used a very simple form of "busy-waiting" loop to synchronize the 

cooperating processes. Although synchronization using this method is extremely fast, 

undesirable side effects can cause serious performance problems. We will discuss several 

alternative synchronization mechanisms, describe their operation and side effects, compare 

their performance in the context of. the rootfinding algorithm, and present the range of 

usefulness for each. 

4.2 Description of Synchronization Primitives 

We first examine the nature of the synchronization problem for the rootfinding processes. 

In figure 13 we present a more detailed view of the STAGE time and in particular focus on 

the mechanics of synchronization. The segment labeled FIljID is the time spent locating the 

new root containing sub-interval. The VtiTs correspond to waking up each of the rootfinding 

processes. One quickly notices that the overhead of synchrbnization can be a significant part 

of the STAGE time in certain instances. Because we have used a spin lock, a form of busy 

wait ing, to synchronise the processes, the overhead of synchronization has been negligible. 

However, it is not always desirable to implement synchronization with this mechanism. 

4.2.1 The Spin Lock 

Of the three synchronization primitives considered in this study, the spin lock is the most 

rudimentary. This primitive is actually implemented independently of any Hydra support and 

is only a tight loop in which the process continually tests a semaphore until it can set it 

successfully. The P and f operations are the following PDP-11 code sequences: 



PROCESS nl 
o o o F(X) CALC. 

(idle time) 

PROCESS *2 
o o o F(X) CALCULATION f-

PROCESS »3  
o o o F(X) CALCULATION f-

F(X) CALCULATION o o o 

F(X) CALCULATION 

F(X) CALCULATION 

o 
o 
o 

o 
o 
o 

PROCESS »n-2  
o o o . F(X) CALCULATION 

PROCESS « n - l 

o o o F(X) CALCULATION 

PROCESS #n 

o o o F(X) CALC 

F(X) CALCULATION | FIND | v ( l ) | o o o 

FIND |va) |v(2? I g I v(n.2) l v ^ » ]vw 1 FOO CALCULATION 

F(X) CALCULATION 

STAGE TIME 

Figure 13 A Detailed View of the STAGE Time 
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P: CMP SEMAPHORE, #1 
BNE P 
DEC SEMAPHORE 
BNE P 

{SEMAPHORE - 1 ? 
jloop until it is « 1 
jdecrement SEMAPHORE 
;if SEMAPHORE neq 0 then go to P 

V: MOV e l , SEMAPHORE ;reset SEMAPHORE - 1 

The repeated polling of the semaphore, although extremely fast, has two very nasty 

characteristics. 

The first is that when the process completes its function evaluation and starts to poll the 

semaphore while waiting for its counterparts for finish, the processor is not f ree to perform 

useful work. 

The second major drawback is that the polling process consumes many cycles in the 

memory bank that contains the semaphore. As more processes finish their function 

evaluations and begin to poll the semaphore, the bandwidth of the memory bank is quickly 

consumed. The process that has its code page located in the bank with the semaphore will 

be competing for cycles with many busy processors. This second problem can be 

circumvented by inserting a tiny delay loop in the semaphore code, i.e., decrement a register 

to zero before checking the semaphore. This delay will decrease the frequency of memory 

requests in the semaphore memory bank, but not slow the sychronization primitive 

appreciably. However, the primary problem still remains: a "spinning" process prevents a 

processor from doing useful work. 

4.2.2 The Kernel Semaphore 

The Kernel semaphore (K-SEM) is implemented by the Hydra operating system. It is the 

low level synchronization mechanism used by system processes. When a process blocks or 

wakes up, a state change for that process is made inside the Kernel. Because it is 

implemented within the domain of the Kernel, the user evokes operations on the semaphore 

(P and V) by issuing Kernel calls. If the process blocks while trying to P the semaphore, the 

Kernel swaps the process from the processor and places the process in the semaphore's 

blocked-queue, where it remains until another process ^s the semaphore. When the process 

can proceed again, it is swapped back onto an available processor and continues execution 

from the point where it was blocked. The important attributes of the Kernel semaphore are: 

- A blocked process is swapped from a processor. 



THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 3 8 

- When a process blocks, its pages are kept in primary memory. Keeping the 
pages in primary memory ensures that the process will quickly resume execution 
when it is swapped back onto a processor. 

- The Kernel semaphore is approximately two orders of magnitude slower than the 
spin lock. 

4.2.3 The Policy Module Semaphore 

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called 

the Policy Module (PM). This primitive is intended as the user's primary mechanism for 

performing synchronization. 

Since the synchronization is performed within the context of a system process, more 

flexibility is available in handling a blocking/waking process. The first policy that was 

adopted to handle blocking/waking processes was the following: 

- Two PM processes would cooperate to perform synchronization operations for 
users; one would start and stop processes and the other would handle 
communication between the Kernel and user. 

- When a process blocked on a semaphore it would be context swapped from the 
processor.' 

- Any 'dirty' pages belonging to the process would be updated on secondary 
storage. 

- When a process was to wake up it would be restarted by one of the PM 
processes after all the swapped out pages belonging to the process were 
brought back into central memory. 

This policy has evolved into a much faster arrangement of multiple processes in the 

current version of the PM. 

One modification to the PM that was found to improve performance substantially was to 

delay the updating of a process' dirty pages onto secondary storage. Often a process is 

blocked for very short amounts of time and will quickly resume execution after only several 

milliseconds of waiting for a certain condition to be true. However, when a page is to be 

updated onto secondary storage it is written onto one of several fixed head disks that will 

take at least 3 2 milliseconds per page. The swapping disks revolve once every 16.67 

milliseconds. It takes two revolutions to update a page: one to write it out and the second 

to perform a read-check operation to validate the copy. Thus, it is quite possible for a 

process to spend most of its time blocking and unblocking if the inter-synchronization interval 
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is small enough. The problem would be even more severe if there were a task force of 

cooperating processes, e.g. the rootfinding processes, blocking and unblocking every few 

milliseconds. 

The current version of the PM initializes the delay time parameter, «, to 3 0 0 milliseconds. 

Table 9 is a summary of the time it takes to perform the basic semaphore operations on the 

various primitives. 

Measurement 
Time for a process 
to do a V (us.) 

Time till a process 
wakes up from a V (us.) 

Time from P to CSW (us.) 

Time spent in PM while 
waking a process (us.) 

Spin Lock 

30 

30 

na 

na 

K-SEM 

3000 

5000 

3000 

na 

PMO PM1(€«0) 

6000 5000 

55000 

9000 

62000 

50000 

6000 

20000 

Table 9 Comparison of Execution Times for 

Semaphore Primitive Operations 

P M l ( * - 3 0 0 ) 

5 0 0 0 

13000 

6 0 0 0 

4.3 The Impact of Synchronization on Performance 

4.3.1 Introduction 

Now that we have described the functionality and presented the individual performance 

statistics for the basic primitive operations, we can observe the impact of synchronization on 

the performance of the rootfinder. We have eliminated most of the overheads associated 

with synchronization by using the spin lock primitive. The remainder of the paper examines 

the rootfinder's performance as we employ the alternative synchronization primitives. 

4.3.2 Comparison of Primitives When Compute Time •» Synchronization Time 

The first graph, figure 14, compares the performance of the various implementations of the 

rootfinder using different primitives to perform the process synchronization. We have 

plotted the elapsed time to find 50 roots as a function of the number of processes. This data 

was generated by the authentic, not synthetic, rootfinder. The distribution of the F(x) 
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Figure 14 A Performance Comparison of Synchronization Primitives 
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computation is approximately Normal with mean 72 milliseconds and standard deviation 18 

milliseconds 1 . We compare the performance of four alternative synchronization primitives: 

spin lock, K-SEM, P M K O 3 0 0 ) , and PMO semaphores. 

The curve for the PMO semaphore implementation exhibits degradation as we increase 

parallelism. The reason for this behavior is that the overhead of synchronization Is greater 

than the average compute time. A process spends more time synchronizing than computing. 

In this instance we would be better off using a single process. 

The curve for the P M l ( o 3 0 0 ) semaphore implementation depicts substantially better 

performance than its predecessor. Performance reaches a maximum speedup of 2.00 at six 

processes. No additional speedup is gained by employing more processes. Moreover, a 

noticeable degradation occurs at nine processes. This sudden degradation occurs because of 

the non-homogenous processor configuration (NHPC). During this experiment C.mmp's 

processor configuration was eight 11/40's and one 11/20. Thus, when we incorporated the 

ninth process, it ran on the slower 11/20 type processor. The-STAGE time lengthed, thus 

yielding an overall slower performance. 

The K-SEM implementation has its peak performance of 2.4 at eight processes. It too is 

affected by the NHPC problem and performance degrades slightly at nine processes. The 

overall performance of the K-SEM implementation is about midway between the PM1(€«300) 

and the spin lock versions. 

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight 

processes. The NHPC problem causes a much more severe performance degradation for this 

semaphore than for the others*. The reason is that the processes blocked on the spin lock 

semaphore remain on their processors, whereas the other implementations free the faster 

1 1 / 4 0 type processors to steal the process that is still running on the slower 1 1 / 2 0 

processor. 

4.3.3 Comparison when Compute Time is Much Greater Than Synchronization Time 

In the previous experiment the overhead of synchronization was in some cases a 

considerable fraction of the STAGE time. If we make the compute time for the function 

evaluation much larger, thus reducing the percentage of time spent synchronizing, the 

* 0 n an 1 1 / 4 0 processor 

*The PMO implementation performance curve has a greater degradation than the tpin lock version. However, the 
reason is not merely the NHPC problem The primary reason is that the two PM processes that perform the semaphore 
operations are almost constantly running. 
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performance differences between the various implementations is also reduced. Figure 15 

graphs performance in terms of speed up as a function of the number of processes. We used 

the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to 

compute with the distribution a constant. The dashed curve is the performance obtained 

using the PMO semaphore and the solid curve the performance obtained using the spin lock. 

We expected the curves to be closer together, yet the spin lock version outperforms the 

PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large difference is that 

the PM processes must perform the semaphore operations serially, each V operation taking 

about 55 milliseconds. Thus the n" 1 rootfinder process is not started until 55 *n milliseconds 

into the STAGE time. In this manner the ninth rootfinder process does not complete its 

function evaluation until 870 milliseconds have past. Similarly, when the rootfinder processes 

complete their F(x) calculations, the PM processes again serially perform the P operations on 

the semaphores causing still further performance degradations. 

The severe performance degradation that occurs at eight and at nine processes for the 

spin-lock implementation is another instance of the IMHPC problem. This time, with only seven 

1 1 / 4 0 type processors, performance peaks at seven processes, declines slightly at eight, and 

then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance 

of the two implementations is nearly identical at nine processes. 

However, in figure 16, where the distribution is exponential, relatively little difference 

exists between the performances of the two implementations. Because the distribution of the 

compute phase causes the processes to arrive at random times, the PM does not become a 

bottleneck when the processes finish their work. When they are restarted, the last one to be 

started is still delayed by 55*n milliseconds. However, since the distribution is exponential, 

the process that must compute the function evaluation with a compute time that lies in the 

long tail of the distribution always finishes last. Thus the overhead of synchronization is 

again hidden by the MAX function that governs the STAGE time. 

4.4 Summary of Results: The Useful Range for Various Semaphores 

In figure 17 we have summarized the results of this investigation by graphing the useful 

range for each of the synchronization primitives. We have graphed the performance of the 

rootfinder using each primitive as we vary the size of the computation phase between 

synchronization points. For each point, five cooperating processes performed 1000 total 

function evaluations to find 50 roots. The distribution of the function evaluation was a 

constant and ranged in size from 2 milliseconds to 375 milliseconds. 

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured 
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Figure 15 Comparison of Two Synchronization Primitives 
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Semaphore Type 
Spin Lock 

K-Sem 
PM1(*«300) 

PM1( ( *0 ) 
PMO 

Table 10 Cross-over Points for the Various Semaphores 

PAGE 4 6 

due to hardware, operating system or synchronization overheads. 

The 502 line represents our threshold for adequate performance. It parallels the 

NO-OVERHEAD curve but represents exactly half of the performance that would be achieved 

in the best case. The point at which a performance curve crosses the 50Z line is the 

threshold of usability for that synchronization primitive. 

From these results we see that the spin lock is the only primitive that performs adequately 

when the length of the compute phase is less than 15 ms. At the other extreme, all of the 

primitives with the exception of the initial version of the policy-module semaphore, become 

indistinguishable beyond 400 ms. In the region between these two endpoints the user can 

select the appropriate primitive to match the length of the computation phase. The 

cross-over points for the various semaphores appear in the table below. 
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5 . An Example Implementation 

One technique to decompose a task for parallel execution is to portion the work into 

independent partitions for simultaneous processing. This method is applicable to problems 

involving the repeated evaluation of a sequence of functions on a stream of data, e.g. integer 

programming and matrix manipulations. The parallelism results from simultaneously 

performing the function evaluations on different data elements in the stream. 

Two overheads are associated with decomposing an algorithm into parallel processes using 

the partition approach: 1) the cost of partitioning the data and 2) the cost of synchronizing 

the processes. To successfully capture parallelism using this approach, these two overheads 

must be minimized. Thus, problems involving minimum communication between the processes 

and a long data stream composed of independent data elements are favored as good 

candidates for decomposition using the partition approach. 

However, not all tasks that exhibit potential parallelism are simply the repeated application 

of a function on a stream of data. Connected speech recognition systems exhibit a great deal 

of parallelism [Lesser 75], but have complex control structures that can constitute a large 

synchronization overhead. In order to efficiently implement algorithms of this type, it is 

necessary to restructure the algorithm so that the overhead of process synchronization has 

only minor impact on the algorithm's performance. 

Often, minimizing the overhead of synchronization can be accomplished by decomposing a 

large, complex task into a series of smaller, simpler sub-tasks. While this introduces new 

synchronization points into the algorithm, it also increases the potential for parallelism if the 

sub-tasks can be performed simultaneously. 

To demonstate the effectiveness of the partition approach we have chosen a complex task, 

the Harpy speech recognition system developed at Carnegie-Mellon University [Lowerre 7 6 ] , 

for decomposition into cooperating processes. This chapter describes the algorithm, 

demonstrates a series of implementations, and discusses the performance that results from 

each refinement to the algorithm. 

5.1 A Brief Description of the HARPY Speech Recognition System 

HARPY is a speech recognition system that can recognize phrases and sentences from 

many speakers based on a finite vocabulary within a constraining task [Lowerre and Reddy 

77] , Two important features of any speech recognition system are its representation of 

knowledge and the search and match techniques that convert the passive knowledge into an 
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active process for understanding the spoken utterance. 

5.1.1 Representation of Knowledge 

HARPY represents all legal sentences within a task in a finite state graph structure. Figure 

18 is a graph of a simple grammar. The knowledge is organized as a network of nodes where 

each node holds a word in the vocabulary. The nodes are interconnected such that any path 

through the word network constitutes an acceptable sentence. 

Many words have more than one pronunciation. Alternative pronunciations can be 

represented as a separate network of phonemes*. Each path through this type of network 

represents an acceptable pronunciation of a word. For example, the southern pronunciation 

of the word "tell" is an optional path through the phoneme graph in figure 19. 

By replacing every node in the word network with its pronunciation network, we produce a 

new finite state graph, figure 20, where each path is a pronunciation of an acceptable 

sentence. 

A separate knowledge network is compiled for each task. Pre-compiling the network 

eliminates the need for dynamic interpretation of knowledge during the search and match 

phase of the recognition process. 

5.1.2 The Recognition Process 

HARPY's recognition process consists of three separate phases: the pre-processing of raw 

speech, the heuristic search through the knowledge network, and the backtrace through the 

network that yields the connected sentence of speech. The heuristic search is by far the 

most interesting and computationally intensive phase of the recognition process, but we will 

include discussion of the other two phases for completeness. 

The pre-processing phase starts when the utterance is input to the computer. The 

utterance is digitized and segmented into acoustical units, figure 2 1 . These segments are 

analyzed to determine their segmental features and parameters. At this point, an attempt is 

made to match each segment of speech with one of the possible phonemes. Since an absolute 

assignment cannot be made reliably, the system calculates a match probability for each 

phoneme based on the acoustic information in each segment, figure 22. 

The goal of the heuristic search phase is to find an optimal sequence of phonemes 

Phonemes are the smallsst units of speech that distinguish one word from another, e.g., the "m" in mat and the "b" in 
bat are t w o English phonemes. 



Figure 18 A Word Network for a Simple Grammar 



Figure 19 Pronunciation Network for the Word "TELL'* 



Figure 20 Pronunciation Network Incorporated Into the Word Network 



Figure 21 Digitized Speech Segmented into Acoustic Units 



TELL 
I 

ABOUT 
ABOU ABOUT CHINA 

CHINA CHINA • • 

I h e a r d " T E L L ME A L L ABOUT C H I N A 

Figaro 22 Words Corresponding to Selected Phonemes 
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satisfying two criteria: the sequence must represent a legal path through the knowledge 

network, and the sequence should consist of phonemes with high acoustic match probabilities. 

HARPY uses a beam search to locate this optimal sequence of phonemes. This technique 

involves searching a few of the best paths simultaneously, eliminating the need for 

backtracking. 

The ' search is performed by creating and dynamically pruning a tree structure of 

phonemes. Each ply in the tree represents one segment of the digitized utterance. 

For example, HARPY begins the search by placing all the legal phonemes for the start of a 

sentence in the recognition tree, figure 23a, Next, a path probability is calculated for each 

candidate. The path probability is a cumulative probability based on the path probability of 

the previous node and the acoustic match of the current node, figure 23b. The path with the 

best probability is determined and the remaining candidates are compared with it. Those that 

fall below a threshold of acceptability are pruned from the recognition tree, figure 23c. 

The surviving candidates are expanded based on the information in the knowledge network 

and the search continues, figure 24a. The path probabilities are calculated, the best path 

determined, and unpromising alternatives are pruned, figure 24b. The heuristic search 

continues, expanding the recognition tree and saving those connections that satisfy the 

threshold until the end of the utterance.is reached. 

The final phase of the recognition process is a backtrace through the recognition tree 

along the path with the highest probability. This backtrace is purely a lookup operation, and 

does not involve any search. The final output of the backtrace is the sequence of words that 

correspond to the optimal path. 

5.2 The Decomposition of the HARPY Algorithm 

The first step in decomposing HARPY'S search algorithm is to isolate sub-tasks, independent 

functions that operate on a data stream. No restriction exists on the number of sub-tasks 

that, when combined, accomplish the task. Moreover, performance may be improved by 

decomposing a complex sub-task into a series of simpler tasks. 

HARPY is a three phase recognition system; in this study, we will decompose only the 

heuristic search phase since it is the most complex and computer intensive of the three. We 

can identify three sub-tasks in HARPY's heuristic search. The three sub-tasks and the names 

of the routines which perform them appear below and in figure 25. 

CHECKNEXT A candidate state is expanded into a list of successor states. Each Item 



Figure 23a,b ,c First Three Steps in the Recognition Sequence 



Figure 24a,b Recognition Sequence Steps Four and Five 



( SUB-TASK 1 ) 
fCHECKA 

NEXT J 

Candidates<seg i) 
( F,S ) pairs 

( SUB-TASK 2 ) 

( F,S > pairs 
States(seg i) 

BESTP 

Stales(seg i+1) 

(SUB-TASK 3 ) 

( F,S ) pairs, 
States(seg i+ i ) 

pruned states 

Candidates(seg i+1) 

Figure 25 A Flow Diagram of Harpy's Search Algorithm 
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in the list is a father and son (F,S) pair. 

CHECKSTATE The probability of transitioning from father to son is calculated. If the 
value is greater than the current probability in the successor state, this 
value is updated; otherwise it is not. The best probability during this 
current segment also is saved, (BESTP), and is used later in the pruning 
phase. 

SAVESTATES A threshold is determined, based on the current best probability. All 
sons that have transition probabilities higher than the threshold become 
next generation candidates; all those below the threshold are discarded 
as unlikely paths. 

In the uniprocessor implementation of the algorithm, the total compute time was divided 

among these routines in these proportions: 

We therefore will attempt to speed up the algorithm by concentrating compute power in 

the form of task forces of cooperating processes to perform the three major routines— 

CHECKNEXT, CHECKSTATE, and SAVESTATES. 

5.3 The Initial Implementation 

5.3.1 Constraints on the Implementation of the HARPY system 

In the implementations that follow, we have divided the heuristic search into two phases: 

the forward step, where the recognition tree is expanded; and the pruning step, where 

unlikely paths are removed from the tree. Hence, the forward step consists of the two 

routines, CHECKNEXT and CHECKSTATE, while the pruning step is performed by SAVESTATES. 

Two decisions were made prior to the design of the first implementation: the first, because 

of the nature of the algorithm; and the second, to simplify the data structures. 

- Because the pruning, step cannot begin until BESTP is found, the forward step 
must be completed before the pruning step can begin. 

CHECKNEXT 
CHECKSTATE 
SAVESTATES 
OTHERS 

21.52 
46.07. 
28.57. 

4.07. 
1002 TOTAL 

Table 11 Compute Time Proportions 
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- For simplicity, the forward step will not begin until the previous pruning step is 
completed. This decision was made because the forward step modifies the 
STATE vector, which is input to the pruning step. To maintain the data's 
integrity, it would be necessary to add an additional dimension to the STATE 
vector indicating the speech segment for which the state's path probability is 
calculated*. 

5.3.2 Control Structures and Data Sharing 

The original version of HARPY combined the two sub-tasks, CHECKNEXT and CHECKSTATE, 

forming the forward step of the algorithm. The initial C.mmp implementation is a parallel 

version of the uniprocessor algorithm. 

Since the pruning step cannot begin until the forward step is completed, we use a 

synchronous control structure^ to sequence the pruning step after the forward step. 

Similarly, another synchronous control structure sequences the forward step to process 

speech segment(i+l) after the pruning step completes processing speech segment(i). 

The cooperating processes in the forward step statically^ allocate the candidate states 

among themselves. Each process is assigned an equal number of candidates to work on: the 

process first expands a candidate into a list of successor states and then calculates the 

probabil i ty of transitioning to each of these states from the candidate. When a process 

exhausts its supply of candidate states, it must wait for the other task force member 

processes to finish before the pruning step can begin. 

* I t would be possible to immediately expand candidates into (F,S) pairs as soon ts they are created by the 
pruning step, but this implementation is not discussed here. 

^ I f sub-task(j) takes- as input the output of aub-tesk(i), and if sub-task(j) cannot befin until all processing at 
sub-t«tsk(i) is finished, then the control structurs to sequence sub-task(j) after sub-taekft) is a synchronous control 
s t ructure . 

Data is allocated statically in a task force if the processes do no compete for the data items. Instead, each process 
has a private partition of the data. 
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In the pruning, step, work units are dynamically* allocated from a data stack. A process 

takes the top element on the stack, a successor state, and performs a calculation to determine 

if the state's path probability is above the pruning threshold. If it is, the state Is saved and 

becomes a candidate for expansion in the next iteration of the forward step. If the path 

probability falls below the threshold, the state is discarded. 

5.4 Performance of the First Implementation 

The performance of this implementation is presented in two parts: the forward step and 

the pruning step. In both cases, three measurements were performed: 

Elapsed time to process fifteen utterances.* 

Speedup relative to the single process instantiation as the number of cooperating 
processes in the task forces is increased. 

Pc utilization as the number of cooperating processes in the task forces is increased^. 

5.4.0.1 The Performance of the Forward Step 

In figure 26, the elapsed time to perform the forward step of the algorithm decreases from 

52.S9 seconds in the single process instantiation, to 18.14 seconds when eight processes are 

incorporated into the algorithm. This improvement corresponds to a relative speedup of only 

2.914. 

In figure 27 we compare the algorithm's relative speedup, as a function of the number of 

processes, to linear speedup. Theoretically, if n processes cooperate to perform the 

algorithm's forward step, the elapsed time to perform the task should be reduced by a factor 

of n. Unfortunately, the speedup exhibited by the algorithm is substantially less than linear. 

Figure 28, which graphs process utilization as a function of the number of processes, sheds 

some light on the reason for less than linear speedup. In this graph, process utilization 

decreases rapidly as the number of processes increases. At eight processes, only 27.57, of 

the available processing power is being used. The under-utilization of processing power 

indicates that allocation of data to the processes is the source of the performance problem. 

Data is dynamically allocated in a task forca if tha procaaiaa compata, or ahara, all tha data. Thar a ia no 
pre-eastgnment of data to specific processes. 

*Theae utterancea came from tha Artificial Intelligence information retrieval task [Lowerre 78 ] , aee Appendix. 

^The processor utilization measurement does not include operating system related effecta on utilization tuch as: 
context swaps, time-slice end rescheduling, end interrupts from I/O devices. 
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In order to understand the reason for this poor behavior, we must look more closely at the 

work units and the way they are allocated to the processes. 

For the synchronous control structure to perform well, the processes must arrive at the 

synchronization point together. Any one process that lags behind will cause the entire task 

force to wait. 

Although each process receives an equal number of candidate states to work on, this 

method does not guarantee that each process will receive an equal share of the total 

computation. Figure 29, which is a graph of distribution of compute time for expanding a 

candidate state into the list of successor states, shows that while most candidate states can 

be expanded in less than five milliseconds, occasionally the expansion can take as much as 

th i r ty milliseconds to perform. In addition, the distribution of the time to perform the 

transition probability calculation is bimodal, figure 30. The first peak, at 800 microseconds, 

corresponds to performing the transition probability calculation and not updating the STATE 

vector. The second peak, which is centered at 1200 microseconds, corresponds to 

performing the calculation and also.updating the STATE vector with the new value. 

If the number of candidate states each process received were very large, the variation in 

the compute time would have small impact on the performance of the forward step. 

Unfortunately, this is not the case. Figure 3 1 , which is the cumulative distribution of the 

number of candidate states per segment of speech, shows that the average number of 

candidate states per segment is small; 65% have fewer than ten candidate states, and 24*2 

have but a single candidate. 

Thus, although the current method allocates an equal number of candidate states to each 

process, those processes that receive many 'prolific' states will perform more computations 

than those processes that receive mostly 'barren* candidate states. The net result Is 

under-util ization of the processes caused by an unequal allocation of work. 

5.4.0.2 The Performance of the Pruning Step 

The performance of the pruning step is much better than the forward step. In figure 3 2 , 

the elapsed time to process the fifteen utterances is reduced from about 28 seconds to less 

than six seconds when eight processes are incorporated into the algorithm. In figure 3 3 , 

where the speedup of the pruning step is plotted as a function of the number of processes, 

almost a fivefold improvement is realized when eight processes cooperate to perform the 

pruning step. Although less than linear speedup is exhibited, the performance of the pruning 

step is substantially better than the forward step. The successful implementation of the 

pruning step stems largely from two sources. 
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First, processes dynamically acquire work units, father and son (F,S) pairs, from a data 

stack.* Thus, even though the distribution of the compute time to perform the threshold 

calculation on an (F,S) pair is bimodal, figure 34, the processes arrive at the synchronization 

point almost simultaneously. Since the last process to finish can hinder the rest of the task 

force by at most one candidate state's processing time, high process utilization results, f igure 

3 5 . 

Second, the pruning step's data stream contains more work units than the forward step's 

data stream. The cumulative distribution of the number of (F,S) pairs per segment of speech 

can be found in figure 36. The table below summarizes the difference between the two data 
streams. 

Work Units per Segment CANDIDATES (F.S) PAIRS 
1-10 65.7% 38.0% 

10-100 30.3% 32.0% 
100-1000 4.0% 28.0% 

>1000 0% 2% 

Unlike the distribution of candidate states, the number of (F,S) pairs per segment of speech 

spans more than three orders of magnitude. More than 30% of the segments have greater 

than one hundred (F,S) pairs; less than 40% have only ten or fewer pairs. 

In summary, the dynamic allocation of data in the pruning step is the key to its successful 

implementation. When a synchronous control sturcture is used to synchronize cooperating 

processes it is imperative, in order to maintain high process utilization, that the processes 

arr ive at the synchronization point together. Dynamic allocation of data ensures that high 

process utilization will occur, as processes do not develop a backlog of unstarted work units, 

while other processes are idle due to a lack of work. 

5.5 Refinements to the Initial Implementation 

In this section, three refinements to the initial implementation are presented. In each, only 

the implementation of the forward step was enhanced. The performance of the Initial 

implementation will serve as the baseline for measuring the performance improvement each 

refinement contributes. As it is possible to measure the performance of the forward step 

separately from the algorithm as a whole, measuring the performance improvement of the 

avera** , less than 3 0 microseconds of ovarhaad it aasociaied with obtainmf a work unit from the stack. 
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forward step is sufficient to evaluate the refinement. 

5.5.1 The First Refinement 

In the initial implementation, the Key to the success of the pruning step and the failure of 

the forward step was the allocation of work to the processes. During the forward step, the 

work units were allocated statically, by number instead of by amount of computation. This 

method resulted in an unequal distribution of work among the processes In the forward step 

task force. 

We will attempt to allocate work units equally by dynamically allocating candidate states to 

the forward step task force. Now, as in the pruning step, a process takes a work unit from 

the stack of unstarted work only when it is ready to start processing the new work unit. All 

other aspects of the algorithm will remain the same. 

We compare the elapsed time to perform the forward step under the two work allocation 

strategies in figure 37. From the two process case on, the dynamic allocation method 

outperforms the static method. At eight processes, the maximum measured parallelism, a 162 

performance improvement results; the elapsed time to perform the task reduced from 18.15 

seconds to 15.20 seconds. 

Similarly, greater speedup is achieved by dynamically allocating work to the task force. 

Speed up as a function of the number of processes is graphed in figure 3 8 for both 

implementations. In all measurements, dynamic allocation of work yields higher performance 

than static allocation. For eight processes, a speedup of 3.47 was achieved using the dynamic 

strategy, compared to only 2.91 for the static method. 

An improvement in process utilization also resulted. In figure 39 process utilization under 

the two allocation strategies is graphed as a function of the number of processes. For the 

eight process instantiation, a 32.72 utilization was achieved using dynamic work allocation, 

compared to 27.57, process utilization when the work was statically allocated to the 

processes. The table below summarizes the comparison of the two implementations for the 

eight process, maximum measured parallelism, case. 

Performance Measure 
Elapsed Time (sees.) 
Processor Utilization 

Version * 2 Version #1 

Speedup 

15.206 
32.77. 
3.471 

18.148 
27.467. 

2 .914 
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In summary, switching from static work allocation to dynamic work allocation resulted In a 

167, performance improvement. The performance improvement is small because there are not 

enough work units in the data stream. The small number of work units causes two problems: 

1) a large variance in the amount of computation a process performs; and 2) often, processes 

do not receive even a single work unit. Together, these performance problems cause low 

process utilization during the forward step. 

5.5.2 The Second Refinement 

In this version of the 'forward step we solve the problem of low process utilization by 

decomposing the forward step into the two sub-tasks CHECKNEXT and CHECKSTATE. By 

making CHECKSTATE a separate sub-task, any process may now perform the transition 

probability calculation on an (F,S) pair— not just the process that created the pair. In this 

w a y we have increased the number of work units in the data stream by breaking large units 

into many smaller ones. 

As in the previous implementation, the£HECKNEXT task force begins processing the speech 

segment by taking candidate states from a stack and expanding them into a list of (F,S) pairs. 

However, instead of performing the transition probability calculation as each (F,S) pair is 

produced, the processes place them in another data stack that supplies the CHECKSTATE task 

force with input. 

When all the candidate states have been expanded, the processes synchronize and the 

CHECKSTATE task force begins to execute. Thus, we initially will use the synchronous control 

structure to sequence the CHECKSTATE sub-task after the CHECKNEXT sub-task. 

The elapsed time to perform the forward step is compared to the two previous versions in 

figure 40. In the single process instantiation, the latest version of the forward step is more 

than 20% slower than the two previous versions. This penalty results from the CHECKNEXT 

sub-task storing, and the CHECKSTATE sub-task retrieving the (F,S) pairs from a data stack. 

In the previous implementations, the storing and retrieving was unnecessary since the (F,S) 

pairs were not placed in a common pool; the process that created the pair also performed the 

transition probability calculation on it. 

As the parallelism increases the elapsed time to perform the forward step is reduced from 

66 .69 seconds to 14.96 seconds. Thus, this version outperforms the initial implementation 

from the three process case on, and the first refinement from the six process case on, 

despite incurring the large initial overhead associated with storing and retrieving the (F,S) 

pairs. 
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Figure 40 Decomposition of the Forward Step— Version # 3 
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Although the elapsed time to perform the forward step has not been significantly reduced, 

the process utilization has dramatically increased, as shown in figure 4 1 . At maximum 

parallelism, eight processes, this version exhibits a 537. process utilization, compared to 32 .72 

utilization for the first refinement, and only 27.52 for the initial Implementation. The 

substantial improvement results from sharing the (F,S) pairs more equally among the 

cooperating processes. 

We compare the speedup of the three implementations, relative to the single process 

instantiation of the initial implementation, in figure 42. The latest version of the forward step 

is initially slower than the two previous versions— a speedup of 0.79. However, as the 

parallelism increases, the latest version outperforms the two previous implementations; at 

eight processes a speedup of 3.535 compared to 3.479 for the first refinement, and 2.915 for 

the initial version. 

To summarize, the latest enhancement to the algorithm, splitting the forward step into the 

two sub-tasks CHECKNEXT and CHECKNEXT, resulted in an initial overhead in the form of a 

2 0 2 increase in elapsed time, caused by the additional manipulation of the (F,S) pairs. This is 

the cost we pay to share the (F,S) pairs equally among the task force. However, as the 

parallelism increased, a small improvement over the two previous versions was realized due 

to a substantial increase in process utilization. The table below compares the performance of 

the three versions when eight processes are in the task force. 

Performance Measure Version * 3 Version #2 Version * 1 

5.5.3 The Third Refinement 

In the previous implementation, the two sub-tasks CHECKNEXT and CHECKSTATE were still 

per formed sequentially despite their being identified as separate sub-tasks. Any 

performance improvement obtained was achieved by sharing the computational load more 

.equally among the cooperating processes. In this final refinement to the original 

implementation, we will perform the two sub-tasks of the forward step in parallel, obtaining 

still greater peformance improvement. 

Elapsed Time 
Processor Utilization 

Speedup 

14.966 
52.992 

4.456 

15.206 
32.702 

3.471 

18.148 
27 .462 

2.94 

In this implementation, we sequence CHECKSTATE after CHECKNEXT with an asynchronous 
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control structure. 1 This allows the CHECKSTATE task force to begin calculating transition 

probabilities for the (F,S) pairs before the CHECKNEXT sub-task is completed. Thus, 

processes that cannot find any candidate states for expansion no longer become idle, waiting 

for their companions to finish. Instead these processes immediately begin to perform the 

transition probability calculation on the (F,S) pairs already produced. We can allow this type 

of parallelism because the CHECKNEXT task force only adds new (F,S) pairs to the 

CHECKSTATE task force's input stack; they do not modify any pairs already on the stack. 

The elapsed time to perform the forward step for all four alternative implementations is 

compared in figure 43. The latest version of the algorithm outperforms the three previous 

versions from the three process instantiation on. The elapsed time is reduced from 65.3 

seconds to 12.3 seconds at maximum parallelism— more than two and one-half seconds faster 

than the next best version. 

Performing the two sub-tasks in parallel has substantially increased the forward step's 

performance by maintaining higher process utilization. In figure 44, the process utilization of 

this version is compared to the three previous ones. At maximum parallelism, the final 

version of the forward step maintains a process utilization of 63.7%, compared to 53%, 32.7% 

and 27.5% for the earlier implementations. 

In figure 45 we compare the four implementations of the algorithm in terms of speedup. 

The final version of the algorithm is initially slower than the first version due to the extra 

storing and retrieving of the (F,S) pairs from the data stack. However, as the parallelism 

increases, the final version of the algorithm outperforms the three previous versions, 

speeding up the execution of the algorithm by a factor of 4.29, compared to 3,54, 3.48, and 

2.92 for the previous versions. 

Again, performance has been improved by increasing process utilization. In this version, 

the increase in utilization was achieved by sequencing the two sub-tasks asynchronously 

instead of synchronously. Thus, not only were individual sub-tasks performed in parallel by 

task forces of processes, but also two sub-tasks were processed simultaneously. If a 

process could not find work to perform in the CHECKNEXT task force, it looked for work to 

perform in the CHECKSTATE task force. 

Unfortunately, this method of enhancing performance by increasing parallelism only 

partially solves the problem of not enough data in the data stream. Those processes that 

I f sub-task<j) takes as input the output of sub-task<i), end if sub-taak(j) does not have to wait for sub-tesk(i) to 
be competed before it can begin,, then the control structure sequencing aub-taak(j) after tub-task(i) is an aaynchronoua 
control structure. 
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cannot find any work to perform in the CHECKNEXT task force are not guaranteed to find 

work by becoming part of the CHECKSTATE task force. In addition, although further 

subdividing the forward step into smaller sub-tasks will increase process utilization by 

creating more work units, it will also introduce new overheads in manipulating the data items. 

At some point, the overheads in manipulating the new work units will outweigh the 

performance improvement resulting from higher process utilization. This investigation, to 

locate the optimum number of sub-tasks, is beyond the scope of this study. 
, * 

The performance of all four versions of the forward step is summarized in the table below. 

Measure Version «4 Version »3 Version * 2 Version »1 
Elapsed Time 12.339 14.966 15.206 18.148 
Pc Utilization 63.697 52.997. 32.707> 27.467. 

Speedup 5.295 4.456 3.471 2.94 

5.6 Summary 

5.6.1 Comparing the Four Versions of the Algorithm 

The performance of the initial implementation was discussed in detail, uncovering several 

problems limiting the performance of the algorithm. In the three subsequent implementations, 

enhancements to the algorithm were directed towards eliminating the performance problems 

of the initial version. 

In the initial parallel version of the algorithm, statically pre-allocating an equal number of 

candidate states to each process resulted in under utilization of the processes for two 

reasons: the compute time to process a candidate state was not a constant, and the number 

of candidates per segment of speech was quite often less than the number of processes. 

The first enhancement to the algorithm was to dynamically allocate the candidate states 

among the processes. This prevented one process from developing a backlog of unstarted 

work while other processes were forced to remain idle. A 162 reduction in the elapsed time 

to perform the forward step of the algorithm resulted. This technique solved the problem of 

unequal workload allocation only when there were many candidate states to be processed. 

When the number of candidates was small, almost two-thirds of the speech segments had less, 

than ten candidate states, under utilization of the processes still resulted. 

In the second enhancement to the algorithm, the sub-task performing the forward step was 

split into two smaller sub-tasks in order to increase process utilization. Dividing the 
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computation into two separate phases increased process utilization by breaking the relatively 

small number of computationaly large work units into many smaller, less complex units. 

Although process utilization increased by 207., the additional overhead In sharing the new 

data items and in synchronizing the processes between the two sub-tasks, eliminated any 

substantial elapsed time improvement. 
# 

In the final implementation, the control strategy synchronizing the processes between the 

two sub-tasks was changed from synchronous to asynchronous. Processes that could not find 

a candidate state for processing in the CHECKNEXT sub-tasks, migrated to the CHECKSTATE 

sub-task to start processing the (F,S) pairs without waiting for the rest of the task force to 

finish the CHECKNEXT sub-task. This enhancement increased process utilization to 

approximately 64%. However, unlike the previous implementation, a sizable improvement in 

the elapsed time to perform the forward step was realized; a 17.5% reduction to 12.3 

seconds. 

5.6.2 A Final Comparison— The Uniprocessor Algorithm 

Up to this point we have confined our performance comparison to the alternative 

implementations of HARPY on C.mmp. To conclude this investigation, a comparison between a 

parallel version of the algorithm written for C.mmp and the uniprocessor version of the 

algorithm written for a DEC KL10 is presented. 

In figure 46, the performance of the two machines is compared in terms of the elapsed 

time to recognize fifteen utterances. The KL10 recognizes the fifteen utterances in 

approximately 49 seconds. The single process instantiation of the C.mmp version performs 

the same task in approximately 144 seconds, almost three times slower than the KLIO. 

However, as additional processes are incorporated into the algorithm, the elapsed time to 

perform the task is sharply reduced. At four processes, C.mmp outperforms the KLIO, 

requiring only 46 seconds* to perform the task. At seven processes, maximum measured 

parallelism, C.mmp is recognizing the fifteen utterances in only 33 seconds, over 30% faster 

than the large uniprocessor. 
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6 . The Results and Contributions of this Investigation 

6.1 A Summary of the Measurements and Results 

6.1.1 The Initial Investigation— The Rootfinder 

In order to transform a parallel algorithm into an effective running program on a 

multiprocessor, one must be aware of the ways the system can affect the performance of the 

program. To uncover the major sources of performance perturbation, a simple program, a 

parallel rootfinding algorithm, was developed to act as a vehicle for conducting the study. 

The performance of the program was perturbed by a variety of sources. Performance 

perturbations stemming from the hardware, both the processors and the memories, were 

identified and measured. Speed variations of individual processors and memories had only a 

secondary effect on performance. The greatest hardware related perturbation was a 3 0 0 2 

performance degradation that was found to be a direct result of central memory bandwidth 

limitations. 

Operating system performance perturbations arose from two sources: interrupts from I /O 

devices affected the program's performance by randomly interrupting the cooperating 

processes for short periods. These interrupted processes arrived at the synchronization 

point later than their uninterrupted counterparts, delaying the entire collection of processes 

from proceeding. The effect was graphically illustrated with a sample execution trace 

produced by a software monitor within the operating system. Bottlenecks in the operating 

system's scheduling processes also caused serious performance degradations in certain 

situations. 

A third source of variability is the function evaluation. The computation time for 

performing the function evaluation is not a constant, but instead varies with the selection of 

the evaluation point. Because the processes must synchronize after every iteration, the 

elapsed time for an iteration is determined by the process with the maximum computation 

time. Thus, the variance in the distribution of the computation time for performing the 

function evaluation will greatly affect the performance of the rootfinding processes. A large 

variance results in only a small speed up, whereas a small variance results In a larger speed 

up. 

Special attention was paid to the synchronization of the cooperating processes because it 

is a fundamental programming issue in the multiprocessor environment. Our investigation 
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consisted of a detailed measurement of the performance of several alternative 

synchronization primitives. We then incorporated each primitive into the rootfinding 

procedure to perform the necessary interprocess communication. By measuring the 

performance of the rootfinding program, a range of usefulness was determined for each 

synchronization primitive. The inter-synchronization time thresholds when a particular 

primitive became useful varied from 200 milliseconds to 2 milliseconds. 

6.1.2 The Implementation of a Complex Task— The Harpy Speech Recognition System 

Using the insight into the C.mmp environment acquired during the initial rootfinding study, a 

more complex task, the Harpy speech recognition system, was developed on the 

multiprocessor. Harpy, an algorithm that recognizes connected speech from a variety of 

speakers, was initially developed at CMU for a uniprocessor. A parallel version of the 

algorithm was developed by decomposing Harpy into simpler sub-tasks, and then 

implementing these sub-tasks as task forces of identical processes. The task forces of 

identical processes speed up the algorithm by dividing the work into independent partitions 

for simultaneously processing. 

In any decomposition involving cooperating processes, two implementation issues arise: 

how the processes acquire and share data, and how the processes are sequenced and 

controlled. Data can either be allocated statically, if the processes are given private 

partitions of data prior to their execution, or dynamically if the processes compete for or 

share all the data. Similarly, two alternatives for process control are synchronous and 

asynchronous sequencing. If all the cooperating processes must arrive at the synchronization 

point before the next step or sub-task can begin, then the processes are sequenced by a 

synchronous control structure. If, a process is not required to wait for its companions at the 

synchronization point, then the processes are sequenced by an asynchronous control 

structure. For both of these issues the two alternatives were discussed and measured in the 

implementations of Harpy's cooperating processes. 

Four alternative implementations of Harpy were investigated. Rather than examining the 

variations in performance stemming from algorithmic modifications, this investigation measured 

and evaluated the performance variations arising from modifications related to only the 

implementation of one algorithm. The performance of the four implementations is compared in 

chapter five. Refining the algorithm in four implementations gave us the opportunity to 

observe and measure the performance ramifications of several implementation decisions. 

The performance of the four implementations varied substantially, demonstrating the 

importance of an effective implementation. In the initial implementation a straightforward 
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decomposition of the uniprocessor algorithm, the elapsed time to perform the task was 

reduced from 52.89 seconds to 18.15 seconds when eight processes were incorporated into 

the algorithm. This corresponds to a speed up of only 2.92. In the final implementation this 

elapsed time was reduced to only 12.33 seconds, which corresponds to a speed up of 4 .29. 

The improvement resulted from an increase in process utilization, the percentage of time a 

process is performing useful work. Balancing the computational work load across all 

processes increased the process utilization from 27.57, to 647. 

The best multiprocessor implementation of the algorithm was compared to a sequential 

implementation of the algorithm designed for a large uniprocessor, a DEC KL10. Initially, the 

KLIO outperformed a single process instantiation of the multiprocessor implementation by 

almost a factor of three. However, as more processes were incorporated into the task forces, 

the C.mmp version outperformed the uniprocessor at four processes and was observed to be 

3 0 2 faster at the maximum measured parallelism, seven processes. 

6.2 The Task Force Approach to Parallel Programming 

The measurements and results presented in this investigation demonstrate that the task 

force approach to writing parallel programs is an effective method for capturing parallelism. 

As with any programming technique, certain benefits and drawbacks are associated with its 

use. 

The programming effort required to write parallel programs is not much more than the 

ef fort needed to write serial programs. By introducing parallelism through replication, the 

programmer is required to write only a single program, not n different programs. The 

sharing of data and the synchronization of cooperating processes are well understood 

problems easily solved without special programming language parallel constructs. Harpy was 

implemented entirely in BL ISS- i l , without any special language constructs to coordinate the 

data sharing, sequencing, or synchronization of the processes. 

The task force technique is a general approach to parallel programming; its application is 

not restricted to only a few special situations. Those tasks that involve the repeated 

application of functions on data are ideally suited for parallel implementation using the task 

force approach. The rootfinding algorithm and the Harpy speech recognition system are two 

dissimilar representatives of this large class of algorithms. 

However, the most important aspect of the task force technique is that it is effective at 

introducing linear speedup into an algorithm. Although linear speedup of the Harpy algorithm 

was not demonstrated, portions of the data streams were processed by the task forces n 

times faster than if performed by a single process. Only when work was unavailable to keep 
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all the processes busy did performance drop below linear speedup. The task force technique 

tends to favor data streams composed of many elements over those with only few elements 

in them. Thus, performance can be improved, and in fact can approach linear speedup, simply 

by increasing the number of work units in the data streams. For example, Harpy's 

performance could be improved by increasing the complexity of the grammar from which 

utterances are constructed. 

The major drawback to using this approach is that for it to be successful, the programmer 

must be aware of several primitive "time-constants", i.e. the algorithm's inter-synchronization 

times, and the synchronization primitive's elapsed times, that characterizes the hardware, and 

the operating system, and his own algorithm. This requirement runs counter to the popular 

idea of programming without the need to know about the underlying environment. 

6.3 Areas for Further Research 

One aspect of the implementation of parallel programs not addressed in this study is the 

performance degradations, caused by a small address space. Despite the fact that the central 

memory supports up to 32M bytes of primary memory, the PDP-11 is a 16-bit minicomputer 

and as such limits addresses to only 16 bits. Thus a process can directly address only 64K 

bytes of primary memory at a time. Initially, it was felt that the small address space 

limitation would be offset by the ability to create multiple processes, each addressing only a 

small portion of the total address space. This assumption about the organization of parallel 

programs is not always true. 

For example, in our implementations of Harpy we totally ignored the impact of the small 

address space problem on the algorithm's performance. If a data item resided outside the 

process' addressable region, we simply payed the overhead to make it addressable, i.e. a 

relocation register load. In an early investigation to measure this overhead, we observed in 

one case a factor of three degradation in the algorithm's performance. 

One technique to minimize this small address space problem is to construct data structures 

so that memory locations tend to be accessed either sequentially or in small clusters. We 

would expect some improvement in Harpy's performance if we allocated storage for the 

transistion network such that directly related states were close together. 

Obviously, the entire issue of the small address space can be avoided in future multiple 

computer systems by using larger address space machines as the central processors. 

Another area for future research is the investigation of the performance of the 

multiprocessor when it functions as a general computing facility for multiple users. It was 
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felt that one important mode of operation would be for C.mmp to support the simultaneous 

execution of many single process tasks from multiple users. It has been suggested that the 

•multiprocessor is best suited for this type of parallelism. However, little evidence exists to 

substantiate this claim. 

In conclusion, this investigation is only one of the first of many such studies to assess the 

effectiveness of the multiprocessor. The primary contributions of this study are that it 

provides several initial data points in the measurement space of multiprocessors, and that 

some aspects of the implementation of parallel programs are illuminated through the analysis 

of several example programming efforts. 



Appendix 

Artificial Intelligence Information Retrieval Task (LAA) 

1. Please help me 

2. What should I ask 

3. What can the system do 

4. The first two 

5. Give me one more please 

6. Thank you I'm done 

7. Stop transmitting please 

8. Who wrote it 

9. Who was the author 

10. What was its title 

1 1 . When was it published 

12. What about Minsky 

13. Which is the oldest 

14. What facts are stored 

15. Please list the authors 

16. Print the next one 

17. Where does he work 

18. What is her affiliation 

19. What about formal semantics 

20 . What about program verification 
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