
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-151 C ^

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS

ON C.MMP

P.N. Oleinick

Computer Science Department

Carnegie-Mellon University

November 1978

Keywords: performance evaluation, multiprocessors, synchronization, parallel algorithms,
cooperating processes.

The research described here was supported by the Defense Advanced Research Projects

Agency (Contract: F44620-73-C-0074, monitored by the Air Force Office of Scientific

Research), and in part by the Office of Naval Research (Contract: N00014-77-C-0500) .

University Libraries Carnegie Mellon ymvers.tv
o'H-sburgh PA 1 5 ^ i 3 - 3 b y u

ABSTRACT

This dissertation demonstrates the implementation and evaluation of parallel algorithms on

C.mmp, a multiprocessor computer system. Initial attempts to demonstrate the performance of

a simple parallel algorithm yielded unexpectedly large performance degradations from the

theoretical calculations. This unexpected result spawned a study of the Cmmp system to

discover and measure the major sources that perturbed the performance of the parallel

algorithm. The performance study was conducted at several levels:

- Basic hardware measurements

- Runtime performance of Hydra, Cmmp's operating system

- Overall performance of a particular application: a parallel rootfinding algorithm.

The results of this study identified six major sources of performance pertubation. The six
sources, in order of importance, were:

- Variations in the compute time to perform the repetitive calculation

- Memory contention caused by finite memory bandwidth

- The operating system's scheduling processes can become a bottleneck

- Variations in the individual processor speeds

- Interrupts associated with I/O device service routines

- Variations in the individual memory bank speeds.

The effects that synchronization can have on the performance of a parallel algorithm w e r e

examined apart from the sources mentioned above. Several alternative synchronization

primitives were studied. For each, the speed in performing the basic semaphore operations

as well as the effect on the performance of the rootfinding algorithm were measured. The

type of semaphore primitive selected to perform the synchronization of the rootfinding

processes drastically affected the performance of the algorithm, A threshold for the practical

application of each semaphore was determined from the measurements of the rootfinding

algorithm.

This insight into the C.mmp environment was applied toward a more complex application—

the HARPY speech recognition system. Parallelism was incorporated into the algorithm by

decomposing the large task into a sequence of computationally smaller sub-tasks. Each

sub-task was implemented as a collection of indentical cooperating processes.

Inefficient allocation of work to processes, and synchronization between sub-tasks resulted

in under utilization of the processors. Performance of the algorithm was improved in three

subsequent refinements to the initial implementation. The contribution to performance from

each enhancement was disscused and measured separately.

The final implementation of HARPY on C.mmp was compared to a version of the algorithm

developed for a DEC PDP-KL10 uniprocessor. At maximum parallelism, eight processes, the

C.mmp implementation performed the speech recognition task 302 faster than the

uniprocessor.

Acknowledgement

I would like to thank Sam Fuller, my advisor, for his constant encouragement during the

development of this work. His guidance and support were invaluable. I also want to thank

Anita Jones for her insight and especially for her blue pencil. I am grateful for the time she

gave to polish my prose and to augment my arguments by playing devil's advocate. The

comments from the other members of my committee, Bill Wulf and Don Thomas, helped me

define the organization of this thesis. Judy Rosenberg's assitance let me go home early.

I ?m especially grateful to my best friend Barbara McKissock who read this thesis eight
times snd didn't complain once.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE I

Table of Contents

1 . Introduction

2. An Introduction to C.mmp and The Rootfinding Algorithm 4

2.1 An Introduction to C.mmp 4
2.2 Description of the Rootfinding Algorithm 4

3 . Sources of Performance Fluctuation 10

3.1 Introduction 10
3.2 The Variation in the F(x) Calculation 10
3.3 The Variation in Performance of Individual Hardware Elements 18

3.3.1 Processor Related Variations 18
3.3.2 Memory Related Variations 19

3.3.2.1 Technology Differences 19
3.3.2.2 Memory Bandwidth and Memory Interference 20

3.4 Operating System Related Performance Fluctuations 2 4
3.4.1 Introduction 24
3.4.2 The Kernel Tracer 24
3.4.3 I /O Devices and Interrupts 25
3.4.4 Kernel Processes and Special Functions 2 8

3.5 Summary 3 2

4. The Effect of Sychronization on Performance 35

4.1 Introduction 3 5
4.2 Description of Synchronization Primitives 3 5

4.2.1 The Spin Lock 3 5
4.2.2 The Kernel Semaphore 37
4.2.3 The Policy Module Semaphore 3 8

4.3 The Impact of Synchronization on Performance 3 9
4.3.1 Introduction 3 9
4.3.2 Comparison of Primitives When Compute Time ~ Synchronization Time 3 9
4.3.3 Comparison when Compute Time is Much Greater Than Synchronization 4 0

Time
4.4 Summary of Results: The Useful Range for Various Semaphores 4 2

5. An Example Implementation 47

5.1 A Brief Description of the HARPY Speech Recognition System 47
5.1.1 Representation of Knowledge 4 8
5.1.2 The Recognition Process 4 8

5.2 The Decomposition of the HARPY Algorithm 5 4
5.3 The Initial Implementation 5 8

5.3.1 Constraints on the Implementation of the HARPY system 5 8
5.3.2 Control Structures and Data Sharing 5 9

5.4 Performance of the First Implementation 60
5.4.0.1 The Performance of the Forward Step 60
5.4.0.2 The Performance of the Pruning Step 6 4

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE I I

5.5 Refinements to the Initial Implementation 7 0
5.5.1 The First Refinement 74
5.5.2 The Second Refinement 7 8
5.5.3 The Third Refinement 8 1

5.6 Summary 8 7
5.6.1 Comparing the Four Versions of the Algorithm 8 7
5.6.2 A Final Comparison— The Uniprocessor Algorithm 8 8

6. The Results and Contributions of this Investigation 90

6.1 A Summary of the Measurements and Results 9 0
6.1.1 The Initial Investigation— The Rootfinder 90
6.1.2 The Implementation of a Complex Task— The Harpy Speech Recognition 9 1

System
6.2 The Task Force Approach to Parallel Programming 92
6.3 Areas for Further Research 9 3

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 1

1. I n t r o d u c t i o n

The purpose of this research is to demonstrate how to write parallel programs that

effectively use the multiple computers in a multiprocessor. Developing strategies for

incorporating parallelism into algorithms has been an area of intense interest for quite some

time, e.g., [Avriel and Wilde 66], [Karp and Miranker 68], [Rosenfeld and Driscoll 6 9] , [Heller

7 6] , [Thompson and Kung 76] , [Baudet, Brent and Kung 77] and [Baudet 78] . However, until

v e r y recently, only simulation and analysis techniques were available for demonstrating the

effectiveness of a parallel algorithm.

With the emergence of multiprocessor computer systems that provide users with the

facilities for constructing parallel algorithms, CM* and C.mmp 1, the verification of an

algorithm's performance is in its implementation. Initial attempts to demonstrate the

performance of a simple parallel algorithm [Fuller and Oleinick 76] yielded unexpectedly large

degradations in the algorithm's performance. These degradations were not the result of an

e r ror or inefficiency in decomposing the problem into cooperating processes. Rather, several

non-algorithmic sources were determined to be the source of the degradations. This result

indicates that in order to develop effective parallel algorithms for multiprocessors, it is

necessary to be aware of the target machine's performance characteristics.

Presently, the task of writing effective parallel software is an ad-hoc procedure of

constructing code for a unique machine. Since multiprocessors are almost as different from

one another as they are from uniprocessors, it is difficult to apply insight gained from writing

parallel software for one multiprocessor to another machine. However, by documenting the

performance of various implementations of several algorithms on one machine, we can

demonstrate the effectiveness of various strategies at capturing parallelism.

One style of parallel programming for multiprocessors involves tightly coupled cooperating

processes. Several decomposition strategies exist that use this approach, among them

pipelining and partitioning [Jones 78} In both cases, simultaneously executing processes

must interact frequently. Since interprocess communication constitutes an overhead, tightly

coupled systems exhibit performance degradations proportional to the amount of process

interaction among the processes. Thus, in order to maintain high performance, one must

reduce both the overheads of interprocess communication and the amount of process

interaction.

1 C.mmp and C M . ar t multiprocessors developed at Carnegie-Mali on University. [Jones 78] , [Fuller 7 8] , [Wulf end Bel)
7 2] , [Swan, Fuller, and Siewiorek 77]

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 2

The user has little power to reduce the overhead of interprocess communication. Since

processes are created and maintained by the operating system, interprocess communication is

permitted in only a few well defined ways. The user is given a selection of primitives

provided by the operating system with which he can build his own communication

mechanisms. However, the performance of the communication mechanism is directly

influenced by the performance of the operating system's primitive.

Moreover, writing effective parallel software requires an awareness of more than just the

overheads involved In interprocess communication. We adopted the following two phase

strategy for uncovering the major influences on performanc^:

1. Develop a simple parallel algorithm as a vehicle for conducting a performance
study on C.mmp.

2. Use this test program to measure the effects on performance stemming from
both the hardware and the operating system.

A brief introduction to the C.mmp environment, both hardware and operating system is

contained in chapter two. In addition, chapter two contains the development and theoretical

performance calculations for the simple parallel algorithm.

The investigation into the sources of performance perturbation is presented in chapter

three.

Since synchronization is a fundamental parallel programming issue, chapter four is devoted

entirely to studying the effects of synchronization on performance. The performance of

various synchronizaton primitives is conducted at two levels: the speed in performing the

basic synchronization operations and the impact each primitive has on the performance of the

rootfinding algorithm.

In chapter five, we apply the insights gained from the initial investigation toward

developing complex tightly coupled systems. By decomposing a complex task into a sequence

of simpler sub-tasks, and then implementing these sub-tasks as task forces[Jones 7 8] of

cooperating processes, we efficiently focus compute power to speed up the execution of the

task. To demonstrate the effectiveness of this approach we use it to implement a parallel

version of the Harpy speech recognition system[Lowerre 76].

An initial decomposition of the algorithm is successively refined in three implementations.

In each iteration, some aspect of performance is improved. This incremental enhancement of

the algorithm enables us to measure the performance improvement contributed by each

enhancement.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 3

Chapter six contains a summary of the measurements and results of this investigation. The

initial measurements of the multiprocessor and the results to come out of the rootfinder study

are summarized. The performance of the task force approach to parallel programming is

evaluated based on the results of the various implementations of the Harpy algorithm.

Finally, areas for further research are discussed.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 4

2 . A n I n t r o d u c t i o n to C . m m p a n d T h e R o o t f i n d i n g A l g o r i t h m

2.1 An Introduction to C.mmp

The basic structure of C.mmp, as shown in the PMS diagram of figure 1, is that of the

canonical multiprocessor. A detailed description of C.mmp is provided in the original article

on C.mmp by Wulf and Bell [1972], but the following description should provide a sufficient

background for this investigation.

C.mmp is organized as a system of 16 central processors (Pc's) that share a centrally

located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc's are

completely asynchronous computing elements: 5 are PDP-11/20*s and the remaining 11 are

PDP- 11 /40 's . They are connected to the shared primary memory through a 16 x 16

crosspoint switch. The operation of the switch is similar to a 16 port memory in that up to

16 memory transactions can be performed simultaneously. I/O devices, unlike memory, are

associated with an individual processor. Thus, for example, an I/O request to a device on

Pc[0], perhaps a disk, is performed by the requesting Pc by sending an interprocessor

interrupt to Pc[0] causing initiation of the appropriate I/O interrupt service routine on Pc[0].

Hydra is C.mmp's general-purpose multiprogramming operating system [Wulf et aL, 1974;

Levin et aL, 1975] . It is a collection of basic or kernel mechanisms such as memory

management, process dispatching, and message passing. Upon this core, an arbitrary number

of systems created from these mechanisms can co-exist simultaneously. Hydra is organized

as a set of re-enterant procedures that can be executed by any of the processors. In fact,

several processors can simultaneously execute the same procedure. This concurrency is

accomplished by placing locks around the operating system's critical data structures. These

locks maintain mutual exclusion where necessary.

2.2 Description of the Rootfinding Algorithm

The purpose of this study is to present quantitative performance results for implementing

parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum

of problems, we have chosen to study various implementations of a single problem in order to

observe and measure in depth the performance tradeoffs in the implementation process.

Two criteria that our case study problem had to meet were: the problem must be complex

enough to have interesting implementation tradeoffs and simple enough to permit the focus of

attention on implementation issues rather than algorithm issues. The candidate problem we

I Mp(15)

M p (1 4)

M p < 1 3)

M p (0)

V - V V 1 — V \ X \ \ \ X \ > \ X X

\ V X X V \ \ \ \ \ \ X \ X X X

\ \ V X \ V V V

5.

v

mp

V V \ X X X V

\ X
y

V

J
\

/
\ V V \ \

\ V
\

V
X

V
v

V

Note: Kibi stands for
Winter-bus interface)

Kinterbua Kciock

Figure 1 PMS Diagram of C.mmp (1 9 7 7)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 6

finally selected is the rootfinding task.

We have chosen to consider this problem not because it particularly well-suited for parallel

solution, but rather because it is a relatively straight forward task that requires a significant

amount of inter-process communication. According to Stone[l973], algorithms like the

rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number

of processes fall into a class of problems at best considered poor candidates for parallel

processing. However, the underlying control structure present in this procedure, that of the

synchronous parallel algorithm, is representative of many parallel decompositions of

otherwise serial algorithms. For this reason, it is worthwhile to understand the nature of the

control structure and to study the influences on its performance.

Specifically, we will consider the problem of finding the root of a monotonically increasing

function in a bounded region. If we assume no special information about the behavior of the

function, the best procedure for a uniprocessor under these circumstances is a binary search.

An obvious decomposition of the binary search into n parallel processes on a multiprocessor

is to evaluate the function simultaneously at a equidistant points within the bounded region.

The optimal placement of the n processes on the interval is known [Kung 1976] , but to

minimize the complexity of the algorithm in order to focus on the synchronous control

structure, we will use the less than ideal, but good, technique illustrated in figure 2. The n

parallel processes perform function evaluations at the n points that divide the interval into

n+ i equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that

contains the root is the sub-interval with opposite signs for F(x) at its end points. The other

sub-intervals are discarded and the procedure repeats this basic iteration until one of the

function evaluations is within €, i.e. an acceptably small interval close to zero, of the

zero-crossing.

For the measurements presented here, the function we are evaluating is the normal

integral:

F < x) ' v ^ / x e x P (- V 2 t 2) dt - h (2.1)

For x < 2.32 the following truncated power series was used to evaluate F(x):

(2.2)

and for larger x we used the continued fraction:

l / (x + l / (x+2/(x+3/(« - . . .)))) - h (2.3)

We selected this normal integral because it is an important transcendental function that

exhibits two characteristics important to our measurement studies: it requires an extensive

amount of computation, and the type and length of computation are data dependent.

First Iteration:

Second Iteration:

Third Iteration: \r- — : — a e f

\ P , \ P ,
\ s

\

\

Fourth Iteration: \ o o e * — ^

1 2 3

Figure 2 Rootfinding Program Using three Processors

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE ft

In order to evaluate the performance of our implementations of the rootfinding algorithm,

we first calculate the theoretical, or overhead-free, performance curves.

The basic cycle in the rootfinder is the independent evaluation of the function by each of

the cooperating processes and, upon finishing, the communication of each process with the

other processes by posting the results of its function evaluation. Notice that the new

interval is not located until all of the processes have posted their results*. When the last

process finishes its function evaluation, it assumes the jobs of finding the new root-containing

interval and waking up all of the waiting processes. This basic cycle we call a STAGE.

Under ideal conditions the cooperating processes in the rootfinder would exhibit the

execution behavior found in figure 3. Each process performs a function evaluation

independently. They all finish at the same instant and, after a very brief bookkeeping

calculation, perform a new F{x) calculation on an interval reduced by l / (n + l) . In practice, we

seldom find this to be the case. The fluctuations in performance stem from sources intrinsic

to the multiprocessor as well as the rootfinding program.

*The new interval is located a . .oon as the .ub-int.rvel i . bounded, but a f »m w . have opted for
straightforward algorithm In order to focus on the implementation issues.

a more

o o o FM CALCULATION F(x) CALCULATION FM CALCULATION o o o

o o o FM CALCULATION H Fix) CALCULATION Fix) CALCULATION H

o o o Fix) CALCULATION H Fix) CALCULATION H Fix) CALCULATION M
0
0
0 o

o
o o

o
o

"l

O
O

O

o o o FM CALCULATION Fix) CALCULATION H FM CALCULATION H

LOCATING THE INTERVAL THAT CONTAINS THE ZERO-CROSSING AND
REDISPATCHING THE N PROCESSES

Figure 3 Optimal Performance of the Rootfinding Algorithm

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 10

3 . Sources of Performance Fluctuation

3*1 Introduction

Three distinct sources of performance fluctuation are: the variation in the amount of

computation required to perform a function evaluation, the individual hardware elements*

performance characteristics, and the operating system. We will identify the nature and

measure the magnitude of each of these sources starting with the variation in the F(x)

calculation since it is the most straight forward of the three.

3.2 The Variation in the F(x) Calculation

The elapsed time to perform a function evaluation is data dependent. The distribution of

the compute time is shaped approximately Normal as shown is figure 4. The mean is about

100 milliseconds with almost an equal number of samples on each side of the mean*. Thus,

we might model the expected finishing time for a process performing an F(x) calculation to be

a random variable with a Normal distribution. As other functions would have other compute

time distributions, we derive the theoretical performance for the constant and exponential

cases also.

Let the time taken by the i**1 stage in the rootfinding procedure be the random variable Tj.

Since all of the processes are performing the same calculation, each process executes for a

random amount of time, t (see figure 5), taken from some distribution. Since all of the

processes must finish their function evaluations before the new sub-interval is located

T ± » MAX(t v t 2, t 3, ... , t n) (3.1)

From elementary order statistics the expected value of the largest order statistic in random

samples of n from a parent distribution with continuous strictly increasing cumulative

distribution function P(x) is

E< x (n)) = jT« n x C p (x > f 1 dp(x> <3'2>

If we know nothing about the distribution of the tj other than the mean a and standard

deviation the expected value of the largest order statistic Tj, reduces to

On an 1 1 / 2 0 procasaor

<• SAMPLES)

1 3 0

120

1 1 0

100

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

10

number of tampl** - 1 0 0 0

490
samples

510
samples

U1

10 20 30 40 5 0 60 70 80 90 100 110 120 130 140 150 160 170 180

(ELAPSED TIME in mt.)

Figure 4 Distribution of the Time to Calculate F(x)

o o o FM CALCULATION F<*) CALCULATION F(x) CALCULATION o o o

o o o FM CALCULATION F(«> CALCULATION y\ FM CALCULATION̂ o o

ooo F(K) CALCULATION

o
o
o

o
o
o

FM CALCULATION

o
o
o

FM CALCULATION o o o

o o o F(K) CALCULATION I S
FM CALCULATION ~\- FM CALCULATION o o o

o o o FM CALCULATION J <
] 1 fr(x) CALCULATION p o o

„ LOCATING THE INTERVAL THAT CONTAINS THE ZERO-CROSSING AND

REDISPATCHING THE N PROCESSES

Figure 5 Performance Degradation Due to Variation in the F(x) Computation Time

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 13

This bound can be replaced in the exponential case by the equality
n-1

E(T n) = I (j) .J^IL.
j=0 (j+l)

For the Normal case we consult Teichroew*s[1956] tables for the expected value of the
largest order statistic drawn from the N<0,1) distribution.

When the expected value of the compute time is a constant, equation 3.3 Is replaced by the

simple equality E(Tj) • a.

If we are interested in the performance speedups obtained when we put more processes

to work finding roots, we need to estimate the average time to locate a root as a function of

the number of processes. Since every iteration in the rootfinding procedure reduces the

interval of uncertainty, L, by a factor of rt*i it takes Cei/i/ig(Log n < f j L) iterations to locate the

root in a bounded interval of length L Thus, in our example let Rj denote the number of

iterations necessary to arrive within * of the root using i processes. For our choice of €,

R»{54, 34 , 27, 23 , 2 1 , 19, 18, 17, 16, 16, 15, 15,...} iterations. It takes the same number of

iterations to locate the root using nine and ten or eleven and twelve processes because the

number of iterations to locate the root must be an integer. Thus, little is to be gained by

incorporating many processes in the procedure. In this study the maximum number of

processes we will use is nine.

We can estimate the runtime of the rootfinder to be the following:
R n

Runtime(n) - £ T k « R n * E(T n) (3 . 5)
k=l

Often we will be interested in the speedup achieved through parallelism. We will use the

following formula to calculate speedup:

_ • . , v Runtime (1)
Speed up (n) - (3 < 6)

Figure 6 is a plot of the speedup vs. number of processes for the following three

distributions:

Distribution Mean Standard Deviation

Constant 1000 0
Normal 1000 278

Exponential 1000 1000

The curves are not smooth because the Ceiling function in the equation for the number of
iterations to perform yields an integer value.

a

II
V
Q.

«0

3.50

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

i.oa 2 3 4 5

Figure 6 Speed up vs. Number of Processes for Ideal Multiprocessor

6 7 8 9
Number of Processes

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 15

This figure contains calculated no-overhead performance curves for three sample F(x)

distributions with standard deviations ranging from 0 to u. The performance range is from

negligible speedup when the compute time for the function evaluation is exponentially

distributed to more than a factor of 3.3 speedup for nine processes when the distribution of

the F{x) calculation is a constant. The Normal curve between these extremes closely

approximates the actual F(x) distribution and is included for comparison.

Another way to view this data is to plot speedup for the nine processes case v*. the ratio

standard deviation/mean as was done in figure 7. This figure clearly shows the impact of the

variance on the performance pf the rootfinding procedure. When the coefficient of variation

is much greater than one, no speedup can be obtained by incorporating multiple processes in

the rootfinding task.

Now we compare the calculated no-overhead performance of the rootfinder to measured

data observed on the machine. In order to measure performance as a function of the

distribution of the F(x) compute time a synthetic rootfinder was developed because we did

not want to limit our investigations to particular distributions too early in the experiment.

The nature of the calculation was still the real function evaluation; however, the length of

time spent computing was adjustable to reflect the distribution under consideration.

Figure 8 graphs performance in terms of elapsed time as a function of the number of

processes for three distributions of the F(x) calculation. In each case we compare theoretical

performance to measured data. Since the means of the three distributions were not identical,

the data points for the single process Instantiation do not coincide. Thus, In this graph

comparisons across distributions can be only relative approximations.* What is important here

is how close the measured curves are to their theoretical curves.

For each single process instantiation the measured and theoretical curves are far apart.

This discrepancy is because any perturbation the process experiences will be additive and

will lengthen the basic cycle time.

As we incorporate more processes the constant distribution diverges the most from the

theoretical while- the exponential diverges the least. The reason for this behavior is that

perturbations experienced by the processes will tend to increase the variance of the

underlying distribution. However, a small change in the variance of the constant distribution

will be a much larger relative change than a similar change to the exponential distribution.

That the observed data doesn't agree closely with the calculated curves is evidence that

other influences on performance exist in addition to the distribution of the compute time. In

the following sections we discuss measurements that uncover the other factors influencing

a 3.50r

a 3 . 2 5 " I
3.00

2.75V\

2.50\

2.25V

2.00\

1.75\

1.50\

1.25V

1.00\

0 .75

0 . 5 0

0.25\

0.00. 2 3 4 5 6 7 8 0 10
Standard Deviation/Mean

0 1

Figure 7 Speed Up vs. Coefficient of Variation for Nine Processes

225r

O Calculated

X Measured

7 8 9
Number of Processes

Figure 8 Measured Performance Compared to Calculated Performance

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 18

performance.

3.3 The Variation in Performance of Individual Hardware Elements

The fluctuations in performance caused by the hardware will always be present because

Hydra allocates C.mmp's resources dynamically. While a user cannot accurately predict the

exact performance of his processes, he can estimate the magnitude of the fluctuation in

performance by measuring the variation in the performance of the individual hardware

elements.

3.3.1 Processor Related Variations

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers.

In table 1 we have summarized the basic performance difference between the processors by

comparing their execution of the F(x) calculation without the presence of Hydra. Each

processor performed the calculation 100 times in the same memory port. The number of

MSYIVTs^ was counted and the elapsed time measured. These figures appear in the first and

second columns. The third column of figures is the processor speed relative to Pc[0].

Pc Model ElaDsed Time (seel kMsvn's/sec Relative to Pcroi
0 11 /20 15.559 443.3 1.000
1 11 /40 10.413 662.4 •1 .494
2 11 /40 9.985 690.8 1.558
3 11 /40 9.745 707.8 1.596
4 11 /20 16.144 427.2 0 .963
5 11 /40 10.060 685.7 1.546
6 11 /40 10.238 673.7 1.519
7 11 /40 9.829 701.8 1.582
8 11 /20 14.867 463.9 1.046
9 11 /40 10.022 688.3 1.552

10 11 /40 10.173 678.0 1.529
11 11 /40 10.001 689.7 1.555
12 11 /40 10.129 681.0 1.536
13 11 /40 10.005 689.4 1.555
14 11 /20 14.965 460.9 1.039

15 11 /20 14.999 459.9 1.037

Table 1 Speed Variations Among Cmmp's Processors

Naturally, a process on an 11 /40 should execute faster than a similar process on an 1 1 / 2 0 .

•^MSVN is the DEC name for the sifnal that indicataa a rtquest ia bainf made for the Unibua . Since only the
jceasor is making requests the number of MSYNs is the numbsr of memory raqueata mada by the processor.

THE IMPLE.Mt.NIA1 ION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 19

Notice that even among processor of the same type there can be more than a 57. difference

in speed.

Because two types of processors are used in C.mmp, the strategy of dynamically assigning

processes to processors is complex. It is not sufficient to schedule a "ready" process to the

best processor available. The following scenario demonstrates why.

Suppose the rootfinding processes are performing their function evaluations and are

finishing at random times. After several have finished one would expect to find some idle

11 /40 's and computing 11 /20 's* . A good scheduler should handle its resources better. The

idle 11 /40 's should "steal- the processes computing on the l l / 2 0 * s . Naturally, this

philosophy assumes that a context swap can be performed quickly. Process stealing is the

scheduling policy on C.mmp.

3.3.2 Memory Related Variations

3.3.2.1 Technology Differences

Cmmp's centrally located primary memory is also a source of fluctuation in performance.

The memory is divided into 16 modules, or banks. Each bank can service memory requests

independently. However, the relative speeds of the banks are different because they contain

different types of memory. At the time of this study, five banks contained semiconductor

memory and 11 contained magnetic cores. Table 2 summarizes the speed differences of the

memory banks. In this experiment Pc[15] performed the F(x) calculation 100 times in each

memory bank. Theelapsed times appear in the table.

During the course of our study the number of processors running in ths system verted day to dey. The processor
configuration during the experiment with the synthetic rootfinder waa 10 P D P - l l / 4 0 ' s and 3 POP-11/20*a. Since w e
never used more than nine proceasors to perform the F(x) calculation, all of our processes ren exclusively on the
1 1 / 4 0 ' s . However, the problem is real. If we could have incorporated more than ten processes into the rootfinding
procedure w e would have had to deal with it. Later experiments in thia paper measure the impact of the
non homogenous processor configuration aa the number of available 11/40'a frequently waa less then nine.

http://IMPLE.Mt.NI

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 2 0

Ma Technology Time (sec.) kMsvn's/sec Relative to Mproi
0 core 15.243 452.5 1.000
1 core 14.943 461.6 1.020
2 core 15.127 456.0 1.007
3 core 14.999 459.9 1.016
4 core 15.087 457:2 1.010
5 semiconductor 15.950 432.4 0 .955
6 core 15.272 451.6 0 .998
7 core 15.402 447.8 0 .989
8 semiconductor 15.887 434.2 0 .959
9 semiconductor 15.858 434.9 0 .961

10 semiconductor 15.860 434.9 0 .961
11 semiconductor 15.855 435.0 0 .961
12 core 15.070 457.7 1.011
13 core 15.155 455.1 1.005
14 core 15.034 458.8 1.013
15 core 15.013 459.4 1.015

Table 2 Speed Variation among Cmmp's Memory Banks

Even among memory banks of the same technology, speed varies. These variations are

small however, and are caused primarily by variations in the length of cable connecting a

memory bank to the crosspoint switch and in the timing circuitry for individual memory

modules.

3.3.2.2 Memory Bandwidth and Memory Interference

The previous experiments show the rates at which individual processors and memories can

communicate. Another important characteristic is the maximum bandwidth of a memory bank.

This rate will determine how many processors can compete for cycles in a single memory

bank before the bank is saturated with requests. In this experiment all of the processors

simultaneously executed the tight loop in the same memory bank. Two banks of different

types were chosen to be representative of their respective technologies.

The results in table 3 indicate that performance degradation will occur if more than two or

three processors are competing for cycles in a memory bank. This result implies that sharing

code, a common practice to conserve memory space, will result in slower execution.

Semiconductor 1.49*10^ memory refs/sec.
Core 1 .71*10 e memory refs/sec.

Table 3 Maximum Memory Bandwidth

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 2 1

In tables 4 through 6 we illustrate the performance degradation that results from sharing

code. All of the measurements were performed on Pc[0]. In each case 100,000 total cycles

w e r e sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN to

S S Y N 1 , a complete memory cycle.

Table 4 is the control sample where we monitored the memory accesses while the system

was idle. Although the vast majority of cycles were in the 500fu . to ius. range there w e r e

some cycles that were greater than 14u*. This difference occurs because a processor that

doesn't have a process to execute runs a task called the "idle job". The idle job consists of a

WAIT instruction followed by the code that checks to see if a process is available to execute.

This piece of code contains a critical section guarded by a mutual exclusion busy-wait loop.

Since all of the processors are sharing this code and trying to gain exclusive access to the

critical section, a great deal of memory contention occurs and the memory cycle lengths grow

longer. We will use this table to compare the performance of the rootfinding processes when

they execute from one common code page and when each has a private code page.

Table 5 contains the results for when each of the processes executes from a private code

page. Comparing this table to table 4 we make two observations: while the average memory

cycle length has increased slightly, relatively little difference exists between the two tables;

the one category where a noticeable change does occur is the long (> 5.0 us.) cycles. Less

than half as many long cycles now occur because the processors are kept busy executing the

rootfinding processes.

Compare these two tables to the results in table 6 where all of the processes share one

common code page. Again we make two observations: the average memory cycle length has

dramatically increased by 3007,; more important still is that the percentage of long cycles (>

5.0 as.) has increased from .0862 in table 4 to 15.62, over two and one-half orders of

magnitude more. This degradation in the basic cycle time will offset and eventually reverse

speedup obtained by incorporating multiple processes in the rootfinding procedure.

*SSYN is the DEC name for the signal that indicates the completion of a bua transfer
module uses to tell the processor that the memory access is completed

I t is the stfnal the memory

THE IMPLEMENT A J ION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 2 2

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0 . 5 0 0 0 ~0
0.5 - 1.0 65652 7787 14089 9 0 2
1.0 - 2.0 9470 1926 8 0
2.0 - 5.0 63 6 2 0

5.0 -14 .0 63 6 10 0
14.0-50.0 5 2 0 0

> 50.0 0 0 0 0

Table 4 Histogram for Idle System

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0 . 5 0 0 0 0
0.5 - 1.0 65827 7461 11024 8 2 2
1.0 - 2.0 12705 1133 3 8 0
2.0 - 5.0 894 5 4 10 0

5.0 -14 .0 28 3 0 0
14.0-50.0 1 0 0 0

> 50.0 0 0 0 0

Table 5 Histogram with Private Code Pages

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0.5 0 0 0 0
0.5 - 1.0 52784 6504 9404 7 6 1
1.0 - 2.0 10810 689 102 0
2.0 - 5.0 3059 201 84 0

5.0 -14 .0 14291 843 287 0
14.0-50.0 174 4 3 0

> 50.0 0 0 0 0

Table 6 Histogram with Common Code Page

Figure 9 captures the impact of the finite memory bandwidth problem on the rootfinding

procedure. We have graphed the elapsed time to locate 50 roots vs. the number of

processes for two implementations of the rootfinding procedure. The dashed curve results

when a single copy of the code page is shared. The solid curve is the performance when the

cooperating processes each have a copy of the code in a private memory bank.

This graph also can provide some insight into the speed vs. space tradeoff. If we compare

the speedup over the single process instantiation for both the shared and no-sharing

versions of the rootfinder, we find that the no-sharing version has a maximum speedup of

2.60 using nine processes while the shared version's performance peaks at 1.53 using three

6 v
CO

.6 300\

2 27S\

2 5 0

225\

200\ Shared Code Page

175

150

125

100\

Private Code Pages

5 ° 7 2 3 4 5 6 7 ~~8 9
Number of Processes

Figure 9 Performance Degradation Due to Finite Memory Bandwidth

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 24

processes. Neglecting the single global data page we have a achieved a 1702 increase in

speed at the cost of a 3007. increase in size. In this study memory is plentiful and we

squander space for speed.

One solution to the speed vs. size tradeoff is to interleave the central memory on the low

order bits rather than the high order bits. This solution would tend to scatter memory

requests more evenly across the 16 banks. To maintain availability it might be necessary to

organize the store as four banks of 4-way interleaved memory. A second solution is to give

each processor a cache to work with. This solution is currently being implemented on Cmmp.

3.4 Operating System Related Performance Fluctuations

3.4.1 Introduction

The operating system also perturbs the performance of the rootfinding procedure.

Although C.mmp was intended to be a multi-user multi-programming facility, it is possible to

use the machine in a dedicated single user mode. In this mode of operation, the user can

minimize any interference from Hydra by simply not doing anything that requires operating

system assistance. Most of the measurements in this study were made in this way. However,

certain functions, i.e. scheduling of processes and I/O interrupts, must be performed by Hydra

and cannot be avoided. The contribution to performance fluctuation from these basic

operating system functions is measured and discussed in the following sections.

3.4.2 The Kernel Tracer

The Kernel Tracer is a software monitor that can obtain information about significant

activity on C.mmp under the Hydra operating system. Since it is a software monitor, the

Tracer does perturb the timing data it attempts to measure. However, this perturbation can

be compensated for in the post-processor software.

The Tracer can monitor such things as: context swaps which occur when a processor

changes from executing one process to executing another, semaphore activity, process starts

and stops, operating system requests (Kernel Calls) and a multitude of other events. Events

defined by user programs also may be traced.

The data is collected in real time and later processed off-line. Numerous post-processing

programs produce various forms of output: process or processor dumps, time-line execution

histories, and various statistical analysis packages.

All of the Tracer data that follows is in the form of a processor time-line execution history.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 2 5

We use various symbols in the trace to encode events in order to compact the data. Table 7

contains these symbols and their meanings. Each row of the trace represents the activity on

a processor. The time in seconds appears along the bottom edge. We will discuss in detail

the first trace that captures the impact of I/O interrupts on performance.

3.4.3 I /O Devices and Interrupts

Random interrupts from I/O devices and processors contribute to performance fluctuations

in the rootfinder processes. Unlike the memory, I/O devices are not centrally located and

accessable through an n x m crosspoint switch. Oevices are associated with a particular

processor. Thus, for example, a read or write from a disk on Pc[0]*s Unibus must be

performed by processor 0 regardless of which processor initiated the request. Since

interrupts are serviced by stealing cycles from the currently executing process, large

fluctuations in compute times can be found for processes running on processors with I /O

devices.

In figure 10, interrupts associated with I/O perturb the performance of the rootfinding

processes. C.mmp's processor configuration during this trace was Pc[0, 3, 4, 5, 6, 7, 8, 9, 1 1 ,

12 , and 13] , The processors appear from left to right as columns of the trace. Pc[0, 4, and

8] are P D P - l l / 2 0 s and the rest are PDP-11/40s. Processes(35, 43 -50) are the nine

rootfinding processes. Process 29 and the DAEMON are other processes that happened to be

awake at the time. These two processes are doing things that cause a substantial amount of

I /O. The following discussion describes how this I/O activity perturbs the rootfinding

processes.

A previous iteration finishes at 0.612 seconds into the trace. Process 50 , P(50), on P c [l l]

was the last to finish its calculation (the activity on Pc[6] is P{29)) and begins to wake its

sleeping companions by unlocking their semaphores. One by one the processes wake up and

begin to perform the next iteration. P(50) finishes waking up all the processes { P(49) was

the last to wake up at .641) and begins its own function evaluation. One by one the

processes finish their calculations and post their results, after which they "Pn their

semaphores and wait for the beginning of the next iteration. When they block on the

semaphore they are removed from the processor (e.g. CSW for P(45) on Pc[5] at .700). Four

of the processors have large chunks of time shaded between brackets. This shading and

brackets denotes an interrupt service routine performing I/O to a device on that Pc's Unibus.

Interrupt service routines can consume between 1 and 15 milliseconds of time. This causes

the rootfinding process on that Pc to arrive at the synchronization point late, thus

lengthening the STAGE time.

PROCESS N : PROCESS »N IS RUNNING

- CSW - : A CONTEXT SWAP

IOT »X : SPECIAL TYPE OF KERNEL KALL

KALL #X : KERNEL KALL «X

RET X : RETURN VALUE FROM A KERNEL KALL

£ : START OF AN INTERRUPT AT LEVEL N

J : INTERRUPT SERVICE ROUTINE EXECUTION .

"2 • ENO OF AN INTERRUPT

EVENT X : USER DEFINED EVENT X OCCURS

P : P OPERATION ON A SEMAPHORE

V : V OPERATION ON A SEMAPHORE

DAEMON : OPERATING SYSTEM PROCESS

| j | | | : IDLE TIME

Table 7 Tracer Symbols

Figure 10a Perturbations from Interrupts

ram :s

M«rrtt *% r»nmi 4*
Mat

"MM*
P9*tli%

»»em<

p»«tnt

4* 4C

:i
4R
21 AS 4*
\\ m
1 i «?I

»»errt« *« rtnmt 4«;
Mtrrti ~
::if(ii
B P

MWffl

MVfftt

»»trru
Marr<«

•»«ff«« « 4 "•cm 4*

IX

99*1
ffKI

P»4Ct<

St
4 K

:s

44) 44) 44)
4 4

4 4
4 4
4 4

Figure 1Ob Perturbations from Interrupts

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 29

For example, P(49) on Pc[8] is interrupted at .681 for 13 milliseconds and then again at

. 707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709

and finishes its function evaluation at .728 uninterrupted. Since it Is the last process to

finish, it assumes the jobs of finding the new root containing sub-interval and dispatching the

processes to perform the next iteration.

In this example the interrupted process was delayed enough to become the last process to

finish, thus lengthening the STAGE time. However, P(46) on Pc[13] was also interrupted

during its function evaluation for approximately 21 milliseconds yet it was not the last to

finish and did not cause the STAGE time to lengthen. This is another advantage the

multiprocess implementation of the rootfinding procedure has over its uniprocess counterpart.

In the single process instantiation the interrupt time is additive and each occurence lengthens

the iteration. In the multiprocess version, only the interrupt time associated with the last

process to finish is additive.

3.4.4 Kernel Processes and Special Functions

Operating system requests are frequently handled by special high priority Kernel

processes and as such perturb the cooperating rootfinder processes by stealing processors.

Of particular interest are the processes that perform scheduling. Because synchronization of

communicating processes can involve rescheduling the processes, the special scheduler

processes can become bottlenecks causing performance degradations.

During the trace of figure 11 , C.mmp's processor configuration was Pc[0, 2, 4, 5, 6, 7, 8, 9,

10 , 1 1 , 12, and 13]. Of these, 4 and 8 are 11/20's (so is Pc[0]) and are the third and seventh

blank columns with no execution history. Since enough processors of the prefered (1 1 / 4 0)

t ype were available the l l / 2 0 * s were never used. Similarly Pc[12] was not needed.

In this trace processes 18, 19, 20, 2 1 , 22 are rootfinding processes. Processes 1 and 2

are Kernel scheduling processes, and process 14 is the Tracer process.

P(22) on Pc[10], the last process to finish the previous function evaluation, initializes the

necessary parameters for the next iteration. At 285 ms. into the trace (.285) it begins to V

its sleeping companion processes, and at .309 it begins its own function evaluation (event

3 7 2) .

Meanwhile P(2) on Pc[6], scheduling process, wakes up CSW at .293 and begins to perform

the task of actually waking up the processes that process 22 has just V-ed. It is a relatively

painful task involving several semaphore operations and several Kernel calls per process.

att:siS

BS!

tail

V
V

H i : 111

Figure 11a Perturbations Induced by Operating System Processes

J po ooooooooo 11 . . . i - - '_•
'•-' • -' - •" »«* - " f a iiuua

at » u t » SH» 5 3 o»o» >> »>35E» 5 5 «* >> •** »
t t f S E E S S E E B E

g» ft* »> Ml iA » CULOHIU. » ftftA Ul »
I i E 6 & B » n u t v:

to
(1)
(ft
©
o
2 a.

E
CD
U)
cn
c
«M
(0
V.
Q)
a
o
- Q

CD
u
c

c
o

CO

t
o o.

II • 0 0 f 11

II Ilk ft fc 0 1

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 3 2

Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348 .

approximately 60 ms. after process 22 performed the V operation.

To expedite the costly wake up procedure, processes 1 and 2, the scheduling processes,

cooperate to start and to stop the rootfinding processes. Moreover, by the time they get

around to starting process 2 1 , the last process that is to wake up, three of the other

rootfinding processes have already finished their function evaluations and have gone back to

sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V

to wake process 2 1 .

Another side effect related to the operating system that can affect the performance of

cooperating processes is the round-robin scheduling of processes under Hydra. This

traditional policy is implemented using the notion of "time-sliced" intervals of execution to

provide equal service to all tasks. Occasionally a process exhausts its time slices and must

ask for more. This request can take more than 150 milliseconds to execute. Whether or not

the time-slice end anomaly will perturb the performance of the cooperating processes

depends upon the average duration of the function evaluation and the frequency of the

time-slice end condition. In this study a process must consume 10 one half second slices

before encountering the time-slice end condition.

Figure 12 is the distribution of the elapsed time to perform an F(x) calculation in the

presence of Hydra. The long tail in the distribution is a result of the time-slice end condition

occurring for the process performing the function evaluation.

3.5 Summary

The sources of performance fluctuation we have discussed can be classified into one of

three types— application, hardware, or operating system related. In the table below we rank

the sources of perturbation by their potential for causing performance fluctuations. Each

source is measured and the observed range calculated by dividing the maximum measurement

by the minimum observed value. The larger the range, the more potential for performance

fluctuation.

In the next section we eliminate several sources of perturbation In order to measure the

performance of various synchronization primitives. We do this by carefully selecting

processors and memory banks to execute the rootfinding program.

Figure 12 Distribution of the Time to Calculate F(x) in the Presence of HYDRA

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 34

Rank Type Source Measurement Range

1 Application F(x) Calculation Function Evaluation 1 : 3.4

2 Hardware Memory Contention Average Cycle Length 1 : 3 . 0

3 Operating System
•

Kernel Processes Bottlenecking of
Scheduling Processes

1 : 2.8

4 Hardware Processors Speed 1 : 1.6

5 Operating System, I/O Devices and
Interrputs

F(x) Calculation
Degradation

1 : 1.3

6 Hardware Memories Speed 1 :

Table 8 The Sources of Performance Perturbation

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 3 5

4. The Effect of Sychronization on Performance

4.1 Introduction

Newell and Robertson[1975] identified seven programming issues for multiprocessor

computer systems. One of these, synchronization, is a fundamental problem with cooperating

processes in any environment. Since it has great impact on the performance of a parallel

algorithm, we will measure the performance and discuss the tradeoffs of the various

synchronization mechanisms available to the C.mmp user.

Until now, we have used a very simple form of "busy-waiting" loop to synchronize the

cooperating processes. Although synchronization using this method is extremely fast,

undesirable side effects can cause serious performance problems. We will discuss several

alternative synchronization mechanisms, describe their operation and side effects, compare

their performance in the context of. the rootfinding algorithm, and present the range of

usefulness for each.

4.2 Description of Synchronization Primitives

We first examine the nature of the synchronization problem for the rootfinding processes.

In figure 13 we present a more detailed view of the STAGE time and in particular focus on

the mechanics of synchronization. The segment labeled FIljID is the time spent locating the

new root containing sub-interval. The VtiTs correspond to waking up each of the rootfinding

processes. One quickly notices that the overhead of synchrbnization can be a significant part

of the STAGE time in certain instances. Because we have used a spin lock, a form of busy

wait ing, to synchronise the processes, the overhead of synchronization has been negligible.

However, it is not always desirable to implement synchronization with this mechanism.

4.2.1 The Spin Lock

Of the three synchronization primitives considered in this study, the spin lock is the most

rudimentary. This primitive is actually implemented independently of any Hydra support and

is only a tight loop in which the process continually tests a semaphore until it can set it

successfully. The P and f operations are the following PDP-11 code sequences:

PROCESS nl
o o o F(X) CALC.

(idle time)

PROCESS *2
o o o F(X) CALCULATION f-

PROCESS »3
o o o F(X) CALCULATION f-

F(X) CALCULATION o o o

F(X) CALCULATION

F(X) CALCULATION

o
o
o

o
o
o

PROCESS »n-2
o o o . F(X) CALCULATION

PROCESS « n - l

o o o F(X) CALCULATION

PROCESS #n

o o o F(X) CALC

F(X) CALCULATION | FIND | v (l) | o o o

FIND |va) |v(2? I g I v(n.2) l v ^ »]vw 1 FOO CALCULATION

F(X) CALCULATION

STAGE TIME

Figure 13 A Detailed View of the STAGE Time

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 37

P: CMP SEMAPHORE, #1
BNE P
DEC SEMAPHORE
BNE P

{SEMAPHORE - 1 ?
jloop until it is « 1
jdecrement SEMAPHORE
;if SEMAPHORE neq 0 then go to P

V: MOV e l , SEMAPHORE ;reset SEMAPHORE - 1

The repeated polling of the semaphore, although extremely fast, has two very nasty

characteristics.

The first is that when the process completes its function evaluation and starts to poll the

semaphore while waiting for its counterparts for finish, the processor is not f ree to perform

useful work.

The second major drawback is that the polling process consumes many cycles in the

memory bank that contains the semaphore. As more processes finish their function

evaluations and begin to poll the semaphore, the bandwidth of the memory bank is quickly

consumed. The process that has its code page located in the bank with the semaphore will

be competing for cycles with many busy processors. This second problem can be

circumvented by inserting a tiny delay loop in the semaphore code, i.e., decrement a register

to zero before checking the semaphore. This delay will decrease the frequency of memory

requests in the semaphore memory bank, but not slow the sychronization primitive

appreciably. However, the primary problem still remains: a "spinning" process prevents a

processor from doing useful work.

4.2.2 The Kernel Semaphore

The Kernel semaphore (K-SEM) is implemented by the Hydra operating system. It is the

low level synchronization mechanism used by system processes. When a process blocks or

wakes up, a state change for that process is made inside the Kernel. Because it is

implemented within the domain of the Kernel, the user evokes operations on the semaphore

(P and V) by issuing Kernel calls. If the process blocks while trying to P the semaphore, the

Kernel swaps the process from the processor and places the process in the semaphore's

blocked-queue, where it remains until another process ^s the semaphore. When the process

can proceed again, it is swapped back onto an available processor and continues execution

from the point where it was blocked. The important attributes of the Kernel semaphore are:

- A blocked process is swapped from a processor.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 3 8

- When a process blocks, its pages are kept in primary memory. Keeping the
pages in primary memory ensures that the process will quickly resume execution
when it is swapped back onto a processor.

- The Kernel semaphore is approximately two orders of magnitude slower than the
spin lock.

4.2.3 The Policy Module Semaphore

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called

the Policy Module (PM). This primitive is intended as the user's primary mechanism for

performing synchronization.

Since the synchronization is performed within the context of a system process, more

flexibility is available in handling a blocking/waking process. The first policy that was

adopted to handle blocking/waking processes was the following:

- Two PM processes would cooperate to perform synchronization operations for
users; one would start and stop processes and the other would handle
communication between the Kernel and user.

- When a process blocked on a semaphore it would be context swapped from the
processor.'

- Any 'dirty' pages belonging to the process would be updated on secondary
storage.

- When a process was to wake up it would be restarted by one of the PM
processes after all the swapped out pages belonging to the process were
brought back into central memory.

This policy has evolved into a much faster arrangement of multiple processes in the

current version of the PM.

One modification to the PM that was found to improve performance substantially was to

delay the updating of a process' dirty pages onto secondary storage. Often a process is

blocked for very short amounts of time and will quickly resume execution after only several

milliseconds of waiting for a certain condition to be true. However, when a page is to be

updated onto secondary storage it is written onto one of several fixed head disks that will

take at least 3 2 milliseconds per page. The swapping disks revolve once every 16.67

milliseconds. It takes two revolutions to update a page: one to write it out and the second

to perform a read-check operation to validate the copy. Thus, it is quite possible for a

process to spend most of its time blocking and unblocking if the inter-synchronization interval

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 39

is small enough. The problem would be even more severe if there were a task force of

cooperating processes, e.g. the rootfinding processes, blocking and unblocking every few

milliseconds.

The current version of the PM initializes the delay time parameter, «, to 3 0 0 milliseconds.

Table 9 is a summary of the time it takes to perform the basic semaphore operations on the

various primitives.

Measurement
Time for a process
to do a V (us.)

Time till a process
wakes up from a V (us.)

Time from P to CSW (us.)

Time spent in PM while
waking a process (us.)

Spin Lock

30

30

na

na

K-SEM

3000

5000

3000

na

PMO PM1(€«0)

6000 5000

55000

9000

62000

50000

6000

20000

Table 9 Comparison of Execution Times for

Semaphore Primitive Operations

P M l (* - 3 0 0)

5 0 0 0

13000

6 0 0 0

4.3 The Impact of Synchronization on Performance

4.3.1 Introduction

Now that we have described the functionality and presented the individual performance

statistics for the basic primitive operations, we can observe the impact of synchronization on

the performance of the rootfinder. We have eliminated most of the overheads associated

with synchronization by using the spin lock primitive. The remainder of the paper examines

the rootfinder's performance as we employ the alternative synchronization primitives.

4.3.2 Comparison of Primitives When Compute Time •» Synchronization Time

The first graph, figure 14, compares the performance of the various implementations of the

rootfinder using different primitives to perform the process synchronization. We have

plotted the elapsed time to find 50 roots as a function of the number of processes. This data

was generated by the authentic, not synthetic, rootfinder. The distribution of the F(x)

550r

6 7 8 9
Number of Processes

Figure 14 A Performance Comparison of Synchronization Primitives

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 41

computation is approximately Normal with mean 72 milliseconds and standard deviation 18

milliseconds 1 . We compare the performance of four alternative synchronization primitives:

spin lock, K-SEM, P M K O 3 0 0) , and PMO semaphores.

The curve for the PMO semaphore implementation exhibits degradation as we increase

parallelism. The reason for this behavior is that the overhead of synchronization Is greater

than the average compute time. A process spends more time synchronizing than computing.

In this instance we would be better off using a single process.

The curve for the P M l (o 3 0 0) semaphore implementation depicts substantially better

performance than its predecessor. Performance reaches a maximum speedup of 2.00 at six

processes. No additional speedup is gained by employing more processes. Moreover, a

noticeable degradation occurs at nine processes. This sudden degradation occurs because of

the non-homogenous processor configuration (NHPC). During this experiment C.mmp's

processor configuration was eight 11/40's and one 11/20. Thus, when we incorporated the

ninth process, it ran on the slower 11/20 type processor. The-STAGE time lengthed, thus

yielding an overall slower performance.

The K-SEM implementation has its peak performance of 2.4 at eight processes. It too is

affected by the NHPC problem and performance degrades slightly at nine processes. The

overall performance of the K-SEM implementation is about midway between the PM1(€«300)

and the spin lock versions.

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight

processes. The NHPC problem causes a much more severe performance degradation for this

semaphore than for the others*. The reason is that the processes blocked on the spin lock

semaphore remain on their processors, whereas the other implementations free the faster

1 1 / 4 0 type processors to steal the process that is still running on the slower 1 1 / 2 0

processor.

4.3.3 Comparison when Compute Time is Much Greater Than Synchronization Time

In the previous experiment the overhead of synchronization was in some cases a

considerable fraction of the STAGE time. If we make the compute time for the function

evaluation much larger, thus reducing the percentage of time spent synchronizing, the

* 0 n an 1 1 / 4 0 processor

*The PMO implementation performance curve has a greater degradation than the tpin lock version. However, the
reason is not merely the NHPC problem The primary reason is that the two PM processes that perform the semaphore
operations are almost constantly running.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 42

performance differences between the various implementations is also reduced. Figure 15

graphs performance in terms of speed up as a function of the number of processes. We used

the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to

compute with the distribution a constant. The dashed curve is the performance obtained

using the PMO semaphore and the solid curve the performance obtained using the spin lock.

We expected the curves to be closer together, yet the spin lock version outperforms the

PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large difference is that

the PM processes must perform the semaphore operations serially, each V operation taking

about 55 milliseconds. Thus the n" 1 rootfinder process is not started until 55 *n milliseconds

into the STAGE time. In this manner the ninth rootfinder process does not complete its

function evaluation until 870 milliseconds have past. Similarly, when the rootfinder processes

complete their F(x) calculations, the PM processes again serially perform the P operations on

the semaphores causing still further performance degradations.

The severe performance degradation that occurs at eight and at nine processes for the

spin-lock implementation is another instance of the IMHPC problem. This time, with only seven

1 1 / 4 0 type processors, performance peaks at seven processes, declines slightly at eight, and

then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance

of the two implementations is nearly identical at nine processes.

However, in figure 16, where the distribution is exponential, relatively little difference

exists between the performances of the two implementations. Because the distribution of the

compute phase causes the processes to arrive at random times, the PM does not become a

bottleneck when the processes finish their work. When they are restarted, the last one to be

started is still delayed by 55*n milliseconds. However, since the distribution is exponential,

the process that must compute the function evaluation with a compute time that lies in the

long tail of the distribution always finishes last. Thus the overhead of synchronization is

again hidden by the MAX function that governs the STAGE time.

4.4 Summary of Results: The Useful Range for Various Semaphores

In figure 17 we have summarized the results of this investigation by graphing the useful

range for each of the synchronization primitives. We have graphed the performance of the

rootfinder using each primitive as we vary the size of the computation phase between

synchronization points. For each point, five cooperating processes performed 1000 total

function evaluations to find 50 roots. The distribution of the function evaluation was a

constant and ranged in size from 2 milliseconds to 375 milliseconds.

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured

4)
Q.
«0

3.00r

2.75\

2 . 5 0

2.25X

2.00

1.75

1.50

1.25

T.OOi

PMO Semaphore

6 7 8 9
Number of Processes

Figure 15 Comparison of Two Synchronization Primitives

7 y 10 100 lOOO
Compute Time per Inter-Synchronization Interval (milliseconds)

Figure 17 The Range of Usefulness for the Various Semaphores

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP

Semaphore Type
Spin Lock

K-Sem
PM1(*«300)

PM1((*0)
PMO

Table 10 Cross-over Points for the Various Semaphores

PAGE 4 6

due to hardware, operating system or synchronization overheads.

The 502 line represents our threshold for adequate performance. It parallels the

NO-OVERHEAD curve but represents exactly half of the performance that would be achieved

in the best case. The point at which a performance curve crosses the 50Z line is the

threshold of usability for that synchronization primitive.

From these results we see that the spin lock is the only primitive that performs adequately

when the length of the compute phase is less than 15 ms. At the other extreme, all of the

primitives with the exception of the initial version of the policy-module semaphore, become

indistinguishable beyond 400 ms. In the region between these two endpoints the user can

select the appropriate primitive to match the length of the computation phase. The

cross-over points for the various semaphores appear in the table below.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 47

5 . An Example Implementation

One technique to decompose a task for parallel execution is to portion the work into

independent partitions for simultaneous processing. This method is applicable to problems

involving the repeated evaluation of a sequence of functions on a stream of data, e.g. integer

programming and matrix manipulations. The parallelism results from simultaneously

performing the function evaluations on different data elements in the stream.

Two overheads are associated with decomposing an algorithm into parallel processes using

the partition approach: 1) the cost of partitioning the data and 2) the cost of synchronizing

the processes. To successfully capture parallelism using this approach, these two overheads

must be minimized. Thus, problems involving minimum communication between the processes

and a long data stream composed of independent data elements are favored as good

candidates for decomposition using the partition approach.

However, not all tasks that exhibit potential parallelism are simply the repeated application

of a function on a stream of data. Connected speech recognition systems exhibit a great deal

of parallelism [Lesser 75], but have complex control structures that can constitute a large

synchronization overhead. In order to efficiently implement algorithms of this type, it is

necessary to restructure the algorithm so that the overhead of process synchronization has

only minor impact on the algorithm's performance.

Often, minimizing the overhead of synchronization can be accomplished by decomposing a

large, complex task into a series of smaller, simpler sub-tasks. While this introduces new

synchronization points into the algorithm, it also increases the potential for parallelism if the

sub-tasks can be performed simultaneously.

To demonstate the effectiveness of the partition approach we have chosen a complex task,

the Harpy speech recognition system developed at Carnegie-Mellon University [Lowerre 7 6] ,

for decomposition into cooperating processes. This chapter describes the algorithm,

demonstrates a series of implementations, and discusses the performance that results from

each refinement to the algorithm.

5.1 A Brief Description of the HARPY Speech Recognition System

HARPY is a speech recognition system that can recognize phrases and sentences from

many speakers based on a finite vocabulary within a constraining task [Lowerre and Reddy

77] , Two important features of any speech recognition system are its representation of

knowledge and the search and match techniques that convert the passive knowledge into an

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 4 8

active process for understanding the spoken utterance.

5.1.1 Representation of Knowledge

HARPY represents all legal sentences within a task in a finite state graph structure. Figure

18 is a graph of a simple grammar. The knowledge is organized as a network of nodes where

each node holds a word in the vocabulary. The nodes are interconnected such that any path

through the word network constitutes an acceptable sentence.

Many words have more than one pronunciation. Alternative pronunciations can be

represented as a separate network of phonemes*. Each path through this type of network

represents an acceptable pronunciation of a word. For example, the southern pronunciation

of the word "tell" is an optional path through the phoneme graph in figure 19.

By replacing every node in the word network with its pronunciation network, we produce a

new finite state graph, figure 20, where each path is a pronunciation of an acceptable

sentence.

A separate knowledge network is compiled for each task. Pre-compiling the network

eliminates the need for dynamic interpretation of knowledge during the search and match

phase of the recognition process.

5.1.2 The Recognition Process

HARPY's recognition process consists of three separate phases: the pre-processing of raw

speech, the heuristic search through the knowledge network, and the backtrace through the

network that yields the connected sentence of speech. The heuristic search is by far the

most interesting and computationally intensive phase of the recognition process, but we will

include discussion of the other two phases for completeness.

The pre-processing phase starts when the utterance is input to the computer. The

utterance is digitized and segmented into acoustical units, figure 2 1 . These segments are

analyzed to determine their segmental features and parameters. At this point, an attempt is

made to match each segment of speech with one of the possible phonemes. Since an absolute

assignment cannot be made reliably, the system calculates a match probability for each

phoneme based on the acoustic information in each segment, figure 22.

The goal of the heuristic search phase is to find an optimal sequence of phonemes

Phonemes are the smallsst units of speech that distinguish one word from another, e.g., the "m" in mat and the "b" in
bat are t w o English phonemes.

Figure 18 A Word Network for a Simple Grammar

Figure 19 Pronunciation Network for the Word "TELL'*

Figure 20 Pronunciation Network Incorporated Into the Word Network

Figure 21 Digitized Speech Segmented into Acoustic Units

TELL
I

ABOUT
ABOU ABOUT CHINA

CHINA CHINA • •

I h e a r d " T E L L ME A L L ABOUT C H I N A

Figaro 22 Words Corresponding to Selected Phonemes

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 54

satisfying two criteria: the sequence must represent a legal path through the knowledge

network, and the sequence should consist of phonemes with high acoustic match probabilities.

HARPY uses a beam search to locate this optimal sequence of phonemes. This technique

involves searching a few of the best paths simultaneously, eliminating the need for

backtracking.

The ' search is performed by creating and dynamically pruning a tree structure of

phonemes. Each ply in the tree represents one segment of the digitized utterance.

For example, HARPY begins the search by placing all the legal phonemes for the start of a

sentence in the recognition tree, figure 23a, Next, a path probability is calculated for each

candidate. The path probability is a cumulative probability based on the path probability of

the previous node and the acoustic match of the current node, figure 23b. The path with the

best probability is determined and the remaining candidates are compared with it. Those that

fall below a threshold of acceptability are pruned from the recognition tree, figure 23c.

The surviving candidates are expanded based on the information in the knowledge network

and the search continues, figure 24a. The path probabilities are calculated, the best path

determined, and unpromising alternatives are pruned, figure 24b. The heuristic search

continues, expanding the recognition tree and saving those connections that satisfy the

threshold until the end of the utterance.is reached.

The final phase of the recognition process is a backtrace through the recognition tree

along the path with the highest probability. This backtrace is purely a lookup operation, and

does not involve any search. The final output of the backtrace is the sequence of words that

correspond to the optimal path.

5.2 The Decomposition of the HARPY Algorithm

The first step in decomposing HARPY'S search algorithm is to isolate sub-tasks, independent

functions that operate on a data stream. No restriction exists on the number of sub-tasks

that, when combined, accomplish the task. Moreover, performance may be improved by

decomposing a complex sub-task into a series of simpler tasks.

HARPY is a three phase recognition system; in this study, we will decompose only the

heuristic search phase since it is the most complex and computer intensive of the three. We

can identify three sub-tasks in HARPY's heuristic search. The three sub-tasks and the names

of the routines which perform them appear below and in figure 25.

CHECKNEXT A candidate state is expanded into a list of successor states. Each Item

Figure 23a,b ,c First Three Steps in the Recognition Sequence

Figure 24a,b Recognition Sequence Steps Four and Five

(SUB-TASK 1)
fCHECKA

NEXT J

Candidates<seg i)
(F,S) pairs

(SUB-TASK 2)

(F,S > pairs
States(seg i)

BESTP

Stales(seg i+1)

(SUB-TASK 3)

(F,S) pairs,
States(seg i+ i)

pruned states

Candidates(seg i+1)

Figure 25 A Flow Diagram of Harpy's Search Algorithm

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 5 t

in the list is a father and son (F,S) pair.

CHECKSTATE The probability of transitioning from father to son is calculated. If the
value is greater than the current probability in the successor state, this
value is updated; otherwise it is not. The best probability during this
current segment also is saved, (BESTP), and is used later in the pruning
phase.

SAVESTATES A threshold is determined, based on the current best probability. All
sons that have transition probabilities higher than the threshold become
next generation candidates; all those below the threshold are discarded
as unlikely paths.

In the uniprocessor implementation of the algorithm, the total compute time was divided

among these routines in these proportions:

We therefore will attempt to speed up the algorithm by concentrating compute power in

the form of task forces of cooperating processes to perform the three major routines—

CHECKNEXT, CHECKSTATE, and SAVESTATES.

5.3 The Initial Implementation

5.3.1 Constraints on the Implementation of the HARPY system

In the implementations that follow, we have divided the heuristic search into two phases:

the forward step, where the recognition tree is expanded; and the pruning step, where

unlikely paths are removed from the tree. Hence, the forward step consists of the two

routines, CHECKNEXT and CHECKSTATE, while the pruning step is performed by SAVESTATES.

Two decisions were made prior to the design of the first implementation: the first, because

of the nature of the algorithm; and the second, to simplify the data structures.

- Because the pruning, step cannot begin until BESTP is found, the forward step
must be completed before the pruning step can begin.

CHECKNEXT
CHECKSTATE
SAVESTATES
OTHERS

21.52
46.07.
28.57.

4.07.
1002 TOTAL

Table 11 Compute Time Proportions

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 5 9

- For simplicity, the forward step will not begin until the previous pruning step is
completed. This decision was made because the forward step modifies the
STATE vector, which is input to the pruning step. To maintain the data's
integrity, it would be necessary to add an additional dimension to the STATE
vector indicating the speech segment for which the state's path probability is
calculated*.

5.3.2 Control Structures and Data Sharing

The original version of HARPY combined the two sub-tasks, CHECKNEXT and CHECKSTATE,

forming the forward step of the algorithm. The initial C.mmp implementation is a parallel

version of the uniprocessor algorithm.

Since the pruning step cannot begin until the forward step is completed, we use a

synchronous control structure^ to sequence the pruning step after the forward step.

Similarly, another synchronous control structure sequences the forward step to process

speech segment(i+l) after the pruning step completes processing speech segment(i).

The cooperating processes in the forward step statically^ allocate the candidate states

among themselves. Each process is assigned an equal number of candidates to work on: the

process first expands a candidate into a list of successor states and then calculates the

probabil i ty of transitioning to each of these states from the candidate. When a process

exhausts its supply of candidate states, it must wait for the other task force member

processes to finish before the pruning step can begin.

* I t would be possible to immediately expand candidates into (F,S) pairs as soon ts they are created by the
pruning step, but this implementation is not discussed here.

^ I f sub-task(j) takes- as input the output of aub-tesk(i), and if sub-task(j) cannot befin until all processing at
sub-t«tsk(i) is finished, then the control structurs to sequence sub-task(j) after sub-taekft) is a synchronous control
s t ructure .

Data is allocated statically in a task force if the processes do no compete for the data items. Instead, each process
has a private partition of the data.

J HE IM£L|MtNTAl fION AND EVALUATION OF PARALLEL ALGORITHMS ON CM MP PAGE 8 0

In the pruning, step, work units are dynamically* allocated from a data stack. A process

takes the top element on the stack, a successor state, and performs a calculation to determine

if the state's path probability is above the pruning threshold. If it is, the state Is saved and

becomes a candidate for expansion in the next iteration of the forward step. If the path

probability falls below the threshold, the state is discarded.

5.4 Performance of the First Implementation

The performance of this implementation is presented in two parts: the forward step and

the pruning step. In both cases, three measurements were performed:

Elapsed time to process fifteen utterances.*

Speedup relative to the single process instantiation as the number of cooperating
processes in the task forces is increased.

Pc utilization as the number of cooperating processes in the task forces is increased^.

5.4.0.1 The Performance of the Forward Step

In figure 26, the elapsed time to perform the forward step of the algorithm decreases from

52.S9 seconds in the single process instantiation, to 18.14 seconds when eight processes are

incorporated into the algorithm. This improvement corresponds to a relative speedup of only

2.914.

In figure 27 we compare the algorithm's relative speedup, as a function of the number of

processes, to linear speedup. Theoretically, if n processes cooperate to perform the

algorithm's forward step, the elapsed time to perform the task should be reduced by a factor

of n. Unfortunately, the speedup exhibited by the algorithm is substantially less than linear.

Figure 28, which graphs process utilization as a function of the number of processes, sheds

some light on the reason for less than linear speedup. In this graph, process utilization

decreases rapidly as the number of processes increases. At eight processes, only 27.57, of

the available processing power is being used. The under-utilization of processing power

indicates that allocation of data to the processes is the source of the performance problem.

Data is dynamically allocated in a task forca if tha procaaiaa compata, or ahara, all tha data. Thar a ia no
pre-eastgnment of data to specific processes.

*Theae utterancea came from tha Artificial Intelligence information retrieval task [Lowerre 78] , aee Appendix.

^The processor utilization measurement does not include operating system related effecta on utilization tuch as:
context swaps, time-slice end rescheduling, end interrupts from I/O devices.

Version # 1

Oi i i i i f i i 1 1
O 1 2 3 4 5 6 7 8 9

Number of Processes
Figure 27 Decomposition of the Forward Step— Version #1

Version #1

ol
o 1 1 1 1 1 1 — i i J

1 2 3 4 5 6 7 8 9
Number of Processes

Figure 28 Decomposition of the Forward S t e p - - Version # 7

THE IMPLEMENTATION ANO EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 84

In order to understand the reason for this poor behavior, we must look more closely at the

work units and the way they are allocated to the processes.

For the synchronous control structure to perform well, the processes must arrive at the

synchronization point together. Any one process that lags behind will cause the entire task

force to wait.

Although each process receives an equal number of candidate states to work on, this

method does not guarantee that each process will receive an equal share of the total

computation. Figure 29, which is a graph of distribution of compute time for expanding a

candidate state into the list of successor states, shows that while most candidate states can

be expanded in less than five milliseconds, occasionally the expansion can take as much as

th i r ty milliseconds to perform. In addition, the distribution of the time to perform the

transition probability calculation is bimodal, figure 30. The first peak, at 800 microseconds,

corresponds to performing the transition probability calculation and not updating the STATE

vector. The second peak, which is centered at 1200 microseconds, corresponds to

performing the calculation and also.updating the STATE vector with the new value.

If the number of candidate states each process received were very large, the variation in

the compute time would have small impact on the performance of the forward step.

Unfortunately, this is not the case. Figure 3 1 , which is the cumulative distribution of the

number of candidate states per segment of speech, shows that the average number of

candidate states per segment is small; 65% have fewer than ten candidate states, and 24*2

have but a single candidate.

Thus, although the current method allocates an equal number of candidate states to each

process, those processes that receive many 'prolific' states will perform more computations

than those processes that receive mostly 'barren* candidate states. The net result Is

under-util ization of the processes caused by an unequal allocation of work.

5.4.0.2 The Performance of the Pruning Step

The performance of the pruning step is much better than the forward step. In figure 3 2 ,

the elapsed time to process the fifteen utterances is reduced from about 28 seconds to less

than six seconds when eight processes are incorporated into the algorithm. In figure 3 3 ,

where the speedup of the pruning step is plotted as a function of the number of processes,

almost a fivefold improvement is realized when eight processes cooperate to perform the

pruning step. Although less than linear speedup is exhibited, the performance of the pruning

step is substantially better than the forward step. The successful implementation of the

pruning step stems largely from two sources.

« 5 0 0 0 r
a
E

Compute Time (milliseconds)
Figure 29 Distribution of the Compute Time to Expand Candidates

„ 20000
ju
a
E
V)

18000
»»
0)
-Q
E

16000

140001

12000

100001

80001

60001

4000

2000

01 , , .
.0 f .0 T.5 4 - I 4 + •» + + | | 1 f + +w 2.0 2.5 3 .0

Compofe r/me (milliseconds)
Figure 30 Distribution of Transition Probability Compute Time

1.00

•Q

o
& 0 . 9 0

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

O.OO
10

Cumulative Distribution Function

100 1000
Number of Candidates

Figure 31 Distribution of Candidates per Segment of Speech

01
o

• i i i 1 1 i i
7 2 3 4 5 6 7 8

Number of Processes
Figure 32 Elpased Time to Perform the Pruning Step

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 7 0

First, processes dynamically acquire work units, father and son (F,S) pairs, from a data

stack.* Thus, even though the distribution of the compute time to perform the threshold

calculation on an (F,S) pair is bimodal, figure 34, the processes arrive at the synchronization

point almost simultaneously. Since the last process to finish can hinder the rest of the task

force by at most one candidate state's processing time, high process utilization results, f igure

3 5 .

Second, the pruning step's data stream contains more work units than the forward step's

data stream. The cumulative distribution of the number of (F,S) pairs per segment of speech

can be found in figure 36. The table below summarizes the difference between the two data
streams.

Work Units per Segment CANDIDATES (F.S) PAIRS
1-10 65.7% 38.0%

10-100 30.3% 32.0%
100-1000 4.0% 28.0%

>1000 0% 2%

Unlike the distribution of candidate states, the number of (F,S) pairs per segment of speech

spans more than three orders of magnitude. More than 30% of the segments have greater

than one hundred (F,S) pairs; less than 40% have only ten or fewer pairs.

In summary, the dynamic allocation of data in the pruning step is the key to its successful

implementation. When a synchronous control sturcture is used to synchronize cooperating

processes it is imperative, in order to maintain high process utilization, that the processes

arr ive at the synchronization point together. Dynamic allocation of data ensures that high

process utilization will occur, as processes do not develop a backlog of unstarted work units,

while other processes are idle due to a lack of work.

5.5 Refinements to the Initial Implementation

In this section, three refinements to the initial implementation are presented. In each, only

the implementation of the forward step was enhanced. The performance of the Initial

implementation will serve as the baseline for measuring the performance improvement each

refinement contributes. As it is possible to measure the performance of the forward step

separately from the algorithm as a whole, measuring the performance improvement of the

avera** , less than 3 0 microseconds of ovarhaad it aasociaied with obtainmf a work unit from the stack.

Number of Processes

Figure 3 3 Speed Up During the Pruning Step

M 20000r

a
E

o 18000
v.
a>

•Q
E

1GO00

14000

12000

lOOOO

8000

6000

4000

2000

01—, , , , i * 4 < 1 1 4 * 4 1) 1 1 1 1 4
7.5 2.0 2.5 3.0

.O .5 1.0

Compute Time (milliseconds)
Figure 34 Distribution of Compute Time During Pruning Step

1.00r

0.20V

0.10

o.oo
100 1000 10000

Number of (F,S) Pairs

Figure 36 Distribution of (F,S) Pairs per Segment of Speech

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAOE 74

forward step is sufficient to evaluate the refinement.

5.5.1 The First Refinement

In the initial implementation, the Key to the success of the pruning step and the failure of

the forward step was the allocation of work to the processes. During the forward step, the

work units were allocated statically, by number instead of by amount of computation. This

method resulted in an unequal distribution of work among the processes In the forward step

task force.

We will attempt to allocate work units equally by dynamically allocating candidate states to

the forward step task force. Now, as in the pruning step, a process takes a work unit from

the stack of unstarted work only when it is ready to start processing the new work unit. All

other aspects of the algorithm will remain the same.

We compare the elapsed time to perform the forward step under the two work allocation

strategies in figure 37. From the two process case on, the dynamic allocation method

outperforms the static method. At eight processes, the maximum measured parallelism, a 162

performance improvement results; the elapsed time to perform the task reduced from 18.15

seconds to 15.20 seconds.

Similarly, greater speedup is achieved by dynamically allocating work to the task force.

Speed up as a function of the number of processes is graphed in figure 3 8 for both

implementations. In all measurements, dynamic allocation of work yields higher performance

than static allocation. For eight processes, a speedup of 3.47 was achieved using the dynamic

strategy, compared to only 2.91 for the static method.

An improvement in process utilization also resulted. In figure 39 process utilization under

the two allocation strategies is graphed as a function of the number of processes. For the

eight process instantiation, a 32.72 utilization was achieved using dynamic work allocation,

compared to 27.57, process utilization when the work was statically allocated to the

processes. The table below summarizes the comparison of the two implementations for the

eight process, maximum measured parallelism, case.

Performance Measure
Elapsed Time (sees.)
Processor Utilization

Version * 2 Version #1

Speedup

15.206
32.77.
3.471

18.148
27.467.

2 .914

5 5

101-

5

OI i i i i i i i i j
O 1 2 3 4 5 6 7 8 9

Number of Processes
Figure 37 Decomposition of the Forward Step— Version # 2

I

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 7S

In summary, switching from static work allocation to dynamic work allocation resulted In a

167, performance improvement. The performance improvement is small because there are not

enough work units in the data stream. The small number of work units causes two problems:

1) a large variance in the amount of computation a process performs; and 2) often, processes

do not receive even a single work unit. Together, these performance problems cause low

process utilization during the forward step.

5.5.2 The Second Refinement

In this version of the 'forward step we solve the problem of low process utilization by

decomposing the forward step into the two sub-tasks CHECKNEXT and CHECKSTATE. By

making CHECKSTATE a separate sub-task, any process may now perform the transition

probability calculation on an (F,S) pair— not just the process that created the pair. In this

w a y we have increased the number of work units in the data stream by breaking large units

into many smaller ones.

As in the previous implementation, the£HECKNEXT task force begins processing the speech

segment by taking candidate states from a stack and expanding them into a list of (F,S) pairs.

However, instead of performing the transition probability calculation as each (F,S) pair is

produced, the processes place them in another data stack that supplies the CHECKSTATE task

force with input.

When all the candidate states have been expanded, the processes synchronize and the

CHECKSTATE task force begins to execute. Thus, we initially will use the synchronous control

structure to sequence the CHECKSTATE sub-task after the CHECKNEXT sub-task.

The elapsed time to perform the forward step is compared to the two previous versions in

figure 40. In the single process instantiation, the latest version of the forward step is more

than 20% slower than the two previous versions. This penalty results from the CHECKNEXT

sub-task storing, and the CHECKSTATE sub-task retrieving the (F,S) pairs from a data stack.

In the previous implementations, the storing and retrieving was unnecessary since the (F,S)

pairs were not placed in a common pool; the process that created the pair also performed the

transition probability calculation on it.

As the parallelism increases the elapsed time to perform the forward step is reduced from

66 .69 seconds to 14.96 seconds. Thus, this version outperforms the initial implementation

from the three process case on, and the first refinement from the six process case on,

despite incurring the large initial overhead associated with storing and retrieving the (F,S)

pairs.

6

Number of Processes
Figure 40 Decomposition of the Forward Step— Version # 3

\

*4

Version #3

Version #2

Version # 1

1 2 3 ~ 4 5 6 7 8 9

Number of Processes

Figure 4 f Decomposition of the Forward Step— Version # 3

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 81

Although the elapsed time to perform the forward step has not been significantly reduced,

the process utilization has dramatically increased, as shown in figure 4 1 . At maximum

parallelism, eight processes, this version exhibits a 537. process utilization, compared to 32 .72

utilization for the first refinement, and only 27.52 for the initial Implementation. The

substantial improvement results from sharing the (F,S) pairs more equally among the

cooperating processes.

We compare the speedup of the three implementations, relative to the single process

instantiation of the initial implementation, in figure 42. The latest version of the forward step

is initially slower than the two previous versions— a speedup of 0.79. However, as the

parallelism increases, the latest version outperforms the two previous implementations; at

eight processes a speedup of 3.535 compared to 3.479 for the first refinement, and 2.915 for

the initial version.

To summarize, the latest enhancement to the algorithm, splitting the forward step into the

two sub-tasks CHECKNEXT and CHECKNEXT, resulted in an initial overhead in the form of a

2 0 2 increase in elapsed time, caused by the additional manipulation of the (F,S) pairs. This is

the cost we pay to share the (F,S) pairs equally among the task force. However, as the

parallelism increased, a small improvement over the two previous versions was realized due

to a substantial increase in process utilization. The table below compares the performance of

the three versions when eight processes are in the task force.

Performance Measure Version * 3 Version #2 Version * 1

5.5.3 The Third Refinement

In the previous implementation, the two sub-tasks CHECKNEXT and CHECKSTATE were still

per formed sequentially despite their being identified as separate sub-tasks. Any

performance improvement obtained was achieved by sharing the computational load more

.equally among the cooperating processes. In this final refinement to the original

implementation, we will perform the two sub-tasks of the forward step in parallel, obtaining

still greater peformance improvement.

Elapsed Time
Processor Utilization

Speedup

14.966
52.992

4.456

15.206
32.702

3.471

18.148
27 .462

2.94

In this implementation, we sequence CHECKSTATE after CHECKNEXT with an asynchronous

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 8 3

control structure. 1 This allows the CHECKSTATE task force to begin calculating transition

probabilities for the (F,S) pairs before the CHECKNEXT sub-task is completed. Thus,

processes that cannot find any candidate states for expansion no longer become idle, waiting

for their companions to finish. Instead these processes immediately begin to perform the

transition probability calculation on the (F,S) pairs already produced. We can allow this type

of parallelism because the CHECKNEXT task force only adds new (F,S) pairs to the

CHECKSTATE task force's input stack; they do not modify any pairs already on the stack.

The elapsed time to perform the forward step for all four alternative implementations is

compared in figure 43. The latest version of the algorithm outperforms the three previous

versions from the three process instantiation on. The elapsed time is reduced from 65.3

seconds to 12.3 seconds at maximum parallelism— more than two and one-half seconds faster

than the next best version.

Performing the two sub-tasks in parallel has substantially increased the forward step's

performance by maintaining higher process utilization. In figure 44, the process utilization of

this version is compared to the three previous ones. At maximum parallelism, the final

version of the forward step maintains a process utilization of 63.7%, compared to 53%, 32.7%

and 27.5% for the earlier implementations.

In figure 45 we compare the four implementations of the algorithm in terms of speedup.

The final version of the algorithm is initially slower than the first version due to the extra

storing and retrieving of the (F,S) pairs from the data stack. However, as the parallelism

increases, the final version of the algorithm outperforms the three previous versions,

speeding up the execution of the algorithm by a factor of 4.29, compared to 3,54, 3.48, and

2.92 for the previous versions.

Again, performance has been improved by increasing process utilization. In this version,

the increase in utilization was achieved by sequencing the two sub-tasks asynchronously

instead of synchronously. Thus, not only were individual sub-tasks performed in parallel by

task forces of processes, but also two sub-tasks were processed simultaneously. If a

process could not find work to perform in the CHECKNEXT task force, it looked for work to

perform in the CHECKSTATE task force.

Unfortunately, this method of enhancing performance by increasing parallelism only

partially solves the problem of not enough data in the data stream. Those processes that

I f sub-task<j) takes as input the output of sub-task<i), end if sub-taak(j) does not have to wait for sub-tesk(i) to
be competed before it can begin,, then the control structure sequencing aub-taak(j) after tub-task(i) is an aaynchronoua
control structure.

01 t i i i i i i i 1
O 1 2 3 4 5 6 7 8 9

Number of Processes
Figure 44 Decomposition of the Forward Step— Version #4

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 8 7

cannot find any work to perform in the CHECKNEXT task force are not guaranteed to find

work by becoming part of the CHECKSTATE task force. In addition, although further

subdividing the forward step into smaller sub-tasks will increase process utilization by

creating more work units, it will also introduce new overheads in manipulating the data items.

At some point, the overheads in manipulating the new work units will outweigh the

performance improvement resulting from higher process utilization. This investigation, to

locate the optimum number of sub-tasks, is beyond the scope of this study.
, *

The performance of all four versions of the forward step is summarized in the table below.

Measure Version «4 Version »3 Version * 2 Version »1
Elapsed Time 12.339 14.966 15.206 18.148
Pc Utilization 63.697 52.997. 32.707> 27.467.

Speedup 5.295 4.456 3.471 2.94

5.6 Summary

5.6.1 Comparing the Four Versions of the Algorithm

The performance of the initial implementation was discussed in detail, uncovering several

problems limiting the performance of the algorithm. In the three subsequent implementations,

enhancements to the algorithm were directed towards eliminating the performance problems

of the initial version.

In the initial parallel version of the algorithm, statically pre-allocating an equal number of

candidate states to each process resulted in under utilization of the processes for two

reasons: the compute time to process a candidate state was not a constant, and the number

of candidates per segment of speech was quite often less than the number of processes.

The first enhancement to the algorithm was to dynamically allocate the candidate states

among the processes. This prevented one process from developing a backlog of unstarted

work while other processes were forced to remain idle. A 162 reduction in the elapsed time

to perform the forward step of the algorithm resulted. This technique solved the problem of

unequal workload allocation only when there were many candidate states to be processed.

When the number of candidates was small, almost two-thirds of the speech segments had less,

than ten candidate states, under utilization of the processes still resulted.

In the second enhancement to the algorithm, the sub-task performing the forward step was

split into two smaller sub-tasks in order to increase process utilization. Dividing the

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 8 8

computation into two separate phases increased process utilization by breaking the relatively

small number of computationaly large work units into many smaller, less complex units.

Although process utilization increased by 207., the additional overhead In sharing the new

data items and in synchronizing the processes between the two sub-tasks, eliminated any

substantial elapsed time improvement.

In the final implementation, the control strategy synchronizing the processes between the

two sub-tasks was changed from synchronous to asynchronous. Processes that could not find

a candidate state for processing in the CHECKNEXT sub-tasks, migrated to the CHECKSTATE

sub-task to start processing the (F,S) pairs without waiting for the rest of the task force to

finish the CHECKNEXT sub-task. This enhancement increased process utilization to

approximately 64%. However, unlike the previous implementation, a sizable improvement in

the elapsed time to perform the forward step was realized; a 17.5% reduction to 12.3

seconds.

5.6.2 A Final Comparison— The Uniprocessor Algorithm

Up to this point we have confined our performance comparison to the alternative

implementations of HARPY on C.mmp. To conclude this investigation, a comparison between a

parallel version of the algorithm written for C.mmp and the uniprocessor version of the

algorithm written for a DEC KL10 is presented.

In figure 46, the performance of the two machines is compared in terms of the elapsed

time to recognize fifteen utterances. The KL10 recognizes the fifteen utterances in

approximately 49 seconds. The single process instantiation of the C.mmp version performs

the same task in approximately 144 seconds, almost three times slower than the KLIO.

However, as additional processes are incorporated into the algorithm, the elapsed time to

perform the task is sharply reduced. At four processes, C.mmp outperforms the KLIO,

requiring only 46 seconds* to perform the task. At seven processes, maximum measured

parallelism, C.mmp is recognizing the fifteen utterances in only 33 seconds, over 30% faster

than the large uniprocessor.

150

125

\
\
\

\
\
\
\

•

\

700

75

50

\
\
\
\
\
\
\
\ Cmmp
\
V

\

\
\
\

\

t2X Real Time

25
Real Time

2 3 4 5 6 7
Number of Processes

Figure 46 Cmmp vs. KLIO Harpy 1000 Word Task (LAAX05)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 9 0

6 . The Results and Contributions of this Investigation

6.1 A Summary of the Measurements and Results

6.1.1 The Initial Investigation— The Rootfinder

In order to transform a parallel algorithm into an effective running program on a

multiprocessor, one must be aware of the ways the system can affect the performance of the

program. To uncover the major sources of performance perturbation, a simple program, a

parallel rootfinding algorithm, was developed to act as a vehicle for conducting the study.

The performance of the program was perturbed by a variety of sources. Performance

perturbations stemming from the hardware, both the processors and the memories, were

identified and measured. Speed variations of individual processors and memories had only a

secondary effect on performance. The greatest hardware related perturbation was a 3 0 0 2

performance degradation that was found to be a direct result of central memory bandwidth

limitations.

Operating system performance perturbations arose from two sources: interrupts from I /O

devices affected the program's performance by randomly interrupting the cooperating

processes for short periods. These interrupted processes arrived at the synchronization

point later than their uninterrupted counterparts, delaying the entire collection of processes

from proceeding. The effect was graphically illustrated with a sample execution trace

produced by a software monitor within the operating system. Bottlenecks in the operating

system's scheduling processes also caused serious performance degradations in certain

situations.

A third source of variability is the function evaluation. The computation time for

performing the function evaluation is not a constant, but instead varies with the selection of

the evaluation point. Because the processes must synchronize after every iteration, the

elapsed time for an iteration is determined by the process with the maximum computation

time. Thus, the variance in the distribution of the computation time for performing the

function evaluation will greatly affect the performance of the rootfinding processes. A large

variance results in only a small speed up, whereas a small variance results In a larger speed

up.

Special attention was paid to the synchronization of the cooperating processes because it

is a fundamental programming issue in the multiprocessor environment. Our investigation

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C M M P PAGE 9 1

consisted of a detailed measurement of the performance of several alternative

synchronization primitives. We then incorporated each primitive into the rootfinding

procedure to perform the necessary interprocess communication. By measuring the

performance of the rootfinding program, a range of usefulness was determined for each

synchronization primitive. The inter-synchronization time thresholds when a particular

primitive became useful varied from 200 milliseconds to 2 milliseconds.

6.1.2 The Implementation of a Complex Task— The Harpy Speech Recognition System

Using the insight into the C.mmp environment acquired during the initial rootfinding study, a

more complex task, the Harpy speech recognition system, was developed on the

multiprocessor. Harpy, an algorithm that recognizes connected speech from a variety of

speakers, was initially developed at CMU for a uniprocessor. A parallel version of the

algorithm was developed by decomposing Harpy into simpler sub-tasks, and then

implementing these sub-tasks as task forces of identical processes. The task forces of

identical processes speed up the algorithm by dividing the work into independent partitions

for simultaneously processing.

In any decomposition involving cooperating processes, two implementation issues arise:

how the processes acquire and share data, and how the processes are sequenced and

controlled. Data can either be allocated statically, if the processes are given private

partitions of data prior to their execution, or dynamically if the processes compete for or

share all the data. Similarly, two alternatives for process control are synchronous and

asynchronous sequencing. If all the cooperating processes must arrive at the synchronization

point before the next step or sub-task can begin, then the processes are sequenced by a

synchronous control structure. If, a process is not required to wait for its companions at the

synchronization point, then the processes are sequenced by an asynchronous control

structure. For both of these issues the two alternatives were discussed and measured in the

implementations of Harpy's cooperating processes.

Four alternative implementations of Harpy were investigated. Rather than examining the

variations in performance stemming from algorithmic modifications, this investigation measured

and evaluated the performance variations arising from modifications related to only the

implementation of one algorithm. The performance of the four implementations is compared in

chapter five. Refining the algorithm in four implementations gave us the opportunity to

observe and measure the performance ramifications of several implementation decisions.

The performance of the four implementations varied substantially, demonstrating the

importance of an effective implementation. In the initial implementation a straightforward

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 9 2

decomposition of the uniprocessor algorithm, the elapsed time to perform the task was

reduced from 52.89 seconds to 18.15 seconds when eight processes were incorporated into

the algorithm. This corresponds to a speed up of only 2.92. In the final implementation this

elapsed time was reduced to only 12.33 seconds, which corresponds to a speed up of 4 .29.

The improvement resulted from an increase in process utilization, the percentage of time a

process is performing useful work. Balancing the computational work load across all

processes increased the process utilization from 27.57, to 647.

The best multiprocessor implementation of the algorithm was compared to a sequential

implementation of the algorithm designed for a large uniprocessor, a DEC KL10. Initially, the

KLIO outperformed a single process instantiation of the multiprocessor implementation by

almost a factor of three. However, as more processes were incorporated into the task forces,

the C.mmp version outperformed the uniprocessor at four processes and was observed to be

3 0 2 faster at the maximum measured parallelism, seven processes.

6.2 The Task Force Approach to Parallel Programming

The measurements and results presented in this investigation demonstrate that the task

force approach to writing parallel programs is an effective method for capturing parallelism.

As with any programming technique, certain benefits and drawbacks are associated with its

use.

The programming effort required to write parallel programs is not much more than the

ef fort needed to write serial programs. By introducing parallelism through replication, the

programmer is required to write only a single program, not n different programs. The

sharing of data and the synchronization of cooperating processes are well understood

problems easily solved without special programming language parallel constructs. Harpy was

implemented entirely in BL ISS- i l , without any special language constructs to coordinate the

data sharing, sequencing, or synchronization of the processes.

The task force technique is a general approach to parallel programming; its application is

not restricted to only a few special situations. Those tasks that involve the repeated

application of functions on data are ideally suited for parallel implementation using the task

force approach. The rootfinding algorithm and the Harpy speech recognition system are two

dissimilar representatives of this large class of algorithms.

However, the most important aspect of the task force technique is that it is effective at

introducing linear speedup into an algorithm. Although linear speedup of the Harpy algorithm

was not demonstrated, portions of the data streams were processed by the task forces n

times faster than if performed by a single process. Only when work was unavailable to keep

THE IMPLEMENTATION AND EVALUATION OF PARALIEL ALGORITHMS ON C M M P PAGE 9 3

all the processes busy did performance drop below linear speedup. The task force technique

tends to favor data streams composed of many elements over those with only few elements

in them. Thus, performance can be improved, and in fact can approach linear speedup, simply

by increasing the number of work units in the data streams. For example, Harpy's

performance could be improved by increasing the complexity of the grammar from which

utterances are constructed.

The major drawback to using this approach is that for it to be successful, the programmer

must be aware of several primitive "time-constants", i.e. the algorithm's inter-synchronization

times, and the synchronization primitive's elapsed times, that characterizes the hardware, and

the operating system, and his own algorithm. This requirement runs counter to the popular

idea of programming without the need to know about the underlying environment.

6.3 Areas for Further Research

One aspect of the implementation of parallel programs not addressed in this study is the

performance degradations, caused by a small address space. Despite the fact that the central

memory supports up to 32M bytes of primary memory, the PDP-11 is a 16-bit minicomputer

and as such limits addresses to only 16 bits. Thus a process can directly address only 64K

bytes of primary memory at a time. Initially, it was felt that the small address space

limitation would be offset by the ability to create multiple processes, each addressing only a

small portion of the total address space. This assumption about the organization of parallel

programs is not always true.

For example, in our implementations of Harpy we totally ignored the impact of the small

address space problem on the algorithm's performance. If a data item resided outside the

process' addressable region, we simply payed the overhead to make it addressable, i.e. a

relocation register load. In an early investigation to measure this overhead, we observed in

one case a factor of three degradation in the algorithm's performance.

One technique to minimize this small address space problem is to construct data structures

so that memory locations tend to be accessed either sequentially or in small clusters. We

would expect some improvement in Harpy's performance if we allocated storage for the

transistion network such that directly related states were close together.

Obviously, the entire issue of the small address space can be avoided in future multiple

computer systems by using larger address space machines as the central processors.

Another area for future research is the investigation of the performance of the

multiprocessor when it functions as a general computing facility for multiple users. It was

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 9 4

felt that one important mode of operation would be for C.mmp to support the simultaneous

execution of many single process tasks from multiple users. It has been suggested that the

•multiprocessor is best suited for this type of parallelism. However, little evidence exists to

substantiate this claim.

In conclusion, this investigation is only one of the first of many such studies to assess the

effectiveness of the multiprocessor. The primary contributions of this study are that it

provides several initial data points in the measurement space of multiprocessors, and that

some aspects of the implementation of parallel programs are illuminated through the analysis

of several example programming efforts.

Appendix

Artificial Intelligence Information Retrieval Task (LAA)

1. Please help me

2. What should I ask

3. What can the system do

4. The first two

5. Give me one more please

6. Thank you I'm done

7. Stop transmitting please

8. Who wrote it

9. Who was the author

10. What was its title

1 1 . When was it published

12. What about Minsky

13. Which is the oldest

14. What facts are stored

15. Please list the authors

16. Print the next one

17. Where does he work

18. What is her affiliation

19. What about formal semantics

20 . What about program verification

BIBLIOGRAPHY

[Avriel and Wilde 66] Ayriel, M., and Wilde, DJL, "Optimal Search for a Maximum with
Sequences of Simultaneous Function Evaluations," Management Science,
12, 1966, pp. 722 -731 .

[Baudet, Brent and Kung 77] Baudet, G., Brent, R.P., and Kung, H.T., "Parallel Execution of a
Sequence of Tasks om an Asynchronous Multiprocessor," Carnegie-Mellon
University, Computer Science Dept., Tech. Report. June 1977.

[Baudet 78] Baudet, G., "The Design and Analysis of Algorithms for Asynchronous
Multiprocessors," Ph.D. Thesis, Carnegie-Mellon University, Computer
Science Dept., April 1978.

[Fuller and Oleinick 76] Fuller, S.H. and Oleinick, P.tt, "Initial Measurements of Parallel
Programs on a Multi-Mini-Processor," IEEE Fall Compcon 76, pp. 3 5 8 - 3 6 3 .

[Fuller 1978] Fuller S.H., Ousterhout J.K., Rubinfeld P.L, Sindhu P.J., Swan R.J.,
"Multi-Microprocessors: An Overview and Working Example," Proc. IEEE
Vol.66, No,2, February 1978, pp. 216-228.

[Heller 7 6] Heller, D., "A Survey of Parallel Algorithms in Numerical Linear Algebra,"
Carnegie-Mellon University, Computer Science Dept., Technical Report,
1976.

[Jones 7 8] Jones, A.K., Chansler, R.J., Durham, I., Feiler, P.H., Scelza, D.A., Schwanz,
K. and Vegdahl, S.R., "Programming Issues Raised by a Multiprocessor,"
Proc. of the IEEE, Vol 66 No.2, February 1978,. pp. 229-237 .

[Karp and Miranker 68] Karp, R.M., and Miranker, W.L., "Parallel Minimax Search for a
Maximum," J. Comb. Theory 4, 1968, pp. 19-35.

[Kung 1976] Kung H.T., "Synchronized and Asynchronous Parallel Algorithms for
Multiprocessors, Algorithms and Complexity: Recent Results and New
Directions," ed. J.F.Traub 1976, pp. 153-200.

[Lesser 7 5] Lesser, V.R., "Parallel Processing in Speech Understanding Systems,"
Speech Recognition 1975, pp. 481-499.

[Levin 1975] Levin R., Cohen E., Corwin W„ Pollack F., Wulf W.A., "Policy/Mechanism
Separation in HYDRA," Proceedings of the ACM/SIGOPS Symposium on
Operating Systems Principles, Austin Texas, November 1975, pp.
132-140.

[Lowerre 7 6] Lowerre, B., "The HARPY Speech Recognition System," Ph.D. Thesis,
Carnegie-Mellon University, Computer Science Dept., 1976.

[Lowerre and Reddy 77] Lowerre, B. and Reddy, R., HARPY Speech Understanding System
(1977), produced at Carnegie-Mellon University. An 18-Minute
16mm./Color/Sound Film describing the HARPY SUS developed by
Lowerre and Reddy.

[Newell and Robertson 1975] Newell A., and Robertson G., "Some Issues in Programming
Multi-Mini-Processors," Tech. Rep., Computer Science Dept.,

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 9 7

Carnegie-Mellon University. Pittsburgh, Pa., January 1975

[Rosenfeld and Driscoll 69] Rosenfeld, J.L and Driscoll, G.C., "Solution of the Dirichlet Problem
on a Simulated Parallel Processing System," Information Processing 68 ,
North-Holland Publishing Co., Amsterdam, 1969, pp. 4 9 9 - 5 0 7 .

[Stone 1973] Stone H.S., "Problems of Parallel Computation, Complexity of Sequential
and Parallel Numerical Algorithms," ed. J.F. Traub, Academic Press 1973 ,
pp. 1-16.

[Swan, Fuller and Siewiorek 77] Swan, R.J., Fuller, S.H. and Siewiorek, D.P., "CM*: A Modular
Multi-microprocessor," Proc. AFIPS 1977, National Computer Conference,
Vol. 46, 1977, pp. 637-644.

[Teichroew 1956] Teichroew D., "Tables of Expected Values of Order Statistics and Products
of Order Statistics for Samples of Size Twenty or Less from the Normal
Distribution," The Annals of Mathematical Statistics 27,2, June 1956, pp
410 -426 .

[Thompson and Kung 76] Thompson, CD. and Kung, H.T., "Sorting on a Mesh-Connected
Parallel Computer," Proc. 8 * n Annual ACM Symposium on Theory of

4 Computing, 1976, pp. 58-64. Also to appear in Communications of the
ACM.

[Wulf and Bell 1972] Wulf W.A., and Bell C.G., "C.mmp — A Multi-Mini-Processor," Proceedings
AFIPS 1972, FJCC Vol 41. AFIPS Press, pp. 765-777.

[Wulf 1974] Wulf W.A., Cohen E., Corwin W., Jones A., Levin R., Pierson C , Pollack F.,
"HYDRA: The Kernel of a Multiprocessor Operating System,"
Communications of the ACM, 17,6, 1974, pp. 337-345 .

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N OF THIS P A C E (When Date Entered)

REPORT DOCUMENTATION PAGE
I I . R E P O R T N U M B E R J2. G O V T A C C E S S I O N NO

CMU-CS-78-151
I 4. T I T L E (and Subtitle)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL
ALGORITHMS ON C.MMP

T7- A U T H O R S

PETER N. OLEINICK
I 9- P E R F O R M I N G O R G A N I Z A T I O N N A M E AND AOORESS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

| U . C O N T R O L L I N G O F F I C E N A M E ANO AOORESS

Office of Naval Research
Arlington, VA 22217

14. M O N I T O R I N G A G E N C Y N A M E ft AODRESSf / / dill or mat Irom Controlling Ofttca)

Same as above

16. D I S T R I B U T I O N S T A T E M E N T (oi thia Report)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. R E C I P I E N T ' S C A T A L O G NUMBER

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

Interim
6. P E R F O R M I N G O R G . R E P O R T N U M B E R

8. C O N T R A C T OR G R A N T NUMBER^a)

N00014-77-C-0500
tO. P R O G R A M E L E M E N T . P R O J E C T , TASK

A R E A A WORK U N I T N U M B E R S

12. R E P O R T D A T E

November 1978
13. N U M B E R O F PAGES

105 . -
15. S E C U R I T Y CLASS, (ot thia report)

. UNCLASSIFIED
1S«. O E C L A S S I F I C A T I O N / D O W N G R A O I N G

S C H E D U L E

Approved for public release- distribution unlimited

I 17. D I S T R I B U T I O N
S T A T E M E N T (oi the abatrmct entered in Block 20, It different from Report)

I 1S. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on rever.e aide it n~...~y Identity by block number)

20. A B S T R A C T (Continue on revere, aid. It n.camy end Identity by block number)

DD F A R I 7 3 1473 E D I T I O N O F 1 NOV 65 IS O B S O L E T E
1 J A N 7 S / N 0 1 0 2 - 0 1 4 - 6 6 0 1 I S E C U R I T Y C L A S S I V K A T T O N O F TH IS P A G E (»n.n Date Entered)

TTNf!T A S S I F I E D

„ L l u m T V C L A S S I F I C A T I O N O F T H I S PAGgfH7>«n Datm Enfr.d)

S E C U R I T Y C L A S S I F I C A T I O N O F THIS PAGEOWi«n Dmim Enftmd)

