NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

510.73¢%
CMU-CS-78-151 (. ~ 8 v

S 18- 151
¢ 4

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS
ON C.MMP

P.N. Oleinick

Computer Science Department
Carnegie-Mellon University
November 1978

Keywords: performance evaluation, multiprocessors, synchronization, parallel algorithms,

cooperating processes.

The research described here was supported by the Defense Advanced Research Projects
Agency (Coniract: F44620-73-C-0074, monitored by the Air Force Office of Scientific
Research), and in part by the Office of Naval Research {Contract: NOOO14-77-C-0500).

. s ‘o5

University Libraries

Carnegie Meilon ypwqéré;;gt
Pirtahireh PA 15713-3

ABSTRACT

This dissertation demonstrates the implementation and evaluation of parallel algorithms on
C.mmp, a mulltiprocessor compuler system. Initial attempts to demonstrate the psrformance of
@ simple parallel algorithm yielded unexpectedly large performance degradations from the
" theoretical calculations. This unexpecled result spawned a study of the C.mmp system to
discover and measure the ‘major sources that periurbed the performance of the- parallel
algorithm. The performance study was conducted at several lavels:

- Basic hardware measurements
- Runtime performance of Hydra, C.mmp’s operating system

- Overall performance of a particular application: a paraile! rootfinding algorithm.

The results of this study identified six major sources of performance pertubation. The six
‘sources, in order of importance, were:

- Variations in the compute time to perform the repetitive calculation

- Memory contention caused by finite memory bandwidth

- The operating sysiem's scheduling processes can become a bottlensck
- Variations in the individual processor speeds .

- Interrupts associaled with 1/0 device service routines

- Variations in the individual memory bank speeds,

The effects that synchronization can have on the performance of a parallel algorithm were
examined apart from the sources mentioned above. Several alternative synchronization
primitives were studied. For each, the speed in performing the basic semaphore operations
as well as the effect on the performance of the rootfinding algorithm were measured. The
type of semaphore primitive selected to perform the synchrenizalion of the rootfinding
processes drastically affected the performance of the algorithm, A threshold for the practical

application of each semaphore was determined from the measurements of the rootfinding
algorithm.

This insight info the C.mmp environment was applied toward a more complex application-~
the HARPY speech recognition system. Parallelism was incorporated into the algorithm by

decomposing the large lask into a sequence of computationally smaller sub-tasks. Each

sub-task was implemenled as a collection of indentical cooperating processes.

Inefficient aliocation of work lo processes, and synchronization between sub-tasks resulted
in under utilization of the processors. Performance of the aigorithm was improved in three
subsequent refinements to the initial implementation. The contribution to performance from

each enhancement was disscused and measured separately.

The final implementation of HARPY on C.mmp was compated to a version of the algorithm
developed for a DEC PDP-KL10 uniprocessor. At maximum! parallelism, eight processes, the
C.mmp implementation performed the speech recognition task 307 taster than the

uniprocessor.

Acknowledgement

I wouid like to thank Sam Fuiler, my advisor, for his constant encouragement during the
development of this work, His guidance and supporl were invaluable. | also want to thank
Anita Jones for her insight and especially for her biue pencil. 1 am grateful for the time she
gave to polish my prose and to augment my arguments by playing devil’s advocate. The
comments from the other members of my committee, Bill Wulf and Don Thomas, heiped me
define the organization of this thesis. Judy Rosenberg’s assitance let me g0 home early.

I am especially grateful to my best friend Barbara McKissock who read this thesis eight
times and didn’t complain once.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP

Table of Contents

1. Introduction

2. An Intreduction to C.mmp and The Rootfinding Algarithm

2.1 An Introduction to C.mmp
2.2 Description of the Rootfinding Algorithm

3. Sources of Performance Fluctuation

3.1 Introduction
3.2 The Variation in the F(x)} Calculation
3.3 The Variation in Performance of Individual Hardware Elements
3.3.1 Processor Related Variations
3.3.2 Memory Related Variations
3.3.2.1 Technology Differences
3.3.2.2 Memory Bandwidth and Memory Interference
3.4 Operating System Related Performance Fluctuations
3.4.1 Introduction
3.4.2 The Kernei Tracer
3.4.3 1/O Devices and Interrupts
3.4.4 Kernel Processes and Spacial Functions
3.5 Summary

4. The Effect of Sychronizalion on Parformance

4.1 Introduction
4.2 Description of Synchronization Primitives
4.2.1 The Spin Lock '
4.2.2 The Kernel Semaphore
4.2.3 The Poticy Module Semaphore
4.3 The Impact of Synchronization on Performance
4 3.1 Introduction
4.3.2 Comparison of Primitives When Compute Time ~ Synchronization Time
4.3.3 Comparison when Compute Time is Much Greater Than Synchronization
Time
4.4 Summary of Results: The Useful Range for Various Semaphores

5. An Example Implaomentation

5.1 A Brief Description of the HARPY Speech Recognition System
5.1.1 Representation of Knowledge
5.1.2 The Recognition Process
5.2 The Decomposition of the HARPY Algorithm
5.3 The Initial Implementation ’ .
5.3.1 Constraints on the Implementation of the HARPY system
5.3.2 Control Structures and Data Sharing
5.4 Performance of the First Imptementation
5.4.0.1 The Performance of the Forward Step
5.4.0.2 The Performance of the Pruning Step

PAGE 1

10

10
10
18
18
19
19
20 -
24
24
24
25
28
32

35

35
35
35
37
38
39
39
39
40

42

47

a7
48
48
54
58
58
59
60
60
64

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 11

55 Refinements to the Initial Implementation 70
5.5.1 The First Refinement 74
5.5.2 The Second Refinement 78
5.5.3 The Third Refinement 81

5.6 Summary 87
5.6.1 Comparing the Four Versions of the Algorithm B7
5.6.2 A Final Comparison-- The Uniprocessor Algorithm 88

6. The Results and Contributions of this Investigation a0

6.1 A Summary of the Measurements and Results 90
6.1.1 The Initial Investigation-- The Rootfinder 90
6.1.2 The Implementation of a Complex Task-- The Harpy Speech Recognition 91

System
6.2 The Task Force Approach to Parallel Programming g2

6.3 Areas for Further Research ' 93

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 1

1. Introduction

The purpose of this research is to demonstrate how to write parallel programs that
effectively use the multiple computers in a multiprocessor. Developing strategies for
incorporating parallelism into algorithms has been an area of intense interest for quite some
time, e.g., [Avriel and Wilde 66], [Karp and Miranker 68}, [Rosenfeld and Driscoll 69], [He_ller
76}, [Thompson and Kung 76], [Baudel, Brent and Kung 77) and [Baudet 78). However, until
" very recently, only simulation and analysis techniques were available for demonstrating the

effectiveness of a parailel algorithm.

With the emergence df multiprocessor computer systems that provide users with the
facilities for constructing parallel aigorithms, CMx and C.mmpl, the verification of an
algorithm’s performance is in its implementation. Initial attempts to demonstrate the
performance of a simple parallel algorithm [Fuller and Oleinick 76} yielded unexpectedly large
degradations in the algorithm’s performance., These degradations were not the resuit of an
error or inefficiency in decomposing the problem into cooperating processes. Rather, several

- hon-algorithmic sources were determined to be the source of the degradations. This resuit
indicates that in order to develop effective paraliel algorithms for multiprocessors, it is
necessary to be aware of the targel machine’s performance characteristics.

Presently, . the task of writing effective parallel software is an ad-hoc procedure of
constructing code for a unique machine. Since multiprocessors are almost as different from
one another as they are from uniprocessors, it is difticult to apply insight gained from writing
parallel software for one multiprocessor to another machine. However, by documenting the
performance of various implementations of several algorithms on one machine, we can
demonstirate the effectiveness of various sirategies at capturing parallelism.

One siyle of parallel programming for multiprocessors involves tightly coupied cooperating
processes. Several decqmposiﬁon strategies exist that use this approach, among them
pipelining and partitioning [Jones 78] In both cases, simultaneously executing processes
must interact frequently. Since inlerprocess communication constitutes an overhead, tightly
coupled syslems exhibit performance degradations proportional to the amount of process
interaction among the processes. Thus, in order to maintain high performance, one must
reduce both the overheads of interprocess communication and the amount of proc:ess
interaction.

lC.mmp and CM+ are multiprocessors developed ai Carnegie-Malion University. [lones 78), [Fuller 78], [Wulf and Bell
72, [Swan, Fuller, and Siewiorek 77]

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 2

The user has litile power to reduce the overhead of interprocess communication. Since
processes are created and maintained by the operating syslem, interprocess communication is
permitted in only a few well defined ways. The user is given a selection of primitives
provided by the operating system with which he can build his own communication
mechanisms. However, the performance of the communication mechanism is directly

influenced by the performance of the operating system’s primitive,

Moreover, writing effeclive parallel software requires an awareness of more than just the
overheads involved in interprocess communication. We a:'dcpted the following two phase
strategy for uncovering the major influences on performancé-

1. Deveiop a simple parallel algorithm as a vehicle for conducting a performance
study on C.mmp.

2. Use this test program to measure the effects on performance stemming from
both the hardware and the operating system,
A brief i_ntroduqtion to the C.mmp environment, both hardware and operaling system is
contained in chapter two. In addition, chapter two contains the development and theoretical
performance calculations for the simple parallel algorithm.

The investigation into the sources of performance perturbation is presented in chapter
three. '

Since synchronization is a fundamental parallel programming issue, chapter four is -devoted
entirely to studying the effects of synchronization on performance. The performance of
various synchronizaton primitives is conducled at two levels: the speed in performing the
basic synchronization operations and the impact each primitive has on the performance of the

. rootfinding algorithm.

In chapter five, we apply the insights gained from the initial investigation toward
developing complex tightly coupled systems. By decomposing a camplex task into a sequence
of simpler sub-tasks, and then implementing these sub-tasks as task forces[Jones 78] of
cooperating processes, we efficiently focus compute power to speed up the execution of the
task. To demonstrate the effectiveness of this approach we use it to implement a parallel
version of the Harpy speech recognilion system{Lowerre 76).

An initial decomposition of the algorithm is successively refined in three imptementations,
“In each iteration, some aspect of performance is improved. This incremental enhancement of
the algorithm enables us to measure the performance improvement contributed by each

enhancement,

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 3

Chapter six conlains a summary of the measurements and results of this investigatidn. The
initial measurements of the multiprocessor and the results to come out of the rootfinder study
are summarized. The performance of the task force approach to parallel programming is
evaluated based on the results of the various implementalions of the Harpy algorithm.

Finally, areas for further research are discussed.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE &4

2. An Introduction to C.mmp and The Rootfinding Algorithm

2.1 An Introduction to C.mmp

. The basic structure of C.mmp, as shown in the PMS diagram of figure 1, is that of the
canonical muitiprocessor. A defailed description of C.mmp is provided in the original article
on C.mmp by Wulf and Bell [1972], but the following description should provide a sufficient
backgraund for this investigation.

C.mmp is organized as a sysiem of 16 central processors (Pc's) thal share a centrally
located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc’s are
completely asynchronous computing elements: 5 are PDP-11/20% and the remainiﬁg 11 are
PDP-11/40°s. They are connected to the shared primary memory through a 16 x 16
crosspoint switch. The operation of the swilch is similar to a 16 port memory in that up to
16 memory transactions can be performed simultaneously, 1/0 devices, unlike memary, are
associated with an individual processor. Thus, for example, an /O request to a device on
Pc[0], pgrhhps a disk, is performed by the requesting Pc by sending an interprocessor
interrupt to Pc{O] causing initiation of the appropriate 1/0 interrupt service routine on Pc{0].

Hydra is C.mmp’s general-purpose mditiprogramming operating system [Wulf et al, 1974;
Levin et al, 19751 It is a collection of basic or kernel mechanisms such as memory
management, process dispatching, and message passing. Upon this core, an arbitrary number
of systems created from these mechanisms can co-exist simuitaneously. Hydra is organized
as a set of re-enterant procedures that can be executed by any of the procassors. In fact,
several processors can simultaneously execuie the same procedurs. This concurrency s
accomplished by placing locks around the operating system’s criticat data structures. These

locks maintain mulual exclusion where necessary.

2.2 Description of the Rootfinding Algorithm

The purpose of this study is to present quantitative performance results for implementing
parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum
of problems, we have chosen to study various impiementations of a single problem in order to
observe and measure in depth the performance lradeoffs in the impiementation process.

Two criteria that our case study problem had to meet were: the problem must be complex
enough to have interesting implementation tradeoffs and simple enough to permit the focus of
attention on implementation issues rather than algorithm issues. The candidate problem we

Mp(15)) R D D I R D D D . . B . B

Mp(14) V94V YV ¥V Y ¥ ¥ 949 YN Y v ¥ Y ¥

Mp(13) +— AV e e B VR A ¥ ¥ S
S.mp

'M'p(O) \ ~] NN NN ~ \ N N YN Y N

N,

-
g

mnp

el

/ \

. 1 N\
i ’_4 [] NEANERN
lDrrIlapl Dmap [Dn;ap]]Dmap] IDn;np] IDmlpJ IDm;p' IDmlpI !EFJ ‘E“El

N N N
AN
o] Eju... O

Pe(0) Pe(2) Pe(d) Pc(6) Pc(8) Pe(10) Pe(12) Pc(14)
11/20 11740 11/20 11/40 11/20 11/40 11/80 11420
__.lMIonl I __+ Miocal I 1{Mlonl l ._lMlocaI I V L—!M!GCI' l I..._|Mlocnli
| -fe
Pe(l) Pc(3} Pe(5) Pe(7) Pc(9) Pe(t11) 1 || Pe(13) Pc(15)
11740 11740 11/40 11/40 11740 11/40 11/80 11720
L [Miceal | | ~{Miocal] | " }—{Miveat | kY —{Micen) | | LeitMiocal] | —{Miocal]
o] | |psaie] | | —Mpeeing

[«iei } [«ioi] [i] [wivi | [ivi | [civi | |_K.|:L] [[xei] [oiei] [] (owi] [omi] i] Pei] vt] []

Note: Kibi stands for
K(iner-bus interface)

Kinterbus Kelock

L

Figure 1 PMS Diagram of C.mmp (1977)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE &

finally selected is the rootfinding task.

We have chosen to consider this problem not because it particularly well-suited for parallel
solution, but rather because it is a relatively straight forward task that requires a significant -
amount of inler-process communicalion. According to Stone{1973), algorithms like the
rootfinding algorithm that exhibit speed-up gains proportional 1o the logarithm of the number
of processes fal! into a class of problems at best considered poor candidates for p_aralle!‘
processing. However, the underlying control struclure present in this procedure, that of the
synchronous parallel algorithm, is representative of many parallel decompositions of
otherwise serial algorithms, For this reason, it is worlhwhile to understand the nature of the
control structure and to study the influences on its performance.

Specifically, we will consider the problem of finding the root of a monotonicaily increasing
function in a bounded region. [f we assume no special information about the behaviar of the
function, the best procedure for a uniprocessor under these circumstances is a binary search.
An obvious decomposition of the binary search into n parallel processes on a muitiprocessor
is to evatuate the funclion simultaneously at n equidistant points within the bounded region.

The optimal placement of the n processes on the intervat is known [Kung 1976], but to
minimize the complexilty of the algorithm in order to focus on the synchronous control
structure, we will use the less than ideal, but good, technique itlustrated in tigure 2. The n
paraliel process'es perform function evaluations at the n points that divide the interval into
n+! equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that
contains the root is the sub-interval with oppusite signs for F(x) at its end points. The other
sub-intervals are discarded and the procedure repeats this basic iteration until one of the
function evaluations is within € ie. an acceptably small interval ciose to zers, of the

Zero-crossing.

For the measurements presented here, the function we are evaluating is the normal

integral:
F(x) =7;~TT I:: e.xp(-l/th) dt - h (2.1)
For 2 < 2.32 the following truncated power series was used to evzaluate F(x):
o 3 x7 < , - ow . . (2-2),

(x+3+35 ¥ 3%5%7 " FEwrRg 0

and for larger = we vsed the continued fraction:

Y (x+1/ ¢ =2/ (x+3/(5:-4-...)))) - h (2.3)

We selected this normal integral because it is an imporiant transcendental function that
exhibits two characteristics important to our measurement studies: it requires an extensive

amount of computation, and the type and length of computation are data dependent.

First Iteration: ;

Second Iteration:

Third Iteration:

Fourth Iteration:

Figure 2 Rootfinding Program Using three Processors

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 8

In order to evaluate the performance of our implementations of the rootfinding algorithm,
we first calculate the theoretical, or overhead-free, performance curves.

The basic cycle in the rootfinder is the independent evaluation of the function by each of
the cooperating processes and, upon finishing, the communication of each process wilh the
other processes by posting the results of its function evaluation, Notice that the new
" interval is not located until all of the processes have posted their resultsl. When the last
process finishes its function evalyation, it assumes the jobs of finding the new roat-containing
interval and weking up all of the waiting processes. This basic cycle we call a STAGE.

Under ideal conditions the cooperating processes in the rootfinder would exhibit the
execution behavior found in figure 3. Each process performs a function evaluation
independently. They all finish at the same instant and, after a very brief bookkeeping
calculation, perform a new F{x) calculation on an interval reduced by 1/(n+1). In practice, we
seldom find this to be the case. The fluctuations in performance stem from sources intrinsic
to the muitiprocessor as well as the rootfinding program.

Y1ha new inlerval iz located as soon as the sub-inferval is bounded, bul sgain we have cpled for & more
sirsightforward sigorithm in ordar to focus on {he implementiation issues.

©oo _ FO) CALCUIATION | Fix) CALCULATION Fix) CALCULATION el 000
ooo _ Fix CALCUIATION Flx} CALCULATION F(x) CALCULATION { soo
oo FCAICULATIGN | F6 CALCULATION “Fix) CALCULATION DA 200
-} o o 9
] Q o e
e o o °
‘600 FOJCALCULATION I F(x) CALCULATION F(x) CALCULATION = soo

Figure 3

@ . LOCATING THE INTERVAL THAT CONTAINS THE ZERO-CROSSING AND

REDISPATCHING THE N PROCESSES

Optimal Performance of the Rootfinding Algorithm

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 10

3. Sources of Performance Fluctualion

3.1 Introduction

Three dislinct sources of performance fluctuation are: the variation in the amount of
computation required to perform a function evaluation, the individual hardware elements’
performance characteristics, and the operating system. We will identify the nature and
measure the magnilude of each of these sources starting with the variation in the F{x)
calculation since it is the most straight forward of the three.

3.2 The Variation in the F(x) Calculation

The elapsed time o perform a function evaluation is data dependent. The distribution of
- the compule time is shaped approximately Normal as shown is figure 4, The mean ié about
100 milliseconds with aimost an equal number of samples on each side of the meant. Thus,
we might model the expected finishing time for a process performing an F(x) calculation to be
a random variable with a Normal distribution, As other functions would have other compute
time distributions, we derive the thearetical performance for the constant and exponential

cases also.

Let the time taken by the ith stage in the rootfinding procedure be the random variable Ti-
Since all of the processes are performing the same calculation, each process executes for a
random amount of time, t (see figure B), taken from some distribution. Since all of the
processes must finish their function evalualions before the new sub-interval is located

T, = MAX(£, t

. t) (3.1)
i :

27 B3 ver 0 by
From elementary order statistics the expected value of the largest order stalistic in random
samples of n from a parent distribution with continuous strictly increasing cumulative

distribution function P(x) is

EC X)) = [, nxf P ™1 ap(x) (3.2)

(n

If we know nothing about the distribution of the t; other than the mean u and standard
deviation s, the expected value of the largest order statistic T;, reduces to

n-1
E(Ti) Su.+—7(2n—_l)*c' (3.3)

l(Jr\ an 11/20 procsssor

(» SAMPLES)

130
120
110
100

90

20 '
70 ' _l

number of samples « 1000

60

50

40 : i

maan
30
20
490 510

10 samples samples

an s o wm oy v —-—-—————_—_-___—___--—----.-j

10 20 30 40 50 60 70 80 90 100 1i0 120 130 140 150 160 170 180

(ELAPSED TIME in ms.)

Figure 4 Distribution of the Time to Calculate F(x)

o00 Fix) CALCULATION — F{x) CALCULATION } [F(ICALCIATION 0 0 o
000 Flx) CALCULATION — Fx) CALCULATION] FOJTALCUATION o o o
ooo Fim CALCULATION } —{ F(x) CALCULATION] [~ Tt CALGUAIION © © o
o o o -]
-] -] Q °
-] o -] Q
ooo Flx) CALCULATION YT F(x) CALCULATION I { FOICAICUATION S © o
‘ L
@00 F(x) CALCULATION jfj Sm— " — |—{ F(= CALCULATION® © o

LOCATING THE INTERVAL THAT CONTAINS THE ZERQ-CROSSING AND
REDISPATCHING THE N PROCESSES

Figure 5 Performance Degradation Due to Variation in the F(x) Computation Time

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 13

This bound can be repla&ied' in the exponential case by the equality
n-

-1 i 3.4 }
E(Tn)=nu§:(nj)_(:_1)_; B.4).
. j=0 (3+1D) . _

For the Normal case we consult Teichroew's[1956] tabies for the expected vaiue of the

largest order statistic drawn from the N0,1) distribution.

When the expected value of the compute time is a constant, equation 3.3 is replaced by the
simple equality E(T;) = u. '

If we are interesied in the performance speedups obtained when we put more processes
te work finding roots, we need to estimate the average time to iocate a root as a function of
the number of processes. Since every ileration in the roolfinding procedure reduces the
interval of uncertainty, L, by a factor of n+1 it takes Ceiling{l.og,,) L) iterations to locate the
root in a bounded inierval of length L. Thus, in our example let R, dencte the number of
iterations necessary to arrive within € of the root using i processes. For our choice of ¢,
R={54, 34, 27, 23, 21, 19, 18, 17, 16, 16, 15, 15,..) iterations. It takes the same number of
iterations to locate the root using nine and !en or eleven and twelve processes because the
number of iterations to locate the root must be an integer. Thus, little is to be gained by
incorporating many processes in the procedure. In this study the maximum number of
processes we will use is nine. '

We can estimate the runtime of the rootfinder {o be the following:

R
n

Runtime (n) =Z Tk = Rn * E(Tn) (3.5)
k=1
Often we will be interested in the speedup achieved through paralielism. We will use the
following formuta to calcuiate speedup:

Runtime(n) | (3.6)

Figure 6 is a plot of the sbeedup vs. number of'procésses for the following three
distributions:

Distribution Mean Standard Deviation

Constant 1000 0
Normal 1000 278
Exponential 1000 1000

The curves are not smooth because the Ceiling function in the equation for the number of
iterations to perform yields an integer value.

Speed up

3.50;

3.25¢

3.00}

Constant Distribution

2.75¢

2.50} | . /

2.25}
Normal Distribution
2.00!
1.75}
1.501
1.25¢ Exponential Distribution
_./‘B
1.00y 2 3 4 5) 7 8 9

Number of Processes
Figure 6 Speed up vs. Number of Processes for Ideal Muitlprocessor

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 1§

This figure contains calculated no-overhead performancer curves for three sample F(x)
distributions with standard deviations ranging from O lo u. The performance range is from
negligible speedup when the compute time for the function evaluation is exponentially
distributed {o more than a factor of 3.3 speedup for nine processes when the distribution of
the F(x) calculation is a constanl. The Normal curve belween these extremes closely
approximates the actual F(x) distribution and is included for comparison.

Anothef way to view this data is to plot speedup for the nine processes case vs. the ratio
standard deviation/mean as was done in figure 7. This figure clearly shows the impact of the
variance on the performance of the rootfinding procedure. When the coefficient of variation
is much greater than one, no speedup can be obtained by incorporating multiple processes in
the rootfinding task.

Now we compare the calculated no-overhead performance of the rootfinder to measured
data observed on the machine. In order to measure performance as a function of the
distribution of the AF(x)'compute time a synthetic rootfinder was deveioped because we did
not want to limil our investigations to particuiar distributions too early in the expsriment.
The nature of the calcuiation was still the real function evaluation; howaver, the length of
time spent compuling was adjustable to reflect the distribution under consideration.

Figure 8 graphs performance in terms of elapsed time as a funclion of the number of
processes for three distributions of the F(x) caiculation. In each case we compare theoretical
performance to measured data. Since the means of the three distributions were not identical,
the data points for the single process Instantialion do no! coincide. Thus, In this graph
comparisons across distributions can be oniy relative approximations.: What is important here
Is how close the measured curves are to their theoretical curves.

For each single process instantiation the measured and thearetical curves are far apart.
This discrepancy is because any perturbation the process experiences will be additive and
will lengthen the basic cycle time. '

As we incorporate more processes the constant distribution diverges the most from the
theoretical while- the exponential diverges the least. The reason for this behavior is that
perturbations experienced by the processes will tend to increase the variance of the
undertying disiribution. However, a small change in the variance of the constant distribution
will be a much larger relative change than a similar change to the exponential distribution.

That the observed data doesn’l agree ciosely with the cafculated curves is evidence that
-other influences on performance exist in addition to the distribution of the compute time. In
the following sections we discuss measurements that uncover the other factors influencing

2.75

2.50

2.25

2.00

1.75

1.50¢

1.256

1.00

0.75

0.50

0.25¢

A

0-9% 7 zZ 3 4 5 6

7 8 0 7o
Standard Deviation/Mean

Figure 7 Speed Up vs. Coefficient of Variation for Nine Processes

\ O Calculated
X Measured

Elapsed Time (Sec.)

,r———*xx*

Sy Exponential Distribution
1751 1

SR
A - _—'G\g\q
Loy '

150} o, 4\

125} PN SNo s

A IR S x

100} o S Tee

.-‘u

Conastant Distribution

50] 3 3 7 5 5 5 5 5

Number of Processes
Figure 8 Measured Performance Compared to Calculated Performance

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE t8

performance.

3.3 The Variation in Performance of Individual Hardware Elements

The Huctuations in performance caused by lhe hardware wiill always be present becauss
Hydra allocates C.mmp’s resources dynamically. While a user cannot accurately predict the
exact performance of his processes, he can estimate the magnitude of the fiuctuation in
performance by measuring the variation in the performance of the individual hardware
elements.

3.3.1 Processor Related Variations

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers.
In table | we have summarized the basic performance difference between the processors by
comparing their execution of the F(x) calculation without the presence of Hydra. Each
processor performed the calculation 100 times in the same memory port. The number of
MSYN’s! was counted and the elapsed time measured. These figures appear in the first and
second columns. The third column of figures is the processor speed relative to Pe[0]

Pc Model Elapsed Time (sec.} kMsyn's /sec Relative to Pc[0]
0 11/20 15,559 ' - 4433 1.000
1 11/40 10.413 662.4 -1.494
2 11/40 9.985 _ 630.8 1.558
3 11/40 9.745 707.8 1.596
4 11/20 16.144 427.2 0.963
5 11/40 10.060 ' 685.7 1.546
6 11/40 10.238 673.7 1518
7 i1/40 - 9.829 701.8 1582
8 11720 14,867 463.9 1.046
9 11/40 10.022 638.3 1552

10 11/40 . 10.173 6780 1.529

11 11/40 10.001 689.7 - 1555

12 11/40 10.129 -681.0 1.536

i3 11/40 10.005 6389.4 - 1555

14 11/20 14.965 : 460.9 1.039

15 11/20 14,999 459.9 1.037

Table 1 Speed Varialions Among C.mmp’s Processors

Maturaily, a process on an 11/40 should execute faster than a similar process on an 11/20.

1\ SYN e the DEC nsme for the sighal that indicates a requesl is bsing made for the UnhunTM‘ Since only the
processor is making requests the number of MSYNs is the number of memory requests made by the processor.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 1%

Notice that even among processor of the same type there can be more than a 57 difference
in speed.

Because two types of processors are used in C.mmp, the sirategy of dynamically assigning
processes o processors is complex. It is not sufficient to schedule a “ready” process to the
best processor available. The following scenario demonstrates why.

Suppose the rootiinding processes are performing their function evaluations and are
finishing at random times. After several have finished one would expect to find some idle
11/40's and compuling 11120‘51. A good scheduler should handle its resources better. The
idie 11/40’s should “steal® the processes computing on the 11/20's. Naturally, this
philosophy assumes that a context swap can be performed quickly. Process stealing is the
scheduling policy on C.mmp,

3.3.2 Memory Relaled Variations

3.3.2.1 Technology Differances

C.mmp’s centrally Ioca-ted primary memory is also a source of fluctuation in performance.
The memory :is divided into 16 modules, or banks. Each bank can service memory requests
independently. However, the relative sp;eds of the banks are different because they contain
different types of memory. At the time of this study, five banks contained semiconductor
memory and 11 contained magnetic cores. Table 2 summarizes the speed differences of the
memory banks. In this experiment Pcfi5} performed the F{x) calculation 100 times in each
memory bank. The elapsed times appear in the table.

1Dm-irn the course of our study the number of procemsors running in the system varied day fo day. The processor
configuratian during the experiment wilh the synthetic rootfinder was 10 POP-11/30's and 3 POP-11/20's. Since we
never used mors than nine processors te perform the F(x) calcuiation, all of our processes ren exciusively on the
11/40's. However, the problem is real. [f we could have incorporated more than ten processes into the rootfinding
procedure we would have had to deal with it. Leler experiments in lhis paper measure the impact of the
nan homogenous processor configuration ss the number of svaileble 11/40's frequenily was less than nine.

http://IMPLE.Mt.NI

“THE IMPLEMEMTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 20

Technolopgy Time (sec.) kMsyn's/sec Relalive to Mp[O]

Mp
0 core 15.243 ' 4525 1.000
1 core 14.943 461.6 1.020
2 core 15.127 456.0 1.007
3 core 14.999 - 459.9 1.016
q core 15.087 457.2 1.010
5 semiconductor 15.950 4324 0.955
6 core 15,272 451.6 0.998
7 core 15.402 4478 0.989
8 semiconductor 15.887 434.2 0.959
9 semiconducior 15.858 434.9 0.961
10 semiconductor 15.860 434.9 0.961
11 semiconductor 15.855 - 435.0 0.961
12 core 15.070 457.7 1011
13 core 15.155 485, 1 . 1.005
14 core 15.034 458.8 1.013
15 core 15.013 459.4 1.015%

Table 2 Speed Yariation among C.mmp's Memory Banks

Even among memory banks of the same technology, speed varies. These variations are
small however, and are caused primarily by variations in the length of cable cannecting a
memory bank to the crosspoint switch and in the timing circuitry for individual memory

modules.

3.3.2.2 Memory Bandwidlh and Memory Interference

The previous experiments show the rates at which individual processors and memories can
communicate. Another important characteristic is the maximum bandwidth of a memory bank.
This rate will determine how many processors can compete for cycles in a single memory
bank before the bank is saturated with requests. In this experiment all of the processors
simultanecusly executed the tight loop in the same memory bank. Two banks of different
types were chosen to be representative of their respeclive technoiogies. '

The results in table 3 indicate that performance degradation will occur if more than two or
three processors are competing for cycies in a memory bank. This result implies that sharing
code, a common practice {o conserve memory space, wiil resuit in slower execution.

Semiconductor 1.492106 . memory refs/sec.
Core 1.712308 memory refs/sec.

Table 3 Maximum Memory Bandwidth

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP _ PAGE 21

In tables 4 through 6 we illustrate the performance degradation that results from sharing
code. All of the measurements were performed on Pc[0} In each case 100,000 total cycles
were .sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN to
SSYNI, a complete memory cycle.

Table 4 is the control sample where we monitored the memory accesses while the system
was idie. Although the vast majority of cycles were in the 500ns. {o lus. range there were
some cycles that were greater than 14us. This difference occurs because a processor that
doesn’t have a process to execute runs a task called the idle job™. The idle job consists ot a
WAIT instruction followed by the code that checks to see if a process is available to execute.
This piece of code contains a critical section guarded by a mutual exclusion busy-wait loop.
Since all of the processors are sharing this code and trying to gain exclusive access to the
critical section, a great deal of memory contention occurs and the memory cycle lengths grow
jonger. We will use this table to compare the perfarmance of the rootfinding processes when
they execute from one common code page .and when each has a private code page.

Table 5 contains the results for when each of the processes executes from a private code
-page. Comparing this table to lable 4 we make two cbservations: while the average memory
cycle length has increased slightly, relatively little difference exists between the two tables;
the one category where a noticeable change does occur is the long (> 5.0 us.) cycles Less
than half as many long cycles now occur because the processors are kept busy execuling the
~ rootfinding processes. -

Compare these two tables to the results in table 6 where all of the processes share one
common code page. Again we make {wo observations: the average memory cycle length has
dramatically increased by 3007; more important stiil is that the percentage of long cycles (>
5.0 ws.) has increased from .0867 in table 4 to 15.67, over two and one-haif orders of
magnitude more. This degradation in the basic cycle lime will offset and eventually reverse
speedup obtained by incorporating multiple processes in the rootfinding procedure.

I5vN in the DEC nams for the signal that indicates Lhe completion of » bus tranafer. 1t in the signal the memory
module usas {0 iall the procsssor that the memory access is compleled.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 22

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0

05 - 1.0 65652 7787 14089 902

1.0 - 20 9470 1926 8 0

20 - 5.0 63 6 2 0

5.0 -14.0 63 6 10 0
14.0-50.0 5 2 0 0

> 50.0 0 0 0 0

Table 4 Histogram for Idle System

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0

0.5 - 1.0 65827 7461 11024 822

1.0 - 2.0 12705 1133 as 0

2.0 - 50 894 54 10 0

5.0 -14.0 28 3 0 0

14.0-50.0 o 0 0 0

> 50.0 0 0 0 0

Table 5 Histogram with Private Code Pages

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0
05-10 52784 6504 9404 761
1.0 -20 10810 689 102 0
20 -50 3059 201 84 o
5.0 -14.0 14291 843 287 ¢

14.0-50.0 174 4 3 0
> 50.0 0 Y 0 0

Tabie 6 Histogram with Common Code Page

Figure 9 captures the impact of the finile memory bandwidth problem on the rootfinding
procedure. We have graphed the elapsed time to locate 50 roots ws. the number of
processes for two implementations of the rootfinding procedure. The dashed curve resuits
when a single copy of the code page is shared. The solid curve is the performance when the
cooperating processes each have a copy of the code in a private memory bank,

This graph also can provide some insight into the speed vs. space tradecff. If we compare
the speedup over the single process instantiation for both the shared and no-sharing
versions of the rootfinder, we find that the no-sharing version has a maximum speedup of
'2.60 using nine processes while the shared version's performance peaks at 1.53 using three

325

Elapsed Time (Sec.)
9]
Q
9
e

N
~
O

250! /

225} : !

200; Shared Code Page p’

175
180
125

100

75 Private Cotde Pages

50

7 z 3 4 5 6 7 8 9
Number of Processes
Figure 9 Performance Degradation Dua to Finite Memory Bandwidth

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 24

processes. Neglecling the single global data page we have a achieved a 1707 increase in

speed at the cos! of a 3007 increase in size. In this study memory is plentiful and we
squander space for speed.

One solulion to the speed vs. size tradeoff is to interleave the central memory on the low
order bils rather than the high order bits. This solution would tend to scatter memory
requests more evenly across the 16 banks. To maintain availability it might be necessary to
‘organize the store as four banks of 4-way interleaved memory. A second solution is to give
each processor a cache to work with. This solution is currently being implemented on C.mmp.

3.4 Operating System Related Periormance Fluctuations

3.4.] Introduction

The operating system also perturbs the performance of the rooifinding procedure.
Although C.mmp was intended to be a multi-user muiti-programming facility, it is possible to
use the machihe in a dedicated single user mode. In this mode of operation, the user can
minimize any interference from Hydra by simply not doing anything that requires operating
system assistance. Most of the measurements in this study were made in this way. However,
certain functions, i.e. scheduling of processes and 1/0 interrupts, must be performed by Hydra -

“and cannot be avoided. The contribution te performance fluctuation from these basic
Operatihg system functions is measured and discussed in the following sections.

3.4.2 Tha Karnal Tracer

The Kernetl Tracer is a software monitor that can obtain information about significant
activity on C.mmp under the Hydra operaling sysiem. Since it is a software monitor, the
Tracer does perturb the timing data it attempts fo measure. However, this perturbation can
be compensated for in the posi-processor software.

The Tracer can monitor such things as: context swaps which occur when a processor
changes from executing one process lo executing another, semaphore activity, process starts
and stops, operating system requests (Kernel Calls) and a multitude of other events. Events
defined by user programs also may be traced.

The data is collected in real lime and laler processed off-line,. Numerous post-processing
programs produce various forms of outpul: process or processor dumps, time~line execution
histories, and various statistical analysis packages.

All of the Tracer data that follows is in the form of a processor time-line execution history.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 25

We use various symbols in the trace to encode events in order to compect the data. Table 7

contains these symbols and their meanings. Each row of the trace represents the activity on
| a processor. The time in seconds appears along the bottom edge. We will discuss in detail
the first trace that captures the impact of 1/O interrupts on performance.

3.4.3 I/O Devices and Interrupls

Random interrupts from 1/O devices and processors contribute to performance fluctuations
in the rootfinder processes. Unlike the memory, i/ devices are not centrally located and
accessable through an n x m crosspoint switch. Devices are associated with a particular
processor. Thus, for example, a read or write from a disk on Pc[OTs Unibus must be
performed by processor O regardless of which processor initiated the request. Since
interrupts are serviced by stealing cycles from the currently executing process, large
fluctuations in compute \imes can be found for processes running on processors with 1/0
devices.

In figure 10, interrupls associated with 1/0 perturb the performance of the rootfinding
processes. C.mmp’s processor configuration during this trace was P¢[0, 3,4,5,6,7,8,9, 11,
12, and 13]. The processors appear from left to right as columns of the trace. Pc[O, 4, and
8] are PDP-11/20s and the rest are PDP-11/40s. Processes(35, 43-50) are the nine
rootfinding processes. Process 29 and the DAEMON are other processes that happened to be
awake at the time. These two processes are doing things that cause a substantial amount of
/0. The following discussion describes how this IO activity perturbs the rootfinding
processes. '

A previous iteration finishes at 0.612 seconds into the trace. Process 50, P(50), on Pc[ll]
-‘was the last to finish its calculation (the aclivity on Pc{6] is P(29)) and begins to wake its
sleeping companions by untocking their semaphores. One by one the processes wake up and
begin to perform the next iteration. P(50) finishes waking up all the processes { P(49) was
the last to wake up at .641) and begins its own function evatuation. One by one the
~ processes finish their calculations and post their ‘results, after which they "P" their
semaphores and wait for the beginning of the next ileration. When they block on the
semaphore they are removed from the processor { e.g. CSW for P(45) on Pc[5] at .700). Four
of the processors have large chunks of time shaded between brackets. This shading and
brackels denoles an interrupt service routine performing 1/0 to a device on that Pc’s Unibus.
Interrupt service routines can consume between 1 and 15 milliseconds of time. This causes

the rootfinding process on that Pc {o arrive at the synchronization point late, thus
jengthening the STAGE time.

PROCESS N
- Csw -
IOT #X
KALL #X
RET X

n

: PROCESS «#N IS RUNNING
¢ A CONTEXT SWAP
+ SPECIAL TYPE OF KERNEL KALL

KERNEL KALL =X

: RETURN VALUE FROM A KERNEL KALL
: START OF AN INTERRUPT AT LEVEL N
: INTERRUPT SERVICE ROUTINE EXECUTION .
: END OF AN INTERRUPT B
: USER DEFINED EVENT X OCCURS
: P OPERATION ON A SEMAPHORE
: V OPERATION ON A SEMAPHORE
: OPERATING SYSTEM PROCESS

: IDLE TIME

Table 7 Tracer Symbols

.i. E.
,.H‘ L YTTRIVEyavaIveIvLISY
. =

Pm-. tryy-dey-ay

14 it ereied
s S Ui L1
"= z=e

u-h £
REEE : Us e ETRasaEess
o A - -
e CommaA O WA DOOOODODOODONE @ B B 8 @ [3} ® £Ceccoooe
s ot - . 8 & &gege _ﬁs m?«i‘iﬁg : -] , 3 H 1
Zoaodd 93005 M MBS I : ti == | lLi _ ® 33 33 3> 333 3» 33> > > [m FELEET
* e n s g T I ot e) TErT
2 IR Iy |sommnnnneeen| | IMEERIES VRS BB F § B EEERRS
— - " Y A e T T DN T ST I S R RN NN Y -
2 [, R Wl_ m 441-44444444.40“«%““ H ey 4T - r—— J m ﬂ Eadaadtaia sl) .ql-.“.qdd
® —— R = o
o = ? e = =
. Ty
——ae s %mﬁm%ﬁﬁﬂ e e -~ R B e e
lEonotEs 1 4“4:4‘34443‘.‘.3:‘443 ! o WQ m.u.‘“"“”
g&(ﬁﬂhﬁhﬁﬁﬁ%&%ﬁ%ﬁn Fh bbbl] 3 [Jpihid
CCrECTLCUL T LI L G CLELK CEXT - et et - N —
O SooosonssooaossoolE § E=Es i aeag : 0 =
] H

] . MERER2D
e
1 3

Figure 10a Perturbations from Interrupts

BEESEE S MR LU S S L UV R LS C NS W . "y e 19900CYIITI TV S VU IUNMMKL ST TPIVNII VPN VI YTIvE T sudTYsUVeY
STraTvITeVTeTTesYT el frasLdLEye vy evey \ibididai m, e et e S Y g TYIETETTISTY Lo Merepiiba bbb AR AR bR
SETErTTEITINSSEsE T e G LT “rmemmnnee | e g2 W musszs Ereacedadid s et T s
EE |nuﬂ.unﬂﬂl“nﬂ.m“"—r e L. - v e e ———— R e [e T T T 11 EECCEBECEERN SUBECCOURESFEOEEOEE
shetddaadoreaiilinell) 3333 SAERRELMCE b S ~§"nn"n"»»n..m nn—. nnu»nnnn»nmmrnvun.-»-'nnnmnnn"n-"
EECEEEENEECEXISEE R CEEENEE RN ETCTT O S e - . oy wdatd sedoa
I“4.‘“““““‘.4“““.“.‘43" * - mﬂﬂm 4‘“‘lﬁ“““«““‘““““x“«““““““““““““““““““‘".ﬂl
——— e [YT1] = m |1 £ = -
ol
R R R R o U T B — — R Rt g e
HHHHH R R R R R . ‘.i...nhwrnn»nnnnnnuu.-.un!buunnnnun-m.nnuunn.-.nnn. SEEESCE
ECLEDCEECCEDED gE O3 COBAL! ORI = MR VLA WA S A A A A ALAEACUS A ML WM AU UL MM WA VA AN
LTl . 04 WA L VAR VAW ChL L T T WI. md ﬂ ﬂ‘.d..d.ll‘lﬂlﬂ“..l..d“.l‘l4‘4“.“".““.4‘44““4‘.‘34‘4‘
= — e e] nop -— . *m = i e e
3T R R T h T 3 freer - s FREREBEE i ttee i1
HEE R s e S I T R T B I R EHHEHH R REH
ATV ITIIT SV TN NCEIY O T TG TIY § B d e = - e e = o PR A R -
-gotnaqaaanuaoaiziqgnﬂ W..l,.i. rrm e s o et e 2 e it i 21 s < w: - -....__.....-......4...:............‘!a......hﬁuﬂnﬂh“zbz-.\hnsaﬂihgﬂnm m ———
b Sopas SIS QI v e e s smn e marmerans 5 bt srin e oen e 5§ pe= =rrmes *anat -
e e e — - : = = x
et R T T T e T e o= | [Fifivetpesitiy U ——-——-
G I I R I S s s s] <+ 1
BARRAALAALALL SN b e v . AL A RE A ARG [
BOSIILES BSEEBIEESD B IARLS BRI A ol ALV D005 0-0 VAN TTEEmTTEE TR Am s TS RS s e Pt Lol i -
li‘ji“ddccaa.‘i&”i “.4441.44414“44 - L I o e e e e g e =+ “-—a “ LA L EE LT T e T I T I T YT TT YT YR TR Yy
B e] | T P e % o= — Sz amarmmemees e
-
T ——————— 1 | -t B
RS i IR SIS = H S R i
- - CLEEEEECS BEO ankt
- - [errmererar] E\L&\Lﬁ\hﬁ(ﬁﬂwn‘i&lklwssght v ——-
) PFSESRNERAS lI'llIl.l.lll......'.'....l.».-. ’ I.lg -
e e e e e ey it PPt =it e] -
I3I33sai i el
: 2 aeritirshianh H 3305 e M O RS S RN -
[~d T AT s e e e 1000 B 0 .40 0-EE s a CIBIBD B0)
4;‘41:4444;4“ m s -%44414444444:4444“ s o a e ee Dﬂﬂ“d“‘i‘%‘i‘.‘ii
R
e e e BBH s et s e e TR EERTEE 55 35 355 33 33D 3333 333 3 353 w .3
e e T T e e | PP USOO | -~~~ : , EEC TRy
STy (o TRt b BB Y § B @ 4]
WREN, ST A L AL A i | el gl e e MR

.

Tl ooy =/ L1} Cmn oo i x..li.-i..!l.a..‘.r.” ._m- AR AR A A A A i m A A A AL iaaa A At e LALALD]
g I , R fm e aeaee e o . N a8 — — -
- P [T L I — . - -m .« = | I

. N N O N T TN Y NN Ny K 5 —.ﬂ ol Tomre] |oopoasedboeRon rCrE e
+{-- lcnzcchacenachacennenigeraccancee) o B O — vorl lermesssnaasass [RRERCDNVCTRSIY) RSl

-t _EEEBEU g i b e e [- ...r\-!h DDDDDDDDDD %
- A i a " > A . A - A A
-

Figure 10b Perturbations from Interrupts

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 29

For example, P{(49) on Pc[8] is interrupted at 681 for 13 milliseconds and then again at
707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709
and finishes its function evaluation at .728 uninterrupted. Since It is the last process to
finish, it assumes the jobs of finding the new root containing sub-interval and dispatching the
processes to perform the next iteration.

In this example the interrupted process was delayed enough to became the last process to
finish, thus lengthening the STAGE time. However, P(46) on Pc[13] was also interrupted
during its function evaluation for approximately 21 milliseconds yet it was not the last to
finish and did not cause the STAGE time to lengthen. This is another advantage the
multiprocess implementation of the roatfinding procedure has over its uniprocess counterpart.
In the single process instantiation the interrupt time is additive and each occurence lengthens .
the iteration. In the multiprocess version, only the interrupt time associated with the last
process to finish is addilive.

.3.4.4 Kernel Procaesses and Special Funclions

Operating system requests are frequently handled by special high priority Kernel
processes and as such perturb the cooperating rootfinder processes by steaiing processors.
Of particular interest are the processes that perform scheduling. Because synchronization of
_ communicating processes can involve rescheduling the processes, the special scheduler
processes can become botilenecks causing performance degradations.

During the trace of figure 11, C.mmp’s processor configuration was Pef0, 2, 4,5, 6,7, 8,9,
10, 11, 12, and 13] Of these, 4 and 8 are 11/20%s (so is Pc[0]) and are the third and seventh
blank columns with no execution histary. Since enough processors of the prefered (11/40)
type were available the 11/20s were never used. Similarly Pc{12] was not needed.

In this trace processes 18, 19, 20, 21, 22 are rootfinding processes. Processes 1 and 2
are Kernel scheduling processes, and process 14 is the Tracer process.

P(22) on Pc{10], the last process to finish the previous function evaluation, initializes the
necessary parameters for the next iteration. At 285 ms. into the trace (.285) it begins to ¥

its sleeping companion processes, and at .309 it begins its own function evaluation (event
«372).

Meanwhile P(2) on P¢[6], scheduling process, wakes up CSW at .293 and begins to perform
the task of actually waking up the processes that process 22 has just V-ed. It is a relatively
painful task involving several semaphore operations and several Kernel calls per process.

. .
“iwd Dot
1 « N rore

_—t

K198

s

-

H
-z

k]

i e Bt e e na s ?J .VVVV ann > u“-.“ :

wom . e W B w e

s i : =28 . 3
SN M M >l et d = e e o ananaaneal) --
w e T T e T T A e A A A A T T T T T e T e e 1
i F b F b eEimesesen _ . i

-4 b et D e e i e B O B O GO
HH G R R e R e e F iy Snkwamny

T Ny S Serfurhd: miwsa
Vs R R R R S O R R N
il:'lrmlpl'..l '“o”’l"t“l!ll.ld’l%!uﬂ!ﬂl'lllm.!ui.t'lig.m "
————— 122 2o 5> 884 3> 33> LD m s B o > > _......‘..L..Vvv m..w.u oo BE>> aa > > %50 55 an 55> nan > 3> LLNO> LIAEE MAREOM - —-oeems o

TS v vy BN S d e v EE R EF F O Eim k W b B EoE pmg Y :
i LS I - 155 S - T R

V3 anan >y L8Le SSTSSILSES 5 e 33> ma >> ERAAL AASSIRSNAY 5 am 3D) am >> PASS MASASLAS0G 35 04 330> A4 3D ERSe,)

| L] -

. —‘ﬂl e e] bl el leboct ad ki

B EEnerEmiots p g § BRSOt b G &

§ R =

e ——
—— R EETTTESEmtes
“ st T e

R I~ & -t e o e

'Il”nl lllllllllllllllllllll
PR | ¢ - AR ASAS S Al h bl hARALLAS

00

1L N a a " " A . " - ('] a A A A a i a » A

a
g ‘ : :
.

. .
] []
[

Figure 11a Perturbations Induced by Operating System Processes

- " - : iﬁ'wwmmmmwmommmmcmong
S o e ek e e T - oo DBDDDDUUU
. e e e e et e s as LR R} LR AR RN] CE LU LK UII'UIHIIDII.I'IIIIIC LEXRE LA LE]
1 ' !H:!H::HH'!:!:!'!Hl!!:f'!i!:fl"'!!1”!!‘!."?!'!“.‘.‘.
v e e e i e pemrrrs [};_-hu un.mutu.u.u.mkumnmuuuAuJunuuuuuuuuu-uumunu.umumuun un muuuu
) l‘h 16 2 N B I NN SN M W N N M W M o 0 e 0 R e R ATIVAT e
oE ~ - I s
. ~
PRt foprervyors - 4oe amnm Y] unmmﬁ o D TR O P DTG O] ;W
T e e T L R r SRR R ERSRIRINT T T T R R R N AR T TR et eseseemaesey F © ® B B Rdmmma
— - - e jws W @ @ @ —
=1 praa
; pouiig
- PR —— - F T L 2 g s
PR Lml m—k-‘-l-i._
_____________________ vwees B E OB B ok
i — - . -
‘ g |
B —————a - B I E-
1 R]
.—n.-.wml-n-—wm--ow% -
‘-——-'=n»m»5:p>::‘:uu»m>»'" ""u»m»:‘:'§>:.:‘!a
miiihiﬁi iiiﬁmimiiiﬁﬁiﬂsﬂi ;
ezl
(AT
1000000 |
“~ mna o e aw ‘wma 8 80 ; X -
b>u»>nu»nmna»mn»uuﬁ . .
EgE EEEN F E REE
s oRoRCErRonCoe o oRRERE® ¢
] |
MM! [YYTTYOET]
MW*MM
FETRTERTTETEsa st RELeaReLAERRsasEETEL Y --
- Hre WS
. - rrr] -
»eh
: et
hhh
1 s . i N s " N i . a M . A 1 . N . A N . P
:]
: s 3 :
- » »]

Figure 11b Perturbations Induced by Operating System Proéesses

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 32

Finally process 18 (the first to be V-ed) wakes up and begins its function evafuation st 348,
approximately 60 ms. after process 22 performed the ¥ operation.

To expedite the costly wake up procedure, processes | and 2, the scheduling processes,
cooperate to start and to stop the roolfinding processes. Moreover, by the time they get
around to starting process 21, the last process that is to wake up, three of the other
rootfinding processes have already finished their funclion eveluations and have gone back to
sleep (P followed by CSW). A fuil 130 ms. have tranSplred since process 22 performed the V
to wake process 21.

Another side effect relaled to the Operahng system that can affect the performance of
' cooperating processes is the round-robin schedullng of processes under Hydra. - This
traditional policy is implemented using the notion of "lime-sliced” intervals of execution to
provide equal servite to all tasks. Occasionally a process exhausts ils time slices and must
ask for more. This request can take more than 150 milliseconds to execute. Whether or not
the time-slice end anomaly will perturb the performance of the cooperating processes
depends upon the average duration of the function evaluation and the frequency of the
time-slice end condition. In this study a process must consume 10 one haif second slices
before encountering the time-slice end condition.

Figure (2 is the distribution of the etapsed time to perform an F{x) calculation in the
presence of Hydra. The long tail in the distribution is a result of the time-slice end condition
occurring for the process performing the function evaluation.

3.5 Summary

The sources of performance fluctuation we have discussed can be clessitied into one of
three types-- application, hardware, or operating system related. In the table below we rank
the sources of perturbation by their potential for causing performance fluctuations. Each
source is measured and the observed range calculated by dividing the maximum measurement
by the minimum observed value. The larger the range, the more potential for performance
fluctuation.

In the next section we eliminate several sources of perlurbatidn In order {c measure the
performance of various synchronizalion primilives. We do this by carefully selecting
processors and memory banks to execute the rootfinding program.

(= SAMPLES)

. 130

120

110
100
90
80
70
60
.50

40

30

20

10

number of samples = 1000

490
I sampies

|

|

S A |
+-

510
samples

- o — =

r——_.'_

40 50 60 70 8O 90 100 110 120 130 L40 150 160 170 180 190 200 210 or grester

(ELAPSED TIME in ms.}

Figure 12 Distribution of the Time to Calculate F(x) in the Presence of HYDRA

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 34

Rank Type Source Measurement Range

1 Application F(x) Calculation Function Evaluation 1:34
2 Hardware Memory Contention Average Cycle Length 1:3.0
3 Operating Sysiem Kernel Processes Bottlenecking of 1:28

Scheduling Processes

4 Hardware : Processors Speed 1:1.6

5 Operating System, 1/0 Devices and F(x) Calculation 1:13
Interrputs Degradation

6 Hardware Memories Speed 1:1.07

Table 8 The Sources of Performance Perturbation

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 35

4. The Effect of Sychronizalion on Perfarmance

4.1 Introduction

Newell and Robertson[1975] identified seven programming issues for multiprocessor
cdmputer systems. One of these, synchronization, is a2 fundamental ‘problem with cooperating
processes in any environment. Since it has greal impact on the performance of a parallel
algorithm, we will measure the perfogmance and discuss the tradeoffs of the various
synchronization mechanisms availabie to the C.mmp user.

Until now, we have used a very simpie form of “"busy-waiting” loop to synchronize the
cooperating processes. Although synchronization using this method is extremely fast,
undesirable side effects can cause serious performance problems. We will discuss several
alternative synchronization mechanisms, describe their operation and side ettects, compare
their performance in the context of the rootfinding algorithm, and present the range of
usefulness for each.

4.2 Description of Synchronization Primitives

We first examine the nature of the synchronization problem for the rootfinding processes.
In figure 13 we present a more delailed view of the STAGE time and in particular focus on
the mechanics of synchronization. The segment labeled FIND is the time spent locating the
new root containing sub-interval. The V(iYs correspond to waking up each of the rootfinding
processes. One quickly notices that the overhead of synchrénization can be a significant part
of the STAGE time in certain instances. Because we have used a spin lock, a form of busy
waiting, o synchronize the processes, the overhead of synchronization has been negligible.
However, it is not always desirable 1o implement synchronization with this mechanism.

8.2.1 The Spin Lock

Of the three synchronization primitives considered in this study, the spin lock is the most
rudimentary. This primitive is actually implemented independently of any Hydr-a support and
is only a tight loop in which the process continuatly tests a semaphore until it can set it
successfully. The P and V operations are the following POP-11 code sequences:

PROCESS =1

({idie time) '
ooo F(X)CALC 4}7 [F(Xy CALCULATION | 4{"*‘3 o0
PROCESS »2
o oo F(X)CALCULATION J { F(X) CALCULATION "~}
PROCESS »3
o o o FO{ CALCULATION } {_ F(X) CALCLLATION ﬁr
-] -]
] Q
Q o
PROCESS wn-2 : _ ‘
eoo . FX) CACUATIGN |} R — F(XY CALCULATION ["FIND Tws | ooo
: . . . f
PROCESS wn-1 : . :
5o o _ FOX) CALCULATION FIND Jsio Jway [8 [v hm,[m,|_‘nmcmsmsnmq ¢
: - . - — |
PROCESS »n . :
6 o o F(X) CALc.} { F(X) CALCULATION b

STAGE TIME

ey Yl S

Figure 13 A Detailed View of the STAGE Time

R S

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 37

P: CMP SEMAPHCORE, =1 . ;SEMAPHORE = 1 ?

BNE P floop until it is » 1

DEC SEMAPHORE idecrement SEMAPHORE

‘BNE P sif SEMAPHORE neq O then go to P
Vi MOV 21, SEMAPHORE sresat SEMAPHORE = 1

The repeated potlting of the semaphore, although extrerhely fast, has two very nasty
characteristics.

The first is that when the process completes its function evaiuation and starts to poll the
semaphore while waiting for its counterparts for finish, the processor Is not free to perform
useful work. ' '

The second major drawback is that the polling process consumes many cycles in the
memory bank that contains the semaphore. As more processes finish their function
evaluations and begin to poll the semaphore, the bandwidth of the memory bank is quickly
consumed. The process that has ils code page located in the bank with the semaphore will
be competing for cycles with many busy processors. This second problem can be
circumvenied by inserling a tiny delay ioop in the semaphore code, le., decrement a register
to zero before checking the semaphore. This delay will decrease the frequency of memory
requests in the semaphore memory bank, but not slow the sychronization primitive
appreciably. However, the primnfy problem still remains: a “spinning” process prevents a
processor from doing useful work.

4.2.2 The Kernel Semaphore

The Kernet semaphore (K-SEM) is implemented by the Hydra operating system. It is the
low level synchronization mechanism used by system pracesses. When a process blocks or
wakes up, a state change for that process is made inside the Kernei. Because it is
implemented wilhin the domain of the Kernel, the user evokes operations on the semaphore
(P and V) by issuing Kernel calls. If the process blocks while trying to P the semaphore, the
Kernel swaps the process from the processor and places the process in the semaphore’s
blocked-queue, where it remains uniil another process V's the semaphore. When the process
can proceed again, it is swapped back onto an available processor and continuves execution
from the point where it was blocked. The important aitributes of the Kernel semaphore are:

- A blocked process is swapped from a processor,

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP " PAGE 38

- When a process blocks, ils pages are kept in primary memory. Keeping the
pages in primary memory ensures that the process will quickly resume execution
when it is swapped back onto a processor.

~ The Kernel semaphore is approximately two orders of magnitude siower than the
spin lock,

4.2.3 The Policy Module Semaphore

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called
the Policy Module (PM). This primitive is intended as the user’s primary mechanism for
performing synchronization. ‘ .

Since the synchronization is performed within the context of a system process, more
flexibility is available in handling a blocking/waking process. The first policy that was
adopied to handle biocking/waking processes was the following:

- Two PM processes would cooperate to perform synchronization operations for

users; one would start and stop processes and the other would handle
communication between the Kernel and user.

- When a process blocked on a semaphore it would be context swapped from the
processor,’

- Any ‘dirty’ pages belonging to the process would be updated on secondary
" storage.

- When a process was o wake up it would be restarted by one of the PM
processes after all the swapped out pages belonging io the process were
brought back into centrai memory.

This policy has evolved into a much faster arrangement of multiple processes in the
current version of the PM.

One modification to the PM that was found to improve performance substantially was to
| delay the updating of a process’ dirty pages onto secondary storage. Often a process is
biocked for very short amounts of time and will quickly resume execution after only several
mitliseconds of waiting for a certain condilion to be true. However, when a page is to be
updaled onto secondary storage it is wrilten onto one of several fixed head disks that will
take at least 32 milliseconds per page. The swapping disks revolve once every 16.67
milliseconds. It takes two revolutions to update a page: one to write it out and the second
to perform a read-check operation to validate the copy. Thus, it is quite possible for a
process to spend most of its time blocking and unblocking if the inter-synchronization interval

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 39

is small enough. The problem would be even more severe if there were a task force of
cooperating processes, eg. the roolfinding processes, blocking and unblocking every few

milliseconds.

The current version of the PM initializes the delay lime perameter, €, to 300 milliseconds,
Table 9 is a summary of the time it takes to perform the basic semaphore operations on the

various primilives.

Measurement Spin Lock K-SEM PMO PMIL(¢=0) PM1(€=300)
Time for a process ' :

to do a V (us.} 30 3000 6000 5000 S000
Time tiil a process

wakes up from a V (us.) 30 5000 55000 50000 13000
Time from P to CSW {us.) na 3000 9000 6000 6000

Time spent in PM while :
waking a process (us.) na - na 62000 20000 0

Table 9 Comparison of Execution Times for
Semaphore Primitive Operations

4.3 The Impact of Synchronization on Performance

4.3.1 Introduction

Now that we have described the functionality and presented the individual performance
statistics for the basic primitive operations, we can observe the impact of synchronization on
the performance of the ructfinder. We have eliminated most of the overheads associated
with synchronization by using the spin lock primitive. The remainder of ihe paper examines
the roolfinder’s performance as we employ the alternative synchronization primitives.

4.3.2 Comparison of Primitives When Compute Time ~ Synchronization Time

The first graph, figure 14, compares the performance of the various implementations of the
rootfinder using different primitives to perform the process synchronization. We have
plotted the efapsed time to find 50 roots as a function of the number of processes. This data
was generated by the authentic, not synthelic, rootfinder, The distribution of the F(x)

Elpased Time (Sec.)

550~

500}
450}
400
350+
PMO Semaphare
300
25Q
200
150
PM 1{e=300) s’"‘ﬂ:m/-ﬂ
—e
100} Kernal Semaphore
—
Spin Lock
50; F 3 7 5 ; 7 8 9

Number of Procésses
Figure 14 A Performance Comparison of Synchronization Primitives

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 41

" computation is approximately Normal with mean 72 milliseconds and standard deviation 18
1

milliseconds!. We compare the performance of four allernative synchronization primitives:

spin lock, K-SEM, PM1{¢=300), and PMO semaphores.

The curve for the PMO semaphore implemeniation exhibils degradation as we increase
parallelism. The reason for this behavior is that the averhead of synchronizalion is greater
than the average compute time. A process spends more time synchronizing than computing.
In this instance we wouid be better off using a single process.

The curve for the PM1(¢=300) semaphore implementation depicts substantially better
performance than ils predecessor. Performance reaches a maximum speedup of 2.00 at six
processes. No additional speedup is gained by employing more processes. Moreover, a
noticeable degradation occurs at nine processes. This sudden degradation occurs because of
the non-homogenous processor canfiguration (NHPC). During this experiment C.mmp’s
processor configuration was eight 11/40°s and one 11/20. Thus, when we incorporated the

ninth process, it ran on the slower 11/20 type processor. The.STAGE time lengthed, thus
yielding an overall slower performance. '

The K-SEM implementation has ils peak performance of 2.4 at eight processes. It too is
affected by the NHPC problem and performance degrades slightly at nine processes. The
overall performance of the K-SEM implementation is about midway between the PM1(¢=300)
and the spin lock versions.

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight
processés. The NHPC problem causes a much more severe performance degradation for this
semaphore than for the othersl. The reason is that the processes blocked on the spin lock
semaphore remain on their procéssors, whereas the other implementations free the faster

11/40 type processors to steal the process that is still running on the slower 11/20
processor.

4.3.3 Comparison when Compule Time is Much Greater Than Synchronization Time

In the previous experimen! the overhead of synchronization was in some cases a
considerable fraction of the STAGE time. If we make the compute time for the function
evaluation much larger, thus reducing the percentage of time spent synchronizing, the

10n an 11/80 processor

Tha PMO implemeniation performance curve has » greaier degradation than the spin lock version. However, the

reason is notl marely the NHPC problem. The primary reason in thal the iwo PM procenses that perform the semaphore
operations are simost constantly running.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 42

performance differences between the various implementations is also reduced. Figure 15
graphs performance in lerms of speed up as a function of the number of processes. We used
the synthetic rootfinder again to generate F(x) compulations that take 375 milliseconds to
compute with the distribution a constant. The dashed curve is the performance obtained
using the PMO semaphore and the solid curve the performance obtained using the spin lock.

We expecled the curves to be cioser'togeiher. yet the spin lock version outperforms the
PMO semaphore 2.8 to 2.1 at maximum speed up. The reason far the large difference is that
the PM processes must perform the semaphore operations serially, each V operation taking

about 55 milliseconds. Thus the n'™ rootfinder process is not started until 55¢n milliseconds
" into the STAGE time. In this manner the ninth rootfinder process does not complete its
function evaluation until 870 milliseconds have past. Similarty, when the rootfinder processes
complete their F(x) caiculations, the PM processes again serially perform the P operatlons on
the semaphores causing still further performance degradations.

The severe performance degradation that occurs at eight and at nine processes for the
spin-lock implementation is another instance of the NHPC problem. This time, with only seven
' 11/40 type processors, performance peaks at-seven processes, declines slightly at eight, and
then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance
of the two implementations is nearly identical at nine processes.

However, in figure 16, where the distribution is exponential, relatively little difference
exists between the performances of the two implementations, Hecause the distribution of the
tompute phase causes the processes to arrive at random times, the PM does not become a
bottleneck when the processes finish their work. When they are restarted, the last one lo be
started is still defayed by 55#n mifliseconds. However, since the distribution is exponential,
the process that must compute the function evaluation with a compute time that lies in the
long tail of the distribution always finishes fast. Thus the overhead of synchronization is
again hidden by the MAX function that governs the STAGE time.

4.4 Summary of Resuits: The Useful Range for Varicus Semaphores

In figure 17 we have summarized the results of this investigation by graphing the useful
range for each of the synchronization primitives. We have graphed the performance of the
rootfinder using each prinﬁitive as we vary the size of the computation phase between
synchronization points, For each point, five cooperating processes performed 1000 total
function evaluations to find 50 roots. The distribution of the function evaluation was a
constant and ranged in size from 2 milliseconds to 375 millisecands.

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured

3.00,

Speed Ub

2.75¢

2.50¢}

2.25¢

2.00}

1.75} .

1.60t

71.25¢

6 7 8 - 9
Number of Processes

O % %

Figure 15 Comparison of Two Synchronization Primitives

1.25

Q.
D
g
Q
Q
Q
n
1.00 .) PMO Semaphore
\ !
3 ',"
\V_,n’
0.75; 2 3 4 5 ; 7 8 9

Number of Processes
Figure 16 Comprison of Two Synchronization Primitives

1000

100

Observed lnter-Synbhronization Time (milliseconds)

10

PMO Semaphore

A e
ar o

PM1(e=0} Semaphors
g-——8

PM1{e=300) Semaphore

x----—--x—--—""x

Kernsl Semaphore

70 700
Compute Time per Inter-Synchronization Interval (milliseconds)

Figure 17 The Range of U sefulness for the Various Semaphores

7000

* THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP
PAGE 4s

due to hardware, operating sysiem or synchronization overheads.

The 507 line represents our threshold for adequate performance. . It parallels the
NO-OVERHEAD curve but represents exactly half'of lhe performance that would be achieved
in the best case. The point at which a performance curve crosses the 507 line is the
threshold of usability for that synchronization primitive.

From these results we see thal the spin lock is the only primitive that performs adequately
~when the length of the compute phase is less than 15 ms. At the other exireme, all of the
prin{itives with the exception of the initial version of tha policy-module semaphore, become
indistinguishable beyond 400 ms. In the region between these two endpoints the user can
select the appropriate primitive to mateh the length of the computation phase. The
cross-over points for the various semaphores appear in the tabie below.

Semaphore Type Cross-gver Point (msecs.)
Spin Lock 2
K-Sem 18
PM1{¢=300) 33
PM1{c=0) 80
PMO 200

Table 10 Cross-over Points for the Various Semapheores

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 47

5. An Example Implementation

One technique to decompose a task for paraliel execution Is to portion the work into
independent partitions for simultaneous processing. This method is applicable to problems
involving the repeated evaluation of a sequence of functions on a stream of data, e.g. integer
programming and malrix manipulations. The parallelism resulls from simultaneously
performing the function evaiualions on different data elements in the stream.

Two overheads are associaled with decomposing an algorithm tntc; parallel processes using
the partition approach: 1) the cost of parlitioning the data and 2) the cost of synchronizing
the processes. To successfully capture parallelism using this approach, these two overheads
must be minimized. Thus, problems involving minimum communication between the processes
and a long data siream composed of independent data elements are favored as good
candidates for decomposition using the partition appreach,

However, not all tasks that exhibit potential parailelism are simply the repeated application
of a function on a stream of data. Connected speech recognition systems exhibit a great deal
of parallelism [Lesser 75], but have compiex cantrol structures that can constitute a large
synchronization overhead. In order to efficiently implement algorithms of this type, it is
necessary to restructure the algorithm so that the overhead of process synchronization has
anly minor impact on the aigorithm’'s performance.

Often, minimizing the overhead of synchronization can be .accomplished by decomposing a
large, complex task inlo a series of smaller, simpler sub-tasks. While this introduces new

synchraonization points into the algorithm, it also increases the potential for parallelism if the
sub-tasks can be performed simullaneously.

To demonstate the effectiveness of the partition approach we have chosen a complex task,
the Harpy speech recognition system developed at Carnegie-Meilon University [Lowerre 76],
for decomposition into cooperating processes. This chapler describes the algorithm,

demonsirates a series of implemeniations, and discusses the performance thal resuits froem
each refinement {o the algorithm.

5.1 A Brief Description of the HARPY Speech Recognition System

HARPY is a speech recognition system that can reCOgnize phrases and sentences from
many speakers based on a finite vocabulary within a constraining task [Lowerre and Reddy
77) Two important features of any speech recognition system are its representation of
kr'\owledge and the search and match technigues that convert the passive knowledge into an

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 48

aclive process for understanding the ,spoi&en utterance.

5.1.1 Represantation of Knowledge

HARPY represents all legal sentences within a task in a finite state graph structure. Figure
18 is a graph of a simple grammar. The knowledge is organized as 2 network of nodes where
each node holds a word in the vocabulary. The nodes are interconnected such that any path
through the word neiwork constitutes an acceptable sentencea.

Many words have more than one pronunciation. Alternative pronunciations can be
represented as a separate network of phonemesl. Each path through this type of network
represents an acceptable pronunciation of a word. For example, the southern pronunciation
of the word "tell” is an op‘lional path through the phoneme graph in figure 189,

By replacing every node in the word network with its pronunciation network, we produce a
new finite state graph, figure 20, where each path is a pronunciation of an acceptable
sentence.

A separate knowledge network is compiled for each task. Pre-compiling the network
eliminates the need for dynamic Interpretation of knowiedge during the search and match
phase of the recognition process. '

5.1.2 The Recognition Process

HARPY’s recognition process consists of three separate phases: the pre-processing of raw
speech, the heuristic search through the knowledge network, and the backtrace through the
network that yields the connected sentence of speech. The heuristic search is by far the
most interesting and computationally intensive phase of the recognition process, but we will
include discussion of the other iwo phases for completeness.

The pre-processing phase starts when the utierance is input to the computer. The
utterance is digitized and segmented into acoustical units, figure 21. These segments are
analyzed to determine their segmental fealures and parameters. At this point, an attempt is
made 1o match each segment of speech with one of the possible phonemes. Since an absociute
assignment cannot be made reliably, the system calculatas a match probability for each
phoneme based on the acoustic information in each segment, figure 22,

The geal of the heuristic search phase is to find an optimal sequence of phonemes

1phonemes are the smallest units of speech thet distinguish one word from sncther, e.g, the "m" in mat end the "b" in
bat are two English phonemes,

Figure 18 - A Word Network for a Simple Grammar

Figure 19 Pronunciation Network for the Word "TELL"

Figure 20 Pronunciatian Network Incorporated Into the Word Network

| Figure 21 Digitized Speech Segmented into Acoustic Units

LI LLLLLLLMM\

Wi e ey

r“r"’rr&sr*‘r

ME ALL

wﬁﬁlﬁ-i“sﬁ*ﬁmwl A
ABOU ' *

CHINA

it

CHINA] CHINA

I heard “TELL ME ALL ABOUT CHINA®

Figure 22 Wards Corrasponding to Selacted Phonemaes

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP . PAGE 54

satistying two criteria: the sequence musl represent a legal path through the knowledge
network, and the sequence should consist of phonemes with high acoustic match probabilities.

HARPY uses a beam search fo locate this optimal sequence of phonemes. This technique

involves searching a few of the best paths simultaneously, eliminating the need for
backlracking.

The search is performed by creating and dynamically pruning a tree structure of
phonemes. Each ply in the tree represents one segment of the digitized utterance.

For example, HARPY begins the search by placing ail the legal phonemes for the start of a
senfence in the recognition iree, figure 23a. Nexi, a path probability is calculated for each
candidate. The path probability is a cumulative probability based on the path probability of
the previous node and the acoustic match of the current node, figure 23b. The path with the
best probability is determined and the remaining candidales are compared with it. Those that
fall below a threshold of acceptability are pruned from the recognition tree, figure 23c.

The surviving candidates are expanded based on the information in the knowledge network
and the search confinues, figure 24a. The path probabilities are calculated, the best path
determined, and unpromising alternalives are pruned, figure 24b. The heuristic search
' continues, expanding the recognition tree and saving those connections that satisfy the
threshold until the end of the ulterance.is reached, '

The final phase of the recognition process is a backirace through the recognition tree
along the path with the highest probability. This backtrace is purely a lookup operation, and
does not involve any search. The final output of the backtrace is the sequence of words that
correspond to the optimal path.

5.2 The Decomposition of the HARPY Algorithm

The first step in decomposing HARPY's search algorithm is to isolate sub-tasks, independent
functions that operate on a data stream. No restriction exists on the number of sub-tasks
- that, when combined, accomplish the task. Moreover, performance may be improved by
decomposing a complex sub-task into a series of simpier tasks.

HARPY is a three phase recognition system; in this study, we will decompose only the
heuristic search phase since it is the most complex and computer intensive of the three.. We
can identify three sub-tasks in HARPY's heuristic search. The three sub-tasks and the names
of the routines which perform them appear below and in figure 25.

CHECKNEXT A candidale state is expanded into a list of successor states. Each item

0
-20

1-=== p===-
_ b ,
1 wl 1 wi
1§ =) o 2 , - @
..I.m..u; 1 m -
1 ! ' "
Ve —m | P .
* a—
/ \ .
v
L
o lg] o
? S o o
w Lt -l
%W Q2 ' .Im._,_
=0] =
—
St
d
W w -
g a o 2 ' -
=0 (L] =

/
\
(a)

Figure 23a,b,c First Three Steps in the Recognition Sequence

= T
-y
N 0 ;) S
' ' N ' L_
- _3[: _E_H.-_
= Tm._.._ _Aﬁ_ _...ﬂ
Z:N._ Q2 t "A_ . _
| "o N tey o e
(=]
© &
— - === -
gyl oyl .-
' . w
2 W ' N" , @
HT..._ ’G—
..I-G _ | —
. e .
[S}
|
- N R |
- o)
s - ﬂ < m t E
g 2 ©z = <
_ <G o
(=
© §
- - ym ==
-
Iy
—ZE_ —GTVI." , n
tr 2 0!
| . X ; o
| - -

(SUB-TASK 1)

(SUB-TASK 2)

(SUB-TASK 3)

CHECK

Candidates(seg i)

(F,S) pairs

{ F,S) pairs,

States{seg i}

Stales(seg i+1)

CHECK
' STATE

(F,S) pairs

+ BESTP

Slates(seg i+1)

> pruned states

L e e
.] SAVES
SO STATES
PIAIAIR
------ i 1
1
1

BESTP

A’

Candidates(seg i+1}

Figure 25 A Flow Diagram of Harpy’s Search Algorithm

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP ' PAGE 58

CHECKSTATE

SAVESTATES

in the list is a father and son (F,S) pair.

The probability of transitioning from father to son is calculated. If the
value is greater than the current probability in the successor state, this
value is updated; otherwise it is not. The best probability during this
cm}:rrent segment also is saved, (BESTP), and is used later in the pruning
phase.

A threshold is determined, based on the current best probability. Al
sons that have transition probabilities higher than the threshold become
next generalion candidates; all those below the threshold are discarded
as unlikely paths.

In the uniprocessor implementation of the algorithm, the total compute time was divided

among these routines in these proportions:

CHECKNEXT 21.57
CHECKSTATE 46.07
SAVESTATES 28.57
OTHERS 4.0%
TOTAL 100%

Table 11 Compute Time Proportions

We therefore will attempt to speed up the algorithm by con_centfating compute power in

the form of task forces of cooperaling processes to perform the three major routines--
CHECKNEXT, CHECKSTATE, and SAVESTATES. ‘

5.3 The Iinitiai Implementation

5.3.1 Censiraints on the Implementation of the HARFY system

In the implementations that follow, we have divided the heuristic search into two phases:
the forward step, where the recognition tree is expanded; and the pruning step, where
unlikely paths are removed from the tree. Hence, the forward step consists of the two
routines, CHECKNEXT and CHECKSTATE, while ihe pruning step is performed by SAVESTATES.

Two decisions were made prior {o the design of the first implementation: the first, because
of the nature of the algorithm; and the second, to simplity the data structures.

- Because the pruning step tannot begin until BESTP is found, the forward step
must be compleled before the pruning step can begin.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 58

- For simplicity, the forward step will not begin until the previous pruning step is
completed. This decision was made because the forward step modifies the -
STATE vector, which is input o the pruning step. To maintain the data’s
integrity, it would be necessary to add an additional dimension to the STATE.
veclor indicating the speech segment for which the state’s path probability is
calculaled*®,

5.3.2 Control Structures and Data Sharing

The original version of HARPY combined the two sub-tasks, CHECKNEXT and CHECKSTATE,
forming the forward step of the algorithm. The inilial C.mmp implementation is 8 parallel
version of the uniprocessor aigorithm.

Since the pruning step cannot begin until the forward step is completed, we use a
synchronous control structure® 1o sequence the pruning step after the forward step.
Similarly, another synchronous controi structure sequences the forward step lo process
speech segment(i+1) after the pruning slep completes processing speech segment(i).

The cooperating processes in the forward step stn:icnuﬂ allocate the candidate states
among themselves. Each process is assigned an equal number of candidates to work on: the
process first expands a candidate into a list of successor states and then calcuiates the
probability of transitioning to each of these stales from the candidate. When a process
exhausts its supply of candidate states, it must wait for the other task force member
processes to finish before the pruning slep can begin.

11t would be possible 1o immedistely expand candidates into (F.S) pairs an soon as they are crented by the
pruning siep, but this implementation is not discuseed hare.

2If sub-{ask(j} takes as input lhe ouipui of sub-tash(i), and if sub-task(j} cannot begin until all proceasing st

sub-task(i} is finished, than the conirol struciure {o sequence sub-task(j} sfier sub-lask(i} is » synchronous contral
structure.

3Dnla is ailocated atatically in & lagk force if the processes do no compele for the dats items. Insisad, sach process
han a private partilion of the datu

JHE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 80

v e

In the pruning step, work unils are dynam.icnﬂy4 allocated from a data stack. A process
takes the top element on the stack, a successor state, and performs a calcuiation to determine
if the stale’s path probability is above the pruning threshold. If it is, the state is saved and
becomes a candidale for expansion in the next iteration of the forward step. 1f the path
probability falls below the threshold, the state is discarded.

5.4 Performance of the First Implementation

The performance of this implementation is presented in two parts: the forward étep and
the pruning step. In both cases, three measurements were performed:

" Elapsed time to process fifteen utlerances.

Speedup relative 1o the single process instantiation as the number of cooperating
processes in the lask forces is increased. ‘

Pe utilization as the number of cooperating processes in the task forces is increased?®.

5.4.0.1 The Performance of the Forward Slep

In figure 26, the elapsed time to perform the forward step of the algorithm decreases from
52.89 seconds in the single process instantiation, to 18.14 seconds when eight processes are
“incorporated into the algorithm. This improvement corresponds to a relative speedup of only
2.914 '

In figure 27 we compare the algorithm’s relative speedup, as a function of the number of
processes, to linear speedup. Theoretically, if n processes cooperate to perform the
algorithm’s forward step, the elapsed time to perform the task should be reduced by a factor
of n. Unfortupately, the speedup exhibited by the algorithm is substantially less than lineer.

Figure 28, which graphs process utilization as a function of the number of processes, sheds
some light on the reason for less than linear speedup. In this graph, process utilization
decreases rapidly as the number of processes increases. At eight processes, only 2757 of
the available processing power is being used. The under-utitizelion of processing power
indicates that allocation of data to the processes is the source of the performance problem.

ania is dymamically allocaied in » tash fores if the processes compete, or share, ali the deta. There is no
pre-sesignment of data to specific processes. . :

1Thess ultsrances came from the Aritificisl Intelligence information relrisval lask [Lowserre 78], see Appendix.

2The processor uiilization measurement doss nol include operaling sysiem related effects on wutilization such as:
context swaps, time-slice end rescheduling, snd interrupis from 1/O devices.

Elapsed Time (sec.)

55

50

45

40

35

30

25

20

15

70

Version #1

1 i L 1 L : L 1 J

ol

7 2 3 | 4 5 6 7 -] g9
: Number of Processes
Figure 26 Decomposition of the Forward Step-- Version #1

Speed Up

Linear Speed Up

3L
' Version #1
21
1 =1
O L 1 i 1 X i 1 1 !
o 7 2 3 4 '] 8 7 8 g
Number of Processes

Figure 27 Decomposition of tha Forward Step-- Version #1

Percent Utilization

100,

90}

80+

70t

601

S50+

40t

30t

20}

104

Version #1

L] 1] L i [1 1

o0

2 3 4 5 6 7 8 9
Number of Processes
Figure 28 Decomposition of the Forward Step-- Version #1

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE o4

In order fo understand the reason for this poor behavior, we must lock more closely at the
work units and the way they are allocated to the processes.

For the synchronous control structure to perform well, the processes must arrive at the

synchronization point fogether. Any one process that lags behind will cause the entire task
force 1o wait.

Although each process receives an equal number of candidate states to work on, this
method does not guarantee that each process will receive an equal share of the total
computation. Figure 29, which is a graph of distribution of compute time for expanding a
candidate state into the list of successor states, shows that while most candidate states can
be expanded in less than five milliseconds, occasionally the expansion can take as much as
thirty milliseconds to perform. In addition, the distribution of the time to perform the
transition probability cafculation is bimodal, figure 30. The first peak, at 800 microseconds,
corresponds to performing the transition probability calcuiation and not updating the STATE
vector. The second peak, which is centered at 1200 microseconds, corresponds to
performing the calcutation and also updating the STATE vector with the new value.

If the number of candidate states each process received were very large, the variation in
the compute time would have small impact on the performance of the forward step.

Unfortunately, this is not the case. Figure 31, which is the cumulative distribution of the
" number of candidate states per segment of speech, shows that the average number of
candidate states per segment is small; 657 have fewer than ten candidate states, and 247
have but a single candidate.

Thus, although the current method allocates an equal number of candidate states to each
process, those processes that receive many ‘prolific’ siates will perform more computations
" than those processes that receive mostly ‘barren’ candidate states. The net result is
under -utilization of the processes caused by an unequal allocation of work.

5.4.0.2 The Performance of the Pruning Slep

The performance of the pruning step is much better than the forward step. In figure 32,
the elapsed time to process the fifteen utterances is reduced from about 28 secands to less
Vthan six seconds when eight processes are incorporated into the algorithm. In figure 33,
where the speedup of the pruning step is plotted as a function of the number of processes,
almost a fivefold improvement is realized when eight processes cooperate to perform the
pruning step. Although less than linear speedup is exhibited, the performance of the pruning
step is substantially beiter than the forward step. The successful implementation of the
pruning step stems largely from two sources.

Number of Samples

5000

4000}

3000+

2500

2000

1500

1000

T

500}

T e *
S YOI SR, SN i AT G ORGP S 3

10 i5 20 25 30
Compute Time {milliseconds)
Figure 29 Distribution of the Compute Time to Expand Candidates

0
0

1=

Number of Samples

20000

18000

16000

14000

12000

10000

8000

6000|

4000

2000

o
.0

I

3

T

3 v ——n b . Y & "

Y

1.0

1.5

e +— %
2.0 2.5 3.0
Compute Time (milliseconds)

Figure 30 Distribution of Transition Probability Compute Time

-
Q
Q

Probabitity

Q
©
Q

0.80}

0.70¢

0.60¢

Q.50

Cumulative Distribution Function

0.40¢

0.30

0.20t

0.70}

0.00

7 10 700 1000
Number of Candidates
Figure 31 Distribution of Candidates per Segment of Speech

Elpased Time (sec.)

30

27+

24

21}

18

15L

12

Il i i]

b
-

o0

1 2 3 4 s 6 7 8
Number of Processes

Figure 32 Elpased Time to Perform the Pruning Step

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 70

First, processes dynamically acquire work units, father and son (F,S) pairs, from a data
stack.! Thus, even though the disiribution of the compute time to perform the threshold
calculation on an (F,S) pair is bimodal, figure 34, the processes arrive at the synchronization
point almost simultaneously. Since the last process to finish can hinder the rest of the task
force by at most one candidate stale’s processing time, high process utilization resulls, figure
35.

Second, the pruning step’s data siream contains more work units than the forward step’s
data stream. The cumutative distribution of the number of (F,$) pairs per segment of speech
can be found in figure 36. The table below summarizes the difference between the two data

streams.

Work Units per Segment CANDIBATES (F.S) PAIRS
1-10 65.7% 38.07

10-100 30.3% 32.07

100-1000 4.07 28.07

1000 07 27

Unlike the distribution of candidate states, the number of {F,S) pairs per segment of speech
spans more than three orders of magnitude. Mare than 307 of the segments have greater
than one hundred (F,S) pairs; less than ‘407. have only ten or fewer pairs,

In summary, the dynamic allocation of data in the pruning step is the key to its successful
implementation. When a synchronous control sturcture is used to synchronize cooperating
processes it is imperative, in order to maintain high process utilization, that the processes
arrive at the synchronization point together. Dynamic aliocation of data ensures that high
process ulilization will occur, as processes do not develop a backlog of unstarted work units,
while other processes are idle due to a lack of waork,

5.5 Refinements to the Initial Implementation

In this section, three refinements to the inilial implementation are presented. In each, only
the implementation of the forward step was enhanced. The pertormance of the initial
implementation will serve as the baseline for measuring the performance improvement each
refinement contributes. As it is possible to measure the performance of the forward step
separalely from the algorithm as a whole, measuring the performance Improvement of the

Lon the average, less than 30 microssconds of overhead is ascociaied wilh obteining 8 work unit from the stack

Q,
b
b -)
(1}
-1
Q.
)
r Linear Speed Up
&l
sl
48
3L
2.
7L
[#) s 1 i i 1) 1 —
o 1 2 3 4 5 6 7 8
Number of Processes

Figure 33 Speed Up During the Pruning Step

Number of Samples

20000+

18000+

16000

T

T

14000

12000}

10000}

8000

6000

T

4000

2000

e I W N W S W Y N WU N W W Y

. . s . —

.5 1.0 1.5 2.0 2.5 3f0
Compute Time (milliseconds)

Figure 34 Distribution of Compute Time During Pruning Step

14 | NN
.0

Percent Utilization

700

90

80

70

60

50

40

30

20

10

L i i L 1 L i]

ol

1 2 3 4 5 6 7 8
Number of Processes
Figure 35 Processor Utilization During the Pruning Step

Probability

1.00,

Q
©
Q

0.80t

0.70}

0.60}

Q.40

0.30 Cumuiative Distribution Funstion

0.201

0.10¢f

0.00] - . , , .
70 100 1000 10000

Number of (F,S) Pairs
Figure 36 Distribution of (F,5) Pairs per Segment of Speech

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP F;AGE 74

forward step is sufficient to evaiuate the refinement.

55.1 The First Refinemant

In the initial implementation, the key to the success of the pruning step and the failure of
the forward step was the allocalion of work to the processes. During the forward step, the
work units were allocated stalically, by number instead of by amount of computation. This
method resulted in an unequal distribution of work among the processes in the forward step
" task force.

We will altempl to allocate work units equally by dynamically allocating candidate states to
the forward step task force. Now, as in the pruning step, a process takes a work unit from
the stack of unstarted work only when it is ready to start processing the new work unit, All
other aspects of the algorithm will remain the same.

We compare the elapsed time to perform the forward step under the two work allocation
strategies in figure 37. From the two process case on, the dynamic allocation method
outperforms the static method. At eight processes, the maximum measured parallelism, a 167
performance improvement resulls; the elapsed time to perform the task reduced from 18.15
seconds to 15.20 seconds.

Similarly, greater speedup is achieved by dynamically allocating work to the task force.
Speed up as a function of the number of processes is graphed in figure 38 for both
implementations. In ali measurements, dynarﬁic allocation of work yields higher performance
than siatic allocation. For eight processes, a speedup of 3.47 was achieved using the dynamic
strategy, compared lo oniy 2.91 for the slatic method. '

An improvehent in process utilization also resulted. In figure 39 process utilization under
the two aliocation strategies is graphed as a function of the number of processes. For the
eight process instantiation, a 32.77 utilization was achieved using dynamic work allocation,
compared to 27.57 process ulilization when the work was statically allocated to the
processes. The table below summarizes the comparison of the two implementations for the
eight process, maximum measured parallelism, case.

Perfarmance Measure Version #2 Version #1
Elapsed Time (secs.) 15.206 18.148
Processor Utilization 32.7% 27.467

Speedup 3.471 2914

Elapsed Time (sec.)

q0}-

35}

30t

20

15

10

o9

- - - 4 Version #1

W Version #2

i 1 ¥

1 2 3 4 5 6 7 8 9
Number of Processes
Figure 37 Decomposition of the Forward Step~-- Version #2

7]

Speed Up

Linear Speed Up

o
- Version #2

- - *Version #1

]] y]]

o

1 I 1
7 2 3 4 5 [7 3 2]
- Number of Processes

Figure 38 Decomposition of the Forward Step-- Version #2

Percent Utilization

100

S0

80

70

60

50

40

30}-

20

to

o9

. ~
“'b‘ \\\
.. \
T .
® version 2
*Versinn #1
1 L A i '
5 6 7 a 9

Number of Processes

Figure 39 Decomposition of the Forward Step-- Version #2

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 78

In summary, swilching from static work allocation to dynamic work allocation resuited in a
167 performance improvement. The performance improvement is small because there are not
enough work units in the data stream. The small number of work units causes two problems:
1} a large variance in the amount of computation a process performs; and 2) often, processes
do not receive even a single work unil. Together, these performance problems cause low
process utilization during the forward slep.

5.5.2 The Second Refinemant

In this version of the forward step we solve the problem of low process utilization by
decomposing the forward step into the two sub-tasks CHECKNEXT and CHECKSTATE. By
making CHECKSTATE a separate sub-task, any process may now perform the transition
probability calculation on an {F,S) pair-- not just the process thal created the pair. In this
way we have increased the number of work unils in the data stream by breaking large units
into many smaller ones.

As in the previous implementation, the CHECKNEXT task force begins processing the speech
segment by taking candidate states from a stack and expanding them into a list of (F,S)-pairs.
However, instead of performing the transition probability calculation as each (F,S) pair is
pruduced, the processes place them in another data stack that supplies the CHECKSTATE task

force with input.

When all the candidate states have been expanded, thé processes synchronize and the
CHECKSTATE task force begins to execute. Thus, we inilially will use the synchronous control
structure to sequence the CHECKSTATE sub-task after the CHECKNEXT sub-task.

The elapsed time to perform the forward step is compared to the two pre\;ious versions in
figure 30. In the single process instantiation, the latest version of the forward step is more
than 207 slower than the two previous versions. This penalty results from the CHECKNEXT
sub-task storing, and the CHECKSTATE sub-task retrieving the (F,S) pairs from a data stack.
In the previous implementations, the storing and retrieving was unnecessary since the (F,S)
pairs were not placed in a common pool; the p}'ocess that created the pair also performed the
transition probability calculation on it.

As the parallelism-increases the elapsed time to perform the forward step Is reduced from
66.69 seconds to 14.96 seconds. Thus, this version outperforms the initial implementation
from the three process case on, and the first refinement from the six process case on,
despite incurring the large initial overhead associated with storing and retrieving the (F,S)

pairs,

Elapsed Time (sec.)

45|
40}
35}
30}

25L

15}

10t

O

Y e

"'l._ T + Versiocn #1

“‘w»:;:' el Verzion #2
) T RVersion #3

1 1 1 1 2 N

o0

Figure 40 Decomposition

q 5 6 7 8 9
Number of Processes
of the Forward Step-- Version #3

Percent Utilization

100,

30

70+

G0}

50}

40}

20}

10}

a9

"
N
|\\
Vo
[\.‘
.
[N .
[. 4
N .
' .
\ .
N v
' >
N =
[s
) .
* .
' .
. '
. \
+
.
.
'
l
.
+
y
'
.
.
.
.
‘
.
1 1

Version #3
S
‘\
N "n_‘
R .
e, - “‘.
Version #2
* version #1
1 1 L 3
6 7 8 g9

Number of Processes

Figure 41 Decomposition of the Forward Step-- Version #3

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 81

Although the elapsed time to perform the forward step has nol been significantly reduced,
the process utilization has dramatically increased, as shown in figure 41. Al maximum
parallelism, eight processes, this version exhibits a 537 process utilization, compared to 32.7%
utitization for the first refinement, and onty 2757 for the initial implementation. The -
substantial improvement results from sharing the (F,5) pairs more equally among the
cooperaling processes.

We compare the speedup of the three implementalions, relative to the single process
instantiation of the initial implementation, in figure 42. The latesl version of the forward step
is inilially siower than the two previous versions-- a speedup of 0.79. However, as the
parallelism increases, the lalest version outperforms the two previous implementations; af
eight processes a speedup of 3.535 compared to 3.479 for the first refinement, and 2.915 for
the initial version.

To summarizé, the latest enhancement to the algorithm, splitting the forward step into the
two sub-tasks CHECKNEXT and CHECKNEXT, resuited in an initial overhead in the form of a
207 increase in elapsed time, caused by the addilional manipulation of the (F,S) pairs. This is
the cost we pay lo share the (F,S) pairs equally among the task force. However, as the
parallelism increased, a small improvement over the two previous versions was realized due
to a substantial increase in process ulilization. The table below compares the performance of
the three versions when eight processes are in the task force.

Performance Measure Version 83 Version 22 Yersion s
Elapsed Time 14.966 15.206 18.148
Processor Utilization 52.997 : 32.707 27.467
Speedup 4,456 3.471 2.94

5.5.3 Tha Third Rafinemant

In the previous implementation, the two sub-tasks CHECKNEXT and CHECKSTATE were still
performed sequentially despite their being identified as separate sub-tasks. Any
performance improvemeni obtained was achieved by sharing the computational load more
equally among the cooperating processes. In this final refinement to the original
implementalion, we will perform the two sub-tasks of the forward step in parallel, obtaining

still greater peformance improvement,

In this implementation, we sequence CHECKSTATE after CHECKNEXT with an asynchronous

Speed Up

Linear Speed Up

Version #3

Version #2

+ Version #1

1 Z 3 4 5 6 7))
Number of Processes

Figure 42 Decomposition of the Forward Step-- Version #3

THE IMPLEMENTATICN AND EVALUATION OF PARALLEL ALGORITHMS ON C MNP PAGE 83

control structure.! This allows the CHECKSTATE task force to begin calculating transition
probabilities for the (F,S) pairs before the CHECKNEXT sub-task is completed. Thus,
processes that cannol find any candidate slales for expansion no longer become idle, waiting
for their companions to finish. Instead these processes immediately begin to perform the
transition probability calculation on the {F,5) pairs already produced. We can allow this type
of parallelism because the CHECKNEXT task force only adds new (F,S) pairs to the
CHECKSTATE task force's inpul stack; lhey do not modify any pairs already on the stack,

The elapsed time to perform the forward step for all four alternative implementations Is
compared in figure 43. The latest version of the algorithm oulperforms the three previcus
versions from the three process instantiation on. The elapsed time is reduced from 65.3
seconds to 12.3 seconds at maximum parallelism-- more than two and one-hatf seconds faster
than the next best version,

Performing the two sub-tasks in paralie! has substantially increased the forward step’s
performance by mainlaining higher process utilization. In figure 44, the process utilization of
this version is compared to the three previous ones. Al maximum paralielism, the final
version of the forward step maintains a process utilization of 63.7%, compared to 537, 32.7%
and 27.57 for the earlier implementations.

In figure 45 we compare the four implementations of the algorithm in terms of speedup.
The final version of the algorithm is initially slower than the first version due to the extra
storing and retrieving'of the (F,S) pairs from the dala stack. However, as the parallelism
increases, the final version of the algorithm outperforms the three previous versions,

speeding up the execulion of the algorithm by a factor of 4.29, compared to 3.54, 3.48, and
2.92 for the previous versions. ‘

‘Again, performance has been improved by increasing process ulilization. In this version,
the increase in ulilization was achieved by sequencing the two sub-tasks asynchronously
instead of synchronously. Thus, not only were individual sub-tasks performed in parallel by
task forces of processes, but also two sub-lasks were processed simultaneocusly. If e
process could not find work to perform in the CHECKNEXT task force, it looked for work to
perform in the CHECKSTATE task force.

Unfortunately, this method of enhancing performance by increasing parallelism only
partially solves the problem of not enough data in the data stream. Those processes that

Tye eub-1ask(j) takes ss input the oulpul of sub-lask(i), and i sub-taskij} does nol have lo wait for sub-task(i) to

be complated bafore it can begin, then the conirel structure sequencing sub-tasklj) afler sub-task(i) is an asynchronous
control structure.

Elapsed Time (sec.)

70,

60

55

50}

40

30

201}

15

10t

[l

b
R .
x - -+ Version #1
TR ,
T Version #2
“e- - RVersion #3
S
b e oVersion #a
.]] 1 i 1 1 1) 1 H
1 2 3 4 5 i) rd 8 g

Number of Processes
Figure 43 Decomposition of the Forward Step-- Version #4

Percent Utilization

100,

90

80

70

60

40

30

20

10

oW

Figure 44 Decomposition of the Forward Ste

L
e ‘-\‘\
GO e
“ L] n .
l. ‘\ x AN
| . e
1 . . .
Al . ~
') ‘-.\
R - ~a
L} ‘ \\
. : ~
'
iy “ ' '
1 .| L3
b} Y “
Al)
" , x.
* . N
' % b
N ‘ " ,\“ .
N * % \6
B ‘h ‘\
R N \\ Version #4
. . . '\
. . x \\n
. %
. ‘\ “
- “ . \~
. N .
E . x.. Version #3
L} \‘ - N
.\ kY N ‘\‘
L x X
‘4 n
‘
4 .
b -
Version #2
T .
Version #1
1 |)| 1 1 1] i .
1 2 3 4 5 [7 8 9

Number of Processes
p-- Version #4

Speed Up

Linear Spaed Up

Version #4

Version #3

Version g2

*+ Varsion #1

‘ ' ; 6 7 8 9

1 z 3 4 5
Number of Processes

Figure 45 Decomposition of the Forward Step-- Version #4

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 87

cannot find any work to perform in the CHECKNEXT task force are not guaranteed to find
work by Vbecoming part of the CHECKSTATE task force. In addition, although further
subdividing the forward step inlo smaller sub-tasks will increase process utilization by
creating more work units, it will also introduce new overheads in manipulating the data items.
At some point, the overheads in manipulating the new work units will outweigh the
performance improvement resulting from higher process utilization. This investigation, to

locate the optimum number of sub-tasks, is beyond the scope-of this study.

The performance of all four versions of the forward step is summarized in the table below.

Measure Version ad Version 33 Version #2 Version =1
Elapsed Time 12.339 14.966 15.206 18.148
Pc Utilization 63.697 52.997 32.707 27.467%

Speedup 5.295 4.456 3.471 2.94

5.6 Summary

5.6.1 Comparing the Four Versions of the Algorithm

The performance of the initial implementation was discussed in detail, uncovering several
problems limiting the performance of the algorithm. In the three subsequent implementations,
enhancements o the algorithm were directed towards eliminating the performance probtems
of the initial version.

In the initial parallei version of the algorithm, statically pre-allocating an equal number of
candidate sltates to each process resuited in under utilization of the processes for two
reasons: the compute time lo process a candidate stale was not a cons!ani, and the number
of candidates per segmgnt of speech was quite oflen less than the number of processes,

The first enhancement to the algorithm was to dynamically allocate the candidate states
among the processes. This prevented one process {rom developing a backlog of unstarted
work while other processes were forced to remain idle. A 167 reduction in the elapsed lime
to perform the forward step of the algorithm resulted. This technique sclved the problem of
unequal workioad allocation only when there were many candidate states to be processed.
When the number of candidates was small, almost two-thirds of the speech segments had less.
than ten candidate states, under utilization of the processes still resulted.

In the second enhancement to the algorithm, the sub-task performing the forward step was
split into two smaller sub-tasks in order io increase process utilization. Dividing the

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE B8

computation into two separate phases increased process utilization by breaking the relatively
small number of computationaly large work units into many smaller, less complex units.
Although process utilization increased by 207, the additional overhead in sharing the new
data ilems and in synchronizing the processes belween the two sub-tasks, eliminated any

substantial efapsed time improvement.
L]

In the final implementation, the control strategy synchronizing the processes between the
two sub-tasks was changed from synchronous to asynchronous. Processes that could not find
a candidate stale for processing in the CHECKNEXT sub-tasks, migrated to the CHECKSTATE
sub-task to start processing the (F,S) pairs without waiting for the rest of the task force to
finish the CHECKNEXT sub-task. This enhancement increased process utilization to
approximately 647. However, unlike the previous implementation, a sizable improvement in
the elapsed time to perform the forward step was realized; a 17.57 reduction to 12.3
secands. '

5.6.2 A Final Comparison-- The Uniprocaessor Algorithm

Up to this point we have confined our performance comparison to the alternative
implementations of HARPY on C.mmp. To conclude this invesligation, a comparison between a
parallel version of the algorithm written for C.mmp and the uniprocessor version of the
algorithm written for a DEC KL10 is presented.

In figure 46, the performance of the two machines is compared in terms of the elapsed
time to recognize fifteen utterances. The KL10 recognizes the fifteen utierances in
approximately 49 seconds. The single process instantiation of the C.mmp version performs
the same task in approximately 144 seconds, almost three times slower than the KL10.
However, as additional processes are incorporated into the algorithm, the elapsed time to
perform the task is sharply reduced. At four processes, C.mmp outperforms the KL10,
requiring only 46 seconds to perform the task. At seven processes, maximum measured
paralielism, C.mmp Is recognizing the fifteen utierances in only 33 seconds, over 307 faster
than the large uniprocessor.

150

w
E
~ 1
‘u]
0 \
2 A
Q L]
0 \
- \
w \
\I
728F \
\l
\
\
\I
\
\|
i
1
100} \
\‘
\.
‘i
Y
\l
v, C.mmp
\‘
»
75 \
\!
A
N\
\
\
.
\\
\-
\-
\‘.‘
\‘\
50 KL10 T i +
~
‘_\-
oo K e s e et .
. —
DX Real Time T —~— . :
——
25}
Real Time
O L i i 1 L J
7 2 3 4 5 6 7

Number of Processes
Figure 46 C.mmp vs. KL10 Harpy 1000 Word Task (LAAX05)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP ~ PAGE 90

6. The Results and Contributions of this Investigation

6.1 A Summary of lhe Measurements and Resulls

6.1.1 The Inilial Investigation=- The Rootfinder

In order to transform a parallel algorithm inte an effective running program on a
multiprocessor, one must be aware of the ways the system can affect the performance of the
program. To uncover the major sources of performance perturbation, a simple program, a
paraliel rootfinding algorithm, was developed to act as a vehicle for conducting the study.

The performance of the program was perturbed by a variety of sources. Performance
perturbations stemming from the hardware, both the processors and the memories, were
identified and measured. Speed variations of individual processors and memories had only a
secondary effect on performance. The greatest hardware related perturbation was a 30Q7
performance degradation that was found to be a direct result of central memory bandwidth

fimitations.

Operating system performance periurbations arose from two sources: interrupts from 1/0O
devices affected the program’s performance by randomly interrupting the cooperating
processes for short periods. These interrupted processes arrived at the §ynchronizatfon
point later than their uninterrupted counterparts, delaying the entire collection of processes
from proceeding. The effect was graphically illustrated with a sample execution trace
produced by a soffware monitor within the operating system. Bottlenecks in the operating
system’s scheduling processes also caused serious performance degradations in certain

situations.

A third source of variability is the funclion evaluation. The computation time for
performing the function evaluation is not a constant, but instead varies with the selection of
the evaluation point. Because the processes must synchronize after every iteration, the
elapsed time for an ileration is determined by the process with the maximum computation
time. Thus, the variance in the distribution of the computation time for performing the
function evaluation will greatly affect the performance of the rootfinding processes. A large

variance resulls in only a small speed up, whereas a small variance results in a larger speed
up.

Special attention was paid to the synchronization of the cooperating processes because it

is a fundamental programming issue in the multiprocessor environment. Qur investigation

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE ot

consisted of a delailed measurement of the performance of several alternative
synchronization primitives. We then incorporated each primitive into the rootfinding
procedure to perform the necessary inferprocess communicalion. By measuring the
performance of the rootfinding program, a range of usefuiness was determined for each
synchronization primitive. The inter-synchronization time thresholds when a particular

primitive became useful varied from 200 milliseconds to 2 milliseconds.

6.1.2 The Implementation of a Complax Task~~ The Harpy Speech Recognition System

Using the insight into the C.mmp environment acquired during the initial rootfinding study, a
more complex task, the Harpy speech recognition system, was developed on the
multiprocessor. Harpy, an algorithm that recognizes connected speech from a variety of
‘speakers, was initially developed at CMU for a uniprocessor. A parallel version of the
aigorithm was developed by decomposing Harpy inte simpler sub-tasks, and then
impltementing these sub-tasks as lask forces of identical processes. The task forces of
identical processes speed up the algorithm by dividing the work into independent partitions
~ for simultaneously processing. .

In any decomposition involving cooperating processes, two implementation issues arise:
how the processes acquire and share data, and how the processes are sequenced and
controlled. Data can either be allocated statically, if the processes are given private
partilions of data prior o their execution, or dynamically if the processes compete for or
share all the data. Similarly, two alternatives for process control are synchroncus and
asynchronous sequencing. If ail the cooperating processes must arrive at the synchronization
point before the next step or sub-task can begin, then the processes are sequenced by a
synchronous control structure, If, a process is not required to wait for its companions at the
synchronization point, then the processes are sequenced by an asynchronous control
structure. For both of these issues the two alternatives were discussed and measured in the

implementations of Harpy’s cooperating processes.

Four alternative implementalions of Harpy were investigated. Rather than examining the
variations in performance stemming from algoritlhmic modifications, this investigation measured
and evaluated lthe performance variations arising from modifications related to only the
imbiementation of one algorithm. The performance of the four implementations is compared in
chapter five, Relining the algorithm in four implementations gave us the opportunity to
observe and measure the performance ramifications of several implementation decisions.

The performance of the four implementations varied substantially, demanstrating the
importance of an effective implementation. In the initial implementation a straightforward

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 92

decomposition of the uniprocessor algorithm, the elapsed time to perform the task was
reduced from 52.89 seconds to 18.15 seconds when eight processes were incorporated into
the atgorithm. This corresponds to a speed up of anly 2.92. In the final implementation this
elapsed lime was reduced o only 12.33 seconds, which corresponds to a speed up of 4.29,
The improvement resulted from an increpgse in process utilizalion, the percentage of time a
process is performing usefu! work. Balancing the computational work load across all
processes increased the process utilization from 27.57 to 647.

The best multiprocessor implementation of the algorithm was compared to a sequential
implemeniation of the algorilhm designed for a large uniprocessor, 8 DEC KL10. Initially, the
KLIO outperformed a single process instantiation of the multiprocessor implementation by
almost a factor of three. However, as more processes were incorporated into the task forges,
the C.mmp version oulperformed the uniprocessor at four processes and was observed to be
307 faster at the maximum measured parallelism, seven processes.

6.2 The Task Force Approach to Parailel Programming

The measurements and results presented in this investigation demonstrate that the task -
force approach to writing parallel programs is an effective method for capturing paraflelism.
As with any programming technique, certain benefils and drawbacks are assaciated with its
use.

The programming effort required lo write parallel programs is not much more than the
effort needed to write serial programs. By introducing parallelism through replication, the
programmer is required to write only a single program, not n different programs. The
sharing of data and the synchronization of cooperating processes are weil understood
problems easity solved without special programming language paraliel constructs. Harp'y was
implemenied entirely in BLISS-11, without any special language constructs to coordinate the

data sharing, sequencing, or synchronization of the processes.

The task force technique is a general approach to parallel programming; its application is
not restricted to only a few special situations. Those tasks that invoive the repeated
.application of functions on data are ideally suited for parallel implementation using the task
force approach, The rootfihding algorithm and the Harpy speech recognition system are two
dissimilar representatives of this large class of algorithms.

However, the most important aspect of the task force technique is that it is effective at
introducing linear speedup into an algorithm. Although linear speedup of the Harpy algorithm
was nol demonstrated, portions of the data streams were processed by the task forces n

times faster than if performed by a single process. Only when work was unavailable to keep

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 93

all the pracesses busy did perfarmance drop below linear speedup. The task force technique
tends to favor dala streams composed of many elemenls over those with oniy few elements
in them. Thus, performance can be improved, and in facl can approach linear speedup, simply
by increasing the number of work units in the data streams. Far example, Harpy's
performance could be improved by increasing the complexity of the grammar from which

utterances are constructed.

The major drawback to using this approach is that for it to be successful, the programmer
mus! be aware of several primitive "time-constants®, i.e. the algorithm’s inter-synchronization
times, and the synchronization primitive's elapsed times, that characterizes the hardware, and
the operating system, and his own algorithm. This requirement runs counter to the popular
idea of programming without the need to know about the underlying environment.

6.3 Areas for Further Research

One aspect of the implementation of parallel programs not addressed in this study is the
performance degradations caused by a small address space. Despile the fact that the central
memory supports up o 32M bytes of primary memory, the PDP-11 is a 16-bit minicomputer
and as such limits addresses to only 16 bits. Thus a process can directly address only 64K
bytes of primary memory at a time. Initially, it was feil that the small address space
limitation would be offset by the ability to create muitiple processes, each addressing only a
"small porfion of the tolal address space. This assumplion about the organization of paraliel
programs is notl always true.

For example, in our implemeniations of Harpy we totally ignored the impact of the small
address space problem ¢on the algorithm’'s performance. If a data item resided outside the
process’ addressable region, we simply payed the overhead {o make it addressable, ie. a
relocation register load. In an early investigation to measure this overhead, we observed in
one case a factor ot three degradation in the algorithm’s performance.

One technique to minimize this small address space problem is to construct data structures
so that memory locations tend to be accessed either sequentially or in small cluslers. We
would expect some improvement in Harpy’s performance if we allocated storage for the
transistion network such that directly related stales were close together.

Obviously, the entire issue of the small address space can be avoided in future multiple

computer systems by using larger address space machines as the central processors.

Anather area for future research is the investigation of the performance of the
muitiprocessor when it functions as a general computing facility for muitiple users. It was

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 94

felt that one importanl mode of operation would be for C.mmp to support the simultanecus
execution of many single process lasks from mulliple users. It has been suggested that the
‘multiprocessor is best suited for this type of parallelism. However, little evidence exists to

substantiate this claim.

In conclusion, this investigation is oniy one of the first of many such studies to assess the
effectiveness of the multiprocessor. The primary contribulions of this study are that it
provides several initial data points in the measuremenl space of multiprocessors, and that
some aspects of the implementation of paralle! programs are liluminated through the analysis

of several example programming efforis,

10.
11,
12.
13.
14,
15.
16.
17.
18.
19.
20.

Appendix

Artificial Inielligence Information Relrieval Task {LAA)

. Please help me

. What shouid | ask

. What can the system do
. The first two

. Give me one more please
. Thank you I'm done

. Stop transmitting please
. Who wrote it

. Who was the aulhor

What was its tille

When was it published

What about Minsky

Which is the oidest

What facts are stored
Please list the authors

Print the next one

Where does he work

What is her affiliation

What about formal semantics

What about program verification

BIBLIOGRAPHY

[Avriel and Wilde 66] Ayriel, M, and Wilde, D.J, "Optimal Search for a Maximum with
Sequences of Simultaneous Function Evaiuations,” Management Science,
12, 1966, pp. 722-731.

{Baudet, Brent and Kung 77] Baudet, G., Brent, R.P, and Kung, H.T,, "Parallel Execution of a
Sequence of Tasks om an Asynchronous Mulliprocessor,” Carnegie-Mellon
University, Computer Science Dept., Tech. Report. June 1977.

[Baudet 78] Baudet, G, "The Design and Analysis of Algorithms for Asynchronous
Multiprocessors,” Ph.D. Thesis, Carnegie-Mellon University, Computer
Science Depl., April 1978.

[Fuller and Oleinick 76] Fuller, S.H. and Oleinick, P.N,, "Initial Measurements of Parallel
Programs on a Multi-Mini-Processor,” IEEE Fall Compcon 76, pp. 358-363.

{Fuller 1978] ‘Fuller SH, Ousterhout JK., Rubinfeld Pl, Sindhu P.J, Swan R.J,
"Muiti-Microprocessors: An Overview and Working Example,” Proc. IEEE
Vol.66, No.2, February 1978, pp. 216-228. '

[Heller 76] ~ Heller, D, "A Survey of Parallel Algorithms in Numerical Linear Algebra,”
Carnegie-Mellon University, Computer Science Dept, Technical Report,
1976.

{Jones 78] Jones, AK., Chansler, R.J, Durham, I, Feiler, P.H.,, Scelza, D.A,, Schwanz,

K. and Vegdahl, S.R, "Programming Issues Raised by a Multiprocessor,”
Proc. of the IEEE, Vol 66 No.2, February 1978, pp. 229-237.

[Karp and Miranker 68} Karp, RM, and Miranker, W.L., "Parzilel Minimax Search for a
Maximum,” J. Comb. Theory 4, 1968, pp. 19-35.

[Kung 1976] Kurg HT.,, "Synchronized and Asynchronous Paraitel Algorithms for
Multiprocessors, Algorithms and Complexity: Recent Results and New
Directions,” ed. LF.Traub 1978, pp. 153-200.

[Lesser 75] Lesser, V.R,, "Parallel Processing in Speech Understanding Systems,”
Speech Recognition 1975, pp. 481-499,

[Levin 1975] Levin R., Cohen E., Corwin W., Pollack F., Wull W.A, "Policy/Mechanism
Separation in HYDRA,” Proceedings of the ACM/SIGOPS Symposium on
Operating Systems Principles, Austin Texas, November 1975, pp.
132-140.

{Lowerre 76] Lowerre, B, "The HARPY Speech Recognition System,” Ph.D. Thesis,
Carnegie-Mellon University, Computer Science Dept., 1976. '

[Lowerre and Reddy 77) Lowerre, B. and Reddy, R, HARPY Speech Understanding System
(1977), produced at Carregie-Melion University. An 18-Minute
16mm./Coior/Sound Film describing the HARPY SUS developed by
Lowerre and Reddy.

[Newell and Robertson 1975] Newell A, and Robertson G, "Some lIssues in Programming
Multi-Mini-Processors,” Tech. Rep., Computer Science Dept,

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE @7

Carnegie-Meilon University, Pitisburgh, Pa., January 1975

[Rosenfeld and Driscoll 69] Rosenfeld, JL. and Driscoll, GC, "Solution of the Dirichiet Problem

[Stone 1973)]

on a Simulated Parallel Processing System,” Information Processing 68,
North-Holland Publishing Co., Amsterdam, 1969, pp. 499-507.

Stone H.S, "Prloblems of Parallel Computation, Complexity of Sequential
end Parallel Numerical Algorithms,” ed. JF. Traub, Academic Press 1973,
pp. 1-16.

{Swan, Fuller and Siewiorek 77] Swan, R, Fuller, S.H. and Siewiorek, D.P,, "CMs: A Modular

[Teichroew 13956]

Multi-microprocessor,” Prac. AFIPS 1977, National Computer Conference,
Vo!l. 46, 1977, pp. 637-644.

Teichroew D, "Tables of Expected Values of Order Statistics and Products
of Order Statistics for Samples of Size Twenty or Less from the Normal
Distribution,” The Annals of Mathematical Statistics 27,2, June 1956, pp
410-426,

[Thompson and Kung 76] Thompson, CO. and Kung, HT., "Sorting on a Mesh-Connected

Parallel Computer,” Proc. gth Annual ACM Symposium on Theory of
" Computing, 1976, pp. 58-64. Also o appear in Communications of the
ACM.

[Wulf and Bell 1972] Wulf WA, and Bell C.G, "C.mmp -- A Multi-Mini-Processor,” Proceedings.

[(Wulf 1974]

AFIPS 1972, FJCC Vol 41. AFIPS Press, pp. 765-777.

Wulf WA, Cohen E, Corwin W, Jones A, Levin R, Pierson C,, Pollack F.,
"HYDRA: The Kernel of a Multiprocessor Operating System,”
Communications of the ACM, 17,6, 1974, pp. 337-345.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THI$ PAGE (When Date Entsred)

REPORT DOCUMENTATION PAGE o R R E TN G FORM

1. REPORT NUMBER 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALQG NUMBER

- CMU-CS-78-151

4. TITLE (and Subtirla) 3. TYPE OF REPORT & PERIOD COVERED
THE IMPLEMENTATION AND EVALUATION OF PARALIEL Interim
ALCORITHMS ON C.MMP 5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR{®) B. CONTRACT OR GRANT NUMBER(s)
PETER N, OLEINICK . N00Q14~77-C-0500
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
; Carnegie-Mellon University

i Computer Science Dept.
i pittsburgh, PA 15213
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE

Office of Naval Researph ‘:'Nuugeggrﬁﬁzi: 1978

Arlington, VA 22217 105

1. MONITORING AGENCY NAME & ADDRESS(!! dilferent irom Cantrolling Qlficn) 15. SECURITY CLASS. (of thie report)

Same as above UNCLASSIFIED

. - 182, DECLASSIFICATION/ COWNGRADING
) N SCHEDULE

.

16. DISTRIBUTION ST ATEMENTY (of this Report)

Approved for public release“ distribetion unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different irom Report}

8. SUPPLEMENTARY NOTES ; N

19. KEY WORDS {Continus on reverse aide if necessary and !deniily by block nunber)

20. ABSTRACT (Continus on reveras side il neceasary and identity by block numnber)

FORM]
DD ,"92%, 1473 €0TIoN OF 1 NOV 6515 OBSOLETE ,
S/N 0102-014- 6601 | NCLASSIFIED
. . SECURITY CLASSIFICATION OF THMIS PAGE (When Data Entered)

LLLURITY CLASSIFICATICN OF THIS PAGE When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE{When Daia Entered)

