
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Implementation of Regular Path Expressions*

by
A. N. Habermann

Carnegie-Mellon University
Pittsburgh, PA 15213

Abst ract

Path Expressions define sets of permissible operation sequences on t yped objects. Path

e x p r e s s i o n s specify process synchronization at a conceptual level instead of in terms of its

implementation, which is the case if P,V operations or critical regions are hand-coded into the

p r o g r a m text. A compiler takes care of translating path expressions into the necessary

synchron i za t ion statements. This paper describes the compilation of regular path express ions

w h i c h co r respond to either deterministic or undeterministic finite state machines.

k e y w o r d s and phrases: synchronization, process synchronization, synchronizat ion
pr imit ives , programming constructs, parallel programming, concurrency, concurrent processes ,
abstract data types , compilers, monitors, finite state machines, finite automata, undeterministic
f inite automata

C R categor ies : 4.12, 4.13, 4.20, 4.22, 4.32, 4.35

*This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, end
monitored b y the Air Force Avionics Laboratory under Contract F 3 3 6 1 5 - 7 8 - C - U 5 1 .

The v i e w s and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Oefense Advanced Research Projects Agency or the
U.S. Government.

A N H 7902
Implementation of Regular Path Exprès:

Table of Contents

1. Introduct ion
2- Regular Path Expressions
3. Path Expression Declarations
4. T h e Implementation
5. Reduction
6. Nondeterministic Paths
7. Path Expression Dynamics
8. Conclusion

ANH 7902 Implementation of Regular Path Expressions 1

1. Introduction

Path expressions were introduced in [1]. A path expression describes the possible
operat ion sequences on a typed object. For instance,

path write; read end

specif ies the permissible operation sequence on a communication buffer. This path allows an

alternating sequence of write and read operations and disallows two or more successive write
operat ions or two or more successive read operations. Compared to critical regions or P,V

operat ions on semaphores, we observe that a path expression not only describes serial

execut ion of its operands (usually referred to as mutual exclusion), but also specifies the

order in which operations may be applied.

There are two other major differences between path expressions and critical regions or P,

V operations on semaphores. First, a path expression is written separate from the program

text . This has the advantage that the necessary synchronization is not buried in the

programs, but is specified independent of the program text. Second, a path expression is a

higher level concept in the sense that while and for statements are higher level concepts.

Using P, V operations instead of path expressions is not unlike using goto instead of while.

Indeed, a programming language can do without a looping statement if it has a goto, because

loops can be constructed with conditional statements and goto statements! At this date is

seems hardly necessary to repeat the arguments against this viewpoint.

Higher level constructs for looping are of course translated into "BRANCH" or "JUMP"

instructions provided by the hardware. Path expressions must likewise be translated into

lower level synchronization instructions. Fortunately, programmers are not concerned with

these lower level concepts, nor with the translation, because this task Is taken care of by a

compiler. The subject discussed in this paper is the translation process of path expressions

into lower level synchronization instructions.

Our discussion is restricted to regular path expressions. Such path expressions specify

permissible execution histories, but do not allow parallel execution (as in the Readers, Writers

problem [6]) , nor do they allow arbitrary upperbounds on the number of executions of

operat ions (no counters). After a short discussion of path operators and their representation,

w e consider where path expressions fit in programs for concurrent processes. Next we

present an implementation which is closely related to P, V operations on semaphores. Then

w e discuss matters of reduction (which minimizes the number of states) and of

nondeterministic path expressions. Finally, we show how a compiled path expression Is used

to enforce the specified execution histories.

A N H 7902 Implementation of Regular Path Expressions 2

2. Regular Path Expressions

Regular path expressions use three kinds of operators: V for sequencing, V for exclusive

se lect ion and '** for indefinite repetition. The precedence of these operators is (h ighest) ,

Vt V (lowest) . The precedence can be overridden by parentheses. For instance,

path a ; (b* + c) ; d* ; f end

consists of four factors: "a", "(b* + c)", "d*" and "P. The second factor consists of two terms:

"b*m and V \ The third factor and the first term in the second factor are Indefinite

repet i t ions (indicated by the Kleene star). The delimiting pair of keywords "path" and "end" is

equivalent to a Kleene star applied to the whole expression. Some execution sequences

def ined b y this path expression are

a b b d d d f a b f
a b d f a c d d f

O b s e r v e that, following "a", either "b*" or V can be applied, but not both; " d " may be applfed

an a r b i t r a r y number of times between either w b*" and " P or between V and " P (including

z e r o times), " b " may also be applied zero or more times.

Fol lowing the convention of common algebraic notation, we often omit the V. The g i ven

example then reads like this

path a (b* + c) d* f end

A regular expression can be represented by a finite state machine [6] . A FA which ref lects

the permissible sequences defined by the path expression above is

F igure 1. Example of a FA representation.

A state represents a path element and its position in that path. The sequencing is

e x p r e s s e d b y the arcs. There is no basic difference between solid and dotted arcs, both

r e p r e s e n t sequencing information. The dotted arcs in the picture reflect the possibil ity that

" b * w and " d * " are executed zero times. They were put in by applying the construction rule

that a state, fol lowed by a starred element, must point to all successors of that element. A n

ANH 7902 Implementation of Regular Path Expressions 3

application of "b" or "c" may directly be followed by an application of "f", even "a" may be
d i rect ly followed by "f".

3. Path Expression Declarations

Path expressions are based on the idea that the need for serializing applications of

operat ions on a shared object is a property of that object itself instead of a p roperty of the

users of this shared object. It is therefore natural to find a path expression in the definition
of a data object and not in the programs of the users of that object. Taking the current

common view on data abstraction (which originated in Simula67 [2] and has been refined in

languages such as CLU or Alphard [5, 8]), the natural place for writing a path expression is in

the data section of an abstract data type definition. An abstract data type definition has the

general format

type name(params) : t »
data section
initialization section
data operation section

end type

Including it in the data section of a type t, implies that we consider a path expression to be
part of the data record representing objects of type t. For example,

type segment (N : int) : s *
array 1 .. N of word ;
path fetch ; (read + write)* ; save end
init
let A : array of word in
s.fetch = "make segment s accessible"
s.read(A) « "copy words from s into A"
s.write(A) • "copy words from A into s"
s.save - "make segment s inaccessible"

end type

The definition of a path expression is uniform for all data objects declared of a type

t. However , each object of type t has its own instantiation of that path. This instantiation is

c reated when the object is declared. A path expression controls the sequence of operations

on individual objects of type t and not those of the total collection of objects of type t. One

segment x may be in a state in which it can be .fetched, but not written or read, while some

other segment y can be written, read or saved. Operations on different objects of type t

may over lap in time; mutual exclusion is enforced per individual object by its pr ivate

Instantiation of the path expression.

A N H 7902 Implementation of Regular Path Expressions 4

4. The Implementation

T h e r e is a strong similarity between the path expression implementation and P,V operat ions

o n semaphores, but there are also some significant differences. The record field which

r e p r e s e n t s a path instantiation is called a path variable Cpvar" for short). It corresponds to

a semaphore and has three sub-fields, a mode sub-field, a state sub-f ield and a waiting list

s u b - f i e l d . The mode field has the value "busy" or "free", depending on whether or not a path

element is being executed. The interpretation of the state field depends on the value of the

mode f ield. If mode is "busy", state reveals the executing operation and its position in the

path express ion . This corresponds to a particular state in the FA representation. If mode is

" f r e e " , the value of state represents the set of permissible successor states. Th is

c o r r e s p o n d s to the set of arcs in the FA leaving the most recent state. These arcs determine

the set of operations currently eligible for execution (the ones that may "fire").

Example.

path a b (a • b*) c and

If the first occurrence of "b" is the most recently executed operation and mode is " f ree" ,

then state - {second a, second b, c}. This is the set of operations currently permitted to f i re.

If H b " is executed again, mode will be "busy" and state « second b.

T h e state field corresponds to the value field of a semaphore and the waitingllst f ield

c o r r e s p o n d s to a semaphore waitinglist pointer. The latter points to the list of processes

wait ing for state to change to a value which permits execution of the attempted operat ion.

Note that each object of type t has its private path variable and, consequently, its o w n

wait ingl ist (see Figure 2). (These waitinglists are usually implemented by a unique link f ie ld

in each process control block.)

X : V

Sfcxtc 4

Figure 2. Implementation of pvars.

ANH 7902 Implementation of Regular Path Expressions 5

Let some type definition t contain a path expression which has f, g, p and q as its operands.

T h e programs for f, g, p and q are defined in the operation section of t. In order to get the

des i red effect of the path expression, the compiler processing the type definition places a

synchronizat ion statement at the beginning of the body of each operation and one at the end.

These synchronization statements are called "pro" (for prologue) and "epi" (for epilogue).
Each operation body is embedded in a pro, epi pair. For our example, we write

F : » x.pro(fval) ; "body of f" ; x.epi
G x.pro(gval) ; "body of g" ; x.epi
P : » x.pro(pval) ; "body of p" ; x.epi
Q := x.pro(qval) ; "body of q" ; x.epi

w h e r e x is a formal representing the object to which f, g, p or q is applied.

The argument in pro-calls is generated by the compiler and is operation specif ic It
ref lects the set of states in which an operation is permitted to fire. (Further details are
discussed in Section 7.)

Let us see what happens in a running system. Execution of a pro-call is ve ry similar to
executing a P operation. However, instead of testing for a positive semaphore value, pro
compares its argument with the current value of x.pvar.state, where x is the object to which
the operation is applied. If x.mode is "free" and x.pvar.state permits the attempted operation,
pro sets x.mode to "busy", x.pvar.state to the selected state and terminates. The attempted
operat ion is then applied to object x. If x.mode is "busy" or x.pvar.state does not permit the
attempted operation, the running process is put on the waitinglist which is accessible through
x .pvar .wlst .

The ept -call at the end of an operation changes x.pvar.state to the set of successors that
are now permitted to fire. If some process is waiting for this state, epi reactivates one of
these processes (which can now complete its pro-call); otherwise, epi sets x.mode to "free".
Schematic programs for pro and epi are given in Section 7.

A major difference between pvars and semaphores is in their use. Semaphores are
incremented or decremented, whereas pvars are assigned to. The latter is the crucial
mechanism that allows us to discriminate between operations. A pvar value allows certain
operations to fire while others will be delayed. A semaphore is not able to discriminate in
this way . When a semaphore value is positive, any operation can pass a P operation applied
to that semaphore.

Assigning to semaphores is very dangerous, because programmers write semaphore
operat ions directly in their programs. This is not so for pvars. The pro and epi calls are not

A N H 7902 Implementation of Regular Path Expressions 6

5« Reduction
F o r a realistic implementation, the amount of information which must be remembered for a

path express ion should be as little as possible. This is achieved b y reducing a g iven path

e x p r e s s i o n to an equivalent one which has fewer operands. An example of two equivalent

paths is

path a(p + q) + b(q + r) • c(p + r) • (a + b)r + (b + c)p • (a + c)q end
path (a + b • c)(p + q + r) end

A simple reduction scheme is based on searching for common subexpressions and elimination

of superf luous terms. This scheme makes use of the fact that

ab + ac -* a(b + c)
ac + be -» (a + b)c

a + b -* b + a •
a + a -* a

Th i s scheme was used to reduce the longer path expression into the shorter one of the

example above.

If this algorithm is able to reduce a given path expression into one which has fewer than N

operands (say N - 32), it is probably unnecessary to put more effort into further reduct ion.

w r i t t e n b y a programmer, nor does the program compute the argument passed in a pro call.

Ins tead , the compiler generates these calls and derives the argument values from the g i ven

path express ion . Assigning to pvars in pro and epi is harmless, because this feature is not

available to programmers.

Management of pvar waiting lists differs from that of semaphore waiting lists. T h e

information in the list is different and processes are selected differently. Conceptual ly , a

p v a r waitinglist ent ry consists of a process identification and the argument value of the

incomplete pro -cal l . (A semaphore waitinglist entry consists of nothing more than a process

identif ication.) When pvar.state is changed by an execution of epi, the waitinglist is searched

f o r a process waiting for this new state value. It is possible that none of the waiting

p rocesses is waiting for this particular value of pvar.state. Thus, it may happen that epi

react ivates none of the waiting processes and sets pvar.mode to "free" while the waitinglist

is not empty! Such a situation is unthinkable for semaphores. Each process on a semaphore

wait ingl ist is eligible to continue. This we. don't want for pvars! It is not impossible that

cer ta in operat ions are still not allowed to proceed although the state has changed. It may be

n e c e s s a r y that other operations execute before the state changes to the required value.

ANH 7902 Implementation of Regular Path Expressions 7

Figure 3. Example of a FA with redundant stat

Fur ther r e a c t i o n is certainly possible, because reduction of finite state machines is a solved

problem. There is an algorithm which reduces any given FA to an equivalent one which has a

minimum number of states [4]. Applied to path expressions, the algorithm works as follows.

1. Draw the FA representation of the given path expression.

2. Determine for each state the set of successor states.

3. Assign to each state a "class" attribute which is the set of successor names.

4. Put all states with the same attribute in a class and give that class a name.

loop
with each state do

5. new attribute(state) := {class names of successors}
end with

6. if some states in one class have different new attributes
6.1 set attribute(state) to new attribute(state)
6.2 put states with same attribute in one class
6.3 give these new classes unique names
6.4 repeat loop

end if
end loop

7. Merge all states that have the same class attribute and the
same name into a single state. (This is accomplished by redrawing
all their incoming and outgoing arcs to and from that single state.)

It is not difficult to show that this algorithm terminates. We see that step 6 repeats the loop
only if it increased the number of classes. The upperbound of this number is the number of
states. The proof that this algorithm produces the minimum state FA is given in [4, page 29].
We apply the algorithm to path expression

path a(b + b(ab)*) end

to show that it can do more than common subexpression elimination. The Initial FA for this
express ion is #

ANH 7902 Implementation of Regular Path Expressions 8

Appl icat ion of the reduction algorithm results in

stat* nam* tucc

1 a 2 3

2 cr

1
3 b 1 4

4 a 5

5 cr
 1 4

{name(succ)} c.ass 0

{b}
{a}
{a}
{b}
{a}

B
A
A
B
A

T h e initial classification is

A « { 2 , 3 , 5 } , . B - { 1 , 4 }

W h e n the loop is executed for the first time, we find

{classnames(succ(2))} * {classnames(l)} • {B}
{classnames(succ(3))j « {classnamesd, 4)} - {B}
{classnames(succ(5))} « {classnamesd, 4)} « {B}

and

{c lassnames(succd)) } - {classnames(2, 3)} - {A}
{classnames(succ(4))} - (classnames(5)} « {A}

T h e loop is not repeated, because all states in both classes map into the same class name.

T h u s , s tep 7 merges states 1 and 4 into one state and also states 2, 3 and 5. The result is a

r e d u c e d F A w i th only two states! The path expression corresponding to the reduced FA is

path ab end

T h e common subexpression algorithm is not able to achieve such a drastic simplification.

Pract ice has shown that path expressions are usually not v e r y complicated. This and the fact

that the reduction algorithm is applied at compile time (rather than at execution time) make

that the O(n^) complexity of the algorithm causes no serious problems.

6* Nondeterministic Paths

A path expression is nondeterministic if two or more successor states in its FA

representat ion have the same name. An example of an nondeterministic path expression is

path a (fg)* b* (fg)* c end

ANH 7902 Implementation of Regular Path Expressions 9

Its FA representation is

Figure 4. Example of a nondeterministic FA

Nondeterminism is caused by the successor states "f*" of states "a" and "g". It is well
known that a nondeterministic FA can be transformed into an equivalent deterministic FA [4,
pp 3 1 - 3 3] . A nondeterministic path expression is transformed into an equivalent
deterministic path expression by the transformation algorithm

1. Draw the nondeterministic FA representing a given path.

2. Make a state table, listing (number, name, successors, new successors).
All new successor sets are initially empty.

3. Initialize collection C of synonymsets to empty, where a
synonymset contains all states in a successor set with a common name.

with each state s do
4. initialize new successor set to successor set.

with each synonymset y that has more than one element do
5. if y « C, lookup number(y)

otherwise
5.1 add new state to table.
5.2 let number(y) be number(new state).
5.3 set name(new state) to common name of states in y.
5.4 set succ(new state) to UNION(succ(states of y)) .
5.5 add y to C.

end if

6. remove y from new successor set.
7. add number(y) to new successor set.

end with
end with

8. remove unreachable states.

ANH 7902 Implementation of Regular Path Expressions 10

T h e with statements terminate, because an upperbound for the number of synonymsets is the

number of all possible subsets of states initially entered into the table in step 2. Step 8,

" remove all unreachable states", needs some explanation. We add a unique initial state to the

g i v e n path express ion before we construct the table. Adding this initial state transforms

path .~ end into path u; (...) end

T h e table is constructed for this modified path with state(u) » 0. In order to p reserve the

sequencing of the given path expression, all occurrences of state 0 in a successor set are

rep laced b y the successor set of state 0. The set of all reachable states is defined as the

c losure under successor of successor(O). That is, we start with the successor set of state 0.

T h e n w e keep including all successors of the states that we collected until no more new

states can be added. All states not in this collection are unreachable.

App l ied to the example above, the table for the modified path is

state name
0 u
1 a
2 f
3 g
4 b
5 f
6 g
7 c
8 f

{succ} {new succ)
1 1
2 4 5 7 4 7 8
3 3
2 4 5 7 4 7 8
5 7 5 7
6 6
5 7 5 7
0 -» 1 1
3 6 9
2 4 5 7 4 7 8

unreachable
unreachable

{2 5}
{3 6}

9 g

State 8 is added when synonymset y - {2 5} is found in succ(l) and state 9 w h e n

s y n o n y m s e t y - [3 6} is found in succ(8).

States 2 and 3 are unreachable when we switch to the new successor states, because

c losure (new state 0) - {1 4 7 8 5 6 9}. The deterministic path expression equivalent to the

g i v e n one is
path a <fg)* (c + bb* <fg)* c) end

ANH 7902 Implementation of Regular Path Expressions 11

7. Path Expression Dynamics

We have seen how path expressions are simplified, how paths are instantiated as part of

the data representation of typed objects and how data type operations are embedded in a

pro9epi pair. In this section we discuss how the implementation assures that only those

histories which are specified by a path expression can be applied.

The permissible operation sequences specified by a path is type specific information. It Is

uniform and fixed for all objects of a type. Therefore, there is no need to store this

information with every object. The semantics of a particular path expression is own data of a

t y p e and is shared by all objects of that type in the same way that code of data operations is

shared.

The sequencing information specified by a path expression p is stored in two sets of

vec to rs , successor vectors (one for each state) and permission vectors (one for each

operat ion mentioned in p). A successor vector succ(s) contains all successor states of state

s. Successor vectors are precisely the ones generated in the reduction algorithm and the

deterministic transformation algorithm. A permission vector perm(f) contains all states In

which operation f is permitted to fire. The permission vectors are easily derived from the

tables used in the transformation algorithm or the reduction algorithm.

Example. path write (write (write read)* read)* read)* end

perm

{ 1 2 3}
{4 5 6}

stats {succ} state {succ} oper

1 {2 6} 4 {3 5} CM
 {3 5} 5 {2 6} write

3 6 {1} read

We discussed in Section 4 that the body of an operation f mentioned in a path is embedded

in a pro, epi pair. The argument of the pro call preceding the body of f is the permission

vec to r perm(f). This argument is used in pro to determine whether or not operation f is

al lowed to fire in the current state. Permission is granted if and only if mode « " f ree" and

one of the permissible states indicated in pvar.state matches one of the states in perm(f).

The latter test is performed in pro by an AND operation applied to pvar.state and argument

perm(f) .

A N H 7902 Implementation of Regular Path Expressions 12

A schematic program for pro executed by some process P is

x .p ro (u : permission vector) ss
with x .pvar do

if mode = "busy" or AND(state,u) - empty,
put (P, u) on wist; halt P

end if
mode "busy"; state :«• AND(state, u)

end with

pro sets pvar.state to the matching state. This state value is used by epi to set state

succ(state) at the end of the operation. A schematic program for epi is

x.epi »
with , x .pvar do

state := succ(state);
if <3P) AND(state, u p) * empty,

remove(P from wist); reactivate(P)
else mode : » "free"
end if

end with

Remarks

- pro and epi are both implemented as indivisible operations in order to avoid race
conditions when several processes operate on a common object [3 }

- The name "AND" is used on purpose to suggest an efficient implementation in
terms of bit vectors. If the number of states does not exceed the wordlength of

* the g iven hardware, the vectors can be implemented as single words. The "AND"
operat ion applied to machine words is ve ry efficient.

Let us see how pvar.state changes for a three-slot communication buffer described earl ier

in this section. We find perm(write) » {1 2 3} and perm(read) » {4 5 6}.

state(free) operation pro : AND epi : succ
{1} write {1} {2 6}
{2 6} write {2} {3 5}
{3 5} write {3} {4}
{4} write no match write cannot go
¡4} read {4} {3 5}

T h e last epi will reactivate the unsuccessful fourth write operation, because perm(wr i te)

matches the last successor state.

ANH 7902 Implementation of Regular Path Expressions 13

A slightly different implementation of epi makes it possible to handle nondeterministic
paths without first transforming them to deterministic paths. The difference between the two
kinds shows up in pro when the current state is set. In case of a nondeterministic path, the
result of AND(state, permission vector) may be a set of states instead of a single state. If
this happens, epi must set state to the union of successors of all these states, because the
path may be continued along an- arc of anyone of the current states. This is achieved b y
replacing the first statement in epi

"state :* succ(stater by "state : » OR(succ(all current states))"

This point is elucidated by tracing the history "a f g c" for the nondeterministic path
express ion of Section 6.

path a <fg)* b* <fg)* c end

for which

perm(a) - {1} , perm(b) - {4},perm(c) « {7}
perm(f) = {2 5} , perm(g) * {3 6}

states operation pro: AND epi: OR
{1 } a {1} {2 4 5 7}

{2 4 5 7} f (2 5} {3 6}
{3 6} g {3 6} {2 4 5 7}
{2 4 5 7} c {7} {1}

Leaving a path expression in its nondeterministic form is preferable if the number of states
increases beyond the machine's wordlength by transforming it to a deterministic path.
Successor vectors and permission vectors are not representable by single machine words if
the number of states exceeds the machine's word length. An argument against leaving a path
in its nondeterministic form is that the OR operation in epi is executed at runtime, whereas
the transformation algorithm is executed at compile time. Thus, runtime efficiency is
enhanced by using the deterministic version.

A N H 7902 Implementation of Regular Path Expressions 14

8. Conclusion
Regular Path Expressions can be compiled into simple synchronization statements operat ing

o n the pvar of a shared object. The synchronization statements are v e r y similar to P, V

operat ions and pvars correspond to semaphores. Some differences are caused b y the fact

that path expressions specify the order in which operations can be applied. It Is the re fo re

normal ly the case that at a given time not every path operand can be applied. The specif ied

execut ion histories are enforced by the implementation.

A path express ion can be transformed into a deterministic path which has a minimum

number of states. A by -product of applying the reduction algorithm is the construction of all

successor vectors and permission vectors. This information is part of the t ype definition and

s h a r e d b y all objects of a type. It is used by thé synchronization statements pro and epL

T h e implementation handles nondeterministic path expressions as well as deterministic

o n e s . At ambiguous points, a pvar reflects a set of states instead of a single one. T h e r e is a

l itt le more overhead in dealing with nondeterminism, because the set of successor states is

t h e n constructed b y taking the OR of several successor vectors.

A N H 7902 Implementation of Regular Path Expressions

References.

1. Campbell , R. H. and A. N. Habermann,
"The Specification of Process Synchronization by Path Expressions,"
Lecture Notes in Computer Science Vol. 16 (eds. G. Goos and J . Hartmanis),
Spr inger -Ver lag , 1974, 89-102.

2. Dahl, 0. J . , E. W. Dijkstra, C A R . Hoare, Structured Programming.
Academic Press, London and New York, 1972.

3. Habermann, A. N., Introduction to Operating System Design
Science Research Associates, Palo Alto, Calif (March 1976)

4. Hopcroft , John E. and Jeffrey D. Ullman, Formal Languages and
The i r Relation to Automata, Addison-Wesley, 1969.

5. Liskov, Barbara, Alan Synder, Russell Atkinson and Craig Schaffert,
"Abstract ion Mechnaisms in CLU," Proceedings of. an ACM Conference
on Language Design for Reliable Software (ed. David B. Wortman),
March 1977, 166-178.

6. Minsky, Marvin, Computation: Finite and Infinite Machines,
Prent ice-Hal l , Inc., Englewood Cliffs, NJ, 1967.

7. Courtois , P. 1, R. Heymans and D. L. Parnas,
"Concurrent Control with 'Readers' and 'Writers'"
Comm. ACM, 14, 10 (Oct 71)

8. Shaw, Mary , W. A. Wulf and Ralph L. London,
"Abstract ion and Verification in ALPHARD: Defining and Specifying Iteration,"
Proceedings of. an ACM Conference on Language Design for Reliable Software
(ed . David B. Wortman), March 1977, 153-165.

