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Abstract 

A range query on a set of points in a k-dimensional coordinate space asks for 
all points lying within a hyperrectangle specified by ranges of permissible values for 
each of the coordinates. In this paper we regard as identical any two range queries 
which return the same set of points. We then Investigate the number of range 
queries possible on a set—given a set of N points in k-space, what Is the maximum 
number of distinct subsets that may be specified by giving bounding 
hyperrectangles. The bounds we find for this number (as a function of N and k) are 
substantial improvements over previous results, and tighten a lower bound on the 
time required to process range queries. 
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1. Introduction 

Given a set (or "file") of points in a k-dimensional coordinate space, a range 

query asks for all points in the set that lie within some hyperrectangle, specified by 

a range of permissible values for each of the k cooordinates. The range searching 

problem may now be defined as follows: Given a set of N points In k-space, 

preprocess them so that range queries may be answered quickly. This problem is 

called "orthogonal range searching" by Knuth (K73, Sec. 6.5). 

We concern ourselves here with the number of range queries possible on a set 

of N points in k-space, where two range queries are considered distinct iff they 

return different sets of points. We speak of the number of "range queries" rather 

than the number of "range responses" for two reasons. First, that is the terminology 

used by Bentley and Maurer [BM78]. Second, our interest In the range searching 

problem is largely motivated by the more general study of range-restricted 

searching problems. Irr these problems, a query on a set, S, may be considered to 

consist of two parts. The first part (or range restriction) specifies some 

hyper-rectangle, R; the second specifies some (arbitrary) query on the set T = SOR. 

It is often convenient to partition the possible queries according to the T's selected 

by their first parts. The number of different T's which may be selected (/.e., the 

number of equivalence classes of queries) is precisely what we call the number of 

range queries on S. 

It is easy to show that any set of N distinct points on the line admits exactly 

( N 2 1 ) + 1 r a n 9 © queries. The answer to a range query is either the empty set or 

can be defined by two of the N+1 interpoint gaps (including the end spaces). In 

higher dimensions, the situation is more complicated, since the number of range 

queries on a set depends not only on the number of points In the set but on their 

distribution as well. Being interested in worst-case results, we will attempt to 

determine, given N and k, the maximum number of range queries possible on a set of 

N points in k-space. Bentley and Maurer have shown, for k > 2, that the maximum 

number of range queries on N points in k-space lies between the bounds of (N/2k) 2 k 



and N2 k/2 k (ignoring lower order terms) and they have used this result to show the 

optimality (within an additive constant) of data structures they call f tone level 

k-ranges". In this paper we shall improve on these bounds. One result of this is to 

tighten the additive term of Bentley and Maurer's optimality result. 

2. A Lower Bound 

Consider Figure 1. Here we show N points in the plane divided into two groups, 

one arranged along the line segment from (1 ,0) to (0 , -1) , not Including ( 1 , 0 ) or 
( 0 , - 1 ) , and the other along the line segment from (0,1) to ( -1 ,0) , again not including 

the endpoints. Assume that the two groups are as nearly equal as possible, the first 

containing T N / 2 1 points and the second having the remaining I .N/2J. 

1 4 
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Range Query -

-14 

Figure 1: A Distribution Admitting Many Range Queries 
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We now determine the number of range queries that can be made on this set 

of points. By adjusting the bottom and right boundaries of the search range, we can 

select any of 

( T M / | 1 * I ) + 1 

subsets of the first group to be included in the range (that is, the number of range 

queries on a set of TN/21 points in one dimension). Similarly, by adjusting the left 

and top boundaries, we may include any of 

(IN/|J+1) + 1 

subsets of the second group. Thus, the total number of range queries possible on 

this set of points is 

~ [ ( N / 2 ) 2 / 2 ] [ ( N / 2 ) 2 / 2 ] 
= N V 6 4 . 

Analysis of the lower order terms in the second line of the preceding will show that 

they are 0(N 3) and also that the approximation obtained is conservative to this 

extent. We have therefore established 

Theorem 2-1 
The maximum number of range queries on a set of N points In two-space grows 
at least as N4/64. 

The construction of Figure 1 extends naturally to higher-dimensional spaces. 

In k-space, we divide the N points into k approximately equal groups and arrange 

them along the k line segments: 

from (1,0,0,...,0,0) to (0,-110,...,0,0); 
from (0,1,0,...,0,0) to (0,0,-1 ,...,0,0); 

from (0,0,0,...,1,0) to (0,0,0,..M0,-1); 
from (0,0,0,...,0,1) to (-1,0,0,...,0,0). 
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These configurations of points offer a constructive proof of 

Theorem 2-2 

Let k be a positive integer. Then the maximum number of range queries on a 
set of N points in k-space grows at least as N2 k/(2 kk2 k). 

3* An Upper Bound 

The question now arises as to how close the constructions of Section 2 come 

to achieving the maximum number of range queries. A partial answer to this question 

is the following result. 

Theorem 3-1: 
The maximum number of range queries possible on a set of N points in 
two-space grows no faster than N4/48 * 0(N3). 

Proof: 

Consider a set, Y, of N points in the plane. For the purpose of investigating the 
number of possible range queries on Y, we assume, without loss of generality, 
that Y is a 1-1 function from {1,2,...,N} onto {1,2,...,N}.1 Such a set Is 
exhibited in Figure 2. 

For each non-empty range query, Q, there is a unique minimal enclosing  
rectangle, namely [a,b]x[c,d] where 

a « min(domain(Q)); 
b s max(domain(Q)); 
c = min(range(Q)); 
d = max(range(Q)). 

Consider two integers, a and b, with 1 £ a < b < N. How many pairs (c,d) may 
exist such that [a,b]x[c,d] is the minimal enclosing rectangle of some range 
query? Consider «the example in Figure 2. We take c = min{Y(a),Y(b)} and 

Here w e use the formal definition of a point in two-space as an ordered pair and of a function as a set o f 
ordered pairs. 
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Figure 2: A 1-1 Function from {1,2,...,N} to {1,2 , . . .N}, Viewed 
as a Point Set in Two-Space 

d' = max{Y(a),Y(b)} . Then, [a,b]x[c,d] is a minimal enclosing rectangle iff c is 
the ordinate of some point of Y which lies in the rectangle L « [ a , b ] x [ 1 , c ' ] and 
d is the ordinate of some point of Y which lies in the rectangle U = [a ,b ]x [d',N]. 
Thus, the total number of (c.d) giving rise to minimal enclosing rectangles is 
|LflY|-|UnY|. Since |LnY|+|UnY| can be at most b - a + 1 + S a b , 1 it follows that 
|LOY|-|UnY| is at most (Rb -a+1 +5 a b )/2l)(L (b -a+1 + 5 a > b ) / 2 J ) . 2 By summing over 
all possible values of a and b, we see that the total number of range queries, 
including the empty query, is no more than 

1 + X ( r ( b - a + U 5 a b ) / 2 l ) ( L ( b - a ^ 1 ^ a b ) / 2 J ) 
1<a<b<N 

- £ ( (b-a)/2) 2 

1<a<b<N 

1 5 hero signifies the Kroenecker 6-function. 

Since given the sum of two integers, their product is maximized by making them as nearly equal as possible. 
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• X (X((b-a)/2)2) 
1<b<N1<a<b 

- X b3/12 
1<b<N 

- N4/48. 

If the approximatipns made in the preceding calculation are studied, It will be 
seen that the error introduced is at most 0(N3). This completes the proof. • 

We can extend the previous result by induction to give bounds on the number of 

range queries in higher dimensions as follows: 

Theorem 3-2: 
Let k be an integer greater than unity. Then the maximum number of range 
queries on a set of N points in k-space grows no faster than N2k/(2*(2k)!) + 

CXN2"-1). 

Proof: 

By Theorem 3-1, the result holds for the case where k=2. Thus we need only 
prove the result for k>2, assuming the result for k-1. 
Consider a set, Y, of N points in k-space. Without loss of generality, we 
assume the kth coordinates of the points in Y to be precisely the integers 
1,...,N. Thus, each range query on Y may be expressed by giving two integers, 
a and b, (with 1 < a < b < N) bounding the query set in the kth coordinate, 
together with the specification of a (k-1 )-dimensional range query on b-a+1 
points whose kth coordinates lie in the closed interval [a,b]. Using the 
notation Rj(M) to represent the maximum number of range queries possible on 
any set of M points in j-space, we now have that 

R k(N)< X Rk.,(a-b+1). 
1<a<b<N 

~ X X nk-i(c) 
1<b<N1<c<b 

~ X X c2 k"2/(2'(2k-2)!) 
1<b<N1<c<b 

- X b 2 k-V(2'(2k-1)!) 
1<b<N 
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- N2k/(2-(2k)Q. 

As before, careful analysis of the lower-order terms will show them to be 
OCN 2^ 1). • 

4 . Conclusions 

The bounds given in Sections 2 and 3 for the maximum number of range queries 

in two dimensions tighten the results of Bentley and Maurer considerably—from a 

factor of 64 difference between the lower and upper bounds to a factor of 4/3. 

Similar improvements are obtained in higher dimensions, though the final results 

there are still looser than for the two-dimensional case. The results for the two-

and three-dimensional cases are summarized in the following table. 

Dimension Bentley & Maurer New Results 
of Space Lower Upper Lower Upper 

Bound Bound Ratio Bound Bound Ratio 

2 N4/256 N4/4 64 N4/64 N4/48 4/CJ 
3 N6/46656 N6/8 5832 N6/5832 N6/1440 4.05 

It is clear that any decision-tree program for range searching must use at 

least as many comparisons as the logarithm to the base two of the number of 

possible responses. Bentley and Maurer coupled this fact with their lower bound on 

the number of range queries to show a lower bound on the worst case complexity of 

range searching of log2(N4/256) = 4 log2N - 8. Our lower bound tightens their result 

to 4 log2N - 6, and our upper bound shows that this method cannot be used to 

decrease the additive constant much further. 

Similar results are obtained for higher-dimensional spaces. For k-dimensional 

space, we get a lower bound of 2k log2N - k(1+2 log2k) and our upper bound shows 

that the decision-tree argument cannot be used to give a lower bound greater than 

2k log2N - k(1+log2k-log2e) - 3(log2(irk))/2. This last result is obtained by using 

Stirling's approximation to estimate the value of (2k)! f which appears In Theorem 

3 -2 . 
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The most obvious open problem left by this work is that of further tightening 

the bounds. The author suspects (but will not bet money) that the lower bounds 

given in Section 2 may be exact up to second-order terms; at any rate, the upper 

bounds of Section 3 are computed on the basis of very optimistic assumptions. The 

bound of Theorem 3-1, for example, could be exactly achieved only If N points could 

be placed in the plane so that no one of them lay within the minimal enclosing 

rectangle of any other two. This last condition, however, is impossible to achieve 

for N>4. 

A deeper problem is that of studying the structure, rather than Just the 

cardinality, of sets of all possible range queries over a (given) set of points in 

k-space. In particular, the complexity of range searching in k-space appears to 

depend on the dimension of the space to an extent not entirely accounted for by 

the sheer number of possible range searches. To give an example, there are 0(N 2) 

range queries on a set of N points in one dimension. By storing the points as a 

sorted list, it becomes possible to answer range queries in 0(lg N) time (plus 

reporting time proportional to the number of points actually in the range). The 

preprocessing time required is 0(N ig N) total, or 0(ig N) per point. Consider on the 

other hand a set of N 1 / 2 points in two-space. The number of possible queries is 

again 0(N 2) (In fact, the constant term is smaller for this case). But now, if we allow 
only 0(lg N) preprocessing per point, the best known algorithm [BF78] requires 

0(lg 2N) time (plus reporting time) to answer a range query. To take another 

example, range searching on one of the distributions constructed in Theorem 2-2 is 

very simple (if such a distribution is expected in advance), since a k-dimensional 

range query on such a set can be reduced to k one-dimensional queries. Random 

distributions of points in k-space, while they may admit many fewer distinct range 

queries than the sets of Theorem 2-2, require either more preprocessing or more 

query time, at least using currently known algorithms. By seeking a deeper 

understanding of these phenomena, we may hope to shed light not only on the range 

searching problem, but on more general range-restricted searching problems as well. 
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