
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-150

On The Number of Range Queries in k-Space

James B. Saxe
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

14 November 1978

Abstract

A range query on a set of points in a k-dimensional coordinate space asks for
all points lying within a hyperrectangle specified by ranges of permissible values for
each of the coordinates. In this paper we regard as identical any two range queries
which return the same set of points. We then Investigate the number of range
queries possible on a set—given a set of N points in k-space, what Is the maximum
number of distinct subsets that may be specified by giving bounding
hyperrectangles. The bounds we find for this number (as a function of N and k) are
substantial improvements over previous results, and tighten a lower bound on the
time required to process range queries.

This work was supported by the Office of Naval Research under contract
N00014-76-C-0370.

University Libraries
Carnegie Mellon University"
Pittsburgh PA 15213-3890

Table of Contents

1. Introduction
2. A Lower Bound
3. An Upper Bound
4. Conclusions

1

1. Introduction

Given a set (or "file") of points in a k-dimensional coordinate space, a range

query asks for all points in the set that lie within some hyperrectangle, specified by

a range of permissible values for each of the k cooordinates. The range searching

problem may now be defined as follows: Given a set of N points In k-space,

preprocess them so that range queries may be answered quickly. This problem is

called "orthogonal range searching" by Knuth (K73, Sec. 6.5).

We concern ourselves here with the number of range queries possible on a set

of N points in k-space, where two range queries are considered distinct iff they

return different sets of points. We speak of the number of "range queries" rather

than the number of "range responses" for two reasons. First, that is the terminology

used by Bentley and Maurer [BM78]. Second, our interest In the range searching

problem is largely motivated by the more general study of range-restricted

searching problems. Irr these problems, a query on a set, S, may be considered to

consist of two parts. The first part (or range restriction) specifies some

hyper-rectangle, R; the second specifies some (arbitrary) query on the set T = SOR.

It is often convenient to partition the possible queries according to the T's selected

by their first parts. The number of different T's which may be selected (/.e., the

number of equivalence classes of queries) is precisely what we call the number of

range queries on S.

It is easy to show that any set of N distinct points on the line admits exactly

(N 2 1) + 1 r a n 9 © queries. The answer to a range query is either the empty set or

can be defined by two of the N+1 interpoint gaps (including the end spaces). In

higher dimensions, the situation is more complicated, since the number of range

queries on a set depends not only on the number of points In the set but on their

distribution as well. Being interested in worst-case results, we will attempt to

determine, given N and k, the maximum number of range queries possible on a set of

N points in k-space. Bentley and Maurer have shown, for k > 2, that the maximum

number of range queries on N points in k-space lies between the bounds of (N/2k) 2 k

and N2 k/2 k (ignoring lower order terms) and they have used this result to show the

optimality (within an additive constant) of data structures they call f tone level

k-ranges". In this paper we shall improve on these bounds. One result of this is to

tighten the additive term of Bentley and Maurer's optimality result.

2. A Lower Bound

Consider Figure 1. Here we show N points in the plane divided into two groups,

one arranged along the line segment from (1 ,0) to (0 , -1) , not Including (1 , 0) or
(0 , - 1) , and the other along the line segment from (0,1) to (-1 ,0) , again not including

the endpoints. Assume that the two groups are as nearly equal as possible, the first

containing T N / 2 1 points and the second having the remaining I .N/2J.

1 4

-1 # 0 1 y

Boundary of
a Typical
Range Query -

-14

Figure 1: A Distribution Admitting Many Range Queries

3

We now determine the number of range queries that can be made on this set

of points. By adjusting the bottom and right boundaries of the search range, we can

select any of

(T M / | 1 * I) + 1

subsets of the first group to be included in the range (that is, the number of range

queries on a set of TN/21 points in one dimension). Similarly, by adjusting the left

and top boundaries, we may include any of

(IN/|J+1) + 1

subsets of the second group. Thus, the total number of range queries possible on

this set of points is

~ [(N / 2) 2 / 2] [(N / 2) 2 / 2]
= N V 6 4 .

Analysis of the lower order terms in the second line of the preceding will show that

they are 0(N 3) and also that the approximation obtained is conservative to this

extent. We have therefore established

Theorem 2-1
The maximum number of range queries on a set of N points In two-space grows
at least as N4/64.

The construction of Figure 1 extends naturally to higher-dimensional spaces.

In k-space, we divide the N points into k approximately equal groups and arrange

them along the k line segments:

from (1,0,0,...,0,0) to (0,-110,...,0,0);
from (0,1,0,...,0,0) to (0,0,-1 ,...,0,0);

from (0,0,0,...,1,0) to (0,0,0,..M0,-1);
from (0,0,0,...,0,1) to (-1,0,0,...,0,0).

4

These configurations of points offer a constructive proof of

Theorem 2-2

Let k be a positive integer. Then the maximum number of range queries on a
set of N points in k-space grows at least as N2 k/(2 kk2 k).

3* An Upper Bound

The question now arises as to how close the constructions of Section 2 come

to achieving the maximum number of range queries. A partial answer to this question

is the following result.

Theorem 3-1:
The maximum number of range queries possible on a set of N points in
two-space grows no faster than N4/48 * 0(N3).

Proof:

Consider a set, Y, of N points in the plane. For the purpose of investigating the
number of possible range queries on Y, we assume, without loss of generality,
that Y is a 1-1 function from {1,2,...,N} onto {1,2,...,N}.1 Such a set Is
exhibited in Figure 2.

For each non-empty range query, Q, there is a unique minimal enclosing
rectangle, namely [a,b]x[c,d] where

a « min(domain(Q));
b s max(domain(Q));
c = min(range(Q));
d = max(range(Q)).

Consider two integers, a and b, with 1 £ a < b < N. How many pairs (c,d) may
exist such that [a,b]x[c,d] is the minimal enclosing rectangle of some range
query? Consider «the example in Figure 2. We take c = min{Y(a),Y(b)} and

Here w e use the formal definition of a point in two-space as an ordered pair and of a function as a set o f
ordered pairs.

5

Figure 2: A 1-1 Function from {1,2,...,N} to {1,2 , . . .N}, Viewed
as a Point Set in Two-Space

d' = max{Y(a),Y(b)} . Then, [a,b]x[c,d] is a minimal enclosing rectangle iff c is
the ordinate of some point of Y which lies in the rectangle L « [a , b] x [1 , c '] and
d is the ordinate of some point of Y which lies in the rectangle U = [a ,b]x [d',N].
Thus, the total number of (c.d) giving rise to minimal enclosing rectangles is
|LflY|-|UnY|. Since |LnY|+|UnY| can be at most b - a + 1 + S a b , 1 it follows that
|LOY|-|UnY| is at most (Rb -a+1 +5 a b)/2l)(L (b -a+1 + 5 a > b) / 2 J) . 2 By summing over
all possible values of a and b, we see that the total number of range queries,
including the empty query, is no more than

1 + X (r (b - a + U 5 a b) / 2 l) (L (b - a ^ 1 ^ a b) / 2 J)
1<a<b<N

- £ ((b-a)/2) 2

1<a<b<N

1 5 hero signifies the Kroenecker 6-function.

Since given the sum of two integers, their product is maximized by making them as nearly equal as possible.

6

• X (X((b-a)/2)2)
1<b<N1<a<b

- X b3/12
1<b<N

- N4/48.

If the approximatipns made in the preceding calculation are studied, It will be
seen that the error introduced is at most 0(N3). This completes the proof. •

We can extend the previous result by induction to give bounds on the number of

range queries in higher dimensions as follows:

Theorem 3-2:
Let k be an integer greater than unity. Then the maximum number of range
queries on a set of N points in k-space grows no faster than N2k/(2*(2k)!) +

CXN2"-1).

Proof:

By Theorem 3-1, the result holds for the case where k=2. Thus we need only
prove the result for k>2, assuming the result for k-1.
Consider a set, Y, of N points in k-space. Without loss of generality, we
assume the kth coordinates of the points in Y to be precisely the integers
1,...,N. Thus, each range query on Y may be expressed by giving two integers,
a and b, (with 1 < a < b < N) bounding the query set in the kth coordinate,
together with the specification of a (k-1)-dimensional range query on b-a+1
points whose kth coordinates lie in the closed interval [a,b]. Using the
notation Rj(M) to represent the maximum number of range queries possible on
any set of M points in j-space, we now have that

R k(N)< X Rk.,(a-b+1).
1<a<b<N

~ X X nk-i(c)
1<b<N1<c<b

~ X X c2 k"2/(2'(2k-2)!)
1<b<N1<c<b

- X b 2 k-V(2'(2k-1)!)
1<b<N

7

- N2k/(2-(2k)Q.

As before, careful analysis of the lower-order terms will show them to be
OCN 2^ 1). •

4 . Conclusions

The bounds given in Sections 2 and 3 for the maximum number of range queries

in two dimensions tighten the results of Bentley and Maurer considerably—from a

factor of 64 difference between the lower and upper bounds to a factor of 4/3.

Similar improvements are obtained in higher dimensions, though the final results

there are still looser than for the two-dimensional case. The results for the two-

and three-dimensional cases are summarized in the following table.

Dimension Bentley & Maurer New Results
of Space Lower Upper Lower Upper

Bound Bound Ratio Bound Bound Ratio

2 N4/256 N4/4 64 N4/64 N4/48 4/CJ
3 N6/46656 N6/8 5832 N6/5832 N6/1440 4.05

It is clear that any decision-tree program for range searching must use at

least as many comparisons as the logarithm to the base two of the number of

possible responses. Bentley and Maurer coupled this fact with their lower bound on

the number of range queries to show a lower bound on the worst case complexity of

range searching of log2(N4/256) = 4 log2N - 8. Our lower bound tightens their result

to 4 log2N - 6, and our upper bound shows that this method cannot be used to

decrease the additive constant much further.

Similar results are obtained for higher-dimensional spaces. For k-dimensional

space, we get a lower bound of 2k log2N - k(1+2 log2k) and our upper bound shows

that the decision-tree argument cannot be used to give a lower bound greater than

2k log2N - k(1+log2k-log2e) - 3(log2(irk))/2. This last result is obtained by using

Stirling's approximation to estimate the value of (2k)! f which appears In Theorem

3 -2 .

8

The most obvious open problem left by this work is that of further tightening

the bounds. The author suspects (but will not bet money) that the lower bounds

given in Section 2 may be exact up to second-order terms; at any rate, the upper

bounds of Section 3 are computed on the basis of very optimistic assumptions. The

bound of Theorem 3-1, for example, could be exactly achieved only If N points could

be placed in the plane so that no one of them lay within the minimal enclosing

rectangle of any other two. This last condition, however, is impossible to achieve

for N>4.

A deeper problem is that of studying the structure, rather than Just the

cardinality, of sets of all possible range queries over a (given) set of points in

k-space. In particular, the complexity of range searching in k-space appears to

depend on the dimension of the space to an extent not entirely accounted for by

the sheer number of possible range searches. To give an example, there are 0(N 2)

range queries on a set of N points in one dimension. By storing the points as a

sorted list, it becomes possible to answer range queries in 0(lg N) time (plus

reporting time proportional to the number of points actually in the range). The

preprocessing time required is 0(N ig N) total, or 0(ig N) per point. Consider on the

other hand a set of N 1 / 2 points in two-space. The number of possible queries is

again 0(N 2) (In fact, the constant term is smaller for this case). But now, if we allow
only 0(lg N) preprocessing per point, the best known algorithm [BF78] requires

0(lg 2N) time (plus reporting time) to answer a range query. To take another

example, range searching on one of the distributions constructed in Theorem 2-2 is

very simple (if such a distribution is expected in advance), since a k-dimensional

range query on such a set can be reduced to k one-dimensional queries. Random

distributions of points in k-space, while they may admit many fewer distinct range

queries than the sets of Theorem 2-2, require either more preprocessing or more

query time, at least using currently known algorithms. By seeking a deeper

understanding of these phenomena, we may hope to shed light not only on the range

searching problem, but on more general range-restricted searching problems as well.

g

References

£BF78]

[BM78]

Bentley, J . L. and J . H. Friedman, A Survey of Algorithms and Data
Structures for Range Searching, in Two Papers on Range Searching,
J . L. Bentley, J . H. Friedman, and H, A. Maurer. Carnegie-Mellon
University Computer Science Department Report CMU-CS-78-136.
August, 1978.

Bentley, J . L. and H. A. Maurer. Efficient Worst-Case Data Structures for
Range Searching, in Two Papers on Range Searching, J . L. Bentley,
J . H. Friedman, and H. A. Maurer. Carnegie-Mellon University Computer
Science Department Report CMU-CS-78-136. August, 1978.

[K73]

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Wien Dmtm Entered)

REPORT DOCUMENTATION PAGE
1. R E P O R T N U M B E R

. CMU-CS-78-150
2. G O V T A C C E S S I O N N O

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (end Subtitle)

ON THE NUMBER OF RANGE QUERIES IN k-SPACE

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

Interim
6. P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R S

James B. Saxe

8. C O N T R A C T O R G R A N T N U M B E R f « J

N00014-76-C-0370
9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon University
Computer Science Department
Schenlev Park. PA 15213

10. P R O G R A M E L E M E N T . P R O J E C T , T A S K
A R E A & W O R K U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Office of Naval Research
Arlington, VA 22217

14. M O N I T O R I N G A G E N C Y N A M E & A O D R E S S f / / different /rom Controlling Office)

12. R E P O R T D A T E

November 14» 1978
13. N U M B E R O F P A G E S

13

Same as above

I S . S E C U R I T Y C L A S S , (of thie report)

-UNCLASSIFIED
15*. D E C L A S S I F I C A T I O N / D O W N G R A D I N G

S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (of thie Report)

Approved for public release; distribution unlimited

17. D I S T R I B U T I O N S T A T E M E N T (of the ebetrect entered in Block 20, if different from Report)

18. S U P P L E M E N T A R Y N O T E S

9. K E Y W O R D S (Continue on reverse eide it neceeemry *nd identify by block number)

20. A B S T R A C T (Continue on reveree eide it neceeemry end identity by block number)

DD i j A N 73 1473 E D I T I O N O F 1 N O V 65 IS O B S O L E T E
S / N 0 1 0 2 - 0 1 4 - 6601 1 UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAGE (When Dmtm Entered)

