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Abstract

A range query on a set of points in a k-dimensional coordinate space asks for
all points lying within a hyperrectangle specified by ranges of permissible values for
each of the coordinates. In this paper we regard as Identical any two range queries
which return the same set of points. We then Investigate the number of range
queries possible on a set—given a set of N points In k-space, what is the maximum
number of distinct subsets that may be specified by glving bounding
hyperrectangles. The bounds we find for this number (as a function of N and k) are
substantial improvements over previous resuits, and tighten a fower bound on the
time recuired to process range gueries.
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1. Introduction

Given a sat (or "file™) of points In a k-dimensional coordinate space, a range
query asks for all points In the set that lie within some hyperrectangle, specified by
a range of permissible values for each of the k cooordinates. The range searching
problem may now be defined as follows: Given a set of N points In k-space,
preprocess them so that range queries may be answered quickly. This prob!rem is

cailed "orthogonal range searching” by Knuth (K73, Sec. 6.5).

We concern ourselves here with the number of range queries possibie on a set

of N points in k-space, where two range queries are considered distinct iff they

return different sets of points. We speak of the number of "range queries" rather

than the number of "range responses" for two reasons. First, that is the terminology
used by Bentley and Maurer [BM78]. Second, our interest In the range searching
probiem s largely motivated by the more génerai study of range-restricted
searching problems. I these problems, a query on a set, S, may be considered to
consist of two parts. The first part (or range restriction) specifies some
hyper-rectangie, R; the second specifies some (arbitrary) query on the set T = SNR.
it is often convenient to partition the possible queries according to the T's selected
by their first parts. The number of different T's which may be selected (/.e., the

number of equivalence classes of queries) is precisely what we call the number of

range queries on S.

It is easy to show that any set of N distinct points on the line admits exactly

(N:"Z") + 1 range queries. The answer to a range query Is elther the empty set or
can be defined by two of the N+1 interpoint gaps (including the end spaces). In
higher dimensions, the situation is more complicated, since the number of range
queries on a set depends not only on the number of points In the set but on their
distribution as well. Being interested in worst-case results, we will attempt to
determine, given N and k, the maximum number of range queries possible on a set of
N points in k-space. Bentley and Maurer have shown, for k > 2, that the maximum

number of range queries on N points In k-space lies between the bounds of (N/2k)%*



and NZk/2k (ignoring tower order terms) and they have used this result to show the
optimality (within an additive constant) of data structures they call "one level
k-ranges". In this paper we shail improve on these bounds. One result of this is to

tighten the additive term of Bentiey and Maurer's optimality result.

2. A Lower Bound

Consider Figure 1. Here we show N points in the plane divided Into two groups,
one arranged along the line segment from (1,0) to (0,-1), not Including (1,0) or
(0.-1), and the other along the line segment from (0,1} to (-1 ,0), again not including
the endpoints. Assume that the two groups are as nearly equal as possible, the first

containing [N/2] points and the second having the remaining LN/2].
o
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Figure 1: A Distribution Admitting Many Range Queries



We now determine the number of range gqueries that can be made on this set
of points. By adjusting the bottom and right boundaries of the‘ search range, we can

select any of

subsets of the first group to be included in the range (that is, the number of range

queries on a set of [N/2] points in one dimension). Similarly, by adjusting the left

and top boundaries, we may include any of

(lN/%J'I'“) +1
subsets of the second group. Thus, the total number of range queries possible on

this set of points is

[(fwgm) + 1][([N/§]+1)+ 1]
~ [(N/2)3/2] [(N/2)?12]
= N*/64,
Analysis of the lower order terms in the second iine of thé preceding will show that

they are O(N®) and also that the approximation obtained is conservative to this

extent. We have therefore established

Theorem 2-1

The maximum number of range queries on a set of N points In two-space grows
at least as N*/64.

The construction of Figure 1 extends naturaily to higher-dimensional spaces.
In k-space, we divide the N points into k approximately equal groups and arrange
them along the K line segments:

from {1,0,0,...,0,0) to (0,-1,0,...,0,0);
from (0,1,0,...,0,0) to (0,0,~1,...,0,0);

from (0,0,0,...,,1,0) to (0,0,0,...,0,-1);
from {0,0,0,...,0,1) to (-1,0,0,...,0,0).



These configurations of points offer a constructive proof of .

-Theorem 2~2

Let k be a positive integer. Then the maximum number of range queries on a
set of N points In k-space grows at least as N2 /(2kk%), '

- 3. An Upper Bound

The question now arises as to how close the constructions of Section 2 come

to achieving the maximum number of range queries. A partial answer to this question

is the foilowing result.

Theorem 3-1:

The maximum number of range queries possible on a set of N points in
two-space grows no faster than N4/48 + O(N?),

Proof:
Consider a set, Y, of N points in the piane. For the purpose of investigating the
number of possible range queries on Y, we assume, without loss of generality,
that Y is a 1-1 function from {1,2,..,.N} onto {1,2,..N}.! Such a set is
exhibited in Figure 2.

For each non-empty range query, Q, there Is a unique minimal enclosing
rectangle, namely [a,b]%[c,d] where

min(domain{Q));
max{domain(Q));
min{range(Q));

d = max{range(Q)).

a oo
]

Consider two integers, a and b, with 1 £ a £ b € N. How many pairs (c,d) may
exist such that [a,b]x[c,d] is the minimal enclosing rectangle of some range
query? Consider,the example in Figure 2. We take ¢’ = min{Y(a),Y(b)} and

1Hero we use the formal dafinition of a point in two-space as an ordersd pair and of & function as a set of
ordered pairs. )
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Figure 2: A 1-1 Function from {1,2,..,N} to {1,2,..N}, Viewed
as a Point Set in Two-Space

d' = max{Y(a),Y(b)}. Then, [a,b}%[c,d] is a minimal enclosing rectangle iff ¢ is
the ordinate of some point of Y which lies in the rectangle L = [a,b]x [1,¢'] and
d is the ordinate of some point of Y which lies In the rectangte U = [a,b]x (d'.N].
Thus, the total number of (c,d) giving rise to minimal enclosing rectangles is
ILAY[-unY[.  Since [LAY|+UNY] can be at most b-a+148, 1,7 it follows that
jLnyl-juny] is at most ({(b-a+1+8&,b)/21)(L(b-a+1 +Ea’b)/21).2 By summing over
ail possible vatues of a and b, we see that the total number of range queries,
including the empty query, is no more than

1+ 2 ((b-ari+b, 1 )/2hd(b-as148, )/2])
1<asb<N ab ab

~ 2, {(b-a)/2)?
1S§b$N @)/2)

15 here signities the Kroenecker 5—function.

Since given the sum of two integers, their product is maximized by making them as nearly equal as possible,



If the approximations made in the preceding calculation are studied, it will be
seen that the error introduced is at most O(N?®). This completes the proof. [J

We can extend the previous result by induction to give bounds on the number of

range queries in higher dimensions as follows:

Theorem 3-2:
Let k be an integer greater than unity. Then the maximum number .of range
queries on a set of N points in k-space grows no faster than NZ/(2:(2k)!) +

o Nzk-l )_

Proof:
By Theorem 3-1, the resuit holds for the case where k=2, Thus we need oniy
prove the result for k22, assuming the result for k-1.

Consider a set, Y, of N points in k-space. Without loss of generality, we
assume the kth coordinates of the polnts in Y to be precisely the Integers
1,...N. Thus, each range guery on Y may be expressed by giving two integers,
a and b, (with 1 £ a £ b £ N) bounding the query set in tha kth coordinate,
together with the specification of a (k-1)-dimensional range query on b-a+1
points whose kth coordinates lie in the closed interval [a,b]. Using the
notation RJ(M) to represent the maximum number of range queries possible on
any set of M points in j-space, we now have that

RN S 2 R(abe).

1<a<bs$

~ Z ng_l(c).
1<b<N 1<c<b

~ > o 2f(2-(2k-2)1)
1<b<N 1<e<b

~ b?=17(2:(2k-1)1)
1<b2N



~ N&/(2:(2K)).

As before, carefui analysis of the lower-order terms will show them to be
O(N%-1). O

4, Conclusions

The bounds given in Sections 2 and 3 for the maximum number of range queries
in two dimensions tighten the results of Bentley and Maurer considerably--from a
factor of 64 difference between the lower and upper bounds to a factor of 4/3.
Similar improvements are cbtained in higher dimensions, though the final results
there are still looser than for the two-dimensional case. The resuits for the two-

and three-dimensional cases are summarized in the following table.

b

Dimension Bentley & Maurer New Results
of Space [} Lower Upper Lower Upper
. Bound Bound | Ratio Bound Bound Ratio
2 N4/ 256 N4/4 64 NY/64 N4/48 4/3
3 N8/46B56 | N5/8 5832 N8 /5832 | N%/1440| 4.05
\m-“m

it is clear that any decision-tree program for range searching must use at
least as many compari:sons as the logarithm to the base two of the number of
possible responses. Bentley and Maurer coupled this fact with their lower bound on
the number of range queries to show a lower bound on the worst case compiexity of
range searching of Iogz(N“/256) = 4 log,N - 8. Our lower bound tightens their resuit
to 4 IogzN ~ 6, and our upper bound shoWs that this method cannot be used to

decrease the additive constant much further.

Similar results are obtained for higher-dimensional spaces. For k-dimensional
space, we get a iower bound of 2k logzN - k(1+2 togzk) and our upper bound shows
that the decision-iree argument cannot be used to give a lower bound greater than
2k log,N - k(1+log,k-log,e) - 3(log,(rk))/2. This last resuit is obtained by using
Stirling's approxi_mation to estimate the value of {2k})!, which appears In Theorem
3-2.



The most obvious open problem left by this work is that of further tightening
the bounds. The author suspects (but will not bet money) that the lower bounds
given in Section 2 may be exact up to second-order terms; at any rate, the upper
bounds of Section 3 are computed on the basis of very optimistic assumptions, The
bound of Theorem 3~1, for example, could be exactly achieved oniy If N points could
be piaced in the plane so that no one of them lay within the minimal encilosing
rectangle of any other two. This last condition, however, is Impossible to achieve
for N>4.

A deeper problem is that of studying the structure, rather than Jjust the
cardinality, of sets of all possible range queries over a (given) set of points in
k-space. In particular, the compiexity of range searching in k-space appéars to
depend on the dimension of the space to an extent not entirely accounted for by '
the sheer number of possible range searches. To give an example, there are O(N2)
range queries on a set of N points in one dimension. By storing the points as a
sorted list, it becomes possibie to answer range queries in O(lg N) time (pius
reporting time proportional to the number of points actually in the range). The
preprocessing time required is O(N Ig N) total, or O(lg N) per point. Consider on the
other hand a set of N¥? points in two-space. The number of possible queries is
again O(N?) {In fact, the constant term is smailer for this case). But now, if we allow
only O(lg N) preprocessing per point, the best known aigorithm [BF78] requires
O(Ig®N) time (plus reporting time) to answer a range query. To take another
example, range searching on one of the distributions constructed in Theorem 2-2 is
very simple (if such a distribution is expected in advance), since é k-dimensional
range query on such a set can be reduced to k one-dimensional queries. Random
distributions of points in k-space, while they may admit many fewer distinct range
quéries than the sets of Theorem 2-2, require elther more preprocessing or more
query time, at least using currently known algorithms. By seeking a deeper
understanding of these phenomena, we may hope to shed light not only on the range

searching problem, but on more génerad range-restricted searching problems as well.
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