
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-79-112 ,

TCOLAda:
An Intermediate Representation

for the
DOD Standard Programming Language

7 March 1979

Bruce R. Schatz
Bruce W. Leverett

Joseph M. Newcomer
Andrew H. Reiner
William A, Wulf

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213 USA

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F 3 3 6 1 5 - 7 8 - C - 1 5 5 1 .

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

University Libraries
Carnegie MeUon University
Pittsburgh PA 15213-3890

i

Table of Contents
1. Introduction 1

2. Abstract Representations 3

2.1 LGN: A Linear Graph Notation 3
2.2 TCOL: A Tree-Structured Intermediate Language 4

2.2.1 Common nodes and attributes 4
2.2.2 The Front End 5

3 - T C O L A d a 7

3.1 Types of nodes 7

4. Language Datatypes 9

4.1 Scalar types 9
4.2 Structured types 9
4.3 Linking types 9

5. Operators on basic types 11

5.1 Arithmetic 11
5.2 Logical 11
5.3 String 12
5.4 Pointer 12
5.5 Structured type 12
5.6 Value 12

6. Control operators 13

6.1 Sequencing & jumps 13
6.2 Conditionals 13
6.3 Repetition 13
6.4 Routine declarations and calls 13

7. Miscellaneous Operators 15

7.1 Exception handling 15
7.2 Parallel processing 15
7.3 Input/output 15

8. Coda 16

8.1 Omissions 16
8.2 Acknowledgements 16
8.3 References 16

A. Examples 17

A . l Statements 17
A.2 Array access in a For loop 19
A.3 Routine declaration 20
A.4 Records 21
A.5 Unions within Records 22
A.6 Variant records and tags 23
A.7 Attribute inquiry using a Case 25

1

1. Introduction
This document describes TCOL A c j a , a possible intermediate representation for Ada — the

language being designed to meet the Steelman requirements. The purpose of this description

is to provide enough information about this representation so that potential implementors of

Ada can assess the feasibility of producing this representation at some intermediate stage of

their compilers. Of course, Ada is not yet fully designed, and a choice between the two

competing designs has not been made; thus, this document can only be considered tentative.*

It should, however, provide enough of the "flavor" of T C O L A c j a that an assessment can be

made.

To understand what follows, it may be helpful to Know a bit of the history of this

representation. The "Production Quality Compiler-Compiler" (PQCC) project at

Carnegie-Mellon University is attempting to automate the production of the optimization and

code generation phases of a compiler. Starting with (only) formal descriptions of the source

language and the target machine, PQCC is attempting to automatically generate "production

quality" optimizers and code generators; our goal is to make these competitive with the best

hand-generated systems currently available [2\

The PQC, "production quality compiler", produced by PQCC is heavily phase-structured; it

consists of a linear sequence of phases, each of which performs a piece of the

optimization/code generation process. TCOL was originally designed as the common

representation input to the PQC, as well as for communication between the PQC phases [1J.

In order to achieve the high standards set for the PQC, as well as to permit experimentation

with the various PQC phases, it is necessary for this representation to have two properties:

- there must be a "visible" (ASCII) representation of TCOL — this permits the
constructors of the various phases to work independently and at their own pace,
and ,

- the semantics of TCOL must be adaptable to the source language; that is, it must
be possible to reflect the special properties of the source language types,
operators, and control structures in TCOL If this were not true, important
optimization opportunities would be lost.

To satisfy these constraints, the PQCC project has defined a hierarchy of notations:

- LGN: LGN stands for "Linear Graph Notation", and is simply a linear, ASCII
representation of arbitrary directed graphs.

Interim drafts of the language reference manuals for Red and for Green were consulted in preparing this document.
The Ada assumed within bears a fair resemblance to both of these.

2

- TCOL: TCOL stands for "Tree-structured Common Optimization Language", and is
actually a family of languages — one for each of the several source languages
that we wish to deal with. The visible external representation of TCOL is written
in LGN; that is, TCOL is simply an instance of LGN in which certain node
attributes are presumed to exist, and in which the nodes happen to form a tree
rather than a general graph.

- T C O L ^ a 5 TCOL^jg is the particular instance of TCOL which is tailored to the
types, operators, and control constructs of Ada.

In the following sections we will describe LGN, the general properties of (any instance of)

TCOL, and then a possible T C O L ^ g .

3

2 . Abstract Representations
In this section we will discuss the general properties of LGN and TCOL. Since TCOL Is a

specialization of LGN, we will start with the latter f irst

2A LGN: A Linear Graph Notation

LGN is a linearized, ASCII representation of an arbitrary directed graph with labelled arcs.

Each node in the graph is presumed to be labeled, typed, and to have an arbitrary number of

attributes. The attributes are named, and have values, but neither the names nor the possible

values for a particular attribute are defined by LGN,

The definition of LGN, in BNF, is

<LG> : : - <empty>|<LG><node>
<node> <label> <type> <attributes>
<label> <integer>:
<type> <identifier>
<attributes>::« <empty>|<attribute><attributes>
<attribute> (<at name> <at values>)
<at name> ::=* <identifier>
<at values> <empty>|<at val><at values>
<at val> <label>|<identifier>|<string>|<number>

For example, the following is legal LGN:

1: PERSON (SPOUSE 2: 3:) (SEX FEMALE) (CHILDREN 3:)
2: PERSON (SPOUSE 1:) (SEX MALE) (CHILDREN 3:) (KILLED-BY 4:)
3: PERSON (SPOUSE 1:) (SEX MALE) (NAME "Oedipus") (PARENTS 1: 2:)
4: DISCUS (FEET-THROWN 100) (THROWN-BY 3:)

This bit of LGN defines a graph with four nodes (labeled 1: - 4:), Three of the nodes have

t y p e PERSON and one has type DISCUS. The nodes are connected together in various ways

b y attributes whose values are labels. For example, the SPOUSE attribute of node 1: points

to nodes 2: and 3: , indicating that PERSON l:'s spouses are PERSONs 2: and 3:. Note that

lists of values are permited for any attribute. A t t r i b u t e s which can nly take on a small

number of values have those values denoted by unique identifiers. For example, the SEX

attribute may take on only the value FEMALE or the value MALE. Attributes which can take

on many (infinite number of) values have those denoted by quoted strings or by numbers.

For example, the NAME attribute in node 3: has value "Oedipus" and the FEET-THROWN

attribute in node 4: has the value 100.

The appendix to this report contains several examples of T C O L ^ a in LGN format. Hopefully

4

*We should note that the reason for defining LGN in addition to, and mora feneral than, TCOL i« that PQCC must also
provide visible representations for control flow fraphs, internal tables, and other structures which may not be trees and
which require a different (and possfcly richer) set of node types and attributes.

these examples will be self explanatory.*

2*2 TCOL: A Tree-Structured Intermediate Language

As discussed previously, TCOL is actually a family of languages — one for each of the

several source languages for which we plan a PQCC-produced compiler. Thus TCOL can be

v iewed as the union of the properties of the various language-specific family members.

Remember that the visible representation of TCOL is a restriction of LGN.

The TCOL representation of a program is an abstract program syntax tree. It consists of a

sequence of interconnected nodes with named operators in the interior nodes and various

attributes attached to the leaf nodes. The tree structuring is constant over all TCOLs while

the operators and attributes vary for each source language. The set of operators represents

the operations of a virtual machine intermediate between the source and machine languages.

In level, TCOL resembles an abstract programming language, Le. the set of operators is much

closer to the particular source language than to the machine code.

2.2.1 Common nodes and attributes

The fact that the tree structure is constant over all TCOL family members means that there

is a specific set of node types and attributes common to all. These will now be discussed.

Each TCOL tree has a distinguished root node. Each interior node, termed a tree node,

represents an expression consisting of an operator and one or more operands which are

represented by the subtrees pointed to by the SUBNODES attribute. The leaves of the tree

are termed leaf nodes. The leaf nodes themselves are only place holders, however, and point

to symbol nodes, representing symbol table entries, or to literal nodes, representing literals

(constants) from the source program. These latter two types of nodes contain the actual

values of the leaves of the tree.

Thus the TCOL tree structure is represented by an initial root node and a sequence of

nodes with the following types and attributes. Each node type Is given followed by its

attributes (in LGN format). Here upper case will denote attribute names and lower case will

denote value types (however, case is not significant in LGN). Thus (OP identifier) means the

OP attribute is specified by identifier values.

5

TREE defines operator (inferior of abstract syntax tree).

(OP 1 dent I f I e r) name of TCOL operator.
(ANCESTOR l a b e l)
(SUBNODES l a b e l - l i s t)

LEAF defines operand (leaves of abstract syntax tree).

(OP r v) where rv - SYMBOL*LITERAL.
(ANCESTOR l a b e l)

(VALUE l a b e l) points to symbol or literal node.

SYMBOL defines symbol ("storage location").

(NAME s t r i n g) name of symbol table entry.

LITERAL defines literal ("value location").

(YALUE v a l u e) permissible values depend on language
datatypes.

For each specific TCOL (specific source language), there are additional attributes and

possibly additional node types. In particular, the source language datatypes must be

reflected by attributes in the Symbol and Literal nodes, and the set of Tree operators must

reflect the semantics of the various language constructs.

2.2.2 The Front End

The program which transforms sor ce language into TCOL (termed the front end) must do

roorr han lexical and syntactic analysis. This is because the TCOL "parse tree" is actually an

abstract syntax tree which also hides some of the semantics of the source language. Of this,

some is recorded in attributes attached to the nodes (e.g. symbol table references in Symbol

nodes) while some is no longer necessary by TCOL time (e.g. compile-time coercions). In

particular, the front end is assumed to be responsible for:

- name scoping and symbol table generation

- compile-time type coercion and type checking

- elaboration and use checking of encapsulated objects

6

- macro and generic expansion

- compile-time diagnostics and pragmats

- source file inclusions ("required and library manipulation)

- conditional compilation.

Several implications of these should be noted.

- The coercions include deferencing (using the explicit "contents-of" operator),
expanding references to structured variables (e.g. arrays, records) into address
computations for individual memory accesses, and expressing all references to
user or standard prelude types in terms of operations on their underlying
built-in types.

- T h e operands point to specific storage table entries so that all scoping
references have been factored out (i.e. symbol table references are given in
Symbol and Literal nodes as needed).

- There is a distinct operator for each applicable type, e.g. plusInteger.pIusReal,
plusLongReal are as distinct as plus and times.

In essence, this document presents a front-end's-eye view of TCOL; details internal to

PQCC are suppressed.

3 .TC0LAda
The remainder of this document will define some specifics for T C O L ^ g , keeping in mind

that these are necessarily tentative until the details of Ada itself are finalized.

As T C O L ^ g is a particular member of the TCOL family, it uses all of the common types of

nodes and attributes which define the tree structure, as described in section 2.2.1. However,

it adds a number of attributes to Symbol and Literal nodes which specify the data type and

lifetime information for Ada. It also includes a number of tree operators meant to provide an

abstract machine for the semantics of Ada. (It should be noted that many of these operators

are common to other algebraic languages.)

The remainder of this section will give the set of node types used in T C O L ^ g . Then the

attributes for datatypes will be enumerated, the tree (language construct) operators given,

and finally, several examples will be presented.

3.1 Types of nodes

For T C O L ^ g , no additional node types beyond those common to all TCOLs will be

proposed. Several additional attributes are necessary in Symbol and Literal nodes to specify

typ ing and lifetime information. The list of node types and attributes here includes

(reiterates) the common tree structure (as discussed in section 2.2.1) while the attributes

necessary for data typing are given in the next section. The notation is the same as

previously : the node type is given followed by its attributes (in LGN format where upper case

denotes attribute names and lower case denotes value types), "rv" stands for "range of

values" and is used when permissible values include only a few identifiers.

TREE

<0P i d e n t i f i e r) name of TCOL operator.
(ANCESTOR l a b e l)
(SUBNODES l a b e l - ! 1 s t)

LEAF

(OP r v) where rv - SYMBOL, LITERAL .
(ANCESTOR l a b e l)

(VALUE l a b e l) points to a Symbol or Literal node.

8

SYMBOL

(NAME s t r i n g) name of symbol table entry,
one of basic types defined in next section,
where rv - STATIC,STACK,HEAP (lifetime type),
where rv « YES, NO (whether externally visible).

(TYPE t y p e)
(L I F E r v)
(GLOBAL r v)

LITERAL

(VALUE v a l u e)
(TYPE t y p e)

Any scalar type is permissible in a Literal. The value is then a single value of that type.

The one exception is that types INT, FIXED, and FLOAT are allowed to specify (VALUE ENUM)

which indicates that the literal consists of an enumeration of all values in the subtype range

(e.g. in a FOR statement). Type ARRAY is also permissible in a Literal in which case the value

is a list of the constant values of the array elements.

For Symbol and Literal nodes, there are additional type-dependent attribute fields which

must be merged into the ones specified above. Thus the fields in any such node consist of

the standard ones above and the specific ones for the particular type. Unneeded attributes

may be left undefined. The next section describes the type-specific attributes.

It should be noted that the intermediate language TCOL does not define the semantics of a

programming language, but merely reflects it (in the choice of operators and attribute types,

for example). There must, however, be at least an implicit agreement on the semantics

between the designers of Ada (and its language description) and the designers of T C O L ^ g .

9

4. Language Datatypes
The basic types listed here are the only ones which appear in TCOL^jg trees (in the Type

field of Symbol and Literal nodes). The additional attributes which must be added to Symbol

or Literal nodes for each type are given.

4.1 Scalar types

I NT (RANGE i n t i n t)
F I X E D (RANGE f i x e d f i x e d) (DELTA f i x e d)
FLOAT (RANGE f l o a t f l o a t) (PRECISION I n t)
BOOL
CHAR
STRING (LENGTH I n t) maximum length of multicharacter string.
PTR (POINTS -TQ t y p e)
B U I L T I N value is a standard identifier (for inquiries such as PRECISION).

4.2 Structured types

ARRAY (ELTTYPE t y p e) (BOUNDS l b l u b l l b 2 ub2 . . .)
where all bounds are integers.
For dynamic arrays, the bounds are pointers to (labels of) Symbol nodes.
The initialization code for a dynamic array declaration should compute
each bounds expression and place the value in a dummy variable. These
variables are then represented by TCOL Symbol nodes and pointed to in
the BOUNDS attribute.

RECORD

SET

UNI ON

(F I E L D S l a b e l - 1 1 s t)

list of pointers to the Symbol nodes which form the subfields.

(ELTTYPE t y p e) (S IZE I n t)

(F I E L D S l a b e l - l i s t)

A Symbol node of this type represents a single storage location. Its
subfields point to dummy Symbol nodes which specify the type of that
location for the various selections of the discriminated union.

4.3 L ink ing types

PARAMETER (PARMTYPE t y p e) (PARHNUM I n t) (BY r v)

where rv - VAL, REF, RESULT, REFIN (which passing mechanism).

ROUTINE (EFFECT r v)
where rv« PURE, IMPURE (for names of routines).

TASK a variable of this type has value • set of active processes for this task.

10

The front end is assumed to change enumerated type references into references to small

integers so that each enumerated type becomes some subtype of INT. The same should

occur with standard enumerations, such as the list of exceptional conditions.

Any fields needed for attribute inquiries (such as FIRST for type ARRAY or TAG for type

UNI ON) should also be included above.

The remainder of this document describes the tree operators and gives several examples

of their use.

11

5. Operators on basic types
Notation: e Q - e n are the Oth - nth operands of the operator. They are assumed to be

expressions unless stated otherwise.

The list of operators here specifies a generic set. However, after the coercions done by

the front end, the actual trees will contain type-specific operators. Thus for +, the actual set

of operators would include +INT, +FIXED, and +FL0AT. Similarly, the logical comparison

operators, such as «, may have both a signed and an unsigned version.

5.1 Arithmetic

+ addition: eQ + e \

subtraction: eQ - e j

/ division: / e±

* multiplication: eQ * e j

* * exponentiation: eQ ** e j

mod modulo: BQ mod e j

* unary minus: -eQ.

++ unary plus: +eQ.

abs absolute value: abs (eg)

succ next higher value: succ (BQ)

pred next lower value: pred (C Q)

5.2 Logical

These return type boolean.

< less than: eQ < e j .

> greater than: BQ > e j .

<« less than or equal to: BQ < - e^.

> « greater than or equal to: eQ > - e j .

•« equal to: BQ - e j .

~ - not equal to: eQ ~~ e j .

and bitwise and: eQ and e j .

12

or

xor

not

member

bitwise or: eQ or e^.

bitwise exclusive or: eQ xor e j .

bitwise not: not eQ.

returns true iff e Q is a member of set e j .

5.3 String

concat

substr ing

length

5.4 Pointer

new

f ree

concatenation: eQ concat e j .

substring of eQ from e j to

current length of eQ.

return new variable of scalar type BQ\ new(eQ>.

deallocate heap variable pointed to by ptr e Q : f ree(e 0) .

5.5 Structured type

It is assumed that all references to these have been decomposed into individual element

references by TCOL time. Thus the only operators provided here are those for extraction.

arrayelt

subfield

discriminate

5.6 Value

:** »

contents

inquiry

for array expression eO, return pointer to e0[ej ,e2~].

for record eQ, return pointer to subfield named e j .

for variant union e Q , choose type in Symbol node pointed to by e j .

assignment to variable: eQ :» e j .

contents-of (value of): contents eQ .

for symbol eQ, return value of attribute identified by e j .
Permissible inquiries depend on the type of the Symbol node pointed to
by eQ- e l P ° i n * s *° a Literal node of type BUILTIN.

13

6. Control operators

6.1 Sequencing & jumps

; sequencing, arbitrary numbers of operands.

exit structured jump from inside labelled construct to after it: exit eg

goto jump to label: goto eg.

label eg is label on statement e j : "eg : e j " .

6.2 Conditionals

if eg then e j else e 2 *ndif

case

acase

case eg when <cond> - > <expr> when <cond> «> <expr> else e n endcase

is a subtree with n+1 operands with the first being the selection
expression, the last being the else expression, and the others (I.e.
e j . . . e n _ j) being a subtree with root operator acase.

used only within a case expression tree, acase is an n-ary operator
representing "when <cond> «•> <expr>" with the first operand being the
executed expression and the second and subsequent operands
representing the guarding conditions. Each condition is either an
expression (represented by the unary operator econd whose operand Is
the expression's subtree) or a range (represented by the binary
operator rcond whose operands are the (constant) lower and upper
bound).

6.3 Repetition

while while eg repeat e j endrepeat.

for for eg : e^ repeat e 2 andrepeat .

eg is a variable, 6 2 is an expression, and e j is a subtype (subrange) of
type int, fixed, or float, or is an enumerated type.
The effect is "repeat e 2 varying eg over all values of e j * .

6.4 Routine declarations and calls

function pure routine declaration: function eg (e 3 ^ . e n) : e j ; e 2 .

eg is the name (points to a Symbol node of type "routine"), e j ts the
returntype, e 2 is the body expression, e 3 _ e n point to Symbol nodes of
type "parameter".

14

procedure impure routine declaration: procedure BQ (e2...e n); e j .

name eQ, body e j , parameters e2 - .e n .

return return from a function with value eg: return C Q .

call routine call: e 0 (e | . . e n) .

eQ references a Symbol node of type "routine*. © i - e n P ° ' n * to
expression subtrees representing the arguments.

15

7. Miscellaneous Operators
These are somewhat minimal and speculative.

7.1 Exception handling

Exception conditions are represented by small integers. Thus eg in r a i s e and ej.eQ,... in

g u a r d are Leaf nodes whose value field points to a Literal node which gives the exception

number.

raise signal condition: raise eg.

guard guard eg by when e j «> e 2 when 63 - > e4 ... else s 2 n + l o n c *guard .

7.2 Parallel processing

fork for task eg activate processes ej . . .e n (allow them to run concurrently
with other activated processes). e j . . e n are pointers to Symbol nodes of
type "routine".

join for task eg deactivate processes ej . . .e n (e.g. when abort,terminate, or
reach block end).

wait selective wait: wait eg «> e j , e 2 •> 63 ~ endwait

7.3 Input/output

read from device eg, read into variables e i ~ e n (free-format),

write to device eg, write from variables ©i~.e n (free-format).

16

8. Coda

8.1 Omissions

Due to the preliminary nature of this document and of Ada, a number of issues have not

been dealt with in sufficient depth. Some of these are listed below.

- Machine dependent support. This includes access to the interrupt structure and
linkage to assembly language routines.

- Runtime system support. This includes specification of the stack frame and
display, dynamic storage allocation (e.g. heaps and garbage collection), and
runtime checking of bounds and types,

- Parallel processing support. This includes definition and naming of processes,
types of activation variables for tasks, and scheduling.

- Fixed point support. This includes scaling, representation of literals, and
whether INT should be a subtype of FIXED rather than a separate type.

- Encoding pragmat information about the representation of data structures in the
TCOL Symbol nodes.

- High-level input/output support including file manipulation.

- The representation of load-time constants.

8.2 Acknowledgements

Paul Hilfinger provided helpful comments on several drafts of this paper. The first author

(B.R.S.) was supported by a graduate fellowship from the National Science Foundation.

8.3 References

[1] R.G.G. Cattell, Formalization and automatic derivation of code generators, Rep.
CMU-CS -78 -115 , (Carnegie-Mellon University, Computer Science Department, April
1978).

[2] B.W. Leverett, R.G.G. Cattell, S.O. Hobbs, J.M. Newcomer, A.H. Reiner, B.R. Schatz,
W.A. Wulf, An Overview of the Production Quality Compiler-Compiler Project, Rep.
CMU-CS -79 -105 , (Carnegie-Mellon University, Computer Science Department,
February 1979).

17

A. Examples
This appendix gives a few examples of the T C O L ^ g frees for various Ada source

constructs. In each example, the Ada source is given (with hypothetical syntax) followed by

the TCOL tree in LGN notation.

A . l Statements

BEGIN

VAR c , a , b : I NT (1 . . 1 0) ,
d : FLOAT < 5 , 1 E - 1 . , 1 E 3) »

c t = 7* a i = b + c : d : = 0.31416E1
END

l i SYMBOL (NAME " C ") (TYPE INT) (L I F E STACK) (GLOBAL NO)
(RANGE 1 10)

2 : SYMBOL (NAME " A ") (TYPE INT) (L I F E STACK) (GLOBAL NO)
(RANGE 1 10)

3 i SYMBOL (NAME " B ") (TYPE INT) (L I F E STACK) (GLOBAL NO)
(RANGE 1 10)

4 : SYMBOL (NAME " D ") (TYPE FLOAT) (L I F E STACK) (GLOBAL NO)
(RANGE 1 E - 1 1E3) (PRECISION 5)

5 : L ITERAL (YALUE 7) (TYPE INT)
6 : L ITERAL (VALUE 0 .31416E1) (TYPE FLOAT) (PRECISION 5)

2 0 : TREE (OP :) (ANCESTOR 0 :) (SUBNODES 2 1 : 24 : 3 1 :)
2 1 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 22 : 2 3 :)
2 2 : LEAF (OP SYMBOL) (ANCESTOR 211) (VALUE l i)
2 3 : LEAF (OP LITERAL) (ANCESTOR 2 1 :) (VALUE 5 :)
2 4 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 25: 2 6 :)
2 5 : LEAF (OP SYMBOL) (ANCESTOR 2 4 :) (YALUE 2 :)
2 6 : TREE (OP + INT) (ANCESTOR 2 4 :) (SUBNODES 27 : 2 9 :)
2 7 : TREE (OP CONTENTS) (ANCESTOR 2 6 :) (SUBNODES 2 8 :)
2 8 : LEAF (OP SYMBOL) (ANCESTOR 2 7 :) (YALUE 3 :)
2 9 : TREE (OP CONTENTS) (ANCESTOR 2 6 :) (SUBNODES 3 0 :)
3 0 : LEAF (OP SYMBOL) (ANCESTOR 2 3 :) (VALUE 1 :)
3 1 : TREE (OP : =) (ANCESTOR 2 0 :) . (SUBNODES 32 : 3 3 :)
3 2 : LEAF (OP SYMBOL) (ANCESTOR 3 1 O (VALUE 4 :)
3 3 : LEAF (OP LITERAL) (ANCESTOR 3 1 :) (VALUE 6 :)

Notes: The Symbol and Literal nodes contain the symbol table information; they are

re ferenced in the Leaf nodes. The Symbol nodes contain the basic attributes on first line and

the type-specif ic (e.g. RANGE for INT) attributes on second line. The RANGE attribute is

omitted for the Literals (is meaningless).

18

The semicolon treenode (20:) captures the sequencing of top-level statements in the

program. Its operands are the assignments (21: 24: 31:). The LGN nodes are shown here in

depth- f i rst treewalk order.

The CONTENTS operator takes the values of variables on the right hand side of an

assignment.

The plus operator in node 26: has been coerced into a type-specific +INT by the front end.

The 0: in the Ancestor field of the first treenode (20:) points to the rootnode (or to the

next larger expression subtree).

19

A . 2 Array access in a For loop

BEGIN

TYPE c o l o r = ENUM [r e d , g r e e n , b l u e] ?
VAR I J I N T (1 , , 1 0 0 0) ,

a l ARRAY [1 . . 3] of I N T (l . . i O) »
FOR I i c o l o r REPEAT a l l] : = 2 END REPEAT:

END

1 : SYMBOL (NAME " I ") (TYPE INT) (L I F E STACK) (GLOBAL NO)
(RANGE 1 1000)

2 : SYMBOL (NAME " A ") (TYPE ARRAY) (L I F E STACK) (GLOBAL NO)
(ELTTYPE INT) (BOUNDS 1 3)
(RANGE 1 10)

4 : LITERAL (VALUE 2) (TYPE INT)

2 0 : TREE (OP FOR) (ANCESTOR 0 :) (SUBNODES 2 1 : 22 : 2 4 :)
2 1 : LEAF (OP SYMBOL) (ANCESTOR 2 0 :) (VALUE l i)
2 2 : LEAF (OP LITERAL) (ANCESTOR 2 0 :) (VALUE 2 3 :)
2 3 : LITERAL (VALUE ENUM) (TYPE INT) (RANGE 1 3)
24 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 25: 2 9 :)
2 5 : TREE (OP ARRAYELT) (ANCESTOR 2 4 :) (SUBNODES 2 6 : 2 7 0
2 6 : LEAF (OP SYMBOL) (ANCESTOR 2 5 :) (VALUE 2 :)
2 7 : TREE (OP CONTENTS) (ANCESTOR 2 5 :) (SUBNODES 2 8 :)
2 8 : LEAF (OP SYMBOL) (ANCESTOR 2 7 :) (YALUE l i)
2 9 : LEAF (OP LITERAL) (ANCESTOR 2 4 :) (VALUE 4 :)

Notes: Symbol "A" has one merge of type-specific attributes for the (TYPE ARRAY) and

another for the (ELTTYPE INT). The special Literal 23: is generated as an INT range for the

loop variable to vary over (note the reference to an enumerated type has become a

reference to a small int subtype).

20

A.3 Routine declaration

p : PROCEDURE (x i I N T (1 . . 1 0) , VAR y i BOOL):
(y i = I F x = 1 THEN TRUE ELSE FALSE ENDIF) :

l i SYMBOL (NAME " P ") (TYPE ROUTINE) (L I F E STACK) (GLOBAL YES)
(EFFECT IMPURE)

• 2 : SYMBOL (NAME "X") (TYPE PARAMETER) (L I F E STACK) (GLOBAL NO)
(PARMTYPE I NT) (PARMNUM 1) (BY YAL)
(RANGE 1 10)

3 : SYMBOL (NAME "Y") (TYPE PARAMETER) (L I F E STACK) (GLOBAL NO)
(PARMTYPE BOOL) (PARMNUM 2) (BY REF)

4s LITERAL (VALUE 1) (TYPE INT)
5 : L ITERAL (VALUE TRUE) (TYPE BOOL)
6J LITERAL (VALUE FALSE) (TYPE BOOL)

2 0 : TREE (OP PROCEDURE) (ANCESTOR 0 :)
(SUBNODES 2 1 : 22: 3 1 : 3 2 :)

2 1 : LEAF (OP SYMBOL) (ANCESTOR 2 0 :) (VALUE l i)
2 2 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 23: 2 4 :)
2 3 : LEAF (OP SYMBOL) (ANCESTOR 2 2 :) (VALUE 3 :)
2 4 : TREE (OP I F) (ANCESTOR 2 0 :) (SUBNODES 25: 29 : 3 0 :)
2 5 : TREE (OP =) (ANCESTOR 2 4 :) (SUBNODES 26: 2 8 :)
2 6 : TREE (OP CONTENTS) (ANCESTOR 2 5 :) (SUBNODES 2 7 :)
2 7 : LEAF (OP SYMBOL) (ANCESTOR 2 6 :) (VALUE 2 :)
2 8 : LEAF (OP LITERAL) (ANCESTOR 2 5 :) (VALUE 4 :)

, 2 9 : LEAF (OP LITERAL) (ANCESTOR 2 4 :) (VALUE 5 :)
3 0 : LEAF (OP LITERAL) (ANCESTOR 2 4 :) (VALUE 6 :)
3 1 : LEAF (OP SYMBOL) (ANCESTOR 2 0 :) (VALUE 2 :)
3 2 : LEAF (OP SYMBOL) (ANCESTOR 2 0 :) (YALUE 3 :)

Notes: For the procedure, the body starts at 22: while the parameters start at 3 1 : . The

IF has three parts: condition (25:), then (29:), and else (30:).

Variables of type BOOL (e.g. "Y") have no type-specific fields.

This procedure is GLOBAL (i.e. it is known to the linker and can be referenced externally).

A.4 Records

21

BEGIN

VAR book : RECORD

(a u t h o r , t i t l e : STRING(20) ,
d a t e i 1 N T U 5 0 0 . . 2 0 0 0)) :

b o o k , a u t h o r t= "Bram S t o k e r " }
b o o k . t i t l e : = " D r a c u l a " ;
b o o k , d a t e : = 1897

END

l i SYMBOL (NAME "BOOK") (TYPE RECORD) (L I F E STACK) (GLOBAL NO)

(F IELDS 2 : 3: 4 :)

2 : SYMBOL (NAME "AUTHOR") (TYPE STRING) (L I F E STACK) (GLOBAL NO)
(LENGTH 20)

3 : SYMBOL (NAME " T I T L E ") (TYPE STRING) (L I F E STACK) (GLOBAL NO)
(LENGTH 20)

4 : SYMBOL (NAME "DATE") (TYPE INT) (L I F E STACK) (GLOBAL NO)
(RANGE 1500 2000)

5 : LITERAL (VALUE "Bram S t o k e r ") (TYPE STRING) (LENGTH 11)
6 i LITERAL (VALUE " D r a c u l a ") (TYPE STRING) (LENGTH 7)
7 : L ITERAL (VALUE 1897) (TYPE INT)

2 0 : TREE (OP ;) (ANCESTOR 0 :) (SUBNODES 2 1 : 26: 3 1 :)

2 1 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 22: 2 5 :)

2 2 : TREE (OP SUBFIELD) (ANCESTOR 2 1 :) (SUBNODES 23 : 2 4 :)

2 3 : LEAF (OP SYMBOL) (ANCESTOR 2 2 :) (VALUE 1 :)

2 4 : LEAF (OP SYMBOL) (ANCESTOR 2 2 :) (VALUE 2 :)

2 5 : LEAF (OP LITERAL) (ANCESTOR 2 1 :) (VALUE 5 :)

... the other two record accesses are similar to 2 1 : - 25: .

Notes: TCOL does not specify the physical representation of records. Thus, for example, a

string could either be a block of storage within the record or a pointer to string space

elsewhere.

22

A.5 Unions within Records

BEGIN
VAR num : RECORD

(. . . , r h UNION [r : FLOAT (3 , 1 E 0 . . 1 E 1) ,
i i INT (1 . . 1 0) 1 , . . .) *

n u m . r l . l : = n u m . r l . I + 1 ;
END

1 : SYMBOL (NAME "NUM") (TYPE RECORD) (L I F E STACK) (GLOBAL NO)
(F I E L D S 3 : , . . .)

3 : SYMBOL (NAME " R I ") (TYPE UNION) (FIELDS At 5 :)
4 : SYMBOL (NAME " R ") (TYPE FLOAT) (RANGE 1E0 1E1) (PRECISION 3)
5 : SYMBOL (NAME " . I ") (TYPE INT) (RANGE 1 10)
6 1 LITERAL (YALUE 1) (TYPE INT)

2 0 : TREE (OP

2 1 : TREE (OP
2 2 : LEAF (OP
2 3 : TREE (OP
24 : LEAF (OP
2 5 : LEAF (OP

2 6 : TREE (OP
2 7 : TREE (OP
2 8 : LEAF (OP
2 9 : TREE (OP
3 0 : LEAF (OP
3 1 : LEAF (OP
3 2 : LEAF (OP

SUBFIELD) (ANCESTOR 2 0 :) (SUBNODES 22 : 2 3 :)
SYMBOL) (ANCESTOR 2 1 :) (YALUE 1 :)
DISCRIMINATE) (ANCESTOR 2 1 :) (SUBNODES 24: 2 5 :)
SYMBOL) (ANCESTOR 2 3 :) (YALUE 3 :)
SYMBOL) (ANCESTOR 2 3 :) (YALUE 5 :)

+ I N T) (ANCESTOR 2 0 :) (SUBNODES 27 : 3 2 :)
SUBFIELD) (ANCESTOR 2 6 :) (SUBNODES 28 : 2 9 :)
SYMBOL) (ANCESTOR 2 7 :) (VALUE 1 :)
DISCRIMINATE) (ANCESTOR 2 7 :) (SUBNODES 30 : 3 1 :)
SYMBOL) (ANCESTOR 2 9 :) (VALUE 3 :)
SYMBOL) (ANCESTOR 2 9 :) (VALUE 5 :)
L ITERAL) (ANCESTOR 2 6 :) (YALUE 6 i)

Notes: The selection of the variant type within the record is repeated twice (23: - 25 : and

29 : - 3 1 :) . The s u b f i e l d operator then accesses that subfield (the current variant) in the

record. Since the choice of the I tag within RI implies that the record field selected is an

I NT, the + in 26: is coerced to +INT.

In the union RI, only node 3: represents an actual storage location. Nodes 4: and 5: are

dummy Symbol nodes whose purpose is to specify the type of the union field when that

particular variant is selected.

23

A.6 Variant records and tags

BEGIN

VAR u i UNION [a : I N T U . . 1 0) , b : BOOL],
u h l c h T y p e i I N T (0 . . 5) :

CASE u . t a g OF

WHEN . a => whlchType i - 1 ;
WHEN . b => whlchType : = 2%
ELSE whlchType : = Oj

END CASE

END

1 : SYMBOL (NAME "U") (TYPE UNION) (L I F E STACK) (GLOBAL NO)
(F I E L D S 2 : 3 :) (TAG 4 :)

2 : SYMBOL (NAME " A ") (TYPE INT) (RANGE 1 10)
3 : SYMBOL (NAME " B ") (TYPE BOOL)
4 : SYMBOL (TYPE INT) (RANGE 1 2)
5 : LITERAL (VALUE TAG) (TYPE BUILTIN)
6 : SYMBOL (NAME "WHICHTYPE") (TYPE INT) (RANGE 0 5)
7 : LITERAL (VALUE 0) (TYPE INT)
8 : LITERAL (VALUE 1) (TYPE INT)
9 : LITERAL (VALUE 2) (TYPE INT)

20? TREE (OP CASE) (ANCESTOR 0 :) (SUBNODES 21 : 24i 30t 3 6 i)
2 1 : TREE (OP INQUIRY) (ANCESTOR 2 0 :) (SUBNODES 22 : 2 3 :)
2 2 : LEAF (OP SYMBOL) (ANCESTOR 2 1 :) (VALUE 1 :)
2 3 : LEAF (OP LITERAL) (ANCESTOR 2 1 :) (VALUE 5 :)
2 4 : TREE (OP ACASE) (ANCESTOR 2 0 :) (SUBNODES 25: 2 8 :)
2 5 : TREE (OP : =) (ANCESTOR 2 4 :) (SUBNODES 26: 2 7 :)
2 6 : LEAF (OP SYMBOL) (ANCESTOR 2 5 :) (VALUE 6 :)
2 7 : LEAF (OP LITERAL) (ANCESTOR 2 5 :) (VALUE 8 :)
2 8 : TREE (OP ECOND) (ANCESTOR 2 4 :) (SUBNODES 2 9 :)
2 9 : LEAF (OP LITERAL) (ANCESTOR 2 8 :) (VALUE 8 :)

3 0 : TREE (OP ACASE) (ANCESTOR 2 0 :) (SUBNODES 3 1 : 3 4 :)
3 1 : TREE (OP : =) (ANCESTOR 3 0 :) (SUBNODES 32: 3 3 :)
3 2 : LEAF (OP SYMBOL) (ANCESTOR 3 1 :) (VALUE 6 :)
3 3 : LEAF (OP LITERAL) (ANCESTOR 3 1 :) (VALUE 9 :)
3 4 : TREE (OP ECOND) (ANCESTOR 3 0 :) (SUBNODES 3 5 :)
3 5 : LEAF (OP LITERAL) (ANCESTOR 3 4 :) (VALUE 9 :)
3 6 : TREE (OP : =) (ANCESTOR 2 0 :) (SUBNODES 37: 3 8 :)
3 7 : LEAF (OP SYMBOL) (ANCESTOR 3 6 :) (VALUE 6 :)
3 8 : LEAF (OP LITERAL) (ANCESTOR 3 6 :) (VALUE 7 :)

24

Notes: The CASE consists of a selection expression (21: - 23:), two "<cond> «> <expr>"

ACASEs (24: - 29: , 30: - 35:), and an else expression (36: - 38:). Each case has a single

guarding condition so each acase has first operand the assignment (executed expression) and

second operand the guard. The guards are integer constants since they are elements from

the enumerated type which identifies the different choices of a variant field within the union.

Accordingly, the variable "whichType" is essentially set to "u.tag" . The else clause handles

the case where u.tag is undefined. The second acase operand was chosen to be econd for

an expression condition (as the Ada semantics are unclear, it could equally well have been a

r c o n d with range of, e.g., 2 to 2).

The TAG attribute for the union u (node 1:) points to a dummy Symbol node (4:) which

identifies the current variant. Here this dummy is of type ENUM [.a..b] which the front end

changes into an INT subtype of range (1-2).

The I n q u i r y operator in 21 : gives the current value of the TAG of "u" (defined by the

type from the last time u was changed).

If the Pascal (or Green) format was used for discriminated unions (i.e. a CASE on the

variant choices within a record declaration), there would be an explicit name for the tag.

Then there would be a NAME attribute in node 4: and the INQUIRY in nodes 2 1 : - 23: would

be replaced by a single Leaf node which referenced the Symbol node 4: for the tag.

No runtime checks are made here to insure that reference to variants conforms to the

current tag setting. If such checks are desired, they must be represented explicitly in the

tree b y constructs which compare the type of the variant to the type of the tag and signal

the appropriate exceptional condition when necessary.

25

A.7 Attribute inquiry using a Case

BEGIN

BEGIN

VAR word : STRING (1 0) ;

• • •
CASE w o r d , l e n g t h OF

WHEN 1 . . 3 , 5 . . 7 => f < 0 . 5) »
WHEN max - 1 => f < 1 . 0) :
ELSE f (0 . 0)

END CASE
END

• • •
END

26

I t - 1 0 : a r e L i t e r a l nodes of t ype INT d e f i n i n g t h e I n t e g e r s 1 - 1 0
1 1 : SYMBOL (NAME "WORD") (TYPE STRING) (LENGTH 10)
1 2 : SYMBOL (NAME " F ") (TYPE ROUTINE) (L I F E STACK) (GLOBAL NO)

(EFFECT PURE)
1 3 : LITERAL (VALUE LENGTH) (TYPE BUILTIN)
14 : L ITERAL (VALUE 0 . 0) (TYPE FIXED) (DELTA 0 . 1)
1 5 : L ITERAL (VALUE 0 . 5) (TYPE FIXED) (DELTA 0 . 1)
16 : LITERAL (VALUE 1 . 0) (TYPE FIXED) (DELTA 0 . 1)
1 7 : SYMBOL (NAME "MAX") (TYPE INT) (RANGE 1 10)

2 0 : TREE (OP CASE) (ANCESTOR 0 :) (SUBNODES 2 1 : 24: 34 : 4 2 :)
2 1 : TREE (OP INQUIRY) (ANCESTOR 2 0 :) (SUBNODES 22: 2 3 :)
2 2 : LEAF (OP SYMBOL) (ANCESTOR 2 1 :) (VALUE 1 1 :)
2 3 : LEAF (OP LITERAL) (ANCESTOR 2 1 :) (VALUE 1 3 :)

24 : TREE (OP ACASE) (ANCESTOR 2 0 :) (SUBNODES 25: 28: 3 1 :)

2 5 : TREE (OP CALL) (ANCESTOR 2 4 :) (SUBNODES 26: 2 7 :)

2 6 : LEAF (OP SYMBOL) (ANCESTOR 2 5 :) (VALUE 1 2 :)
2 7 : LEAF (OP LITERAL) (ANCESTOR 2 5 :) (VALUE 1 5 :)
2 8 : TREE (OP RCOND) (ANCESTOR 2 4 :) (SUBNODES 29: 3 0 :)
2 9 : LEAF (OP LITERAL) (ANCESTOR 2 8 :) (VALUE 1 :)
3 0 : LEAF (OP LITERAL) (ANCESTOR 2 8 :) (VALUE 3 :)
3 1 : TREE (OP RCOND) (ANCESTOR 2 4 :) (SUBNODES 32 : 3 3 :)
3 2 : LEAF (OP LITERAL) (ANCESTOR 3 1 :) (VALUE 5 :)
3 3 : LEAF (OP LITERAL) (ANCESTOR 3 1 :) (VALUE 7 :)

34 : TREE (OP ACASE) (ANCESTOR 2 0 :) (SUBNODES 35: 3 8 :)
3 5 : TREE (OP CALL) (ANCESTOR 3 4 :) (SUBNODES 36: 3 7 :)
3 6 : LEAF (OP SYMBOL) (ANCESTOR 3 5 :) (VALUE 1 2 :)
3 7 : LEAF (OP LITERAL) (ANCESTOR 3 5 :) (VALUE 1 6 :)
3 8 : TREE (OP ECOND) (ANCESTOR 3 4 :) (SUBNODES 3 9 :)
3 9 : TREE (OP -) (ANCESTOR 3 8 :) (SUBNODES 40: 4 1 :)
4 0 : LEAF (OP SYMBOL) (ANCESTOR 3 9 :) (VALUE 1 7 0
4 1 : LEAF (OP LITERAL) (ANCESTOR 3 9 :) (VALUE 1 :)

4 2 : TREE (OP CALL) (ANCESTOR 2 0 :) (SUBNODES 43: 4 4 :)
4 3 : LEAF (OP SYMBOL) (ANCESTOR 4 2 :) (VALUE 1 2 :)
44 : LEAF (OP LITERAL) (ANCESOR 4 2 :) (VALUE 1 4 :)

Notes: The CASE consists of a selection expression (21: - 23:), two acases (24: - <

34 : - 41:) and an else expression (42: - 44:). The selection is an attribute inquiry on

L e n g t h attribute of the string variable "word". The first case conditional guard is a list

two ranges (thus rcond is used). The second case guard is an expression involving

variable "max" set somewhere previously (thus econd is used).

