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ABSTRACT 

This report consists of two papers that treat reliability of the multiprocessor 
systems at CMU. The first paper discusses the multiprocessor architectures, 
reliability features (hardware and software), and measured reliability data. The 
second paper presents hard failure data from one of the systems, calibrates a hard 
failure rate model, and analytically models the reliability of the three systems. 
These papers will appear in the October 1978 issue of the Proceedings of the IEEE 
(Special Issue on Fault Tolerant Systems). 
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1. Introduction 

In 1970 Carnegie-Mellon University initiated a design study into computer 
structures supporting a high processor-to-memory bandwidth. Since that time three 
multiprocessor systems have been designed, implemented, and made operational. While 
all three systems had differing goals and technological constraints, they shared one 
fundamental design decision: use as much commercially available hardware as possible. 
Several advantages resulted: 

1) Limited design resources could be focused on the interconnection 
architecture rather than being diluted doing state of the art processor, 
memory, and I/O fabrication. 

2) Existing products had a library of software available, especially diagnostics. 

3) Commercial modules enjoy increased reliability due to volume production. 
As illustrated in a companion paper [1], this could mean as much as a 
factor of ten increase in mean time to failure. 

4) Parallel programs and support facilities could be shared between the 
multiprocessors if they shared the same instruction set. 

The three following sections on the architectures adhere to a common format. 
First the design goals of the system are sketched, followed by a brief discussion of the 
architecture including the reliability features. Experience gained with the reliability of 
each architecture is followed by a presentation of actual data measured from the 
system. The data focuses on transient failures and their causes. Each section 
concludes with an indication of future research on the architecture. 

The three architectures are Cmmp (a multi-minicomputer), Cm* (a modular multi-
microprocessor), and Cvmp (a voted multiprocessor). Design concepts for Cmmp were 
initiated in 1970 at a time when a minicomputer cost SI0,000. The goal was to 
establish a high performance, low cost multiprocessor for work in speech and image 
understanding. Because of the relatively high cost of hardware, a spartan architecture 
was implemented, leaving reliability and resource management to software. 
Advantages and limitations of the software approach to reliability are contained in 
Section 2. Initial design studies for a follow-on multiprocessor, Cm*, that took 
advantage of LSI technology was started in 1972. Potentially a 100 processor system 
was envisioned, but final design work had to wait for the advent of the $1000 LSI-11 
microcomputer in 1975. Building on the Cmmp experience, a substantial portion of the 
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Cm* design was devoted to reliability and operating system support as outlined in 
Section 3. In 1975 a design study was started for a low end processor that could 
tolerate transient faults anticipated in process-control applications. Other goals 
included transparency to the user of error recovery and on-line maintenance without 
loss of computing power. Section 4 illustrates the transient and hard fault survival 
capacity of C.vmp as well as the performance degradation under faulty conditions. 
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2. C.mmp, A Multi-Miniprocessor 

2.1 C.mmp Architecture Overview 

Cmmp is the oldest of the three multiprocessors at CMU, First we will present the current 
PMS (Procesor, Memory, and Switch) [2] structure followed by a discussion of the CMU-built 
hardware components that have most affected reliability. 

2.1.1 The PMS Structure 

Cmmp is composed of slightly modified DEC PDP-11/20 and PDP-11/40 processors. As 
shown in Figure 1, up to 16 of these processors, in any mix, may be connected to 16 ports of 
shared memory by a 16 X 16 crosspoint switch (Smp), providing an address space of 32 
megabytes [3]. The basic modifications to the processors were: to make user execution of 
certain privileged instructions illegal (e.g. HALT, RESET, WAIT, RTI (ReTurn from Interrupt) and 
RTT (ReTurn from Trap)), and address bounds checking on the stack pointer register, R6. 
These modifications were required for software protection. The operating system must leave 
some context information on the stack over protected procedure calls [4J RTI and RTT were 
modified since they modify the processor status (PS) word and it must be protected because 
it controls the memory protection scheme (see section 2.1.2). However, these features have 
also had significant impact on hardware reliability. The 11/40's have been additionally 
modified to allow an extended, writable control store [5J 

For about the last year, the configuration has consisted of 5 ll/20*s and 11 ll/40*s. 
Recently, the non-microprogrammed 11/20's have been dropped from the configuration to 
allow greater use of special instructions within the operating system. All data in this paper 
refer to the full 16 processor system with 2.5 megabytes of shared primary memory. 

An interprocessor bus connects the entire set of processors. This bus provides three 
basic funtions: 

1. interprocessor interrupts at three priority levels, 

2. the control functions halt, continue and start. 

3. continuous broadcast of a 60 bit non-repeating clock value used for interval 
timing and unique name generation in the operating system (internal operations 
of the individual processors are not synchronized by this external clock). 

The relationships of the processors, memory and bus are shown in Figure 1. Aiso shown 
are the per-processor 8K byte local memories (Mlocal) and the principal secondary memories 
Mdisk (RP02 and RP03 2314-type disks) and Mpaging (one megabyte fixed head disks with 
zero latency controllers for paging space). Note that peripheral devices are assigned to the 
UNIBUSes of specific processors.* I/O requests are mapped from requesting processors to the 
processor controlling the device via an interprocessor interrupt. 

2.1.2 Shared Memory Access 

Access to shared memory is performed in two stages: relocation of the 18 bit 
procesor-generated address into a 25 bit address space, and resolution of contention in 
accessing that memory location. The relocation units (Dmap) divide the 32k-word space into 
eight 4k-word pages which may be anywhere in shared memory. There are four address 
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spaces, specified by two bits in the PS. Therefore, four sets of eight registers are provided 
in each relocation unit, although the stack page is common to all spaces to allow 
communication across spaces. 

The four address spaces are the heart of the memory protection mechanism: in only one 
space (1,1 in the PS space bits) are the relocation registers directly addressable. Since this 
space is used exclusively by the Hydra kernel [4], protecting the PS guarantees that no 
addressability changes may be made without the approval of the operating system. All 
entries to the kernel, whether by interrupt or user request, force the assertion of both space 
bits. Direct addressability is accomplished by disabling two of the relocation registers in (1,1) 
space, one each for Mlocal and the control register bank for all peripheral devices (including 
Dmap). With these registers disabled, addresses that would normally be mapped are passed 
along the UNIBUS unchanged to be received by the addressed register or memory location. 
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Figure 2 Cmmp Address Relocation 

As illustrated in Figure 2, the relocation unit intercepts the 18 bit UNIBUS addresses (16 
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bit words plus the two space bits) and converts them in the following manner: the three high 
order bits of the 16 bit word select a register from the bank specified by the space bits. 
The contents of the register provide a 12 bit page frame number; the remaining 13 bits from 
the address word are the displacement within that page. The two aFe concatenated to form 
the 25 bit shared memory address. This transparent mapping is performed for all shared 
memory accesses. In addition to the 12 page frame bits, there are four bits in each 
relocation register used for control. They are designated: "no page loaded", 
"write-protected", "written-into", and a bit to control whether values from the page may be 
stored in the planned, but not yet implemented, per-processor cache. 

The shared memory address and possibly 16 bits of data, each parity checked, and two bits 
of access function data are sent to the crosspoint switch. The address parity is checked at 
the switch interface. If the check fails, the request is aborted and the processor interrupted. 
Data parity is not checked until the data is read from memory. All parity is generated, and 
data parity checked, by the relocation unit (Dmap) interface to the bus from the switch. 

The switch then routes the request to the memory port specified by the high order four 
bits of the address. A port is requested by setting the processor's bit in an initial register, 
the request register. Contention for the port is resolved by periodically gating the request 
register into a second register, the queue register, which is left-shifted as the port becomes 
available. The shifting creates a priority ordered queue: as a bit is shifted out, the 
corresponding processor is granted access to the port. Processor 15 is assigned the high 
order bit; processor 0 the low order bit, defining the priority. When the queue register is 
zero, all requests have been satisfied. The request register is again gated into the queue 
register, cleared, and a new cycle begins. A second request for the same port by a 
processor must enter via the request register, hence equality of service among the 
processors is maintained. This two level request mechanism also obscures the internal 
queue's priority ordering to the point that it is of virtually no importance outside of the 
switch, preserving the symmetrical design of the crosspoint. The switch's maximum 
concurrency (16 independent paths) is achieved if all processors request different ports. 

The cost of address translation, switch overhead (no contention), and roundtrip cable 
overhead is about one microsecond. Although this is high by today's standards, more than 
equal to the access time of the memory, it has not proven prohibitive. 

2.1.3 The Interprocessor Bus 

The interprocessor bus provides a common clock as well as interprocessor control. These 
two logically and functionally separate features travel separate data paths although they 
share a common control (Kinter-bus). Each processor has an inter-bus interface (Kibi) that 
defines the processor's bus address and makes available the bus functions to the software. 

The first function is to continuously broadcast the 60 bit, 250KHz Mclock. This is done by 
multiplexing the clock value onto a 16 bit wide data path in four time periods, low order bits 
first. Any Kibi requesting a clock read waits for the initial time period and then buffers the 
four transmissions in four local holding registers available to the software. Clock values are 
often used for unique names [4],[6] so the otherwise unused high order four bits of the 
fourth local register are set to the processor number (bus address) to insure uniqueness 
when any number of Kibi's read the bus simultaneously. 

A count-down register is also maintained in each Kibi for interval timing. It may be 
initailized to a non-zero value by the program; 1 is subtracted every 16 microseconds (timing 
supplied by Mclock) and the processor is interrupted when the register reaches zero. 
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The second bus function is the interprocessor interrupt and control mechanism. Each 
processor may interrupt, halt, continue, or start any other processor, including itself. The 
control operations are invoked by setting the bit(s) corresponding to the processor(s) to be 
control led in a 16 bit register provided by the Kibi for the desired operation. A second 16 
bit wide data path is eight-way time multiplexed. Each control operation is assigned a time 
per iod. As the appropriate period arrives, each Kibi OR's its control operation register onto 
the bus and clears the register. Synchronization of bus access, as well as operation 
specification, is accomplished by the multiplexed time periods. The Kibi also inspects the bus 
to see if the specified operation is being invoked on its processor; if so, the requested action 
is performed. Although eight time periods are available, only six are used: three priority 
levels of interprocessor interrupt, halt, continue, and start; the remaining two are ignored. 

2.2 Fault Tolerant Mechanisms in C.mmp 

Having some knowledge of the workings of Cmmp, its fault tolerant mechanisms can now be 
examined. The emphasis will be on the reliability of the fault tolerant mechanisms, but other 
areas such as the memory modules, hardware features to enhance software reliability, and 
software failure recovery models have all had great impact on the total system reliability. An 
exhaustive treatment, especially in the area of failure types, is not intended, (see also [7]) 

2.2.1 Hardware Mechanisms for Fault Tolerance 

The necessity of constructing Cmmp from available minicomputers greatly restricted the 
possible fault tolerant mechanisms that could be incorporated. For example, neither of the 
two PDP-11 models used, nor the UNIBUS, have error checking abilities; one must assume that 
their results are correct. Experience has shown that this is not always the case... Therefore 
elaborate error checking and correcting of the shared memory and its access path were not 
just i f ied; only simple parity checks are done. Even so, there is room for some cleverness: 
since there is a separate parity bit for both bytes of the word, one byte is given odd parity, 
the other, even. This defects words of all Ts or all 0*s, both of which are common results of 
transient timing failures. 

The interprocessor bus has no error checking whatever. All checking and failure recovery 
are done by software, which has been highly successful in this case. 

The most elaborate checking is done to ensure software integrity. The stack pointer (SP) 
is required to be within the stack page and have an even (i.e. word address) value. With 
hardware protection enabled, it is impossible to load the SP with any other values. The SP is 
fur ther restricted to lie between a fixed overflow limit and a variable underflow limit. This is 
necessary to protect operating system information that must be left on the stack during user 
execution. Due to the difficulty of modifying the processors, the stack underflow register 
(SUR) and the comparison circuitry were physically placed on one of the relocation unit 
boards. This remote placement compounded the timing difficulties of adding stack limit 
checking to the processors. Having to protect the PS by disallowing user execution of RTI 
and RTT increased the perturbation of stack operation timing. Unfortunately both of these 
modifications were necessary to insure safe operation of a multiprocessing, multi-user 
operating system. 

2.2.2 Reliability Experience 

In spite of the above mentioned difficulties, the machine has been reasonably reliable, 
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considering its highly experimental and unique nature. Recent statistics indicate that the total 
system MTTC (Mean Time To Crash), counting all forms of errors that produce a crash, is, with 
one exception, fluctuating between 6 and 15 hours, averaged on a monthly basis. This is 
more than enough uptime to be a useful computing engine, especially since the average 
downtime after a crash is only about five minutes and the machine automatically reloads itself 
(operator intervention is virtually never required). 

The remainder of this section is a retrospective view of the principal failure types 
encountered on the project. Many failures that were once common are now rare or 
non-existent, others are still apparent and some reappear from time to time. The failure rate 
has been significantly improved over the last year through a program of intensive 
maintainence. This program has been in progress since completion of the basic 16 processor 
machine. 

Memory parity failures have, with rare exception, been the most common fature mode. 
Most are transient, but hard errors happen with regularity. Often the memory failure rate 
has largely determined the MTTC. A methodology for recovering from transient memory 
failures in the shared memory of the operating system is now being developed. A marked 
improvement in reliability is expected from this one recovery effort. (Most memory parity 
failures happen in the operating system kernel. The kernel executes shared code with a high 
degree of parallelism, resulting in memory port contention. This is thought to be the cause of 
the failures appearing in the kernel. Memory areas in user-allocated pages present a lesser 
problem. The recovery methods for both areas are presented in the next section.) 

Transient failures, while it is always difficult to isolate their source, have been an 
especially large problem on C.mmp since there are few, if any, trace points in most data 
paths. Not including powerful debugging aids in the logical design has continuously hampered 
development. There was little that could be done for the processors, but aids could have 
been incorporated in all the CMU-built logic. Realizing this weakness, one tracking register 
(for the program counter) has been added to the relocation units and another (for operand 
addresses) is being developed. A similar weakness became evident in the software: often 
information about a failure was lost by the operating system, making recording of the 
conditions for transients unreliable. The latest rewrite of the crash logging procedures has 
alleviated this to a great extent. 

A transient failure that has eluded solution is the problem of "false NXM's". The processor 
reports a non-existent memory (NXM) exception, but upon analysis, the memory is responding, 
and the instruction, registers and index word(s) are well-formed. No exception should have 
resulted. Intermittent timing problems are suspected, but there is insufficient information 
available to isolate what may be failing. 

Another long-standing transient is stack operation problems. This usually appears as 
misexecution of subroutine call/return instructions or interrupt entry /exit mistakes. The most 
common form of the error is one too many (few) words pushed (popped) from the stack. This 
failure is thought to be a side effect of the SP checking modifications and disallowing RTI and 
RTT, but the cause has never been isolated. The transient is relatively rare and no method of 
recovering from it has been developed. 

A pleasant surprise has been the reliability of the crosspoint switch. Although it is the 
most complex component of the multiprocessor hardware, it is now among the most reliable. 
No doubt the relatively simple design, conservative implementation, and careful construction 
have paid off. However, an early problem required considerable effort to fix. Certain 
conditions, characterized by a memory access not completed by the UNIBUS master, could 
cause the switch to deadlock due to the lack of a time-out circuit in the memory port control 
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logic. Any other processor attempting to access the deadlocked memory port will block until 
manually cleared. This situation was often caused by poorly designed I/O controllers that 
recovered from errors by simply aborting the current access with no regard for proper 
termination of UNIBUS or switch protocols. 

While the known cases that deadlocked memory ports were isolated and individually 
remedied, the most important result was an appreciation of the design principle of mutual 
suspicion [8]. The switch should never trust that an operation started will necessarily be 
completed; it must be prepared to time-out, clear itself, and report a failure condition to the 
requesting processor. 

The interprocessor bus is as unreliable as the switch is trustworthy. Its reliability is so 
poor that if a cheap and highly effective method of software recovery (discussed in the next 
section) hadn't been found, the bus would be nearly unusable. The mode of failure is 
transient loss of interprocessor interrupts and changing interrupt levels - usually from level 
7 to level 6. No cause has been isolated. 

Two remaining long-term reliability artifacts of the architecture are: 

1. Overrun errors on I/O device DMA transfers caused by memory port contention. 
This is a predictable result of not having the planned cachememories and is 
effectively recovered from in software. 

2. Having I/O devices associated with specific processors causes undesirable 
dependency on that processor. A partial solution has been developed in 
software to recover from transient failures, but frequent or hard failures force a 
shutdown for repair or reconfiguration. Fortunately, shutdown is very rare. 

2.2.3 Software Recovery Methods Within the Hydra Kernel 

As the above description of the failures encountered indicates, fault tolerance is the result 
of a highly cooperative effort between hardware and software. Some failures, such as losing 
interprocessor interrupts, produce no damage and require so little effort in software 
recovery that little motivation exists to correct the hardware. Others (deadlocked memory 
ports) are impossible to recover from with software and much manpower has been devoted 
to eliminating the sources of failure. The software recovery methods, developed by design 
and evolution, may be similarly grouped: methods for recovery from frequent failures that 
have little probability of non-local damage, and methods for treating relatively rare, but 
serious, failures that may imply system-wide damage. 

Examples of the first class of failures are typically transient, though frequent, and do not 
involve shared .data structures. The recovery methods were developed to suit each case; 
three such cases will be examined in detail: interprocessor interrupt failures, DMA overruns, 
and memory parity failures in user-allocated pages. 

Interprocessor interrupt requests are recorded in a software mask. When an interrupt is 
to be sent, the bit(s) corresponding to the processor(s) to be interrupted are set in the mask 
for the interrupt type. The mask rather than just the request bit(s) is then copied into the 
interrupt request register. Upon receipt of an interrupt each processor checks the mask for 
its bit. If the bit is set, it is then cleared and the interrupt processed; if the bit is not set, 
the interrupt is considered redundant and ignored. A lost interrupt is then repeated 
automatically by the next request since the bit has not been cleared from the mask. The 
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frequency of interrupt requests assures that a lost interrupt will be repeated quickly, likely 
by a different processor. Priority-shifted interrupts become redundant interrupts at the 
arrival level and are ignored. The next request for an interrupt at the intended level will 
automatically repeat the original request. The method is cheap, requiring only four 
instructions: a bit-set on transmission and a bit-test, branch, bit-clear sequence on receipt. 

DMA overruns present a problem when the system is heavily loaded. The device handlers 
attempt five retries as part of the standard device failure recovery before invoking overrun 
recovery . Recovering from repeated overruns requires gaining exclusive access to the 
required memory port. Scheduling interrupts are sent to all processors except the requestor 
with instructions to execute a timed loop in local memory (Mlocal). Execution of this loop 
eliminates all shared memory accesses giving the device the access it needs. The timing of 
the loop allows the largest DMA transfer to complete. Upon completion of the loop, all 
processors resume normal execution. Since the system is required to pause for the transfer, 
the method is not cheap, but the condition is sufficiently infrequent to make the cost 
acceptable. Completion of the cache memories will alleviate the overrun condition, but there 
may still exist rare circumstances that may require that this recovery scheme be retained. 

Memory parity failures in user-allocated pages are reported to the user process via its 
e r ror trap routine, as are NXM and illegal instruction exceptions. As the tracking registers 
are added to the relocation units, detailed information about the failing location and location 
of the instruction being executed will be passed to the routine. These registers will also 
allow the paging system to restore a logical page to another physical page frame if a valid 
copy exists on secondary memory. Reporting errors to the user process is an example of a 
design decision: we always attempt to reflect exceptions back to a level where there is 
sufficient information for proper action [9], 

Since Hydra is only the kernel of the operating system [4], important system elements such 
as job scheduling and file systems are implemented as user-level programs. Their response 
to er ror traps such as above is highly variable and beyond the scope of this article, but many 
have a common technique, using multiple processes. These processes may be multiple 
incarnations of the subsystem's server processes, or they may be free-running "daemon* 
processes created specifically to play a watchdog role in insuring the correct and reliable 
operation of the subsystem. The multiple incarnations approach accepts the loss of a server 
and the processes dependent upon it as a method of limiting damage. It also tends to 
improve response. The daemon approach is specifically creating redundancy for reliability. 

For the second class of errors, those that imply critical, system-wide damage, a formal 
mechanism is invoked. This mechanism, the suspect/monitor model, causes the whole system 
to pause so that a known state is reached before a sequence of error logging and analysis is 
performed. This procedure allows a wide range of options, from continuing execution, 
possibly with configuration changes, to reloading (possibly reconfigured). Developed in 
response to the low reliability of the developing hardware and software, suspect/monitor was 
retrofitted to the existing software. Since most data structures lack the redundancy and 
associated verification routines to guarantee repair of damage, all paths through 
suspect/monitor currently lead to system reload. 

A description of the suspect/monitor sequence follows. Invocation occurs in two ways. 
First, a processor may detect an error condition either by hardware trap or software check. 
It then becomes the suspect and a monitoring processor is randomly chosen from the 
remaining processors. Second, a processor executing the "watchdog" routine detects that 
some other processor has apparently not been executing. The watchdog processor becomes 
the monitor and declares the apparently non-executing processor to be the suspect. The 
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watchdog routine is executed by alt processors as part of several frequently used interrupt 
service routines and sets a bit (corresponding to the executing processor) in a mask 
maintained by the watchdog. Periodically this mask is compared with a mask of processors 
known to have completed initialization (upmask) and then cleared. Any processors in the 
upmask but not in the watchdog mask are declared suspects. 

Once the monitor is chosen, it and the suspect must achieve synchronization. A shared 
state variable is used to communicate between suspect and monitor. Each advance the 
variable to the next state upon entry. Both examine the state and if it is not in the 
synchronized state, they wait for the other to advance it to that state. The monitor times all 
waits for the suspect to reach a desired state. In this case, if synchronization is not achieved 
quickly, the monitor attempts to force the suspect processor to execute the recovery code 
with a sequence of interprocessor bus operations. Continued failure to synchronize causes 
the monitor to abort the sequence and force a reload. Multiple suspects are processed one 
at a time by the same monitor. 

The suspect processor's sequence is: record all processor state at the time of failure, 
including which pages were addressable, copy its local memory, execute a short diagnostic, 
and assuming correct execution of the diagnostic, attempt analysis of the failure. Completion 
of these actions is communicated to the monitor via the shared state variable. Because of the 
sensitive nature of the suspect's execution, several coding restrictions were employed in its 
implementation. No stack operations are performed since they are failure prone, no loops are 
allowed so the processor state logging code is straight-line and fast, a flag is set upon entry 
to the suspect routine to force an immediate halt upon re-entry for any reason. Halting 
causes the monitor to force a reload and prevents the previously logged data from being 
overwr i t ten . 

Once synchronized, the monitor follows the suspect through its sequence. If the suspect 
fails to complete any operation in the allotted time, the monitor forces a reload. After a 
suspect completes its sequence, the monitor has the following options: 

- continue with no changes 

- halt the suspect and continue 

- "quiesce" the suspect and continue 

- reload 

- reload, delete suspect from configuration 

- reload, "quiesce" the suspect 

"Quiescing" a processor allows it to service I/O device interrupts, but not execute any other 
functions (notably user programs). By only allowing I/O interrupt processing, the duty cycle 
is kept low and, hopefully, so is the probability of a failure. This mode is required to keep 
processors with critical I/O devices in the configuration. 

The analysis that the suspect may perform is highly failure dependent. Due to the 
problems of installing any recovery scheme in an existing large program, the problems of 
analysis are only beginning to be examined. Recovery from memory parity failures during 
kernel execution is being considered as the first candidate for analytical recovery. These 
parity failures are considered serious enough to invoke suspect/monitor because the abstract 
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data type system, the heart of Hydra's protection system, must be as reliable as possible [4], 
[6], Further, a page may hold segments of many abstract data objects so a failure may imply 
future damage if not caught promptly. For parity failures, the analysis must determine three 
facts: if the failure is repeatable, if it happened during interrupt service, and if any critical 
data structures were locked. If any of these are true, recovery is not possible. There is no 
way to report the failure to the process while servicing an interrupt. If locked, a data 
structure may be in an inconsistent state. In these cases, the suspect notifies the monitor to 
reload the system. Otherwise, the failure has occured during a kernel call and may be 
aborted with a parity failure report. It is then the responsibility of the caller to decide 
whether to retry the call. No claim is made that this particular method is optimal; it is 
intended to illustrate the role of analysis in the suspect/monitor. However, it does promise a 
high probability of recovering from the majority of parity failures with an acceptably small 
risk of undetected damage. 

The auto-restart mechanism is responsible for reloading the system. Three basic steps are 
involved: adjusting the configuration masks for any deleted or quiesced processors, 
constructing a free memory list (deleting pages that have been marked errant), and loading a 
fresh copy of the kernel from disk. The new system is entered and initialization begins. This 
sequence is normally accomplished without human intervention. 

The last mechanism associated with failure recovery is the automatic diagnostic driver 
which initiates and monitors the deleted processors1 execution of a diagnostic. - The driver 
maintains a history of the failures found by each processor as well as their successful 
executions of the diagnostic. The histories may be printed on command and are also 
accessable from Hydra. If a processor is able tp successfully run the diagnostic for a period 
of time determined by its failure history over the previous few days, the driver automatically 
returns it to the system. Automatic return is accomplished by executing the per-processor 
initialization and does not require pausing or reloading the system. 

2.2.3.1 Conclusion 

The success of the error detection and recovery methods in Hydra is considered one of the 
project's more notable accomplishments [7\ Fault tolerant methodologies will continue to be a 
prime research area in the future; the current success is considered just a beginning. 

A short antecdote will conclude this section in a light vein and illustrate the effectiveness 
of the error coverage and restart mechanisms. Late one Friday night, a power failure shut 
down all the machines. Several of the larger machines suffered damage. C.mmp was not 
spared: a large power supply in the switch was lost causing half of the memory to become 
inaccessable. This massive fault overwhelmed the auto-restart system (undoubtably one of 
its pages was lost) and the system lay quiet after power was restored until one of the users 
grew tired of waiting. He followed the simple tape restart instructions posted on the machine 
(C.mmp does not have, or need, an operator) and the system scanned memory, found what 
was left, initialized itself, and announced that it was ready for use. The user went back to 
work without an inkling of the machine's loss. In fact, none of the Hydrants knew until the 
following Monday morning when the system engineer came in and said "Say! Do you 
realize...?" 

2.3 C.mmp Reliability Data 
The data presented here were culled from the crash reports produced by the Hydra 

suspect/monitor crash logging system. These dumps must often be manually analysed to 
determine the reason for the crash. Sometimes the reason cannot be found; always the 
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analysis is error -prone, being a manual procedure. The crash records were never intended 
as a precision reliability measure, rather, they are a programmer's and engineer's tool to 
isolate trouble spots in the system. With this caveat in mind, the data may be discussed. 

2.3.1 Interpreting the Data 

A failure causing a crash may be the result of either hardware or software malfunction. Of 
the five symptoms listed in Table 1, only parity failures are necessarilly caused by hardware. 
All the others may be brought about by either and analysis is required to determine the 
actual cause. The cause of most failures can be determined, but a substantial number of 
crashes of unknown origin remain. 

Examining Table 1, a trend is apparent. Parity failures are the major source (507. to 1002) 
of all hardware-related failures. The other significant sources are NXM and non-response. 
Analysis of many crashes has shown both of these to often be memory-related. 

Errors due to software follow entirely different patterns. The error frequency is strongly 
related to the introduction of new features. Being new and relatively untested, new features 
are likely to have previously undetected faults. Once the feature is installed, any errors due 
to it are usually found and corrected very quickly. Therefore, the trend is bursts of er rors , 
any particular error becoming less frequent as time passes. The four months with high 
software error counts all follow this trend even though new faults kept the counts high for 
several months running. 

The lack of independence among the symptoms, while present in all complex systems, is 
increased by the lack of fault tracing facilities in Cmmp. All reliability measurements tend to 
measure large sections of the system. Consequently they are coarse-grained and uncertain. 
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2.3.2 Eight Months of Data 

Month J u l y ( l ) A u g . ( 2 ) S e p . ( 3 ) O c t . ( 4 ) N o v . ( 5 ) D e c . ( 6 ) J a n . ( 7 ) F e b . (8) 
Y e a r 1977 1977 1977 1977 1977 1977 1978 1978 

Up t ime 516.6 610.5 513.8 701.9 538.8 595.6 600.2 478.5 
MTBF 5 . 9 7.6 2.9 9.4 8 .7 16.5 15.4 7 .3 

C r a s h e s 

U s e r 32 55 38 27 34 18 15 30 
NonUser 87 80 175 75 62 36 39 66 

C r a s h Type 

S o f t U r 20 7 35 33 34 11 7 16 
Unknown 32 40 14 4 9 7 

00 3 
H a r d U r 35 33 126 38 18 18 24 47 

C r a s h Symptom 

S y s e r r 
I I l l n s t 
NoResp 
Nxn 
P a r i t y 

MTBF - (Up t ime)/ (NonUser crashes) 
I I l l n s t - I l l e g a l I n s t r u c t i o n 

24 10 47 46 31 11 CO
 

15 
1 0 3 3 0 2 0 (9

 

13 33 34 3 4 4 10 • 10 
14 13 32 4 9 5 2 14 
32 24 57 17 18 14 18 21 

Table 1 A Summary of 8 Months of Cmmp Crash Data 

Some comments about the data: 

1. The software error totals for July, September, October, and November are, with 
one execption, due to different causes each month. 

- July: local memory overwritten (13 out of 20 (13/20) crashes), 

- Sept.: microcode verifier bug (27/35 crashes), 

- Oct.: critical section count bug (14/33) and drum directory full (15/33) 

- Nov.: Hydra message port create bug (9/34), paging system bug (11/34), 
and drum directory full (11/34) 

2. The SYSERR (software detected errors) count is nearly always greater than the 
number of software-caused crashes. These are examples of the software 
detecting hardware failures not caught by the hardware itself. 
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The high counts for errors of unknown origin in July and August are due to 
training a new person in the arcane arts of crash dump analysis. After his trial 
by fire in September, he became much better, but this only underscores the 
basic uncertianty in manual analysis. 

Figure 3 graphically restates the data from Table 1 to show the contribution of each of 
f ive classes of errors. The "glitch" at point 5 (November) is due to some of the NXM's and 
non-response errors being due to software. This again illustrates the impossibility of 
defining independent error classes on C.mmp. 
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3. Cm*: A Modular Multi Microprocessor 

Cm* was designed to take advantage of increasing complexity of LSI technology The 
original goals included modularity, effective performance/cost ratio and reliability [101 
The Cm* architecture allows close cooperation between large numbers of inexpensive 
processors. All processors share access to a single virtual memory address space. A 
ten processor system has been operational since May 1977 [11] and expansion to a 50 
processor system should be completed by the end of 1978. 

Some of the features of this architecture include: 

Extensibility. There are no fundamental limits of the size of the system. Processors, 
memories and interconnects can be incrementally added to increase processing 
power, memory size and communication bandwidth. The system topology can be 
constructed to match individual applications. [12] [13] 

Address Mapping. All memory in the system is potentially accessible to all processes. 
A sophisticated mapping from processor generated addresses to physical 
memory addresses provides the means for memory sharing. An extensible set of 
interprocess control mechanisms is constructed within the address mapping 
structure. [14] 

Operating System Primitives. An interprocessor message system is supported by the 
Cm* hardware. The writable control store allows experimentation and extension 
of firmware primitives. [15] [16] 

Cost /Effect i veness. The interconnection structure allows large numbers of 
(potentially mass produced) inexpensive digital modules to share resources and 
cooperate on large computation tasks. [17] [18] 

Reliability. Distributed intelligence in the form of processors and communication 
interconnects means that there is no critical system resource whose loss would 
cause system failure. Changing of the address mapping functions allow pruning 
of faulty components. Parity, remote diagnosis, and instruction retry allow the 
detection and correction of transient and permanent faults. [1] [19] 
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3.1. The PMS Structure of Cm* 

The structure of Cm* has developed over a number of years into the "canonical" 
structure in Figure 4a [10] [20] [21] [22]. This is a structure with a low concurrency 
switch (the network of buses) giving access to shared memory. The structure is built 
from Processor-Memory pairs called Computer Modules or CnVs. The memory local to a 
processor is also the shared memory in the system. Inherent in this structure is the 
assumption of program locality. The efficient use of the system depends on ensuring 
that most of the code and data referenced by a processor will be held local to that 
processor. Early measurements with various benchmark applications indicate that local 
memory hit ratios of 0.8 to 0.9 (i.e., ratio of time memory reference is to local rather 
than remote shared memory) are readily achievable [11]. 

3,2. Derivation of Cm* Structure [11] 

A series of design studies were undertaken to explore this design space. Figure 4 
depicts the various PMS structures studied, while Figure 5 lists the estimated cost and 
complexity of each design [22]. Figure 5 was created during a preliminary design 
exercise, hence the numbers are only approximate figures. 

Initially, we envisaged one self-contained module which consisted of a processor, 
memory and an intelligent interface (Figure 4a). The result was termed a computer 
module (Cm). The mapping controller (K.map, marked K in the figures) performed all the 
functions necessary for generating external memory requests and responding to 
external requests for its local memory. So that the capacity for interprocessor 
communication would not be limited by any single communication path, each K.map 
connects to three inter-Cm buses. Memory could be shared even though there was no 
direct physical connection between the requesting processor and requested memory. 
For example, consider a request by P I to M4 in Figure 4a. K.mapl would route the 
request to K.map2 which would route it, in turn, to K.map4. From Figure 5 we see that 
this design was extremely costly while a simulation/benchmark study indicated that the 
bus structure was under-utilized. Subsequently we tried as simple a design as 
possible in order to minimize the complexity. Figure 4b depicts the simple interface 
(S.minimal, marked S in the figure) design. The minimal interface provided parallel word 
transfer between two buses. Every pair of Cm's that required direct physical links 
could communicate via intermediate modules provided the delays for the intermediate 
passing of requests were acceptable. From Figure 5 we see that the projected 
performance was low and that for fully interconnected structures the cost was 
comparable to the K.map per Cm scheme (Figure 4a). 

Our investigation led us to the conclusion that very little performance loss resulted 
from centralizing the address mapping and multiple bus connection functions of 
individual modules in a K.map which is shared by a number of computer modules. The 
cost savings are quite dramatic. Figure 5 shows a saving of a factor of two in chip 
count for comparable structures. The cost savings are better than indicated by Figure 
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5, because the final shared K.map design incorporates many features not accounted for 
in the chip counts for the other designs, for example 30K bytes of bipolar RAM for 
microcode and data storage. The programmable, high performance K.map is shared by 
several Cm's connected to an inter-Cm bus via simple interfaces (S.local). The basic 
function of the S.local is to provide a buffer between the processor and the inter-Cm 
bus and sufficient control functions to generate or respond to external memory 
requests. 

Figure 6 shows the details of a Computer Module. The processor is a DEC LSI-11, 
which is program compatible with the PDP-11 family but is implemented with LSI 
technology and uses a cheaper and lower performance memory bus. Figure 7 shows a 
cluster of Computer Modules sharing a single map bus and mapping processor, or 
K.map. Figure 8 shows the third hierarchy in a Cm* structure: Cm clusters connected 
via intercluster buses. 

The advantages of sharing a mapping processor across a cluster of Cm's are much 
broader than the simple chip count advantage indicated by Figure 5. Because the cost 
of the K.map is distributed across many processors it can be endowed with 
considerable flexibility and power at relatively little incremental cost. Because of its 
commanding position in the cluster, the K.map can ensure mutual exclusion on access to 
shared data structures with very little overhead. Further, the K.map can monitor Cm 
and intercluster activity during normal operation. From this a constantly updating 
picture of process activity and malfunctions are created for use in load balancing and 
system recover/reconfiguration. 

The K.map, in addition to arbitrating and controlling the map bus, is a horizontally 
microcoded 150ns cycle time processor. The basic configuration has 2Kx80 bits of 
writable control store and 5Kxl6 bits of bipolar RAM for holding mapping tables, etc. 
A Line provides the interface to two intercluster buses. The K.map has many features 
which tailor it to the task of address mapping. 

In addition to address mapping and the routing of requests to other clusters, the 
K.map provides a powerful protection mechanism and a low overhead interprocess 
communication.message system. 
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3.3. Address Mapping in Cm* 

Cm* has a 2 ^ byte segmented virtual address space. Segments are of variable size 
up to a maximum of 4K bytes. There is a capability-based protection scheme enforced 
by the Kmap. The addressing structure provides considerable support for operating 
system primitives such as context switching and interprocess message transmission. 

3.3.1 The Path from Processor to Memory 

The Slocal (see Figure 9) provides the first level of memory mapping. A reference to 
local memory is simply relocated, on 4K byte page boundaries, by the relocation table 
in the Slocal. As discussed above, it is assumed that most memory references will be 
made by the processors to their local memory. Relocation of local memory references 
can be implemented with no performance overhead because the synchronous 
processor has sufficiently wide timing margins at the points where address relocation 
is performed. For segments which are not in a processor's local memory the relocation 
table has a status bit which causes the address to be latched, the processor forced off 
the LSI-11 bus, and a Service Request to be signalled to the Kmap. All transactions on 
the Map bus are controlled by the Map bus controller, or Kbus, which is a component 
of the Kmap. The address generated by the processor is transferred bia the Map bus 
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to the Pmap, the microprogrammed processor within the Kmap. If the reference is for 
memory within the cluster then the Pmap generates a physical address and sends it to 
the appropriate Slocal. If it is a write operation, data is passed directly from the 
source Slocal to the destination Slocal; the data does not have to be routed through 
the Kmap. The selected destination Slocal performs the requested memory reference 
and the processor in the destination Computer module is not involved. When the 
reference is complete the Kbus transfers the data read from the destination Slocal 
directly back to the requesting processor via the Map bus and its Slocal. 

If the processor references a segment in another cluster then the Pmap will transmit 
a request to the desired cluster via the Line and the Intercluster buses. If the 
destination cluster does not share a common Intercluster bus with the source then the 
message will be automatically routed via intermediate clusters. When the message 
reaches the destination cluster, the memory reference is performed similar to a 
request from a processor within the cluster. An acknowledgement, or Return, message 
(containing data in case of a read) is always sent back to the source cluster and 
subsequently to the requesting processor. 

Several points are worth noting here with respect to the mechanisms for local and 
non-local references. Except at the local memory bus level, where conventional circuit 
switching is used, all communication is performed by packet switching. That is, busses 
are allocated only for the period required to transfer data. The data is latched at each 
interface, rather than establishing a continuous circuit from the source to the 
destination. This approach gives greater bus utilization and avoids deadlock over bus 
allocation. All transactions are completely interlocked with positive acknowledgement 
being required to signal completion of an operation (it is possible to allow a processor 
executing a nonlocal write to proceed as soon as the data for the write has been 
received by the Kmap or the destination Slocal, without waiting for completion of the 
operation; however, in this case the Kmap will expect to receive acknowledgement in 
place of the processor so that appropriate actions may be taken if none is received). 

3.3.2 The Addressing Environment of a Process 

The virtual address space of Cm* is subdivided into up to 2*® Segments. Each 
segment is defined by a Segment Descriptor. The standard type of segment is similar 
to segments in other computer systems; it is simply a vector of memory locations. The 
segment descriptor specifies the physical base address of the segment and the length 
of the segment. Segments are variable in size from 2 bytes to 4K bytes. However, 
other segment types may be more than simple linear vectors of memory; references to 
segments may invoke special operations. Segments may have the properties of stacks, 
queues or other data structures. Some segments may not have any memory associated 
with them, and a reference to the segment would invoke a control operation. For each 
segment type, up to eight distinct operations can be defined. For normal segments the 
operations are Read and Write. Conceptually, segments are never addressed directly; 
they are always referenced indirectly via a Capability. A capability is a two-word item 
containing the name of a segment and a Rights field. Each bit in the rights field 
indicates whether the corresponding operation is permitted on the segment. 
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3.3.3 Virtual Address Generation 

The processors in Cm*, L S I - l l s , can directly generate only a 16 bit address. This 
64K byte address space is divided into 16 pages of 4K bytes each. Each page 
provides a window into the system-wide 2 ^ byte virtual address space and can be 
independently bound to different segments in the virtual address space. The top page 
in the processor's address space, page 15, is reserved for direct program interaction 
with the Kmap. The mechanism is analogous to the I/O page convention in the standard 
P D P - l l s . 

Figure 10 shows the conceptual translation from a 16 bit processor-generated 
address to a virtual address. The four high order address bits from the processor 
select one of 15 Window registers (which are pseudo-registers in page 15 and bind 
page frames in processor immediate address space to segments in virtual address 
space). The Window register holds an index for a Capability in the executing software 
module's Capability List structure. The 16 bit segment name from the selected 
Capability is concatenated with the 12 low order bits from the processor to form a 28 
bit virtual address. Figure 10 also shows the read/write indicator from the processor 
being concatenated with the two bits in the address expansion registers to form a 
three bit opcode. The corresponding bit in the Capability rights field is selected and 
tested. If the operation is not permitted then an error trap is forced. 

3.3.4 The Kernel Address Space 

Each processor can execute, in either of two address spaces. One is the User  
Address Space which was described above. The second is the Kernel Address Space. 
which is quite similar to a user address space with the addition of some mechanisms 
reserved for the operating system. The currently executing address space is selected 
by a bit in the Processor Status Word of the LSI-11. 

3.4. Development and Diagnostic Aids in Cm* Hardware 

Simulators for hardware are expensive both in terms of development effort and 
computer time; furthermore they cannot give an exact reflection of the hardware. Thus 
this approach leaves the final bugs to be found using the real hardware, and is of no 
aid in diagnosing component failures (rather than design errors). The alternative 
approach adopted for Cm* was to incorporate special hardware, called Hooks, directly 
into the Kmap for use in hardware and microcode development [13]. The interfacing of 
the Hooks to a standard LSI-11 allows extensive software support for hardware 
development and diagnostics while at the same time providing a convenient 
environment for the debugging of microcode on the real hardware. 

The Hooks give to an LSI-11, referred to as the Hooks Processor, the ability to 
intimately examine and change the internal state of the Kmap. They provide the 
capability for the Hooks Processor to load the microcode into the writable control 
store of the Pmap, read the values on the busses of the Pmap, and to independently 
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start, stop, and single-cycle the Pmap-Linc and Kbus clocks. An interrupt is generated 
for the Hooks Processor whenever the Pmap clock stops (either due to a 
microprogram-invoked halt or a memory parity error on the control or data stores). 
Furthermore, several of the internal registers of the Pmap have "twin registers" 
associated with them which may only be loaded by the Hooks Processor. These 
alternate registers may be enabled via the Hooks to override microprogram-controlled 
values. The presence of the Hooks added approximately ten percent to the cost of the 
Pmap while enormously reducing system development time. 

Several registers in the Slocal are concerned with providing diagnosis and recovery 
information after a software or hardware error is detected. Almost all errors are 
reported to the processor by forcing a NXM (Non eXistent Memory) trap. This includes 
errors detected by the Kmap during remote references. The Kmap signals the error by 
writing to the "Force NXM" bit in an addressable register in the Slocal. The Local Error  
Register indicates the nature of the error and whether the erroneous reference was 
mapped. The "Last Fetch Address" register is updated to hold the address of the first 
word of an instruction every time the LSI-11 fetches a new instruction. If an error is 
detected, this register is frozen until the Local Error Register is explicitly cleared. 
Also frozen in the Local Error Register is a count of the number of memory references 
performed in the execution of the instruction. In conjunction, these two registers 
provide sufficient information to restore the state of the LSI-11 for retry of the 
instruction during which the error was detected. 

All external memory accesses are performed by message switching. Each message is 
buffered until receipt of a positive acknowledgement. Upon time-out or an error 
message, the Kmap attempts to retransmit the message, possibly over a physically 
different path. The user is only notified if the destination memory has been isolated or 
has a hard failure. 

All system memory is protected by parity. When a parity error occurs the address is 
captured and the Kmap notified so that it might retry the memory access. Table 2 lists 
the parity and time-out features. 

Data path parity and message switching combined allow single bit error detection as 
well as correction. The message is passed along with vertical parity. The receiver 
checks both horizontal and vertical parity; if there is a single error the intersection of 
the two parity bits will uniquely indentify the erroneous bit. 

Most errors in the system will apear as memory access errors (e.g. parity, time-out, 
or capability violation). Thus the operating system can focus on recovery from a single 
class of errors rather than treating numerous special cases. 
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Parity 
Subsystem 
Local Memory 

Map Bus 
K.map 

Data RAM 
Code RAM 

L.inc Memory RAM 
L.inc Intercluster Bus 

Timeouts 
Subsystem 
Local Memory 
S.local (source) 
S.local (destination) 

K.map 

L.inc 

Where Error Reported 
Error Trap to Requesting Processor 
and Interrupt to Local Processor 
To buffered context in K.map 
Hooks Processor 

Local K.map 
Local K.map 

Duration 
12 usee. 
200 msec. 
12 usee. 

2-4 msec. 

20 usec./word 

Where Reported 
Local Processor 
Local Processor 
Report Non-existent 
memory back 
Report error message 
back to source 
Local K.map 

Table 2, Parity and Timeouts in Cm: 

3.5- Autodiagnostic Software for Cm* [23] 

Autodiagnostic software was developed to exercize idle modules in Cm*. It is 
designed to run on any Cm which has a serial line unit to the Cm* Host, a message 
switching PDP-11 [24J The Autodiagnostics process runs continuously and operates as 
follows. 

The initial step taken by the Autodiagnostics is to signal the Host that it wishes to 
be considered a master. Once in the master state it appears to the Host as any other 
terminal. This fact enables the Autodiagnostics to log into the system as a user and 
request a system status report regarding the serial lines into the host. The report 
indicates which modules are operational in the system and whether they are slaves or 
masters. Once the configuration is known, the Autodiagnostics requests the Host to 
assign to it any Cms which may be idle. It then proceeds to load these Cms with 
diagnostic programs and start them. The Autodiagnostics requests assignations of idle 
Cms every seven minutes. If a user should request resources, however, it relinquishes 
Cms that have been assigned to it. 

There were three constraints on the design of the Autodiagnostics. First, o f f - the -
shelf DEC diagnostics were to be used. These diagnostics were used unmodified since 
no source code was available. Second, the diagnostics written for the CMU built 
hardware were subject to change. Third, initial tests indicated that if enough modules 
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were executing diagnostics which constantly printed diagnostic messages, the Host-
Autodiagnostic connection could be saturated causing loss of characters. 

Diagnostics are programs that are designed to detect hard faults, however, some 
transient failures can also be detected by them. Diagnostics for exercizing various 
parts of the system are loaded sequentially. The condition for loading the next 
diagnostic program into an idle Cm is either the successful completion of a specified 
number of passes of the diagnostic or the occurrence of a specified number of failures. 
In the latter instance attempts are made to obtain as much information as possible 
from all the diagnostics about the failure condition. 

The Autodiagnostics must be able to automatically handle certain situations. One 
such problem is detecting that a module is stuck in an endless loop. If a module has not 
responded in a given time, it is reloaded and started. Another problem is that of 
timeouts; these are detected if a character that is expected from the Host is not 
received in a given time. A timeout message is printed and the task being performed is 
put on the queue for a retry. 

There are two types of information that the Autodiagnostics delivers. The first 
consists of error messages that are output whenever a module detects an error. These 
messages include the identity of the module, the name of the diagnostic being run, the 
current time so the error can be time-stamped for future reference, the time since the 
last er ror on the module, and the error information extracted from the diagnostic. 

The second type of information consists of status reports which include the time the 
Autodiagnostics were started, the time of the report, and status information on all the 
modules. This information is output in two tables. The first is a general report that 
gives the overall length of time the diagnostics were run and the number of errors 
detected for each module. The other table breaks this information down further by the 
diagnostics. A summary of the total module hours and module errors for the system are 
also included. 

3.5.1 Diagnostics 

A set of four diagnostics are continuously run on the Cms. These tests exercise 
(i) the memory, (ii) instruction set, (iii) traps and interrupts, and (iv) the Slocal and a 
small part of the Kmap. 

The memory test is divided into 13 subtests, which include a gallop test, marching 
ones and zeros, and shifting [25]. It takes approximately 13 minutes to complete one 
pass through 56K bytes of dynamic MOS RAM. 

The instruction set [26] and the traps and interrupt diagnostics [27] are designed to 
test the functioning of the LSI-11 processor. These are short tests so many passes are 
done before moving on to the next diagnostic 

The Slocal diagnostic preforms a number of functions. First it tests the registers and 
data paths of the Slocal. Second, it exercises a part of the Kmap. Finally it runs a few 
tests on portions of memory. 
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3*6. Data on Transient Errors 

In the Cm* system, the Autodiagnostics uses diagnostic programs to detect transient 
errors . It is known that transient errors are more likely to be detected by certain 
sequences of tests than others. Since the diagnostics used were designed to detect 
hard failures in the system it is realized that they are incapable of detecting all 
possible transient errors. 

Data collected by the Autodiagnostics from May 1977 through April 1978 is 
presented in Table 3a, Table 3b, and plotted in Figure 11. The concept of module time 
is employed here. Module Time. t m , is the sum of the times of operation of individual 
modules in a set of identical modules. The reliability experience that it represents is 
assumed to be the same as that which would be gained by observing the renewal 
process of a representative module of the set for a length of time t m . The Mean Time 
Between Errors (MTBE) is calculated by dividing the module hours by the number of 
errors . For the pieces of equipment under consideration, this corresponds to the 
er rors that occured during the time the module was exercised. The CPU was 
diagnosed approximately 107. of the time by the combination of the instruction and 
trap diagnostics. The rest of the time being equally divided between the memory and 
the Slocal. The overall MTBE is calculated using the total time and errors for that 
period (Table 3 and Figure 11). The final method uses a two month sliding "Window" 
to smooth out the measurements. Due to the level of resolution in the detection of 
transient errors by the diagnostics these MTBPs are for the diagnostics as opposed to 
the hardware. 

As may be noted from Figure 11 there has been a general improvement in the 
operation of Cm* by a factor of about 10:1 over a period of a year. The most 
noticeable change in the MTBE occurred in January 1978. In seeking to explain this 
sudden change we observed that it was during that month that slight modifications 
were introduced into the operational routine observed by the Autodiagnostics. 
Diagnostic programs are loaded into an idle Cm from secondary storage, in this case a 
DEC-Tape mounted on the Host. In the past the typical elapsed time between loadings 
of two diagnostics in the sequence was set at approximately 7 minutes. This caused 
undue mechanical wear on the DEC-Tape drive and the interval was reset to 
approximately 30 minutes in order to avoid this. It is commonly noticed in general 
computing practice that the frequency of "crashes" is closely correlated to the load on 
the computing system. In particular, heavy I/O traffic seems to be responsible for 
transient errors. If this is in fact true for Cm* then, conceivably, the less frequent 
loading of diagnostics into idle Cms may be responsible for the less frequent 
occurrence of transient errors noted by the Autodiagnostics after January 1978. In an 
experiment now under way the interval between diagnostic loadings has been reverted 
to 7 minutes. If the hypothesis is valid the MTBE should drop back to its earlier value 
of about 100 hours from its present one of about 500 hours. 
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Occurrences of Transient Error Events 
Month Mod-Hrs Memory Instr. Trap Slocal Total 

May77 841.8 13 4 4 3 24 
June 888.1 6 2 2 10 20 
July 931.4 2 0 1 7 10 
Aug. 652.4 0 0 0 0 0 
Sep. 674.0 5 0 1 6 12 
Oct. 2091.2 6 0 0 13 19 
Nov. 549.1 3 0 0 5 8 
Dec. 1134.6 5 1 2 4 12 
Jan.78 2395.8 2 0 0 1 3 
Feb. 1926.6 1 2 0 0 3 
March 662.9 0 0 0 0 0 
April 2328.2 1 

CM
 0 4 7 

Total 1.72Yrs - 44 11 10 53 118 
(Total 15,072.1 Module Hours of Operation on Cm*) 

Table 3a Transient Error on Cm* - Occurrences 
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Mean Time Between Error (MTBE) On Cm* 
Month Mod-Hrs uComp CPU Memory Slocal Cm Window 

May77 841.8 22.1 17.5 27.0 116.9 35.1 
June 888.1 48.4 37.0 71.7 55.4 44.4 39.3 
July 931.4 170.8 155.2 194.0 55.4 93.1 60.7 
Aug. 652.4 358.8 65.2 293.6 293.6 652.4 158.4 
Sep. 670.0 61.8 77.4 60.7 75.8 67.4 132.6 
Oct. 2091.2 191.7 209.1 156.8 85.5 123.0 102.4 
Nov. 549.1 119.9 82.2 92.5 37.9 68.6 105.6 
Dec. 1134.6 92.3 93.8 91.4 99.9 94.6 84.2 
Jan.78 2395.8 1146.4 1200.3 546.3 342.6 798.6 235.4 
Feb. 1926.6 556.8 571.2 527.9 256.2 642.2 720.4 
March 662.9 597.0 405.0 192.2 65.6 662.9 863.2 
April 2328.2 655.0 660.0 645.0 90.8 332.6 427.3 

(Overall MTBE=127.7 Mod-Hr, @15,072.1 total Module-Hours) 
(Overall MTBE=562.6 Mod-Hr, @ 7,313.5 since January 1978) 

Module Hour = one hour of testing on one Computer Module 
uComputer = CPU + Memory + Peripherals 
CPU - Instruction test + Interrupt & Trap test 
Memory ~ standard DEC DZKMA MOS memory diagnostic program 
Slocal » CMil-built local Switch for address mapping 
Cm • uComputer + Slocal 
Window « average of previous and current month 

Table 3b Transient Error on Cm* - Mean Time Between Error (MTBE) 
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Diagnostic test used 
Mode Memory Instr. Trap Slocal Total 7.Total 

Burst 5 1 1 13 20 31.2 

Simult 5 1 0 5 11 17.2 

Isotat. 13 3 2 15 33 51.6 

Total 23 5 3 34 64 100.0 

7.Total 35.9 7.8 4.7 51.6 

(Data collected from September, 1977 through April, 1978) 
(MTBE - 183.7 Mod-Hrs, ©11,758.4 total Mod-Hrs) 

Table 4 Distribution of Transient Error on Cm* by mode of occurence 

Three basic patterns were noticed in the transient errors: multiple errors occuring 
together in the same Cm (Burst); simultaneous errors occuring on different Cms 
(Simultaneous); and finally isolated errors (Isolated). Table 4 contains the data broken 
down into these classes. These data were collected between September 1977 to April 
1978 on the Cm* system. 

The most common cause of the "Burst" type of error is the diagnostic program being 
destroyed. This can be seen in either spurious halts or continuous reporting of an 
error . Bursts may also be caused by transient errors of a duration which is long 
compared to the time resolution of the diagnostic. The destruction of the diagnostic 
program due to errors in transmission during the loading process is not very likely 
since all such transfers are checksummed. 

The simultaneous case is where two different Cm*s are affected by an error within 
the same period of time. The final case is that of isolated errors which basic 
redundancy techniques would be able to tolerate. 

From the data in Table 3b, representing about 1.7 module-years, one would expect a 
transient error about every 130 hours (or over 500 hours since January 1978) in a 
typical computer Module with 48K bytes of dynamic MOS memory. This number should 
be considered to be an upper bound, since not ail transients will be caught by 
repeated execution of a diagnostic program. It is also interesting to contrast the 
transient failure rate to the hard failure rate of the previous section. A comparison 
suggests a ratio of about 100:1 overall for transients over hard failures (30:1 since 
January). 
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For each occurence of a transient error, as indicated in Table 4, there is a 317. 
probability that the internal state of a processor will be destroyed and reinitialization 
is required (Burst). When a transient occurs, a simple dual processor would fail 177. of 
the time. This is indicated by the fact that 177. of all transient errors were detected in 
more than one processor simultaneously. Redundancy techniques would tolerate S27. of 
all transient errors, since these isolated errors did not destroy the test program. 
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4. C.vmp: A Voted Multiprocessor 

4.1. Design Goals 

A design study was initiated in the summer of 1975 to examine fault tolerant 
architectures in industrial environments. Major attributes of this environment were 
electromagnetic noise, less knowledgeable users, and nonstop operation. From these 
attributes the following design goals were established: 

1) Permanent and transient fault survival 

The system should have the capability to continue correct operation in the 
presence of a permanent hardware failure—i.e. a component or subsystem failure— 
and in the presence of transient errors—i.e. a component or subsystem is lost for a 
period of time due to the superposition of noise on the correct signal. 

2) Software transparency to the user 

The user should not know that he is programming a fault tolerant computer, with 
all fault tolerance being achieved in the hardware. This would allow the user to rely 
on established software libraries, increasing the reliability of the software itself. 

3) Capable of real time operation 

A fault should be detected and corrected within a short period from the time the 
fault actually occurs. 

4) Modular design to reduce down time 

The hardware should be able to operate without certain sections activated. 
Hence, maintenance could be performed without having to halt the machine. Modularity 
includes the design of separate power distribution networks to be able to deactivate 
selected sections of the machine. The use of modules in the design also has the virtue 
of allowing the user to upgrade from a non-redundant, to a fully fault tolerant 
computer, in steps. 

5) Off -the-shelf components 

To decrease the amount of custom designed hardware, to be able to rely on an 
established software library, and to allow systematic upgrading to a fault tolerant 
system, the computer should primarily employ off-the-shelf components. Further, as 
illustrated in a companion paper [1], advantage can be taken of the greater reliability 
of high production volume components. 
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6) Dynamic performance/reliability tradeoffs 

The fault tolerant computer should have the capability, under operator or 
program control, to dynamically trade performance for reliability. 

4.2. System Architecture 

Actual System Configuration 

To be consistent with the design goals of modularity and software transparency, 
bus level voting was selected as the major fault tolerance mechanism. (See [28] for a 
more detailed discussion leading up to the selection of voting.) That is, voting occurs 
every time the processors access the bus to either send or retrieve information. 
There are three processor-memory pairs, each pair connected via a bus as depicted in 
Figure 12. A more precise definition of Cvmp (for Computer, Voted Multiprocessor) 
would therefore be: a multiprocessor system capable of fault tolerant operation. 
Cvmp is in fact composed of three separate machines capable of operating in 
independent mode executing three separate programs. Under the control of an 
external event or under the control of one of the processors, Cvmp can synchronize 
its redundant hardware, and start executing the critical section of code. 
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Figure 12. Cvmp configuration and connection to C-MU facilities 

With the voter active, the three buses are voted upon and the result of the vote 
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is sent out. Any disagreements among the processors will, therefore, not propagate to 
the memories and vice versa. Since voting is a simple act of comparison, the voter is 
memoryless. Disagreements are caught and corrected before they have a chance to 
propagate. The nonredundant portion of the voter does not represent a system 
reliability "bottleneck", as will be shown later. However the voter may be totally 
triplicated if desired. With voter triplication even the voter can have either a transient 
or a hard failure and the computer will remain operational. In addition, provided that 
the processor is the only device capable of becoming bus master*, only one 
bidirectional voter is needed regardless of how much memory or how many I/O 
modules are on the bus. Voting is done in parallel on a bit by bit basis. A computer 
can have a failure on a certain bit in one bus, and, provided that the other two buses 
have the correct information for that bit, operation will continue. There are cases, 
therefore, where failures in all three buses can occur simultaneously and the computer 
would still be functioning correctly. 

Bus level voting^ works only if information passes through the voter. Usually 
the processor registers reside on the processor board and so do not get voted upon. 
The PDP11, for example has six general purpose registers, one stack pointer, and one 
program counter. However, after tracing over 5.3 million instructions over 41 
programs written by five different programmers and using five different compilers, the 
following average program behavior was discovered [31]: 

On the average a register gets loaded or stored to memory every 24 
instructions. 

A subroutine call is executed, on the average, every 40 instructions, thus 
saving the program counter on the stack. 

The only register that normally is not saved or written into is the stack 
pointer. To maintain fault tolerance the system must periodically save and 
reload the pointer. 

Note that this restriction prohibits the uss of "Direct Memory Access** (DMA) devices. If such devices were 
only allowed to communicate with the processors and the memory (not other I/O devices), a second voter 
between the memory and the I/O devices on the bus would be sufficient to retain fault tolerance. 

^ This bus level voting scheme can be contrasted with the Draper Laboratory Symmetric Fault Tolerant 
Multiprocessor [29]. In SFTMP, memory and processor triads are interconnected by a triplicated serial bus. 
Program tasks are read from a memory triad into local memory in a processor triad where execution takes place. 
After execution the results are transferred back to memory triads. The major architectural differences from 
C.vmp are: Serial bus rather than parallel bus, thus degrading performance. Voting only takes place on transfers 
from and to memory triads. Errors in the processors may accumulate to the point that their results are not 
comparable. Programmer has to partition problems into tasks and provide for transfer to processor triads. 
SFTMP has up to 14 processors that can be dynamically assigned to four triads ( two are spares). When a 
processor fails it can be replaced in its triad by another processor. However, processors cannot operate 
independent of triads to improve throughput. Another voting design is described by [30]. The described system 
is base on an Intel 8080 microprocessor and has an output address and data bus and an input (from memory to 
processor) data bus. The major difference from C.vmp ia that only a unidirectional voter is employed, on the 
input data bus. Thus only information flow from memory to processor is voted upon. There is no consideration 
of I/O, apart from an assertion that each I/O device on the bua requires a separate voter. 
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Thus normal program behavior can be counted on to keep the registers 
circulating through the voter. 

To present a detailed description of the voter a brief digression to explain the 
DEC LSI-11 Qbus is necessary [32]. The 36-signal bus uses a hybrid of synchronous 
and asynchronous protocols. 

Every bus cycle begins synchronously with the processor placing an address on 
the time multiplexed Data/Address Lines (DAL). 

SYNC goes high and all the devices on the bus latch the address from the 
DAL lines. The address is then removed by the processor. This terminates 
the synchronous portion of the bus cycle. 

In the event of an input cycle (DATI shown in Figure 13) the processor 
activates DIN on the bus. 

BDAL V ^ O D T X X DATA * 
1 
1 
1 

SYNC \ 
i 
i 
i 

DIN : \ / 1 

» 1 . 1 -

REPLY | V — - / 

Figure 13. DATI cycle for LSI-11 computer 

The addressed slave responds by placing a data word on the DAL lines and 
asserting REPLY. 

The processor latches the data word and terminates DIN and SYNC. 

In the event of an output cycle (DATO), after removing the address the 
processor places a data word on the bus and activates DOUT. 

When the slave device has read the word it activates REPLY. 

The processor responds by terminating DOUT and SYNC. 

Voter modes of operation 

The multiplexed paths through the voter are shown in Figure 14. Figure 14a 
shows the case for the (unidirectional) control lines. Signals generated by the 
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processor are routed from bus receivers to multiplexors which allow either signals 
from ail three buses, or signals only from bus A, to pass to the voting circuit. The 
output of the voting circuit always feeds a bus driver on external bus A, but is 
multiplexed with the initially received signals on buses B and C. This arrangement 
allows all three processor signals to be voted on and sent to all three external buses; 
the signal from only processor A to be "broadcast" to all three external buses; and the 
independent processor signals to be sent to the separate external buses, albeit with 
extra delay on bus A: 



Figure 14a. Cvmp Unidirectional Voter Multiplexing 



rO 
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Voting mode. The transmitting portion of each of the three buses is routed 
into the voter, and the result of the vote is then routed out to the receiving 
portion of all three buses. In addition to the voting elements the voter has a 
set of disagreement detectors. These detectors, one for each bus, activate 
whenever that bus has "lost" a vote. By monitoring these disagreement 
detectors, one can learn about the Kinds of failures the machine is having. 

Broadcast mode. Only the transmitting portion of bus A is sampled, and its 
contents are broadcast to the receiving portions of all three buses. This 
mode of operation allows selective triplication and non-triplication of I/O 
devices, depending on the particular requirements of the user. The voter has 
no idea which devices are triplicated and which are not. The only 
requirement is that all non-triplicated devices be placed on bus A. To handle 
non-triplicated devices two extra lines are added to bus A. One is a special 
copy of REPLY for use by non-triplicated devices instead of the standard 
bus A REPLY, and the other is a special copy of the Interrupt Request line 
(IRQ). 

Independent mode. Buses B and C are routed around the voting hardware. 
Bus A is routed to feed its signals to all three inputs of the voting elements. 
In this mode Cvmp is a loosely coupled multiprocessor. Switching between 
independent and voting modes allows the user to perform a 
performance/reliability tradeoff. 

The unidirectional control signals generated by devices on the external buses 
are handled the same way as processor signals, except that the direction (external -
processor) has been changed. 

Figure 14b shows the more complex case of the bidirectional data/address lines. 
Two sets of bus transceivers replace the sets of receivers and transmitters used 
before, and another level of multiplexing has been added. The received signals from 
both sets of transceivers are fed into a set of multiplexors that choose which direction 
the signals are flowing. After passing through the set of multiplexors and the voter 
circuit, the voted signal goes through a latch which ensures that bus timimg 
specifications are met. From there the signals pass onto the opposite bus from which 
they were initially received. (Note that the drivers on the receiving bus are disabled 
to avoid both sinking and sourcing the same signal.) 

Peripheral Devices 

In most cases, triplicating a device just means plugging standard boards into the 
backplane, as is the case with memory. In some cases, however, the solution is not 
quite so simple. An example of a device that has to be somewhat modified is the RX01 
floppy disk drive. The three floppys run asynchronously. Therefore there can be as 
much as a 360 degree phase difference in the diskettes. Since the information does 
not arrive under the read heads of the three floppys simultaneously, the obvious 
solution to this problem is to construct a buffer whose size is large enough to 
accomodate the size of the sectors being transferred. A disk read READ operation 
would then occur as follows [33]. 
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The track and sector number to be read are loaded into the three interfaces 
and the "READ" command is issued. 

The three floppys load their respective buffers asynchronously. 

The processors wait until the three buffers are loaded and then 
synchronously empty the buffers into memory. 

A write operation would be executed in a similar fashion. 

The main synchronization problem is to find out when all three floppys have 
completed their task or when one of the floppys is so out of specification that it can 
be considered failed. Once this is determined the "DONE" signals are transmitted to the 
three buses simultaneously. 

When in independent mode, the three processors must be able to communicate 
to each other. For this reason there are three full duplex single word transfer fully 
interlocked parallel interfaces in the system (labeled L in Figure 12). These interfaces 
provide data transfer between the separate processors (in independent mode) at rates 
up to 180K bytes per second [32]. These interfaces are used for software 
synchronization of the processors prior to reestablishment of voting mode, in addition 
to straight data transfers. 

4.3. Issues of Processor Synchronization 

Dynamic Voting Control 

A major goal in the design of C.vmp was to allow dynamic tradeoff between 
reliability and performance. Ideally, when reliability is of less importance, the machine 
should be able to split into a loosely coupled multiprocessor capable of much greater 
performance. Conversely, when reliability becomes crucial, the three processors ought 
to be able to resynchronize themselves and resume voting. Consideration of dynamic 
voting mode control led to the following features: 

In transitioning from voting to independent mode, a simple change in the 
multiplexing control signals causes the next instruction to be fetched and 
executed independently by the three processors; 

In order to ensure proper synchronization of all processors in transitioning 
from independent to voting mode, a delayed transition forces an interrupt, 
presumably after each processor has had ample time to execute a "WAIT" 
instruction. ("WAIT" halts the processor until an interrupt occurs.) 

T w o bits are provided in the voter control register for voter mode control. The first, a 
read-only bit, monitors the state, returning "0" if voting, and "1" if not. The other, a 
read/write bit, chooses the desired mode. Each processor has a copy of the voter 
control register, and a vote is taken on the mode control bit. This control register is 
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accessed like any I/O device register, as a specific memory location (in this case, 
167770). 

Dynamic voting mode control has been demonstrated by a test program. When 
in voting mode, setting the appropriate bit in the control register causes the three 
processors to split apart and begin executing separately. To resynchronize the 
processors, a simple handshaking protocol is used, in which each processor waits for 
both of the others to signal permission before clearing the control bit. (A more 
sophisticated protocol would provide for a timeout if one of the processors has failed, 
with efforts to recover from such a situation.) After clearing its copy of the control bit, 
each processor releases control of its bus and ceases execution via a '•WAIT* 
instruction. The ensuing interrupt generated by the voter then serves to 
resynchronize the three processors, and the first instruction of the interrupt service 
routine is the first instruction executed in voting (fault tolerant) mode. 

Bus Control Signal Synchronization 

There are two levels of synchronization used in Cvmp to keep the three 
processors in step: bus signal synchronization and processor clock synchronization. 
The first type of synchronization deals with the bus control signals. The voter uses 
RPLY to synchronize the three buses, as it is asserted by an external device (memory 
and I/O devices) once every bus cycle. Thus, processors can stay in step if they 
receive RPLY concurrently. A set of possible voting circuits is shown in Figure 15. 
(The boxes labeled "V" are voters, and the boxes labeled T " are delays.) The first 
voter is the one used for the data/address lines. The other voters attempt to maintain 
synchronization of five critical control lines (SYNC, DIN, DOUT, IAK, and RPLY) 3 by 
waiting an appropriate period of time for a lagging control signal. (The delay is not 
only selected long enough that a lagging device is far enough out of specification to be 
suspect, but also short enough not to degrade performance severely. For maintaining 
processor synchronization, a value for "T" of at least one microcycle—400 nsec—is 
desirable, as processors are most likely to slip just one microcycle in the five to ten 
microcycles between bus cycles rather than to become several microcycles out of 
synchronization.) 

SYNC is u M d f a . c l o c k I h . addr . . . tin**, and it I. ft « . . . r t . d for th . r.m.md.r of t h . bus cycl . ; DIN i n d i c t . . 
» r . . d cyc l . ; DOUT i n d i c t . . . wr i t , e y e * IAK i . u . .d to . cknowl .d , . r .c.ipt of .n interrupt r .qu*.ti .nd 
RPLY i . i s s . r t . d to ind i c t , (hit th . d .v ic . h i . r . iponcM to th . rrqu.,1 indict*) by t h . t h . p r . v iou i four 
signals. 
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Figure 15. Synchronizing Voter Circuits 
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Figure 16. DATI bus cycle with desynchronized processors 

The first circuit considered for synchronizing the five control lines was voter 
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15a. This was rejected because it provides no synchronization at all: if a signal fails 
high, the voter passes the first of the other two to be asserted without regard to the 
second. Thus, if the two remaining processors get at all out of step, the voting 
process fails. 

The second circuit, voter 15b, provides a measure of synchronization by waiting 
a time "T" for the third signal after two have been asserted. However, performance is 
degraded because this delay occurs even when all three processors are working and 
synchronized. Also, control signals will continue to be asserted after they should be in 
relation to the data on the bus, failing to meet bus specifications. (RPLY is asserted 
after DATA is invalid, see Figure 16.) 

The third circuit, voter 15c, fixes the problem of meeting bus specifications by 
having a slow-rising, fast-falling delay after the voter. However, performance is still 
degraded by the presence of the delay even when all is well. 

The fourth circuit, voter 15d, addressed the performance problem by providing a 
second path through the voter for when all three processors are working. However, 
the delay used after the voter to provide synchronization still causes the signal to fail 
bus specifications, and also causes some amount of unavoidable performance 
degradation. (RPLY is asserted after DATA is invalid, see Figure 16.) 

The last circuit, and the one used (voter 15e), combines the features of the 
previous two. Thus, a slow-rising, fast-falling delay is used in order to meet bus 
specifications; and a second" path through the voter is provided for optimal 
performance when all is well. Note that the fast-falling feature of the delay not only 
allows bus specifications to be met, but also removes any performance degradation 
due to the voting process when all three signals are in step. This circuit was used for 
SYNC, DIN, DOUT, IAK, and RPLY in C.vmp. The value for T " is about 400-500 nsec for 
SYNC, DIN, DOUT, and IAK, and about 75-100 nsec for RPLY. This method allows the 
three processors to receive RPLY within five nanoseconds of each other, and thus to 
stay synchronized. 
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System Clock 

Perhaps the most critical timing problem encountered in the design of Cvmp was 
the synchronization of the four phase processor clocks, and also the memory refresh^* 
timing oscillators. This part of the design was left untriplicated in Cvmp due to its 
v e r y small size, hence high reliability, relative to the rest of the machine. The original 
design, shown in Figure 17a, used the oscillators on processor A to drive the clock 
circuits on all three processors, and the decoded clock signals of processor A to feed 
the voter and to synchronize the phases of the other two processors by forcing phase 
one when processor A was in phase one. This original design worked fairly well, as 
processors B and C were closely synchronized, but the extra loading placed on the 
clocks of processor A caused them to lag several nanoseconds behind, a significant 
figure for pulses of less than 100 nsec duration. This resulted in sufficient 
unreliability that the mean time between crashes in voting mode was never more than 
five minutes. Therefore, a new clock circuit, shown in Figure 17b, was installed in the 
voter to drive and synchronize the processor clocks. All three processors were wired 
exactly the same, needing only three wires changed on each board. Since this change 
was made, the mean time between software discernable disagreement has been over 
250 hours, with one run of more than 900 hours before crashing. 

Initial measurements using the disagreement detection circuit attached to all the 
bus control lines showed no errors on any of the three buses over periods ranging 
between eight to forty hours. (Note that data/address lines were not included.) This 
indicates that the processors are well synchronized by the current design. 

4.4. Performance Measurements 

Processor Execution/Memory Fetch Time 

An important parameter in the design of fault tolerant computers is the amount 
of performance degradation suffered to obtain greater reliability. In a triplicated 
architecture such as Cvmp, the obvious loss of two-thirds of the available computing 
power is unavoidable. This was the reason why Cvmp was made flexible enough to 
switch between voting (fault tolerant) mode and independent (high performance) mode. 
However, this fundamental loss due to triplication is not the only loss: the voter cutting 
and buffering all the bus lines introduces delays of 80 to 140 nsec in the signals 
between the processors and the memories. 

Because the LSI-11 is a clocked machine, these delays are not too significant in 
and of themselves. However, the latching of RPLY from slave devices on the external 
buses in order to preserve processor synchronization turns out to be the more 
dominant degradation factor. The voter latches RPLY one clock phase (100 nsec) 
before the processors to allow sufficient latch settling time for minimizing the 

4 Note that the LSI-11 uses dynamic MOS RAM memory, which requires continual refreshing. This it normally 
done by processor microcode at regular intervals of sbout 1.67 milliseconds. 
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probability of a runt pulse [34], The delays in the control lines due to the voter cause 
the external RPLY to return during the phase on which the processors sample RPLY 
but after the voted RPLY has already been latched. Thus, the voted processors must 
wait one extra clock cycle (four phases/400 nsec) to receive their RPLY after asserting 
SYNC than would a nonredundant LSI-11. The same sort of delay happens on the 
falling edge of RPLY, causing up to two clock cycles to be lost in one complete bus 
cycle. These losses could likely be prevented by more careful selection of timing 
components within the voter, and more importantly, by choosing different timing on the 
memory boards. 

Measurements were taken on the various bus cycles to learn what amount of 
degradation actually was occurring. These measurements, and all others presented 
later, were taken on the voted processor (Cvmp) and on either processor B (PBB) or C 
(PCC) in independent mode. (Note that in independent mode, bus A passes through the 
entire voter via the broadcast multiplexing, while both buses B and C pass only 
through a bus receiver/driver pair. Comparison tests with other L S I - l l ' s showed that 
processors B and C operated fully as fast in independent mode as a standard LSI-11.) 
The degradation within bus cycles introduced by the voter ranges from 272 to 672, 
with 402 degradation for the most common (read) cycles. 

As the LSI-11 does not saturate its bus, the above figures are worse than the 
overall processor degradation. A second step in measuring degradation was to check 
the different phases of instruction execution. Tests were made using the MOV, TST, 
and BR instructions^ as typical double operand, single operand, and zero operand 
instructions. From this data, a prediction can be made of performance degradation by 
using instruction frequency data provided by [35]. Table 5 summarizes the 
calculations, showing that the voting process should degrade instruction execution 
performance by roughly 142. 

phase Cvmp PCC C .vmD/PCC 

fetch 7.00 6.00 1.167 
source 2.69 2.09 1.287 
destination 3.68 3.22 1.143 
execution 3.53 3.53 1.000 

total 16.90 14.84 1.139 

time (usee) 6.760 5.936 

TABLE 5. Normalized Instruction Phases 

The third stage for measuring performance was to run a set of test programs 
with representative mixes of instructions and addressing modes to test the validity of 

5 M O V loads the destination from t h . sourca, TST examines the destination for various conditions, snd BR 
causes an unconditional transfer of control 



56 

the above model. Table 6 compares the triplicated processor with a single LSI-11, 
both without faults and with certain induced faults. These faults were in the two most 
critical bus control signals, SYNC and RPLY, and represent worst case failures. Each 
signal was forced to be either always asserted (hi) or never asserted (lo) on one of 
the three buses. 

program** DVKAA DZKMA QSORT 

(unit) msec min sec 
LSI-11 18.51 7:03 11.9 
C.vmp (normal) 21.4 8:23 14.0 
Cvmp (RPLY hi) 21.4 8:23 14.0 
Cvmp (RPLY lo) 21.4 8:23 14.0 
Cvmp (SYNC hi) 21.4 8:23 14.1 
C v m p (SYNC lo) 23.6 9:20 15.6 

Cvmp/LSI 1.157 1.189 1.176 
Cvmp'/LSI 1.324 1.276 1.311 (SYNCIo) 

TABLE 6. Sample Program Execution Times 

As illustrated by Table 6, a degradation in performance of about 16-192 can be 
expected, as compared to a standard LSI-11. This figure is somewhat larger than 
predicted by the above model, which can be attributed to the greater degree of 
degradation in such functions as memory refresh, which is done by the processor 
microcode (18.5/0, and also to normal deviations of programs from the "standard" 
instruction mix. 

The measurements involving the four failure modes show that only certain 
failures will cause further degradation: those which cause the processor's 
synchronizing signals (e.g., SYNC, DIN, and DOUT) never to be asserted. Even in these 
extreme cases, only another 12-142 slowdown is experienced. Most faults, however, 
would not degrade the speed at ail, but just the future reliability. For instance, the 
loss of power to a bus would force all signals to ground, which is the active assertion 
level (hi) on the LSI-11 bus. Only lo failures in the five bus control signals which 
require synchronization will cause any degradation. (Recall that there are a total of 36 
bus lines.) 

Disk Access Time 

The last performance measurements involved the floppy disks used for mass 
storage on C.vmp. Access time to a particular position on a rotating memory is 

6 DVKAA it the basic instruction diagnostic, testing all instructions and addressing modes. DZKMA is the 
memory diagnostic, and would tend to make more memory references than averege. QSORT is an example of 
compiler-produced code, being an integer sorting program coded in BL ISS - l i . 
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assumed to be directly proportional to the initial position of the disk. Since the 
hardware makes no attempt to synchronize disk rotation, access to the triplicated disks 
will take the maximum of the three times. In general, for n disks, the access time is 
given by : 

^ - M A X t t ^ t f r - p t p ) 

Assuming that each access time t is uniformly distributed over the normalized 
range [0,1], the expected value for access time is: 

T n » n / (n+1) 

This means that for a single disk (n » l ) , we can expect to wait .5 rotations; for 
the triplicated disk (n=3), .75 rotations. This gives a 502 degradation in access time 
for the triplicated disks over the non-triplicated disk for random accesses. This figure 
was verified to an extent by experimental data. In reading 50 sectors in a random 
pattern from the same physical track, the triplicated machine experienced about 512 
degradation, a very close confirmation. However, if the track was also chosen at 
random for each of the 50 sectors, the triplicated machine was only 182 slower than 
the single disk system. The model failed to consider that, although sector access time 
is affected by the diskettes being out of phase, track access time is the same 
regardless of triplication. 

Another shortcoming of the disk performance model based only on consideration 
of the diskettes being out of phase with each other is the impact of the resulting 
slowdown on nonrandom disk access patterns. The impact of this can be much more 
severe (or much less severe) than predicted, depending on the pattern of nonrandom 
disk accesses. For instance, the RT-11 floppy disk software uses a 2:1 interleaving of 
sectors in order to minimize access time for sequential file storage^. The extra delay 
due to voting causes this interleaving to be insufficient for achieving much speedup in 
accesses, as illustrated by Figure 18. Waiting for all three drives to read a sector can 
cause the first two drives to overrun the next sector in sequence before the third 
drive has read the initial sector. This causes part of an additional revolution to be 
required on the next sector read. For the example shown, a nontriplicated disk drive 
requires only 0.375 revolutions to read sectors 1 and 3, while the triplicated drive 
needs 1.75 revolutions. The specific values depend on the number of sectors per 
revolution, the access pattern (and interleaving scheme), and the degree to which the 
three disks of the triplicated drive are out of phase. 

2:1 interleaving means that only every other sector on a track is read when reading sectors sequentially. As 
some amount of time is necessary to read the data into memory after it has been fetched from the diskette, this 
allows all 26 sectors of a track to be read in just two revolutions rather than in twenty-six revolutions. 
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Initial Position After First Read After Second Read 

Triplicated Disk Drive 

Figure 18. Effects of disk triplication on sequential access 
(2:1 Interleaving) 
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Table 7 summarizes timing data collected by a program which was written to 
test different interleaving schemes. A number of consecutive logical sectors were 
read, which mapped into the same number of physical sectors in the pattern dictated 
by the desired interleaving. In addition, a test program was assembled under RT-11, 
using its 2:1 interleaving, to examine the impact of increased disk latency on typical 
operations. Figure 19 plots access time versus interleaving factor for reading 1000 
sectors sequentially. The data indicates that perhaps the best sequential file access 
could be achieved for triplicated disks using 8:1 interleaving. The point to be made 
about replicated disk access time is that it is very pattern sensitive: very little 
degradation due to replication occurs in sequential accesses without interleaving, but 
great degradation is seen when interleaving is used. Instead of the factor of ten 
speedup available with 2:1 interleaving on a single disk, only a factor of roughly 1.5 is 
possible (using 8:1 interleaving) on a triplicated disk. 

sectors interleave Cvmp PBB Cvmo/PBB 

10 1:1 1.69 1.66 1.021 
10 2:1 1.55 0.17 9.218 
50 1:1 8.51 8.06 1.055 
50 2:1 7.66 0.81 9.403 

1000 1:1 171.2 159.9 1.071 
1000 2:1 153.9 14.6 10.540 

assembly 2:1 109.6 15.8 6.937 

TABLE 7. Disk Timing Tests 

All measurements given in Table 7 are in seconds. 
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Figure 19. Disk Access Time vs. Interleaving Factor 
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4.5. Operational Experiences 

Operating History 

Implementation of Cvmp has been completed, and stable performance achieved. 
The software is a standard, unmodified single-user diskette-based real time operating 
system (RT-11). The system has been utilized under actual load conditions with 
students doing projects in an introductory real time programming course. The students 
w e r e supplied with an RT-11 software manual and a short paper on Cvmp specific 
data (i.e. location of the power switches, reminder to load three diskettes, etc.). To 
these users, Cvmp successfully appeared as a standard LSI-11 uniprocessor running 
standard software. 

C v m p System Reliability 

Cvmp has repeatedly demonstrated hard failure survival by bus power 
switching and board removal (see comments later about on-line maintenance). Another 
aspect of fault tolerance is transient fault survival. The only transients which should 
cause Cvmp to crash are those occurring simultaneously in more than one module. 
According to the data from Cm* presented in Section 3, such transients make up 177. 
of the total, occurring roughly every 1000 hours. The mean time to crash should equal 
or exceed this figure. Indeed, as the hardware situation has been stabilizing, Cvmp's 
reliability has been increasing toward this order of magnitude. Table 8 summarizes 
C v m p crash data for the nine month period from August 1, 1977 to April 30, 1978. 
Note that software or user caused crashes have not been included in the data. Also, 
repeated crashes (ones due to the same cause) have been removed. Due to 
uncertainty as to the exact causes of many crashes, dual tables have been constructed 
giving the "best case" and "worst case" figures. Crashes which may have been 
software or user caused are included in the worst case, but not in the best case data. 

month mean std dev median number uptime 

August 64.8 91.9 28.0 5 323.8 
September 108.7 139.6 35.6 4 434.9 
October 35.5 51.1 19.8 16 568.3 
November 49.3 33.0 52.0 10 492.9 
December 204.8 191.6 113.1 3 614.5 
January 95.4 104.3 70.5 7 667.7 
February 258.8 78.6 258.8 2 517.6 
March 298.3 276.4 298.3 2 517.6 
April 352.4 ' 114.2 352.4 2 704.7 

Total 96.5 167.8 30.6 51 4921.1 

TABLE 8A. Cvmp Crash Data (worst case) 



62 

month mean std dev median number • uptime 

August 81.0 96.1 34.6 4 323.8 
September 217.4 132.4 217.4 2 434.9 
October 142.1 44.5 125.7 4 568.3 
November 246.5 167.3 246.5 2 492.9 
December 614.5 0.0 614.5 1 614.5 
January — — — 0 667.7 
February 517.6 0.0 517.6 1 517.6 
March — — « 0 596.7 
April 704.7 0.0 704.7 1 704.7 

Total 328.1 470.8 114.3 15 4921.1 

All times given in Table 8 are in hours, 
(std dev is the standard deviation.) 

TABLE 88. Cvmp Crash Data (best case) 

The voter induced transient failures are mainly due to construction. The wirewrap 
boards used in the voter are prone to socket failures. These sockets are being 
systematically replaced, with a consequent improvement in mean time to crash (MTTC). 
With permanent construction techniques (e.g. printed circuit boards) the voter should 
be removed as a source of system crashes. 

One measure of transient fault survival lies in the severity of the methods 
necessary for recovery. Five levels of recovery exist: (1) CONTINUE execution at the 
same location without any change to processor registers or memory; (2) RESTART the 
program in memory, which will also reset the I/O devices and processor registers; (3) 
RELOAD the program into memory, also resetting the 1/0 devices and processor 
registers; (4) RESET the processors and reload the program; and (5) DEBUG the 
hardware to whatever extent is required to restore stable operation. Table 9 
summarizes this data in correspondence to the entries of Table 8. 
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month continue restart reload reset debue 

August 0 1 3 0 1 
September 0 0 2 0 2 
October 0 5 7 1 3 
November 0 1 7 1 1 
December 0 0 2 0 1 
January 0 7 0 0 0 
February 0 1 0 0 1 
March 0 2 0 0 0 
April 0 2 0 0 0 

Total 0 19 21 

CM
 9 

TABLE 9A. Cvmp Crash Recovery Data (worst case) 

month 
August 
September 
October 
November 
December 
January 
February 
March 
April 

Total 

It is interesting to note that the majority of crashes required relatively little 
effort to recover from. Only a few required the processor to be actually reset, and 
several only required the resident monitor to be restarted. All the cases of debugging 
involved socket failures in the voter boards, and seem to be getting less frequent. 

On-Line Maintenance 

The success of the voting mechanism has been established by experiments with 
powering down buses and removing components, while still having the system as a 
whole continue operating. With a bus powered down, the associated processor and 
memory are, of course, lost, but the system keeps working. Defective components (if 
such exist) can be replaced, and the bus powered back up. Contents of the newly 
restored memory can be brought into agreement with the other copies by providing a 
read/write memory background job. Normal operation suffices to resynchronize the 
processor, as it starts executing code randomly until it gets in execution phase with 
the other two processors. 

continue restart reload reset debue 
0 9 9 a 1 
0 0 0 0 2 
0 0 1 0 3 
0 0 0 1 1 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 0 
0 1 0 0 0 

0 1 4 1 9 

TABLE 9B. Cvmp Crash Recovery Data (best case) 
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Actual experiments have included removing memory boards from one, two, or 
even all three buses (different 4K banks of memory from different buses). Also, a 
processor was removed, and the machine kept running. Even with one of the 
processors missing, and a different 4K bank of memory removed from each bus, the 
machine continued in operation. * 

The only problem encountered with these experiments was that restoring power 
to a bus sometimes causes a crash. All three buses, and even the voter itself, draw 
power from the same +5v supply. The transients on the power lines associated with 
turning on an LSI-11 processor, 12K of memory, and assorted I/O interfaces are the 
cause of the crashes. (These transients arise from the sudden demand for 7-10 amps 
of current for the various components on each bus.) Independent power supplies, as 
would be desireable in any case for a fault tolerant computer, are necessary to correct 
this problem. 

The ability described above to power down selective sections of Cvmp in order 
to remove or replace defective modules is certainly a strength of the system as 
regards being a highly available machine. 

T h e Transient Analysis Experiment 

A search through the literature reveals little or no experimentation in the area 
of noninduced transient fault measurements. To facilitate gathering data on such 
effects of noise, a statistics board which straddles all the buses is under development. 
This statistics board latches selected information from the buses whenever a 
disagreement, signalling an error, is detected. This latched information is stored along 
with a unique time signature stamp in onboard memory for later dumping and analysis. 
The main experiments that we hope to perform on this machine are the following. 

The first experiment consists of exposing one of the external buses to a 
controlled noise environment, either directly coupled through the power supply, or 
radiated by a noise source. The rest of the computer would be kept in a shielded 
environment. 

With the statistics board operating, we can find out how often we get a failure, 
where the failure is most likely to occur, and how long a failure lasts. By repeating 
the experiment with different noise frequencies and different noise intensities, we can 
map the noise susceptibility of components in the computer. By replacing components 
and repeating the experiment we can determine the variation in noise susceptibility as 
a function of component variation due to construction. 

For Cvmp to prove successful, the smallest possible correlation between a 
component failing and a corresponding component failing at the same time is desirable, 
since these correlated failures cause a system failure. In theory, we would like to 
prove independence between failures in similar sections of the computer. Once we 
know the probability of a non-fatal failure, we can expose two sections of the system 
that perform the same task, and record fatal failures in the system. From the first 
experiment we hope to compute the mean and standard deviation of a non-fatal failure. 
From the second experiment we hope to compute the mean and standard deviation for 
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a fatal failure. We can then measure the independence of two sections of the system 
to a noise source. 

Another experiment will be in on-line maintenance through module removal with 
and without power switching. 
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5. Conclusion and Acknowledgements 
Hardware and Software reliability remains high on the list of CMLPs research 

activities. A natural evolution of our past research is an integrated hardware, firmware, 
software approach to systems design. Activity is being initiated to look at the next 
generation multi-processor which will have reliability and security as its major design 
goal. 

Through the years many people have contributed to the concepts and 
implementation effort required to construct these architectures. That list might 
approach 100 people and is too lengthy to include here. However, we would like to 
acknowledge several people who have contributed to the reliability efforts. For C.mmp 
the list includes William Wulf, Fred Pollack, and Roy Levin. Cm* owes much to the 
major hardware designers Richard Swan, John Ousterhout, Kwok-Woon Lai and Andy 
Bechtolsheim and to the major software designers Anita Jones, Robert Chansler, Ivor 
Durham, Peter Feiler, and Karsten Schwans. The contributions of Mark Canepa and 
Steve Clark to the C.vmp design were significant. Finally, William Avery, Gordon Bell, 
Lloyd Dickman, Rich Olsen, Robert Swarz, Steve Teicher and Mike Titelbaum at Digital 
Equipment Corporation have provided information, ideas, and support critical to the 
success of the Cm* and C.vmp projects. 
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Abstract 

Th is paper focuses on measurement and modelling of hard failures in multiprocessors. 
The failure rate predictions of the Military Standardization Handbook 217B (MIL 217B) 
are compared with semiconductor chip vendor data and data from Carnegie-Mellon 
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model is proposed. The modified model is employed to calculate module failure rates 
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1. Introduction 

A companion paper [1] has presented the architecture and reliability experience 
of three multiprocessor systems constructed at Carnegie-Mellon University. Data on 
transient failures in the various systems was also presented. 

This paper focuses on measurement and modeling of hard failures. Section 2 
deals with the modeling of non-redundant systems. First the Military Standardization 
Handbook 217B (MIL 217B) is presented as a way of estimating hard failure rates. The 
model predictions are compared to semiconductor chip vendor data and data from C -
MU's multiprocessor systems. Based on these comparisons, a modified MIL 217B model 
is proposed and used in the remainder of the paper. A program called AUTOFAIL 
allows the parameterized modificaton of MIL 217B using engineering drawing 
information as input. AUTOFAIL was used to produce the complexity and failure rate 
tables that appear in the various modeling sections. 

Section 3 discusses levels of reliability modeling and the assumptions used in 
developing the system failure on exhaustion models. The final three sections contain 
the details of the reliability model for each architecture. The sections all follow the 
same format: brief description of the architecture, effect of various component failures, 
component failure rates, reliability models, reliability curves, and discussion. The 
uniform treatment of the architectures allows a more consistent comparison of the 
results . 
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2. A Hard Failure Reliability Model and Its Calibration 

In order to compare the various multiprocessor structures, a uniform hard 
failure reliability model is required. The model should also explain the actual observed 
failure rates. This section introduces the MIL model 217B and two separate 
approaches to its calibration: data obtained from accelerated life testing of chips and 
life failure data from Cm*. From this calibration, a modified MIL model 217B emerged 
and was used to model all three multiprocessor systems. A failure rate calculation 
program, AUTOFAIL, is also described. The automation of the failure rate calculation 
insures accuracy and allows experimentation with the model versus observed data. 

2.1. MIL Model 217B 

It is usually assumed that the failure of electronic components follow the Poisson 
distribution with failure rate X. That is: 

1. Probability of transition from state with n occurrences to n+1 occurrences in 

time At is: 

XAt 

2. Occurrences are independent; 

3. Transition probability of two or more occurrences in the interval At is 
neglected. 

Then 

Probability of k failures in time [0,t] - e~ x t (Xt) k /k! 

Reliability • probability of no failures in time [0,t] - e~^' 
With these assumptions, if a system does not contain any redundancy (i.e., e v e r y 
component must function properly for the system to work), and if component failures 
are statistically independent, then the system reliability is also exponential. 
Furthermore, the failure rate of the system is the sum of the failure rates of the 
individual components. This is also referred to as the Parts Count Model. 

The Reliability Analysis Center has extensively studied statistics with respect to 
electronic component failures. The data has led to the development of a widely used 
reliabil ity model for chip failures. The following is a sketch of the model presented in 
the Military Standardization Handbook 217-B [2\ 

The failure rate model for a single chip takes the form: 

X - H ^ Q ( C j n j + C 2 n£) 
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where 

H l A learning factor based on the maturity of the process. It assumes 
values of 1 or 10. 

riQ A quality factor based on incoming screening of components. Values 
range from 1 to 150. 

rty A factor based on the ambient operating temperature and the type of 
semiconductor process. Values range from 0.1 to 1000. 

H £ A factor based on the operating environment. Values range from 0.2 to 
10. 

C j £ 2 Complexity factors based on the number of gates (random logic) or 
number of bits (memory) in the component. 

Since the rate of technology advance is rapid, new component types are 
continually being introduced. In addition the "learning curve" for any particular 
component type changes with experience engendered by its use in the field. There is 
then some question as to the accuracy of MIL Hdbk 217B, particularly with regard to 
newer technologies such as MOS RAMs, and ROMs. 

Typical component failure rates are in the range 0.1 to 1.0 per million hours. 
Thus tens of millions of component-hours are required to gain statistically significant 
results. Two separate approaches were used to gather sufficient data for comparison 
with the MIL 217B model: life cycle testing of components and analyzing field repair 
information. The following subsections summarize the results. 

2.2. Life Cycle Testing 

In this approach a small number of components are tested in a controlled 
environment. Frequently an elevated temperature is used to accelerate failure 
mechanisms. A translation factor is then used to equate one hour at elevated 
temperature to a number of hours at ambient. The translation factor is usually der ived 
from the Arrhenius Equation: 

n A - E a /KT 
R - Ae a 

where 

R * reaction rate constant 

A « a constant 
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E a - activation energy 

K « Boltzmann's constant 

T - Absolute temperature. 

Often these accelerating factors are extrapolated into regions (such as ambient) where 
there is v e r y little corroborating data. Because of the exponential, accelerating factors 
can become quite large. 

In addition, there is little consensus on the appropriate activation energy . 
Activation energies of 0.23 eV to 1.92 eV have been used. The temperature 
dependent portion ( n j ) of MIL Hdbk 217B assumes an activation energy of 0.41 e V 
while MIL Std 883A (used to qualify components for procurement) assumes 1.02 eV. 
Consider conversion from 125°C to 50°C. The ratio of the MIL Std 883A acceleration 
factor to the MIL Hdbk 217B is 61.93. This means a factor of 62 difference in 
predicted failure rate (X) from the same life cycle test data! 

Furthermore, only one activation energy is assumed. In reality many different 
mechanisms contribute to chip failure and they are not all accelerated by the same 
amount for the same temperature increment. Assuming a single activation energy can 
lead to substantial errors , especially when using extrapolation. 

Returning to the form of the MIL Hdbk 217B model we see that high temperature 
testing only calibrates the temperature portion. The environmental portion (aging and 
mechanical stress), which can range from 107. (high temperature) to 707. ( low 
temperature) of the predicted failure rate, is not measured. One last problem with 
using high temperature life cycle testing is that semiconductor manufacturers usually 
lump test data by process (i.e. bipolar, MOS, etc.) thus hindering a comparison with the 
MIL Hdbk 217B complexity factors. 

Given the problems listed above, data from several sources was combined using 
assumptions to establish commonality. The data represents over 3 billion hours of real 
time operation (of which 137 million hours were high temperature testing). The data 
sources were : 

RADC A list of life cycle test data as a function of device complexity. 
Most were from high temperature testing and some data about 
test temperatures was missing. 

Signetics High temperature testing with data lumped by process. Some 
individual test data by component number but usually a small 
number of component-hours. An activation energy of 0.41 eV is 
assumed and calibrated by experiment for bipolar component 
temperature translation. 

SandersAssociates - Analysis of field data. 

Using a junction temperature of 50°C, a temperature accelerating factor 
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corresponding to 0.41 eV activation energy, and adding in the MIL Hdbk 217B 
predicted environmental portion, Figure 1 results. The RADC data is raw and was not 
temperature translated since a significant percentage of the data did not have a test 
temperature recorded. The two anomalous points in the RADC data at 20 and 58 gates 
should be treated as suspect since these two points had the least number of test 
hours (less than a million). 

The temperature translated data in Figure 1 tracks the MIL Hdbk 217B model 
general ly within a factor of two while the Sanders Associates data is in close 
agreement 

Since RAM and ROM data is less extensive, it is reproduced in Table 1 along with 
a few points of MOS data. The Signetics data was temperature translated to 50°C. 
The total failure rate and temperature dependent portion are listed separately so that 
comparison with high temperature, translated test data is facilitated. The Signetics 
data with a less than (<) sign is an upper bound in cases where no failures were 
observed . 

For bipolar RAMs and ROMs the MIL Hdbk 217B model for total failure rate 
tracks within a factor of two and is generally pessimistic. The temperature portion 
roughly tracks but in a less precise manner. It should be noted that the majority of 
this data is from one source (i.e. Signetics). 
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Figure 1. Data from Life Cycle Testing 



E a r t . .. „ Failure Rate Observed 
Description Source per Million Hours 

Temperature Total 
Portion 

Bipolar RAMs 

256 bits Sanders 1.28 
Associates 

256 bits *Signetics .078 .398 
576 bits *Signetics <544 <797 
IK bits *Signetics .068 .852 

Bipolar ROMs 

256 bits *Signetics <.44 <.668 
I K bits *Signetics .211 .659 
2K bits *Signetics 1.75 2.45 
4K bits *Signetics .053 1.173 

Schottky PROMs 

256 bits +*RAC .073 .265 

IK bits +*RAC 1.14 1.588 

MPS RAMs 

IK bits Sanders .194 
Associates 

MOS ROMs 

I K bits Sanders .078 
Associates 

MOS Random Logic 

8080 +*RAC - .418 
Microprocessor 

» Tamperatura translation to 50 "C 

Failure Rate from 
Mil Std 217B per 
Million Hours 

Failure Rate from 
Mil Std 217B per 
Million Hours 
Reduced by a Factor 
of 16 in Bits 

Failure Rate from 
Mil Std 217B per 
Million Hours 
Reduced by a Factor 
of 64 in Bits 

Total Temperature Total Temperature Total 
Portion Portion 

.635 .113 

.313 

.511 

.723 

.635 
1.000 
1.51 

.059 

.096 

.267 

.113 

.173 

.136 

.179 

.414 

.629 

.955 

.363 

.865 
1.33 
2.06 

.034 

.078 

.118 

.179 

.064 

.153 

.236 

.364 

.179 

.414 
.363 
.865 

.034 

.078 
.064 
.153 

2.504 .454 .193 

1.433 .26 

.616 

.111 

.293 
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For MOS RAMs, ROMs, and random logic there is even less data but it clearly 
indicates the MIL Hdbk 217B model is a factor of 16-64 pessimistic. Since the 217B 
model was published in 1974 and was probably developed on 1972 data, one might 
speculate that MOS technology might not have settled down in time for creation of the 
model. There are many parameters that can be altered in 217B to take into account 
process maturity. One could modify a constant factor such as TTQ (i.e. move the curves 
up and down). One could speculate that the complexity factor should be modified with 
time since as the process matures more complex components are feasible (i.e. move the 
curves to the right). If we use the rule of thumb that memory doubles in complexity 
e v e r y 1-1.5 years and we want the state-of-the-art portion of the curve to 
correspond in 1977 to where it was in 1972, then the complexity axis (number of bits) 
should be divided by 2^ a 16. This modified 217B model is shown in the last column 
of Table 1. The modified 217B does rather poorly on bipolar components but is within 
a factor of 3 on MOS components. 

2.3. Analysis of Hard Failure Data 

In this approach information about total systems is analyzed and broken down 
into failure rate by components. The major difficulties are lack of control over the 
environments of the systems and incomplete data. 

The various systems will be of different configuration, and subjected to different 
environments (n^), operating temperatures (ny), and power -on time (affecting the 
calculated failure rate). In addition, current repair practices do not lend themselves to 
component level data analysis. Typically a repairman will fix a system by board 
swapping. The boards are then sent to a repair depot where they lose their identities, 
and where repair actions are often not recorded. 

Furthermore, the repair activity may induce additional or future failures. 
However , with careful planning and documentation these difficulties can be overcome. 
In our case we carefully collected hard failure data from the Cm* error logs [3] . The 
data presented in the following tables and figures were collected through May 10, 
1978. 

The Mean Time Between Failures (MTBF) was calculated assuming failures were 
independent. The MTBF was obtained by dividing the total time by the total e r ro rs . 
Because of the small number of failures per module, a concept called "module time1" 
was introduced. Module time allows data from all modules to be combined. If there are 
k modules running during a period of time then 

module time • t; 
ISiSk 

where tj is the time the i ^ module was up. Now assuming that all the modules of a 
t ype are identical, then the times that failures were recorded in real time can be 
transfered to a "typical" module in module time. Table 2 depicts this module time data 
fo r Cm*. 
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The complexity in chips referenced in Table 2 is a measure of the actual 
utilization of chips per module. In the case of the LSI-11 (DEC), the actual number of 
chip sockets used is 76, of these 72 contain digital integerated circuits. The number of 
chips used is recorded as 68, which implies that the unused functions on the chips add 
up to 4 chips. 

Module Complexity 
(Chips) 

# of 
Modules 

Total time 
(Hours) 

Total failures M T Q C 

(Hours) 

Kbus 138 CO
 

36696 8 4587 

Pmap 106 3 37416 12 . 3118 

Mmicro 116 6 68328 4 17082 

Mdata 142 3 37080 

C\J 18540 

Line 116 3 22608 0 -

LSI-11 68 14 163200 10 16320 

Slocal 126 10 120720 5 24144 

4K memory 56 21 260568 

in 52003.6 

16K memory 104 10 122280 5 24456 

Slu 28 17 223248 5 44649.6 

Power board 6 16 195456 3 65152 

Refresh 14 16 162912 0 -

Table 2. Failure Data on Cm* 

An analysis of the variance of the error log data showed that uncertainties 
associated with module commissioning dates (i.e. initial power up and integration into 
the system) were insignificant. 

The next step was to determine the failure distribution from the data. There are 
two basic approaches. The first is to determine the instantanous failure rate or hazard 
function, which indicates the failure distribution. The second method is to use statistical 
tests to differentiate between distributions. 

The following equation is used for plotting a piecewise linear graph of the 
hazard rate: 
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Hazard rate z(t) - ( " W - " ( t j At))/n(t) 

The number of survivors at any time is given by n(t). The choice of At is not 
specif ied and is occasionally chosen to end just after each failure. Another method of 

choosing the size of At that smooths out the curve is to divide the total time into 
equally spaced intervals. The number of intervals is given by the following equation 
[4 ] : 

k « l + 3 . 3 l o g i 0 M 

where k is the number of intervals and M is the number of failures. This latter method 
was used for the plotting of data on the modules. 

Data for these hazard calculations is commonly obtained through life tests. The 
data that was obtained from Cm* differed from that of a life test in that when a failure 
was detected in a module, the module was repaired and placed back in operation. Thus 
some components in the module were starting out their operational life while others 
w e r e in intermediate stages. A second difference is that modules had different amounts 
of operating time. Due to the few failures detected and the small number of modules 
being tested, all the failure data must be used. To accommodate the data on Cm*, a 
replacement assumption is necessary. 

The replacement assumption posits that a repaired module can be considered to 
be new. The concept of module time described earlier is then used along with this 
assumption to make effective use of the small amount of available data. For example, 
consider the case of some set of modules {Mj}. Each time some Mj fails, it is repaired 
and is considered to be new using the replacement assumption. The jth such 
"incarnation" of M: can be considered to be a new "virtual" module M: : which has a 

» ••I 

lifetime of ty before it fails and is later reincarnated as the new virtual module Mjj+I-
Then at any given time the set of virtual modules {Mj j} is such that each member of 
the set has either suffered one incapacitating failure or has not failed at all. Module 
time for this set is then given by 

*m - 2 
itJ 

A "typical" module of the set {Mj} is then assumed to have been in use for time t m and 
have suffered the same number of failures as the set {Mj} taken as a whole. The 
hazard rate expression previously mentioned is then redefined as follows: 

Hazard rate z(t) - P W + f f / n W 
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where F(t , t+At) is the number of failures between time t and time t+At. For these cases 
n(t) is always equal to one i.e. the "typical" module. 

There was only enough data on the modules to construct four rough hazard 
functions. They are of the Pmap, the Kbus, the LSI-11, and of the total Cm* system 
(Figures 2 and 3). 



HAZARD FUNCTIONS 

— i 1 I 

Pmap Interval - 309.8 Days 

i 

i 1 1 : — 

Kbus Interval - 382.25 Days 

1 

1 1 1 

LSI-11 Interval - 1700 Days 

Figure 2. Hazard Curves for Pmap, Kbus and LSI-11. 
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Hazard Functions 

10 

Cm* System Interval • 50.6 Days 

Figure 3. Hazard Curve for total Cm* system. 

The graph of the Pmap appears to exhibit a decreasing hazard rate. This 
indicates a problem with infant mortality. A note should be made here that nine out of 
the twelve failures on the Pmap were attributed to one chip type, the 74373, 

The Kbus seems to display either a decreasing or constant hazard rate. 
Assuming it to be constant, its value would be around two failures per 382.25 day 
interval , which corresponds to a MTTF of 191.125 days. 

The LSI-11 was the other module examined. This curve indicates a possible 
constant hazard rate 2.5 failures per 1700 day interval or a MTTF of 680 days. 

The final hazard function is presented in Figure 3 is that of the system using all 
the modules. It is plotted using the first 304 days since commissioning for all the 
modules. Over this period, a MTBF of 155.2 hours is indicated. 
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The MTTF presented in Table 2 were calculated by dividing the total time by the 
total number of failures. In the case of a constant hazard rate, the MTTF was 
calculated by dividing the length of an interval by the average number of failures per 
interval. That these two calculations are equivalent can be seen from: 

MTTF for constant hazard rate -

(length of interval)/(average failures per interval)* 

(length of interval)/( (total failures)/(number of intervals) ) -

(total time)/(total f a i l u r e s ) -

MTTF from Table 2 

The results presented have been inconclusive in predicting the failure 
distribution. The exponential distribution is plausible, but a better test for the data is 
needed. To accomplish this the data is fit to a generalized distribution that has the 
Exponential as a special case. A generalized distribution that is used in reliability 
studies is the Weibull for which the probability density function is given by : 

f ( x ) . gqpfrwGp* 
This degenerates to the exponential distribution when j 3 - l . Table 3 , presents 

the maximum likelihood estimates for j3 and TJ and the 95% and 687. confidence interval 

on j3 for the different modules. 

T h e 957. (687.) conf idence interval means that if the exper iment w e r e r e p e a t e d 

100 times, on the average 95 (68) times J3 would lie in the given range. In order to 

tighten up the range on j3, a smaller confidence interval is used. The data in Table 3 

indicates a wide spread in the maximum likelihood estimates of j3, but in all but two 

cases j3=l is enclosed in the 957. confidence interval. The 687. confidence interval is 

only able to enclose a /3=1 for half of the modules. This means that while an 
exponential failure distribution is plausible, actual data presents enough variation that 
the impact on the system of an exponential failure assumption should be examined. It 
should be emphasised that the above parameters were estimated using a small number 
of data points. The numbers will be refined as more data becomes available. 
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Module 7} j3 957. Confidence Interval 687. Confidence Interval 

on j3 ( /3 ± 1 . 9 6 \ J v < £ > > on ( ft ± \[vT^" ) 

Kbus 189.5 .721 .30 : 1.15 .50 : .94 

Pmap 104.0 .537 .29 : .79 .41 : .66 

Mmicro 625.9 1.264 .23 : 2.30 .73 : 1.79 

Mdata 3043.9 .344 0.0 : .79 .12 : .57 

LSI -11 716.1 .915 .41 : 1.42 .66 : 1.17 

Slocal 1977.1 .584 •1 : 1.07 .34 . : .83 

4 K memory 1496.4 1.320 .28 : 2.36 .79 : 1.85 

16 K memory 690.7 1.945 .40 : 3.50 1.15 : 2.74 

Slu 1320.6 1.348 .25 : 3.08 .79 : 1.91 

Power board 1819.4 1.295 0.0 : 2.67 .59 • : 2.00 

Table 3. Estimated Parameters of the Weibull from Failure Data 

The exponential distribution was chosen to model the different types of modules 
in the Cm* system. This decision can be supported by the observations of Figures 2 
and 3. The next step is to determine the parameters of the chosen distribution. 

Table 4 gives the maximum-likelihood estimator (MLE) of X and its 502 
confidence interval. Again, it should be emphasized that this analysis has been based 
on a small number of failures. For conclusive results much more data is necessary. 
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Module 

Kbus 

Pmap 

Mmicro 

Mdata 

Line 

(Fail/K> 6Hr) 

218 

320.7 

58.5 

53.9 

MTTF 
(Hours) 

4587 

3118 

17082 

18540 

507, Confidence Interval 
(on MTTF) 

3397.8 

2461.6 

10932.5 

9459.2 

6167.4 

3938.5 

26953.9 

38625.0 

LSI-11 

Slocal 

4K memory 

16K memory 

Slu 

Power board 

Refresh 

61.3 

41.4 

19.2 

40.9 

22.4 
« 

15.3 

16320 

24144 

52113.6 

24456 

44649.6 

65152 

12553.9 

16313.5 

35211.9 

16524.3 

30168.7 

38324.7 

21058.1 

35822.0 

77319.9 

36284.9 

66245.7 

113307.8 

Table 4. Calculated Failure Rates from Data on Cm* 
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Quality factor 

M o d u l e C o m p l e x i t y 
( C h i p s ) 

16/16 16 150 150/16 

Kbus 138 44.1 53.3 499.3 413 

Pmap 106 35.6 39.6 371.7 333.7 

Mmicro 116 26.6 128.3 1203 249.2 

Mdata 142 35.4 146.5 1373.8 332.4 

Line 116 35.5 75.1 704.6 332.8 

LSI-11 68 29.9 379350.8 35568289.0 280.3 

Slocal 126 27.4 31.8 298.4 256.8 

4K memory 56 23.1 99.8 936 216.9 

16K memory 104 74.1 380.9 3571.1 694.7 

Slu 28 4.7 8.7 81.6 43.9 

Power board 6 .97 .97 9.1 9.1 

Refresh 14 2.6 2.6 24.9 24.9 

Table 5. Predicted Failure Rates for Cm* Components 
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Module Failure Rate Best Fit Predicted 
Failure Rate 

Kbus 218 Q - 150/16 413 

Pmap 320.7 Q - 150/16 333.7 

Mmicro 58.5 Q - 16/16 26.6 

Mdata 53.9 Q - 16/16 35.4 

Line 

LSI-11 61.3 Q - 16/16 29.9, 

Slocal 41.4 Q - 16 31.8 

4K memory 19.2 Q - 16/16 23.1 

16K memory 40.9 Q - 16/16 74.1 

Slu 22.4 Q - 150/16 43.9 

Power board 15.3 Q - 150/16 9.1 

Refresh 

Table 6. Results of Maximum Likelihood Ratio Test 

Four variants of the Mil 217B model were selected for comparison: quality 
factors of 16 and 150; LSI chip complexity derating of 1 and 16. The predicted failure 
rates are shown in Table 5. The results of the comparison of the data to various 
parameter changes is shown in Table 6. They consist of the observed failure rate , 
the best fitting variant of the Parts Count Model examined, and its associated failure 
rate prediction. This table indicates that the modules tend towards a derating of the 
quality factor by 16 for MOS chips. This coincides with the conclusion from life cycle 
test data mentioned earlier. 

The data on the Pmap indicates a quality factor of 150 with a derating factor of 
16. As was noted earlier, 9 of the 12 failures were attributed to a single chip type, the 
74373. There are seven 74373 chips in each of the three Pmaps. The MIL 217B model 
predicts that 6.7% of the failures for the Pmap will be due to this chip. The failure rate 
observed for the 74373's in the Pmap was nine failures in 37416 hours or 240.5 
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failures per million hours. This corresponds to a quality factor for the 74373*s of 516, 
which suggests a possible bad batch of chips. Using only the other failures to calculate 
a failure rate produces a X - 80.2 failures/10^ hrs. This corresponds to a quality 
factor of 36, which lies between 150 and 16. 

The Slocal is best fit by a quality factor of 16. If a derating of 16 is assumed 
then the quality factor for the Slocal lies between 150 and 16. In fact all but the 
memory boards that have a quality factor which is just less than 16, and the power 
boards, which are slightly above 150, lie within the range of 150 to 16. In general, 
industrially produced components (in this case by Digital Equipment Corp.) indicate a 
quality factor close to 16. CMU-built components exhibit a quality factor of 16 for 
more mass produced components (Mmicro and Mdata are printed circuit board RAMs 
also used for writable control stores on Cmmp; the Slocal has been through two design 
cyc les) and a quality factor of 150 for the remainder. 

The expected failure rate for a system composed of all the modules using their 
appropriate quality factors from Table 6 is 7222.2 failures per 10** hours. This is 
equivalent to a MTTF of 138.46 hours, which may be compared to the MTTF of 155.2 
Hours der ived from the hazard curve in Figure 3. 

2-4. AUTOFAIL—Automated Failure Rate Calculation 

A program, AUT0FAIL, has been written at CMU [5] that simplifies the procedure 
of computing a system's failure rate from the failure rates of its constituent parts as 
predicted by the MIL model 217B. A system may be described to AUT0FAIL in the 
form of a list of chips and/or subsystems, which are likewise recursively defined. 
F igure 4 is the input description of the DEC LSI-11 microcomputer. Parameters such 
as the various n factors may be modified so as to obtain a sensitivity analysis. The 
format of this file is: 

[ Module Name 
Body ] 

w h e r e "Body" is a listing of ail chips and submodules making up this module. A chip is 
identified by an integer, specifying the number of chips of this type used, or by an 
Integer followed by an T " , specifying the number of functions of this chip type that 
w e r e used. This is then followed by a comma and the name of the chip. Submodules are 
constructed using the same format as modules. 



CLSI11 
[SPECIf lL .FUNTIONS 

2F,DM8641 
3F,7474 
1 ,7442 
5F,7484 
I F , 74883 

[BUS.ARB ITRflTION.LOGIC 
I F , 7 4 8 8 
iF,Dri8837 
3F,7474 
IF,DM86413 

[ INTERRUPT. CONTROL. RNO. RESET. LOG IC 
4F,7484 
4F,7474 
2F,DM8641 
2F,7488 
5F,Df18837 
I F ,7485 
IF,741743 

[CLOCK.PULSE.GENERATOR 
I F , 7 4 8 8 
IF ,74148 -
2F,7474 — 
IF ,74139 s 
6F,7484 
4F,MH88263 . 

[Ron.CHIPS 
3 ,CP1631B3 

[ORTfl .CHIP 
1 ,CP1611B3 

[CONTROL.CHIP 
1 ,CP1621B3 

[BUS.ORIVERS.flNO.RECIEVERS 
4 ,74257 
4 ,DM8641 
IF,DM8641 
4F,7411 
2F,74853 

[MEMORY 
16,MK48963 

[BUS. I/O.CONTROL.LOGIC 
I F , 7 4 9 7 
7F,7488 
7F,7484 
2 F , 7 4 i l 
4F,7474 
5F,7418 
5F,0M8641 
I F , 0M8S373 (Con t i nucd) 

Figure 4. LSI-11 Input File for AUTOFAIL 
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[ I /O. BUS. MEM. READ. DATA. flUX 
4F,7475. 
2F,74257 
3 F , 7 4 i 0 
3F,7480 
2F,74140 
2F,7405 
2F,741071 

CFAST.DIN.nUX 
IF ,74257 
I F , 7 4 0 0 
IF,74043 3 

Figure 4. LSI-11 Input File for AUTOFAIL (Continued) 

Figure 5 is a listing of the output for the LSI-11 produced by AUTOFAIL. The 
top line consists of the values of the various derating factors used. The n values are 
presented on the following line. The failure rates for the LSI-11 and the submodules 
are shown along with the percentage of the failure rate for a module that is attributed 
to each submodule. In the case of a partially used chip (i.e. denoted by the number of 
functions T w ) , AUTOFAIL prorates the chip failure rate by the fraction of the total 
number of functions used. It is sometimes desirable to examine the behavior of a 
particular chip or chip type. The lower table indicates this ability by listing the number 
of chips, failure rates, and percentages for the different chip types. 
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t s i l l . r e t [ x 3 3 8 d s 7 3 J LS I* 
E * 1.889 Q * 16.888 L 

MODULE 

16.888 ROM. 
888 T 

LSI11 
SPECIflL.FUNTIONS 
BUS.ARBITRATION.LOGIC 
INTERRUPT. CONTROL. AND. RESET. LOGIC 
CLOCK.PULSE.GENERATOR 
ROM.CHIPS 
DATA.CHIP 
CONTROL.CHIP 
BUS.ORIVERS.AND.RECIE VERS 
MEMORY 
BUS.I/O.CONTROL.LOGIC 
I/O.BUS.MEM.REAO.OATA. MUX 
FAST.DIN.MUX 

16.888 RAM* 
25.888 

FAILURE RATE 

16.888 

29.893 
.669 
.358 
.776 
.851 

3.413 
1.168 
1.168 
1.588 

16.991 
1.588 
1.195 

.241 

PERCENTAGE 

168.888 
2.237 
1.172 
2.596 
2.847 

11.416 
3.888 
3.880 
5.314 

56.837 
5.019 
3.999 

.805 

# o f c h i p s * 68.917 # of gatas * 7145.083 # of b i t s « 99328.000 

TYPE / of CHIPS FAILURE RATES PERCENTAGE 

SS I 37.250 4.899 16.387 
MSI 10.667 2.272 7.600 
L S I 2.088 2.320 7.760 
ROM 3.000 3.413 11.416 
RAM 16.888 16.991 56.837 
MOS 21.000 22.723 76.013 
BIP 47.917 7.171 23.987 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Figure 5. Output from AUTOFAIL for LSI-11 

The parameters of the MIL model 217B can be varied by subsystem or even 
chip type so that variations in ambient temperature (i.e. a board near the power 
supply ) or technology (i.e. a new chip for which parameters such as junction 
temperature may not be Known) can be modeled. At the chip level it is also possible to 
modify the number of devices on a chip to gauge the effect of the size of a new chip 
t y p e on the design. Further, individual chip type or entire chip class (i.e. ROM, RAM, 
MOS, LSI) can be assigned any arbitrary complexity derating factors. Again, this is 
used to test the sensitivity of the system failure rate as a function of the unknown 
parameter. 

This program, AUTOFAIL, was used to generate the failure rates for all the 
multiprocessor components described in this paper. Actual parts lists were used as 
the input, and a uniform list of parameters (ng -16, nc -1 , n ^ - l , ambient temperature -
25°C, division of all ROM, RAM, and LSI complexities by 16) was maintained throughout. 
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3. Techniques for introducing protective redundancy 

There are three ways to introduce protective redundancy in to computer systems [6] : 

Hardware - additional modules 

Sof tware - special programs 

Time - replication of operations 

Only hardware redundancy will be considered in this paper. Hardware redundancy 
schemes can be divided into two types: 

Static redundancy- all the modules are powered up and functioning. The hardware failures 
are masked by the redundant modules. 

Dynamic redundancy- There are two types of modules, active ones that directly contribute 
to the operation of the system, and standby spares. 

In dynamic redundancy fault tolerance is achieved by three sequential actions: fault 
detection, diagnosis, and recovery . As a rule, detection or identification of faulty units is not 
perfect . Thus the probability of system survival is modeled by the probability of module 
failure and the conditional probability that the system recovers (e.g. correctly detects, 
isolates, and recovers) given a failure. This latter conditional probability has been termed 
coverage [7],[8]. It has been shown that coverage has a significant impact on the survival 
probabi l i ty of a system. 

In this paper we will model the C.mmp and Cm* multiprocessor systems developed at 
Carnegie-Mellon University as dynamic redundancy systems assuming perfect coverage 
(C.vmp employs static redundancy). We are primarily interested in predicting the maximum 
reliabil ity achievable by the architectures (hence perfect coverage) with no arbitrary policy 
decisions (i.e. effort devoted to software diagnostic development, quality of programing staff, 
etc.). However, as more data becomes available on actual system failures, the models will be 
modified and calibrated. In particular, transient failures are at least an order of magnitude 
more frequent than permanent failures [1] and the models will be augmented to include 
transient behavior. 

3.1 Levels in reliability modeling 

Typical ly , a reliability model divides a structure into various subsections that are easier to 
study than the whole structure itself. There are certain levels at which it is customary to 
model systems [9]. 

1. The highest level of modeling is the system level. In this level the entire system 
is considered as a black box. Statistics are gathered about events (e.g. failure of 
a certain kind). A model then can be suggested to fit the data as closely as 
possible. An enormous amount of data is required for successful modeling. 

2. The next level is the module level. The system is divided into a number of 
modules which have mutually independent failure probability distributions. The 
system model is obtained by a composition of the models for the modules. 

3. The third level is the gate level. Gate reliability is often the basic parameter 
used to obtain the system reliability. 
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One rarely has to go below the gate level. However, if the redundancy is introduced at a 
lower level , the component level of modeling is required, where components are transistors, 
diodes, resistors, etc. 

In evaluating the reliability of the three architectures, module level modeling is used. 
T h e r e are several reason for this choice. A first-order approximation of the reliability of a 
large hardware system can be easily derived by assuming module independence and counting 
components in each module. Also, the number of parameters are usually few and the 
dominating parameters or architectural features are easily identified. Furthermore, all of the 
redundancy in these three systems is at the module level thus allowing the various 
architectures to be compared. Usually this level of modeling is called PMS level (processor , 
memory, switch). 

3.2 Redundancy model 

Redundant systems can be modeled in one of several ways: 

1. Redundancy with periodic maintenance. This type of modeling includes the effect 
of periodic maintenance on the reliability of the system. 

2. Redundancy with repair. This introduces a second random variable, the time to 
do module repair, into the model, thereby complicating the analysis. However, 
under this model, the probability that the minimum required set of modules is 
functional at any given time is significantly higher than the first model. 
Consequently the reliability of such systems is much improved though there may 
be periods of degraded perfomance while failed modules are being repaired. 

3. Redundancy with failure to exhaustion. This pessimistic and simplistic model 
assumes all redundant modules fail before any repair. The system is considered 
to be failed if it does not satsify the minimal set of functioning modules that 
comprised the corresponding minimal system. Repair is only done when a module 
failure causes system failure. 

This paper uses the last method of redundancy modeling. Again, we are interested in 
predicting the maximum reliability achievable with no arbitrary policy decisions (i.e. mean time 
between maintenance periods, quality of the repair staff, etc). 

As an example of failure to exhaustion, consider a system with five processors, ten memory 
modules and a clock for synchronization. Also consider a task running on this system that 
requires three processors and nine memory modules in order to run to completion. A minimal 
system with respect to the task requirements would contain exactly three processors and 
nine memory modules and the clock. This set of modules is the minimal module set for that 
particular task. The system being considered is therefore redundant with respect to the task 
requirements and will be considered failed only when it can no longer provide the minimal set 
of functioning modules. In other words the redundant system fails if the clock fails, or more 
than two processors fail, or more than one memory module fails. 

Failure to exhaustion models typically enumerate all the states of the system (where a 
state is a pattern of failed and working modules) that meet or exceed the requirements of the 
minimal module set. If there are N identical modules with the reliability of each module R n ( R n 

m e"^* where X « failure rate) , and if a task requires k modules, the subsystem can tolerate 
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R 0 ~ R c l k * R ? r o £ R mem 

where 

R c l k m c ' o c ^ reliability. 

R p r o c 8 5 P r o c e s s o r reliability. 

R m e m 3 5 m e m o r y module reliability. 

Reliability of the system when one memory module fails is 

R l - R c lK * RpVoc * [ ( 1 ° ) R 9 m e m " * Rmem> ] 

Reliability of the system when one processor fails is 

R 2 - Rclk * [ ( ! ) R proc <l- Rproc>] * "J2m 

Reliability of the system when one processor and one memory fails 

R 3 - R clk * [ ( D Rp\oc < l - R p r o c ) K t ° ) R L m <1-Rmem> ] 

Reliability of the system when two processors fail is 

is 

up to N-k failures, and the reliability of such a system is 

N-k 

i « 0 

consider the reliability of the system mentioned in the previous example with the given 
task requirements. 

Reliability of the system when ail of the processors and memory modules are functioning is 
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R 4 8 8 R c lk * t R p r o c ^ " R p r o c ^ 2 3 Rmem 

Reliability of the system when two processors and one memory fails is 

R 5 - R c l k * [ ( | ) R ? r o c U-Rproc* I (1°) R L m <^Rmem>] 

The total reliability is the sum of the reliabilities of the system in these six operational states: 

2 1 
R

s y s « R c l k*E (?)R^c<l-Rproc)12 (/°)RS(1-Rmem)j] 
i « 0 j - 0 

The following three subsections develop the hard failure models for the three 
multiprocessor systems. Due to its simplicity, the complete model is presented for C v m p 
illustrating the development of the module reliabilities and total system equation. The model 
for C.mmp is more complex and its development is only outlined. The model for Cm* is v e r y 
complex and only one of several possible functional system states is fully developed. 

3.3 C.mmp, a Multi-miniprocessor 

3.3.1 Architecture Summary 

C.mmp is a canonical multiprocessor system with a 16X16 crosspoint switch (Figure 6). Up 
to 16 DEC PDP-11/40 processors may be connected to the processor ports on the switch. 
The 16 memory ports provide an address space in shared memory of 32 megabytes. Any 
processor can access any of the 16 memory ports thereby providing a maximum switch 
concurrency of 16 for memory accesses. The entire set of processors may communicate via 
an interprocessor bus which allows interprocessor interrupts at one of three prior i ty levels, 
continuously broadcasts a 60-bit non-repeating clock value and allows any processor to halt,  
start or continue any other processor. Processor-generated 18-bit addresses are mapped 
onto a 25 bit physical address by the Dmap. The companion paper [1] in this issue provides 
a more detailed description of the C.mmp architecture. 

3.3.2 Probabilistic Hard Failure Model For C.mmp 

Figure 7 illustrates the PMS 1 -model used for the reliability model. The effects of modules 

*In PMS notation, P etanda for proceeeor; M for memory; S for awitch; K for controller; A for arbiter; L for Link; and 
C for computer. 
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Figure 6. PMS Diagram for C.mmp 
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failures on the system are presented in Table 7. The architecture configuration parameters of 
the model are defined in Table 8. The minimum required modules to satisfy the operational 
requirements are parametrically. shown in Table 9. Table 10 lists the reliability parameters 
while Table 11 summarizes the failure rate of the various modules as calculated by AUTOFAIL 
in failures per million hours. 

ModuIe E f f e c t o f f a i l u r e 

P r o c e s s o r 
P r o c e s s o r c o n t r o l l e r 
L o c a l memory module 
S h a r e d memory module 
Memory c o n t r o l l e r 
Memory a r b i t e r 
S u i t c h 
M a s t e r c l o c k 

Loss o f p r o c e s s o r . 
Loss o f p r o c e s s o r . 
Loss o f memory module. 
Loss o f memory module. 
Loss o f memory p o r t . 
Loss o f memory p o r t . 
Loss o f the u h o l e sys tem. 
Loss o f the u h o l e sys tem. 

T a b l e 7. E f f e c t o f module f a i l u r e s i n C.mmp 

P Number o f p r o c e s s o r s . 
M Number o f s h a r e d memory mo d u le s/ p o r t . 
N Number o f l o c a l memory m o d u l e s / p r o c e s s o r . 
T Number o f memory p o r t s . 

T a b l e 8 . A r c h i t e c t u r e c o n f i g u r a t i o n p a r a m e t e r s . 
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Figure 7. C.mmp reliability model. 
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Modu 1 e Minimum number 

P r o c e s s o r n 

L o c a l memory modu le/processo r v 

P r o c e s s o r c o n t r o l l e r n 

M a s t e r c l o c k 1 

S h a r e d memory module m 

Memory p o r t c o n t r o l l e r 

Memory p o r t a r b i t e r H'H 

S w i t c h 1 ( i f lumped) 

n >v \-$~] ( i f d i s t r i b u t e d ) 

T a b l e 9. Minimal module r e q u i r e m e n t s 

m . n . v f u n c t i o n s o f a p p l i c a t i o n r e q u i r e m e n t s , r e s t d e r i v e d 
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R p r Reliability of processor. 

R p k Reliability of processor port controller. 

R l m Reliability of local memory module. 

R m k Reliability of memory port controller. 

R m a Reliability of memory port arbiter. 

R s m Reliability of shared memory module. 

R s c Reliability of switch cross point. 

R s l Reliability of lumped switch. 

R m c Reliability of master clock. 

Table 10. Reliability parameters. 
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EOUIPMENT CHIPS GATES BITS X/Mhr 

PDP-11/40 (each of 16) 
Processor (pr) 
C M U modifications to Processor (pk) 1 

416 
53 

3442 
492 

15872 
0 

56.933 
7.610 

Relocation Box (each of 16) (pk) 99 736 768 12.744 

Memory 
EMM box 32Kw (sm) 

(each of 32, 2/port,byte parity) 
EMM interface (per EMM box) (sm) 
Memory Control (per port) (mk.ma) 

189 

42 
20 

413 

516 
197 

589,824 

0 
0 

159.638 

6.918 
2.918 

Local Clock (pk) 
(each of 16; one per processor) 

116 1504 256 18569 

Master Clock (one only) (mc) 83 1717 0 14.704 

16x16 Crosspoint Switch (si) 
Crosspoint logic (total) 
Pr ior i ty Decode logic (total) 
Processor Interface logic (total) 
F ront Panel, 

1656 
864 
384 
544 

29808 
7344 
3552 
4448 

0 
0 
0 
0 

328.923 
121.664 
57.104 
77.712 

(Crosspoint Enable/Disable etc., total) 

Table 11. Complexities and predicted failure rates for modules in C.mmp 

The switch was modeled in two ways. The simplest case (lumped) is when the switch is 
considered to be a single component whose failure causes the whole system to fail. The 
second case more accurately reflects the construction of the switch. Figure 8 shows a single 
bit slice of the actual switch implementation. It is obvious from this Figure that a 16 by 16 
swi tch is not made of 256 (16*16) individual cross points, but rather is 16 sets of cross 
points from one processor port to the sixteen memory ports, and another 16 sets of cross 
points from one memory port to the sixteen processor ports. Thus the failure rate of the 
components used as the communication path from a processor port to all the memory ports 
was added to the processor port controller failure rate, and the failure rate of all the 
components used as the communication path from a memory port to all the processor ports 
was added to the memory port controller failure rate. 

*The lower case letters within parentheses in this table refer to the subscripts on the Reliability Parameters in Table 
10 e.g. R k i s assumed to be an exponential with a failure rate which is the sum of the failure rates on lines which have 
the annofation "(pk)" in this table. 
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b.) Memory to processor path 
Figure 8. Physical implementation of crosspoint switch. 

The system reliability R s y s can be stated as a function of the aggregate reliability of the 
processor and the aggregate reliabiity of the memories. We write 



P -n 

R s y s " R mc * Z ( , P) r ?SP ^ A G p ) 1 R l 
i -0 

where 

N - v 

R A G P " R p k * R p r * X ( j ^ R ^ d - R , ^ 

j-o 
and 

MPD 

R l - S (JMCSM < l - R A G M) K R2 

where 

MPD - T -

- Maximum number of memory ports that can fail because of 
memory port arbiter or controller failure. 

R A G M " R m k * R m a 

- overall reliabilty of memory port controller and memory port 
arbiter. 

and further , R 2 gives the reliability of the memories when m of them are required for 
application. 

( T -k )M -m 

Ro - T ] R(T -k)M-A / I D xA R , 

A - 0 

MMP 
R lmp = Z B a R3 

a - t 

MMP = Min [ L-jgpJ, T - k - ] 
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B« - FVSt) - i [(Tt") A A . H / ( ™ H ) ] ] 

w h e r e B a = number of cases such that failure of 'A' memory modules causes a memory 

por ts to go down. 

0 J f 1 11-kxlWi J = 0 

( A - ( T - k X M - l ) ) otherwise 

L e t D * T - k - a 
« number o f memory p o r t s f u n c t i o n i n g 
= number o f s w i t c h c r o s s p o i n t s w o r k i n g pe r p r o c e s s o r p o r t . 

If for simplification we assume that each processor should have access to all the required 
shared memory modules at any given time then 

R 3 = U I: p - j ) £ ( g R s P- i - rKD-g) t a . R s c ) ( P - i ) g + r ( D - g ) 

r=0 g=0 

w h e r e R s c is the reliability of a switch crosspoint. In the case of a lumped switch 

R , m P = K s , « ' ( n w > 

Table 11 lists the major modules in the C.mmp implementation with their complexity and 
lumped failure rate. These failure rates were used in the above reliability model to generate 
the cu rves in Figures 9,10,11,12 and 13. C.mmp was modelled assuming that all processors 
w e r e P D P - l l / 4 0 ' s . One million words of semiconductor memory distributed 64Kw per port 
was also assumed. Figures 9 illustrates the system reliability (lumped switch) for var ious 
values of required processors (e.g. 4,8,12, and 16, assuming only 502 of the shared memory 
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is required). Comparing the curves for four and eight required processors indicates that the 
extra four processor spares contribute little to increasing system reliability. Figure 10 shows 
even less sensitivity for the 4, 8, and 12 required processors curves since the requirement 
for 752 of the initial memory is dominating the extra reliability contribution of the spare 
processors (lumped switch). Figure 11 shows the system reliability for various numbers of 
required processors with a distributed switch. In this model the failure rate of each set of 16 
cross points which cause a memory (processor) port to go down is added to the memory 
(processor) controller failure rate. The comparison of this curve with Figure 9 (lumped 
switch, same configuration and same requirements) reveals that a lumped switch is a critical 
resource of relatively high failure rate with respect to other modules in the system. Of 
course, as was mentioned before, Figure 9 (lumped switch) is not an accurate model of the 
hardware because in actuality all switch failures do not cause the whole system to fail. 
Figure 11 more accurately reflects the reliability of C.mmp and also illustrates the effect of 
more detailed reliability modeling of critical resources. For example the MTI (Mission Time 
Improvement), the time for which the system reliability ( R S y S ) is above a certain minimum 
mission reliability [10] , of the distributed switch over the lumped switch at a reliability of 0.9 
for eight required processors (Figures 9, and 11) is 2700/350, or about 7.7. 

Figure 12 illustrates the system reliability (distributed switch) for various values of 
memory modules (e.g. 256Kw, 512Kw and 768Kw memory and assuming only 12 processors 
are required.) The difference between the curves for 256Kw and 512Kw of required memory 
shows that the extra redundant memory adds little to system reliability. 

Figure 13 illustrates the effect of using high reliability components. The architecture 
configuration parameters and the minimum requirements for the two systems plotted are the 
same except that the failure rate of all the modules in the system with high reliability 
components is assumed to be a factor of ten lower than the other system (representing 
higher level of component screening and hence a smaller value of 7TQ in Mil 217B). The 
impact of high reliability components on the system is considerable. 

3.4 Cm*, a Modular Multi Microprocessor 

3.4.1 Architecture summary 

Cm* is a modular multiprocessor system based on the LSI-11 processor. Each computer 
module (Cm) is connected via an interface (S.local) to an intelligent cluster controller, K.map. 
The clusters of Cms can be interconnected via Line's and intercluster buses. Each Cm can 
share memory with any other Cm in the network through routing tables in the K.map. The 
S.local controls local memory access and passes external refrences (i.e. to memory elsewhere 
in the cluster or in a different cluster) to the K.map which does the appropriate mapping and 
routing of the request. The K.map enforces a capability based protection scheme and 
provides considerable support for operating system primitives and interprocess 
communication. The architecture provides for incremental extensibility, modularity, reliability, 
and an effective cost/performance ratio. The companion paper [1] in this issue provides a 
more detailed description of the Cm* architecture. 

3.4.2 Probabilistic hard failure model for Cm* 

Due to the flexibility of the Cm* architecture, two particular configurations were selected 
for comparison. Figure 14 shows the case where there are two parallel intercluster buses 
and all the clusters are connected to these two buses via Line's. Figure 15 shows the case 



TIME (HOUR) 

Figure 9. Cmmp with 64Kw per port, 512Kw required (lumped switch) 



TIME (HOUR) 

Figure 10. Cmmp with 64Kw per port, 768Kw required (lumped switch) 
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TIME (HOUR) 

Figure 11. Cmmp with 64Kw per port, 512Kw required (distributed switch) 



TIME (HOUR) 

Figure 12. Cmmp with 64Kw per port, 12 processors required (distributed switch) 



TIME (HOUR) 

Figure 13. C.mmp with 64Kw per port, high reliability components, 

12 processors and 512Kw required (distributed switch) 
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w h e r e the buses form a checkerboard pattern, again each cluster is connected to two of the 
buses via two Line's. No two clusters are connected to the same two buses in this 
configuration. Table 12 depicts the effect of module failure in Cm*, Table 13 lists the 
architectural parameters, Table 14 shows the minimal module requirements, Table 15 lists the 
reliabil ity parameters, Table 16 summarises the failure rates for the modules as calculated by 
A U T O F A I L 

Modu le E f f e c t o f f a i l u r e 

P r o c e s s o r 
Memory module 
S . l o c a l 
K. map 
L i n c 

I n t e r c l u s t e r bus 

Loss o f p r o c e s s o r , 
Loss o f memory module. 
Loss o f CM, 
L o s s o f c l u s t e r , 
Loss o f I i n k , 
i s o l a t i o n o f c l u s t e r i n the c a s e o f 
two L i n e f a i l u r e s . 
Loss of b u s , 
perhaps s e p a r a t i o n o f c l u s t e r s . 

T a b l e 12. E f f e c t o f module f a i l u r e s i n Cm** 

C Number o f c l u s t e r s 
P Number o f p r o c e s s o r s per c l u s t e r . 
M Number o f memory modules per CM. 
B Number o f i n t e r c l u s t e r b u s e s . 

T a b l e 13. A r c h i t e c t u r a l parameters 



Hodu 1 e Minimum number 

P r o c e s s o r n 

Memory module m 

S.iocal MS « Max [ n , T —JQ[— 1 ] 

K.map Max [ f - £ - 1 , \-&p 1 ] 

Line M a x [ F , T - ^ P 1 ] 

B u s 1 (two p a r a l l e l bus) 
(depends on the s t r u c t u r e ) 

T a b l e 14, Minimal module r e q u i r e m e n t s 

(n ,m a f u n c t i o n o f a p p l i c a t i o n r e q u i r e m e n t s , the r e s t d e r i v e d ) 

R p r o c Reliability of processor in Cm 

R mem Reliability of a memory module 

R s. local Reliability of S.iocal 

R b u s * Reliability of intercluster bus 

R k.map Reliability of K.map • 

R|j n c Reliability of Line 

Rqi Reliability of i clusters that can communicate 

Table 15. Reliability parameters 

*In all 1h« calculations R f e u i assumed to bs 1. 
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EOUIPMENT CHIPS GATES BITS X/Mhr 

Computer Module 
LSI -11 with 4K word memory 69 7145 99,328 29.893 
LSI -11 without 4K word memory (proc) 53 7145 33,792 • 12.902 
4K w o r d memory (mem) 56 438 65,536 23.139 
Serial Line Unit 28 918 0 4.689 
Power distribution 6 74 0 0.973 
Memory refresh control 14 231 0 2.664 

S.local (s.local) 126 3700 5376 24.059 

K.map (k.map) 
Map bus controller, Kbus 138 8494 12,480 33.360 
Mapping processor, Pmap 155 3892 2816 35.600 
Segment descriptor memory 147 1081 92,160 35.454 
Microcode memory 116 376 84,480 26.581 

Line (line) 150 3443 32,960 34.836 

Table 16 Complexities and predicted failure rates for modules in Cm : 

Consider the three cluster checkerboard connected Cm* (Figure 15). It is evident that the 
checkerboard is not a regular structure, i.e. failure of modules of the same type do not have 
an equivalent effect on the system functionality. For example, failure of K.map number 1 
leaves a two isolated cluster system, whereas failure of any of the two other K.map's 
(numbers 2 and 3) leaves a single two connected cluster system, etc. This irregularity 
complicates the generation of an analytical solution for reliability of large arbitrary Cm* 
structures. A program was written to enumerate all possible functional cases based on the 
states of the subset of modules that are required for inter-cluster communication (i.e. buses, 
K.map's and Line's) in the Cm* architecture. For each of the cases, the closed form analytical 
solution for the resultant clusters was used to generate the contribution to reliability for that 
particular case. The reliability of the entire structure is then a combination of the reliability 
of these special cases. The number of cases enumerated in this fashion is v e r y much less 
than the total number of functional states which the structure may occupy. At any stage of 
enumeration the available modules will be checked against the minimum requirements, if they 
do not satisfy the minimum requirements that case will not be considered further. 

The system reliability will be evaluated with respect to the module failure effects, 
architectural parameters, minimal module requirements and reliability parameters in Tables 12, 
13, 14, and 15. 

T o evaluate the reliability of the whole system we follow the example in Section 3.2, 
i.e. calculate the contribution to the system reliability of each working state. The overall 
rel iabi l i ty of the system will be sum of the contributions of all the working states. 

T h e general formula for system reliability to be derived in this section is valid for any Cm* 
st rusture (parallel bus, checkerboard pattern, etc). Assume after the failure of a buses, j3 
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K.maps's and € Line's there exist f sets of intercommunicating clusters. Each set has qi 
connected clusters. Any of the parameters used in the following equations and not mentioned 
are previously defined in the tables. 

f 
let R q i - reliability of set i ( Z W m C) 

i-1 

Then the reliability of the whole system is 

f 

R S y s = [ l - n U - R q i > ] R & J d - R b u s ) a R ^ p (1-RK.map^.* 
i=0 

R f e ^ l - R l i n c ) * 

(It is assumed that each cluster is connected to two buses.) 

w h e r e R q j « 0 if set i does not satisfies the minimum requirements and 

qi*P-MS 

R q i - I (q1P)Rsq. iroPc-af<l-RS.loca|)aRl 
a-0 

and 

q j * P - a - p 

R i - ( Z ( qi*E"a) RjiS-"6-<i-Rproc ) b ) * 
b » 0 

(n i*P-a)*M-f^ 

( y ( (qi*P-a)*M\ p(qi*P-a)*M-e / i R ) 
\ \ e / Amem V A n mem ; / 

e*0 

The further evaluation of R c v y c is a function of the particular Cm* structure. Consider the 
checkerboard structure with identically configured clusters and an application can be met b y 
a single cluster. Then there are six possible major states of the configuration in Figure 15 
which provide at least one functioning cluster. They are: 

1. All components function 

2. All components function except at least one Line is failed 

3. Both Intercluster buses function, all four Lines function, one or two K.map's are 
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failed 

4. Both Intercluster buses function, one or two K.map's are failed, at least one Line 
is failed 

5. At least one Intercluster bus is failed, all K.map's and all their Lines function 

6. At least one Intercluster b'us is failed, one or two K.map's are failed. 

Note that each of these cases consists of several sub-cases. The system reliability R s y s is 
the sum of the reliabilities in each of the six cases above. As an example, we shall only 
de r i ve the equations for Case 2 in which all the components function except at least one Line 
which is failed. The other cases can be derived in an analogous manner. With the notation of 
Table 15 we have the following sub-cases: 

a) All components work except exactly one Line 

R - Rlus * Rk.map * Ri?nc<l-Rlinc> * 

( ? ) [ l - U - R q 2 X l - R q l > ] 

The failure of exactly one Line implies that at least two clusters will still be able to 
communicate while the third is isolated. The term within "[]"s is the probability that the 
task's processor and memory requirements are met either by two communicating clusters 
( Inclusive) OR by one isolated cluster. 

b ) All components function except exactly two Lines 

R " R £ u s * Rk.map * f L U - R l i n c ) 2 * 

{ 2 [ l - ( l - R q 2 K l - R q l ) ] + ( ( f ) - 2 ) . [ l - ( l - R q l ) 3 ] } 

T w o Lines can fail in a symmetric fashion (Lines 1 and 3 or 2 and 4 in Figure 15) or in an 
asymmetric fashion (Lines 1 and 2 or 3 and 4). In the former case we have one isolated 
cluster and two communicating ones. This is reflected by the first term in "[]"s within " { }"s , in 
the prev ious equation. In the latter case we have three isolated clusters. This gives rise to 
the second term in w [ ]"s within " { } w s, in the previous equation. 

c) All components function except exactly three Lines. There will be three isolated 
clusters. 
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R - Rlus * Rk.map * ( a ^ l i n c ^ - R l i n c ^ l - t l - R q l ) 3 ] 

d) All components function except exactly four Lines. Again all three clusters are isolated. 

R - RLs * R L a p * < l - R l i n c > 4 I > < l - R q l ) 3 ] 

The reliabilities in each of the other five cases may be calculated in a similar way. The 
above model was programmed using predicted failure rates from the modified MIL Hdbk 217B 
model described in Section 2. Some of these failure rates are summarized in Table 16. 
C u r v e s were plotted for the reliability of the Cm* model configurations for various values of 
p and m. # 

The configuration parameters used in plotting the curves are for a three cluster model 
Cm*. Each cluster has three Cm's and each Cm has a total number of 8, 4Kw memory modules. 

Figure 16 illustrates reliability of a system with two parallel buses for various values of 
requi red processors (e.g. 3, 6, and 9, assuming 8, 4Kw memory modules per Cm and only 
144Kw of memory required). 

Figure 17 illustrates the reliability when all of the memory modules (288Kw) are required. 
This curve shows no improvement due to redundant processors, because memory has 
dominated the reliability contribution of the spare processors. 

Figure 18 depicts the reliability of a system equivalent to that of Figure 16 but using a 
checkerboard pattern for the intercluster buses. A careful look at these two curves shows 
that the two parallel bus system is slightly more reliable. Figure 19 plots a curve from each 
configuration (i.e. the one with six processors required) on the same graph. 

Figure 20 shows the case when six processors and 144Kw or 288Kw of memory are 
requi red. A 502 redundacy in memory yields a substantial increase in system reliability. 

The configuration for a Cm* system for optimum reliability for a given set of minimum 
requirements has not yet been determined. The effect of interconnection structure on 
system reliability is ongoing research. 
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<?BUS 1 

Line 1 

CLUSTER 1 

CLUSTER 2 

CLUSTER 3 

BUS 2 

Figure 14. 3-Cluster Cm* configuration, two parallel bus pattern 

« 
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CLUSTER 1 

Line 4 

CLUSTER 3 

BUS 2 

CLUSTER 2 

Figure 15. 3-Cluster Cm* configuration, checkerboard pattern 
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Figure 16. 3-Cluster Cm* with three processors/cluster, 

32Kw/Cm, 144Kw required (parallel buses) 



Figure 17. 3-Cluster Cm* with 3 processors/cluster, 

32Kw/Cm, 288Kw required (parallel buses) 



Figure 18. 3-Cluster Cm* with 3 processors/cluster, 

32Kw/Cm, 144Kw required (checkerboard pattern) 



53 

TOOO 2000 3000 4000" 5000 
TIME (HOUR) 

.01 
0 

Figure 19. 3-Cluster Cm* with 3 processors/cluster, 

32Kw/Cm, 144Kw and 6 processors required 



TIME (HOUR) 

Figure 20. 3-Cluster Cm* with 3 processors/cluster, 

32Kw/Cm, 6 processors required (checkerboard pattern) 
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3.5. C.vmp, A Voted Multiprocessor 

3.5.1 Architecture Summary 

C.vmp may best be described as a multiprocessor system capable of fault -
tolerant operation (Figure 21). It consists of three separate LSI-11 microcomputers 
each with its own memory and peripherals. They may run independently as three 
separate computers communicating through parallel line units (L in Figure 21). 
Alternatively, they may be switched into what is termed voting mode under manual or 
program control to form a triplicated LSI-11. In this mode all three processors run 
identical programs operating on identical data. All signals at the bus level are voted 
upon by a majority voter in both the processor-to-memory direction as well as the 
memory-to-processor direction. This form of triple modular redundancy (TMR) allows 
the voted multiprocessor to continue operating under the situation where any one out 
of three copies of any triplicated element (e.g. processor, memory, floppy disk, bus line 
etc.) suffers a hard failure. Confining the voting to the bus level makes fault-tolerance 
transparent at the software level while allowing the use of off-the-shelf components. 
The capability to switch between voting and independent mode under program control 
allows dynamic tradeoffs between reliability and performance. A companion paper [1] 
in this issue provides a more detailed description of the C.vmp architecture. 
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3.5.2 Probabilistic Hard Failure Model for C.vmp 

The effect of the failure of various modules and subsystems in C.vmp is shown 
in Table 17 and the reliability parameters are presented in Table 18. The reliability 
calculated for permanent faults is based on a parts count model of the system, using 
the AUTOFAIL program described earlier. For these calculations, we assume a 
hardware configuration for C.vmp consisting of three processors, 28K of memory per 
processor , and the voter. The resulting values are shown in Table 19. Table 20 
summarizes the failure rates for the various modules for two different voter designs. 

MODULE OR SUBSYSTEM EFFECT OF FAILURE 

Any single Processor Loss of a Processor 
(System continues to function) 

Any single Memory Loss of a Memory 
(System continues to function) 

Any single Voter bus interface 
Processor bus side 
Memory bus side 
both 

Loss of a Processor 
Loss of a Memory 
Loss of a Processor and a Memory 

(system continues to function 
in each case) 

Voter control circuitry Loss of Voter 
(two Processors may function 
in independent mode) 

Any one copy of any triplicated 
Bus line on Processor side 
or Memory side 

Loss of a Processor or a Memory 
respectively 

Table 17. Effect of module failures in C.vmp. 
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RELIABILITY PARAMETER MEANING 

R Reliability of Processor 
Reliability of single 4Kw memory module 

R v Reliability of triplicated part of the voter 
R n Reliability of non-triplicated part of voter 
R e Reliability of the part of the voter associated 

with the external bus 

Table 18. Reliability parameters. 

EOUIPMENT CHIPS GATES B J I i X/Mhr 

LSI-11 Processor (each of 3) 53 7145 33,792 12.902 

4K RAM (each of 7 per processor) 56 438 65,536 23.139 

Bus Level Voter: Non-Triplicated Version 
Control 22 189 0 3.165 
Non-triplicated portion: 44 803 0 8.543 
Triplicated portion (total for 3 buses) 143 1781 0 24.349 

Bus Level Voter: Triplicated Version 
Control 22 189 0 3.165 
Triplicated portion (total for 3 buses) 263 4107 0 48.424 

Configurations: 

Model 1: 3 LSI-11, 7x4Kw RAM/Processor, nontriplicated voter. 

Model 2: 3 LSI-11, 7x4Kw RAM/Processor, triplicated voter. 

Lumped Failure Rates: 

Model 1: 560.682 /Mhr. 

Model 2: 576.214 /Mhr. 

Table 19. Complexities and predicted failure rates for modules in Cvmp 
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Three cases are considered: 

> a nonredundant system consisting of only one processor with memory; 

> a triplicated system with a nonredundant voter design; and 

> a triplicated system with a redundant voter design—all devices in the data 
paths of the voter, including the voter chips themselves, are triplicated. It 
should be noted that a large portion of the non-redundant voter is 
replicated, such as the various bus interfaces. 

Now the reliability parameters for each case will be derived. 

Reliability Parameters, Nonredundant System.. The nonredundant system has a 
failure rate found by simple summation of the individual failure rates: 

R e p - (Lp + 7Lm) * T 
*non e 

Substituting the failure rates from Table 20 yields: 

R . - -174 .9 * T 
K n o n e 

Lp - 12.902 LSI-11 processor module. 
Lm * 23.139 Memory module (4K semiconductor RAM) 

For the nonredundant voter design: 
Lvp « 1.963 Portion of voter connected to processor bus 
Lvm - 2.130 Portion of voter connnected to external bus 
Lv « 4.024 Portion of voter connected to both buses 
Ln - 11.708 Non-triplicated portion of voter 

For the redundant voter design: 
Lvp • 3.311 Portion of voter connected to processor bus 
Lvm - 3.189 Portion of voter connnected to external bus 
Lv « 9.641 Portion of voter connected to both buses 
Ln - 3.165 Non-triplicated portion of voter (part of the control) 

Table 20. Failure rates for system modules 
for different voter designs 
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Reliability Parameters, Triplicated System. Nonredundant Voter, The reliability of 
the triplicated system is found by summing the reliabilities for all states in which the 
system is correctly operating. Each state is a combination of working and failed units. 

The various parts are: 

Rp = reliability of processor bus elements 
= e - (Lp + Lvp) * T 
L e-14.865 * T 

Rm » reliability of a single 4K memory module 
. e -Lm * T 
. e -23 .139 * T 

Rv - reliability of the triplicated part of the voter 
„ e - L v * T 

. e - 4 . 0 2 4 * T 

Rn - reliability of the non-triplicated part of the voter 
m e - Ln * T 
. e - l 1.708 * T 

Re - reliability of the part of the voter associated with the external bus 
„ e -Lvm * T 
, e -2 .130 t T 

Reliability Parameters. Triplicated System. Redundant Voter. If the voter is itself 
redundant, the reliability factors calculated above become: 

Rp - e - 1 6 - 2 1 3 * T 
Rm - e-23.139 « T 
Rv - e - 9 - 6 4 1 * T 

Rn « e-3-165 * T 
Re . e - 3 . 1 8 9 * T 

Reliability Model. The reliabilities for each operational state are: 

1) At most one processor failed, at most one memory module per 4K 
address range failed, voter and buses all working. 

R I » ( 3 R p 2 - 2Rp 3 ) * (3Rm 2 - 2 R m 3 ) 7 * R v 3 * Rn * R e 3 

2) At most one processor failed, single memory bus failed, voter and 
all memory on the other two buses working. 

R2 * 3 * ( 3 R p 2 - 2Rp3> * R m 1 4 * R v 3 * Rn * R e 2 ( l - Re) 

3) One third of voter failed, all processors and memories on the other 
two buses working. 



61 

R3 - 3 * R p 3 * R m 1 4 * R v 2 ( l - Rv) * Rn * R e 2 

The coefficient of three in R2 and R3 represents the three possible configurations for 
this e r ro r . ^ 

Note that in the last case, the failure of a third of the voter masks the operation 
of one processor-memory pair. Since it no longer matters whether that pair operates, 
the Rp and Re terms are only squared. When added together, the triplicated reliability 
reduces to: 

R t r j p = (3*Rm 2 - 2 R m 3 ) 7 * R v 3 * Re 3 * Rn * (3Rp 2 - 2Rp 3 ) 
+ 3 * (Rm 7 * Rv t Re * R p ) 2 * Rn * (Rv(2 - 3Re - 2Rp • 2Re*Rp) + 1) 

These three reliabilities, R n o n and the two cases of R { r j p » are plotted using the 
der ived reliability parameters in Figure 22. Note that the C.vmp system with a 
nonredundant voter is more reliable than the C.vmp system with a fully redundant 
vo ter except for reliabilities above 0.94, and a time period of less than 1600 hours. 

TIME (HOURS) 

Figure 22. Reliabilities of Simplex system and Cvmp 
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4. Summary and conclusions 

A modified MIL 217B model was proposed after comparing semiconductor chip vendor data 
to data from C - M l f s multiprocessor systems. A program, AUTOFAIL, embodies a 
parameter ized version of the modified model. AUTOFAIL was used to calculate failure rates 
for the various modules in the three multiprocessor systems. Hard failure reliability models 
w e r e then presented using these calculated failure rates to provide a basis for consistent 
comparison. 

A f te r careful studies of the curves presented in the previous three sections, several 
interesting points are observed. 

1- The lumped switch model for C.mmp shows the effect of dependency on a critical 
resource with relatively high failure rate. In Figure 9 (lumped switch) the curves for 4, 8, 12 
requ i red processors drops almost linearly with time cancelling the reliability improvement due 
to redundant processors and memory modules. Whereas in Figure 11 (distributed switch) the 
cu rves for 4, 8, 12 required processors are almost flat up to 2000 hours, pointing out the 
rel iabil i ty improvement due to redundant modules (processors and memory modules). 
Substantial gain in reliability prediction can be obtained simply by more accurate modeling of 
the systems and their failure modes. 

2 - Requirements for a large number of one type of module will dominate the reliabil ity 
improvement due to redundancy in other modules. In effect, the module with the least 
amount of redundancy behaves almost as a nonredundant system exhibiting a close to 
exponential failure rate. Figure 10 shows that requiring 752 of the memory modules negates 
the effect of redundant processors and all the curves for 4, 8, 12 required processors 
coincide with each other. This should be true for any architecture. Figure 17 illustrates the 
point for Cm*. 

3 - Small amounts of redundancy will improve system reliability. Beyond that limit, the 
addition of any more redundant modules does not incease system reliability. Figure 11 shows 
that for C.mmp, 8 redundant processors are the limit. 

4 - High reliability components will increase the reliability of the system dramatically. 

5 - The level of modularization can have an impact. A study not included in this paper 
examined the effect of 4Kw and 16Kw memory modules on Cm*. Due to the sharing of control 
c i rcu i t ry , the failure rate of the 16Kw memory module was less than four times that of the 
4Kw memory module. In cases where a low percentage of the total system memory was 
requ i red , the 16Kw memory module was a better choice due to its lower failure rate. 
However , if a high percentage of the total system memory was required, the 4Kw memory 
module was superior since its lower level of modularity allowed a larger number of 
operational system states. 

The three architectures presented here had differing design goals. Cmmp was meant to be 
a high performance multi-minicomputer. Cm* was designed to be a highly available, 
extensible, and modular mutiprocessor. C.vmp was a fault tolerant mutiprocessor wi th v e r y 
limited expandability. 

It is difficult to compare the three architecture in terms of reliablity. To get a feel for the 
absolute reliablity of each architecture, a typical curve for each one of the three, based on 
the actual hardware implementation, is plotted in Figure 23 The curve for C.mmp required 4 
of 16 processors, 512Kw out of 1 Mw of memory and a distributed switch. Cm* required 3 of 
9 processors and 144Kw out of 288Kw of memory. It is Important to note that the 
architectures modelled in Figure 23 do not have the same processing power , however , C m m p 
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appears best for short missions and C.vmp for long missions. 

Perhaps the best way to compare these architectures is to normalize them with respect to 
a common factor, yielding differences from the actual existing implementations. This 
normalization will indicate the effect of the processor/memory interconnection structures on 
the system reliability. For example one of the common factors to normalize is the number of 
p rocessors and memory modules. Another factor is performance. Studies are in progress at 
Carneg ie -Mel lon University to compare different interconnection structures under various 
normalizations. 



O 4000 SOOO 12000 16000 

TIME (HOUR) 

Figure 23. Comparison of reliabilities of C.mmp, Cm*, and C v m p 
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