NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ABSTRACTION and VERIFICATION in ALPHARD:
Design and Verification of a Tree Handler

Mary Shaw
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

June, 1976

Abstract: The design of the Alphard programming language has been
strongly influenced by ideas from the areas of programming
methodology and formal program verification. The interaction of
these ideas and {heir influence on Alphard are described by
developing a nontrivial example, a program for manipulating the
parse tree of an arithmetic expression,

Keywords and Fhrases: abstraction and representation, abstract data
types, assertions, correctness, information hiding, program
specifications, program verification, programming languages,
programming methodology, structured programming,

The research described here was supported in part by the National Science Foundation
(Grant DCR74-04187) and in part by the Defense Advanced Research Projects Agency
(Contract F44620-73-C-0074, monitored by the Air Force Qffice of Scientific Research).

Contents
TP OAUCTION ook sresas s bebase st s R RS RRA s008 3
Example: Minimal-Register Evaluation Order 4
Definition and Verification o} B FOIM s s staansssssies 7
CoNCIUSION i nemssentssemsmsstsssasssasseens R 16
Appendix A: Complete Definition of Biree and Bnode ... 18
Appendix B: Formal Definilion of Graphs with Weighted Arcs ... 21

REfRreNCRS .rrrreeeresesssr e sersssenans . ceuse et obt e ser e A R pa T8 22

Page 2

Alphard: Design and Verification of a Tree Handler Page 3

Introduction

The major concerns of the Alphard research are the total cost of software development
and the quality of the resulting programs. Problems that arise from repeated modifications to
large programs, although often ignored in the literature, are of particular interest,

The Alphard language design has drawn heavily on previous work in both programming
methodology and Program verifitation. From the former we learned that in order to
understand the programs we write, we must find some way to make them less complex; this
may be done by restricting both the form of the programs {through modularity and localization
of information [Parnas72]) and the process through which we create them {through stepwise
refinement [Dijkstra72, Wirth71)). From the tatter we learned that o programmer needs a
precise, correct description of what a program does in order to use it without having to
understand its implementation in detail; we also found techniques for writing and proving such
descriptions.

program in a well-structured fashion; the structure that was imposed must be obvious in the
resulting program. The concept of abstract datq type has therefore become central. [n

adaptation, we show (a) that the concrete representation is adequate to represent the
abstract type, (b) that it is initialized properly, and (c) that each operator provided for the
type both breserves the integrity of the representation and does what it is claimed to do {in
terms of the abstract behavior and of the concrete procedure that happens to implement the

This paper describes the language and verification methodology that have resulted from
merging these ideas. A particular example is used fo motivate the description, and a
nonstanclarg imptementation of the central data abstraction was chosen to emphasize the
independence of the abstract and toncrete definitions, The next section presents a problem

!

In this paper we wili use the word "type” in 3 nontechnical sense. |n general, the
abstraction introduced by a form need not be a type as we traditionally understand the word.

Page 4 Introduction

for which a binary treeis a natural primitive data structure; the specifications and procedures
for the solution assume the existence of an implementation of binary trees.

The Alphard form which defines those binary trees is developed in the third section.
The development of that form is essentially independent of the motivating example, sO the
resulting abstraction is useful for other applications as well,

Example: Minimal-Register Evaluation Order

Suppose you are given an arithmetic expression represented as a binary parse tree and
you are asked to output the nodes in postfix form with the subexpressions arranged in the
order that minimizes the number of registers required for the expression evaluation. An
algorithm for finding this order was given by Nakata; its description was refined by Johnsson
[Nakatab?, Johnsson75]. The algorithm has iwo steps:

Assign a weight W to each node n of the tree such that if n is a leaf then
Wn=0’ otherwise the immediate descendants of n have labels right and left
and W, = min{max(left+1, right), maxileft, right+1)). W, is the number of
registers needed to evaluate the tree with root n.

To evaluate the expression, begin at the root node and walk through the
tree generating code so that at each node the operand requiring the larger
number of registers is evaluated first. If the operands require the same
number of registers, the left operand is evaluated first. If the right operand
is evaluated first, include an indication of the reversal in the output sfream.

Assuming that suitable definitions for trees and an output stream exist, this is easily converted
to a program. We will use a data abstraction called a btree as if it were a primitive data type.
It acts like a binary tree with an associated collection of node reterences called bnodes. There
are at least enough operators on bnodes to obtain the left son, the right son, and the value
field (nodeval) of any node and to determine whether a node is a leaf. The btree form given
in Appendix A provides other operators, but they are not required for this example. For
convenience, wWe restrict the size of btrees. We will use a queue to construct the output; a
suitable definition is given in [Wulf76].

We first write, more precisely than the English algorithm above, an expression that
describes the desired output for a parse tree E. This expression appears as the post conditon
(output assertion) of the procedure minreg that computes it. We let Wteft denote the weight
of the left subtree, W, p, dencte the weight of the right subtree, and invertop supply the
operator that indicates subexpression reversa\i.2 The operatar "~" denotes concatenation. The

Alphard: Design and Verification of a Tree Handler Page 5
two-step algorithm is then wrilten:

minreg(E: blree(?r; record{wt,data: integer), ?maxht: integer)) returns P: queue
post (isleaf(E) > minreg(E) = E.nodeval.data)
A (Wteft-}'wn‘.ghr > minreg(E) = minreg(E.leftson)~minreg(E.rightson)~E.nodeval.data)
A (wteft<wr£ght > minreg(E) = minreg(E.right50n)~minreg(E.ieftson)
~invertop~E.n0deva|.data) -

begin local exptr: bnode(E);

markweights(exptr);

minregwalk{exptr P},

end;

The program minreg operates on an arithmetic expression stored as a btree named E with a
two-field record at each node and a known maximum height. The question marks on the btree
parameters r and maxht indicate that those are implicit parameters -- that is, they will
automatically be available for any btree which is passed as input, The record field names
must, however, be exactly "data” and "wt". Minreg produces a queue named P from the tree E
by first declaring a bnode variable, exptr, to point at nodes in £ (exptr is automatically
initialized to the root of £), then evaluating the register requirements of the subtrees with
function markweights, and tinally producing the queue with a special treewalk, minregwalk.
Note that P is automatically initialized to the empty queue when the output variable for the
procedure is set up.

Using M, to denote the result of executing markweights on the tree with root k (eg.,
M

right = markweights(exp.rightson)), we can write the definition of procedure markweights:

markweights(exp: bnode(?F: hiree(?r: record(wt,data: integer), ?maxht: integer)))
returns thiswt: integer
post exp.nodeval wt = Mexp A (isleaf{exp) o Mezp = 0)
A (-isleaf(exp) o M, = mi”(max(Mteft*l'Mright }, max(Mleft.MrightH))) =
begin local leftwt, rightwt: integer;
if isleaf(exp) then thiswt « 0
else begin
leftwt « markweights(exp.leﬂson);
rightwt « markweights(exp.rightson);
thiswt « min{max(leflwf+1,rightwt), max(leftwt,rightwt+}));
end;
exp.nodeval.wt « thiswt;

end;

2 In some cases we use qualified names rather than functional notation for clarity.
Both styles are acceptabie in Alphard, and no deep significance should he read ivbe sr

Aictimebimem TL . wme—

Page © Example: Minima! -Register Evaluation Order

Markweights walks over exp (a bnode which indicates a subtree), setting the wt field at each
node to the value described by the algorithm above. The post condition, located after the
procedure header, specifies the result of the function. It is the formal description of what
must be verified about procedure markweights and consequently a theorem about the use of
that procedure. The body of markweighl uses bnode functions named isleaf, leftson, rightson,
and nodeval. 1 also refers to the wt field of the record stored as the value at each node.
These operations are discussed in detail in the next section.

minregwalk{exp: bnode(?E:btree(?r:record(wl,data:integer),?maxht:integer)), order:queue)
post (isleaf(exp) > order = order’ ~ exp.nodeval.data)
A (Wtefr > Wright > order = order’ ~ Q ~ Qg ~ exp.nodeval.data)
AN W < Wright > order = order” ~ Qg ~ Q. ~ invertop ~ exp.nodeval.data)
where Q, Qg are values which satisty the post conditions of
minregwa!k(Wteﬁ,O), minregwalk(wrt-ght,o) respectively =
begin
it ~isleaf(exp) then
if exp.leftson.nodeval.wt 2 exp.rightson.nodeva!.w\
then begin minregwalk(exp.leﬂson,order); minregwalk(exp.righlson,order} end
else begin minregwa!k(exp.rightson,order);
minregwalk(exp.lef\son,order); enq(order,invertcap) end;
enq{order.exp.nodeval.data);

end;

Minregwalk concatenates a postfix representation of its first argument (a parse tree) to its
second argument (a queuve). It lests the weights previously stored at the nodes in order to
determine the evaluation order of the subtrees. The program uses the same functions on
bnodes as markweights; it also uses a queue, but only performs the eng {enqueue) operation.

The formal definition and verification of queues is given elsewhere [Wuif76]; the usage in

minregwatk should be clear.

Given suitable specifications of the functions on bnodes and queues, these two
procedures can be shown to satisfy their post wnditions.z1 The post conditions are, in turn,
direct expressions of the algorithms given in English. 1t is straightforward, but neither
necessary nor appropriale, to demonstrate that the post conditions express the minimal-
regisier property. The algorithms {hemselves were acceplable on the strength of the analysis
that accompanied them, and nothing would be gained by repeating that analysis for the
formulation in the program.

R —

3 The eng function appends its cecond argument to the queue named by the first
argument (e, ena(Qe) = Q append e). The queue was created (initially empty) in the top-
level procedure minreg for the purpose of collecting the output.

4 Tnhe detailed proofs are standard and would contribute little to this exposition of
Alphard.

Alphard: Design and Verification of a Tree Handler Page 7

In the next section we define, implement, and verify btrees and their associated bnodes,
showing how the information needed lo understand their behavior is kept separate from the
information about their implementation,

Definition and Verification of 3 Form

Alphard’s data abstraction mechanism is the form, a syntactic device for encapsulating a
set of data declarations, function definitions, and other information about implementation
details while revealing to the user only selected information about the behavior of the
abstraction. The verification shows that the implementation supports the behavior described
in the specification. The Programs in the previous section used "btree” and “bnode” in the
Same way that other languages use type names: we said that exp was a bnode and assumed
that we could therefore perform certain operations on it. In this section we develop the form
that defines birees and bnodes. The definition includes not only the functions actually used
by the procedures above, but also enough others to round out the form as a useful
abstraction. For example, the form defines functions that might be used to construct the parse
tree that minreg manipulates.

A form contains three major components. These are the specifications, which provide
information to the user about the abstract behavior of the objects being defined, the
representation, which defines the concrete data structures used to maintain the objects and
which states certain of their properlies, and the imglementatiorl, which containg the bodies of
the operators. Thus the skeleton of the btree form is:

form btree(N: record, maxht: integer) =

beginform

specifications

representation

implementation

endform
where ellipses are used to dencte text which will be filled in tater. This form actually
describes a variely of specific trees: both the maximum height of the btree, mazht, and the
record to be stored at each node, N, are parameters to the instantiation of the form. Note
that bnodes have also been treated as "types”. One of the cOmponents of the btree form is
the definition of bnode, which is a form in its own right. We will examine each af the

tomponents in turp; the fragments discussed here are assembled as a complete form definition
in Appendix A.

Page 8 Definition and Verification of a Form
Specifications of btree

The btree specifications explain what a btree is and how it can be used. They give the
restrictions on the instantiation parameters {requires), say that a btree is a special kind of
graph5 (let, invariant, initiatly), list the operations that can be performed on it (functions),
and give the specifications for bnodes which refer to a given btree {(form).

specifications
requires maxht 2 0
let blree = <r:N, g:graph>
where g = <nodes: {tr:N}, links: {<triN, w:boolean, trj:N>}>;

invarianl
(<n,w,k1>,<n,w,k2>(links Dk = ko) A ! unique left & right sons
(<n,w,x> C links 2 Jy <n,l-wy> € Jinks) 1 either zero or two sONs
¥n ¢ nodes {<nw,r> ~C links I ris the root
A pathent{r,n) =1 1 singly connected
A length(<r.n>) < maxht) ! limited height
initially biree = <r, <{rh{ }>>
functions

root(tr:btree) returns res: bnode post res =71,
height(ir:biree) returns hinteger post h = max st k=lengthl<r, . . » x>)
st (isleaf(x) A root{r)),

The requires simply says that only nonnegative values of maxht (the maximum height of the
tree) make sense. The let declares {hat a btree may be regarded as a distinguished root and
a graph, and that graph concepts will be used to explain them. Since a graph consists of a
pair of sets, the let goes on to describe these cets in terms of booleans and the record type
passed as an instantiation parameler. The i_n_variant states certain relations on the graph
which must always hold of a biree; the comments (! . . .) give the intuitive interpretation ot
each phrase. Initially states that when a btree is originally instantiated, it is empty except for
the root. For each function, the specificalions give the function name, its input parameters, its
result (if any), and the abstract pre and post conditions needed for verifying the function and
describing its inputs and outputs. The invariant will always be implicitly ended with these
explicit clauses to give the actual pre and post conditions. The functions root and height are
applicable to any biree (i.e., any one tor which the invariant holds), so the constant true as an

explicit pre condition is omitted.

Finally, the btree specifications give the abstract description of the sub-form bnode.
The latter form’s organization is similar to btree’s, except that the specifications of bnode
have been printed with those of biree in order to localize the information that will be

presented to a user.

5 A suitable definition of graphs is given in Appendix B.

Alphard: Design and Verification of a Tree Handler Page 9

form bnode(T:btree(?N:record,maxhhinleger}} -

beginform
specifications
let bnode = ptr:N;
invariant ptr ¢ nodes;
initially ptr = r;
functions
leftson(tr:bnode) returns subtr:bnode
pre -isleaf(tr) post <tr,0,subtr> ¢ links,
rightson(tr:bnode) returns subtr:bnode
pre ~isleaf(tr) post <tr,1 subtr> ¢ links,
isleat(tr:bnode) returns tviboolean
post tv = Yw ~3subtr <tr,w,subte> ¢ links,
isroot(tr:bnode) returns tviboolean
post tv = Yw -3Jsubtr <subtr,wtr> ¢ Jinks,
father(tr:bnode) returns subtr:bnode
pre -root(tr) post Iw st <tr,w,subtr> ¢ links;
ancestor(tr,sublr:bnode) returns tv:boolean
post tv = tr=subtr v Jp=<tr, .., subtr> st path{p),
extend(tr:bnode) pre isteaf{tr) A height(tr) < maxht
post -isleaf(tr) A isleaf(rightson(tr)) A isleat(leftson(tr))
seleclors
nodeval: N;
endform

The post conditions of leftson and rightson indicate that a weight of 0 on an arc denotes a left
son, while a weight of | denotes a right son. The only thing new here is the selectors, which
may be viewed ag field-accessors. A name declared as a selector may be used both to set
and to fetch values. Note that a bnode is always associated with a particular btree.

Representation of btree

The representation part shows how btrees are actually stored in terms of other data
structures {unique, invariant) and explains the correspondence between this concrete

representation and the abstract description given in the specifications (rep).

representation
unique T: vector(rec: record(nodeN, inuse:boolean),1,2maxht+1_)
init begin for x:invec(T) do x.inuse « false; T(1] « recinulitrue) end;
rep(T) = < T[| Jnode, < {T[i}node | Tli}inuse}, {<T[i].node,w,T[2i+w].node>
I Tlilinuse A T{2i+w]inuse A we{0,1} } > >
invariant T[1]inuse A (T{ilinuse > i=1 v T{i diy 2)inuseAT(i+1-2(i mod 2)}inuse);

file://-/3subtr

Page 10 Definition and Verification ot a form

The unigue declaration slates that each btree will consist of a vector of records {node value
and “inuse” bit) indexed from 1 to amaxht+1_1 = pjphard’s scope rules prevent the vector and
the record field names from being used outside the form. The init ctause of the deciaration
gives the initialization code to be executed when that vector is a|Iocated.6 It sets all inuse bits
to false, then sets the record at the root to (null,true). The unique declaration states that
each instance of a biree will get its own vector.

The terms rep{T) and invariant explain how the vector is interpreted as a
representation of an abstract tree. The representation function rep(T) exhibits an ordered
pair consisting of the node field of T[l}', which represents the root, and a pair of sets which
represent the graph. The invariant gives a restriction on the distribution of inuse bits which
is sufficient to enforce the abstract invariant. '

In the represeniation chosen for this version of btree, all nodes are stored in a vector
and the jth node’s sons are found at positions 2j and 2j+1. The inuse bit distinguishes
whether potential tree positions are actually included in the tree; a separate bit was set aside
for this purpose because the node can be an arbilrary record and, as a result, there is no way
to encode "nonexistence” in the node value itself. Note that this is the first time a specific
implementation strategy has been mentioned: up to this point a linked-list strategy shouid
have seemed equally plausible.

Verification Considerations

We turn now to the question of how we decide whether a form will actually behave as
promised by ils ahstract specifications -- that is, what properties of a form must be verified if
we wish to use its instantiations with contidence. The methodology depends on explicitly
separating the description of how an object behaves from the code that manipulates the
representation in order to achieve that behavior. It is derived from Hoare’s technique for
showing correctness of data representations[Hoare?Z].

The abstract object and its bhehavior are described in terms of some mathematical
entities natural to the problem domain. Graphs are used here to describe btrees; sequences
are used in [Wulf76] to describe queues and slacks, and so on. In btree we appeal to graphs:

- in the invariant, which explains that a biree is a graph that meets certain

restrictions,

_in the initially clause, where a particular graph and its root are displayed, and

& The phrase "for x: invec(T)" invokes the Alphard iteration statement for vectors. It
causes the loop to be executed once for each element in the vector. See {Shaw76] for
further discussion of iteration.

Alphard: Design and Verification of a Tree Handier Page 11

- in the pre and post conditions for each tunction, which describe the effect the
function has on a graph which satisfies the invariant.

The form contains a parallel set of descriptions of the concrete object and how it
behaves. Since btrees are implemented in terms of a vector of records, the concrete
specifications give restrictions and effects on that vector. In many cases this makes the effect
of a function much easier to specify and verify than would the abstract description alone.

Now, although it is yceful to distinguish between the behavior we want and the data
structures we operate on, we also need to show a relationship that holds between the two.
This is achieved with the representation function rep(T), which gives a mapping from a vector
of records to a graph and its root. The purpase of a form verification is to ensure that the
two invariants and the rep(T) relation between them are preserved.

In order to verify a form we must therefore prove four things. Two relate to the
representation itself and two must be shown for each function, Informally, the four required
steps are’;

For the form

1. Representation validity
[T) > I (rep(T))

2. Initialization

requires { init clouse } initially{rep(T)) A 1.(T)

For each function
3. Concrete operation
in{T) A IAT) { function body] out(T) A I

4. Relation between abstract and concrete
4a. IA(T) A pre(rep(T) o in(T)
4b. IC(T) A prelrep(T'H A oul(T) o post(rep(T))

Step | shows that any legal state of the concrete representation has a corresponding abstract
object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the representation section is legal. Step 3 is the standard verification formula far
the concrete operation as a simple program; note that it enforces the preservation of .. Step

We will use I,(rep(T)) to denote the abstract invariant of an object whose concrete
representation is T, IC(T) to denote the corresponding concrete invariant, italics to refer to
code segments, and the names of specification clauses and assertions to refer to those
formulas. In step 4b, "pre(rep(T))" refers to the value of T before execution of the function,
A complete development of the form verification methodology appears in [Wulf76].

Page 12 Definition and Verification of a Form

4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition
holds and (b) that if the operation is performed, the result corresponds properly to the

abstract specifications.

For biree, several of these steps will be simplified by appealing to the following
standard construction, which determines the correspondence between an index in the vector
representation and a path from the root to a node in the abstract graph.

Let T[j] be the vector element which represents some node in a btree.

Let wow Wo Wy be the binary representation of i, wo=1.

Definé p; as p; = SUMp 0. (wai'b) for i=0..k (note that P;=2Pj_1 *Wi and py=j)
Then the (abstract) path from the root to a node is the path whose elements are

<T{p;_ }node,w;,T[p;}node> for i = 1.k
i-1 i i

In addition, if the node is in the tree, T[jlinuse = true and, because of the term
Tlilinuse =2 i=l v T[i div2]inuse
of the invariant, all elements in the path are also in the tree.

Verification of form properties of btree

At this point we have enough information about btrees to perform verification steps !
and 2, which show the overall validity of the form. We can now proceed with an informal

proof of these steps.

1. Representation Validity
Show: T{1}inuse A (T[i}inuse 2 i=1 v T[i div 2}inuseaT[i+1-2(mod 2)]inuse) 2
(<n,w,kl>,<n,w,k2> ¢ links 2 k1=k2} A (<nwx> € links 2 Jy <n,l-w,y> ¢ links)
¥n ¢ nodes {<nw,r> -Clinks A pathcnt(r,n)=1 A lengthi<r..n>} < maxht)
where nodes = {T[i}node | Tlilinuse}
links = {<T[i].node,w,T{2i+w].node> | T{i].inuseAT[ZHw].inuse A we{0,11}
Proof: Take the clauses of the conclusion one by one:
{a) k=kp because the rep function uniquety determines the triples in links
on the basis of n and w.
(b} 3y <n,1-w)y> because both sons or neither son of a node have the
inuse bit set.
(c) <n,w,r> ~¢ hnks because r=T[1]node and | #2i+w for any integer izl.
(d) pathent(r,n) = | because the standard construction is unigue.
(e) length{<r..n>) < maxht because each vector index must be in the range
[1_'2maxht+l_l] and the standard construction gives a path whose length
is the number of significant bits in the vector index.

Alphard: Design and Verification of a Tree Handler Page 13

2. Initialization
Show: maxht 2 ¢ { for xinvec(T) do x.inuse « false; T[1] « rec{null,true) }
btree = <T[]1]node, <{T{1]node}, {}>> A T[1linuse
A (Tlilinuse > (i=] v T[i div 2)inuseAT[i+1-2(i mod 2)].inuse))
Proof: We will pass over the verification of the for loop; it sets all inuse
bits to false (see [Shaw76] for details). The uniterated assignment
complete the initialization by making T[1] the only active node.

show below {hat each function preserves the accuracy of the representation, but the
adequacy of that representation is established here,

Implementation of btree

The implementation part gives the bodies of the two functions and the bnode form
promised by the specifications. For each function, we provide both the program to compute
the function and the concrele in and out conditions, Although neither function is used in the
minreg program, they are included in the btree form in order to make it a more generally
useful abstraction. The verification of these functions is omitted here because the technique
is illustrated below for functions we have actually used.

implementation

body root out res = | =
! The bnode return parameter is initialized to the root,

body height out h=log(max; st T[i]inuse) =
peaits |
first j: downto(2maxht+l g 1y’ Lihat Tfjlinuse
then h « roor(Iogzj)i

Implementation of brnode

The bnode form is organized like the biree form, and its verification proceeds in a
similar fashion. JIts specifications were given as part of the btree specifications. We now look
at its representation, which is simply an integer index into the vector which represents the
btree:

representation
unique ptr: integer init ptr « t;
repi{ptr) = Tiptrlnode;
invariant Isptrgpmaxht+]_, . Tlptrlinuse;

Page 14 Definition and Verification of a Form
To verify the form properiies, we must prove two things:

1. Representation validity
Show: lsptrSZma"ht+l-1 A Tiptr}inuse = T[ptrlnode ¢ { T[i}node | T{i}inuse }
Proof: Clear.

2. Initialization
Show: true | ptrel } T[ptrlnode = T[1}node A LSptrSZma"h“l—l
A Tptrlinuse
Proof: Applying the rep function and the assignment axiom, this becomes
T{1}node = T[1lnode A 1<1<omaxht+l 1 A T[1]inuse
This reduces to T{1}inuse, which is assured by the concrete invariant of btree.

Thus we have shown that the representation supports the abstraction. We will next discuss
and verify some of the functions used by the programs of the previous section. Other
functions are given in the form definition in Appendix A. Note that the invariants of btree (as
well as those of bnode) must be preserved. This step is omitted from the proofs given here
because no part of the blree representation is altered.

One of the simplest functions finds the left son of a given node. Its abstract
specifications and body are:

leftson(tr:bnode) refurns subtr:bnode
pre ~isleaf(tr) post <tr,0,subtr> ¢ finks

body leftson in _isteaf(tr) out subtrptr = 2xtr.ptr =
sublr.ptr « 2xtr.ptr;

The program itself is clear: double a node’s index o find its left son. The in condition asserts
that the leftson function may no! be applied to a leaf® The out condition repeats the doubling
properly. Recall that the concrete invariant must be shown to hold along with the in and out
conditions, so we may be sure leftson is applied only to legal bnodes and does not destroy
them. These properties are verified formally by proving the following (again I denotes the
concrete invariant):

8 This design decision forces the user to extend the tree explicitly before using new
nodes, but it offers a degree of protection against errors that automatic tree growth would
not. We could, of course, extend the tree automaticatly when leftson or rightson is applied to
a leaf, but that is a different decision and leads to a different program.

Alphard: Design and Verification of a Tree Handler Page 15

3. Concrete operation
Show: 3j (j div 2 = tr.ptr A tr.T[jlinuse A 1sjsamaxht+l_py | I
{ subtr.ptr « 2trplr } subtr.ptr = 2xtr ptr A I
Proof; Choosing j=2%tr ptr and applying the assignment axiom, we obtain
tr.ptr = trptr A tr.T[2+tr ptrlinuse A ISZ*tr.ptrSQmaXh“l-—I Al
> 2xtr.ptr=2xtr.ptr A IC
The concrete invariant for tr is maintained since tr is not modified; it
fs established for subtr because of the range check on j.

84a. in condition holds .
Show: l<trptrspmaxht+l | | tr.7{tr.ptrlinuse A Jw,s <tr,w,s>€links
2 Jj i div 2=trptr A tr.T[jJinuse n 1gjcomaxht+l_y
Proof: If 3w,s st <tr,w,s> C links, then s must correspond to the vector element
indexed by 2xtr.ptr+w, and it must be an active node. This is sufficient to
establish the conclusion,

4b. post condition holds
Show: Istr.ptrepmaxhts] | tr.T{trptrlinuse A Jw,s <tr,w,s> € links
A subtr.ptr=2xtr ptr o <tr,0,8> ¢ links
Proof: The concrete invariant of btree says that the s must be 2+tr ptrew
and that both <tr,0,5> and <tr,] s> exist, which is
precisely the condition needed,

fr.T, respectively. These phrases can be further qualified, so we can select a particular
element of veclor tr.T by writing tr.T[i] (since T is a vector of records) and the inuse field of
that vector element by writing tr.T[ilinuse. The definition and verification of rightson are
essentially the same.

We often needed to determine whether the tree we had in hand was a leaf. The
specifications and function body for isleaf are

isleaf(tr:bnode) returns tv:boolean
post tv = Yw - Jsubtr <tr,w,subtr> ¢ links

body isleaf
Out tv 2 (~3) (j dir 2 = trptr A tr.T[jinuse A Lejegmaxht+l 1y

tv « tr.ptr > pmaxht_; {(-tr.T[2str ptrlinuse A “tr.T[2xtr ptr+1Jinuse);

The out condition specifies that isleaf returns “true” if there is no vector index in range for
which T[j]is both in use and a left or right son of the input. Since the in condition is omitted,
it is assumed to be identically true, so jsleaf must be applicable to any btree. To verify isleaf,
we must show the following:

Page 16 Definition and Verification of a Form

3. Concrete operation
Show: I { tv « ir.ptr > omaxht_j y (<tr T[2#tr ptr]inuse A ~tr.T[2#tr.ptr+1)inuse) }
(tv = -3j (j div 2 = tr.ptr A tr.T[jJinuse A 15152maxht+1-1].inuse)) Al
Proof: Rewriting to eliminate j and applying the assignment axiom, this becomes

I, = [Gr.ptr > amaxht_y y (-tr.T[2str ptriinuse A -tr. T[2strptrilinuse)
= ~{(tr. T[2#ir.ptr)inuse v tr.T[2#tr.ptr+1)inuse) A (1s2¢tr.ptr52ma"h“1-1

v 1<2#trpir+12m@ i) A 10)]

which in turn reduces to

1, 2 [{r.ptr > pmaxht_j y (-tr.T[2#tr ptrlinuse A -tr.T[2strptr+1linuse)
= ~{(Ir.T[2#tr.pir]inuse Vv tr.T[2str.ptr+1]inuse) A (lstr.ptrSZma"ht
v <tr ptre12maxhty A 1]

which is clear.

da. in condition holds
Show: 1. 2 frue
Proof; Clear.

4b. post condition holds
Show: I A tv = =3j (j div 2 = rptr A tr.T[jJinuse A 1jcemaxht+l 1 jinuse)
5 VYw ~Jsubtri<tr,w,subtr> € links)

Proof: The out says there is no w tor which T[tstr.ptr+wlinuse, either because
2xtr.plr would exceed the index range of the array or because the inuse
bit is set to false. By the definition of links, there is no triple
<tr.T[tr.p\r],w,tr.T[2=k'tr.ptr+w]> which coutd correspondto <tr,w,sublr>.

Finally, bnode provides a selector, nodeval, for performing tetches and stores to the
value field of a tree node. The implementation of nodeval is given by
map nodeval = TptrJnode;

Changing this particular field has no effect on any invariant, so nothing must be proved.

Conclusion

This paper has used a concrele example to explain the Alphard philosophy on the
development and verification of programs. The example was nontrivial; it implemented the
abstraction with a nonstandard represeniation, and it involved a subtype. geveral aspects of
the development deserve special notice.

file:///r.p/r

Alphard:; Design and Verification of a Tree Handler Page 17

First, note that we did not verify the "main program®. The program was simply a

We therefore indicated that it was sufficient to ensure that the program was an accurate
restatement of the algorithm, If program verification is ever to impact real programs, we must
take such steps to avoid reproving all programs from first principles. Since the form
encapsulates a collection of related information about how some abstract behavior is to be
achieved, it is a reasonable body of information about which to prove theorems. This is
evidenced by the nearly complete independence of the discussions of the minreg program and
the btree form.

Next, the form presented in Appendix A contains functions not actually used by the
program of the example. We believe that in the future tibraries of forms will deveiop, and that
these will be more useful than present libraries because the forms are verified and because

verification considerations stimulated careful thought about what constitutes a good
abstraction. Further, the explicit distinction between the abstract specification and the

Finally, some of our colleagues have expressed concern over the length of Alphard
programs. Certainly the verificalion informalion adds text, but we believe that this information
must be supplied somewhere. Nakata gave an Algol program for converting a parse tree to
code [Naka!a(;?]‘ That program performs a slightly different operation from minreg, so an
exact comparison g impossible, but if we ignore verification information and the btree
functions that were never used, the number of lexemes in the Alphard procedures and forms
s wilthin 107 of the number of lexemes in Nakata’s program. This crude comparison supports
our feeling that the program text itself is not excessively large.

Acknowledgements

The abstractions, programs, and verifications presented here have benefited from
Comments by a number of my colleagues in the Alphard project, particularly Bill Wulf and
‘Ralph Londan.

Page 18 Conclusion

Appendix A
Complete Definition of Btree and Bnode

form btree{N:record, maxht:integer) =
beginform
specifications
requires maxht 2 0
let biree = <r:N, g:graph>
where g = <nodes: {te:N}, links: {<tr;:N, w:boolean, trj:N>}>;

invariant
(<n,w,k1>,<n,w,k2>(links dky = ko) A t unique left & right sons
(<n,w,x> ¢ links 2 Ay <n,l-wy> ¢ links) 1 aither zero or two sons
Vn ¢ nodes {<nw,r> ~C links 1ris the root
A pathent(rn) = 1 t singly connected
A length{<r.n>) < maxht) ! limited height
inifially btree = <r, <{rL{ 1>
functions

root{tr:biree) returns res: bnode post res =1,
height(tr:biree) returns hinteger post h = max st k=length(<r, . . , ¥>)
st (isleat(x) A root{r)},
form bnode(T:btree(?N:record.maxht:integer)) =
bepinform
specifications
let bnode = pir:N;
invariant ptr € nodes;
initially ptr =7ri
functions
leftson{tr:bnode) returns subtr:bnode
pre -isleaf(ir) post <tr,0,subtr> ¢ finks,
righ\son(tr:bnode) returns subtr:bnode
pre -isleat{tr) post <tr,1,subtr> € links,
isleaf(ir:bnode) returns tviboolean
post tv = Yw ~Jsublr <tr,w,subtr> € links,
isroot(ir:bnode) returns tviboolean
post tv = Yw SJsubtr <subtr,w,tr> € links,
father(tr:bnode) returns subtr:bnode
pre -~root(tr) post Jw st <trw,subtr> < links;
ancestor{tr,subtr:bnode} returns tv:bootean
post tv = tr=sublr v Jp=<tr, ..., sublr>st path{p),
extend({tr:bnode) pre isleaf(ir) A height{tr) < maxht
post -isleaf(tr) A isleat{rightson(tr)} n isleat{leftson(tr))

Alphard: Design and Verification of a Tree Handler Page 19

selectors
nodeval: N;
endform

representation
unique T: vector{rec: record(node:N, inuse:boolean),1,2Mmaxht+1_y,
init begin for x:invec(T) do x.inuse « false; T[1] « rec(null,true) end;
rep(T) = < T[1].node, < {T(i}node | Tfilinuse), {<T[ilnode,w,T[2i+w].node>
[Tli}inuse A T[2i+w}inuse A wef0,1]) > >;
invariant T[1]}.inuse A (Tlilinuse 2 i=1 v T[i div 2)inusenT[i+1-2(i mod 2)linuse);

implementation
body root ot res = | =

! The bnode return parameter is initialized to the root,

body height out h=log{max; st T{ilinuse) =
first j: downto(@MMH1_y 1y oychthat T[jTinuse
then h « floor(logzj);

formbody bnode =
beginform
representation

unique ptr: integer init ptr « {;
rep{ptr) = T[ptrlnode;
invariant {<ptr<pmaxht+l_| Tiptr]inuse;

implementation

body leftson in -isleaf(tr) out subtrptr = 2¢trptr =
subtr.plr « 2str ptr;

body rightson in ~isteaf(tr) out subtr.ptr = 2+tr ptr+1 =
subtr.ptr « 2xtr ptr + |;

body islteat
out tv = (-3j (j div 2 = trptr A tr.T[jlinuse A Lsjcpmaxht+l_y .
tv « trptr > pmaxht_ {(~tr. T[2xtr ptrinuse A ste. T[2#tr.ptr+1)inuse)

body isroot put tv = {trptr=1) =
tv « troptr=|;

body father in tr.ptr > | out subtr.ptr = trptr div 2 =
subtr.plr « tr ptr div 2;

Page 20 Appendix A

ancestor in tr.T[tr.ptrlinuse A tr.T{subtr.ptrlinuse
oul tv & Giqiipndy st jp=trptr A jk-subtr.ptr
A tr.T[j}inuse A Ji_y= div 2) =

begin local shitd;

shitd « floor{logs subtr.ptr) - flaor(logs tr.ptr);

tv « tr.pir = sublir.pir div 2shitd; end;

body

body extend in isleaf(tr.ptr} A ir.pl|-~~<2""a"ht
out -isleaf(ir.ptr) A isleaf({rightson(tr.ptr)} A isleaf(leftson(tr.ptr)) =

begin
tr.T[2¢ir.ptrl)inuse « tr.T[2#tr.ptr+1]inuse « true;

tr, T[2#tr.pir}node « tr.T[2#tr.ptr+1]node « null;

end;

map nodeval = T[pirlnode;

endform;

endform;

Alphard: Design and Verification of a Tree Handler Page 2]

Appendix B
Formal Definition of Graphs with Weighted Arcs

This formal definitiion is based on the definition of graph given by Knuth [Knuth73, sec. 2.3.4]
with the addition of labels, or weights, on the arcs,

l. Let N be a se! called the node domeain of a graph and let W be a set called the
arc weights of a graph,

(a) An arc is. 3 triple <n’-,wj,nk> where (N, wj(W, NN

(b) A graph is a pair <E,A> where F is a set of nodes and A is
a set of arcs such that <”i-wj’"k>(A 3 n;ng €E

{c) These are the only graphs.

2. The notation hpng, L, N> is an abbreviation for { Npw o>, <np,Wpng>,
I <”k~l’wk—1'”k> i for any valyes of wj

3. The following functions and relations are defined for G = <E,A> and n<E:

(a) adj(nl,nz) =4 3w st <nl,w,n2><A
{b) palhcnf(nl,nz) g cardinality(Npyeanp> st PEWLN LA, e[Lk-1T)
{c) path{nl.nk> *df <Pl.. .., N> st MpWinL > CA (k-1
{d) simple(<n1, Poy -y N>) _Edf {n; = nj > it = {1k}
A pathcni(nl,nk)ﬂ, Lit[1.k]
{e) strngconn(G) =qr Vi path(i,j)
(f) tonnected(g) =df strngconn(Gx)
where GX = < GE GA vy {<ab.c> | <¢,b,a>G.A } >
{g) iength(<nl, N2y M) =g K
{h) cycle(ni,nj) Eaf 3, ., x> st simple(<x[-, P X
Ad=j A fength(<xi, Cea X223
(NG =H ®df GA =HAAGE = HE

i)

Page 22 . Appendix B

References

[Dahl72) O.-J Dahl and C. A. R Hoare, "Hierarchical Program Structures”, in Structured
Programming (Dahl, Dijkstra, and Hoare), Academic Press, 1972 {(pp. 175-220).

[Dijkstra72] Edsger W. Dijksira, "Notes on Structured Programming”, in Structured
Programming (Dahl, Dijkstra, and Hoare), Academic Press, 1972 (pp. 1-82)

[Hoare72]} C. A. R. Hoare, "Proof of Correctness of Data Representations®, Acta [nformatica,
1,4, 1972 (pp. 271-281).

[Johnsson75] Richard K. Johnsson, "An Approach to Global Register Allocaton”, Carnegie-
Mellon University Technical Report, December 1975.

[Knuth73] Donald E. Knuth, Fundamental Algorithms, Second Edition, Addison-Wesley, 1973.

[Liskov74] Barbara Liskov and Stephen Zilles, "Programming with Abstract Data Types",
SIGPLAN Notices, 9,8, April 1974 (pp.50-59).

[Nakata67] lkuo Nakata, "A Note on Compiling Algorithms for Arithmetic Expressions",
Communications of the ACM, 10, 8, Augus! 1967.

[Parnas72) David L. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules"”, Communications of the ACM, 15, 12, December 1972 {pp. 1053-1058).

[Shaw76] Mary Shaw, William Wulf, and Ralph L. tondon, “Abstraction and Verification in
Alphard: Iteration and Generators”, Carnegie-Mellon University Technical Report and
UJSC Information Seiences Institute Research Report, 1976.

[Wirth71] Niklaus Wirth, "Program Development by Stepwise Refinement”, Communications of
the ACM, 14, 4, April 1971 (pp. 221-227).

[Wulf76] William Wulf, Ralph L. London, and Mary Shaw, "Abstraction and Verification in
Alphard: Introduciion to Language and Methodology™, Carnegie-Mellon University
Technical Report and USC Information Sciences Institute Research Report, 1976.

