
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Computational Complexity of One-Step Methods 
for Systems of Differential Equations 

Arthur G. Werschulz 

September, 1976 

Department of Mathematics 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract: The problem is to calculate an approximate solution of an initial value 
problem for an autonomous system of N ordinary differential equations. Using fast 
power series techniques, we exhibit an algorithm for the p*h-order Taylor series 
method requiring only 0(p^ In p) arithmetic operations per step as p -» +a>. (Moreover, 
we show that any such algorithm requires at least O(p^) operations per step.) We 
compute the order which minimizes the complexity bounds for Taylor series and linear 
Runge-Kutta methods, and show that in all cases, this optimal order increases as the 
error criterion t decreases, tending to infinity as i tends to zero. Finally, we show 
that if certain derivatives are easy to evaluate, then Taylor series methods are 
asymptotically better than linear Runge-Kutta methods for problems of small 
dimension N. 

This research was supported in part by the National Science Foundation under Grant 
MCS75-222-55 and the Office of Naval Research under Contract N00014-76-C-0370, 
NR 044-422. 



1 

1. Introduction 

Let 5) be a set of points in the real N-dimensional linear space IR^ , and let 

be a set of operators on IR^ , such that the initial value problem of finding a function 

x : [0, 1] -> IR N satisfying 

x(t) - v(x(t)) if 0 < t < 1 
(1.1) 

x(0) - x 0 

has a unique solution for every ( X Q , v) * 5)x<$; we assume that x is analytic on [0, 1]. 

The autonomous form of this system is no restriction, since any non-autonomous 

system may be made autonomous by increasing the dimension of the system by one. 

In Werschulz [76], we looked at the computational complexity of using one-step  

methods to generate an approximate solution to (1.1) on an equidistant grid in the 

sense of Stetter [73]; that is, the methods considered computed approximations Xj to 

x(ih) by the recursion 

(1.2) Xj + j - Xj + h ?(XJ , h) (0 <; i < n - 1 , n = h"1) , 

where h = n~* is the step-size of a grid with n points, and ip is the increment function 

(Henrici [62]) for the method. (To be brief, we will refer to "the method ^.") In that 

paper, we discussed the problem of optimal order and minimal complexity for rather 

general classes of one-step methods. 

In this paper, we will use the techniques and results of Werschulz [76] to 

analyze the complexity of using Taylor series methods and linear Runge-Kutta methods 

to generate approximate solutions whose error does not exceed i. The model of 

computation, error measure, and complexity measure to be used are described in 

Section 2, as well as the relevant results from Werschulz [76]. 
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We discuss the complexity of Taylor series methods in Section 3. Using the fast 

power series techniques of Brent and Kung [76], we show that 0(p^ In p) arithmetic 

operations suffice to compute the p^-order Taylor series approximation; moreover, we 

show that O(p^) operations are necessary. In Section 4, we discuss the complexity of 

linear Runge-Kutta methods. In both Sections, we compute lower and upper bounds on 

the complexity using a fixed method of given order; these results are then used to 

compute optimal orders which minimize these complexity bounds. We show that in all 

cases, the optimal order increases as * decreases, tending to infinity as * tends to 

zero. 

Finally, we compare these two classes of methods in Section 5, where we show 

that if the partial derivatives of v are easy to evaluate, then Taylor series methods are 

asymptotically better (as t tends to zero) than linear Runge-Kutta methods for 

problems of small dimension N. 
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Before proceeding any further, we will establish some notational conventions. 

Let X be an ordered ring; then 3G* and X** respectively denote the nonnegative and 

positive elements of X. (This is used in the cases X • IR, the real numbers, and 

X = Z , the integers.) The symbol ' V means "is defined to be," while "a" means "is 

identically equal to." We use T to denote the unit interval [0, 1]. The symbol "V" is 

used to denote the gradient of a mapping. The notations "x i a" and "x t a" are used 

to indicate one-sided limits, as in Buck [65} Finally, we write "(a.b)c" to indicate the 

part of equation (a.b), as in Gurtin [75]. 

We next describe the model of computation to be used. We assume only that all 

arithmetic operations are performed exactly in IR (i.e., infinite-precision arithmetic) and 

that for any algorithm to be considered for the solution of (1.1), a set of procedures is 

given for the computation of any information about v required by that algorithm. (For 

instance, with Runge-Kutta methods, we must be able to compute v at any point in its 

domain.) 

In addition, we must pick an error measure, so that we may measure the 

discrepancy between the approximate solution produced by ip (via (1.2)) and the true 

solution. For the sake of definiteness, we use the global error 

(2.1) <rG(?,h) := max 0 <j< n ||x(ih) - Xj|| , 

where || • || is a norm on IR^ . Other error measures may be used, such as the local  

error per step cr̂  and the local error per unit step eyj (see Henrici [62] and 

Stetter [73] for definitions); this would involve only a slight modification of the results 

contained in the sequel. 



4 

W E F I N A L L Y D E S C R I B E T H E C O M P L E X I T Y M E A S U R E TO B E U S E D . L E T • - { ? P : P « I**} 

B E A B A S I C S E Q U E N C E I N T H E S E N S E OF W E R S C H U L Z [ 7 6 ] ; T H A T I S , T H E R E E X I S T F U N C T I O N S 

if : I R + X I - * R* A N D * L , K U : I R + -> I R + S U C H THAT 

( 2 . 2 ) *Q (V h ) " * ( P , H ) H P FOR H * I A N D P < Z * + , 

W H E R E 

( 2 . 3 ) 0 < * L ( P ) < * ( P , H ) £ ^ ( P ) < +A> FOR H * I . 

W E S A Y T H A T ^ P H A S O R D E R P . T H I S IS A SL IGHT E X T E N S I O N OF T H E D E F I N I T I O N O F O R D E R G I V E N 

I N C O O P E R A N D V E R N E R [ 7 2 ] ; T H E F U N C T I O N I N T R O D U C E D H E R E IS N E C E S S A R Y A N D S U F F I C I E N T 

F O R T H E " O R D E R " O F A M E T H O D T O B E U N I Q U E . ( F O R T H E S A K E OF E X P O S I T I O N , we A S S U M E T H A T 

* L A N D K ( J A R E A N A L Y T I C O N A N D THAT L I M P ^ Q * L ( P ) * / P A N C * " M P - > 0 * L / P ) ^ e x ' s * a n < * 

A R E P O S I T I V E REAL N U M B E R S ; T H I S WILL A L W A Y S B E T H E C A S E I N T H E E X A M P L E S we C O N S I D E R . ) 

T H E N W E WILL B E I N T E R E S T E D J N T H E TOTAL N U M B E R OF A R I T H M E T I C O P E R A T I O N S C ( P , « ) R E Q U I R E D 

T O G U A R A N T E E T H A T 

( 2 . 4 ) * G ( * P > H ) S 1 : * E ~ " ' 

F O R A G I V E N P A N D A G I V E N A . ( H E R E E IS T H E B A S E OF T H E NATURAL L O G A R I T H M S . ) We 

S U P P O S E T H A T 0 < s < 1, S O T H A T a IS P O S I T I V E . C L E A R L Y , a I N C R E A S E S AS t D E C R E A S E S , A N D A 

T E N D S T O I N F I N I T Y A S i T E N D S TO Z E R O . 

I N T H E M E T H O D S W E C O N S I D E R , W E M A Y W R I T E 

( 2 . 5 ) C ( P , A ) « N C ( P ) , 

W H E R E N I S T H E M I N I M A L N U M B E R OF S T E P S R E Q U I R E D A N D T H E C O S T P E R S T E P C ( P ) I S T H E 

N U M B E R O F A R I T H M E T I C O P E R A T I O N S R E Q U I R E D FOR T H E M E T H O D OF O R D E R P . A S I N T R A U B A N D 

W O I N I A K O W S K I [ 7 6 ] , W E SHALL E X P R E S S T H E C O S T P E R S T E P A S S O C I A T E D W I T H ? P I N T H E F O R M 

( 2 . 6 ) C ( P ) e(WP(V» + D ( P > . 

H E R E 92D(V) I S T H E I N F O R M A T I O N A B O U T V R E Q U I R E D TO P E R F O R M O N E S T E P O F A N D we 
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write e(9|p(v» for the informational cost of ^ p ; we call d(p) the combinatory cost 

of * p . 

Note that we explicitly indicate the dependence of JR p on v, so that we may 

compare the cost of (say) an evaluation of v with a scalar arithmetic operation. 

Basically, e($£p(v)) measures the cost of getting new data about v required by ? p f 

while d(p) measures the cost of combining this new data to get an approximate value 

of the solution at a new point. For example, Euler's method in R^ 

x i+ l 88 x i + h 

has informational cost 2 ^ e(vj) , where vj , . . . , vpg are the components of % and for 

any function w: IR^ -> IR, we define 

(2.7) e(o>) := cost of evaluating a> at one point . 

The combinatory cost is 2N arithmetic operations, i.e., one scalar multiplication and one 

scalar addition for each of the N components. 

We must now face a problem that occurs in almost all areas of complexity 

theory. The number of operations c(p) required for one step of a p^-order method is 

usually unknown per se; we only have bounds of the form 

(2.8) c L(p) < c(p) < cy(p) . 

That is, c^(p) is a lower bound on the number of operations required per step, usually 

derived via theoretical considerations, and cy(p) is an upper bound on the number of 

operations required per step, which is derived by exhibiting an algorithm for 

computing the p^-order method. (In what follows, we shall assume that the functions 

c l » cy : IR**" -> IR + are analytic, although this requirement may be greatly weakened. 

However, this assumption holds for all examples that we consider.) 

From the discussion in Section 3 of Werschulz [76], we find that the step-size h 

must satisfy 
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(2.9) hy(p,a) £ h < hL(p,or), 

where 

(2.10) h L(p,«) :~ ^(pr^Pe^/P and hy(p,a) ^ ( p ) " 1 ^ e"«/P . 

Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C(p,ar). 

Theorem 2.1: Define 

C L(p,«) := f L ( p ) e * / p , where f L(p) ^ ( p ) 1 ^ c L (p ) , 

and 

Cy(p,«) := fy(p)e*/P, where fy(p) Kytp) 1 ^ Cy(p). 

Then 

(2.11) CL(p,a) < C(p,a) < Cy(p,a) . 

Proof: See Theorem 3.1 of Werschulz [76]. | 

Thus we have bounds on the complexity of using ipp to compute an approximate 

solution satisfying (2.4). We now wish to consider the problem of optimality. Define 

(2.12) C*(a) :=»nf {C(p,a): *>p < *} . 

We are interested in bounds for C*(a) under reasonable assumptions about and fy. 

We first suppose that 

(2.13) f L (p )>0 and fy (p)>0 if p > 0 

and 

(2.14) l ' m p t o o f L ( p ) = l i m p t o o = +oo . 

Assumption (2.13) is that there is no method whose cost per step is zero, while (2,14) 

essentially means that the "better" a method is (i.e., the higher its order is), the more 

we should expect to pay for its use. 

Using the techniques of elementary calculus, we find that a necessary condition 

for p to minimize C^( * ,a) is that 

(2.15) a = GL(p) := p 2 f L ' (p) / f L (p ) ; 



similarly, Cy( * ,or) takes its minimum at p only if 

( 2 . 1 6 ) « = Gy(p) := p 2 fy'(p) / fy(p) . 

Sufficient conditions for the existence and uniqueness of solutions to ( 2 . 1 5 ) and ( 2 . 1 6 ) 

(i.e., for well-defined functional inverses of Gj_ and Gy) which actually minimize C L ( • >*) 

and Cy( • ,«) are given in 

Lemma 2 . 1 : Let f[_ and fy be as above, and suppose that 

( 2 . 1 7 ) G L
/ ( p ) > 0 if G L ( p ) > 0 and Gy'<p) > 0 if Gy{p) > 0 . 

Then G|_ and Gy have respective functional inverses P L * , Py* : R 4 " * -> I R * * such that 

for all p ( I R + + 

( 2 . 1 8 ) CL*<a) CL(pL*(a),a) * C L(p,«) 

and 

( 2 . 1 9 ) Cy*(a) :« Cu(py*(a),a) < Cy(p,a) 

with equality in ( 2 . 1 8 ) or ( 2 . 1 9 ) if and only if p * Pi*(a) or p = py*(a), respectively. 

Proof: See Theorem 2 . 1 and Lemma 3 . 1 of Werschulz [ 7 6 ] . | 

We call P L * ( O O (respectively, Py*(a)) the lower (upper) optimal order, C ^ a ) 

(respectively, Cy*(a)) the lower (upper) optimal complexity, and 

( 2 . 2 0 ) hL*(a) :« hL(pL*(a),a) (respectively, hy*(a) :« hy(py*(a),a)) 

the lower (upper) optimal step-size. Combining ( 2 . 1 1 ) , ( 2 . 1 2 ) , and Lemma 2 . 1 , we have 

Theorem 2 . 2 : 

CL*(a) < C*(a) < Cy*(a). I 

We next describe the behavior of these quantities as a increases and tends to 

infinity. 

Theorem 2 . 3 : Let f[_ and fy be as in Lemma 2 . 1 . Then PL*(a), Py*(«)> CL*(«)> and 

Cy*(a) all increase monotonically and tend to infinity with a. 

Proof: See Theorems 2 . 2 and 3 . 3 of Werschulz [ 7 6 ] . | 
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Finally, we need a restriction of the problem class S)*9® to "sufficiently difficult-

problems; this will allow us to determine * L a n d * h u s establish lower bounds. We will 

assume that 

(2.23) <rG(?p,h) * (M Lh)P if h ( I and p*Z*+ 

for some M L > 0 independent of h and p. In the methods we study, (2.23) holds 

provided all sharp upper bounds are attained. 
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3 . Taylor Series Methods 

The class * j of Taylor series methods is defined by expanding x in a truncated 

Taylor series. Thus the increment function <pp is given by 

(3.1) *p<x j fh) : - R ^ J V < k ) ( x j ) h k / ( K + l ) ! f 

where 

(3.2) V < K > ( X J ) : - (d/dt)K [v(x(t)>] x ( t ) - . x . 

The usual method of computing (3.2), as described in "classical" numerical analysis 

texts such as Henrici [62], invokes the chain rule. This quickly leads to expressions of 

horrifying complexity; for this reason, most texts quickly abandon the discussion of 

high-order Taylor series methods. 

We are interested in faster algorithms for computing ? p . First, we address the-

problem of a lower bound for the combinatory cost d(p). 

Proposition 3.1: There exists a constant a L > 0 such that any sequence of 

algorithms for computing $y must satisfy 

(3.3) d(p) > a L p N . 

Proof: Any algorithm for computing y>p requires the information 

W p (v) : - {D*v: 0 * |0| S p - 1} . 

(We use the standard multi-index notation found in Friedman [69].) It is then easy to 

see that the above set has 0(p N) (as p t OO) distinct elements, which are (generally) 

independent; this is an immediate consequence of Problem 11 in Chapter I of P6lya and 

SzegO [25]. Thus (3.3) gives a linear lower bound. 1 

Note that the constant a L in (3.3) depends on N. Since we are treating the case 

where N is fixed and p is allowed to vary, we will not indicate this dependence 

explicitly. We now see how close we can get to an optimum value for d(p). 
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Theorem 3.1: There exists a constant ay > 0 such that the combinatory cost 

d(p) of computing ^ i *y satisfies the bound 

(3.4) d(p) < ayp N ln (p+e) . 

Proof: We first consider the case N = 1. Note that x(h) is the zero of 

(3.5) F(z) := F * d*/v({) - h . 
x 0 

As in Brent and Kung [76], we consider the formal power series 

P(s) : - F(x0+s) - F ( x 0 ) , 

where s is an indeterminate. Let V be the power series reversion of P. Adopting the 

notation of Brent and Kung [76], we see that 

x(s) = x 0 + V(s) = x 0 + V p(s) + 0(sP + 1 ) . 

By the uniqueness of the Taylor coefficients of an analytic function, we see that 

y>p(x0,b) = h - W P F R ) . 

Since the number V p (h) can be computed in 0(p In p) operations from the Taylor 

coefficients of v (by Theorem 6.2 of Brent and Kung [76]), the result for N - 1 follows. 

For N > 2, we use Newton's method (Rail [69]) applied to the formal power 

series operator P given by 

(PyXs) := y(s) - x 0 - J Q v (y(r» dr ; 

clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined 

recursively. Let a formal power series X( p)(s) satisfying 

x ( p ) ( s ) - x(s) + 0(sP + 1) 

be given. Precompute 

(3.6) w(s) $ S
Q v (x ( p ) ( r ) ) dr - x 0 - x ( p ) (s ) + 0<s 2P+ 2), 

(3.7) Q(s) := Vv(x ( p ) (s) ) + 0(s 2 P + 2 ) , 

and let U ^ Q ^ ( S ) : « 0. Then set 

x ( 2 p + 1 ) ( s ) := x ( p ) (s ) + u ( p + 1 ) ( s ) , 
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where 

(3.8) u ( k + 1 ) ( s > : - J Q Q(r> u ( k ) ( r ) dr + w(s) + 0 ( s 2 P + 2 ) , 0 < k < p . 

Following the proof given in Rail [69], we find that 

x ( 2 p + 1 ) ( s ) - x(s) + 0<s2P*2) . 

We need only consider the cost T(p,N) of computing the series *(p)(s) in 

determining d(p), since x(h) may be recovered from the formal power series in O(p) 

operations. Clearly, we have the recursion 

(3.9) T(2p+1,N) < T(p,N) + T 6 + T 7 + T 8 , 

where T m is the cost of step (3.m) for m « 6, 7, 8. Let COMP(p,N) be the time required 

to find the first p terms of the formal power series f(y^(s), ... , yjg(s)), where f, Y J , ... , 

yfg are formal power series, and y j , ... , y^ have zero constant term. Theorem 7.1 of 

Brent and Kung [76] states that 

C0MP(p,2) = 0 ( p 2 l n p ) , 

and it is easy to show that for any N < Z + + , 

C0MP(p,N+l) » 0<p COMP(p,N)) . 

Thus for N > 2, we have 

(3.10) C0MP(p,N) = 0{p N ln p ) , 

and so we see that 

T 6 - f T 7 = 0<(2p+l) N lnp). 

Finally, let MULT(p) be as in Brent and Kung [76]j we see that 

T 8 - (p+1) [N 2 MULT(2p+l) + 0(p)] * 0((2p+l) 2 In p) 

if Fast Fourier Transform multiplication (Borodin and Munro [75]) is used. Since N £ 2, 

we have 

(3.11) T 6 + T 7 + Tg - 0«2p+l ) N In p ) , 

and so (3.9) and (3.11) imply that 
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T(p,N) » 0(p N In p) , 

which completes the proof. | 

(Note that the second algorithm is inferior to the first algorithm when applied to 

the scalar case N - 1, where we find that the second algorithm requires 0(p 2 In p) 

arithmetic operations.) 

We now determine bounds on C(p,<x). First, consider lower bounds. Clearly, 

there exists e^v) > 0 such that 

(3.12) e(D^Vj) > e L(v) (1 < i < n, |0| i Z + ) . 

Since 9 2 P ( v ) has O(p^) elements, there exists a constant b^ > 0 such that 

(3.13) e(W p (v» .> b L e L ( v ) p N . 

From (3.3) and (ЗЛЗ), we have a lower-bound cost per step of 

(3.14) c L(p) = [a L + b L e L(v)] p N . 

This leads to 

Theorem 3,2: CL(p,a) = M L [a L + b L e L(v)] p N ea/P . 

Proof: This is an immediate consequence of (2.23) and (3.14). | 

Note that f^p) := М(_с^р) satisfies the conditions of Lemma 2.1. Thus, the 

optimality theory of Section 2 holds. In particular, we have 

Theorem 33: CL*(a) = M L [a L + b L e L(v)] (e/N)N « N . 

Proof: From (2.18) and (3.14), we find that GL(p) e Np, so that 

pL*(a) = a/N and hL*(a) = ( М ^ Г 1 . 

The result follows by letting p « Р[_*(а) in the definition of C(_(p,a). | 

However, recall that we assumed that the non-identical mixed partial derivatives 

of v are independent. There are a number of systems for which this is not true (for 

instance, constant coefficient linear systems); for such systems, it is clear that we may 
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be able to use the extra information of non-independence to find algorithms that are 

faster than the lower bounds given above. However, we will ignore this case and only 

consider the problem for a "general" function v. 

Next, we turn to upper bounds on the complexity. Theorem 3.1 tells us how to 

combine the necessary information to get the solution at a new grid-point; we need 

only measure the cost of getting the information. So, let 

e ( k ) ( v ) = max {e(D^VJ): 1 < i < N, |0| « k) . 

Using the result in Polya and Szegfi [25], we see that 

(3.15) e (W p ( v » < N Z ^ J E ( k ) ( v ) ( N + k - l ) ! / [ k ! ( N - l ) ! ] . 

Unfortunately, the right-hand side of (3.15) does not fit our general model, so we must 

assume that we know how e ^ ( v ) changes as k increases. We will consider the case  

where the cost of derivative evaluation is bounded; that [s^ we wHi assume that 

(3.16) e ( k ) (v ) < ey(v) 

for some ey(v) independent of k. Other cases (e.g., e ( k ) (v ) - 0(Km) for some m > 0) 

may be analyzed in a similar manner; of course, they will give different results. By 

(3.15) and (3.16), there is a by > 0 such that 

(3.17) e ( t t p ( v » < b u e u ( v ) p N . 

From (3.4) and (3.17), we have an upper-bound cost per step of 

(3.18) Cy(p) = ay p N In <p+e) + by ey(v)p N . 

This leads to 

Theorem 3.4: There exists an My > 0 such that 

Cy(p,a) = My [ay p N In (p+e) • by ey(v)p N ] e«/P . 

Proof: By Cauchy's Integral Theorem (Ahlfors [66], pg. 122), there exists a 

B > 0 such that 

|||x<K^1>||| / <K+D! < B k , 
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where we define 

(3.19) IIMII : - max m ||y(t)|| 

for any y: I -» IR^ Thus by Section 3.3-3 of Henrici [62], we see that a Lipschitz 

constant for ? p in * j is given by 

2P^|||x( k + 1 )|||h k /(k + l ) ! < z£j (Bh) h < L i - d - B h o ) - 1 , 

provided that h < h Q < B"1. By Section 3.3-2 and 3.3-4 of Henrici [621 there exists an 

M(j > 0 such that 

erG(*p,h) < (Myh)P. 

The result now follows from Theorem 4.1 and (3.18). | 

We are now ready to consider the optimal p for Cy(p,a). 

Theorem 3.5: 

(1.) For all a > 0, there exists py*(a) such that (2.19) holds. 

(2.) py*(«) increases monotonically with or, and 

Py*(a) ~ a/N as a T o o . 

(3.) C y * ( a ) increases monotonically with a , and 

C y * ( a ) - My ay <e/N)N a N In a a s o t o o , 

(4.) hy*(«) - (My eN)'1 as of T o o . 

Proof: Clearly cy satisfies (2.13) and (2.14). Now write 

Gy(p) = G^p) + G 2 (p) , 

where 

G 2(p) « Np and G2(p) - rp 2 /D 2 ( p ) i 

here we set 

D 2(p) (p+e) [(p+e) In (p+e) + 1] and p := ay / [by ey(v)] . 

We see immediately that Gj satisfies (2.17); a straightforward calculation shows that 

G 2 ' (p) = P [D(p)]- 2 {pp [In (p+e)] - 1] + 2B[P In (p+e) + 1]} , 
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so that G 2
/ (p ) > 0 for p > 0. Thus G 2 satisfies (2.17), which shows that Gy satisfies 

(2.17). Hence py* and Cy* behave as described in Theorem 2.2. 

Since py*(a) goes to infinity with a, we see that 

« G\JP\J*(«)) ~ N Pu*<a> + PU*(a> / l n P U * ^ ~ Npy*(a), 

which gives the asymptotic estimate in (2.). The rest of the Theorem follows from this 

estimate. | 

Unfortunately, the estimates given above are only asymptotic as or t ooj this will 

be typical, since many of the equations to be solved involve products of logarithmic 

and polynomial terms, and thus cannot be solved exactly. On the other hand, these 

asymptotic expressions are sufficient for our purposes, since they describe how 

quickly py*(a) and Cy*(a) increase with a. 

Note that as or tends to infinity, Cy*(a) becomes independent of ey(v), which 

measures how hard it is to evaluate the derivatives of v; this is because the 

combinatory cost eventually overwhelms the informational cost. This kind of behavior 

will be typical of the complexity analyses in this paper. Finally, note that the bound 

(3.20) CL*(a) « 0(aN) < C*(a) < 0(aN In a) - Cy*(«) a s a t o o 

implies that 

Cy*(a) / CL*(a) = 0(ln a) as a t oo ; 

this indicates the gap in our knowledge of the complexity of solving (1.1) via Taylor 

series methods. 
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4. Linear Runge-Kutta Methods 

For many functions v, caculation of the derivatives required by Taylor series 

methods is prohibitively expensive. For this reason, we are interested in methods 

which use information that is somewhat more readily available. In particular, we will 

consider methods that use only evaluations of v, combined in a highly structured 

manner. We say that * L R K i S a c ' a s s °* ^ n e a r Runge-Kutta methods (abbreviated, MLRK 

methods") if each increment function ^ p may be written in the form 

(4.1) f p ( X j l h ) I ^ 1 X s | k, 

where 

(4.2) k, := V ( X J + h X,j kj> for 0 < I £ s - 1 , 

the integer s • s(p) is said to be the number of stages of ^ p ; the number of stages is 

equal to the number of times the vector function v must be evaluated. (In order to 

simplify notation, we will not explicitly indicate the dependence of X|j and kj on p.) The 

method f>p defined by (4.1) and (4.2) is explicit in that k| depends only on k$ ,... , kj.^j 

see Butcher [64] for a discussion of semi-explicit and implicit methods. (We use the 

adjective "linear" to distinguish these methods from "nonlinear Runge-Kutta methods/' 

which were first proposed in Brent [74],) 

Since the function ^ p is (in practice) always evaluated by using the obvious 

algorithm suggested by its definition, we shall identify an algorithm for evaluating ? p 

with ^ p itself. Thus the problem of finding the best algorithm for evaluating ^ p in 

*LRK ' s equivalent to the problem of finding the best basic sequence of LRK methods 

possible. This is related to the problem of finding the smallest value of s(p) such that 

ipD has order p. This minimal value is given by 



(4.3) S(p) 
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P - 1, 2, 3, 4 

P - 5, 6 

p - 7 

unknown p > 8 

For methods of order greater than seven, a gap develops. For instance, eighth-order 

methods with eleven stages exist, and it is known that any eighth-order method 

requires at least ten stages. For arbitrary p > 8, the best bounds known for the 

optimum value of s(p) are 

(4.4) p + 0(p) < s(p) < (p 2 - 7p + 14) / 2 , 

where tf(p) > c In p for all sufficiently large p (for some c > 0). The lower bound is 

given in Butcher [75]; the proof is quite involved, and the result is not much better 

than the "trivial" lower bound s(p) > p (Hindmarsh [74], page 84). A class *CVRK °* 

methods such that ^ p requires only (p 2 - 7p + 14) / 2 stages is given in Cooper and 

Verner [72]. 

We first consider lower bounds on the complexity C(p,a) using LRK methods. 

The "trivial" lower bound s(p) > p will be used, since the term tf(p) will be small when 

p is small and will not affect the asymptotic behavior of optimal order and complexity 

for p large. It is known (Butcher [64]) that at least 0(p 2) of the subdiagonal elements 

of the matrix A (whose elements are the X|j in (4.2)) must be non-zero in order for A 

to define a p^-order method. Thus there exists â_ > 0 such that 

(4.5) d(p) > a L p 2 ; 

since s(p) > p, we see that 

(4.6) e(W p (v» > N e L ( v ) p , 

where we now write 

e L(v) := min e(Vj) 
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Thus (4.5) and (4.6) show that a lower bound on the cost per step for f p i s given b y 

(4.7) c L(p) « a L p 2 + N e L(v) p . 

Theorem 4.1: 

C L(p,«) = M L [a L p 2 + N e L(v) p] ea/P . 

Proof: This follows immediately from (2.23) and (4.7). | 

It is clear that f L(p) := M L [a L p 2 + N e L(v) p] e«/P satisfies (2.13) and (2.14). 

We claim that f|_ yields a G L satisfying (2.17). Indeed, write 

f L(p) = fi<P> f2<P>' 

where 

f 1<P> M L a L p 

and 

f 2(p) J " P + P » where v :* N e^v) / . 

Clearly f^ yields a Gj satisfying (2.17). Since f 2 is a linear polynomial with a negative 

zero, it may be shown that f 2 yields a G 2 satisfying (2.17). Thus f[_ yields a G L 

satisfying (2.17); in fact, we have 

(4.8) G L(p) = Gxip) + G2(p) - p [1 + (1 + rp" 1 ) " 1 ] . 

This leads us to 

Theorem 4.2: 

CL*(a) - [M L a L e 2 / 4] a2 as a T o o . 

Proof: From (4.8), we see that GL(p) ~ 2 p as p t <x>. Since (2.13), (2.14), and 

(2.17) hold, P L * ( « ) tends to infinity with a. Thus 

a = GL(pL*(a)) *> 2 pL*(«) as a t o o , 

i.e., P L * ( * ) ~ cr/2 as or T o o . The result now follows from Theorem 4.1. | 

We now turn to upper bounds on complexity. The class *CVRK derived ' n 
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Cooper and Verner [72] has two deficiencies, the first of which is that no uniform 

upper bound on * L U ( v > P » H ) is known for *CVRK; ' n edition, the combinatory cost for 

this class of methods is O(p^) as p T o o . Instead, we turn to the basic sequence *CRK 

discussed in the Appendix. There, we prove that there is an My > 0 such that 

(4.9) *G<*>p>h) - ( M U l n (P + e ) h ) P > 

provided h < h p , where h p = 0((ln p)~*) as p t o o . Furthermore, there are a large 

number of extra zeros in the matrix A for ^ p < *CRK- Using the notation of the 

Appendix, we see that the number of non-zero entries in A is 

- C i l j 2 + p 

= p3/3 - p2/2 + 7p/6 

< p3/3 + 2p2/3 

for p * Z + + . Finally, note that the number of stages s(p) required for fp € * C R K ' S 

(410) s(p) = i (p 2 - 2p + 4)/2J < p2/2 + p 

for p € Z + + , which shows that the number of stages required for a p^-order method 

in *CRK asymptotically equals the number requires for a p*n-order method in *CVRK* 

Thus (considering the combinatory costs), the class *c\/RK actually costs more per 

step than does ignoring the combinatory costs would have caused us to reach 

the opposite conclusion. 

First, we look at the cost per step. By (4.10),we see that 

(4.11) e(JW0<v» * - (p 2 + p) N eij(v), 
2 

where 

e y (v ) := max l s i : g N e(vj) . 

Since we are using * C R K > it is easy to see that there is a by > 2/3 such that 

(4.12) d(p) < (p3/3 + bu p 2 ) • 2N . 
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Combining (4.11) and (4.12), we see that the total combinatory cost per step is 

bounded by 

(4.13) cy(p) - N [ 2p3/3 • fil p 2 + » 2 p ] , 

where 

fil ey(v) / 2 • 2 by and fi2 : - ey(v) / 2 . 

Using (4.9) and (4.13) gives 

Theorem 4.3: 

Cy(p,a) = My N [2p3/3 • ^ P 2 + fi2 P ] In (p • e> e«/P . | 

Now we look at the optimality theory for the upper bound. 

Theorem 4.4.: 

(1.) For all a > 0, there exists py*(«r) such that (2.19) holds. 

(2.) Py*(or) increases monotonically with a, and 

Py*(a ) ~ a/3 as a t o o . 

(3.) C y * ( a ) increases monotonically with a , and 

Cy*(*) - [ 2 My N e 3 / 81 ] a 3 In a as a t o o . 

(4.) h y * ( a ) ~ ( My e 3 In a ) ' 1 as a t o o . 

Proof: We write 

fy(p) : « My In (p + e) cy(p) 

in the form 

fy(p) - f i (p)f 2 <P). 

where 

fj(p) - My N p In (p + e) and f 2(p) - 2p2/3 + fi± p + 0 2 . 

It is clear that f j satisfies the hypotheses of Lemma 2,1. Mow we consider f 2 . Clearly 

f 2 has no positive zeros; it may be seen that the condition by .> 2/3 implies that f 2 has 
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a positive discriminant and hence has no complex roots. Thus f2 has only negative 

roots; one may then show that this guarantees that f2 satisfies the hypotheses of 

Lemma 2.1. Thus, the same may be said for f « f 1 *2 * 

Thus py* and Cy* behave as described in (1.) of Theorem 2.3. We also see that 

G(j(p) ^ 3 p as p t oo, Thus the estimate in (2.) holds, from which we get the estimates 

in (3.) and (AX I 

So in the class of linear Runge-Kutta methods, we find that 

(4.14) C L * ( A ) « 0(a2) < C*(A) < Cy*(«) = 0 ( « 3 In A ) 

as a tends to infinity; hence, the ratio 

Си*(а) / CL*(a) = O(alna) 

indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods. 
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5. Comparison of the Methods 

We now wish to compare the classes of Taylor series methods and LRK methods. 

Write C y j * , C L > T * , and C T * (respectively, C U > L R K * , C L j L R K * , and C L R K * ) for Cy*, 

C L*, and C* in the class * j (respectively, the class *LRK^ ^ i n c e w e ^ a v e o n ' y 

asymptotic expressions for these quantities, we are forced to use an asymptotic 

comparison. If f, g : I R + + -> IR** satisfy lim f(a) - lim g(a) - + 0 0 , we wMI 

write 

(5.1) f<g iff f(a) - o(g(a)) as a T oo ; 

we say that f is asymptotically less than g. If f < g, there is an OTQ > 0 such that 

f(a) < g(a) for a > OTQ, S O there is a non-asymptotic interpretation of the order 

relation <. Thus if f and g are cost functions, the statement "f < g" implies that the 

method whose cost is given by f is "better" (i.e., cheaper) than the method whose cost 

is given by g, for t sufficiently small. Using the results of (3.20) and (4.14), we then 

have the following 

Theorem 5.1: Suppose that (3.16) holds. 

(1.) If N - 1, then C U T * < C L ) L R K * . 

(2.) If N = 2, then C y / < C U > L R K * . 

(3.) If N - 3, then 

C U | T *(«) = 0(CULRK*(a)) 

and 

Cu,LRK*<«> " 0 (C U ) T *(« » 

as o t co. 

(4.) If N > 4, then C U L R K * < C L T * . | 
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If (3.16) does not hold, then (L), (2.), and (3.) may be false, but (4.) will certainly 

be true. As an immediate corollary to the above theorem, we have 

Theorem 5.2: 

(1.) If N - 1 and (3.16) holds, then C T * < C L R K * . 

(2.) If N > 4, then C L R K * < C T * . | 

So if the derivatives of v are cheap to evaluate, we see that the best Taylor 

series method known is better than the best linear Runge-Kutta method possible for 

the scalar case N « 1; but if N > 4, the best linear Runge-Kutta method known is better 

than the best Taylor series method possible. 
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Appendix: Error Bounds for a Sequence of LRK Methods 

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK") 

methods due to Cooper [69]. We shall first prove the following 

Theorem A. l : There is a basic sequence *CRK' °* methods such that 

(1.) Each $ *CRK7 r e c ? u ' r e s 

s(p) : - (p 2 - p + 2) / 2 

evaluations of v per step. 

(2.) There exists an My > 0 such that 

(A.l) *G(v>p,h) ~ (My In (p^e) h)P 

for h < h p - 0 « l n p)" 1). 

We use the notation of Cooper and Verner [72} Let p £ Z + + be given; define 

p: TL + n [0, p] - 4 1 + by 

2 L 0 k - j ( j + l ) / 2 if j i<p 
(A.2) p(j) : - J K u 

I s if j - p , 

where we write "s" for "s(p)" as defined above. Next, a set { { Q , ... , $s} of integers is 

defined by picking { Q : « p, and setting (j (i + 0) to be the unique integer in [1, p] 

satisfying 

(A.3) p% - 1) < i <; p(fcj) . 

We now pick U Q ,... , u s € I satisfying 

(A.4) u 0 - 0 , u s - 1 , Uj t 0 if i + 0 

and 

(A.5) ({j • and i j ) implies Uj + Uj . 

Finally, we pick a matrix of coefficients A { X J J : 0 < j £ i-1, 1 < i £ s} such that 

(A.6) X j j - 0 if t j < { j ~ l ( l < i , j < s ) 
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and 

(A.7) 2 ^ X J J u j r = ( r+ir 1 u i
r + 1 (0 < r < - 1, 1 < i S s) . 

Cooper and Verner [72] point out that these conditions may always be fulfilled; the 

resulting A defines a p t h -order LRK method with s stages. 

We are interested in a choice of u 0 , ... , u s which will give a small error 

coefficient. To this end, we will choose 

(A.8) { U J . $J - n} = {(1 + x k n ) / 2 : 1 < k S n} (1 < n S p - 1), 

where x l n , ... , x n n are the zeros of the Jacobi polynomial P n P n ^*^ (see 

Szeg6 [59]). Since these zeros are distinct and lie in [-1, 1] , conditions (A.4) and (A.5) 

may be satisfied. 

Now we are able to exhibit a solution to the № system in (A.7). First, note that 

the equation for r - 0 may be separated from the others, since U Q * 0. Setting 

n : - *j - 1 , 

we see that 

(A.9) X j 0 - U j - l l ^ X j j = Uj - I { X J J : j < i and ^ > n } , 

the last by (A.6). We wish to determine the nonzero Xjj, i.e., those Xjj for which ,§j ;> n 

and j < i. So setting 

Xjj « 0 unless j ( { j j , . . . , j n } , 

we see that the remaining Xjj are the solution of the system 

2 k = L \ r x i j k - ( * + L > " V + 1 U s r s n ) . 

Thus the Xjj^ are the weigihts for an interpolatory quadrature formula on [0, Uj] with 

abscissae u; , ... , U; . From the usual expression for such weights and (A.6), we see 
>l Jn 

that 

X i j k - "ikn [2Pn'(cos *kr))Tl J J , ^ [Pn(cos ) / (cos - cos tfkn)] sin * dtf , 

where x k n - cos t> k n (1 < k < n). 
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Here 

I, : - f * ' ^ 1 D<0) sir. <> dfl , 
J < W 2 

with 

D(6) := [cos (Ntf + y) - cos (Nf l k n + 7 ) ] / [cos 0 - cos * k n ] , 

where N := n + 3/2 and ? := -3ir/4, and 

I 2 : - J * ' » n ^ Rn(*,*kn> s i n * d * " 0(nk" 3/ 2) , 
kn • 

with R n the remainder term in (8.8.2) of Szegft [59]. Unfortunately, the proof that 

(15.4.14) of Szegft [59] is bounded does not extend to a proof that I j is bounded, 

Lemma A . l : |ij^ n " 0(n~* In n) as n T oo. 

Proof: Since the zeros of P n are symmetric about the origin, we may assume 

that 0 < tfkn < w/2. Using (8.9.2) of Szegft [59], we then find 

M i k n - 0 (k 5 / 2 n" 3 ) J J . [Pn(cos *) / (cos t> - cos # k n ) ] sin * d* . 

Case U *i > n +i ^ ^j,n+l - *k,n+l/2- W e c o n s i d e r * h e integral over 

[ 0 i n /2, *j n + i ] , since Theorem 15.4 of Szegft [59] proves that 

0<k5/V3) [| J * | + | # " / 2 |] - O(n-l) . 

(Here the integrand is the same as in the preceding integral.) But the proof of (15.4.12) 

in Szegft [59] extends almost immediately to a proof that the remaining integral is 

0(k" 2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus j i j k n -

CXn" 1) - OOT 1 In n) for Case 1. 

Case 2: <>k,n+l/2 £ <*j,n+l - 3 t*k,n+l/ 2- W e c o n s i d e r * h e integral over 

[ 0 k n / 2 , 0 j n + i ] > since Szegft [59] shows that 

0(k 5 / 2 n" 3 ) | J * / 2 | = 0(n" 1) . 

As in (15.4.13) of Szegft [59], we have 
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since the proof of the former requires that the interval of integration be symmetric 

about 0 k r v However, it is straightforward to verify that 

ll " 0(1) JJ / 4 |sinNt>/tf|dt> = O(lnn) . 

Thus MjKn = 0 ( n " 2 k In n) = CXn"1 In n) for Case 2. 

Case 3: 3 t f k n 4 . 1 < $\}Vi+i £ 3»/4. We consider the integral over 

[3$ k n /2, t ) j > n + 1 ] , since Szegfi [59] proves that 

0(k5/2n-3) | j ^ / 2 , „ o(n-l) . 

But the proof of (15.4.19) in Szegfi [59] extends to prove that the remaining integral is 

0 ( k " 5 / 2 n ) (as in Case 1). Thus ^ i K n « CXn**1) « (DOT1 In n) for Case 3. 

Case 4: 3ir/4 < * j > n + i S ^n+l.n+l- W e c o n s i d e r * h e integral over 

[3ir/4, 0 j > n + i ] , since Szegfi [59] shows that 

o < k 5 / V 3 ) | J J R / 4 1 » Ofn"1) . 

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound 

on the integral of interest. Thus . U j k n - 0(n"1) « 0(n~* In n) in Case 4, completing the 

proof of the Lemma. | 

Thus (A.9) and Lemma A.l show the existence of a X > 0 such that 

(A.10) S j - O ^ i 1 - * M * j + e ) ; 

here X is independent of p. Moreover, the result for the case i «= s may be sharpened. 

We see that X $ j > 0, since the U j for the s^1 system in (A.7) are the abscissae for 

Lobatto quadrature. Thus 

(A.11) 2 ^ | A s j | = 2 ^ X s j = 1, 

the consistency condition in the last equality being a consequence of (A.7) with r - 0. 

Proof of Theorem A. l : As in Cooper and Verner [72], we define 

f j := x ( U j h ) - k j 

and 
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I , $Uj *<uh) du - X\-}Q Xjj ftbijh) 

for 0 < i < s; note that 6Q • « Q = 0. Let z(h) be the computed approximation to x(h)j 

then 

h" 1 ||x(h) - z(h)|| - || h" 1 [x(h) - x(0)] - X ^ 1 X s i kj || 

(A. 12) < ||fis|| + ||Z^ X s i (j|| 

< ||8S|| + max | . . p _ j , 

the last by (A.6) and (A. l l ) . By the analyticity of x, there is an Aj > 0 S U C H T H A T 

/Jj h" 1 || x( U jh) - S J L Q (Ujh) rx<T>(0) / r! || S ( A T H ) * ' 

and 

yn : - II x ( U j h) - 2T
5Lo (Ujh)*" x<*>0) / r! || £ ( A X h)1'' , 

so that the definition of i j gives 

(A. 13) < (A 2 h)*' + i j ^ |Xjj| ( A T h)*' 

< ( A 2 h ) * ' 

for a suitable A 2 > 0. Thus (A.l2) becomes 

(A.14) h" 1 ||x(h) - z(h)|| < (A 2 h)P + max . p _ j ||.,|| . 

We now use Lemma 1.1 of Cooper and Verner [72] and (A.6) to find T H A T if L is a 

Lipschitz constant for v, then there exists A 3 > 0 such that 

||ij|| < hL + hL 2 ^ |Xjj| max -} \\t}\\ 

< (A 3 h)* i + 1 + (A 3 h) In (*j + e) max j , 

the last by (A. 10) and (A.13)j here, the maximum is taken over all j < i S U C H T H A T 

|j £ {j - 1. A straightforward induction shows that if (1 + In 2) A 3 h < 1, then 

llijll * < A 4 In ({j + e) h)* i + 1 

for a suitable A 4 > 0. Combining this with (A.14), we find 

(A.15) h" 1 ||x(h) - z(h)|| < ( A 5 In (p+e) h)P , 



29 

the desired bound for the local error for a single unit step. 

To extend (A.15) to a global error result, we must look at the Lipschitz constants 

for the increment functions. Let L be a bound on ||Vv||, and write "Vfp(y,h)M to 

indicate gradient with respect to the vector variable y. Now 

IIWp<y,W|| < l^o I M M A * 0<i<s-l HVkj<y,h)|| 

= max 0<i<s-l HVkj(y,h)|| , 

where we write "kj(y,h)M to indicate the dependence of kj upon y and h. By the 

definition of kj(y,h), we find 

Vkj(y.h) « Vv(u) [ 1 N K N + h 2|"j0 X ( j Vkjty.h)], 

where u : « y + h Xjj kj(y,h) and 1 f\jx|\j i s a n N*N identity matrix. Taking norms in 

the above gives the result 

fj < LX + hLX [ In (£j+e> max { j < i and fj i> {j - 1 } ] , 

where fj : « ||Vkj(y,h)||. Writing X p for the Lipschitz constant for it is easy to see 

that (A.16) and the above inequality imply 

X p < IpQ1 (hLX)i n j ^ In (p+e-k) , 

which is bounded for all p, provided that h < h p < (LX In (p+e))"1. Thus (A.l) follows 

from this result, (A.15), and Theorem 3.3 of Henrici [62]. | 

The value for s(p) indicated in Theorem A.l may be improved somewhat by 

noting that since we are using a Lobatto quadrature, higher order may be expected 

with fewer steps. Indeed, if we use the strategy outlined in the comments following 

Theorem 4 of Cooper and Verner [72], we have 

Theorem A.2: There exists a basic sequence *CRK °' '-"^ methods such that 

(A. l ) holds and requires 

s(p) := [(P 2 - 2p + 4) / 2J 

evaluations of v per step. | 
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