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1. Introduction

Let D be a set of points in the real N-dimensional {inear space RN, and let 9

be a set of operators on iRN, such that the initial value problem of finding a function

x i [0, 1] » RN satistying
x(t) = vix(th if 0<te<]
(1.1)
x(0) = xq
has a unique solution for every (xg , v) € DX ; we assume that x is analytic on {0, 1]
The autonomous form of this system is no restriction, since any non-autonomous
system may be made autonomous by increasing the dimension of the system by one.

In Werschulz {76], we looked at the computational complexity of using one-step

methods to generate an approximate solution to (1.1} on an equidistant grid in the

sense of Stetter [73]; that is, the meihods considered computed approximations x; to
x(ih) by the recursion

(1.2) Xiyf = X;+helx,h)  (©sisn-1,n=h"D,

-1

where h = n"* is the step-size of a grid with n points, and ¢ is the increment function

(Henrici [62]) for the method. (To be brief, we will refer to “the method ¢.") In that
paper, we discussed the problem of optimal order and minimal complexity for rather
general classes of one-step methods.

In this paper, we will use the techniques and results of Werschulz {76] to
analyze the complexity of using Taylor series methods and linear Runge-Kutta methods
to generate approximate solutions whose error does not exceed ¢ The model of
computation, error measure, and complexity measure to be used are described in

Section 2, as well as the relevant results from Werschulz [76]



We discuss the complexity of Taylor series methods in Section 3. Using the fast
power series techniques of Brent and Kung {76], we show that OtpN In p) arithmetic
operations suffice to compute the pth-order Taylor series approximation; moreover, we
show that O(pN) operations are necessary. In Section 4, we discuss the complexity of
linear Runge-Kutta methods. In both Sections, we compute lower and upper bounds on
the complexity using a fixed method of given order; these results are then used to
compute optimal orders which minimize these complexity bounds, We show that in all
cases, the oplimal order increases as s decreases, tending to infinity as ¢ tends to
zero.

Finally, we compare these two classes of methods in Section 5, where we show
that if the partial derivatives of v are easy to evaluate, then Taylor series methods are
asymptotically better (as ¢ tends to zero) than linear Runge-Kutta methods for

problems of small dimension N.



2. Preliminary Results

Before proceeding any further, we will establish some notational conventions.
Let X be an ordered ring; then X% and X** respectively denote the nonnegative and
positive elements of &X. (This is used in the cases & = IR, the real numbers, and
X = Z, the integers.) The symbol ":=" means "is defined to be," while "=" means "is
identically equal to." We use "I" to denote the unit interval {0, 1] The symbol "V" is
used to denote the gradient of a mapping. The notations “x { 2" and "x T a" are used
to indicate one-sided limits, as in Buck [65] Finally, we write "(ab)." to indicate the

h part of equation (a.b), as in Gurtin [75).

t

We next describe the mode! of computation to be used. We assume only that all
arithmetic operations are performed exactly in IR (i.e., infinite-precision arithmetic) and
that for any algorithm to be considered for the solution of (1.1), a set of procedures is
given for the computation of any information about v required by that algorithm. (For
instance, with Runge-Kutta methods, we must be able to compute v at any point in its
domain.)

In addition, we must pick an error measure, so thal we may measure the
discrepancy between the approximate solution produced by ¢ (via (1.2)) and the true
solution, For the sake of definiteness, we use the global error

(2.1} oleh) 1= max geen lixGh) - %l
where || - || is a norm on RN . Other error measures may be used, such as the local

error per step o and the local error per unit step o (see Henrici [62] and

Stetter [73] for definitions); this would involve only a slight modification of the results

contained in the sequel.



We finally describe the complexity measure to be used. Let & = {qop tpeZ*Y)

be a basic sequence in the sense of Werschulz [76] that is, there exist functions

«: R R* and x , x: R 5 R* such that

(2.2} ogleph) = xph) WP forhelandpc Z**,
where

(2.3) 0 < xq(p) < «lph) < wyfp) < 400 forhel .
We say that ¥p has order p. This is a slight extension of the definition of order given
in Cooper and Verner [72}; the function x, introduced here is necessary and sufficient
for the "order™ of a method to be unique. (For the sake of exposition, we assume that
?q_ and «(; are analytic on R*, and that lim p=0 xL(p)”P and lim p-0 xU(p)l/P. exist and

are positive real numbers; this will always be the case in the examples we consider.)

— i e e e

to guarantee that

(2.9) VG(iﬂp;h) < ¢ =09,
for a given p and a given a. (Here e is the base of the natural logarithms.) We
suppose that 0 < < |, so that a is positive. Clearly, @ increases as s decreases, and &
tends to infinity és ¢+ tends to zero,

In the methods we consider, we may write'

(2.5) ' Clp,a) = nclp) ,
where n is the minimal number of steps required and the cost per step c(p) is the
number of arithmetic operations required for the method of order p. As in Traub and
WoZniakowski [76], we shall express the cost per step associated with ¥o in the form

(2.6} cp) = e(Py(v)) + dlp) .

Here mp(v) is the information about v required to perform one step of fpr and we



write e(mp(v)) for the informational cost of Ppi We call d(p) the combinatory cost
of ¥p-

Note that we explicitly indicate the dependence of mp on v, so that we may
compare the cost of (say} an evaluation of v with a scalar arithmetic operation.
Basically, e(mp(v)) measures the cost of getling new data about v required by (7%
while d{p) measures the cost of combining this new data to get an approximate value
of the solution at a new point. For example, Euler’s method in RN

Xis1 = X% +hvix)
has informational cost Zg\il e(v;}, where vy, .., vy are the components of v and for
any function w: RN S R, we define

(2.7) e{w) := cost of evaluating w at one point .

The combinatory cost is 2N arithmetic operations, i.e., one scalar multiplication and one
scalar addition for each of the N components.

We must now face a problem that occurs in almost all areas of complexity
theory. The number of operations ¢{p) required for one step of a pth-order method is
usually unknown per se; we only have bounds of the form

(2.8) ci{p) s clp) < ¢ fp)

That is, cL(p) is a lower bound on the number ot operations required per step, usually
derived via theoretical considerations, and ¢|j{p) is an upper bound on the number of
operations required per step, which is derived by exhibiting an algorithm for
computing the pth-order method. {In what follows, we shall assume that the functions
CLyCy: R* - R* are analytic, although this requirement may be greatly weakened.
However, this assumption holds for all examples that we consider.)

From the discussion in Section 3 of Werschulz [76], we find that the step-size h

must satisfy



(2.9) h{p.a) s h < hy (p,a) ,
where

(2.10) h(pa) := xL(p)’l/p e ®/P  and hifpe) = uu(p)bllp p-a/p
Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C{(p,a).

Theorem 2.1: Define

CLlp) = t(p)e®/P, where f(p) = a(@!/Pc (p),
and
Culp,m) = f)p) ea/p , where f(p) := «U{p)llp cylp).

Then

(2.11) Ciipa) < Clpm < Cyfpa) .

Proof: See Theorem 3.1 of Warschulz [76]

Thus we have bounds on the complexity of using ¥p to compute an approximate
solution satisfying (2.4). We now wish to consider the problem of optimality. Define

(2.12) C¥a) := inf {Clp,a): ¥p ¢ d} .
We are interested in bounds for C¥a) under reasonable assumptions about fL and f,
We first suppose that

(2.13) fi(p}>0 and filp) >0 if p> 0
and

(2.14) lim ploo flp) = lim pla = *® .
Assumption (2.13) is that there is no method whose cost per step is zero, while (2.14)
essentially means ﬂ;rat the "better" a method is (i.e., the higher its order is), the more
we should expect to pay for its use.

Using the techniques of elementary calculus, we find that a necessary condition
for p to minimize C|( - ,a) is that

(2.15) a = Gp) = p2 f (p} / fL(p};



similarly, C (- ,a) takes its minimum at p only if

(2.16) a = Gyip) = p2 tp) / ffp) .
Sufficient conditions for the existence and unigueness of solutions to (2.15) and (2.16)
(i.e., for well-defined functional inverses of G| and Gj} which actuafly minimize C\( * ,a)
and Cj( * ,a) are given in

Lemma 2.1: Let fy and f|; be as above, and suppose that

(2.17) G /(p)> 0 if Gp)>0 and Gyp)>0 if Gylp)>0 .

Then G, and G have respective functional inverses pL* ) pu* : R 2 R* such that

for all p ¢ IR**

(2.18) | CL*(a) = CL(pL*(a),u) s Cupa)
and

(2.19) CyMa) = Cylpy*aa) < Cylpa)

with equality in (2.18) or {2.19) if and only if p = pL*(a) orp= pU*(a}, respectively.

Proof: See Theorem 2.1 and Lemma 3.1 of Werschulz [76]. B

We call p *a) (respactively, p*(a)) the lower (upper) optimal order, C, *(a)

{respectively, CU*(a)) the lower (upper) optimal complexity, and

(2.20) hL*(a) = hL(pL*(a),u) (respectively, hu*(a) 1= hU(pU*(a),a))

the lower (upper) optimal step-size. Combining (2.11), {2.12), and Lemma 2.1, we have

Theorem 2.2:
CL*(a) < CHa) < CU*(a). |
We next describe the behavior of these guantities as « increases and tends to
infinity.
Theorem 2.3: Let f| and f) be as in Lemma 2.1. Then pl_*(a), pU*(ar), CL*(a). and
CU*(a) all increase monotonically and tend to infinity with a.

Proof: See Theorems 2.2 and 3.3 of Werschulz [76]. §




Finally, we need a restriction of the problem class DX to "sufficiently difficult"
problems; this will allow us to determine x| and thus establish lower bounds. We will
assume that

(2.23) vG(wp,h) 2 (M hP if hel and peZ**
for some M_ > O independent of h and p. In the methods we study, (2.23) holds

provided all sharp upper bounds are attained.



3. Taylor Series Methods

The class @1 of Taylor series methods is defined by expanding x in a truncated
Taylor series. Thus the increment function ¥p is given by

@.1) et 1= EPT0 vy ik 7 (et
where

(3.2) Vi) = (d/dbk [vix(t) (t) = x;
The usual method of computing (3.2), as described in “classical” numerical analysis
texts such as Henrici [62], invokes the chain rule. This quickly leads to expressions of
horrifying complexity; for this reason, most texts quickly abandon the discussion of
high-order Taylor series methods.

We are interested in faster algorithms for computing Yo First, we eddress the:
problem of a lower bound for the combinatory cost d{p).

Proposition 3.1: There exists a constant a_ > 0 such that any sequence of
algorithms for computing $1 must satisfy

(3.3) dip) 2 3 pN .

Proof: Any algorithm for computing Yp requires the information

Npv) = OB 0sifl<p -1} .

(We use the standard multi-index notation found in Friedman [69].)} It is then easy to
see that the above set has O(pN) (as p T o) distinct elements, which are {(generally)
independent; this is an immediate consequence of Problem 11 in Chapter I of Péiya and
Szegh [25]. Thus (3.3) gives a linear lower bound. J

Note that the constant a|_ in (3.3) depends on N. Since we are treating the case
where N is fixed and p is allowed to vary, we will not indicate this dependence

explicitly. We now see how close we can get to an optimum value for d(p).
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Theorem 3.1: There exists a constant ay > 0 such that the combinatory cost
d{p} of computing $p € OT satisfies the bound
(3.9) | dp) < aypNin (pre) |
Proof: We first consider the case N = 1. Note that x{(h) is the zero of
(3.5) F(z) := jio db /i) - h.
As in Brent and Kung [76], we consider the formal pawer series
P(s) := Flxg+s) - Flxq},
where s is an indeterminate. Let V be the power series reversion of P. Adopting the
notation of Brent and Kung {76], we see that
x(s} = xg + Vl(s) = xq + Vpis) + osP*l) |
By the unigueness of the Taylor coefficients of an analytic function, we see that
eplxoih) = h“lvp<h).
Since the number Vp(h) can be computed in O{p In p) operations from the Taylor
coefficients of v (by Theorem 6.2 of Brent and Kung [76]), the result for N = 1 follows.
For N 2 2, we use Newton’s method (Rall [69]} applied to the formal power
series operator P given by
(PyXs) = yls)-xq - 53 viy(e)) dr
clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined
recursively. Let a formal power series x(p)(s) satisfying
X(py(s) = x(s) + O(sP1)
be given. Precompute
(3.6) wis) 1= [ vixgp) () dr = xg - xpyfs) + O(s2P*2)
(3.7) Qls) 1= Dvixgpyls) + 0(s2P*2)

and et u(o)(s) =0, Then set

X(2p+1)8) 1= X(p)e) + Upeq)is)
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where

(3.8) ug,pyfs) = fo QU ugyr) dr + wis) + O(s%P*2), O sksp .

Following the proof given in Rall [69], we find that
X(2p+1)S) = X(s) + 062P*2)

We need only consider the cost T(p,N} of computing the series x(p)(s) in
determining dip), since x(h) may be recovered from the formal power series in O(p)
operations, Clearly, we have the recursion

(3.9} T(2p+1N} < T(pN) + Tg + T5 + Tg,
where T is the cogf of step (3.m) for m = 6, 7, 8. Let COMP(p,N} be the time required
to find the first p terms of the formal power series fy(s), ..., yp(s)), where f, vy, ...,
YN are formal power series, and Y{s - YN have zero constant term. Theorem 7.1 of
Brent and Kung [76] states that

COMP(p,2) = O(p2 in p),
and it is easy to show that for any N¢ Z **,
COMP(p,N+1) = O(p COMP(p,N}} .
Thus for N = 2, we have
(3.10) COMP(pN) = O(pN In p)
and so we see that
Tg+T7 = 02p+1N np).
Finally, let MULT(p) be as in Brent and Kung [76]); we see that
Tg = (p+1) [N MULT(2p+1) + O(p)] = O((2p+1)2 In p)
if Fast Fourier Transform multiplication (Borodin and Munro [75)) is used. Since N 2 2,
we have
(3.11) Te+ Ty +Tg = 02p+NIn p),

and so (3.9} and (3.11) imply that
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TioN) = 0pN tn p),

which completes the proof. |

(Note that the second algorithm is inferior to the first algorithm when applied to
the scalar case N = 1, where we find that the second algorithm requires O{p2 in p)
arithmetic operations.)

We now determine bounds on C(p,a). First, consider lower bounds. Clearly,
there exists ey (v} 2 0 such that

(3.12) e@Bv) 2 e () W<isn gz .
Since mp(v) has O(pN) elements, there exists a constant b > 0 such that

(3.13) eMpv) 2 by egw) pN .
From (3.3) and (3.13), we have a lower-bound cost per step of

(3.19) cilp) = [a + b e (V)] pN .
This leads to

Theorem 3.2: C(pa) = M [a +b e (v)) pNVea/p

Proof: This is an immediate consequence of (2.23) and (3.14). B

Note that f (p) := Mic (p) satisfies the conditions of Lemma 2.1. Thus, the
optimality theory of Section 2 holds. In particular, we have

Theorem 3.3: C *a) = M [a, + by e ()] (e/N)N &N,

Proof: From (2.18) and (3.14), we find that G (p) = Np, so that

pL¥@) = a/N and b @) = (MM

The resuit follows by letting p = pL*(a) in the definition of Cipa) B

However, recall that we assumed that the non-identical mixed partia! derivatives
of v are independent. There are a number of systems for which this is not true (for

instance, constant coefficient linear systems); for such systems, it is clear that we may



i3

be able to use the extra information of non-independence to find algorithms that are
faster than the lower bounds given above. However, we will ignore this case and only
consider the problem for a "general” tunction v.

Next, we turn to upper bounds on the complexity. Theorem 3.1 tells us how to
combine the necessary information to get the solution at a new grid-point; we need
only measure the cost of getting the information. So, let

e(k)(v) = max {e(D’svi): lsisN, 8] =k} .
Using the result in Pélya and Szegl [25], we see that

(3.15) é(mpw» < NEPZL ) (Nek- 1t / [KIN-1)1]

Unfortunately, the right-hand side of (3.15) does not fit our general mode!, so we must
assume that we know how e(k)(v) changes as k increases. We will consider the case

— — AL

where the cost of derivative evaluation ts bounded; that is, we will assume that

(3.16) ehv) < eyv)

for some e|fv) independent of k. Other cases (e.g., ek)y) = O(kM) tor some m > 0)

may be analyzed in a similar manner; of course, they will give different results. By
(3.15) and (3.16), there is a by > 0 such that

(3.17) s(M(v) < by eyvipN.
From (3.4) and (3.17), we have an upper-bound cost per step of

(3.18) Culp) = ay oV In (pee) + by eU(v)PN .
This leads to

Theorem 3.4: There exists an M) > O such that

Culpe) = My (ag pN In (p+e) + by eU(v)pN] e?/P

Proof: By Cauchy’s Integral Theorem {(Ahlfors [66], pg. 122), there exists a

B > 0 such that

IR+ I/ ety < B%
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where we define
(3.19} Iy M} = rmax ¢ ¢ iyl
for any y: [ ~» RN, Thus by Section 3.3-3 of Henrici [62], we see that a Lipschitz
constant for ¥p in @1 is given by
zP7o ISk 7 g s 2P0 @K € Lem (1 -Bhg) T,
brovided that h < hq < B L. By Section 3.3-2 and 3.3-4 of Henrici [62), there exists an
My > O such that
aG(qpp.h) < My hP .
The resuit now follows from Theorem 4.1 and (3.18). |
We are now ready to consider the optimal p for C [p,a).
Theorem 3.5:
(1) For all @ > 0, there exists p|;*(a) such that (2.19) holds.
(2. pU*(a) increases monotonically with a, and
pU*(a) ~a/N asat .
(3) CU*(a) increases monotonically with a, and
cuf@ ~Myaye/MNeNine asetw.
(4)  hyta ~ My Ml et .
Proof: Clearly ¢ satisfies (2.13) and (2.14). Now write
Gyfp) = Gylp) + Gylp),
where
Gi(p) = Np and Gylp) = »p2/0p(p) 1
here we set
Dx(p) := (p+e) [(p+e) In (p+e) + 1] and v := a /[ [(byeyv)] .
We see immediately that G satisfies (2.17); a straightforward caiculation shows that

Gp/tp) = » [D(P)] 2 {vp [In (p+e)] - 1] + 2ef» In (p+e) + 1]},
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s0 that Gy’(p) > O for p > 0. Thus G, satisfies (2.17), which shows that G, satisties
(2.17). Hence pu* and CU* behave as described in Theorem 2.2,
Since pU*(a) goes to infinity with a, we see that
a = Gylpy*@) ~ Npy*a + py*@ / np e ~ Npyta,
which gives the asymptotic estimate in (2.). The rest of the Theorem follows from this
estimate. |}

Unfortunately, the estimates given above are only asymptotic as a T oo; this will
be typical, since many of the equations to be solved involve products of logarithmic
and polynomial terms, and thus cannot be solved exactly. On the other hand, these
asymplotic expressions are sufficient for our purposes, since they describe how
quickly pU*(a) and CU*(a) increase with a.

Note that as a tends to infinity, CU*(a) becomes independent of e(fv), which
measures how hard it is to evaluate the derivatives of v; this is because the
combinatory cost eventually overwheims the informational cost. This kind of behavior
will be typical of the compiexity analyses in this paper. Finally, note that the bound

(8.20) C Ma) = Ola™) s CHa) < OlaNina) = C %a) asat
implies that

CyMa) / C *a) = Olina)as at oo
this indicates the gap in our knowledge of the complexity of solving (1.1) via Taylor

series methods.
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4. Linear Runge-Kutta Methods

For many functions v, caculation of the derivatives required by Taylor series
methods is prohibitively expensive. For this reason, we are interested in methods
which use information that is somewhat more readily available. In particular, we will
consider methods that use only evaluations of v, combined in a highly structured

manner. We say that $| p is a class of linear Runge-Kutta methods (abbreviated, "LRK

methods") if each increment function $p May be written in the form

s-1
(4.1) pp(xi,h) 1= EInO gt Ky
where
. iy =1 -
{4.2) ky = vix; +h 2j=0 R“ kj) forQ<lss-1,

the integer s = s{p) is said to be the number of stages of ¥pi the number of stages is
equal to the number of times the vector function v must be evaluated. (In order to
simplify notation, we will not explicitly indicate the dependence of A” and kj on p.) The
method ¥p defined by (4.1} and (4.2) is explicit in that k| depends only on kg , .., Kj_y3

see Butcher [64] for a discussion of semi-explicit and implicit methods. (We use the

adjective "linear" to distinguish these methods from "nonlinear Runge-Kutta methods,
which were first proposed in Brent [74])

Since the function ¥p is {in practice) always evaluated by using the obvious
atgorithm suggested by its definition, we shall identify an algorithm for evaluating fp
with ¥p itself. Thus the problem of finding the best algorithm for evaluating ¥p in
®| Rk is equivalent to the problem of finding the best basic sequence of LRK methods
possible. This is related to the problem of finding the smallest value of s(p) such that

¥p has order p. This minimal value is given by
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p p=1,223,4

p+1l p=506
(4.3} s{p} =

p+2 p=7

unkhown p2z8

For methods of order greater than seven, a gap develops. For instance, eighth-order
methods with eleven stages exist, and it is known that any eighth-order method
requires at least ten stages. For arbitrary p 2 8, the best bounds known for the
optimum value of s(p} are

{4.4) | p+®p) < s(p) = (p2 -7pt 18y /2,
where &#(p} 2 ¢ In p for all sufficiently farge p (for some ¢ > 0). The lower bound is
given in Butcher [75]; the proof is quite involved, and the result is not much better
than the "trivial" iower bound s(p) 2 p (Hindmarsh [74], page 84). A class ®ovri of
methods such that Yp reguires only (p2 - 7p + 18) [ 2 stages is given in Cooper and
Verner [72].

We first consider lower bounds on the complexity C(p,a} using LRK methods.
The "trivial" lower bound s(p) 2 p will be used, since the term ¢(p) will be small when
p is small and will not affect the asymptotic behavior of optimal order and complexity
for p large. It is known (Butcher [64)) that at {east 0(p2) of the subdiagonal elements
of the matrix A (whose elements are the A,j in {4.2}) must be non-zero in order for A

th~ord:szr method. Thus there exists a > 0 such that

to define a p
(45) dp) 2 3 p? ;
since s(p} z p, we see that
(4.6) e(mp(v}} 2 Ne((vp,

where we now write

eL(v) = min 1<i<N e(vi) ;
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Thus {4.5) and (4.6) show that a lower bound on the cost per step for o is given by

(4.7) alp) = a_ p2 +Ne(Wp .

Theorem 4.1:

Cilp) = M [ p2 + Ne((v)p] e/

Proof: This follows immediately from (2.23) and (4.7). |}

It is clear that f (p) 1= M| [a_ pl + N e (v) p] e9/P satisfies (2.13) and (2.14).
We claim that f; yields a G; satisfying (2.17). Indeed, write

fLip) = f1(p) folp),
where
filp) == M 3 p
and
folp) = p+w», where » := Ne{v)/a .

Clearly fy yields a G; satisfying (2.17). Since {5 is a linear polynomial with a negative
zero, it may be shown that f, yields a G, satisfying (2.17). Thus f| yields a G
satisfying (2.17); in fact, we have

(48)  Gup) = Gyfp)+ Golp) = p[1+ (1 +wp Hyl] .
This leads us to

Theorem 4.2:

Cl¥a) ~ M a e?/8]a? as atow .

Proof: From (4.8), we see that G (p} ~ 2 p as p T ®. Since (2.13), (2.14), and

(2.17) hold, pL*(a) tends to infinity with . Thus
a = Gp *a) ~ 2pMa) asat o,

e, pL*(a) ~ af2 as a T 0. The result now follows from Theorem 4.1. |}

We now turn to upper bounds on complexity. The ctass doypy derived in
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Cooper and Verner [72] has two deficiencies, the first of which is that no uniform
upper bound on uLU(qpp.h) is known for $oypys in addition, the combinatory cost for
this ciass of methods is O(pq) as p T w. Instead, we turn to the basic sequence ®rpy
discussed in the Appendix. There, we prove that there is an My > O such that
(4.9) aG(wp,h) £ Myin{p +e) hP,
provided h = hp, where hp = 0((In p)'l) as p T co. Furthermore, there are a large
number of extra zeros in the matrix A for ¥p ¢ ®cpk- Using the notation of the
Appendix, we see that the number of non-zero entries in A is
5 - p-1.2
S = E T rp
p3/3 - p2/2 + 7p/6

1A

| p3/3 + 2p2/3

for p ¢ Z**. Finally, note that the number of stages s(p) required tor ¥p € $CR is
(4.10) s(p) = L(p2 - 2p + B)/2] < p?f2 4 p

for p € Z**, which shows that the number of stages required for a pth-order method

th_order method in ®CVRK:

in $cpk asymplotically equals the number requires for a p
Thus (considering the combinatory costs), the class &pypi actually costs more per
step than does ®py; ignoring the combinatory costs would have caused us to reach
the opposite conclusion.

First, we look at the cost per step. By (4.10),we see that

(4.11) e(Rpv) < é (P2 + p) Neyiv),

where

i

eylv) = max jen elvy) .
Since we are using ®oRy, it is easy to see that there is a b, 2 2/3 such that

(4.12) dip) < (p3/3 + by p?) - 2N .
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Combining (4.11) and (4.12), we see that the total combinatory cost per step is
bounded by
(4.13) cufe) = N[209/3+8; p2+85p ],
where
By = eyv)/2+2by and By := eyfvi/2 .
Using (4.9) and {(4.13)} gives
Theorem 4.3:
Culp.) = MyN[203/3 + 8 b2 +Bpp1intp+e)e®/P . |
Now we ook at the optimality theory for the upper bound.
Theorem 4.4.:
(1.} For all «> 0, there exists py,*(a) such that (2.19) holds.
{2.) pU*(a) increases monotonically with «, and
put@ ~ af3 asato .
(3. CU*(a) increases monotonically with a, and
cilfe@ ~ [2MyNed /81 ]aPna asatw
(4) hytay ~ (M eina)! asato,
Proof: We write
fulp) = My in{p + e} cyfp)
in the form
fulpy = f1(P) folp),
where
f1(p) = MNP In(p+e) and folp) = 2p2/3 + ) p + B, .
It is clear thal f; satisfies the hypotheses of Lemma 2.1. Now we consider t5. Clearly

f5 has no positive zeros; it may be seen that the condition by, 2 2/3 implies that {5 has
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a positive discriminant and hence has no complex roots. Thus f> has only negative
roots; one may then show that this guarantees that fo satisties the hypotheses of
Lemma 2.1. Thus, the same may be said for f = fl fa.

Thus pU* and CU* behave as described in (1.) of Theorem 2.3. Wsa also see that
Gylp) ~ 3 p as p T . Thus the estimate in (2.) holds, from which we get the estimates
in (3.) and (4.). R

50 in the class of linear Runge-Kutta methods, we tind that

(4.14) C Ha) = Ola® < CYa) < CMa) = Ola® In a)
as a tends to infinity; hence, the ratio

CUf@ /C Ma) = Oflaina)

indicates the gap in our knowledge of the complexity of tinear Runge-Kutta methods,
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5. Comparison of the Methods

We now wish to compare the classes of Taylor series methods and LRK methods.
Write CU,T* . CL,T* , and CT* (respectively, CU,LRK* ) CL,LRK* , and CLRK*) tor CU',
CL*, and C* in the class &7 (respectively, the class & pg). Since we have only
asymptotic expressions for these quantities, we are forced to use an asymptotic
comparison. If f, g : R** = R** satisty lim 4o Ha) = lim 44, gla) = +o0, we will
write
(5.1) f<g iff fla)=olgla)) asal om;
we say that f is asymptotically less than g. If f < g, there is an ag > O such that
f(a) < gla) for a > apy, so there is a non-asymptotic interpretation of the arder
relation <. Thus if f and g are cost functions, the statement "t < g" implies that the
method whose cost is given by f is "better” (i.e,, cheaper) than the method whose cost
is given by g, for s sufficiently small. Using the results of (3.20) and (4.14), we then
have the following
Theorem 5.1: Suppose that (3.16) holds.
(L) IFN=1then Cyr*<Cpipe’ -
(2) ItN=2then Cyr*<Cyipe’ -
{3.) IfN=3, then
CU,T*(“) = O(CU,LRK*(G»
and
Cyrk’t@ = OCy T @)
as a T o

(4) If N2 4, then CU,LRK* < CL,T* . B
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If (3.16) does not hold, then (1.), (2.), and (3.) may be false, but (4.) will certainly
be true. As an immediate corollary to the above theorem, we have
Theorem 5.2:
(L) 1f N =1 and (3.16) holds, then Cy* < C pc* .
(2) HN24,then Cp*<Cr*. 1
So if the derivatives of v are cheap to evaluate, we see that the best Taylor
series method known is better than the best linear Runge-Kutta method possible for
the scalar case N = 1; but if N 2 4, the best linear Runge-Kutta method known is better

than the best Taylor series method possible.
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Appendix: Error Bounds for a Sequence of LRK Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK")
methods due to Cooper [69]. We shall first prove the following
Theorem A.i: There is a basic sequence $opKs of LRK methods such that
(1) Each ¥y, € ®CRK! requires
s(p) = (P2 -p+2)/2
evaluations of v per step.
(2.}  There exists an M; > O such that
(A.1) ch(qop,h) s (Myin (p+e) h)P
for h < hy = Ollin py1),
We use the notation of Cooper and Verner [72] Let p ¢ Z** be given; define
pZ*n[0,p]=Z"* by

s

kgokaj(j+1)/2 if jdp

{A.2) .p(j) i
$ ifj=p ,

where we write "s" for "s(p)” as defined above. Next, a set {§;, .., £} of integers is
defined by picking §y := p, and setting §; (i # 0) to be the unique integer in {1, p]
satisfying

(A.3) ol - 1) < i s plg) .
We now pick Ug , ..., ug € I satisfying

(A.4) Up=0, ug=1, y, FOifip0
and

(AS) (¢ = Ej and i # j} imples u, # uj .

-Finally, we pick a matrix of coefficients A = {Aij: 0s<jsgi-1,1giss}such that

(A.6) Nj=0 if k<§-1 (Lsijss)
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and

};10 NjuT o= ey 0 <rsg -1 15iss) .

Cooper and Verner [72] point out that these conditions may always be fulfilled; the

(A7) IZ

resulting A defines a pth-order LRK method with s stages.

We are interested in a choice of ug , .. , ug which will give a small error
coefficient. To this end, we will choose

(A.8) {u,-: £j=n}={(l+xkn}/2:lsk5n} (l<n<p-1),
where X;, , .. , X5y are the zeros of the Jacobi polynomial Pn = Pn“'” (see
Szegd [59]). Since these zeros are distinct and lie in [-1, 1], conditions (A.4) and (A.5)
may be satisfied.

Now we are able to exhibit a solution to the ith system in (A.7). First, note that
the equation for £ = 0 may be separated from the others, since ug = 0. Setting

noa=g-1,

we see that

i-1

(A9) Mo = u - E)) - [N

= U |J

i j<iandEj2n},

i)
the iast by (A.6). We wish to determine the nonzero Aij’ i.e, those *ij for which Ej 2n
and j <i. So setting

kij=0 unless jG{j1s---'jn}'

we see that the remaining Aij are the solution of the system

Ty v Ny = e Ty™h s e
Thus the A-jk are the weights for an interpolatory guadrature formula on {0, y;] with
abscissae ujl s ujn . From the usual expression for such weights and (A.6), we see
that
Nj, = Mikn = (2Pp'(cos 91 § ;w | [Pnfcos @) / (cos & - cos dy )] sin ¢ dd

where x ., = cos "kn (Il <k sn)
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Lemma A.l: pyp, = O L innyasn T o
Proof: Since the zeros of P, are symmetric about the origin, we may assume
that O < &, s x/2. Using (8.9.2) of Szegd [69], we then find
= 5/2.-3y (¥ i
bk = OK3/2n73) { 3i sy [Pr(cos 00 / (cos & - cos dyp)] sin 0 de .

Case 1: "1,n+1 < "i,n+1 < dk,n+1/2- We consider the integral over

[¢1,/2, "i,n+1} , since Theorem 15.4 of Szegd [59] proves that

ow®/Zn 3y f7 1 +|j'g“‘/2 = ol .
(Here the integrand is the same as in the preceding integral.) But the proof of (15.4.12)
in SzegB [59] extends almost immediately to a proof that the remaining integral is
O(k'zn), since (15.4.12) is proved by order-of-magnitude estimates. Thus g, =
otn~Ly = ot~} In n) for Case 1.

Case 2: Wy py /2 € O;nyy S 304, /2. We consider the integral over

(Fkn/2: "i,n-'-l] , since Szegh [59] shows that
ow5/2n73y ) | ;kn ol =0l

As in (15.4.13) of Szegh [59), we have

50”“1 = 0ok 321 4+ 1y .
Here

501 N+ ped) sin ¢ de,
with
D(8) := [cos (NP + 4) - cos (Nt + ¥)] / [cos @ - cos ],
where N:=n + 3/2 and 4 := -3%/4, and
| Iy = f:;,::;zl R(8,8,,) sin @ d¢ = O(nk~3/2) |

with R, the remainder term in (8.8.2) of Szegd [59] Unfortunately, the proof that

(15.4.14) of Szegd [59] is bounded does not extend to a proof that I; is bounded,
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since the proof of the former reguires that the interval of integration be symmetric
about "kn' However, it is straightforward to verify that
I = o) [T/ % sinNg /81 d0 = Onn) .

Thus pp, = O(n‘zk Inn)= O(n'l In n) for Case 2.

Case 3: 3%y, < ¢, < 3x/4 We consider the integral over
[3¢,/2, "i,m-l] , since Szegl [59] proves that

0k3/2n73) | {3, 2| = O7H)

But the proof of (15.4.19) in Szegh [59] extends to prove that the remaining integral is
O(k's/zn) {as in Case 1). Thus py, = Otn~Y) = 0(n™! In n) for Case 3.

Case 4: 3r/4 < &, S ¥,y n4 We consider the integral over
[3x/4, "i,n+l] , since Szegd [59] shows that

0(k2/2n-3) | S3esal = ol .

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound
on the integral of interest. Thus uj,, = 0(n™!) = 0(n~1 tn n) in Case 4, completing the
proof of the Lemma. |}

Thus (A.9) and Lemma A.1 show the existence of a A > O such that

(A.10) Zh W€ A G+ e
here A is independent of p. Moreover, the result for the case i = s may be sharpened.
We see that Asj z 0, since the uj for the sth system in (A7) are the abscissae for
Lobatic quadrature. Thus

(A.11) o il = g < L,
the consistency condition in the last equality being a consequence of {A.7) with r = 0.

Proof of Theorem A.1: As in Cooper and Verner [72), we define

ii = !".'(U'h) - ki

and
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i~l
j=0

for O s i < s; note that 8o = sg = 0. Let z(h) be the computed approximation to x(h);

5i Hod I:' *(Uh) du-% )” ).((Lljh}

then

I b1 Exch) - x(0)] - 250 A K 11

b~ [ix(h) - z(h))| i=0

(A.12) Ielt + 11250 Ngi sl

A

1A

(1Bl + max & = p-1 fi;dl
the last by (A.6) and (A.11). By the analyticity of x, there is an Ay > 0 such that
8 = hoL 1] xluh) - Zo hXP0) /o s (&) WP

and

-1
vij = Il %(ujh) —zfl,o T 5oy /et || < (A h)

&

so that the definition of §; gives

i-1
el < 8+ Zig Il v
b

&

7

(1Y

(A.13) (Ap 0"+ 270 Il (g B

A

(Ap h)
for a suitable A, > 0. Thus (A.12) becomes

A18y by - 2] < (A WP+ max g oo sl

We now use Lemma 1.1 of Cooper and Verner [72] and {A.6) to find that if L is a

Lipschitz constant for v, then there exists Ag > 0 such that

Ile;ll

1A

i-1
hL I8} + hL 2j=0 I)\ijl max | lls; !
g+l

A

(Ag h) +(Ag h}In (§; + e} max i IIstI )
the tast by (A.10) and (A.13); here, the maximum is taken over all j < i such that
Ej- z & - 1. A straightforward induction shows that if (1 +in 2) Ag h < 1, then
E!+1

lisill < (AgIn(§ + e} h)
for a suitable Ag > 0. Combining this with (A.14), we find

(A.15) h™L fixth) - z(h))l s (Ag In (p+e) )P,
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the desired bound for the local error for a single unit step.
To extend (A.15) to a global error result, we must look at the Lipschitz constants
for the increment functions. Let L be a bound on [|Tvl, and write "Vpp(y,h)“ to

indicate gradient with respect to the vector variable y. Now

IA

liva(Y)h)” 2:‘:; |A5|I max Osi<s-1 IIVkl(y,h)lI

max ogigs-1 VK(y,hlll
where we write "ki(y,h)" to indicate the dependence of k; upon y and h. By the
definition of k;(y,h), we find

Vhiy ) = Dulw) [y + h g Ny TR,

i-1
j=0

whereu:=y + h Z "ij kj(y,h} and Ipyy is an NxN identity matrix. Taking norms in
the above gives the result

b s LA+th[In(Ei+e)max{rj: j<i and Ejafi- 1}1,
where £ := ||Vkily,h)ll. Writing A, for the Lipschitz constant for g, it is easy to see
that (A.16) and the above ineguality imply

Ao < zf;é (LI 1172 i (pre-k)

which is bounded for alf p, provided that h < hy < (LA In (p+e))" L. Thus (A.1) follows
from this result, (A.15}, and Theorem 3.3 of Henrici [62]. [}

The value for s{p) indicated in Theorem A.l may be improved somewhat by
noting that since we are using a Lobatlo quadrature, higher order may be expected
with fewer steps. Indeed, if we use the strategy outlined in the comments following
Theorem 4 of Cooper and Verner [72], we have

Theorem A.2: There exists a basic sequence ®opy of LRK methods such that
(A.1) holds and ¥p requires

s(p) = |(p? -2p + )/ 2)

evaluations of v per step. JJ
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