
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Computational Complexity of One-Step Methods
for Systems of Differential Equations

Arthur G. Werschulz

September, 1976

Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract: The problem is to calculate an approximate solution of an initial value
problem for an autonomous system of N ordinary differential equations. Using fast
power series techniques, we exhibit an algorithm for the p*h-order Taylor series
method requiring only 0(p^ In p) arithmetic operations per step as p -» +a>. (Moreover,
we show that any such algorithm requires at least O(p^) operations per step.) We
compute the order which minimizes the complexity bounds for Taylor series and linear
Runge-Kutta methods, and show that in all cases, this optimal order increases as the
error criterion t decreases, tending to infinity as i tends to zero. Finally, we show
that if certain derivatives are easy to evaluate, then Taylor series methods are
asymptotically better than linear Runge-Kutta methods for problems of small
dimension N.

This research was supported in part by the National Science Foundation under Grant
MCS75-222-55 and the Office of Naval Research under Contract N00014-76-C-0370,
NR 044-422.

1

1. Introduction

Let 5) be a set of points in the real N-dimensional linear space IR^ , and let

be a set of operators on IR^ , such that the initial value problem of finding a function

x : [0, 1] -> IR N satisfying

x(t) - v(x(t)) if 0 < t < 1
(1.1)

x(0) - x 0

has a unique solution for every (X Q , v) * 5)x<$; we assume that x is analytic on [0, 1].

The autonomous form of this system is no restriction, since any non-autonomous

system may be made autonomous by increasing the dimension of the system by one.

In Werschulz [76], we looked at the computational complexity of using one-step

methods to generate an approximate solution to (1.1) on an equidistant grid in the

sense of Stetter [73]; that is, the methods considered computed approximations Xj to

x(ih) by the recursion

(1.2) Xj + j - Xj + h ?(XJ , h) (0 <; i < n - 1 , n = h"1) ,

where h = n~* is the step-size of a grid with n points, and ip is the increment function

(Henrici [62]) for the method. (To be brief, we will refer to "the method ^.") In that

paper, we discussed the problem of optimal order and minimal complexity for rather

general classes of one-step methods.

In this paper, we will use the techniques and results of Werschulz [76] to

analyze the complexity of using Taylor series methods and linear Runge-Kutta methods

to generate approximate solutions whose error does not exceed i. The model of

computation, error measure, and complexity measure to be used are described in

Section 2, as well as the relevant results from Werschulz [76].

2

We discuss the complexity of Taylor series methods in Section 3. Using the fast

power series techniques of Brent and Kung [76], we show that 0(p^ In p) arithmetic

operations suffice to compute the p^-order Taylor series approximation; moreover, we

show that O(p^) operations are necessary. In Section 4, we discuss the complexity of

linear Runge-Kutta methods. In both Sections, we compute lower and upper bounds on

the complexity using a fixed method of given order; these results are then used to

compute optimal orders which minimize these complexity bounds. We show that in all

cases, the optimal order increases as * decreases, tending to infinity as * tends to

zero.

Finally, we compare these two classes of methods in Section 5, where we show

that if the partial derivatives of v are easy to evaluate, then Taylor series methods are

asymptotically better (as t tends to zero) than linear Runge-Kutta methods for

problems of small dimension N.

2 . Preliminary Results

3

Before proceeding any further, we will establish some notational conventions.

Let X be an ordered ring; then 3G* and X** respectively denote the nonnegative and

positive elements of X. (This is used in the cases X • IR, the real numbers, and

X = Z , the integers.) The symbol ' V means "is defined to be," while "a" means "is

identically equal to." We use T to denote the unit interval [0, 1]. The symbol "V" is

used to denote the gradient of a mapping. The notations "x i a" and "x t a" are used

to indicate one-sided limits, as in Buck [65} Finally, we write "(a.b)c" to indicate the

part of equation (a.b), as in Gurtin [75].

We next describe the model of computation to be used. We assume only that all

arithmetic operations are performed exactly in IR (i.e., infinite-precision arithmetic) and

that for any algorithm to be considered for the solution of (1.1), a set of procedures is

given for the computation of any information about v required by that algorithm. (For

instance, with Runge-Kutta methods, we must be able to compute v at any point in its

domain.)

In addition, we must pick an error measure, so that we may measure the

discrepancy between the approximate solution produced by ip (via (1.2)) and the true

solution. For the sake of definiteness, we use the global error

(2.1) <rG(?,h) := max 0 <j< n ||x(ih) - Xj|| ,

where || • || is a norm on IR^ . Other error measures may be used, such as the local

error per step cr̂ and the local error per unit step eyj (see Henrici [62] and

Stetter [73] for definitions); this would involve only a slight modification of the results

contained in the sequel.

4

W E F I N A L L Y D E S C R I B E T H E C O M P L E X I T Y M E A S U R E TO B E U S E D . L E T • - { ? P : P « I**}

B E A B A S I C S E Q U E N C E I N T H E S E N S E OF W E R S C H U L Z [7 6] ; T H A T I S , T H E R E E X I S T F U N C T I O N S

if : I R + X I - * R* A N D * L , K U : I R + -> I R + S U C H THAT

(2 . 2) *Q (V h) " * (P , H) H P FOR H * I A N D P < Z * + ,

W H E R E

(2 . 3) 0 < * L (P) < * (P , H) £ ^ (P) < +A> FOR H * I .

W E S A Y T H A T ^ P H A S O R D E R P . T H I S IS A SL IGHT E X T E N S I O N OF T H E D E F I N I T I O N O F O R D E R G I V E N

I N C O O P E R A N D V E R N E R [7 2] ; T H E F U N C T I O N I N T R O D U C E D H E R E IS N E C E S S A R Y A N D S U F F I C I E N T

F O R T H E " O R D E R " O F A M E T H O D T O B E U N I Q U E . (F O R T H E S A K E OF E X P O S I T I O N , we A S S U M E T H A T

* L A N D K (J A R E A N A L Y T I C O N A N D THAT L I M P ^ Q * L (P) * / P A N C * " M P - > 0 * L / P) ^ e x ' s * a n < *

A R E P O S I T I V E REAL N U M B E R S ; T H I S WILL A L W A Y S B E T H E C A S E I N T H E E X A M P L E S we C O N S I D E R .)

T H E N W E WILL B E I N T E R E S T E D J N T H E TOTAL N U M B E R OF A R I T H M E T I C O P E R A T I O N S C (P , «) R E Q U I R E D

T O G U A R A N T E E T H A T

(2 . 4) * G (* P > H) S 1 : * E ~ " '

F O R A G I V E N P A N D A G I V E N A . (H E R E E IS T H E B A S E OF T H E NATURAL L O G A R I T H M S .) We

S U P P O S E T H A T 0 < s < 1, S O T H A T a IS P O S I T I V E . C L E A R L Y , a I N C R E A S E S AS t D E C R E A S E S , A N D A

T E N D S T O I N F I N I T Y A S i T E N D S TO Z E R O .

I N T H E M E T H O D S W E C O N S I D E R , W E M A Y W R I T E

(2 . 5) C (P , A) « N C (P) ,

W H E R E N I S T H E M I N I M A L N U M B E R OF S T E P S R E Q U I R E D A N D T H E C O S T P E R S T E P C (P) I S T H E

N U M B E R O F A R I T H M E T I C O P E R A T I O N S R E Q U I R E D FOR T H E M E T H O D OF O R D E R P . A S I N T R A U B A N D

W O I N I A K O W S K I [7 6] , W E SHALL E X P R E S S T H E C O S T P E R S T E P A S S O C I A T E D W I T H ? P I N T H E F O R M

(2 . 6) C (P) e(WP(V» + D (P > .

H E R E 92D(V) I S T H E I N F O R M A T I O N A B O U T V R E Q U I R E D TO P E R F O R M O N E S T E P O F A N D we

5

write e(9|p(v» for the informational cost of ^ p ; we call d(p) the combinatory cost

of * p .

Note that we explicitly indicate the dependence of JR p on v, so that we may

compare the cost of (say) an evaluation of v with a scalar arithmetic operation.

Basically, e($£p(v)) measures the cost of getting new data about v required by ? p f

while d(p) measures the cost of combining this new data to get an approximate value

of the solution at a new point. For example, Euler's method in R^

x i+ l 88 x i + h

has informational cost 2 ^ e(vj) , where vj , . . . , vpg are the components of % and for

any function w: IR^ -> IR, we define

(2.7) e(o>) := cost of evaluating a> at one point .

The combinatory cost is 2N arithmetic operations, i.e., one scalar multiplication and one

scalar addition for each of the N components.

We must now face a problem that occurs in almost all areas of complexity

theory. The number of operations c(p) required for one step of a p^-order method is

usually unknown per se; we only have bounds of the form

(2.8) c L(p) < c(p) < cy(p) .

That is, c^(p) is a lower bound on the number of operations required per step, usually

derived via theoretical considerations, and cy(p) is an upper bound on the number of

operations required per step, which is derived by exhibiting an algorithm for

computing the p^-order method. (In what follows, we shall assume that the functions

c l » cy : IR**" -> IR + are analytic, although this requirement may be greatly weakened.

However, this assumption holds for all examples that we consider.)

From the discussion in Section 3 of Werschulz [76], we find that the step-size h

must satisfy

6

(2.9) hy(p,a) £ h < hL(p,or),

where

(2.10) h L(p,«) :~ ^(pr^Pe^/P and hy(p,a) ^ (p) " 1 ^ e"«/P .

Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C(p,ar).

Theorem 2.1: Define

C L(p,«) := f L (p) e * / p , where f L(p) ^ (p) 1 ^ c L (p) ,

and

Cy(p,«) := fy(p)e*/P, where fy(p) Kytp) 1 ^ Cy(p).

Then

(2.11) CL(p,a) < C(p,a) < Cy(p,a) .

Proof: See Theorem 3.1 of Werschulz [76]. |

Thus we have bounds on the complexity of using ipp to compute an approximate

solution satisfying (2.4). We now wish to consider the problem of optimality. Define

(2.12) C*(a) :=»nf {C(p,a): *>p < *} .

We are interested in bounds for C*(a) under reasonable assumptions about and fy.

We first suppose that

(2.13) f L (p)>0 and fy (p)>0 if p > 0

and

(2.14) l ' m p t o o f L (p) = l i m p t o o = +oo .

Assumption (2.13) is that there is no method whose cost per step is zero, while (2,14)

essentially means that the "better" a method is (i.e., the higher its order is), the more

we should expect to pay for its use.

Using the techniques of elementary calculus, we find that a necessary condition

for p to minimize C^(* ,a) is that

(2.15) a = GL(p) := p 2 f L ' (p) / f L (p) ;

similarly, Cy(* ,or) takes its minimum at p only if

(2 . 1 6) « = Gy(p) := p 2 fy'(p) / fy(p) .

Sufficient conditions for the existence and uniqueness of solutions to (2 . 1 5) and (2 . 1 6)

(i.e., for well-defined functional inverses of Gj_ and Gy) which actually minimize C L (• >*)

and Cy(• ,«) are given in

Lemma 2 . 1 : Let f[_ and fy be as above, and suppose that

(2 . 1 7) G L
/ (p) > 0 if G L (p) > 0 and Gy'<p) > 0 if Gy{p) > 0 .

Then G|_ and Gy have respective functional inverses P L * , Py* : R 4 " * -> I R * * such that

for all p (I R + +

(2 . 1 8) CL*<a) CL(pL*(a),a) * C L(p,«)

and

(2 . 1 9) Cy*(a) :« Cu(py*(a),a) < Cy(p,a)

with equality in (2 . 1 8) or (2 . 1 9) if and only if p * Pi*(a) or p = py*(a), respectively.

Proof: See Theorem 2 . 1 and Lemma 3 . 1 of Werschulz [7 6] . |

We call P L * (O O (respectively, Py*(a)) the lower (upper) optimal order, C ^ a)

(respectively, Cy*(a)) the lower (upper) optimal complexity, and

(2 . 2 0) hL*(a) :« hL(pL*(a),a) (respectively, hy*(a) :« hy(py*(a),a))

the lower (upper) optimal step-size. Combining (2 . 1 1) , (2 . 1 2) , and Lemma 2 . 1 , we have

Theorem 2 . 2 :

CL*(a) < C*(a) < Cy*(a). I

We next describe the behavior of these quantities as a increases and tends to

infinity.

Theorem 2 . 3 : Let f[_ and fy be as in Lemma 2 . 1 . Then PL*(a), Py*(«)> CL*(«)> and

Cy*(a) all increase monotonically and tend to infinity with a.

Proof: See Theorems 2 . 2 and 3 . 3 of Werschulz [7 6] . |

8

Finally, we need a restriction of the problem class S)*9® to "sufficiently difficult-

problems; this will allow us to determine * L a n d * h u s establish lower bounds. We will

assume that

(2.23) <rG(?p,h) * (M Lh)P if h (I and p*Z*+

for some M L > 0 independent of h and p. In the methods we study, (2.23) holds

provided all sharp upper bounds are attained.

9

3 . Taylor Series Methods

The class * j of Taylor series methods is defined by expanding x in a truncated

Taylor series. Thus the increment function <pp is given by

(3.1) *p<x j fh) : - R ^ J V < k) (x j) h k / (K + l) ! f

where

(3.2) V < K > (X J) : - (d/dt)K [v(x(t)>] x (t) - . x .

The usual method of computing (3.2), as described in "classical" numerical analysis

texts such as Henrici [62], invokes the chain rule. This quickly leads to expressions of

horrifying complexity; for this reason, most texts quickly abandon the discussion of

high-order Taylor series methods.

We are interested in faster algorithms for computing ? p . First, we address the-

problem of a lower bound for the combinatory cost d(p).

Proposition 3.1: There exists a constant a L > 0 such that any sequence of

algorithms for computing $y must satisfy

(3.3) d(p) > a L p N .

Proof: Any algorithm for computing y>p requires the information

W p (v) : - {D*v: 0 * |0| S p - 1} .

(We use the standard multi-index notation found in Friedman [69].) It is then easy to

see that the above set has 0(p N) (as p t OO) distinct elements, which are (generally)

independent; this is an immediate consequence of Problem 11 in Chapter I of P6lya and

SzegO [25]. Thus (3.3) gives a linear lower bound. 1

Note that the constant a L in (3.3) depends on N. Since we are treating the case

where N is fixed and p is allowed to vary, we will not indicate this dependence

explicitly. We now see how close we can get to an optimum value for d(p).

10

Theorem 3.1: There exists a constant ay > 0 such that the combinatory cost

d(p) of computing ^ i *y satisfies the bound

(3.4) d(p) < ayp N ln (p+e) .

Proof: We first consider the case N = 1. Note that x(h) is the zero of

(3.5) F(z) := F * d*/v({) - h .
x 0

As in Brent and Kung [76], we consider the formal power series

P(s) : - F(x0+s) - F (x 0) ,

where s is an indeterminate. Let V be the power series reversion of P. Adopting the

notation of Brent and Kung [76], we see that

x(s) = x 0 + V(s) = x 0 + V p(s) + 0(sP + 1) .

By the uniqueness of the Taylor coefficients of an analytic function, we see that

y>p(x0,b) = h - W P F R) .

Since the number V p (h) can be computed in 0(p In p) operations from the Taylor

coefficients of v (by Theorem 6.2 of Brent and Kung [76]), the result for N - 1 follows.

For N > 2, we use Newton's method (Rail [69]) applied to the formal power

series operator P given by

(PyXs) := y(s) - x 0 - J Q v (y(r» dr ;

clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined

recursively. Let a formal power series X(p)(s) satisfying

x (p) (s) - x(s) + 0(sP + 1)

be given. Precompute

(3.6) w(s) $ S
Q v (x (p) (r)) dr - x 0 - x (p) (s) + 0<s 2P+ 2),

(3.7) Q(s) := Vv(x (p) (s)) + 0(s 2 P + 2) ,

and let U ^ Q ^ (S) : « 0. Then set

x (2 p + 1) (s) := x (p) (s) + u (p + 1) (s) ,

1 1

where

(3.8) u (k + 1) (s > : - J Q Q(r> u (k) (r) dr + w(s) + 0 (s 2 P + 2) , 0 < k < p .

Following the proof given in Rail [69], we find that

x (2 p + 1) (s) - x(s) + 0<s2P*2) .

We need only consider the cost T(p,N) of computing the series *(p)(s) in

determining d(p), since x(h) may be recovered from the formal power series in O(p)

operations. Clearly, we have the recursion

(3.9) T(2p+1,N) < T(p,N) + T 6 + T 7 + T 8 ,

where T m is the cost of step (3.m) for m « 6, 7, 8. Let COMP(p,N) be the time required

to find the first p terms of the formal power series f(y^(s), ... , yjg(s)), where f, Y J , ... ,

yfg are formal power series, and y j , ... , y^ have zero constant term. Theorem 7.1 of

Brent and Kung [76] states that

C0MP(p,2) = 0 (p 2 l n p) ,

and it is easy to show that for any N < Z + + ,

C0MP(p,N+l) » 0<p COMP(p,N)) .

Thus for N > 2, we have

(3.10) C0MP(p,N) = 0{p N ln p) ,

and so we see that

T 6 - f T 7 = 0<(2p+l) N lnp).

Finally, let MULT(p) be as in Brent and Kung [76]j we see that

T 8 - (p+1) [N 2 MULT(2p+l) + 0(p)] * 0((2p+l) 2 In p)

if Fast Fourier Transform multiplication (Borodin and Munro [75]) is used. Since N £ 2,

we have

(3.11) T 6 + T 7 + Tg - 0«2p+l) N In p) ,

and so (3.9) and (3.11) imply that

12

T(p,N) » 0(p N In p) ,

which completes the proof. |

(Note that the second algorithm is inferior to the first algorithm when applied to

the scalar case N - 1, where we find that the second algorithm requires 0(p 2 In p)

arithmetic operations.)

We now determine bounds on C(p,<x). First, consider lower bounds. Clearly,

there exists e^v) > 0 such that

(3.12) e(D^Vj) > e L(v) (1 < i < n, |0| i Z +) .

Since 9 2 P (v) has O(p^) elements, there exists a constant b^ > 0 such that

(3.13) e(W p (v» .> b L e L (v) p N .

From (3.3) and (ЗЛЗ), we have a lower-bound cost per step of

(3.14) c L(p) = [a L + b L e L(v)] p N .

This leads to

Theorem 3,2: CL(p,a) = M L [a L + b L e L(v)] p N ea/P .

Proof: This is an immediate consequence of (2.23) and (3.14). |

Note that f^p) := М(_с^р) satisfies the conditions of Lemma 2.1. Thus, the

optimality theory of Section 2 holds. In particular, we have

Theorem 33: CL*(a) = M L [a L + b L e L(v)] (e/N)N « N .

Proof: From (2.18) and (3.14), we find that GL(p) e Np, so that

pL*(a) = a/N and hL*(a) = (М ^ Г 1 .

The result follows by letting p « Р[_*(а) in the definition of C(_(p,a). |

However, recall that we assumed that the non-identical mixed partial derivatives

of v are independent. There are a number of systems for which this is not true (for

instance, constant coefficient linear systems); for such systems, it is clear that we may

13

be able to use the extra information of non-independence to find algorithms that are

faster than the lower bounds given above. However, we will ignore this case and only

consider the problem for a "general" function v.

Next, we turn to upper bounds on the complexity. Theorem 3.1 tells us how to

combine the necessary information to get the solution at a new grid-point; we need

only measure the cost of getting the information. So, let

e (k) (v) = max {e(D^VJ): 1 < i < N, |0| « k) .

Using the result in Polya and Szegfi [25], we see that

(3.15) e (W p (v » < N Z ^ J E (k) (v) (N + k - l) ! / [k ! (N - l) !] .

Unfortunately, the right-hand side of (3.15) does not fit our general model, so we must

assume that we know how e ^ (v) changes as k increases. We will consider the case

where the cost of derivative evaluation is bounded; that [s^ we wHi assume that

(3.16) e (k) (v) < ey(v)

for some ey(v) independent of k. Other cases (e.g., e (k) (v) - 0(Km) for some m > 0)

may be analyzed in a similar manner; of course, they will give different results. By

(3.15) and (3.16), there is a by > 0 such that

(3.17) e (t t p (v » < b u e u (v) p N .

From (3.4) and (3.17), we have an upper-bound cost per step of

(3.18) Cy(p) = ay p N In <p+e) + by ey(v)p N .

This leads to

Theorem 3.4: There exists an My > 0 such that

Cy(p,a) = My [ay p N In (p+e) • by ey(v)p N] e«/P .

Proof: By Cauchy's Integral Theorem (Ahlfors [66], pg. 122), there exists a

B > 0 such that

|||x<K^1>||| / <K+D! < B k ,

14

where we define

(3.19) IIMII : - max m ||y(t)||

for any y: I -» IR^ Thus by Section 3.3-3 of Henrici [62], we see that a Lipschitz

constant for ? p in * j is given by

2P^|||x(k + 1)|||h k /(k + l) ! < z£j (Bh) h < L i - d - B h o) - 1 ,

provided that h < h Q < B"1. By Section 3.3-2 and 3.3-4 of Henrici [621 there exists an

M(j > 0 such that

erG(*p,h) < (Myh)P.

The result now follows from Theorem 4.1 and (3.18). |

We are now ready to consider the optimal p for Cy(p,a).

Theorem 3.5:

(1.) For all a > 0, there exists py*(a) such that (2.19) holds.

(2.) py*(«) increases monotonically with or, and

Py*(a) ~ a/N as a T o o .

(3.) C y * (a) increases monotonically with a , and

C y * (a) - My ay <e/N)N a N In a a s o t o o ,

(4.) hy*(«) - (My eN)'1 as of T o o .

Proof: Clearly cy satisfies (2.13) and (2.14). Now write

Gy(p) = G^p) + G 2 (p) ,

where

G 2(p) « Np and G2(p) - rp 2 /D 2 (p) i

here we set

D 2(p) (p+e) [(p+e) In (p+e) + 1] and p := ay / [by ey(v)] .

We see immediately that Gj satisfies (2.17); a straightforward calculation shows that

G 2 ' (p) = P [D(p)]- 2 {pp [In (p+e)] - 1] + 2B[P In (p+e) + 1]} ,

15

so that G 2
/ (p) > 0 for p > 0. Thus G 2 satisfies (2.17), which shows that Gy satisfies

(2.17). Hence py* and Cy* behave as described in Theorem 2.2.

Since py*(a) goes to infinity with a, we see that

« G\JP\J*(«)) ~ N Pu*<a> + PU*(a> / l n P U * ^ ~ Npy*(a),

which gives the asymptotic estimate in (2.). The rest of the Theorem follows from this

estimate. |

Unfortunately, the estimates given above are only asymptotic as or t ooj this will

be typical, since many of the equations to be solved involve products of logarithmic

and polynomial terms, and thus cannot be solved exactly. On the other hand, these

asymptotic expressions are sufficient for our purposes, since they describe how

quickly py*(a) and Cy*(a) increase with a.

Note that as or tends to infinity, Cy*(a) becomes independent of ey(v), which

measures how hard it is to evaluate the derivatives of v; this is because the

combinatory cost eventually overwhelms the informational cost. This kind of behavior

will be typical of the complexity analyses in this paper. Finally, note that the bound

(3.20) CL*(a) « 0(aN) < C*(a) < 0(aN In a) - Cy*(«) a s a t o o

implies that

Cy*(a) / CL*(a) = 0(ln a) as a t oo ;

this indicates the gap in our knowledge of the complexity of solving (1.1) via Taylor

series methods.

16

4. Linear Runge-Kutta Methods

For many functions v, caculation of the derivatives required by Taylor series

methods is prohibitively expensive. For this reason, we are interested in methods

which use information that is somewhat more readily available. In particular, we will

consider methods that use only evaluations of v, combined in a highly structured

manner. We say that * L R K i S a c ' a s s °* ^ n e a r Runge-Kutta methods (abbreviated, MLRK

methods") if each increment function ^ p may be written in the form

(4.1) f p (X j l h) I ^ 1 X s | k,

where

(4.2) k, := V (X J + h X,j kj> for 0 < I £ s - 1 ,

the integer s • s(p) is said to be the number of stages of ^ p ; the number of stages is

equal to the number of times the vector function v must be evaluated. (In order to

simplify notation, we will not explicitly indicate the dependence of X|j and kj on p.) The

method f>p defined by (4.1) and (4.2) is explicit in that k| depends only on k$,... , kj.^j

see Butcher [64] for a discussion of semi-explicit and implicit methods. (We use the

adjective "linear" to distinguish these methods from "nonlinear Runge-Kutta methods/'

which were first proposed in Brent [74],)

Since the function ^ p is (in practice) always evaluated by using the obvious

algorithm suggested by its definition, we shall identify an algorithm for evaluating ? p

with ^ p itself. Thus the problem of finding the best algorithm for evaluating ^ p in

*LRK ' s equivalent to the problem of finding the best basic sequence of LRK methods

possible. This is related to the problem of finding the smallest value of s(p) such that

ipD has order p. This minimal value is given by

(4.3) S(p)

17

P - 1, 2, 3, 4

P - 5, 6

p - 7

unknown p > 8

For methods of order greater than seven, a gap develops. For instance, eighth-order

methods with eleven stages exist, and it is known that any eighth-order method

requires at least ten stages. For arbitrary p > 8, the best bounds known for the

optimum value of s(p) are

(4.4) p + 0(p) < s(p) < (p 2 - 7p + 14) / 2 ,

where tf(p) > c In p for all sufficiently large p (for some c > 0). The lower bound is

given in Butcher [75]; the proof is quite involved, and the result is not much better

than the "trivial" lower bound s(p) > p (Hindmarsh [74], page 84). A class *CVRK °*

methods such that ^ p requires only (p 2 - 7p + 14) / 2 stages is given in Cooper and

Verner [72].

We first consider lower bounds on the complexity C(p,a) using LRK methods.

The "trivial" lower bound s(p) > p will be used, since the term tf(p) will be small when

p is small and will not affect the asymptotic behavior of optimal order and complexity

for p large. It is known (Butcher [64]) that at least 0(p 2) of the subdiagonal elements

of the matrix A (whose elements are the X|j in (4.2)) must be non-zero in order for A

to define a p^-order method. Thus there exists â_ > 0 such that

(4.5) d(p) > a L p 2 ;

since s(p) > p, we see that

(4.6) e(W p (v» > N e L (v) p ,

where we now write

e L(v) := min e(Vj)

18

Thus (4.5) and (4.6) show that a lower bound on the cost per step for f p i s given b y

(4.7) c L(p) « a L p 2 + N e L(v) p .

Theorem 4.1:

C L(p,«) = M L [a L p 2 + N e L(v) p] ea/P .

Proof: This follows immediately from (2.23) and (4.7). |

It is clear that f L(p) := M L [a L p 2 + N e L(v) p] e«/P satisfies (2.13) and (2.14).

We claim that f|_ yields a G L satisfying (2.17). Indeed, write

f L(p) = fi<P> f2<P>'

where

f 1<P> M L a L p

and

f 2(p) J " P + P » where v :* N e^v) / .

Clearly f^ yields a Gj satisfying (2.17). Since f 2 is a linear polynomial with a negative

zero, it may be shown that f 2 yields a G 2 satisfying (2.17). Thus f[_ yields a G L

satisfying (2.17); in fact, we have

(4.8) G L(p) = Gxip) + G2(p) - p [1 + (1 + rp" 1) " 1] .

This leads us to

Theorem 4.2:

CL*(a) - [M L a L e 2 / 4] a2 as a T o o .

Proof: From (4.8), we see that GL(p) ~ 2 p as p t <x>. Since (2.13), (2.14), and

(2.17) hold, P L * («) tends to infinity with a. Thus

a = GL(pL*(a)) *> 2 pL*(«) as a t o o ,

i.e., P L * (*) ~ cr/2 as or T o o . The result now follows from Theorem 4.1. |

We now turn to upper bounds on complexity. The class *CVRK derived ' n

19

Cooper and Verner [72] has two deficiencies, the first of which is that no uniform

upper bound on * L U (v > P » H) is known for *CVRK; ' n edition, the combinatory cost for

this class of methods is O(p^) as p T o o . Instead, we turn to the basic sequence *CRK

discussed in the Appendix. There, we prove that there is an My > 0 such that

(4.9) *G<*>p>h) - (M U l n (P + e) h) P >

provided h < h p , where h p = 0((ln p)~*) as p t o o . Furthermore, there are a large

number of extra zeros in the matrix A for ^ p < *CRK- Using the notation of the

Appendix, we see that the number of non-zero entries in A is

- C i l j 2 + p

= p3/3 - p2/2 + 7p/6

< p3/3 + 2p2/3

for p * Z + + . Finally, note that the number of stages s(p) required for fp € * C R K ' S

(410) s(p) = i (p 2 - 2p + 4)/2J < p2/2 + p

for p € Z + + , which shows that the number of stages required for a p^-order method

in *CRK asymptotically equals the number requires for a p*n-order method in *CVRK*

Thus (considering the combinatory costs), the class *c\/RK actually costs more per

step than does ignoring the combinatory costs would have caused us to reach

the opposite conclusion.

First, we look at the cost per step. By (4.10),we see that

(4.11) e(JW0<v» * - (p 2 + p) N eij(v),
2

where

e y (v) := max l s i : g N e(vj) .

Since we are using * C R K > it is easy to see that there is a by > 2/3 such that

(4.12) d(p) < (p3/3 + bu p 2) • 2N .

20

Combining (4.11) and (4.12), we see that the total combinatory cost per step is

bounded by

(4.13) cy(p) - N [2p3/3 • fil p 2 + » 2 p] ,

where

fil ey(v) / 2 • 2 by and fi2 : - ey(v) / 2 .

Using (4.9) and (4.13) gives

Theorem 4.3:

Cy(p,a) = My N [2p3/3 • ^ P 2 + fi2 P] In (p • e> e«/P . |

Now we look at the optimality theory for the upper bound.

Theorem 4.4.:

(1.) For all a > 0, there exists py*(«r) such that (2.19) holds.

(2.) Py*(or) increases monotonically with a, and

Py*(a) ~ a/3 as a t o o .

(3.) C y * (a) increases monotonically with a , and

Cy*(*) - [2 My N e 3 / 81] a 3 In a as a t o o .

(4.) h y * (a) ~ (My e 3 In a) ' 1 as a t o o .

Proof: We write

fy(p) : « My In (p + e) cy(p)

in the form

fy(p) - f i (p)f 2 <P).

where

fj(p) - My N p In (p + e) and f 2(p) - 2p2/3 + fi± p + 0 2 .

It is clear that f j satisfies the hypotheses of Lemma 2,1. Mow we consider f 2 . Clearly

f 2 has no positive zeros; it may be seen that the condition by .> 2/3 implies that f 2 has

2 1

a positive discriminant and hence has no complex roots. Thus f2 has only negative

roots; one may then show that this guarantees that f2 satisfies the hypotheses of

Lemma 2.1. Thus, the same may be said for f « f 1 *2 *

Thus py* and Cy* behave as described in (1.) of Theorem 2.3. We also see that

G(j(p) ^ 3 p as p t oo, Thus the estimate in (2.) holds, from which we get the estimates

in (3.) and (AX I

So in the class of linear Runge-Kutta methods, we find that

(4.14) C L * (A) « 0(a2) < C*(A) < Cy*(«) = 0 (« 3 In A)

as a tends to infinity; hence, the ratio

Си*(а) / CL*(a) = O(alna)

indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods.

22

5. Comparison of the Methods

We now wish to compare the classes of Taylor series methods and LRK methods.

Write C y j * , C L > T * , and C T * (respectively, C U > L R K * , C L j L R K * , and C L R K *) for Cy*,

C L*, and C* in the class * j (respectively, the class *LRK^ ^ i n c e w e ^ a v e o n ' y

asymptotic expressions for these quantities, we are forced to use an asymptotic

comparison. If f, g : I R + + -> IR** satisfy lim f(a) - lim g(a) - + 0 0 , we wMI

write

(5.1) f<g iff f(a) - o(g(a)) as a T oo ;

we say that f is asymptotically less than g. If f < g, there is an OTQ > 0 such that

f(a) < g(a) for a > OTQ, S O there is a non-asymptotic interpretation of the order

relation <. Thus if f and g are cost functions, the statement "f < g" implies that the

method whose cost is given by f is "better" (i.e., cheaper) than the method whose cost

is given by g, for t sufficiently small. Using the results of (3.20) and (4.14), we then

have the following

Theorem 5.1: Suppose that (3.16) holds.

(1.) If N - 1, then C U T * < C L) L R K * .

(2.) If N = 2, then C y / < C U > L R K * .

(3.) If N - 3, then

C U | T *(«) = 0(CULRK*(a))

and

Cu,LRK*<«> " 0 (C U) T *(« »

as o t co.

(4.) If N > 4, then C U L R K * < C L T * . |

23

If (3.16) does not hold, then (L), (2.), and (3.) may be false, but (4.) will certainly

be true. As an immediate corollary to the above theorem, we have

Theorem 5.2:

(1.) If N - 1 and (3.16) holds, then C T * < C L R K * .

(2.) If N > 4, then C L R K * < C T * . |

So if the derivatives of v are cheap to evaluate, we see that the best Taylor

series method known is better than the best linear Runge-Kutta method possible for

the scalar case N « 1; but if N > 4, the best linear Runge-Kutta method known is better

than the best Taylor series method possible.

24

Appendix: Error Bounds for a Sequence of LRK Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK")

methods due to Cooper [69]. We shall first prove the following

Theorem A. l : There is a basic sequence *CRK' °* methods such that

(1.) Each $ *CRK7 r e c ? u ' r e s

s(p) : - (p 2 - p + 2) / 2

evaluations of v per step.

(2.) There exists an My > 0 such that

(A.l) *G(v>p,h) ~ (My In (p^e) h)P

for h < h p - 0 « l n p)" 1).

We use the notation of Cooper and Verner [72} Let p £ Z + + be given; define

p: TL + n [0, p] - 4 1 + by

2 L 0 k - j (j + l) / 2 if j i<p
(A.2) p(j) : - J K u

I s if j - p ,

where we write "s" for "s(p)" as defined above. Next, a set { { Q , ... , $s} of integers is

defined by picking { Q : « p, and setting (j (i + 0) to be the unique integer in [1, p]

satisfying

(A.3) p% - 1) < i <; p(fcj) .

We now pick U Q ,... , u s € I satisfying

(A.4) u 0 - 0 , u s - 1 , Uj t 0 if i + 0

and

(A.5) ({j • and i j) implies Uj + Uj .

Finally, we pick a matrix of coefficients A { X J J : 0 < j £ i-1, 1 < i £ s} such that

(A.6) X j j - 0 if t j < { j ~ l (l < i , j < s)

25

and

(A.7) 2 ^ X J J u j r = (r+ir 1 u i
r + 1 (0 < r < - 1, 1 < i S s) .

Cooper and Verner [72] point out that these conditions may always be fulfilled; the

resulting A defines a p t h -order LRK method with s stages.

We are interested in a choice of u 0 , ... , u s which will give a small error

coefficient. To this end, we will choose

(A.8) { U J . $J - n} = {(1 + x k n) / 2 : 1 < k S n} (1 < n S p - 1),

where x l n , ... , x n n are the zeros of the Jacobi polynomial P n P n ^*^ (see

Szeg6 [59]). Since these zeros are distinct and lie in [-1, 1] , conditions (A.4) and (A.5)

may be satisfied.

Now we are able to exhibit a solution to the № system in (A.7). First, note that

the equation for r - 0 may be separated from the others, since U Q * 0. Setting

n : - *j - 1 ,

we see that

(A.9) X j 0 - U j - l l ^ X j j = Uj - I { X J J : j < i and ^ > n } ,

the last by (A.6). We wish to determine the nonzero Xjj, i.e., those Xjj for which ,§j ;> n

and j < i. So setting

Xjj « 0 unless j ({ j j , . . . , j n } ,

we see that the remaining Xjj are the solution of the system

2 k = L \ r x i j k - (* + L > " V + 1 U s r s n) .

Thus the Xjj^ are the weigihts for an interpolatory quadrature formula on [0, Uj] with

abscissae u; , ... , U; . From the usual expression for such weights and (A.6), we see
>l Jn

that

X i j k - "ikn [2Pn'(cos *kr))Tl J J , ^ [Pn(cos) / (cos - cos tfkn)] sin * dtf ,

where x k n - cos t> k n (1 < k < n).

26

Here

I, : - f * ' ^ 1 D<0) sir. <> dfl ,
J < W 2

with

D(6) := [cos (Ntf + y) - cos (Nf l k n + 7)] / [cos 0 - cos * k n] ,

where N := n + 3/2 and ? := -3ir/4, and

I 2 : - J * ' » n ^ Rn(*,*kn> s i n * d * " 0(nk" 3/ 2) ,
kn •

with R n the remainder term in (8.8.2) of Szegft [59]. Unfortunately, the proof that

(15.4.14) of Szegft [59] is bounded does not extend to a proof that I j is bounded,

Lemma A . l : |ij^ n " 0(n~* In n) as n T oo.

Proof: Since the zeros of P n are symmetric about the origin, we may assume

that 0 < tfkn < w/2. Using (8.9.2) of Szegft [59], we then find

M i k n - 0 (k 5 / 2 n" 3) J J . [Pn(cos *) / (cos t> - cos # k n)] sin * d* .

Case U *i > n +i ^ ^j,n+l - *k,n+l/2- W e c o n s i d e r * h e integral over

[0 i n /2, *j n + i] , since Theorem 15.4 of Szegft [59] proves that

0<k5/V3) [| J * | + | # " / 2 |] - O(n-l) .

(Here the integrand is the same as in the preceding integral.) But the proof of (15.4.12)

in Szegft [59] extends almost immediately to a proof that the remaining integral is

0(k" 2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus j i j k n -

CXn" 1) - OOT 1 In n) for Case 1.

Case 2: <>k,n+l/2 £ <*j,n+l - 3 t*k,n+l/ 2- W e c o n s i d e r * h e integral over

[0 k n / 2 , 0 j n + i] > since Szegft [59] shows that

0(k 5 / 2 n" 3) | J * / 2 | = 0(n" 1) .

As in (15.4.13) of Szegft [59], we have

27

since the proof of the former requires that the interval of integration be symmetric

about 0 k r v However, it is straightforward to verify that

ll " 0(1) JJ / 4 |sinNt>/tf|dt> = O(lnn) .

Thus MjKn = 0 (n " 2 k In n) = CXn"1 In n) for Case 2.

Case 3: 3 t f k n 4 . 1 < $\}Vi+i £ 3»/4. We consider the integral over

[3$ k n /2, t) j > n + 1] , since Szegfi [59] proves that

0(k5/2n-3) | j ^ / 2 , „ o(n-l) .

But the proof of (15.4.19) in Szegfi [59] extends to prove that the remaining integral is

0 (k " 5 / 2 n) (as in Case 1). Thus ^ i K n « CXn**1) « (DOT1 In n) for Case 3.

Case 4: 3ir/4 < * j > n + i S ^n+l.n+l- W e c o n s i d e r * h e integral over

[3ir/4, 0 j > n + i] , since Szegfi [59] shows that

o < k 5 / V 3) | J J R / 4 1 » Ofn"1) .

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound

on the integral of interest. Thus . U j k n - 0(n"1) « 0(n~* In n) in Case 4, completing the

proof of the Lemma. |

Thus (A.9) and Lemma A.l show the existence of a X > 0 such that

(A.10) S j - O ^ i 1 - * M * j + e) ;

here X is independent of p. Moreover, the result for the case i «= s may be sharpened.

We see that X $ j > 0, since the U j for the s^1 system in (A.7) are the abscissae for

Lobatto quadrature. Thus

(A.11) 2 ^ | A s j | = 2 ^ X s j = 1,

the consistency condition in the last equality being a consequence of (A.7) with r - 0.

Proof of Theorem A. l : As in Cooper and Verner [72], we define

f j := x (U j h) - k j

and

28

I , $Uj *<uh) du - X\-}Q Xjj ftbijh)

for 0 < i < s; note that 6Q • « Q = 0. Let z(h) be the computed approximation to x(h)j

then

h" 1 ||x(h) - z(h)|| - || h" 1 [x(h) - x(0)] - X ^ 1 X s i kj ||

(A. 12) < ||fis|| + ||Z^ X s i (j||

< ||8S|| + max | . . p _ j ,

the last by (A.6) and (A. l l) . By the analyticity of x, there is an Aj > 0 S U C H T H A T

/Jj h" 1 || x(U jh) - S J L Q (Ujh) rx<T>(0) / r! || S (A T H) * '

and

yn : - II x (U j h) - 2T
5Lo (Ujh)*" x<*>0) / r! || £ (A X h)1'' ,

so that the definition of i j gives

(A. 13) < (A 2 h)*' + i j ^ |Xjj| (A T h)*'

< (A 2 h) * '

for a suitable A 2 > 0. Thus (A.l2) becomes

(A.14) h" 1 ||x(h) - z(h)|| < (A 2 h)P + max . p _ j ||.,|| .

We now use Lemma 1.1 of Cooper and Verner [72] and (A.6) to find T H A T if L is a

Lipschitz constant for v, then there exists A 3 > 0 such that

||ij|| < hL + hL 2 ^ |Xjj| max -} \\t}\\

< (A 3 h)* i + 1 + (A 3 h) In (*j + e) max j ,

the last by (A. 10) and (A.13)j here, the maximum is taken over all j < i S U C H T H A T

|j £ {j - 1. A straightforward induction shows that if (1 + In 2) A 3 h < 1, then

llijll * < A 4 In ({j + e) h)* i + 1

for a suitable A 4 > 0. Combining this with (A.14), we find

(A.15) h" 1 ||x(h) - z(h)|| < (A 5 In (p+e) h)P ,

29

the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschitz constants

for the increment functions. Let L be a bound on ||Vv||, and write "Vfp(y,h)M to

indicate gradient with respect to the vector variable y. Now

IIWp<y,W|| < l^o I M M A * 0<i<s-l HVkj<y,h)||

= max 0<i<s-l HVkj(y,h)|| ,

where we write "kj(y,h)M to indicate the dependence of kj upon y and h. By the

definition of kj(y,h), we find

Vkj(y.h) « Vv(u) [1 N K N + h 2|"j0 X (j Vkjty.h)],

where u : « y + h Xjj kj(y,h) and 1 f\jx|\j i s a n N*N identity matrix. Taking norms in

the above gives the result

fj < LX + hLX [In (£j+e> max { j < i and fj i> {j - 1 }] ,

where fj : « ||Vkj(y,h)||. Writing X p for the Lipschitz constant for it is easy to see

that (A.16) and the above inequality imply

X p < IpQ1 (hLX)i n j ^ In (p+e-k) ,

which is bounded for all p, provided that h < h p < (LX In (p+e))"1. Thus (A.l) follows

from this result, (A.15), and Theorem 3.3 of Henrici [62]. |

The value for s(p) indicated in Theorem A.l may be improved somewhat by

noting that since we are using a Lobatto quadrature, higher order may be expected

with fewer steps. Indeed, if we use the strategy outlined in the comments following

Theorem 4 of Cooper and Verner [72], we have

Theorem A.2: There exists a basic sequence *CRK °' '-"^ methods such that

(A. l) holds and requires

s(p) := [(P 2 - 2p + 4) / 2J

evaluations of v per step. |

30

Acknowledgements

I would like to thank Professor R. P. Brent of the Australian National University,

Professors K T. Kung and J. F. Traub of Carnegie-Mellon University, and Professor K

Woiniakowski of the University of Warsaw for their comments and suggestions on the

results reported in this paper. In addition, a number of the results in Sections 3 and 4

were obtained by using the MACSYMA system developed by the Mathlab group at

Massachusetts Institute of Technology, which is supported by the Defense Advanced

Research Projects Agency work order 2095, under Office of Naval Research

Contract N00014-75-C-0661.

References

Ahlfors [66]:
Ahlfors, L. V., Complex Analysis, Second Edition. New York: McGraw-Hill, 1966.

Borodin and Munro [75]:
Borodin, A. and I. Munro, The Computational Complexity of. Algebraic and Numeric
Problems. New York: American Elsevier, 1975.

Brent [74]:
Brent, R. P., "Efficient Methods for Finding Zeros of Functions Whose Derivatives
are Easy to Evaluate," Report, Computer Science Department, Carnegie-Mellon
University, 1974.

Brent and Kung [76]:
Brent, R. P. and K T. Kung, "Fast Algorithms for Manipulating Formal Power
Series," Report, Computer Science Department, Carnegie-Mellon University,
1976.

Buck [65]:
Buck, R. C , Advanced Calculus. Second Edition. New York: McGraw-Hill, 1965.

31

Butcher [64]:
Butcher, J. C, "Implicit Runge-Kutta Processes," Math. Comp., Vol. 18, pp. 50-64,
January, 1964.

Butcher [75]:
Butcher, J. C, "An Order Bound for Runge-Kutta Methods," SIAM 1 Num. Anal.,
Vol. 12, No. 3, pp. 304-315, June, 1975.

Cooper [69]:
Cooper, G. J., "Error Bounds for Some Single-Step Methods," Conf. on the
Numerical Solution of Differential Equations, Lecture Notes in Mathematics 109,
pp. 140-147. Berlin: Springer-Verlag, 1969.

Cooper and Verner [72]:
Cooper, G. J. and J. H. Verner, "Some Explicit Runge-Kutta Methods of High
Order," SIAM 1 Nym, Anal., Vol. 9, No. 3, pp. 389-405, September, 1972.

Friedman [69]:
Friedman, A., Partial Differential Equations. New York: Holt, Rinehart, and
Winston, 1969.

Gurtin [75]:
Gurtin, M. E., "Thermodynamics and Stability," Arch. Rat. Mech. Anal., Vol. 59,
No. 1, pp. 63-96, 1975.

Henrici [62]:
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations. New
York: Wiley, 1962.

Hindmarsh [74]:
Hindmarsh, A. C, "Numerical Solution of Ordinary Differential Equations: Lecture
Notes." Lawrence Livermore Laborotory Report No. UCID-16588, June, 1974.

Pôlya and Szegö [25]:
Pôlya, G. and G. Szegö, Aufgaben und Lehrsätze der Analysis, Vol. I. Berlin:
Springer-Verlag, 1925.

Rail [69]:
Rail, L. B., Computational Solution of Nonlinear Operator Equations. New York:
John Wiley and Sons, Inc., 1969.

Stetter [73]:
Stetter, H. J., Analysis of Discretization Methods for Ordinary Differential
Equations. Berlin: Springer-Verlag, 1972.

Szegö [59]:
Szegö, G., Orthogonal Polynomials. Amer. Math. Soc. Colloquium Publications,
Vol. XXIII. New York: Amer. Math. Soc, 1959.

32

Traub and WoSniakowski [76]:
Traub, J. F. and H. Wofniakowski, "Strict Lower and Upper Bounds on Iterative
Complexity," in Analytic Computational Complexity, edited by J. F, Traub. New
York: Academic Press, 1976.

Werschulz [76]:
Werschulz, A. G., "Optimal Order and Minimal Complexity of One-Step Methods
for Initial Value Problems," Report, Computer Science Department, Carnegie-
Mellon University, 1976.

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (WHEN DATE ENTERED)

R E P O R T D O C U M E N T A T I O N P A G E
READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. R E P O R T N U M B E R 2. G O V T A C C E S S I O N N O . 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (AND SUBTITLE)

COMPUTATIONAL COMPLEXITY OF ONE-STEP METHODS
FOR SYSTEMS OF DIFFERENTIAL EQUATIONS

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

Inter im

4. T I T L E (AND SUBTITLE)

COMPUTATIONAL COMPLEXITY OF ONE-STEP METHODS
FOR SYSTEMS OF DIFFERENTIAL EQUATIONS

6. P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R f S)

Arthur G. Werschulz

8. C O N T R A C T O R G R A N T N U M B E R S

N00014-76-C-0370,
NR 044-422

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon U n i v e r s i t y
Computer Science Dept.
P i t tsburgh , PA 15213

10. P R O G R A M E L E M E N T . P R O J E C T , T A S K
A R E A & W O R K U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Off ice of Naval Research
A r l i n g t o n , VA 22217

12. R E P O R T D A T E

September 1976
11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Off ice of Naval Research
A r l i n g t o n , VA 22217

13. N U M B E R O F P A G E S

35
14. M O N I T O R I N G A G E N C Y N A M E & A D D R E S S f / / DIFFERENT FROM CONTROLLING OFFICE) 15. S E C U R I T Y C L A S S , (OF THIS REPORT)

UNCLASSIFIED

14. M O N I T O R I N G A G E N C Y N A M E & A D D R E S S f / / DIFFERENT FROM CONTROLLING OFFICE)

15«. D E C L A S S I F I C A T I O N / D O W N G R A D I N G
S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (OF THIS REPORT)

Approved fer publ ic re lease; d i s t r i b u t i o n unl imited.

17. D I S T R I B U T I O N S T A T E M E N T (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y W O R D S (CONTINUE ON REVERSE AIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

20 Abstract: The problem is to calculate an approximate solution of an initial value
problem for an autonomous system of N ordinary differential equations. Using fast
power series techniques, we exhibit an algorithm for the p*h-order Taylor series
method requiring only 0(p^ In p) arithmetic operations per step as p -> + 0 0 . (Moreover,
we show that any such algorithm requires at least O(p^) operations per step.) We
compute the order which minimizes the complexity bounds for Taylor series and linear
Runge-Kutta methods, and show that in all cases, this optimal order increases as the
error criterion t decreases, tending to infinity as 1 tends to zero. Finally, we show

D D T J A N M 7 3 1 4 7 3 E D I T I O N O F 1 N O V 65 | S O B S O L E T E UNCLASSIFIED
S/N 0 1 0 2 - 0 1 4 - 6601 |

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (WHEN DATA ENTERED)

UNCLASSIFIED

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P * G E (W h 9 n Dmf Bnfrmd)

^ t - U J H l T Y C L A S S I F I C A T I O N O F T H I S P A G E ^ h e n Data Entered)

that if certain derivatives are easy to evaluate, then Taylor series methods are
asymptotically better than linear Runge-Kutta methods for problems of small
dimension N.

