NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

STHONG DEPENDENCY: A Formalism for
Oescribing Information Transmission
in Computational Systems

Ellis S. Cohen

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsyivania 15213

August 1976

ABSTRACT

This paper presents an information theoretic approach to
information transmission in computational systems., Ue
formalize the effect of constraint on infarmation paths
and develop a number of inductive technicues for

proving the absence of information transmission. Finally,
we show how ordinary inductive assertions can be used in
conjunction with the theory to ana!gze lnformat|on patha
in sequentuai programs,

This uork was supported by the Defense Advanced Research Projects Agency
(#F4462@-73-C-BB74) where it is monitored by the Alr Force Office of
Scientific Research, and by the National Science Faundation under

grant MCS575-87251A81. ' ' X

Strong Dependency

daqe

W00 NG W o

18
18
13
15
16
18

20
208
28
21
22
23

29
29
29
31

34
35
39

41

TABLE OF CONTENTS

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Motivation

Computationat Systems

Access Matrix Systems

Behavioral Probtems

Models of Information Transm!SSton
Strong Dependency

Plan of the Faper

A Cybernetic Evaluation

2 Strong Bependency & Information Transmission

1

IAJI\J

2.
2.
2.
2.
2,
2.

U?U"I-J:"

Introduction

Variety and Information Transmigsion
Strong Dependency

Strong Dependency with Initial Constraints
Reflexivity

Autonomy

3 Solving Information Problems

3.1
3.2
3.3
3.4
3.5
3.6

Introduction

Constraint as Selution

Initial and Invariant Constraints
Examples of Information Problems
Maximal Solutions

Comparing Solutions

4 Strong Dependency Induction

4.1
4,2

£
W

£~
PRI

Introduction

Transmission Through Intermediate Objects
An Example of Strong Dependency Induction
Transitivity

Separation of Var ety

An Example of Separation of Variety

5 Relatively Autonomous Constraints

Strong Dependency

41
42
43
486
47

50
ce
58
51
53
55

68
60
5]
62
B3
b6

- B7
70

28

5.1 Introduction

5.2 The Strong Dependency Hypothesis,
5,3 Relative Autonomy

5.4 Substitution and Autonomy

5.5 Strong Dependency Induction

B Non-invariant Constraints
6.1 Introduction
6.2 Constraint after a History
6.3 Strong Dependency Induction
6.4 Inductive Covers

6.5 Information Transmission in Sequential Programs

7 Work in Progress
7.1 Introduction
7.2 Alternate Models for Informatton Transmission
7.3 HMechanisms
7.4 Information Theory
7.5 Declassification

8 Conclusion
A Proofs

B References

Strong Dependency

page

W NN N e

13
13
13
14
14
14
15
15
15
16
16

21
28

38

45
45
46
47
48
48
48

5

INDEX OF DEFINITIONS

2-18
2-11

3-1
3-2

4-1

5-1
5-2
5-3
5-4
5-5
5-6
5-7

6-1

ol = o2
H(U?

Psolve enforces vproblem

No information is transmitted from o to 8 by H
ol 4 ol
ol and 02 differ only at « and differ at B after H
B strongly depends on o after H
ol and o2 differ only at A and differ at B after H
" B strongly depends on A after H
B strongly depends on A
ol and 02 are constrained by ¢ and are equal except at A
ol and o2 differ only at A and differ at 8 after H given ¢
B strongly depends on A after H given ¢
B strongly depends on A given ¢ '

9 is A-independent

<lorth, <> is g monotonic measure
@ is an A-independent cover

iv The Strong Dependenég Hypothesis
iv The Relative Autonomy Hypothesis
? is A-strict
? is A-autonomous
02 ~ bl
? is autonomous
ol and o2 differ only at A and differ at B after H given ¢
B strongly depends upon A after H given ¢
B strongly depends upon A given ¢ '

(Hl¢

Strong Dependency

53 6-2 B is an inductive cover for ¢

Strong Dependency (1) . : page 1

Chapter 1 - Introduction linftro:l

————— Section 1.1 ——- Motivation [)

This paper introduces Strong Dependency, a formal theory of information
transmission in computational systems, We develop a number of proof
techniques and show hou they can be used in salving information problems,

- The need to study information transmission arose from our work on the
Confinement Problem [Lampson 73], Imagine that some user of a service has
to tell the service personnel private information. The user wants to
guarantee that the information is kept private. That is, no information is
to be transmitted from the program executing the "gervice" to anyone but the
“user" f{or perhaps other "users" designated by her),

We believed that the protection mechanism 'developed for the Hydra
Operating System [Wulf 74, Cohen & Jefferson 75} alloued the construction of
an elegant solution to the Confinement Problem, However, in order to prove
that a solution to the Confinement Problem was indeed correct, ue needed to
develop a formal theory of information_ transmission in computational
systems. This paper introduces the basics of such a formalism, and praesents

a number of exampies to illustrate its use,

————— Section 1.2 --- Computational Sgstems [compsys:]

We bhave defined a computationai system [Cohen 76] as a pair, <I,As,
where o ¢ 5 is a state of the system, and § ¢ A is an operation.

Each state is Wholiy comprised of a set of object, each having a fixed
unique name. If a s the name of some object, we urite g.x to mean the
value of a in state o. Formaily, a state is a vectar of objects

0 = <o.nl,o.n2,...>

where <nl,n2,..> are the list of ohject names in lexicographic order. I[f
A is a set of object names, ve write 5.4 to mean

Strong Dependency (1.2} ' . N o page 2
v.A = <o.al,0.02,...>

where <al,o2,...> are the list of names in A in lexicographic order. -This

definition permits us to urite

ol.A - 02.A for (VoA ol.a = o2.c)
U; define
>> Def 1-1) ol 3 02

ol 3 02 =qef (YawAll ol.a = 02.a)

That is, if ol = 02, then states ol and o2 may differ only in the values
of the objects named by A. For the special case, where ol and o2 may differ

only in the value of a singfe object a, ue define
>> Def 1-2) ol = o2
a
ol = 02 s=syof (Yoe=a)(ol.oor = o2, 0%)
o

Objects may themselves have some internal structure (including pointers
to other objects), Houever, such details are part of an interpretation and
not part of our abstract modei. As an example though, ue might urite o.x.k
to mean the value of the k'th compdnent of object x in state o.

We formally define an operation & as a function from states to states.
Semantically, we interpret §(c) = o%x to mean that execution of & in state
v may alter some objects in the state to produce a neu state ow. We find it
useful to describe operations in terms of an- informal programming-iike

language. For example, if o% were just like o, e&cept.that o .3 = 0.X, MWE

could urite

$: Bf-rx

An history is a sequence of operations (e.g. $15283), When a history is
applied to a state, the operations in the history are app!ied sequentially

from left ta right. Formally we define

Strong Dependency (1.2) _ o page 3
>> Def 1-31 Hlo} (recursively defined)

AMeo) <== o (X is the null history - no operations)

(H8) (0) <== §(H(0))}

We uwrite both HH: as uwell as H& He to mean the concatenation of
the sequences H and M {note "&" is not commutative),

If a system is started in state o and some arbitrary sequence of
operations H js executed, then the system exhibits some behavior which can
be completely described by the pair <o,H>, Ue cal! a pair <o,H> a

behavior or a computation.

----- Section 1.3 --- Accesé Matrix Systems [mtrx:]

Protection in operating systems is often modelied using a matrix of
protection rights [Lampson 71). Briefly, we describe such a model as
follous: Before any operation permits an object to be accessed in same way,
the_matrix is checked to determine whether the executor of the operation has
the appropriate right for that access. For example, if execution of some
operation would permit Cohen to urite into the Salary file, the operation
Hwould first check that Cohen has the -right to write the Salary file,
notationally

o <Cohen,8afarg>(u)

That is, are w (urite) rights to be found in the <Cohen,Salarys> entry of the
protection matrix in state o?

In this haper, we will occasionally refer to a'simple system having three
rights, s (subject), r (read) and u {urite) interpreted as

8 ¢ <x,x>(g) allous x to execute operations in state v
e <x,a>{g) allows x to read file o in state o
W e <x,f>(g) allous x to urite file B in state ¢

Strong Dependency (1.3) S L page &

A operation copyluser, fnew, fold) that -allows "user" to copy the
contents of fold to fnew might be defined as B

copy (user, fnew, fold): if B¢ <user.user>f
' A r ¢ <user,fald>
A U € <user, fned>
then fnew « fold

That is, "user" must be able to execute {be a subject), read fold, and urite
fnew. |

————— Section 1.4 --- Behavioral Problems [behprobt)

We shouwed in [Cohen 76) that many problems ordinarily considered to be
protection problems can be formally characterized. as constraints on the
behavior of the system, Consider the-pfcbiem: Cohen is not to be able to
urite the Salary file. This problem characterizes those behaviors of the
system as "acceptable”, which uhen executed.-do“ﬁot execute any operations
that have the effect of causing a urite access of the Salary file by Cohen.

We can urite V¥ to characterize these acceptabte behaviors, where

problem

b 4 «== tt

problem(U'A)

¥ (o,H8} <==

problem _
¥ {o,H) A -Uacc(Cohen,Salary} (H(o), b}

problem

where Waccix,B) (0,8) is defined so that when operation
§ is executed in state o, a urite accesa is made by x to @

We say that such a problem is an enforcement problem and that It may be
solved by appropriately constraining the initial state of the system. These
initial states are “"secure" in that, no matter uwhat sequence of operations
are subsequently executed, the behavior executed (determined by <initial
state, sequence of operations>) is guaranteed to be acceptahle. Formaliy, 1f
Psolye Characterizes these secure initial states, then ue say that Peolve

enforces wproblem where

Strong Dependency (1.4) | page 5

if

>> Def 1-4] Psolve enforces ‘Pprob!em iff

(Vo,HI { @

solvel0) > wproblem("'m)

Information probiems are concerned with preventing the transmission of
information and are fundamentally different than the enforcement problems
described ahove., For example, a solution to the Salary file problem defined
above does not necessarily solve the problem: No information is to be
transmitted from Cohen to the Salary file. Cohen may be able to place
information in some other file, where a confederate may write it to the
Salary file.

It is tempting to try to describe the information problem as an
enforcement problem as well, Suppose uwe urite

a-(o:H) ->08

to mean that information flous from o to B over execution of behavior
<o,H>. Then we can describe the information transmission problem formaliy
as '

“uproblem(“'m = =~ Cohen-(o:H)->Salary

Houever, we need first to be able to define the meaning of a-(o: H) =>4,
Such a definition is difficult for the tollowing reason. Suppose that some
operation & caused 8 to be written into only if some property p held true of
a, and that p did not hold true of o in state ¢. We might naively conclude
that -u-{o:H)->8, However, an observer of B may note that B is not written
into and may therefore conclude that property p does not hold true of o.
Even though B has not actually been written into, information about o {the
fact that p holds true of a) is nonetheless tr'ansmit.ted to 8 in state o,

lJones & Lipton 75] have described such situations by the term "negative
inference"”, [Denning 75] has termed such information transmission "implicit
flou" as distinguished from the case where @ is explicitiy written inta.

There are a pumber of solutions to this dilemna. One might define
a-{o:H ->8 in such a way that implicit flow is taken intg consideration, In

Strong Dependency (1,4) page &

[Cohen 761, we argue that such an approach is inappropriate - that the

_determination of acceptable behaviors (and thus the information transmitted)

is actually determined in part by the constraints f{i,e. P55y) Pplaced on
the system. '

uuuuu Section 1.5 —-- Models of Infermation Transmission [modinf:}

(Denning 75} and [Case 74] have gotten rid of the problem of implicit
flous by disregarding the state in wuhich, an operation is executed.
Information is considered to flow from « to over execution of § (uwhich ue
can wurite as a-(8)->8) so long a.s there exigts some state in which

execution of § explicitly transmits information from « to Q.

Information flou of a sequence of operations is defined by assuming that
information flow is transitive. That is, information flow is defined

recursively as
a=-{A)->f <== {a=4) { "A" is the null history 1}
oo (H8) =>B <== (Im) c=(Hi=>m A m=(8)=>B }

where m may be the same as a or 8 [e.g. m-(8l->m as long as the
execution of & does not completely overurite m J. 1t must be noted that in
[Case 74), no definition is given for a-{§)->0; it is left to the reader's
intuition. Denning, in I[Denning 75!, shows how information flow may be
defined for a particular programming language, but again, (though the
definition of a-{8§)->0 must conform to certain theoretical considerations),
it does not not derive from a theoretical formulation of the meaning of
information transmission. In this paper, we will show how such a definition
may be derived from the semantics of a given operation, though we wWitl use

the notation
Y
@ D 8.

The assumption of transitivity in defining information flow over sequences
of operations turns out to be a dangerous one. Consider the sequence of

operations 5152, uhere

Strony Dependency { 1.5) page 7

o-{81)->m and m-(82)->Q. By transitivity, o-(5182)->b, though it is
clear that no information can in fact be transmitted from o to 3. We shall
introduce a technique we call separation aof variety to handle such
non-transitive situations. .

In effect, an execution of §2 that transmits information from m to B must
ocecur in an environment in which g is false, but in such an environment, no
information could have been transmitted from o to m by §1. UWe may formally
characterize an environment by a constraint ¢, that cooresponds to an
assertion about the state in which an operation is to be executed. le
suggested above that the constraint itself must be used in determining what
information transmission takes place, [Millen 7B) has explored such an
approach and has shoun hou certain information paths may be ignored in the
face of appropriate constraints. We will also be studying information
transmission in the presence of canstraints, formatly validating the
approach and determining (in discussing non-avtonomous constraints) jts
fimits (uhich determines the limits of Millen’s approach as uell}.

The work of both Denning and Millen is directed primarily towards analysis
of information paths in sequential programs. We will be concerned more
generally with analysis of information paths and the solution of information
probtems (determining how certain infarmation paths may be eliminated}l in
arbitrary computational systems, considering sequential programs as a
special case,

————— Section 1.B --- Strong Bependency [istrdep:]

In this paper, ue introduce the Gtrong Dependency formalism as a means of

characterizing information transmission in computational systems, Strong
Oependency is not an information flou model, Instead, it is based on a

cybernetic or information theoretic approach to information transmission.

We imagine that each object in system may take on a set of values; this
is known as the variety of the object. Information can be transmltted from

Strong Dependency { 1.6} - ‘ _ page 8

one ohject to another if the variety of the first object can be conveyed to
the other object.

{ Our formal definition of Strong Oependency is simitar to a
farmalism introduced by [Jones & Lipton 751, though their approach
was not an information theoretic one. They argue that no
information is transmitted from o to B in some system if that system
can be transformed into another system with the follouwing propertys:
the values taken on by (are the same in both systems, but the
transformed system does not access . In effect the Strong
Dependency formalism compares the original system not with a
transformed system, but with a system just like the original one
except that o takes on an arbitrarily different initiat value.]

Next we show, that by placing an initial constraint on a system, we may
reduce the variety in an ohject. If the variety is sufficiently reduced, no

variety may he conveyed, and no information can be transmitted.

We find that GStrong Dependency only corresponds to information
transmission in systems constrained by certain classes of constraints.
Progress on theories that correspond to information transmission in systems

with arbitrary constraints is discussed in section 7.2,

————— Section 1.7 -—- Plan of the Paper [plan;l

In chapter 2, ue discuss the details of the Strong Dependency formalism.
In chapter 3 we shou hou the Strong Dependency formalism can be used to
define information problems inciuding the Confinement Problem. We define a
solution to an information problem as a constraint that eliminates
information transmission as required by the description of the problem. e
also present a measure based on Strong DOependency for comparing and

evaluating solutions.

In chapter 4 ue introduce Strong Qependency Induction, a technique for
shouing that certain classes of solutinﬁs {constraints) solve information
problems. We also formally develop Separation of Variety, a technique faor
hand!ing non-transitivity in information transmission. In chapters 5 and b |

Strong Dependency (1.7) _ page 9

He extend the class of constraints that can be used wuith Strong Dependency
Induction. In chapter B, ue also shou hou Strong Dependency Induction can
be used to explore information transmission in the execution of sequential
programs. Chapter 7 discusses other work in progress.

----- Section 1.8 ——-_ A Cybernetic Evaiuation (]

Cybernetics first [Ashby 58] formalized the idea that infarmation
transmission has nothing to do with the content of the messages transmitted,
but depends only upon the way "variety" is conveyed. Information theory

‘represents one direction taken based on that approach: it analyzes the

amount of variety conveyed from one object to another in small noisy
systems, e wil) pursue a different course, We consider uhether any

variety is conveyed at all from one object to another in large noiseless
systems,

Our task is compounded by the fact that there is neither a single source
nor a single receiver. FEach ohject in the system may potentially receive
information from, or send information to any other object in the system.
Work in progress (see section 7.4) is directed toward extending classical
information theory in the directions suggested by this paper.

An information theoretic approach is probably useful; one may not In
general be able to completely prevent information transmission in a system
designed to be kind to users. In particular.. consider a user who leaks
information by execution of some peculiar sequence disk operations
(Lampson 73], 0One might simply be satisfied to introduce enough noise to
guarantee that the banduidth from the user to the disk is sufficiently low.

For the purposes of this paper, wue witl generally ignore these
quantitative issues: we only explore whether any information at all can be
transmitted from one object to another.

Strong D_ependenbg (2) o , - page 10

Chapter 2 - Strong Dependencg & lnformation'Transmisslon [strinf:)

-é-e— Section 2.1 --~ lntroductioh {1

in this chaptér. we introduce the Strong Oependency formalism as a means
of charaptarizing information transmission in computational systems. We view
information transmission in a cybernetic, or information theoretic sense, He
imagine that each object in a system may take on a set of valuesy this is
knoun as the variety of the object. Information can be transmitted from one
object to another if the variety of one object can be conveyed to another

object,

We argue that information can be transmitted from an object o« to an
object @3, 1f for two different values of «, execution~of‘some history might
place different values in B. '

Next we show, that by placing an initial constraint on a system, We may
reduce the variety in an object. 1f the variety is sufficiently reduced, no
variety may be conveyed, and no information can be transmitted. In this
chapter, we only considér a class of constraints ue call autonomaus
constraints, those uhich constrain the variety in an object independently of
the value of other objects. Non-autonomous constraints introduce

complications In our analysis that we will begin to discuss in chapter 5.

————— Section 2.2 --- Yariety and Information Transmission [varinf:]

" .. At first, when one thinks of, say, a tetegram arriving, one
notices only the singleness of one telegram. Nevertheless, the act
of ’communication’ necessarily implies the existence of a sgset of
possibilities, i.e. more than one, as the follouing example will

shou.,

"A prisoner is to be visited by his uife, uho is not to be alloued
to send him any message houever simple. It is understood that they
may have agreed, before his capture, on some simple code. At her
vistt, she asks to be allowed to send him a cup of coffeey assuming

Strony Dependency (2.2 } page 11

the beverage is not forbidden, hou is the warder to ensure that mo
coded message is to be transmitted by it? He knouws that she is
anxious to let her hushand know whether or not a confederate has yet

been caught.

"The warder wuill cogitate with reasonings that will go somewhat as
follous: 'She might have arranged to let him know by whether the
coffee goes in sueetened or not - I can stop that simply by adding

lots of sugar and then telling him 1 have done so. She might have
arranged to let him know by whether or not she sends a spoon - 1 can
stop that by taking anay any spoon énd then telling him that
Reguiations forbid a spoon anyuay. She might do it by sending tea
rather than coffee - no, that's stopped because, as they knou, the
canteen will only supply coffee at this time of day.' So his
cogitations go on; what is neteworthy is that at each possibility he
intuitively attempts to stop the communication by enforcing a
reduction of the possibilities to one - aluways sueetened, never a
spoon, coffee only, and so on. As soon as the possibilities shrink
to one, s0 soon is communication blocked. and the beverage robbed of
its power of transmitting information, The transmission {and
storage) of information is thus essentiatly related to the existence
of a set of possibilities, The example may make this statement
plausible; in fact it is also supported by all the work in the
modern theory of communication, which has shoun abundant!ly how
essential, and hou fruitful, is the concept of the set of
possibilities.

"Communication thus necessarily demands a set of messages. Not
only is this so, but the information carried by a particular message
depends on the set it comes from. The information conveyed ig not

an intrinsic broperty of the individual messaqe. "

W. Ross Ashby "An Introduction tg Cybernetics"”

Information can he transmitted from o to B in a system if the variety,
the set of values that can be taken on by o, can be conveyed to fB. For
example, if a and B both contain 16 bit integers (and o initially can take on
each of these values with eaual probability), then we might imagine that

execution of

Strong Dependency (2.2) g , page 12

5: 0« «

would transmit 16 hits of information from o« to f, and that is. in fsct,

correct. The set of values possibie for « represent 16 bits worth of
variety. All of this variety can be conveyed to 8 by execution of §. After
execution of &, an observer of f can determine all (16 bits worth} of the

information initially in o,

Next imagine that o is knoun to be a constant, say 342. No information
is transmitted from « to B. There is no variety in « and so nene can be
transmitted to B. By executing b, an observer of B can find out o'e value.

But o's value is already knoun! No information is transmitted at ait.

In a computational system, it is not necessary that the sourcg be

constrained to he constant to prevent information transmission. Consider:

51 if a < 10 then B « @ elsep 1

1f it is knoun that o is aluays less than 18, then again no information is
transmitted from o to B. Execution of § will always set g to @, regardless
of the value of o (given that o is tess than 18}, 1f o is not 80
constrained, then one bit of information can be transmitted from o to @3.
That bit (detected by determining whether 8 is 8 or 1 after execution of &)
indicates whether or not o is initially less than 10. Wi thout the constraint
"y is less than 18", some information about the variety of « can be

transmitted to B. With it, none is transmitted at all.

Imagine picking some state ol and then some other state o2 that is just
like ol but arbitrarily varies from it in its value at o. Suppose history H
is then executed and it is found that the vatues of {8 are the sama
regafdless of whether or not H was executed in state ol or 2. The variety
in o has not heen transmitted to B since the resul ting vatue of f is the

same in both cases.

Now suppose that for and pair of states, gl and ¢2, that differed only at
o, execution of H would result in identical values for (. Then under nNo
circumstances could any of o's variety be conveyed to g by executing H. No
information could be transmitted from « to §. Formally

Strong Dependency { 2.2) page 13

>> Def 2-11 No information is transmitted from toB by H iff

(Vol,02){ ol = 02 > Hlol).8 = HtoZ2}.8)
a

(hote from section 1.2 that ol = o2 means that ol and o2 must be thse
same except for the value of o) '

We have alreacy seen that if the values of certain objects are known to
be appropriately constrained (e.g. o is less than 12}, then no information
can be transmitted. We can represent this constraint by ¥, For example

Plo) = 6.0 < 18

Lf the variety among the states is knowun to be constrained by ®, the
pairs of states chosen as described above need oniy be chosen from those
that satisfy @ (e.g. - those in uhich o is less than 18},

>> Def 2-21 ol 02 iff

215

Plol) A ol = 02 A P({o2)
o

We might then argue (not completely correctly as we shall discover in
chapter 5) that, if a system is initially constrained by ¢, then no
information is transmitted from o to # by execution of history H as long as

(Vol,02){ o1 = 02 »> Hlol) .8 = H(e2).8 }
————— Section 2.3 --- Strong Oependency [strdep: !

In this section, we intraduce the notation of Strong Oependency.
>> fef 2-3] ol and 02 differ only at « and differ at # after H

H
ol a<>r3 02 =get 0l = 02 A Hlol).p = H{a2].0
(8¢

Strong Dependency (2.3) paga 14
>> Def 2-41 - @ strongly depends on a after H
H H
a P B sges (Fol,02)¢€ 0l u<>a 02)

By comparing this definition uith that of 2-1 above, we see that

« Do iff

information can be transmitted from o to § by H

~In._ other words, Strong Dependency is a formal definition of information

transmission.

e have formalized transmission of information from gne object to
another. It is often useful to think of the source of information as a set

of objects. For example, in
8: B « al + a2

we might want to say that information is transmitted from the set of objects

Hxl,o2t to B. We extend the above definitions quite easily.
>> Def 2-5] ol and 02 differ only at A and dif.fer; at § after H

H .
ol AOG 02 =ger 9l 3 02 A Hiall.B « Ho21.0

>> Def 2-6] 8 strongly depends on A after H
H H :
AD B =ger (Iolo2 00l AOG 02)
The reader may wonder uhether it is possiblie to r'find that information is
transmitted from some set of objects A to and yet find that the objects in

a taken sigly do not transmit information to B. That is not the case in the

exampie above. We find both that
b
{al, 02! [l) B as uell as

al [DB (] and o n)& g

——

Strong Dependency (2.3) - R | page 15
H . . .

In general, if A ‘D B and o f{uhere « cHA } plays any part in
affecting the value of B, we uill find that o w B. A formal proof of
this statement requires an infor‘mation‘t‘heoretlic argument that is part of

work in progress (section 7.4). [For 'qther*‘ comments on this example, see
section 7.2, 1] o R

' H
Using Strong Dependency alone, we can shou if A u> B, at least one
object in A transmits information to 8. Formatly ‘

Theorem 2-11
‘ H H
A D 8 > (JocA) { o lb g)

Formally we say that information can be transmitted from A to B in a

'sgstem if it can be transmitted from A to B over some history., MWe define

>> Def 2-71 B strongly depends on A

H
ADB =g @A g)
————— Section 2.4 --- Strong 'De-pendencg_-u_ith‘ Initial Constraints

In this section, ue extend the Strong Dependency formalism to cover those
Cases wuwhere the variety in the state space is constrained by some ¢. e
extend the formalization exactly as we .expanded definition 2-1 above,

>> Def 2-8] ol and 02 are constrained by ? and are equal except at A

ol E’ o2 Sgef Plol} A ol h 02 A (a2}

>> Def 2-9] ol and o2 differ only at A and differ at B after H given ¢

) ‘P<>H
ol , A 02 sy ol 02 A Hlol}.8 = H(e2).8

-6

Strong Dependency (2.4) _ - . page 16
>> Def 2-101] @ strongly depends on A after H given ¢

H ® H
A lkp B =qos (30l,02)C ol A<>'3 02)

>> Def 2-11) 8 strongly depends on A given ¢

H
ADy B =ger (ICA P, 6

Intuitively, no matter how a system is_constrained,_if f depends upon
some set of objects Al which is included in A2, then @ should depend upon A2
as well, for A2 provides at least as much information. Formally

Theorem 2-21 (proof left to reader}
H H
AL € A2 o Alﬂ>¢{3':> A2|]>¢B_

1f B depends upon A given 91, and if ¥2 permits more variety in the
system than does 91, there is more opportunity for information transmission,

thus @ should depend upon A given 92 as well. Formally
Theorem 2-3]
H H
9ol ¢ 2 o A|]>¢,1¢3.3 A Dy, s

(note: @1 € @2 =go¢ (Yol (9Llo) > €2(e))

————— Section 2.5 --- Reflexivity [rfix:]

In this section we explore the reflexivity of Strang Dependency. e show
that it may not be reflexive over execution of some history if that history
causes the value of some object to be written over. We show that it is not

reflexive over the empty history if some object initially exhibits no

variety.

Strong Dependency may be reftexive. Consider a system in which both «

and @8 are 16 bit integers and

Strong Dependency (2.5) : “ ‘ page 17
b1 B+

6 .
We find that o |I> o Afl of the variety initially in a remains in a after

execution of §.

Houever, - g B)B g. Over execution of %, the original contents of f
are destroyed, so that any variety among possible initial values of B will
not be retained in. {or conveyed to) @ after execution of §., In fact, any of
the initial variety in B is completely lost to the system.

Dependency is generally reflexive over the empty history, except where an
object is constrained so that it may only contain a single value. [¢

Plo} = o.a = 37
A A
- ue find that] Ib a. bhut - o u>¢cr
The constraint @ eliminates any of the vartety in oo [f o does admit

variety, then certainly that variety will not be destroyed over the empty
history., But if a is constrained so that no variety is there initially, the

empty history will not convey any new variety to a,

1f @ eliminates the variety in some set A, then no information can be
transmitted from A to any object over any history. 1f there is no varlety
in A, there is none to be conveyed, Faormally,

Theorem 2-4)
A .
(YarA) { = Aﬂ>¢a1 > V) (- A[b‘pﬁ,)
Finally we note that any information .t-ransmiss'ionlover the empty history

must he refiexive. lf no operation is executed, no real (non-reflexive)

information transmission can take place.

'Theorng_ 2-5]

A[]>:a 5 B XA

Strong Oependency | 2.6) page 18
————— Section 2.6 --- Autonomy {autonomy:)

In this section, ue discuss a class of consiraints on the initial state ue
call autonomous, In chapter 5, wue snhow that the Strong Ueperdency

. formalism corresponds to our intuitive notion of information transmission for

autonomous constraints, whereas it may not for non-autcnomous constrainta.
Autonomous constraints restrict the variety in each cbject independently.
of the values of other objects. Non-autonomous consiraints indicate

relationships among the values of different objects. For example,

(0.8 = 6 mod 11) is autonomous

Plo) = o.0x £ 18 A

Plg) = o.a s 1B A o.8 <18 is autcnomous
Plo) = (¥x)(o.x = 18) is autonomous

¢¥(g) = 0.8 = 0.0+ 10 is non-autonomous

P{o) = ov.ax<1B > o.6 =24 is non-autonomous

For now, we can think of autonomous constraints as a conjunction of

conditions, each condition independently constraining the value of a single

object. A forma! definition of autonomy can be found in section 5.4,

Though autonomy seems quite a strict condition, it does mode! a number of
common useful situations. For example, in [Cohen 761, we consider the
problem of guaranteeing that a set of "sensitive" objects can cenly bs
altered by certain processes executing verified programs. The initiai
constraint on the protection state that guaranteed that the condition held

was quite complex, but autonomous nonetheless. .

Autonomous predicates are useful for "“typing" objecs. Une might
partition objects on some basis. For example, Int{x} might be true if x
were to represent an integer, while Smallint(x} might charactertze small

integers, An autonomous P might then require that objects representing
small integers have small integer values. Formally
Ple) = (¥x}{ Smallintix}) > -16 € ¢.x < 15)

Alternately, each object might itself contain a designation of its oun

Strong Dependency (2.6) : page 13

tupe as uell as it's value. The corresponding autonomous constraint might

then be:
Plo) = (¥x){ o.x.type = "smallint" > -16 < o.x.valye < 15)

The consideration of non-autonomous constraints adds a certain complexity
“to ‘the analysis of information transmission. As uwe noted above, Strong
Dependency does nat necessarily correspond to information transmission for

non-autonomous constraints,

In section 2.3, ue extended the formalism of strong dependency to allou
the source of information transmission to be a set of objects. We showed
that, if information is transmitted from a set of object A to @B, then at
least one of the objects in A must itself be a source. This remains true

even if ue autonomously constrain the system.
Theorem 2-6]

If @ is autonomous then

H H
Aﬂ>(p(3 > (BacAl[alb(pﬁ)

Strong Dependency | 3) : page 28

Chapter 3 - Solving Information Problems {infgiv:]
————— Section 3.1 --- introduction {J

", ..the subject matter of Cybernetics is not evants or objects but
the information "carried” by events and objecis. We consider the
pbjects or events oniy as proposing facts, bropositions, mnessages,
precepts, and the like." '

ne

Gregory Bateson Cybernetic Explanation®

In this chapter we discuss information problems, prehiems concerned With
preventing information transmission in computatienai systems. Using the
Strong Dependency formalism, we define tuc wel! knoun infarmation problems,
the Confinement Problem and the Security Problem.

e discuss maximal solutions and consider information transmission as a

criteria for evaluating and comparing solutions to problems.

————— Section 3.2 --- Consiraint as Solution [consol:l

In [Cohen 761, we argue that problems in computational systems can be
solved by finding a way to constrain the states in uhich the system is
initially permitted to operate. We characterize appropriate initial
constraints by a predicate X. For example, the solutions to the

enforcement probiem wproblem (section 1.4) can be characterized by
X(®) = ¢ enforces Wproblem

If A [b It and - A {D(p G, then 9 can be ‘viewed as a solution to
the follouwing prohiem: Find a way to guarantee that no information is
transmitted from A to 8. The solutions to this problem. may be defined by

X{9) = = A[b(pﬁ

Suppose we wanted to guarantee that no information could be transmitted

from o to B in the system

Strong Dependency { 3.2) | page 21
bt ifm then B « «
The obvious solution to the problem is
Plo) = -g.m
for hy initialty constraining states to those in which m is false, we
guarantee that execution of § wili have no effect on 8. However there is

another solution

Plo)l = 0.0 13

By constraining o to be 13, no variety remains in o and none can therefore
be transmitted to 8. We can, if we so choose, eliminate such solutions by
requiring that ¢ he independent of o, that is, by requiring that the value
of a have no effect upon the truth of 9, Formally we can define

>> Def 3-1] ? is A-independent iff
{(Volo2) (ol h 0 >, Plol) = P(e2})

The problem of guaranteeing that no infarmation is transmitted from a to
B can then be redefined as

X (¥} B aoa Iqu B ~ ¢ is a-independent

————— Section 2.2 --- Initial and Invariant Constraints linfinv:)

In this section, ue explore the difference betueen invariant and
non-invariant constraints.

When e describe a problem as X(p), @ only represents an initial
canstraint, not necessarily an invariant one. Likewise, when we indicate
that sowme constraint on the variety in an object may prevent information
transmission, that constraint is just an initial constraint as well (section
2.4}, Consider the problem

Strong Dependency (3.3) . ' | ‘ page 22

+

X(® = - u.ﬂ$ 6
in the system

1: if flag then B « c else « B
§2: (flag « tt; o « x)

A solution to this problem (that is a-independent as uei!] is
Plg) s =-o0,flag

If flag is false, then execution of &l does not transmit Information
from « to B3 it always sets § to B. Houever ® is not invariant. Execution
of &2 sets flag to true. Subsequent execution of 81 would transmit
information from o to B. Nonetheless ® is a sotution, for execution of 52
also destroys the information initially contained in a by overuriting it with
x. 50 while subsequent execution of &l will permit g to refiect the most

recent value of «, it reflects nothing of a's initial value.

Hermce, if @ is a solution to the problem

X(® = -« E& 6

then ¥, in general, is only an initial but not invariant constraint and
guarantees only that no information initiatly contained in a can be
transmitted to B. Values placed in « after pxecution of some history may

have an effect on the value of f.

----- Section 3.4 --- Examples of Information Problems [xmplinfo:]

A simple version of the Confinement Prohlem [Lampson 731 can nou be
stated. Suppose that Confined{x) if x is the mame of an object initially
containing information that is to be canfined. Suppose that Spylx) if x
names an object to uwhich this confined information must not be tranemitted.

We can define the Confinement Problem as {aise éee_section 7.5])

X@® = Va,f{ o EQ 8 5. Confinedla) > -Spy(p))

Strong Dependency { 3.4) page 23

That is, find some constraint ¢ that reduces information transmission in the
system so that, if information is transmitted from o to B8, and a is

confined, then B must not be a spy.

A solution to the Security Problen {Case 74] would guarantee that
information is never transmitted from one object to a second object at a
fower security classification than the first. We can define the Security

Problem as
Xt = gt o« Pp o5 Crstw s cise))

where Clsix) is the classification of x. In [Case 74), @ is referred to
as the reqguirement for a "secure system",

[Note that as in [Denning 75), the classification need not he a
single value, but could he a vector of clearance/classification
values, in which case "<" would describe a partial rather than a
total order,]

~---- Section 3.5 --- Maximal Solutions [maxsol:]
We say a solution is maximal if it is less restrictive {allows more
initial states) than any other solution. Information problems do not

necessarily have unique maximal solutions.

A maximal solution for a problem is unique if the probiem can be shoun to
satisfy the Join property [Cohen 768). That is, if

XAPLY A X192} 5 X(91 v 92)

for then the maximal solution would be the join of all the solutions

P vl X ()]

max =

However, solutions to information problems do not satisfy the join

property. For example, consider the problem

Strong Dependency (3.5) | page 24
X(®) .E \ o E@ B

in the system
b: ifm then 8 « a

Dne_solution to X is

Pl{o) = v.a 13

If a is constrained to be a constant, no ‘information is transmitted to (.

Any constant will do, so another solution is"
$2(0) = o.x = 74
Houever, the join of these solutions
(91 v 92)ie) = oo=13 v o.o=74
is not a solution, for (€] v 92) gggé allow variety in o to be
transmitted to @ by execution of &, Since the join property does not hold,

problems may not have unique maximal solutions. Consider the system

$: if o £ 10 then B« B else 8«1

The problem X{¢¥)

- o E@ B is solved by both @1 and ¢2, wuhere

P1 (o)
P2 (o)

1]

"W 2
L}
2 o

]
Do o
A

18
A maximal solution containing both of these solutions is

R (o) = o.a < 18

max

A different maximal solution is

¢ (g} = o.a> 18

max

Strong Dependency (3,5) ' page 25

In neither case can a less restrictive soiution to X be found. In both

cases, ¢ solves X hy guaranteeing that the resulting value in 3 after

}
max
execulion of & is aluays the same. It is aluays @ for the first maximal

solution, and it is aluays ! for the second maximal! solution,

By requiring independence ({definition 3-1), we can formalize problems
those solutions do satisfy the join property and therefore have unique
maximal solutions.

Theorem 3-11]
If X{¢ = ~ A E% B A ¢ is A-independent
then X{(PL} A X(92) 5. X(9} v 92)

Consider the systen (see section 1.3)

bt i 8 € <xyX> AP0, A W oex, (>

then £ « o

There is a single maximal solution to the nrobylem

X{9) = - ﬂ% B A ¢ is a-independent
It is
@max(”} = s ¢ <x,x>{0) v r ¢ <x,a>(e) v uv¢g <x,f>(0)
---~~ Section 3.6 --- Comparing Solutions [infsuf:]

"Variety, within the limits of satisfactory constraints, may be a

desirahle end in itself,,."
Herb Simen "The Sciences of the Artificial®

In [Cohen 76), ue argue that solutions to problems should, in general, be

as unrestrictive as possible., That is, one should strive to obtain maximal

Strong Dependency (3.6) : ' . ' page 26

solutions to problems., Yet in many cases, solutions that are not maximal
may be as good in certain respects as those that are maximal, We would tike
to find measures that characterize the worth of @ solution, which would
indicate that certain non-maximal solutions are as uwor(hy 38 those dhich are
maximai. In this section, we wilt show that. Strong Oependency may be an
appropriate base for just such a meaéure.

Consider the problem

X9

1]

-« E%)B A ¢ is a-independent

in the system (see section 1.3)

§lt if 8 € <x,x> A r € <x,u> A W€ <x, 3>
then 8 « a

§2: if 5 ¢ <x, x> A L M AW <x, 0>
then £ « m

A maximal solution is (see secticn 3.5}

P {0} = s ¢ ox>lo) v or ¢ exaxla) voud <x,f3> (o)

max

Ahother solution (more restrictive than ﬁmax } is
Pl(g) = r ¢ <x,a>lg)
While #1 is stricter than %, the tuwo share an important property.

They prevent information transmisstion from « to f but prevent no other
information transmission (for example from m to pB). Contrast those

"golutions with the solution (also contaimed in ﬁmax)

P2{o) = 85 ¢ <x,x>lo) v uy <x, 3> (o)

which prevents information transmission from x to B as well, We will develop
a criteria that indicates that @l fis as worthy a solution for X as Ppay
while 92 is not, by formalizing the determination of which information paths

are eliminated,

Strong Dependency (3.6) page 27

First, let us take a moment and explore the difficulty of comparing
solutions quantitatively, We might argue that one solution is as good as
another if it allous more bits of information to be transmitted in the
system. Suppose that o, 8, t1, t2, ml and mZ are all 16 bit non-negative
integers. Consider the system

51 ml « 11
52: w2 « 2.
63t if tl 24 A t2 2 2565 then B« a

The problem
X9 = - a[]>q,c
can be solved by either 91 or 92 uhere

¥l {a) o. t] 3
P2{u) = g.t2 < 265

1l

1A

We might think that 92’ jg a better solution since it only reduces t2's
variety to 8 bits uhile ¢1 reduces tl's vafietg to 2 bits worth. This kind
of analysis is uncomfortable for a number of reasons. First, numeric values
pive no sense of the relative impor tance of the information in tl and t2.
Secondly, to formally assign a bit value to the amount of information
transmitted we really need to knouw the probability of each initial state and
the probability of each behavior in the system {see section 7.4),

We opt for a qualitative rather than quantitative measure of worth, We
Will measure the worth of a solution in terms of whether or not information
can be transmitted at all, Formally, we define the worth of a solution as
the set of information paths permitted in the system uhen constrained by the

solution.
Worthi®) = { <A,8> | A [l}pa]

It ue order these worths by whether one is a subset of the cther, then we
find that

Strong Dependency (3.6) . . _ ‘ - page 28

Worth (?1} < Worth(92) iff

(YA,) (A|]>q,1;3 5 Alkpza)

In [Cohen 76}, wuwe note that measures of worth should ordinarily be
monotonic, Formally

>> Def 3-2] <dorth,<> is a monotonic measure - jiff
Pl € ¥2 5. UWorth(®l} < Worth(92}

That is, if one solution to a problem is less restrictive than another, it
should he at least as worthy. MWe shou in [Cohen 76] that if a problem has a
unique maximal solution, that it is the worthiest solution relative to any
monotonic measure. From theorem 2-3, it is clear that this measure of Worth

igs a monotonic one.

According to the measure of worth uwe have defined, tuo solutions are
equally worthy if neither eliminates an information path permitted by the

other.

Strong Dependency { 4) page 29

Chapter 4 - Strong Dependency Induction [strind:}
————— section 4.1 --- Introduction [}

In this chapter, uwe discuss Strong Dependency Induction, an inductive

proof technique for proving the correctness of solutions to information
probiems. We confine our attention to solutions which are both autonomous

and invariant, treating more general cases in chapters 5 and 6.

We find that Strong Dependency Induction is nat useful unless the Strong
Dependency relation is transitive. We introduce another technigue, which we
call Separation of Variety, in\brder to extend Strong Dependency Induction
to the non-transitive case. | '

————— Section 4.2 ~--— Transmission Through Intermediate Objects linvar:]

The reader might imagine that if information is transmitted from o to 3 by
8182 in some system, there should be some intermediate object m (possibly
the same as a ar 8 in degenerate cases) such that §1 transmits information
from o« to m and 82 transmits information from m to 8. For example, in the

system

§1: m « a
82 B e m

5182 61 Y4
o ﬂ> £ and « ﬂ> m and m R> B

This intuition is exactly right and holds more generally when the system is

initially constrained by an autonomous invariant constraint,
Theorem 4-1]

1f P is autonomous and invariant then

HH" H H’
0 B o (Gm(o R% m A m E& g)

o

Strong Dependency (4,2) S 7 page 39

This is the basic induction theorem for information transmission, although in
later sections we will develop more general proof'fechniques. Ue will find

the following corollaries useful:

Corgllary 4-21

If ¢ ig autonomous and invariant" and. a.= f then
. 5)
(Ymeo, §) (~ «a [[)qom) v (YmeB, 81 (= m [[gpa;
5. -« m& @

That is, if either no operation can transmit information from a to any other
object or no operation can transmit information from any other object to B,
then information cannot be transmitted from o to g. Another useful

corottary is
Coro!llary 4-3]

lf ¢ is autonomous and invariant

and g is refiexive and transitive

{ qreflexive - (Vx)(qlx,x} } -
q tramsitive - glx,u) A afy,z} 2. gbgz))
8 .
then {Vx,y,8) [x E& y o qlx,yl)

>, (¥x,yhl x E& y > qix,y}l ¥

}sing these corollaries, we need only anatyze information transmission

over the set of all aperations rather than over the set of alt histories,

The last corollary is especially useful for the Security Probtem (section
3.4) uhich requires a solution guaranteeing that uhenever information is
transmitted from o« to @B, f's classification must be no less than oa’s. The

probtem can be formatly stated as
X = (Yo,B) a!b@c 5. Clslod < Cls{B})

where Clsi{x) is the classification of x,

Strong Dependency (4.2)) page 31

alx,y) = Clsix} < Clsly!} is an example of a transitive, reflexive g.
By coroliary 4-3, if ¢ g autonomous and invariant, we only need show that
no operation can transmit information from one object to another at a louwer

classification {when the system ts constrained by 9) to shou that the system
is secure. That is, we need only shou that

V8, a,0) (crlb:)ﬂ 5. Clsta) € Cls(B))
; .
When a n> 'l is read as "information flous from o to 8 over execution of
8", this corollary provides a formal basis for the work discussed in
(Benning 751 that desecribes information flow in systems where objects have
staticalty assigned classifications.

————— Section 4.3 --- An Example of . Strong Dependency Induction
[invxmpis]
In this section, uwe wuill present a detaited example showing how Strong

Bependency Induction may be used to solve an information praoblem,

Imagine a system where each object contains data as well as a single

painter to another object: The system has tuo sets of operations:

10y, x}: if y.ptr = x then y.data « x.data

820y, %}t if y.ptr = x then y.ptr « x,ptr
1f y points to x, then execution of $1{y,x) will copy data from x to u. If

Y points to x and x points to W, then after execution of 82y, %), y will
point to u, as illustrated belou. '

4 X W

Strong Dependency (4.3) page 32

We will consider the problem of trying to guarantee that information from
a particular object o cannot be transmitted. to some other object pB. That
is1 ' '

X(P) = -.a|]>¢,c

We uill shou that if there is no chain of pointers from § to «, then no
information can be transmitted from o« to B. ‘

lJe divide the objects into two sets, those that point through some chain

of objects {possibly of length zero) to « and those that do not.
characterize the former by

Ue wuill
-Chain(g).

the predicate Chain, so ‘that Chainla) and

— — S ’
am— L

Do OO
N O S | O=0—0
\ -~ \ _/I E Y
i __

S~

> -

~N /,

—

, .. -

e argue that if B does not initially point to ‘a, then no information can
be transmitted from o to . First we show that the initial constraint ¢
guarantees that @ does not point to o, where ¢ is

P{g) =

{Vy) { Chain{o.y.ptr} > Chainly})

e will write

points ly, x,n} (o) to mean that there is a chain of
pointers of length n from y to x in state o.

Formally, we can define points
recursively as .

Strong Dependency (4.3) page 33
hointsiy,x,B8) (g) <== Y o= x

pointsly,x,n+l} (o) <==
(3m) € o.u.ptr = m A pointsim,x,n) (¢})

A straightforuard induction on n shous that

P{g) o {vn) (points(y,x,n) {0} 5,
Chaini{x) > Chainly})

.Since Chain(a) and =Chain(B), wue conclude that
o) > (V) (—points{B,a,n) (g})
That is, @ guarantees that @ does not point to a.
¥ is autonomous. We next shou that @ is invariant. §1 has no effect on

pointers, so ue need only consider §2. Given that €{g) holds, we will show
that for arbitrary p and q, P(621q,p) (o)) holds.

1} Given 9¢t(o)

2] Assume Chainl 821qg,p) (o) .y.ptr)

3] Casel y =g

41 Chain{ o.y.ptr) (2,3, Def 52)
5] Case 2 y = . 0.y.ptr = p

6] Chain { o.y.ptr) (2,5, Bef §2)
7} Case 3 y = q, o 4. ptr = p

31 Chain{ o.p.ptr) (2,7, Def %2)
91 Chaint p) {(1,8]

18] Chain(e.y.ptr) {7,9]

111 Chainl o.y.ptr) {3-4,5-6,7-18]
121 Chain (y) (11,1
131 21 82(q,p) (o)) [2-12)

Next we pick

tlx.yl = Chainix}) > Chain(y}

noting that g is hoth reflexive and transitive, MWe next shou that

Strong Dependencg- { 4.3) page 34

b
Ve, %,y x Eb y o qlx,y))

5
1] Assume x E& y uwhere & = $11{q.p)
2] Assume Chain(x)

IR
3] (Jol,02)(ol ;CL o2) 1)

4] ol = 62 A blol).y = 8(02).y 131

X

51 (ol.y.ptr = x v oZ.y.ptr =X) .l4, lidef of §) i
61 Chain(ol.y.ptr } v Chaind 02.y.ptr-) [5,2]

71 @(el) A @(02) (3] | o

81 Chain(y) 6,7]

The proof for 82 is exactly the same. Since q g transitive and reflexive,

and ¢ is autonomous and invariant, by corolliary 4-3, ue can shou that

(¥x,y) [x Eb y > qlx,y))

_Sinbe Chainla) and -Chain(f}, this result shous (see the definition of g

above) that

- «Dy8

This shous that ¢ is a solution to X. 1f there is no chain of pointers
from 8 to a, then information cannot be transmitted from o to 8.

————— Section 4.4 --- Transitivity [trans:].'

In this section, we shou that the useful application of Strong Dependency

Induction requires that Strong Dependency be transitive,

In the system

8l: i
52 |

I~
o
-
T
]
3
3
1T
=

I~
2
~
=
)
3
-
T
3

-

e can show directly that the probiem

Strong Uependency { 4.4) page 35

X () 1182
/ = -~ o 10
can be solved by the aluways true solution, P{o) = tt. That is, for any
two states initially differing only in a, after execution of 6182, the value
of 8 will be the same for both,
Houever, to prove this result by Strong Uependency Induction, we would

have to show that etther
51 52
- o m or - m [I) (]
But hoth

61 &2
a m and m w “ i

The difficuity is that Strong Dependency is not transitive in this system.
Strong Dependency is transitive if

H ¥ HH
crmr\mlbﬁ:)-a[pﬁ

————— Section 4.5 --- Separation of Variety [sepvar:]

In this section we introduce a proof technique we call Separation of
Yariety uhich can he used to extend Strang Dependency Induction to cases
vhere Strong Depencency is not transitive. We explain Separation of Yariety
by considering the systen

bt if o then B « tt else B « ff

)
While a [b 8. there are tuo solutions, 91 and ¥2, to the problem

X9 = o o ﬂ)(p 6
Piio) s o.a = tt
P2(0) = g.ao = ff

In both solutions, we prevent transmission by reducing the variety of a,

Str‘ongj Dependency (4.5) | . page 36

e can think of ®1 and 92 as covering the state space, Z, as ittustrated in

- the diagram belon.

. oK '-'-'Et ’ >3 G.t = ;;-
No ¢M’\¢.“'j

No var \e}j
ol
A

v o

o | *

While the set of all possible states do exhibit variety in «, ®1 and 92
separate that variety and prevent information transmission. { In effect,
this is the reason why the join property does not hold for information

problems {section 3.5).]

But what wouid happen if 91 and $2 separated the variety in some other

object instead of o? For example,

Pl{c} = o.m = tt
$2{6) = o.m = ff
Given either ¥1 or 92 as a constraint, transmission can still take place.

Both o ﬂ>‘01 f and o ﬂ>4)2 8.

\‘.’r\QL_l_, O o VS b"'
: | thJO12..J. +° %
s.w =tt

®4
®2 -/ Vo.cfe'l‘*-.} o can el
- ™M= -g'? ' : rieyed i g

Strong Dependency (4.5) page 37
Each subset of 3 characterized by #1 or 92 still exhibits all of the
variety possible in o - and in each case, all of that variety can still be
transmitted to B. Nouw, let's consider the system ' '
b: ifm then 8 « a

We find that

: _
a[bma but - a[b@za

om = L N v..‘m:j“x; : bary be

\hx-c-(r\/ o % c———-‘“““.{-

@2 _
be c¢omyeod o %

T.wm =-FF

While o's variety is still completely exhibited in both subsets of ¥
characterized by P! and #2, ¢l prevents that variety from being conveysd to
B. However, in the case of P2, transmission can still take place.

In general, if wue split the state space in any way along partitions
independent of «, in at least one of the cases distinguished by the split,

a’s variety can still pe conveyed to .]f not, there would have besn no
Wway that o’s variety ever could have been transmitted to 8. In fact, the

result holds for a more general sort of division' of the state space. If
Pl,...,Pn cover ¥ along lines independent of «, then o hﬂi ¢ for at
least one of the i's. UWe defined independence (definition 3-1) so that

? is A-independent iff

(Yg,o'} ({ UKU' >, Plo} = P’} b

That is, ¢ is A-independent if 9 in no way constrains the value of any

Strong Dependency (4.5)

page 38

object in A. Next ue define an A-independent cover, a set of A-independent

constraints that cover 2%,

>> Def 4-1) { i 1 is an A-independent cover 1ff

(Vi) (@i is A-independent) A
(Vo3i) (?i(g})

Theorem 4-4)

1 f I 9 1 is an a-independent cover then
H H

«Pp o (Hi)(aB}(ﬁﬂ)

and therefore

«Ps > antalp, 6

More generally

Theorem 4-5]

If f 9 1 is an A-independent cover then

H H
A H>@a > (FiY(A [bwcpa)

and therefore

A&pﬂ > (:~111(A[1>q,/\cp.I B)

[Note that this theorem does not require that the ®i's be autonomous, only

A-independent,]

The theorem suggests the follouwing proof technique.

- abys

find an a-independent cover | ¢i } and shou that

To shou

Strong Dependency (4.5) page 33

Yi -

Vil (o E@A@i 6)

f e Section 4.6 --- An Example of Separation of Variety [sepxmpl:]

| We will illustrate the use of separation of variety (in conjunction with

Strong Dependency induction) by shouing that -« D g in the system

Sl: if g then m « «

621 if =g then B « m

Pick the o-independent cover {1,921, where

Pl (o)
P2{e) = -p.q

Hl
Q
£

We find that

5
Wmep, 800 = mDog)

80 by corclliary 4-2, = m E%l g. Similarty

5
mee, 830~ « Pom)
so by coroltary 4-2, S P, m

Therefore, by theorem 4-5, - m ¢

For another example, consider the system ("left" and "right" are assumed

to be disjoint components of m)

§1: m.left « a
82t B « m.right

We pick Pile) = o.moright = i

We must show that for each ?i, no infarmation can be transmitted from o to (]

given Pi. Ue will prove this for each ¢ using corollary 4-2. This requires

Strong Dependency (4.6) ' page 49

a pronf that each ¥ is invariant and that given Pi, no operation can
transmit information to B from any other object. Each ®i is invariant since
52 does not modify m and 6} only modifies m.left. now, though &2 modifies
by copying the value of mZ.right into B, when @i constrains m2.rignt to be a
constiant, no variety is conveysd to B and thus no information ir transmitted
to gG. Since 51 does not affect B at all, nc operation cer transmit

information to § from any other object. Formally

1) Wil (9i is a-independent)
2Y Woedid{ ¢ilo)) [Pick the Pi so that c.m.right = i]
3} (Vi Pi is autonomous)
C4) AVIYL 95 is invariant 3} [left to reader]
5} (Vi) iV¥x=f, 5} { ~ x [I>¢,,I) lleft to reader]
6} {¥i)l -~ o [I)w) 13,4,5 Criry 4-21
7y ~abPps (1,28, Th 451

Strong Dependency (5 } page 41

Chapter 5 - Relatively Autonomous Constraints irelphi:l
————— Section 5.1 --- Introduction [}

In the previous thapters, uwe confined our attention to autonomous
constraints so that we could explore the basic praoperties of Strong
Dependency - the transmission and separation of vartety, and the definition

and solution of information problems using Strong Dependency.

I'n this chapter, we turn our attention to the meaning of constraint., In
an information theoretic sense, constraint has tuo meanings. We explored
the first of these meanings in chapter 2, uwhere we showed hou constraint
might be used to reduce the vartety in a system, thereby preventing

information transmission,

Constraint has another meaning as well, Non-autonomous constraints
establish relations among the values of tho or more objects. As a result,
they spread the source of transmitted information, For example, the

constraint
Plo) = o.a < o.m

refates the initial values of « and m. 1f information can be transmitted
from m to B, information may he transmitted from o to B as weli. 1f an
observer of B can discover something about m's value, then g might discover

something about o« as well, by knowing the relationship between « and m.

We find in this chapter that the Strong Uependency formalism is not
whally suited to dealing with nean-autonomous constraints, [Work in

progress (section 7.2) is directed touards that goal, 1

We find that ue can continoe to use Strong Dependency for certain
non-autonomous constraints, [f ue "clump” a group af objects together and
treat them as a "pseudo-object", then a non-autonomous constraint may appear
to be autonomous uith respect to that "pseudo-object", For example, if we
clump o and m together, then we note that ¢ is autonomous relative to the

clump {a,mb,

Strong Dependency (5.1) ‘ _ page 42

We treat clumps formally as sets, call the related constraints,
refatively autonomous, and extend Strong Dependency Inductior to handie such

constraints,

————— Section 5.2 --- The Strong Dependency Hypothesis [strhyp:]
In this sectionvue show that Strong Oependency ?s not comb[eteig suitable
as a formalism for information transmission in systems censtrained by

non-autonomous constraints,

Strong Dependency represents an attempt to formalize the intultive notion
of information transmission. So far, ue'accept the following hypothesis.

seveverevese . The Strong Dependency Hupothesis et

If A |I>cp(3 then

Information can be transmitted from (some object inl A to @

in a system constrained initialtly by ¢

In other work (section 7.2}, we find additional support for this

hypothesis, regardless of uhether ¢ is autonomous or not.

The converse of the Strong Dependency Hypothesis in npot true. Consider

the problem
Xeo) = -alPys
in the system
br B « ol
We find that the non-autonomous constraint
P{g) = vov.al = 0.2

Wwill solve the problem. The solution is similar tao that of constraining the

Strong Dependency (5.7) page 43

value of al to that of a constant., Instead, the value of ol is constrained
to be the same as o2, In either case a degree of freedom is removed from
the system. VYet, this sofution is disturbing, for one might imagine 3 ways

that this solution vame to pass,

1. ol uas aluays the same as o2 in the system. Somehow, in
initializing the sustem, the value of ol was also placed in a2 (or

vice-versal. - There is still a great deal of variety in al; only it
is shared with a2, Execution of & wili convey all of this variety to
g.

2. was brought about {produced - see [Cohen 78]) by executing

some other operation (not shoun) that copied al to 2. The argument

of Il] above still holds,

3. 9 uas brought about hy some operation that copied a2 to al,
destroying all of the initial variety in al, Houwever, we are
analyzing the system after ¥ was brought about {after the salution
Has produced), that is, after the copy. Again, the variety in ol is
matched by the variety of o2, and as in {1} and [2), the problem of
preventing information tranmsmission stitl remains,

This analysis argues that information js transmitted from ol to @B given
P, even though - al E% B. The constraint ¢ spreads the variety betuween
al and a2. Strong Dependency is insensitive to that spreading of varisty;
it only takes account of the fact that «l appears to have no variety at all

since it is forced to take on the same value as aZ.

—————— Section 5.3 --~ Relative Autonomy [relaut:]

I'n this section, ue shou hoi Strong Dependency may be used with certain
non-autonomnus constraints, by considering a set of objects as a single

source of information,

In the example in the previous section, we considered al as & potential
information source. The Strong Oependency formal ism only analyzed the
effect of ol's variety on g independently of the variety in other objects,

Strong Dependency (5.3) ‘ , page 44

particularly in ¢2. Yet in that example ¢ spread al’'s variety to o, We
must therefore treat al and a2 together as a source; determining whether
their composite variety can be transmitted to g. And in fact, ue can shouw
that |

tal, a2t D@
()
Though ? is not autonomous, we will say that it is autonomous rejative to
fal, a2, or {al,o?Z}-autonomous. That means there are no correlations

betuween lnl,o2! and any other object (a formal definition is found belou) .
The argument suggests that although the converse to the Strong Dependency
Hypothesis is not true, the folliowing weaker version is true.

vesevesese The Relative Autonomy Hypothesis Tevgsevevede

If @ is A-autonomous
‘ and -~ A E% # then

No information can be transmitted from A to B
in a system constrained initially by ¢

Additional support for this hypothesis may be found in other work in

progress {section 7.2}. Consider the system
8¢ 08 ¢« al - a2
P{g} = 0.0l = 0,02
We find that -~ {al, a2} m% B

Because ? is lal,a2l-autonomous, the hypothesis argues that information lIs
transmitted neither from ol nor from o2 to B. This is as it should be.
Given the constraint ¢, execution of & will aluays set 8§ to B regardiess of
the initial values of al and a2 {uhich must be the same) .

1f the constraint ¥ above nere

Plg) = .0l = 0,02 A o.ml = o.m2

Strong Dependency (5.3) page 45

@ would still be lol,a?l-autonomous. Though other objects (ml and m2) are
constrained to have correlated values, no value of al or o2 is correlated
with any of them. Even for these kind of retatively autonomous constraints,
the Relative Autonomy Hypothesis holds. As long as no variety is spread
betueen objects in A and objects outside of A, Strong Uependency accurately

reflects information transmission.
We can represent refative autonomy formaily in the following way:
First, remember that we defined @ is A-independent as (def 3-1)

(Yol,02) (ol i 02 >. ¥ilol) = $o2))

>> Def 5-11 P is A-strict iff

(Yol, o2} (ol.A = 02.A 5. ®{ol) = ¢(e2})}

P is A-independent if ¢ does not constrain any objects in A,

P is A-sgtrict if ¢ only constrains objects in A,

>> Def 5-2] P is A-autonomous jff

P =Pl A 97
for some P1 which is A-strict

and some P2 which ts A-independent

For example

o) = ov.ol = 0,02 A o.ml = 0.m2
MA{o) = o.0]l = 0,02 is lol,a2t-strict
P2{a) = a.ml = o.m2 is {ol,aZl -independent

Therefore, P A P2 is lal,a?}~autonomous.

Strong Dependency (5.4) . page 46

————— Section 5.4 --- Substitution and Autonomy [subaut:}
In this section, we present a different characterization of relatively
autonomous constraints, We show it is equivalent to tne definition of

relative autonomy given in the previous section, but leads to a more usable
formalism, MWe also define autonomy as it has been used since section 2.8.

Imagine tuo states ol and 02 that both satisfy
?lo) ' voal = 0,02 A o.ml = o.m2
al a2 ml m2 q
ol 1 1 2 2 3

o2 181 181 182 182 183

Compose a state o that is just like 02 except that it takes on the vaiue of
ol for al and o2, ‘ .

o 1 1 182 182 183

0. also satisfies 9. ol and a2 help satisfy ¢ independently of the values of

other objects. The values of al and «2 taken from any state satisfying @
can be substituted for the values of al and «2 in 02y the resulting state
wit! stitl satisfy €. UWhenever 9 is A-autonomous, if ol and 02 both satisfy
P, then 0v2 with ol substituted at A will satisfy ® as we!!., Formaily uwe

‘define 02 with ol substituted at A as

>> Def 5-3] 02 % ol

al Y ol =4of © where o =02 A 0A-= ol.A

Theorem 5-1]
¢ is A-autonomous jff

(VYol,o2)(Plol) A Ple2) > ¢ o2 7; el))

The constraint

Strong Dependency (5.4) page 47

Plal g.al = 0.2 A e.ml = o.mZ

is {eddl , a2} ~autonomous. It is aliso Iml,mZ}-autonomous. It is also
g-autonomnus for any arhitrary other object q. The value of ¢ may change
independently of any other object, especially since g is not constrained at
all hy 9, {f we think of each relatively autonomous set of objects
{e.g. lal,a2}) as a single "pseudo-abject", we can see that theorem 2-6

H ' H
ab e 5 (Feddial g
P ¢
generalizes to the follouing theorem.
Theorem 5-21

If P is Aj-autonomous, i =1,...,k then

K H K H
'(alilA")Ib“’ﬁ > i:l(Ai[PmG]
1f in some system constrained by the example ¢ above, information was

transmitted from dal,a2,ml,m2,q} to B and 8 did rot depend upon g or upon
fml,m2}, then B would certainly have to depend upon lal,oll,

If 9 permits the vatue of each object to change independentiy of the
value of any other object, then ¥ is wu-autonomous for all a. This is the
formal definition of autonomy {described infarmally in section 2.6}.
>> [l 5-4) P is autonomous iff

(Yer, 0], 02} 0 @(a2) A Plol) 5. @ 02 ~ ol)
2}

we=--= Section 5.5 --- Strong Qependency Induction [relprf:]

Chapter A4 discussed Strong [Oependency Induction for autonomous
constraints only. The definitions and theorems in this section extend those

reaults to non-autonomous constraints.

Firat e extend the definitions of section 2.3.

Strong Dependency (5.5) R : page 48

> Def 5-5} ol and 02 differ only at A and differ at B after H given ¥

P H -
ol K 02 =gop ol 202 A (VBB)(Hlol).B » H{o2).8)

TS

>> PDef 5-6) B strongly depends upon A after H given @
aH ¢ AH |
ADyB myer (Fod,0200 01 O 02)
>> Def 5-71 B strongly depends upon A g.iven"f’ .
AD B Al
‘p Edef A ‘p B)
Theorem 5-31 (proof left to reader)
H H
APy o wemaD)
e
We argued in section 4.2 that if information were transmitted from a to 8

by &§18%2, then there should be some intermediate object m such that &1
transmits information from o to m and m transmits information from m to 8.

In the case of non-autonomous constraints, Strong Dependency may fail to

mirror this intuition. Consider the system

§1: (ml « a3 m2 «)
82: B « ml

initially constrained by the invariant but non-autonomous constraint
P{o) = o.ml = o.m2
8182 ,
Although we can directly show that o [P B, we find that
82 | $2
Hmlﬂ> il as uwell as -vm2|]> g
I 4 P
But, since @ is [ml,m2] -autonomous, we do find that

82
tml, m2} |I>(p i}

e also can show that o transmits information to both_.'ml and m2. That is

Strong Dependency (5.5} page 439

61
a P otml.m2)
P
In fact, generaliy ue can show that
Theorem 5-4]
1f P is invariant then
HH'

' H H
AD, B o (3m{A[I>¢r1 A nﬂ)‘pp)

This theorem, a generalization of theorem 4-1, follows immediately from the

follouwing theorem
Theorem 5-5]

1f P is jnvariant

and M= {m1it Hlol}om = H{p2)om I then
¢ HH PH | P .H
ol A<>G 02 iff ol AO” 02 A Hiol) n<>‘3 H{02)

Just as corollary 4-2 folloued from theorem 4-1, we find that the follouwing

corollary follous from theorem 5-4
Coroltary 5-6]
If P is invariant and B ¢ A then

5 §
(va.mJ(AIIgpm 5 meA) v (vs.m(nlbcpa 5 Belt)

5. ~A[I>tpa

Stronyg Oependency (6) : ' pages 50

Chapter B - Non-invariant Constraints [noninv:l
————— Sectiqn 5.1 --- Introduction]

In sections 4.2 and 5.5 we explored Sfrong Dependency Induction for
invariant constraints only. In this chapter, we uiil extend the inductive

technique to include non-invariant constraints as wetl,

Induction using non-invariant constraints is useful when systems oscillate
or pass through stages where one of a set of constraints is aluays
satisfied, it is then possible td shou the absence of information
transmission by using Strong Dependency wuith respect to each of the
constraints in the set separately. MWe call ‘the set of constraints a

inductive cover.

We find that inductive covers are especialty useful In analyzing
sequential programs where they correspond to the inductive assertions
attached to a program. Strong Depéndencg Induction can then be used to shou
absence of infarmation transmission as.the result of program execution.

————— Section 6.2 --- Constraint after a History [phist:]

As an initial constraint, ¢ characterizes the set of possible initiat
states of a system. In this section we shou how to characterize the set of

possible states after execution of some history.

1f @ initially constrains a system, then after execution of history H,
the set of possible states can be characterized as those states reachable by
execution of H from a state satisfying @ initially, We write [(HI® to
characterize these atates. Formally we define ¢ after H as

>> Def 6-1] {H} ¢
[H1®Ple") =44 o’ ¢ | Hlg) | Plo)} }~

1f o satisfies ®, then Hio) must satisfy [(HI¥. Formally

Strong Devendency { £.2) : page 51
Theorem 6-11 {proof leit to reader)
Plo) > [HI®! Hig) 1}
As an example, consider thc system

bt B e o - 4

$i{o) v.tx < 18

I

We find that
{8]Pie} = g.c < 1B A 0.6 = 0.0 -4

Execution of & dnes not change «, so it remains less than 1@. However, §'s

execution guarantees that g will be a - 4,

Note from the example ahove that [HI® need not be outonomous even if ¢
is. Note also :hat [§J® is stricter than ®. This increase in strictness

occurs thenever ¢ is invariant,

Theorem 6-21 {proof left to reader)

1 P is imvariant then

[HI9 < ¢

————— Section 6.3 --- Strong Dependency Induction [nomind:]

In using Strong Dependency Induction te detefmine whether information cen
be transmitted from A to £ over execution of HH', we find some M such that
information is transmitted from A to M over execution of H and from M to g8
over execution of H (theorem 5-4), |t the system is initially constrained
by @, then after execution of H, the system is constrained by [HI®, To
determine uhether information can be transmitted from M to f over execution
of H after H has executed, one must consider a system constrained not by @,
but by [HI?Y. Formally ‘

Strong Dependency (6.3) | page 52

Theorem 6-3]

) HH’ Y H
Aﬂk,, g > (BH}(Alb(pH A nlb[HMc)

Note that the theorem holds even though [H!? need not. be M-autonomous.
This theorem follous from the follouing theqrem
Theorem 6-41 (proof similar to theorem 5-5)
if M= {mi Hlol).m = H[dZ).m-} then
ol :)OEH' 02 iff ol zo:: 02 A I'-l.(oll [H]:O:' H(e2)

If @ is invariant, then theorem 5-4 (the corresponding theorem for
invariant ®) is seen to foltow directly from theorems 6-3, 6-2 and 2-3.

The following corollary follous from theorem 6-3 as corollary 5-6
folloued from theorem 5-4, '

Corollary 6-51 ({proof similar to theorem 5-6)

1f pf e¢A then

(YH, § 1(A[l>B A)

O, M [H]‘pm . m € v

{VHSHHMH;’ M)
AL e B 2 B

5. = Alb(pa

14 [HI® is autonomous for all H, the theorems in section 4.2 can be

generalized as well. In particular we find that .
Theorem 6-8) {proof similar to theorem 4-1)}
If (YW { [HI¥ is autonomous) tHen

HH H '
« Py 8 > (3ml{a|btpm A m[b[H]¢aJ

Strong D'ependencg (8.4) _ page 53
————— Section 6.4 --- Inductive Covers [behcov:]
In this section, ws explora Strong Dependency Induction uring Inductive
covers, sets of ®i's, such that if some ® I8 true initially, one of the ¥i's

Will be true thereafter.,

The simplest use of an Inductive cover might be for an osciliating

system, That is, ®1 may be true initially, after execuiion of some
operation, ®2 will be true; after execution of another oparaetion, €1 wii! be
true again. We mill present just such an example fater in *hias section.

More generally we define an inductive cover as a set of $i's, auch that for
every H, [HI? is contained in at ieast one of the ®i's.

>> Def B-2} { #1 } is an inductive cover for 9 iff
(VHII) (U [HI®? g @i)

Since each [HI® is contained in some @i, we find the follouing theorem
follouws directly from theorems 6-5 and 2-3.

Theorem 6-71

If {9} is an inductive cover for ¢ then
. g | '
(Vé,m, 1) (A ﬂ>tm m o> meA) v
o 5
we,M P8 > gen)
50 - A [b(p 8
A simple example of an oscillating system is
8 (B« a3 o -a)
P{o) = o.ax = 37

It is easy to see that o is initially 37; after execution of & o Wil be
-37; after execution of & once more, « will be 37 again. No information can

Strong’Dependencg { 6.4) _ : . page 54

be transmitted from « to B. « is constrained tnitially so that it contains
ho variety; there is none to convey. MWe will prove that = « b‘p B.

Instead of using the theorem above, we might first consider a retreat to
the comfortable world of invariant constraints. @ is clearly not invariant.
However, we could imagine finding an invariant ¥ containing ® such that

T

R

By theorem 2-3, this would yield the desired reau_it.' tUnfortunately, the
most restrictive invariant ¥% containing ¢ is '

Pe{o) = g, =37 v 0.0 = -37

This ¥x lets a exhibit some variety, that 'var-ietg can be conveyed to B by
execution of o, and therefore a-w . B, which is not the result desired.
LI 4

We prove the desired result by Usi.ng theorem E6-7, taking {€1,¥2] as an
inductive cover for 9, where

O.0 = 37
g.a = -37

1]

1 (o)
P2 (o)

1]

Since both P1 and 92 eliminate all variety from a, we can show very easily
that

n|}>;1¢3 5 pBe¢M and
N[Pi,zﬁ > Bs”

So by theorem B-7, ue find that - « Ib:p g.

Strong Dependency { 6.5) | page 55

----- Section 6.5 --~ Information Transmission in Sequential Programs
linfseq:]
In this section we will show how to prove the absence of information

transmission in sequential programs by using Floyd assertions iFloyd 67) as
an inductive cover. '

Consider the flouchart program

.s\-\r‘\' ————1__ S .Y

9 1T aro A bt
| Qe te-FF

i------ -~ Q2

¥ £ Hew S /
" .- - _‘7 _ . - Ci)?;
"

Following [Lipton 73], this program can be mode!led by the following
computational system (pc acts as a program counter)

81t if pc =1 then
1f 9> 18 then t « tt else t « ff; pbc « 2}

—
[

82t if pc = 2 then
(ift then B« a; pce 3.}

constrained by P which guarantees that exscution begins at "start"

o) o.pc = 1

)]

Follouwing IFIogd 671, ue place an entry assertion at the beginning of the
program, an exit assertion at the end, and intermediate assertlons preceding

each intermediate statement. Suppose that uwe .kpauw that the program only

Strong Dependency (6.5) - s R page 56

executes on data that initially satisfies 1 (the entry assertion). Nou let
$2,...,Pn be assertions placed preceding statements {abelled §2,c04, 8N
respectively, and let ®,,1 be the exit assertion {see diagram above) .

The meaning of Floyd assertions is this: if the entry assertion (#1 } is
satisfied, and if control is at &i (i.e. o.pc =i}, then ®¥i is true,
Initially, controlr is at statement b1, and 1f the entry assertion |is
satisfied, the state of the system can be charactefized by ¥1 A 4.

Control is always at some &i, therefore, some ®i -must aluays be true,
That is just the requirement that makes (@i} "an inductive cover for
ol A P -

It is useful to take the pc éxplicitlg into- account, Define

Pivlo) = Pilo) A o.pc = |

Since the value of the pc is i uhenever control is-at &i, Pix is aluays true
when control is at §i, and therefore { ®iw 1 is also an inductive cover for

“pl AP { Py).

Nou ue see that
(Yo) [Pivelo) > wv.pc = i)
and each §j is of the form

§j: if pc = j then ...

b j . - .
so if X E&:. Y, then (unless y ¢ x - see section 2.5} i must be egual
¥ .

to j, for otheruise execution of &) can have no effect on y (or any objectl.
Formally: '

5] . '

Vi, j X, O X A U R i=j v ye X)
Pive

Thus by theorem 8-7, to show -~ A E% g. ue need only shou that

Strong Dependency (6.5 } . page 57
i |
1. Either vim(AD. m 5> mecad
I¥¢
§i -
2. O (¥i,M(N %m B > B M)

The second alternative corresponds to the following proof technigue for
shouwing that no information can be transmitted from a to 8.

For each statement %; that contains an assignment to @, show that
Pivx constrains the state so that no information can be transmitted
to B8 as a result of execution of §;. @Piwx ig the inductive assertion
for statement &; conjoined with o.pc = i. [We need noct be
concerned with statements that cannot assign to f: they can never
transmit information to 8.) .

In the example above, we pick the entry assertion to be

Pillo) = o0.q < 10

We can then shou that 92 is a legal inductive asgsertion for statement §2

2{a) = -p.t

Since g is initially less than 18, t must be false when contrel reaches
52 (by execution of §1). Since t is false, execution of §2 can never
transmit information to g. Formally,

| 52
M D‘PZ* G > ﬂ ¢«

Since §2 is the only statement that assigns to {3.‘ e have shoun that no
information can he transmitted from a at B over execution of the program.
In general, suppose that # is only assigned.- to at statement k (not
necessarily the last statement}. Then; in order- to prove - A hp g, We
need only shou

bk
(vm(nwmra 5 BeM)

Yet, there are difficulties in using S-trdng Dependency as a model of
information transmission in programs., Consider the flowchart

Strcﬁg Dependéncg { 6.5) o page 58

_ i

—»{e=0 |

which can he modelled by the constrained system

§1: if pc =1 then { if o then pc « 2 else pc « 3)
82: if pc = 2 the «B; pced)
83: if pc = 3 the $ pc o« 4)

P{o) = o.pc =1

3 I3

~ Now it is clear from looking at the program that information cannot be
transmitted from o to B, since §# is set to @ regardless of a's value., Yat
we find that ' '

§182
P

o] and therefore o m% B'

This can be demonstrated by :
Picking ol so that ol.a = tt, ol.8 = 37
Picking 02 just like ol except that o2.a = ff

Than al

o] |t-e-

02, (8182) (ol).8 = 8,. (§152) (62).8 = 37

This example may appear to invalidate the‘Strong Dependency Hypothesis.
In fact, it does not, The Strong Dependency forha!ism'imp!icitlg assumes
that @(’s observer knous the history -being executed. Suppose that an
observer of 8 did know that §182 uas being executed. 82 has an effect only
if the pc is 2. |f 52 does have an effect on @, then f's observer can infer
that' the pc was 2 when §2 was executed, uhich implies that o was true
initially. That information about o is thus transm?tted to 8.

Stronngependencg { 6.5) page 53

In arguing that information cannot be tranémittad from o« to 8, we tacltiy
made the assumption that g's observer could. not observe the history

‘executed. Ordinarily, we might instead make the'assumption that @'s observer
can only detect the passage of time (as well .as the value of # of course).

Work in progress ({section 7.3) formalizes the ‘observation of +time and
allows us to shou formally that, in the example above, as long as only tima,

rand not the history, can be observed, no information can be transmitted from

a to g3 .

Strong Dependency (7) o : page ©f

Chapter 7 - MWork in Progress [infurk:]

----- Section 7.1 --- Introduction [}

In this chapter, uwe discuss uork insprogress, both extensions to the
Strong Dependency Model, as well as other modela suggestad by issuss raised
in exploring Strong Dependencuy. ' -

uuuuu Section 7.2 --- Alterpnats Models for. Information Trensmission
[infalt:] . '

We have found that Strong Dependencgs corresponds to information
transmission only in autonomously constrained systems, For exampi=z, in the
system) ‘ '

5: B « al
P{o} = vc.al = 0.02

information can certainly be transmitted from ol to B, yet we ¢ind that

- «al n% G.

Tuo other models, Inferential Dependency and Direct Dependency, are being
explored in an attempt to extend Strong Deperidency to non-autcromous
constraints, The two models treat "inferential" transmission differently.
Inferential Dependency would indicate that infermation is transmitied from
both ol and a2 to § in the example above.. Direct [Jependency would indicalte
‘only that information is transmitted from al to f#. The advantage of a
Direct Dependency formatism can be seen more clearly in the follouwing

example:

B: B« ol
P{o) = vc.al.tag = o.02. tag

Information is certainly transmitted from al to f by execution of &. Since
¢ indicates that the tag component of «l and o2 are the same, one might well
conclude that some information about o2 is transmitted to B as well. If ther

tStrong Dependency ([7.2) . e _ page 61

tag component does not contain important infobmétion (i.e. we don’t care if
it is transmitted), we may find it useful to ignore this interentia!
transmission. A Direct Dependency formalism would do just that.

I'f a model of information transmission does include the sffect of
"Iinferential" transmission, information transmission camnot be monotonic in
the sense of theorem 2-3. More reatrictive.éohstraints might Inrcrszase the
sources of information. For example in the system described sbuve, @ ig
more restrictive than the always true constraint (i.e. no censtraint at
all}, yet imposing ¢ adds an information path {fram o2 to gi,

The Inferential Dependency formaiism is is being developed irom 2 purely
inferential, rather than an information theoretic approach. e gay that 0
inferentially depends upon o after execution of H in a system constrained oy
®, if an observer of the system, able to view only B can make some infsrence
about o that "says more" about o than can_be‘determined from € alone., WKe
find that the definition of "says more" is the crucial (znd most interesting)
part of this modsl.

Our investigations to date indicate that the mode! is at least ae ganeral
as Strong Dependency, in the sense that we can shou that Inferential
Dependency and Strong Dependencg - give the same results for
relatively-autonomous constraints,

The definition of "says more" turns out to be related to what can be
called "contingent" information transmission, . .In execution of

b: B« ({al + a2) mod 128)

information is clearly transmitted from fal,a?l to B. It is not se clear
that information is transmitted from ol alone to B. No matter wuwhat an
observer finds to be the value of @ after execution of §, no inference can
be made about the value of «l. ol can take on any value contingent on the
value of a2, Strong Dependency woutd indicate that B does depernd upon al.
We find that we can define Inferential Dependencg‘in tuo different ways; one
would indicate contingent information transmission, one would not.

Theorem 2-1 holds precisely because Strong_ Dependency does indicate

Strong Debendencg f 7.2} : o page 52

- contingent - information transmission. In a model that ignorees contingent

information transmission, information might he transmitted from a set of
objects A to @, even though no information might be transmitted to 3 from
any one single object in A, '

One probable prerequisite for ' ang adcéptab’le modal of Informatlion
transmission is an Induction principle at :'Ieaat “as general s Strong
Dependency Induction (theorems 5-4 and 6-3) and a thzorem that permite
separation of variety in a manner analogous to.theorem &-5.

————— Secfion 7.3 ——— Mechanisms linfmech:]

‘ In this paper, ue have assumed that. information prok:lens may only be
solved by imposing an initial constraint on a system. ‘Az ue rote in [Cohen
761, problems may also be soived by adding a mechanism tc a syatam., In
[Cohen 761, ue define a mechanism as implemen‘ting an arbitrary mapping from

“an augmented system f{as it is provided to a user) to ar origins! base

system, This mechanism formalism can be used to mudel protection

mechanisms, synchronization mechanisms, seqguential and concurrent control

mechanisms, virtual machine monitors, and can be used to wade! Snformation
hiding and situations in which a user is to be prevented from oligarving the
exact sequence of operations performed in the base system in responas to

execution of operations executed by the user in the augmented syatem.

[Rotenberg 731 and [Denning 75] have warned us that ue must be careful in
adding mechanisms to a system. For even as .the mechanismz may siiminate
certain information paths, they may cov.ertlg-'add‘o'thérs. {Rotenberyg 73]
especially provides a number of exceedingly subtlle examples of covert
information paths. Our formal model of mechanism, in conjunctinon with the
Strong Dependency formaiism, permits a characterization of those mechanisms
that do not add neuw paths for informatrion trahsmission.

Tuo sorts of run-time mechanisms that prevent information tramsmission
have appeared in the literature. The w-property mechanism (Be!l & LaPadula
73] requires that the classification of ordinary aobjects {not nrocesses] be
fixed, (Denning 75} has shoun that such mechanisms do pravent information

transmission without adding covert channels,

Sfrong Dependency { 7.3) . pnage B3

1f the classification of objects are allowed to vary depend! ng upon the
information stored in them, then covert lnformatfon paths are easily.
introduced. The Adept-58 system [Weissman 691 does allow the classification
of ohjects to vary: [Denn: ny 76} has shoun that it permite covert !eaka age of
information. We are exploring mechanisms that permit ciassificutions to
vary: ue can prove that covert information paths are not iniroduced because
Wwe alsg require that the state of the system be initially constrainez. The
initial constraints, correspond to initial properties of an accese matrix,

A mechanism may be used as a formal tool for specifying the mapoing from
a given system to a simpler system that may be easier to analyze. ucrk in
Progress examines classes of mechan!sms that preserve various :ﬂ‘o'mat!on
transmission properties.

Finally, we noted above that the mechanism formaiiem is usefu! for
speci fying exactly which parts of the behavior of a system can be cbserved.
In section B.5, ue noted that if onty the time of a computation can be
observed instead of the history, certain information paths disappear. He
can formalize this argument through the use of those machanisms called
"sequential control mechanisms" in [Cohen 761,

————— section 7.4 -—- Information Theory {infthr:]

Strong Dependency and the other models of informaticn transmission
alluded to above are non-quantitative. They indicate whether information
can be transmitted, but not hou much. A number of different measures can bs
formulated, depending upon one's approach to contingent and inferertial
information transmission. Each of these measures may be based on Sharnon's
information entropy [Shannon & Weaver 431,

The following example illustrates the reason for tuo different measures
corresponding to . tuwo different approaches to contingent information
transmission (section 7.2).

8 B e ((al + a2) mod 128)

I'f initially, ol and o2 can take on values from B to 127 with squal

Strong Uependency (7.4) | _ ‘paga B4

probability, then execution of & transmits 7 bits. of Information {rom
{al,02} to B. But how many bits of infarmation are transmiited to § from ul
alone? '

The answer might Eeasomablg ba zero, for reasons Ideniical to thoss given
in section 7.2, An observer of § can gain.no information about the vaiua of
al alone. In information theoretic terms we might say that he sguivocgtion
of B uith respec% to al ie 7 bits; any value of § observed sstisatas any
initial value of al uith 7 bits uorth of uncertainty. Since «i hea an
initial entropy of 7 bits (the values B to 127 cen initialiy occur umith anual
probability), the amount of information transmitted is 7 - 7 (inltial

- entropy - equivocation } or zero bits.

" Dne might instead measure the average number of Lbits tramemiitsd frowm ol
to B, averaging over all the possible ways in which each cbject hut =i ‘s
held constant. 1§ a2 is held constant, then the full variety of al 7 bits
wor-th} is transmitted to B by execution of b. The average numbar of bite
(averaged over the values of oZ) transmitted from al o 8 ie 7.

_ A quantitative model of information transmission might aieo include the
effect of constraint. Constraint reduces the variety In a system. ke might
write b(A-{®::H) ->8) to mean the number of bits of Inferaation
transmitted from A to B in a system constrained by ¥ over execution of H.
Increasing the constraint in a system reduces the variety avallable o be’

conveyed, We might expect an appropriate definition for b to be morotenic.

Pl € 92 >, bt A-{PlisHI ->B) s b{ A-{(P2::H} >0 }

although due to the effects of inference (section 7.2), this relationship
should perhaps only hold for A-autonomous constraints.

e ask the yuestion - is it desirable or useful, and if so, tien poesible
to define b '+ B0 that

Bl AL-{P1tH ->8) + bl A2-(9::H) ->8) = bl (ALUA2)-(P::H) >)

Neither of the alternatives suggested above satisfy this additive property.
We might argue that if Al transmits vl bits to f and A2 traensmits vZ hits to

Strong Dependency (7.4) - page 65

B, one might think that Al UA2 transmits vl + vZ bits te 8. If & is not
defined in a such a way as to satisfy this property, then the difference
between the left and right hand sides of the equation might be construed as
measuring the relative interference betueen Al and A2 in tranemitting
information to # over execution of H. .

We have implicitly assumed above that each state satisfying € occurs with
equal probability. HMore generally, the .actual number of bits transmitted

‘over some history must depend upon the distribution, pr, of the initial

states. In this sense, pr is a generatization of an initial constraint ¢.
We might wurite bl A-{pri:H) ->g) to mean the number of 2its of
information transmitted from A to B as a result of execution of H,

If prig) is the probability that ¢ is an initial state, then one can
define [Hipr so that {HIpr) (o) is the probability of state o occuring
after execution of H, One might expect a quanti'tative theory of information
to satisfy the following property corresponding roughly to Streng Dependency
Induction,

¢ bl A-{pr::HH)->8) = Kk then

There exists some set of objects M such that
bl A-{pr::H}-5M) > «
bt M-(IHlpr::HY->8) > «k

vhere b X-{pr::H)->Y) =def ZYb(K-(pritH) ->y 1}
ye

That is, if execution of HH transmits k bits of information from A ta 3,
there must be some set of objects M, so that execution of H transmits at
least k bits from A to M and subsequent execution of H' transmits at least k
bits from M to g, -

Strong Dependency (7.5) , _ : page_EG
————— Section 7.5 --- Declassification lconfnm:]

Throughout this paper, we have considered t'hoae"problams where we uant to
guarantes that information is not tronsmitted from one set of objects to
another set of objects. These problems do not ‘take .into consideration the
matter of declassification, {Bell & taPaduta 731 have extended their
%~property mechanism to permit trustworthy executors to transmit information
where. such transmi*ssion would not normally be permitted, Similarly, we need
to extend our notion of information - problem to formaily model
declassification by trustuor thy executors.

We are currentiy exploring a definition of the Confingment Problem that
does formally mode!l such declassification. We expect to shou that access
matrix sgstems of the form suggested in [Cohen & Jefferson 7581 can indeed be
used to solve just that problem, B

Strong Dependency (8) : : page &7
Chapter 8 - Conclusion (iconcl:)

This paper has introduced Strong Dependency, a formalism for describing
information transmission in computational systems. We shoued how the
formalism could be used to describe information problems and prove the
correctness of solutions to them.

The notation A wa means that 8 strongly depends on A. That is,
over execution of some history H, some change in the initial vaiues of the
objects in A may cause a corresponding change in the value of 8 variety in
A can bhe conveyed to B. UWe argued in this paper that A [D 8 corresponds
to the intuitive notion that information is transmitted from the set of
objects A to g.

He found that by imposing some initial constraint on the system, the
variety in an object could be reduced, .thereby preventing information
transmission, A Ib@ g, B strongly depends on A given @, corresponds to
the intuitive notion that information can be transmitted from A to G in a
system constrained by ¢ as long as ? is autonomous relative ic A, *hat i,
as long as 9 does not establish some caorrespondence betuzsn ths wvaluse of
objects in A and those not in A,

We define a solution to an information problem as an initial constrain: €
that will prevent certain specified information transmission. For example,
the problem of guaranteeing that no information can be transmitted from x to
B can be uritten as

X(®) = '«aﬂzpa

We say that ¢ soives X 1f @ prevents information transmission from « to

B.

As Strong Oependency is defined, it is npecessary to show that no
information can be transmitted from A to B over every possible history in
order to show that no information can be transmitted from A to 8.

We therefore introduced Strong Depéndencg Induction, an inductive
technique for proving correctness of salutions to information problems.

- Strong Debendéncg I.nd{uctlon is based on the principle that when information

is transmitted from o to 8 over execution of HH', there is some intermediate
object m, such that execution of H transmits mformatlon from o to m and
execution of H transmits information from n to B

We found that Strong Dependency lnductuon is ineffective if the Strong

-Dependencg relation Is not transitive. .We introduced another broof

technique, Separat'ion of Variety, that may be used in conjunction wuith
Strong Dependency Induction in case Strong Dependency. is non-transitive.

We discussed Strong Dependency {and Strong Delp‘endencg Induction) first
for constraints both autonomous (those constraining the variety in an object

‘independently of other objects) and invariant, extending the resuits to

relativety-autonomous and non-invariant constraints respectively.

Finally we noted that in a computational system modelling exscution of a
sequenttal 'program, the initial