
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-137

The Symbolic Manipulation of Computer Descriptions:

An Introduction to ISPS

Mario R. Barbacci

Department of Computer Science
Carnegie-Mellon University

16 August 1978

The development of ISPS is part of the research on the Symbolic Manipulation of C o m p u t e r

Descr ipt ions ef for t at C M U and is sponsored by the Defense Advanced Research P ro jec ts

A g e n c y under Grant F 4 4 6 2 (W 3 - C - 0 0 7 4 .

A n ear l ier v e r s i o n of this document appears as Appendix 1 in Bell, C.G., Mudge, J .C. ,

McNamara, J.E.: Computer Engineering; A DEC View qi Hardware Systems Design. Digital P ress

1978. C o p y r i g h t - C - 1978 Digital Equipment Corporat ion, Maynard, Mass., r e p r i n t e d b y

permiss ion .

I n t r o d u c t i o n to ISPS

Table of Contents

1 Int roduct ion
2 Inst ruct ion Set Processor Descriptions

2.1 Memory State
2.2 Processor 'State
2.3 Instruct ion Format.
2.4 Partit ioning the Description

3 Ef fect i ve Address
3.1 Address Computation
3.2 Indirect Addresses
3.3 Auto Indexing

4 Inst ruct ion Interpretat ion
4.1 Operat ion Code 0\and: Logical And
4.2 Operat ion Code l\tad: Two's Complement Add
4.3 Operat ion Code 2\isz: Increment and Skip if Zero
4.4 Operat ion Code 3\dca: Deposit and Clear Accumulator
4.5 Operat ion Code 4\jms; Jump to Subroutine
4.6 Operat ion Code 5\jrnp: Jump
4.7 Operat ion Code 6\iot: Input/Output
4.8 Operat ion Code 7\opr: Operate

5 Other Features of ISPS
5.1 Constants
5.2 Arithmetic Representation
5.3 Sign Extension
5.4 Data Operators (in order of precedence)

5.4.1 Negation and Complement: NOT
5.4.2 Concatenation: (n>
5.4.3 Shift and Rotate: SL0,SL1,SLD,SLR,SR0,SR1,SRD,SRR
5.4.4 Multiplication, Division, and Remainder: *, /, MOD
5.4.5 Addition and Subtraction: +, -
5.4.6 Relational Operations: EQL,NEQ,LSS,LEQ,GTR,GEQ,TST
5.4.7 Conjunction and Equivalence: AND, EQV
5.4.8 Disjunction and Non-equivalence: OR, XOR
5.4.9 Logical and Arithmetic Assignment: « , <*

I n t roduc t ion to ISPS 1

1 Introduction

This document introduces the reader to the ISPS* notation. Al though some details have

b e e n exc luded , it covers enough of the language to provide a "reading" capabi l i ty . Thu6

whi le this document in itself might not be sufficient to allow writ ing ISPS descr ip t ions , it

shou ld be detai led enough to permit the reading and study of complex descr ipt ions.

Not all the features of the notation are presented in the examples. For a detai led

exp lanat ion of the complete language the reader must consult the reference manual:

The ISPS Computer Description Language

Mario R. Barbacci
Gary E. Barnes

Roderic C. Cattell
Daniel P. Siewiorek

Departments of Computer Science
and Electrical Engineering

Carnegie-Mellon University
August 1977

T h e r e ex ists a compiler and a simulator for ISPS. These programs are w r i t t e n in B L I S S - 1 0

and run on a DEC PDP-10 Computer under either TOPS-10, T O P S - 2 0 , or TENEX. For

information about sof tware distribution contact:

Mario R. Barbacci
Department of Computer Science

Carnegie-Mellon University
Pittsburgh PA 15213

(412) 578-2578

or B A R B A C C I ^ C M U A on the ARPAnet.

2 Instruction Set Processor Descriptions

T o descr ibe the ISP of a computer, or any machine, we need to define the opera t ions ,

inst ruct ions , data t y p e s , and interpretation rules used in the machine. T h e s e wil l be

in t roduced gradual ly , as we describe the primary memory state, the processor state, and the

in te rp re ta t ion cyc le . Primary memory is not, in a strict sense, part of the Ins t ruct ion Set

l I S P S la the second implementation of the ISP notation introduced in Bell C.G. and A. Newel l , Computer S t r u c t u r e s :
Readings and Examples, McGraw-H i l l Book Company, New York, 1971

I n t r o d u c t i o n to ISPS 2

P r o c e s s o r but it p lays such an important role in its operation that it is typical ly included in

the desc r ip t ion . In general , data types (integers, floating point numbers, c h a r a c t e r s ,

a d d r e s s e s etc.) are abstractions of the contents of the machine registers and memories. One

data t y p e that requi res explicit treatment is the "instruction" and we shall e x p l o r e the

i n t e r p r e t a t i o n of instructions in great detail.

W e will use the PDP-8 ISPS description as a source of examples. In the presentat ion of

the P D P - 8 reg is ters and data types we will use the following conventions: 1) names in u p p e r

case c o r r e s p o n d to physical components on the PDP-8 (e.g., program counter , in ter rupt l ines,

e tc .) , 2) names in lower case do not have a correspondent physical components (e.g. ,

i n s t r u c t i o n mnemonics, instruction fields, etc).

2.1 Memory State

T h e descr ip t ion of the PDP-8 begins b y specifying the primary memory that is used to

s t o r e data and instruct ions:

n\Memory [3 : 4 0 9 5] < 0 : 1 1 > ,
*

T h e pr imary memory is declared as an array of 4096 words, each 12 bits wide . T h e

m e m o r y has a name "M", and an alias "Memory". These "aliases" are a special form of a

comment and are useful for indicating the meaning or usage of a register 's name. As in most

p rogramming languages, ISPS identifiers consist of letters and digits, beginning w i th a le t te r .

T h e character is also allowed, to increase the readability. The express ion [0 : 4 0 9 5]

d e s c r i b e s the s t ructure of the array. It declares the size (4096 words) and the names of the

w o r d s (0,1,..., 4094,4095).

T h e e x p r e s s i o n <0:11> describes the structure of each individual w o r d . It declares the s i ze

(12 b i ts) and the names of the bits (0,1,...,10,11).

It should be noted that bit and w o r d "names" are precisely that, i.e., ident i f iers
for the subcomponents of a memory structure. These "names" do not necessar i ly
indicate the relative position of the subcomponents. Thus, R<7:3> is a val id
def in i t ion of a 5 -b i t register . The fact that the five bits are "named" 7,6,5,4,3
should not be confused with the 7th, 6th, etc. positions inside the register . T h u s ,
bit 7 is the leftmost bit, bit 6 is located in the next position towards its r ight , etc. ,
whi le bit 3 is the rightmost bit.

M e m o r y is d iv ided into 128-word pages. Page zero is used for holding global v a r i a b l e s ,

and can be accessed directly b y each instruction. Locations 8 through 15 of page z e r o h a v e

I n t r o d u c t i o n to ISPS 3

the specia l p r o p e r t y , called auto- indexing, that when accessed indirect ly , the contents of the

locat ion is incremented by 1. These regions of memory can be descr ibed as part of M as

f o l l o w s :

P . 0 \ P a c j e . Z e r o [0 : 1 2 7] < 0 : l l > tt [0 : 1 2 7] < 0 : 1 1 > ,
A . I \ A u t o . I n d e x [0 : 7] < 0 : 1 1 > : = P. 0 [8 : 1 5] < 0 : 1 1 > ,

T h e w o r d (and bit) naming conventions on the left hand side of a field declarat ion are

independent f rom the word (bit) names used on the right hand side. A . I [0] co r responds to

P .0[8] , A . I [1] co r responds to P.0[9], etc.

2.2 Processor Stat©

T h e p r o c e s s o r state is defined by a collection of registers used to s tore data, inst ruct ions ,

cond i t ion codes , etc. during the instruction interpretation cycle.

T h e P D P - 8 has a 1-bit register L, which contains the over f low or c a r r y generated b y the

ar i thmetic operat ions , and a 12-bit register AC, which contains the result of the arithmetic

and logic operat ions . The concatenation of L and AC constitutes an ex tended accumulator

L A C . T h e s t ruc tu re of the extended accumulator is shown below:

L A C < 0 : 1 2 > ,
L N L i n k o : = LAC<0>,
A C X A c c u m u I a t o r < 0 : 1 1 > : » L A C < 1 : 1 2 > ,

T h e e x p r e s s i o n <> indicates a single, unnamed bit (L is only one bit long and there is no

n e e d to spec i f y a name for it.)

T h e p rogram counter is used to store the address of the current instruct ion be ing

e x e c u t e d as the machine steps through a program:

P C N P r o g r a m , C o u n t e r < 0 : 1 1 > ,

T w e l v e bits are needed in the PC to address all 4096 locations of MP.

In the P D P - 8 , I/O devices are allowed to " interrupt" the central processor . When a d e v i c e

r e q u i r e s s e r v i c e from the central processor, it emulates a subrout ine call, forc ing thg

p r o c e s s o r to execute an appropriate I/O subroutine. The presence of an inter rupt request is

indicated b y sett ing the INTERRUPT.REQUEST flag. The processor can honor these r e q u e s t s

o r not , depending on [he setting of the INTERRUPT.ENABLE bit:

file:///Auto

I n t r o d u c t i o n to ISPS 4

I N T E R R U P T . E N A B L E o •
I N T E R R U P T . R E Q U E S T o ,

T h e r e are 12 console switches which can be read by the processor . These switches are

t r e a t e d as a 12-b i t reg is ter by the central processor :

S U I T C H E S < 0 : 1 1 > ,

2.3 Instruction Format

As most data t y p e s and registers on the PDP-8, instructions are 12-bits long:

i \ i n s t r u c t i o n < 0 : 1 1 > ,

A n inst ruct ion is a special kind of data type. It is really an aggregate of smaller

informat ion units (Operat ion Codes, Address Modes, Operand Addresses, etc.). The s t r u c t u r e

of the inst ruct ions must be exposed by describing the format. Most PDP-8 instruct ions

conta in an o p e r a t i o n code and an operand address:

o p , ib, pb , and pa are abstractions that allow us to treat selected fields of the P D P - 8

inst ruct ions as individual entities.

2.4 Partitioning the Description

In ISPS, a descr ip t ion can be divided into sections of the form:

< d e c I a r a t i o n > ,
< d e c I a r a t i o n > ,

Each sect ion begins with a header, an identifier enclosed between ** and **. A sect ion

o p \ o p e r a t i o n . c o d e < 0 : 2 >
i b\ i n d i r e c t . b i t o .
p b \ p a g e . 0 . b i t o
p a \ p a g e . a d d r e s s < 0 ; G >

* i < 0 : 2 > ,
« i < 3 > ,
« i < 4 > ,
« i < 5 : l l > ,

Vnv s e c t i on . name fov
< d e c I a r a t i on>,
< d e c I a r a t i on>.

VnY sec t i o n . name VoV

I n t r o d u c t i o n to ISPS 5

cons is ts of a list of declarations separated by commas. Section names are not r e s e r v e d

k e y w o r d s in the language, they are used to convey to the users of the descr ipt ion some

informat ion about the entities declared inside the section. The register and memory

dec larat ions p r e s e n t e d so far could be grouped into the following sections:

>vvc M e m o r y . S t a t e VnV

MNflemory [0 : 4 0 9 5] < 0 : 1 1 > ,
P . 0 \ P a g e . Z e r o [0 : 1 2 7] < 0 : l l > : = h [0 : 1 2 7] < 0 : 1 1 > ,

A . I X A u t o . I n d e x [0 : 7] < 0 : l l > : = P . 0 [8 : 1 5] < 0 : 1 1 > ,

Vnv P r o c e s s o r • S t a t e vnv

L A C < 0 : 1 2 > ,
L A L i n k o : = LAC<0>,
A C X A c c u m u I a t o r < 0 : 1 1 > : « L A C < 1 : 1 2 > ,

P C X P r o g r a m . C o u n t e r < 0 : 1 1 > t * •
R U N o ,
I N T E R R U P T . E N A B L E o ,
I N T E R R U P T . R E Q U E S T o t

S U I I T C H E S < 0 : 1 1 > ,

I n t roduc t ion to ISPS 6

Vnv I n s t r u e t i o n . F o r m a t v«v

i\ i n s t r u c t i o n < 0 : l l o ,

o p \ o p e r a t i o n . c o d e < 0 : 2 > : • i < 0 : 2 > f

i b\ i n d i r e c t . b i t o : =* i<3> ,
p b \ p a g e . 0 . b i t o : = i < 4 > ,
p a \ p a g e . a d d r e s s < 0 : 6> : » i < 5 : l l > ,

I O . S E L E C T < 0 : 5 > : » i < 3 : 8 > , ! d e v i c e s e l e c t
i o . c o n t r o ! < 0 : 2 > : = i < 9 : l l > , ! d e v i c e o p e r a t i o n

1 0 . P U L S E . P l o : = i o . c o n t r o 1 < 0 > f

10. P U L S E . P 2 o : = i o . c o n t r o l < l > .
1 0 . P U L S E . P 4 o i o . c o n t r o 1 < 2 > t

s m a o ; s s i < S > , ! s k i p on minus AC
s p a o ; s s i < 5 > , ! s k i p on p o s i t i v e AC
s z a o : = i < G > . ! s k i p on z e r o AC
s n a o ; s i < 6 > . ! s k i p on AC n o t z e r o
sn 1 <> I s j < 7 > , ! s k i p on L n o t z e r o
s z I o : = i < 7 > . ! s k i p on L z e r o
i s o ; s i < 8 > . ! i n v e r t s k i p s e n s e
g r o u p o : = i < 3 > f ! m i c r o i n s t r u c t i o n g r o u p * ^
c 1 a o ; s s i < 4 > , ! c l e a r AC
c l l o : = i < S > , ! c l e a r L
c m a o ; s i <G> , ! complement AC
cm 1 o : s s « < 7 > f ! complement L
r a r o : s s i < 8 > , ! r o t a t e r i g h t
r a l<> as i < 9 > , ! r o t a t e l e f t
r t o = « < 1 0 > , ! r o t a t e t w i c e
i a c o s s i < l l > , ! i n c r e m e n t AC
o s r o s s i < 9 > , ! l o g i c a l o r AC w i t h S U I T C H E S
h i t o { s i < 1 0 > f ! h a l t t h e p r o c e s s o r

We have added a few more field declarations. These are used to interpret the 1/0 and

O p e r a t e instructions. The PDP-8 1/0 instruction uses the 9 bits of addressing informat ion to

s p e c i f y operat ions for the 1/0 devices. These 9 bits are divided into a "device s e l e c t o r " f ie ld

(6 bits , IO.SELECT<0:5>) and a "device operation" field (3 bits, io.control<0:2>). Note that

s e v e r a l alternate field declarations may be associated with the same port ion of a r e g i s t e r o r

data t y p e thus adding f lexibi l i ty to the description. A comment is indicated b y "!" and afl

charac te rs fol lowing "!" to the end of the line are treated as commentary and not as par t of

the descr ipt ion . The PDP-8 Operate instruction's address field is not i n t e r p r e t e d as an

address but as a list of sub -operat ions . The reader can refer to the DEC P D P - 8 p r o c e s s o r

manuals for additional details.

I n t r o d u c t i o n to ISPS 7'

3 Effective Address

T h e e f fec t i ve address computation is an algorithm which computes "addresses" of data and

i n s t r u c t i o n s :

Vov E f f e e t i v e . A d d r e s s VoV

I a s t . ' p c < 0 : 1 1 > ,

e a d d \ e f f e c t i v e . a d d r e s s < 0 : 1 1 > : «
B e g i n
D e c o d e pb

B e g i n
3 : = eadd 00080 @ p a , ! Page Z e r o
1 : = eadd * l a s t . p c < 0 : 4 > ® pa ! C u r r e n t P a g e
E n d N e x t

I f N o t i b => L e a v e eadd N e x t
I f e a d d < 0 : 8 > E q v #001 => n [eadd] « fl [eadd] + 1 N e x t ! A u t o I n d e x .
e a d d • fl [e a d d]
E n d ,

S ince the memory of the machine is 4096 words long, addresses have to be 12 bits long.

Of the 12 bits in an instruction, 3 bits have been allocated for the operat ion code (op) and

t h e r e are only 9 bits (ib, pb, , and pa) in the instruction register left for address ing

in format ion . These bits, together with some other portions of the processor state , are

i n t e r p r e t e d b y the algorithm to yield the necessary 12 bits of addressing needed.

4

3.1 Address Computation

Ins t ruc t ions and data tend to be accessed sequentially or within address c lusters . T h i s

p r o p e r t y is called "locality". The PDP-8 memory is logically divided into 32 pages of 128

w o r d s each. The concept of locality of memory references is used to reduce the address ing

in format ion b y assuming that data are usually in the same page as the instruct ions that

r e f e r e n c e them. The pa portion of an instruction is that "address within the cur rent page" .

T h e p b por t ion on an instruction is used as an escape mechanism to indicate w h e n pa is to be

u s e d as an address within page 0 (M[0:127]) instead of the current page.

last .pc contains the address of the current instruction and is used to compute the c u r r e n t

page number .

T h e f i rst step of the algorithm,

I n t r o d u c t i o n to ISPS 8

D e c o d e pb =>
. B e g i n

0 : = e a d d 00008 @ p a ,
1 : « eadd » l a s t . p c < 8 : 4 > © pa
E n d N e x t

indicates a g r o u p of alternative actions, to be selected according to the value of the

e x p r e s s i o n fol lowing the "Decode" operator. The alternatives appear enclosed b e t w e e n

" B e g i n " and " E n d " and separated by ",". The expressions "0 and "1 :=*" are used to label

the statements w i t h the corresponding value of pb. The alternative statements can be left

u n n u m b e r e d in which case they are treated as if they were labelled "0:=", "1:=*", "2:=",... etc .

T h e e f fec t i ve address (eadd) is built by concatenating a page number w i th the page

address (pa) . The "<fi>" operator is used to indicate concatenation of operands. If pb is equal

to 0, page 0 is used in the computation. If pb is equal to 1, the current page number is used

instead.

Constants p re f i xed with the character " , H represent binary numbers. '00000 r e p r e s e n t s a

5 - b i t s t r ing which is concatenated with the 7 bits of pa to yield the 12 bits needed.

T h e t ransfer operator , H = " , modifies the memory or register specif ied on its left
hand side. If the right hand side has more bits than the left hand side, the r ight
hand side is t runcated to the proper size by dropping the leftmost ex t ra bits. If
the r ight hand side is shorter , enough 0 bits are added on its left until the length
of the left hand side is matched. Thus, the first conditional statement can be

• w r i t t e n as "0 := eadd * pa".

T h e e x p r e s s i o n <0:4> is used to select bits 0,..,4 of last.pc. These 5 bits contain the

c u r r e n t page number, and, together with the 7 bits of pa, y ield the necessary 12 bits.

3.2 Indirect Addresses

A full 12 bit target address can be stored in a memory location used as a pointer and the

ins t ruct ion on l y needs to speci fy the address of this pointer location. Indirect addresses are

spec i f ied via a bit in the instruction register (ib) which indicates whether w e have a d i rect

(ib=0) or an indirect (i b = l) address.

T h e second step of the algorithm,

I f N o t i b => L e a v e eadd

I n t r o d u c t i o n to ISPS 9

is separa ted from the prev ious by the operator "Next". The statement(s) p reced ing Next

must be completed before the statement following it can be executed. The f i rst s t e p

c o m p u t e d a prel iminary effect ive address. The second step tests the value of ib and if it is '

equal to 0 then the prel iminary effective address is used as the real ef fect ive address . If ib*

is equal to 1, the prel iminary effective address is used to access a memory location w h i c h

conta ins the real effect ive address. In the former case, the expression "Leave e a d d " is u s e d

to indicate the termination of the procedure (this is similar to a RETURN statement in many

programming languages).

3.3 Auto Indexing

Constants p re f i xed with the character V represent octal numbers. #001 r e p r e s e n t s the

fo l lowing 9-bi t st r ing: '000000001. The procedure treats indirect addresses as specia l

cases . If a prel iminary effect ive address in the range #0010:#0017 (8:15) is used as an

ind i rect address (i b = l) , the memory location is first incremented and the new va lue u s e d as

the indi rect address:

I f e a d d < 0 : 8 > E q v #001 *> H f e a d d] » tt [eadd] + 1 N e x t
e a d d = M [e a d d]

B y comparing the high order bits of eadd with #001 and ignoring the lower 3 bits w e are

in fact spec i fy ing a range of addresses (#0010, #0011, #0012,... #0017). Memory locat ions

#0010:#0017 constitute the auto- indexing registers.

Regard less of whether auto- indexing took place or not, the last step of the algorithm uses

the pre l iminary effect ive address (which could have been modified by auto - index ing) as the

a d d r e s s of a memory location which contains the real effective address:

eadd=f l [e a d d]

4 Instruction Interpretation

T h e instruct ion interpretat ion section describes the instruction cycle i.e. the fe tch ing ,

decod ing , and executing of instructions.

I n t r o d u c t i o n to ISPS 10

VnV I n s t r u c t i o n . I n t e r p r e t a t i o n VoV

i n t e r p r e t : «
B e g i n
R e p e a t B e g i n

i = f l l P C l ; l a s t . p c » PC N e x t
PC = PC + 1 N e x t
e x e c u t e O N e x t
I f INTERRUPT .ENABLE And INTERRUPT.REQUEST =>

B e g i n
r i t e] « PC N e x t
PC « 1
E n d

E n d
E n d ,

T h e inst ruct ion cycle is descr ibed by a loop. The "Repeat" operator precedes a block of

s tatements that are to be continuously executed. The instruction cycle of the machine

cons i s t s of four s teps :

1. A new instruct ion is fetched (i = M[PC]) .

2. T h e program counter is incremented (PC « PC + 1). It now points to the next
inst ruct ion. Under normal circumstances (i.e. unless a Jump takes place) this wil l
be the instruct ion to be executed next.

3. T h e instruct ion is executed (executeO).

4. In te r rup t requests , if allowed are honored. The cycle is then repeated.

T h e ";" separator is used to indicate concurrency (i.e. two statements separated b y V are

e x e c u t e d concur rent l y) :

i = n CPC3; l a s t . p c * PC N e x t

Not ice how the value of the program counter is saved in last.pc before it is inc remented .

T h e e f fec t i ve address procedure relies on the fact that last.pc contains the address of the

c u r r e n t inst ruct ion.

T h e execute procedure describes the individual instructions:

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UWVFRSfTT

PITTSBURGH. PtftiKSVLVANIA 15213

I n t r o d u c t i o n to ISPS 11

op =>
B e g i n
#0\and AC = AC And M f e a d d O] ,
0 1 \ t a d : « LAC * LAC + I 1 [e a d d ()] f

2 \ i s z : B e g i n
n t e a d d] = fl [eadd 0 3 + 1 N e x t
I f .11 [eadd] E q l 0 => PC = PC + 1
E n d ,

3 \ d c a : « B e g i n
II [eadd 01 = AC N e x t
AC * 0
E n d ,

#4\jms : « • B e g i n
II [eadd 01 « PC N e x t
PC = eadd + 1
E n d ,

#5\jmp PC » e a d d O ,
G \ i o t : = i n p u t . o u t p u t 0 ,
tf7\opr : « o p e r a t e 0
E n d

E n d ,

I n s t r u c t i o n mnemonics can be indicated as aliases for the constants used to spec i f y the

o p e r a t i o n codes :

3 \ d c a : «

e x e c u t e : =
B e g i n
D e c o d e

4.1 Operat ion Code 0\and: Logical And

If the opera t ion code is equal to 0, the contents of the accumulator (excluding the L b i t)

are r e p l a c e d b y the logical product of the accumulator and a memory location. eadd() is used

to indicate that the effect ive address computation must be executed in order to obtain the

m e m o r y address .

4.2 Operat ion Code l\tad: Two's Complement Add

T h e tad instruct ion follows the pattern of the previous instruction. Notice h o w e v e r , that

the complete accumulator (including the L bit) is involved in the operat ion. L will contain the

o v e r f l o w or c a r r y out of the sign position of AC.

4.3 Operat ion Code 2\isz: Increment and Skip if Zero

I n t r o d u c t i o n to ISPS 12

Th is instruct ion is descr ibed in two consecutive steps, The first step indicates that some

memory location, speci f ied b y the effective address computation, will be incremented b y 1.

Notice the d i f ferent uses of eadd in the statement:

flteadd] = M t e a d d O] + 1

T h e e f fec t i ve ,address is computed once, eaddO, and is used to fetch the memory
location, M[eadd()] . The result of the addition must be stored back in the same
memory location. This is indicated by using the effective address reg is ter , eadd,
on the left hand side, M[eadd]. eadd already contained the correct address and
there was no need to recompute it. In fact, because of the auto - index ing
operat ions per fo rmed during the effective address computation, the e f fec t i ve
address must be computed precisely once.

T h e second step of the instruct ion,

I f nCeaddl E q i 0 => PC = PC + 1

tests the result of the addition. If the result is equal to 0 the program counter is

inc remented b y one, thus in effect, skipping over the next instruction in sequence. Once

again , eadd is used instead of eaddO to avoid undesirable s ide-effects .

4.4 Operat ion Code 3\dca: Deposit and Clear Accumulator

Th is instruct ion deposits the accumulator in a memory location and then c lears the

accumulator (excluding the L bit).

4.5 Operat ion Code 4\jms: Jump to Subroutine

Th is instruct ion alters the normal sequence of instructions by modifying the p r o g r a m

c o u n t e r so that the next instruction will not be the one following the current inst ruct ion , but

the one located at a memory location specified by the effective address. The p r o g r a m

c o u n t e r is s tored into the location preceding the subroutine code (the result of eaddO) . T h e

p r o g r a m counter is then modified to point to the first instruction of the subrout ine (eadd + 1).

4.6 Operat ion Code 5\jmp: Jump

Th is instruct ion also modifies the normal sequence of instructions. It can be used to jump

I n t r o d u c t i o n to ISPS 13

to d is jo int pieces of code. If we use i b « l and specify the address of the location p reced ing

the s u b r o u t i n e , the result of the effective address computation will y ield the r e t u r n address

that was s t o r e d b y the subroutine call.

4.7 Operat ion Code 6\iot: Input/Output

T h e input .output procedure describes two specific cases of I/O instruction, namely those

u s e d to contro l the interrupt mechanism:

i n p u t . o u t p u t : *
B e g i n
D e c o d e i < 3 : l l > *>

B e g i n
8 8 1 \ i o n : =

B e g i n ! t u r n I n t e r r u p t ON
INTERRUPT.ENABLE » 1 N e x t
R e s t a r t i n t e r p r e t
E n d ,

8 8 2 \ i o f : =
B e g i n ! t u r n I n t e r r u p t OFF
INTERRUPT.ENABLE « 8
E n d ,

O t h e r w i s e : = N o . O p O ! n o t i m p l e m e n t e d
E n d

E n d ,

" O t h e r w i s e " can be specif ied in a Decode operation to indicate a default action to be

e x e c u t e d if none of the explicit ly named cases (#001 or #002) apply.. 4 All o the r I/O

o p e r a t i o n s default to a predef ined ISPS procedure No.OpO, this is done simply to keep the

examples short .

I/O operat ion #002 disables interrupts. It typically occurs as the first instruction* of # an

i n t e r r u p t handling routine. I/O operation #001 enables interrupts. It typical ly occurs at the

e n d of an in ter rupt handling subroutine. Its effect is delayed for one instruction (the r e t u r n

f r o m the subrout ine) to avoid losing the return address if an interrupt w e r e to occur

immediately . This is achieved by skipping over the last port ion of the ins t ruc t ion

i n t e r p r e t a t i o n cyc le :

I f INTERRUPT .ENABLE And INTERRUPT.REQUEST =>

T h e "Restart in terpret " operat ion is used to indicate a return from the input .output

p r o c e d u r e , not to the place from were it was invoked (inside execute) but to the beginning of

the i n t e r p r e t p rocedure , thus bypassing the interrupt trapping for one instruction.

I n t r o d u c t i o n to ISPS

4.8 Operat ion Code 7\opr : Operate

T h e Opera te instruct ion encodes a large number of primitive "micro -operat ions" in the

a d d r e s s bits of an instruction. Some bits (e.g., cla) represent a m i c r o - o p e r a t i o n , b y

t h e m s e l v e s . Others (e.g., rt and ral) jointly represent a micro-operat ion. There are s e v e r a l

condi t ional skip micro -operat ions . These are grouped in a separate procedure for readabi l i t y :

s k i p o ,

s k i p . g r o u p : »
B e g i n
s k i p •
D e c o d e

8 N e x t
i s =>
B e g i n
8 : »

! i n v e r t s k i p c o n d i t i o n

B e g i n
I f s n l And (L E q l 1) « > s k i p - 1?
I f s z a And (AC E q l 8) « > s k i p = 1;
I f sma And (AC L s s 8) => s k i p « 1
E n d ,
B e g i n
I F s z l o s n a e s p a E q l 8 => s k i p • 1;
I f 321 And (L E q l 8) » > s k i p « 1;
I f sna And (AC Neq 8) => s k i p « 1;
I f spa And (AC Geq 8) « > s k i p - 1
E n d

I f s k i p
E n d ,

E n d N e x t
=> PC - PC + 1 S k i p

In t roduct ion to ISPS •15

o p e r a t e
B e g i n
D e c o d e g r o u p =

B e g i n
8 : =

E n d

B e g i n
f c l a

c i I
cma
cm I
i ac

Decode

E n d

=>
=>
=>
=>
=>
r t

AC = 8 ;
L = 8 N e x t
AC = Not AC;

! g r o u p 1

E n d ,
B e g i n
Decode

L -
LAC
=>

B e g i n
8

Not L N e x t
= LAC + 1 N e x t

! r o t a t e

End

End

o n c e o r t w i c e

B e g i n
I f r a l
I f r a r
E n d ,
B e g i n
I f r a l
I f r a r .
End

=> LAC -
*> LAC =

=> LAC
=> LAC

! o n c e
LAC S i r
LAC S r r

! t w i c e
LAC S i r
LAC S r r

1;
1

2 ;
2

i < l l > « >
Beg i n
8 : =

AC
RUN

B e g i n
s k i p . g r o u p O
I f c I a » > AC
I f o s r
I f h i t
E n d ,
B e g i n
I f c l a
N o . O p O
End

g r o u p s 2 a n d 3

! g r o u p 2
N e x t
* 8 N e x t
- AC O r S W I T C H E S ;

8

! g r o u p
=> AC = 8 N e x t

! eae g r o u p

E n d

Severa l micro -operat ions can appear in the same instruction, however , not all combinat ions

are legal or useful . Micro -operat ions are executed at different points in time thus a l lowing

sequences of transformations applied to the accumulator and/or link bit. For instance, in the

g r o u p 1 micro -operat ions , clearing AC/L is done before complementing them, this is done

b e f o r e incrementing the combined LfaAC (LAC) register, and this in turn precedes the ro ta t ion

of L(o>AC.

I n t roduc t ion to ISPS 16

5 Other Features of ISPS

Not all the features of the notation have been presented in the examples. This sect ion wil l

attempt to p r o v i d e a list of the missing operations to help the readers fol low l a r g e r

desc r ip t ions .

5.1 Constants

In genera l a constant is a sequence of characters drawn from some alphabet determined b y

the base of the constant. The base of a non-decimal constant is given by a pref ix charac te r .

T h e alphabets for the predefined bases in ISPS are:

B a s e P r e f i x A l p h a b e t

2 ' 8 , 1 , ?
8 n 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , ?
10 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , ?
16 " 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F , ?

T h e character can be used to specify a don't care digits. Its presence stands for a n y .

d ig i t in the cor responding alphabet.

T h e length of a constant is measured in bits. Decimal constants are one bit longer than the

smallest number of bits needed to represent its value (beware that the use of don't care ("?")

decimal digits results in constants of unspecified length). Binary constants have one bit fo r

e a c h digit expl ic i t ly wr i t ten . Octal constants have three bits for each digit expl ic i t ly w r i t t e n .

Hexadecimal constants have four bits for each digit explicitly wr i t ten :

E x a m p l e L e n g t h B i t P a t t e r n

"1888 16 8081888888888888
15 5 81111
#17 6 881111
8 2 88
'87181 5 87181
#72 6 777818

5.2 Arithmetic Representation

I n t roduc t ion to ISPS 17

ISPS allows the user to specify arithmetic operations in four different representa t ions :

T w o ' s Complement , One's Complement, Sign Magnitude, and Unsigned Magnitude (the default is

T w o ' s Complement.) To specify a different representation, the following modifiers can be

u s e d :

M o d i f i e r A r i t h m e t i c R e p r e s e n t a t i o n

1TCJ T w o ' s Complement
IOC) O n e ' s Complement
(SMI S i g n M a g n i t u d e
IUS I U n s i g n e d M a g n i t u d e

In all the s igned representat ions, the sign bit is the leftmost position of the operand (1 for

negat i ve numbers , 0 for positive numbers). The above modifiers can be attached to any

ar i thmetic or relat ional operator to overr ide a default. T h e y can also be attached to a

p r o c e d u r e dec larat ion to set a default throughout the body. When attached to a sect ion name

the default appl ies to all the declarations in the section:

t e s t : »
B e g i n I0CJ ! O e f a u l t f o r t h e b o d y

E n d ,

vov S e c t i o n . 1 vov ITC1 ! O e f a u l t f o r t h e s e c t i o n

X = Y + ISM) Z ! I n s t a n c e

A l w a y s remember that the arithmetic representation is a p roper ty of the opera to r , not the

o p e r a n d . T h u s , the same bit pattern can be treated as a Two's complement or a n ' U n s i g n e d

in teger depending on the arithmetic context in which it is used.

5.3 Sign Extension

All ISPS data o p e r a t o r s define results whose length is determined b y both the lengths of

the operands and the specific operator. Some operations require that their operands be of

the same length. This is usually accomplished by "sign-extending" the operands . In the

contex t of Uns igned Magnitude arithmetic, "s ign-extension" is interpreted as z e r o - e x t e n s i o n

(i .e. padding w i th Os on the left). In One's and Two's Complement arithmetic the expans ion is

I n t r o d u c t i o n to ISPS 18

d o n e b y repl icat ion of the sign bit. In Sign Magnitude arithmetic the expansion is done b y

inser t ing Os be tween the sign bit and the most significant bit of the operand.

5.4 Data Operators (in order of precedence)

5.4.1 Negation and Complement: NOT

U n a r y - generates the arithmetic complement of the operand (the operat ion is inval id in

U n s i g n e d arithmetic.) The result is one bit longer than the operand. The NOT o p e r a t o r

g e n e r a t e s the logical complement of the operand. The result has. the same length as the

operand.

5.4.2 Concatenation: ©

T h e in) ope ra to r concatenates the two operands. The length of the result is the sum of the

lengths of the operands.

5.4.3 Shift and Rotate: SL0,SL1 .SLDjSLR.SRO.SRl.SRD.SRR

T h e s e opera to rs shift or rotate the left operand the number of places spec i f ied b y the

r ight o p e r a n d . The result has the same length as the left operand. The opera to rs have the

format " S x y " w h e r e V is either L(eft) or R(ight) to indicate the direction of movement, " y " is

e i the r 0, 1, D(uplicate), or R(otate) to indicate the source of bits to be shifted in. S x l shi f ts

its left o p e r a n d insert ing I s in the vacant positions. SxO is similar to S x l but inser t ing Os.

S x D inserts copies of the bit leaving the position to be vacated (not the bit being sh i f ted out) .

SxR inserts copies of the bit being shifted out (i.e. rotates the left operand).

5.4.4 Multiplication, Division, and Remainder: *, /, MOD

T h e s e o p e r a t o r s compute the arithmetic product, quotient, and remainder of the t w o

o p e r a n d s , respect i ve l y . The lengths of the results are:

O p e r a t i o n L e n g t h o f R e s u l t

Sum o f l e n g t h s
L e f t O p e r a n d (d i v i d e n d)
R i g h t O p e r a n d (d i v i s o r)

5.4.5 Addit ion and Subtraction: -

T h e + and - o p e r a t o r s compute the arithmetic sum and difference of the t w o o p e r a n d s ,

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

/
n o D

I n t r o d u c t i o n to ISPS 1 9

5.4.6 Relational Operations: EQL f NEQ l LSS l LEQ l GTR l GEQ,TST

T h e s e operat ions perform an arithmetic comparison between the two operands . T h e

s h o r t e s t o p e r a n d is s ign -extended and the result is either 1 or 2 bits long. The f i rst s i*

o p e r a t o r s (i.e. all except T S T) produce a 1-bit result indicating whether the relat ion is T r u e

(1) or False (0). The T S T operator produces a 2-bit result indicating whether the re lat ion

b e t w e e n the left and eight operands is LSS (0), EQL (1), or GTR (2).

5.4.7 Conjunction and Equivalence: AND, EQV

T h e s e o p e r a t o r s produce the logical product and coincidence operat ions of the t w o

o p e r a n d s . The shortest operand is zero -ex tended and the result is as long as the largest

o p e r a n d . #

5.4.8 Disjunction and Non-equivalence: OR, XOR

T h e s e o p e r a t o r s produce the logical sum and difference operations of the two operands .

T h e shor tes t operand is ze ro -ex tended and the result is as long as the largest operand .

5.4.9 Logical and Arithmetic Assignment: =, <=

T h e logical assignment operator , truncates or zero -ex tends the source (r ight o p e r a n d)

to match the length of the destination (left operand). The arithmetic assignment o p e r a t o r ,

"<=" , t runcates or s ign -extends the source to match the length of the destination.

r e s p e c t i v e l y . T h e shortest operand is s ign-extended and the result is one bit longer than the

la rgest o p e r a n d .

