NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-137

The Symbolic Manipulation of Computer Descriptions:

An Introduction to ISPS

Mario R. Barbacci

Department of Computer Science
Carnegie-Mellon University

16 August 1978

The development of ISPS is part of the research on the Symbolic Manipulation of Computer
Descriptions effori at CMU and is sponsored by the Defense Advanced Research Projects
Agency under Grant F44620-73-C-0074.

. An earlier version of this document appears as Appendix 1 in Bell, C.G.,, Mudge, J.C,
McNamara, JE: Computer Engineering: A DEC View of Hardware Systems Design. Digital Press

1978. Copyright -C- 1978 ODigital Equipment Corparation, Maynard, Mass., reprinted by

permission. o
o~ .] e

- MR A ™,

Tt e g JRITYON

wa oy

s

Introduction to ISPS

Table of Contents

1 Introduction
2 Instruclion Set Processor Descriplions
2.1 Memory Stale
2.2 Processor'State
2.3 Instruclion Format,
2.9 Partitioning the Description
3 Effeclive Address
3.1 Address Computation
3.2 Indirect Addresses
3.3 Auto Indexing
4 Instruction Interpretation
4.1 Operation Code O\and: Logical And
4.2 Operation Code l\tad: Two's Complement Add
4.3 Operation Code 2\isz: increment and Skip if Zero
4.4 Operation Code 3\dca: Deposit and Clear Accumulator
4.5 Operation Code 4\jms: Jump to Subraoutine
4.6 Operation Code B\jmp: Jump
4.7 Operation Code 6\iot: Input /Output
4.8 Operation Code 7\opr: Operate
5 Other Features of ISPS
5.1 Constants
5.2 Arithmetic Representation
8.3 Sign Extension
8.4 Data Operators (in order of precedence)
5.4.1 Negalion and Complement: -, NOT
5.4.2 Concatenation: @
5.4.3 Shift and Rotate: SLO,SL1,SLD,SLR,SR0,SR1,SRD,SRR
5.4.4 Multiplication, Division, and Remainder: %, /, MOD
B.4.5 Addition and Subtraction: +, -
5.4.6 Relational Operations: EQL,NEQ,LSS,LEQ,GTR,GEQ,TST
5.4.7 Conjunction and Equivalence: AND, EQV
5.4.8 Disjunction and Non-equivalence: OR, XOR
5.4.9 Logical and Arithmetic Assignment: =, <=

Introduction o ISPS * ‘ 1

1 ;ntroduction

This document introduces the reader to the 15PS! notation. Although some details have
been excluded, it covers enough of the ladguage to provide a "reading” capability., Thus
while this document in ilself might not be sufficient to aliow writing ISPS descriplions, it

should be detailed enough to permit the reading and study of complex descriptions.

Not all the features of the nolation are presented in the examples. For a detailed
expianation of the complete language {he reader must consult the reference manual:

Tha ISPS Computer Descriplion Language

Mario R. Barbacci
Gary E. Barnes
Roderic C. Cattell
Daniel P. Siewiorek

Departments of Computer Science
and Electrical Engineering
Carnegie-Mellon University
Avgust 1977

There exists a compiler and a simulator for ISPS. These programs are written in BLISS5-10
and run on a DEC POP-10 Computer under either TOPS-10, TOPS-20, or TENEX. For
information about software distribution contact: '

Mario R. Barbacci
Department of Computer Science
Carnegie-Mellon University
Pittsburgh PA 15213
(412) 578-2578

or BARBACCIRCMUA on the ARPAnet.

2 Instruction Set Processor Descriplions

To describe the ISP of a computer, or any machine, we need to define the operations,
instructions, data types, and interpretation rules used in the machine. These will be
introduced gradually, as we describe the primary memory state, the processar state, and the

interpretation ¢ycle. Primary memory is not, in a strict sense, part of the Instruction Set

l15pS is the second impleamentation of lhe ISP notation intreduced in fall CG. and A Newell, Compuler Structures:
Readings and Examples, McGraw-Hili Book Company, New York, 1871

Introduction to ISPS 2

Processor but it plays such an important role in its operation that it is typically included in
the description. In general, data types (integers, floating point numbers, chafacters,
addresses elc.) are abslractions of the contenls of the machine registers and memories. One
data type that requires explicit treaiment is the "instruction® and we shali explore the

interpretation of instruclions in great detail,

We will use the PDP-8 ISPS description as a source of examples. In the presentation of
the PDP-8 registers and data types we will use the following conventions: 1) names in upper
case correépond to physical components on the PDP-8 (e.g., program counter, interr:{th lines,
efc.), 2) names in lower case do not have a correspondent physical components {(e.g.,
instruclion mnemonics, instruction fields, ete). -

2.1 Memary State

The description of the PDP-8 begins by specifying the primary memory that is used to
store data and instructions:

M\Memory [B:4895] <@:11>, .

The primary memory is declared as an array of 4096 words, each 12 bits wide. The
memory has a name "M, and an alias "Memory”. These "sliases” are a special form of a
comment and are useful for indicating the meaning or usage of a register’s name. As in most
programming languages, iSPS identifiers consist of ietters and digits, beginning with a letter.
"" is also allowed, to increase the readability. The expression [0:4095]
describes the siructure of the array. It declares the size (4096 words) and the names of the
words (0,1,..., 4094,4095).

The character

The expression <0:11> describes the structure of each individual word. It declares the size
(12 bits) and the names of the bits (0,1,..,10,1 1).

It should be noled that bit and word "names" are precisely that, i.e., identifiers
for the subcomponents of a memory structure. These "names” do not necessarily
indicate the relative position of the subcomponents. Thus, R<7:3> is & wvalid
definition of a 5-bit register. The fact that the five bils are "named" 7,6,5,4,3
should not be confused with the 7ih, 6th, elc. positions inside the register. Thus,
bit 7 is the lefimost bit, bit 6 is located in the next position towards its right, etc,,
while bit 3 is the rightmost bit.

Memory is divided info 128-word pages. Page zero is used for holding giobal variables,
and can be accessed directly by each instruction. Locations 8 through 15 of page zero have

Introduction to ISPS 3

the special property, called auto-indexing, that when accessed indirectly, the contents of the
location is incremented by 1. These regions of memory can be described as part of M as

follows:

P.B\Page.Zero(8:127]1<B: 11> ie M[B:127]1<8:11>,
A.INAuto. index[B:71<B:11> 1= P.B[8:15]1<B:11>,

The word (and bit) naming convenlions on the left hand side of a field declaration aré
independent from the word (bit) names used on ihe right hand side. A.I[0] corresponds to
P.O[8), A.I[1] corresponds to P.0[9], etc. '

2.2 Processor Slate

The processor stale is defined by a collection of registers used to store data, instructions,

condition codes, ete. during the instruction interpretation cycle.

The PDP-8 has a l-bit register L, which centains the overflow or carry generated by the
arithmetic operations, and a_12-bit regisler AC, which contains the result of the arithmetic
and logic operations. The concatenation of L and AC constitutes an extended accumulator
LAC. The structure of the extended accumulalor is shown below:

LAC<8:12>,
LALink<> 1= LAC<8>,
AC\Accumulator<B:1is> 1= LAC<1:12>,

The expression <> indicates a single, unnamed bit (L is only one bit tong and there is no

need to specify a name for it.)

The program counter is used to store the address of the current instruction being

executed as the machine steps through a program:

PC\Program,.Counter<@:11>,

Twelve bits are needed in the PC to address ail 4096 locations of MP.

In the PDP-8, 1/O devices are allowed to "interrupt” the central processor. When a device
requires service from the central processor, it emulates a subroutine cali, forcing the
processor to execute an appropriate 1/0 subroutine. The presence of an interrupt request is
indicated by setting the INTERRUPT.REQUEST ﬂ-ag. The processor can honor these requests
or not, depending on the setling of the INTERRUPT.ENABLE bif: '

file:///Auto

Introduction to 1SPS ' 4

INTERRUPT.ENABLE <>,
INTERRUPT.REQUEST <>,

There are 12 console switches which can be read by the processor. These switches are

treated as a 12-bit register by the central processor:

SWITCHES<B: 11>,

2.3 Instruction Format

As most data types and regislers on the PDP-8, instructions are 12-bits long:

iNinstruction<B:11l>,

An instruction is a -special kind of data type. It is really an aggregate of smaller
information units (Operation Codes, Address Modes, Operand Addresses, etc.). The structure
of the inslructions must be exposed by describing‘ the format. Most PDP-8 instructions
contain an operation code and an aperand address:

op\operation.code<B:2> 1= i<B:25,
ib\indirect.bite<> . = i<3s,
pb\page.B.bit<> 1a <>,
pal\page. address<d: 5> t= j<Bills,

op, ib, pb, and pa are abstractions that aliow us to treat selected fields of the PDP-8
instructions as individual entities,

2.4 Parlitioning the Description

In ISPS, a description can be divided into sections of the form:

veve section.name s
<declarations,
<deciaration>,

sve section.name s
<declarations,
<declarations,

L] (3 a = .

Each section begins with a header, an identifier enclosed between *+ and *x. A section

Introduction to ISPS B 5

consisis of a list of declarations separated by commas. Seclion names are not reserved
keywords in the language, they are used to convey to the users of the description some
information about the enlilies deciared inside the section. The register and memory °

declarations presented so far could be grouped into the following sections:

Yeve Memorg. State vt

M\Memory [B:4835] <B: 11>,
P.B\Page.Zero(B:127]1<B:11> 1= M(B:127)<B:1l>, .
Ay IMNAuto. Index[B:71<B:11> 1= P.B{8:15]<B:11>,

wye Processor.State ww

LAC<@:12>,
LML ink<> 1= LAC<@>,
AC\Accumulator<B:11> 1= LAC<1:12>,
PC\Program.Counter<8:11>, ' .
RUN<»,
INTERRUPT.ENABLE<>,
INTERRUPT.REQUEST <>,
SWITCHES<B: 11>,

introduction to ISPS

Yeve ITnstruction.Format v

iNinstruction<B:lls,

op\operation.code<B:2> 1= i<B:2>,
ib\indirect.bit<> = i<3>,
phZzpage.B.bit<> t= i<hs,
pa\page. address<@:5> i= i<5:ll>,

I0.SELECT<8:5> 1= 1<3:8>, ! device select
io.controi<@:2> = i<S:11s, | device operation
I0.PULSE.Pl<> 1= j0.control<Bs,
10.PULSE.P2<> = jio.contralels>,
J0.PULSE, P4 <> tw io.control<2>,

sma<y> i <S>, ! skip on minus AC

spa<> i <G>, | skip on positive AC

sza<> 1= i, | skip on zera AC

sna<> 1= i, I skip on AC not zero

snl<> t= i<7>, ! skip on L not zero

8zl<> = i<7>, | skip on L zero

ise<> = {<8>, | invert skip sense

group<> := i<3>, ! microinstruction group -
cla<> = i, | ¢lear AC

cli<> e j<G>, I clear L

cha<> = j, I complement AC

cmi<> = 1<7>, ! complement L

rar<s t= 1<8>, ! rotate right

ral<> 1= i<9>, | rotate left

rte> t= i<lB>, | rotate twice

iac<> 1= j<lls, I increment AC

osr<>» 1= i<, ! togicat or AC with SWITCHES
hit<> 1= 1<18>, ! halt the processor

L 3

We have added a few more field declarations.

These are used to interpret the /O and

Operate instructions. The PDP-8 1/0 instruction uses the 9 bits of addressing information to
specify operafions for the {/O devices. These 9 bits are divided into a "device selector" fieid
(6 bits, I0.SELECT<0:5>) and a "device operation" field (3 bits, io.controi<Q:2>). Note that
several alternate field declarations may be a'ssociated with the same portion of a register or
data type thus adding flexibility to the description. A comment is indicated by ™" and all
to the end of the line are treated as commentary and not as part of
The PDP-8 Operate inslruction’s address fieid is not interpreted as an

address but as a list of sub-operations. The reader can refer to the DEC PDP-8 processor
manuais for additional details. ‘

characters foliowing

the description.

Infroduction to 1SPS 70

3 Effective Address

The effective address computation is an algorithm which computes "addresses” of data and

instructions:
wve Effective.Address vor
last.pc<B:1l>,

eadd\effective.address<B:1l> :=

Begin
Decode pb =>
Begin
8 1= eadd ='828B88 e pa, | Page Zero
1 1= eadd = last.pc<B:4> @ pa ! Current Page
End Next

[f Not ib => Leave eadd Next

| eadd<B:8> Eqv #0881 => Mleadd] = Mleadd] + 1 Next ! Auto Index.
eadd = [leadd]

End,

Since the memory of the machine is 4096 words lang, addresses have to be 12 bits long.
Of the 12 bits in an inslruction, 3 bits have been allocated for the operation code {op) and
there are only 9 bils {ib, pb, and pa) in the instruction register left for addressing
information. These bits, together with some other portions of the processor state, are
interpreled by the algorithm to yield the necessary 12 bits of addressing needed.

3.1 Address Computation

Instructions and data tend to be accessed sequentiélly or within address clusters. This
property is calied "ocality”. The PDP-8 memory is logically divided into 32 pages of 128
words each. The concept of locaiity of memory references is used to reduce the addressing
information by assuming that data are usually in the same page as the instructions that
reference them. The pa portion of an instruction is that "address within the current page"”.
The pb portion on an instruction is used as an escape mechanism to indicate when pa is to be

used as an address within page 0 (M[0:127]) instead of the current page.

last.pc contains the address of the current instruction and is used to compute the current

page number,

The first step of the aigorithm,

introduciion to I1SPS . 8

Decode pb e»>
. Begin
B := eadd ='808888 e pa,
1 := eadd = last.pc<B:4> @ pa
End Next .

indicatles a group of aiternative actions, to be selected according to the value of the
expression following the "Decode” operator. The allernalives appear enclosed between

"Begin™ and "End” and separaled by ",". The expressions "0 :=" and "] :=" are used to iabel
the statements with the corresponding vaiue of pb. The allernative statlements can be left

unnumbered in which case they are treated as if they were labelled "0:=", "1:=", "2:=",.._ etc.

The effective address (eadd) is built by concatenaling a page number with the page
address (pa). The "®" operalor is used to indicate concatenation of operands. If pb is equal
to 0, page O is used in the computation. if pb is equal to 1, the current page number is used
instead. '

*" represent binary numbers. ‘00000 represents a
5-bit string which is concalenated with the 7 bils of pa to yield the 12 bils needed.

Constants prefixed with the characler

The transfer operator, "=", modifies the memory or register specified on its ieft
hand side. If the right hand side has more bits than the left hand side, the right
hand side is truncaled to the proper size by dropping the leftmost extra bits. If
the right hand side is shorler, enough O bits are added on its left until the length
of the left hand side is malched. Thus, the first conditional statement can be -

* wrilten as "0 := eadd = pa”.

The expression <0:4> is used to select bils 0,.,4 of last.pc. These S bits contain the
current page number, and, together with the 7 bits of pa, yield the necessary 12 bits.

3.2 Indirect Addresses

A full 12 bit targel address can be stored in a memory location used as a pointer and the
instruction only needs to specify the address of this painter location. Indirect addresses are

specified via a bit in the insiruction regisler (ib) which indicates whether we have a direct
(ib=0) or an indirect (ib=1) address.

The second step of the aigorithm,

If Not ib => Leave eadd

Introduction to [SPS 9

is separated from the previous by the cperator "Next". The statement(s) preceding Next
must be compleled before the stalement following it can be executed. The first step
computed a preliminary effective address. The second step lests the value of ib and if it is *
equal to O then the preliminary effective address is used as the real effective address. If ib
is equal to 1, the preliminary effective address is used to access a memory location which
contains the real effective address. In the former case, thé expression "Leave eadd” is used
to indicate the fermination of the procedure (this is similar to a RETURN statement in many

programming languages).

3.3 Aulo Indexing

Constants prefixed with the character "#" represent octal numbers. 00l represents the
following 9-bit string: ‘000000001. The procedure treats indirect addresses as special
cases. lf a preliminary effective address in the range #0010:40017 (8:15.) is userd‘ as an
indirect address (ib=1), 1he memory location is first incremented and the new value used as

the indirect address:

[f eadd<B:8> Eqv #8B1 => Mleadd] = Mleadd] + 1 Next .
eadd = Mleadd] '

By comparing the high order bits of eadd with #4001 and ignoring the lower 3 bils we are
in fact specifying a range of addresses (#0010, #0011, #0012,.. 40017). Memory locations
#0010:#0017 constitute the auto-indexing registers.

Regardless of whether auto-indexing ook place or not, the last step of the algorithm uses
the preliminary effective address {which could have been madified by auto-indexing) as the
address of a memory location which contains the real effective address:

eadd=M [eadd]

4 Instruction Interpretation

The instruction interpretation section describes the instruction cycle i.e. the fetching,

decoding, and executing of instructions.

Introduction to 15PS 10

seve Instruction.interpretation v

interpret :=
Begin
Repeat Begin

i = MIPCl; last.pc = PC Next
PC = PC + 1 Next

execute () Next

I f INTERRUPT.ENABLE And [NTERRUPT.REQUEST =»>
Begin
Mi{B] = PC Next
PC = 1
End
End
End,

The instruction cycle is described by a loop. The "Repeat” operator precedes a block of

statements that are to be cdntinuously executed, The instruction cycle of the machine
consists of four sleps:

1. A new instruction is felched (i = M[PC]).

2. The program counter is incremented (PC = PC + 1). It now points to the next
instruction. Under normal circumstances (i.e. unless a Jump takes place) this will
be the instruction to be executed next.

3. The instruction is executed (execute()).

4. Interrupt requests, if allowed are honored. The cycle is then repeated.

The *" separalor is used 1o indicate concurrency (i.e. two statements separated by ;" are
executed concurrently):

i = MIPC); last.pc = PC Next

Notice how the value of the program counter is saved in last.pc before it is incremented.

The effective address procedure relies on the fact that iast.pc conlains the address of the
current instruction,

The execute procedure describes the individuai instructions:

UNIVERSITY LIBRARIES
CvA._RNE_G'!E-MEUON I'NyrRsTY
. PITiSBURGA, FENNITLVAMIA 15212

Introduction to ISPS 11

execute =

Begin
Decode op =>
Begin :
Ho\and := AC = AC And Mieadd(}],
Hl\tad : = LAC = LAC + Mleadd()]),
H2\isz 1= Begin :
Mieadd] = Mleadd(}] + 1 Next
[f Mleadd] Eql 8 => PC = PC + 1
End,
#3\deca = Begin
: Mleadd()] = AC Next
AC = @
End,
H#4\jms 1= - Begin
. Mleadd()] = PC Next
PC = eadd + 1
End,
H#S\ jmp = PC = eadd!},
#B\iot := input.output (),
#7\opr = operate ()
End
End,

Instruction mnemonics can be indicated as aiiases for the constants used to specify the

operation codes:

#3\dca 1= ...

4.1 Operation Code O\and: Logical And

If the operalion code is equal to 0, the contents of the accumulator {excluding the L bit)
are replaced by the logical product of the accumulator and 3 memory location. eadd() is used
to indicate that the effective address computation must be executed in order to obtain the

memory address.

4.2 Operation Code 1\lad: Two’s Complement Add

The tad insiruclion follows the pattern of the previous instruction. Notice however, that
the complete accumulator (including the L bit) is involved in the operation. L will contain the

overflow or carry out of the sign position of AC.

4.3 Operation Code 2\isz: Incremeni and Skip if Zero

Introduction to 1SPS .- 12

This instruction is described in two consecutive steps, The first step indicates that some
memory localion, specified by the effective address computation, will be incremented by 1.

Notice the different uses of eadd in the statement:

Mleadd) = Mleadd(}] + 1

The effective address is computed once, eadd(), and is used to fetch the memory
location, Mleadd()]. The resull of the addition must be siored back in the same
memory location. This is indicated by using the effective address register, eadd,
on the left hand side, Mleadd] eadd already contained the correct address and
there was no need o recompute it. In fact, because of the auto-indexing
operations performed during the effective address computalion, the effective
address must be computed precisely once.

The second step of the instruction,

If Mleadd] Egi 8 => PC = PC + 1

tests the result of the addition. If the result is equal to Q the program counter is’
incremented by one, thus in effecl, skipping over the next instruction in sequence. Once

again, eadd is used instead of eadd() to avoid undesirable side-effects.

4.4 Qperation Code 3\dca: Deposit and Clear Accumulator

This instruction deposils the accumulator in a memory location and then clears the

accumulator (exciuding the L bit),

4.5 QOperation Code 4\jms: Jump {o Subroutine

This instruction alters the normal sequence of instructions by modifying the program
counter so that the next instruction will not be the one following the current instruction, but
the one located at a memory location specified by the effective address. The program
counter is stored into the localion preceding the subroutine code (the result of eadd()). The
program counter is then modified to point 1o the first instruction of the subroutine (eadd + 1).

4.6 Operation Code 5\jmp: Jump

This insfruction aiso modifies the normal sequence of instructions. It can be used to jump

Introduction to 1SPS 13

to disjoint pieces of code. If we use ib=1 and specify the address of the location preceding
the subroutine, the resuit of the effective address computation will yield the return address
that was stored by the subroutine call.

4.7 Operalion Code 6\iot: Input/Qutput

The input.output procedure describes two specific cases of 1/Q instruction, namety those
used to control the interrupt mechanism:

input.output :=

Begin
Decode i<3:1ll> =>
Begin
#881\ion :=
Begin | turn Interrupt ON
INTERRUPT.ENABLE = 1 Next
Restart interpret
End,
HBBZ2\iof 1=
Begin [turn Interrupt OFF
INTERRUPT.ENABLE = 3
End, T
Otheruise t= No.Op{) ! not implemented
End
End,

"Otherwise” can be specified in a Decode operation to indicate a default action to be .
executed if none of the explicitly named cases (2001 or #002) apply.: Ali other 1/0
operations default to a predefined ISPS procedure No.Op(), this is done simply to keep the

examples short.

/O operalion #002 disables interrupts. It typically occurs as the first instruction’ of jan
interrupt handling routine. 1/0 operation 8001 enables interrupts. It typically occurs at the
end of an interrupt handling subroutine. lIts effect is delayed for one instruction (the return
from the subroutine) lo avoid iosing the return address if an interrupt were to occur
immediately. This is achieved by skipping over the last portion of the instruction

interpretation cycle:

1 f INTERRUPT.ENABLE And INTERRUPT.REQUEST =>

The "Restart interpret” operation is used io indicale a return from the input.autput
procedure, not to the place from were it was invoked {inside execute) but to the beginning of

the interpret procedure, thus bypassing the interrupt trapping for one instruction.

Introduction to 1SPS 14

4.8 Operation Code 7\opr: Operale

The Operale instruction encodes a large number of primitive "micro-operations” in the
address bits of an instruction. Some bits (eg, cla) represent a micro-operation: by
themselves. Others (e.g., rl and ral) jointly represent a micro-operation. There are several

conditional skip micro—Opgrations. These are grouped in a separate procedure for readability:
skipe>,

skip.group :=
Begin
skip = B Next
Decode is => !
Begin
B:= Begin
[f snl And (L Eql 1} => skip = 1}
1f sza And (AC Eql B) => skip = 1:
[f sma And (AC Lss 8) => skip = 1
End,
1:= Begin
IF szlesnaespa Eql 8 => skip = 1;
1f szl And (L Eql 8} => skip = 1:
If sna And (AC Neq 8) => skip = 1;
1f spa And (AC Geq B) => skip = 1
End :
End Next
[f skip => PC = PC + 1 : | Skip
End,

invert skip condition

Introduction to ISPS A5

operate :=

Begin
Decode gyroup =>
Begin
B := Begin ’ ! group 1 .
If cia => AC = B;
If cll => L = 8 Next
if cma => AC = Not AC;
1 cml => L = Not L Next
1f jac => LAC = LAC + 1 Next
Decode rt => | rotate once or tuice
Begin
g :m Begin | once
[f ral => LAC = LAC Sir 1;
[f rar => LAC = LAC Srr 1
. End, _
1:= Begin | tuice
1f ral => LAC = LAC Sir 2
[f rar => LAC = LAC Srr 2
End
End
End, '
1:= Begin ! groups 2 and 3
Decode i<il> =>
Begin
8= Begin ! group 2
skip.group) Next
1t cla => AC = B Next
if osr a> AC = AC Or SWITCHES;
1f it => RUN = @
End,
l:= Begin | group 3
1f cla => AC = @ Next
No.Opt) | eae group
End
End
End
End
End

Several micro-operations can appear in the same instruction, however, not all combinations
are legal or useful. Micro-operations are executed at different points in time thus allowing
sequences of transformations appiied fo the accumulator and/or link bil. For instance, in the
group 1 micro-operations, clearing AC/L is done before complementing them, this is done
before incremen!iﬁg the combined L@AC (LAC) register, and this in turn precedes the rotation
of L@AC.

Introduction to ISPS 16

5 Other Features of ISPS

Not all the features of the notation have been presented in the exampies. This section wili

attempt to provide a list of the missing operalions to help the readers follow larger
descriptions,

5.1 Constanis

In general a constant is a sequence of characters drawn from some alphabet determined by
the base of the constant. The base of a non-decimal constant is given by a prefix character.
The alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet

2 o

8,1,?
8 # 801‘2'3'4|5|8'7’?
18 8,1,2,3,4,5,6,7,8,9,7
16 " e1,2,3,4,5,6,7,8,9,A,8,C,0,E,F,?

The character "?" ¢an be used to specify a don't care digits. Its presence stands for any .

digit in the corresponding alphabet.

The length of a constant is measured in bils. Decimal constants are one bit longer than the
smallest number of bits needed to represent its value (beware that the use of don't care {("7?")
decimal digits results in constants of unspecified length). Binary constants have one bit foy
each digit explicitly wrilten. Octal constants have three bits for each digit exphcul!y written.
Hexadecimal constants have four bits for each digit expiicitly written:

Exampie Length Bit Pattern
"1888 16 0681600800880C00
15 5 gilll

H17 & pBllil

(5] 2 be

‘grlal 5 B7181

H?2 B ?77018

5.2 Arilhmetic Representation

Introduction to ISPS ' ’ 17

ISPS allows the user 1o specify arithmetic operations in four different representations:
Two’s Complement, One’s Complement, Sign Magnitude, and Unsigned Magnilude (the default is

Two's Complement.) To specily a different representation, the following modifiers can be
used:

Modifier Arithmetic Representation
{7C} Tuo's Complement

{0Ct One’'s Complement

{SH} Sign Magnitude

{USH Unsigned Magni tude

In all the signed representations, the sign bil is the leftmost position of the operand (1 for
negative numbers, 0 for positive numbers). The above modifiers can be attached to any
arithmetic or relational operator to override a default. They can also be attached to a
procedure declaration to set a default throughout the bpdy. When attached to a section name

the default applies to all the declarations in the seclion:

test :=
Begin {0C} | Default for the body
End,
we Section.l wve {TCH 1 Default for the section
"X o= Y + {SM} 2 ! Instance

Always remember that the arithmetic representation is a property of the operator, nat the
operand. Thus, the same bit pattern can be treated as a Two's complement or an Unsigned

integer depending on the arithmetic context in which it is used.

5.3 Sign Exiension

All ISPS data operators define resulls whose length is determined by both the lengths of
the operands and the specific operalor. Some operations require that their operands be of
the same length. This is usually accomplished by "sign-exfending” the operands. In the
context of Unsigned Magnilude arithmetic, "sign-extension” is inlerpreted as zero-éxtension

(i.e. padding with Os on the left). in One’s and Two’s Complement arithmetic the expansion' is

Introduction to 1SPS 18

done by replicalion of the sign bit. In Sign Magnitude arithmetic the expansion is done by
inserting Os between the sign bit and the most significant bit of the operand.

5.4 Data Operalors (in ordor of precedence)

5.4.1 Negation and Complement: =, NOT

Unary - generates the arithmetic compiement of the operand (the operation is invalid in -
Unsigned arithmetic.} The resuit is one bit longer than the operand. The NOT operator
generaies the logical complement of the operand. The result has the same length as the
operand.

5.4.2 Concatenation:

The @ operator concatenates the two operands., The length of the resuit is the sum of the
lengths of the operands.

5.4.3 Shift and Rotate: $10,5L1,5LD,SLR,5R0,5R1,5RD,SRR

These operators shifl or rotate the ieft operand the number of places specified by the
right operand. - The result has the same length as lhe left operand. The operators have the
format "Sxy” where “x" is either L{eft) or R(ight) to indicate the direction of movement. "y" is
either 0, 1, D(uplicate), or R{otate) to indicate the source of bits to be shifted in. Sxl shiits
its left operand inserting ls in the vacant positions, $xO is similar to Sx1 but inserting Os.
SxD inserts copies of the bit leaving the position {o be vacated (not the bit being shifted out).
SxR inserts copies of the bit being shifted out (i.e. rotates the left operand).

5.4.4 Multiplication, Division, and Remainder: *, /, MOD

These operators compute the arithmetic product, quotient, and remainder of the two
operands, respeclively. The lengths of the results are:

Operation Length of Result
Ve . Sum of lengths
/ Left Operand (dividend)

MOD Right Operand (divisor)

5.45 Addition and Subtraclion: +, =

The + and -operators compuie the arithmetic sum and difference of the two operands,

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UMIVERSITY
PITISBURGH, PENNSYLVANIA 15213

Introduction to 1SPS 19

respectively. The shortest operand is sign-extended and the result is one bit longer than the

largest operand.

5.4.6 Relational Operations: EQL,NEQ,LSS,LEQ,GTR,GEQ,TST

These operations perform an arithmetic comparison between the two 'operands. The
shortest operand is sign-exlended and the result is either 1 or 2 bits long. The first six
operators (i.e. all except TST) produce a 1-bit result indicating whether the relation is True
(1) or Faise {0). The TST operalor preduces a 2-bit result indicating whether the relation
between the left and fight operands is LSS (0), EQL (1), or GTR (2).

5.4.7 Conjunction and Equivalence: AND, EQV

These operators produce the logical product and coincidence operalions of the two
operands. The shortest operand is zero-exlended and the result is as long as the largest

operand.

5.4.8 Disjunclion and Non-equivalence: OR, XOR

These operators produce the iogical sum and difference operations of the two operands.

The shortest operand is zero-extended and the result is as long as the largest operand.

5.4.9 Logical and Arilhmelic Assignment: =z, <=

The logical assignment operalor, "=", truncates or zero-extends the source (right operand)
to match the length of the destination (left operand). The arithmetic assignment operator,
"<=" truncates or sign-extends the source to match the length of the destination.

