NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LR XN

Survey of Scope Issues
in Programming Languages
|
‘Bob Schwanke

June, 1978

CHU-CS-78-131

This work was supported in part by the Defense Advanced Research Projects Agency

under contract no. F44620-73-C-0074.

ABSTRACT

In this paper we shall 4ludy scope issues in programming languages,
from the slandard binding lechhiques and philosophies of early languages, to
the .recent work in data encapsulation. First we will study the fundamental
concepts of binding, then see how they appeared In early languages. The
scope problems in these languages made clear the need for addilional program
structuring tools, leading to the development of data encapsulalion
mechanisms. We shall study ithe scope properties of data capsules, and
compare the encapsulalion philasophies of several modern tanguages. We shail
use the notion of abstract data lypes lo-sludy modern scope issues, and to
survey recent advances in several scope-related areas. Finally we shall
compare and contrast several languages, both old and new, by studying
solutions in each of them to a common programming problem.

R University Librzrieq
Camepgie Melion ¢

P
. f'&f"_‘*(,‘"f"}'} Pangra o - ‘-
» AR T BT M

1. Introduciion

1.1. Terminology
1.1.1. Definition of Scope
1.1.2. Definition of Extent i
1.1.3. Definilion of Range !
1.2. Overview ;
1.3. Languages discussed in this survey
1.3.1. Early languages :
1.3.2. Modern Lanpuages ‘I
2. A Sel of Simple Binding Mechanisms
2.1. Notation
2.2. Explicit Binding Mechanisms

—

2.2.1. NEW Variables
2.2.2. VAL Variables
2.2.3. VAR variables
2.2.4. EXPR variables
2.25. LABEL variables

2.3. Free Name Binding

2.3.1, CLOSED ranges
2.3.2. OPEN ranges
2.3.3. DYNAMIC and STATIC ranges

2.4. Summary of Mechanisms
3. Scope Mechanisms in Early Languages

3.1. Free Name Mechanisms
3.2. Parameler mechanisms

3.2.1. Fortran: REFERENCE parameiers
3.2.2. Algol: VALUE and NAME parameters
3.2.3. LISP: VAL, VALUE, or REFERENCE?
3.2.4. Analysis

3.3. Side effecis

-3.3.1. The Alias Problem
3.3.2. Parameter Aliases
3.3.3. Free Name Aliases
3.3.4. Poinler Aliases
3.2.5. Evalualion side-effects

4. Modern Languape Designs

4.1. Overview

4.1.1, The Software Crisis

4.1.2. Modern concerns of language designers
4.1.2.1. Programming Methodologies

4.1.2.2. Overall Structure

4.1.2.3. Fulfilling Requiremenis

4.1.2.4. Robusiness of Programs and Languages
4.1.2.5, Efficiency

4.1.3. Goals of Modern Languages

4.1.4, Scope Control and Modern Concerns

4.2. Modern Binding Mechanisms

4.2.]1. VAL mechanisms

4.2.2. VAR mechanisms

4.2.3. EXPR and PROC mechanisms
4.2.4. Free Name Mechanisms

4.3, Data Encapsulation

WOUWRONNN~NON O 66 KRR

4.4,

45,

i

4.3.1. Origins

4.3.2. A Data Capsule

4.3.3. Mechanisms in Modern Languages
Relalionships among objects, lypes, and ranges
4.4.1. Initialization

4.4.2. Object-Object Relationships

4.4.2.1. The Problem of Pointers

4.4.2.2. VAR Paramelers To Capsules

4.42.3. Binary Trees

4.4.2.4. Resource Prablem

4.4.3. Generic Types

4.4.4. Closely Related Types

Applying Data Abstraction To Several Scope-related Problems
45.1. Loops as ranges

45.2. Aliases Revisited

4.5.3. Exception Handling

4.5.4. Type Breaching

485 Scope Aspecls of Multiprogramming .

5. Programming Examples

5.1.
" 5.2
5.3.
B.4.
5.5.
5.6.
5.7.
5.8
5.9.

6. Summary
References

The Problem
Fortran
Algot 60
Pascal

Algol 68
Euclid
Alphard
Modula
Simula 67

30
31
34
37
37
39
39
a1
43
43
a4
46
47
47
48
50

51
53
53
53
&5
56

57
59

60 |

61

63 -

66
68

Scope Issues in Programming Languages 1 ~ Chapler 1

1, Introduction

The scope mechanisms of a programming language are those features which describe and
control the use of named entities, such as variables, procedures, and lypes. As suct"1, they
are the notalion for describing the slructure of programs. The parllcular scope mechanisms a
language provides, by diclating what scope relationships a program may conlain, profoundly
influence the structure, and thus the quality, of that program. The scope properties of a
program affegt its understandability, ils efficiency, its verifiability, Its modifiability, and even
the difficulty of finding ils bugs. Thus studying scope can shed light both on programming

‘languages and on programming itself.

1.1. Terminology

The term scope has been used lo mean any of a large variety of loosely related concepts.
In order to use it meaningfully in this paper, 1 shall assign a single, narrow meaning to it, and

define two other terms, extent and range, fo denote lwo ather related concepts.

Before defining those terms, however, | need to make clear my frame of reference. In
programming languages a variable consists of a name, an object, and a value, though one or
more of these may be omitted. In the mainsiream of language design, e.g. Fortran, Algol 60,
Pascal, and Alphard, a variable is composed of all three. Speciﬁéal!y, @ name is a program'’s
way of denoting an objéct , which is a portion of memory containing one or more values ,
which may be integers, memory addresses, procedure bodies, or what have you. In languages
like LISP and Its descendants, howevi, an identifier denotes a value directly, though some
values can be "modified” (CLU calls t em mutable [31]) In Algol 68, a name is a constant
equal to the address of an object. For the purposes of this paper, however, I use the terms
variable, rﬁme, object, and value in theij sense of Algal 60, Pascal, and Alphard. That sense is

by tar the most common one, and mayébe used to explain the phenomena of the LISP family

and Algol 68 fairly weil.r

1.1.1. Definition of Scope

We define scope to be a property of names, The scope of a name Is the portion of the

Scope Issues in Programming Languages 2 Chapter 1

program text in which all uses of that name have the same meaning. lIn particular, if the name
denotes an object, the scope of that name is the porlion of the text in which the name
denoles the same object. For example, in Algol 60, when an Identifier which has been
declared in an outer block is redeclared in an inner block, one says that the scope of the
outer name does not include thal inner block, and that a differant name, spelled the same
way, has a scope which is the inner block. As anaother example, one would be tempted to éay
that a reference or pointer variable name dencles different objects during the execution of
the program. However, a pointer variable Is actually a name denoting a single object whose

value is a reference to {or address of) another object.

1.1.2. Definition of Extent

This concept is a properly of objects. The extent of an object is its fifelime, that is, the
portion of the execution time of the program during which-the value contained in the object
persistsr unless explicitly changed. For example, the extent of the object denoted by a local
variable in Algol 60 is the period between entry and exit of the black in which it is declared,
On the other hand, the extent of an own variable is the entire lifetime of the program, even

though its scope is the same as that of a local variable dectared -at the same place. -

1.1.3. Definilion of Range
This term, borrowed from Algol 68, denotes language constructs for delimiting scopes and

exhanfs1 . More precisely, a range is a porlion of a program, delimited by some construct of
the language, such that the scopes of names defined inside the program portfion do not
extend outside that porfion unless explicilly "exported” {mare on this later). Thus ranges can

be thought of as the building biocks out of which scopes are constructed,

In Algol 60, procedures and blocks are the only range delimiters. In Algol 68, almost any
statement sequence is a range, if it includes name declarations. In modern languages, a

construct which bundles up a group of declarations Into an abstract data type. or module,

delimits a range.

L1he reader must not confuse this with the subrange concept of Pascal, which denoles an
interval within the values of an enumerated type. :

Scope lssues in Programming Languap,le 3 | Chaple'r |

For the purposes of this paper, ranges never overlap. When one range is nested inside
another, the ouler range leaves off where {he inner range begins. When one range provides
names, objects, or values to a range |’ declares or invokes, we say only that the providing
range is parl of the context of lhe using range. Thus in Algol 60, when one block is nested
inside another block, the range defined by the outer biock does not include the range defined
by the inner block, even though the scope of a variable declared in the outer block would
include the Inner block. The ouler block Is then part of the context of the inner block.
Similarly, in languages with "dynamic scope”, the range defined by one procedure does not
include the bodies of the procedures it calls even though the scopes of the variables declared

in the calling procedure might exiend infa the called procedures.

1.2. Overview

The history of programming language design, at least that part of it where scope has been
an issue, can be divided into two major phases.

During the first bhase, which exienn!:ied from the introduction of Foriran through ihe- late
1960, languages plainly reflected the compiler technalogy and the machine architectures on
which they were founded. Language comparisons were based on cansideralions qf. power and
convenience. Usually they were done (ealure-by-fealure. A language designer could
ordinarily justify the Inclusion of a particular feature simply by showing how conveniently it

solved some particular programming problem.

In Chapters 2 and 3, | present a means for categorizing scope control mechanisms, and use
ii'to describe and analyze The mechanisms developed during lhis phase. One of the major
issues of the day was the choice of a parameler mechanism for permitting side effects on the
actual parameiers. None of lhe various proposals were completely satisfactory, but the
debates served to clarify the nature of the alias problem, which Is still a major Issue in

modern language designs.

Early language analysis was more coherent than early language design. Criticism included
both analysis of individual features and discussion ol medium-scale issues like side-effects
and aliases. The more general analyses of the lale 60’5,' combined with the programming

methodology research just then emerging, formed the bases for modern languages.

Scope Issues in Programming Languages q Chapler |

The princip-al languages which have emerged since the late 60's have been designed based
-on explicit theories of programming. With a wide variety of suilable scope construcls already
available, language designers have lried o choose features w'hose inleractionAharmonized
with the underlying theory. This concern with interaclion also motivated the introduction of

several new scope features.

Chapler 4 surveys the major concerns of madern language designers, and explores how
these ideas are supported and contradicled by the scope mechanisms of various modern
languages. For example, concern for modularity has caused most modern languages to
severely restrict the ways that data may be shéred between various parts of a program.
Similarly, concern for verificalion muél be traded off against generality in the design of

module constructs.

The first four chapters of this survey focus primarily on language constructs, and only
secondarily on specific Iénguages. However, the importance of the issves discussed cannot
be fully appreciated without concrele exampies. Therefore Chapter 5 presents a simple
programming task, and solutions forT it in several languages.These examples trace the
development of various scope mechan!sms, and show the strengths and weaknesses of the
languages displayed. . o

|

1.3. Languages discussed in lhis sLlrvey

This paper is a survey of concepls, rather than of languages. Consequently, we will discuss
specific languages only to illustrate concepts, and not to lisl all the languages baving that
concept. We will draw our examples from a small sel of languages which together span the
important concepls, However, the two different hislorical phases of language design require
distinctly different kinds of spanning sels. (The references listed in this section are language

manuals or language overviews.)

1.3.1. Early languages

During the first phase of language development, three well-known languages contained all
the major ideas on scope control. Fortran [36] is important because it was conceived before

scope was an issue, and because it is so often lhe object of ridicule. The mechanisms it
F

Scope Issues in Programming Languages 5 Chapter 1

presents have only limited flexibility, but in their simplicity they avoid many pitfalls of more
sophislicaled consirucls. Algol 60 [35] is the best known of a large group of similar
languages, and caplures the best thinking of a major segment of the computer science
communily of that period. LISP [55), designed around the mathemalician’s notion of a
function, has engendered anolher large family of languages. It has a distinctly different sel of

powerful, general scope features, which have several unexpecled properties.

1.3.2. Modern Languages

The modern languages reviewed in chapler 4 have more in common than the ones listed
above, because many of the classical design problems of the early phase have been solved:
The superficial similarities among these languages make it easier lo see the various stands
they have taken on a variety of unsolved modern problems. Consequently we will discuss
more languages than in the early phase, bul only those features of each language which are

distinctive.

Pascal [57, -19] is important for ils pioneer work in lype definition and axiomatic
description, as well as for being the basis for half a dozen recent languages. Algol- 68 {56,
39] is a transition lariguage, designed with lofty goals, but completed too early to incorporate
several crucial modern ideas. Simuia 67 [3, 4] is noteworthy as the first tanguage to
explicitly attach procedures to dala types, as well as the first to provide a type-extension or
subtype facility in a safe way. Euclid [26, 48] and Alphard {15, 60] provide abstract data
type constructors within the Algol/Pascal line of languages. CLU [49, 29] also provides
several modern absliraction mechanisms, within a LISP-like framework. Modula [58] provlides

module facilities tailored to concurrent programming.

Scope Issues in Programming Languages 6 Chabter 2

2. A Set of Simple Binding Mechanisms

It would be lempling at this poin! lo develop a farmal basis for describing all possible
bindings bt.elween names, objecls, values, environments, et cetera. (Mark Elson has developed
one such basis{10]) However, because most of the theoretically possible bindings are
impractical, a formal basis would be too cumbersome for this survey. Instead, we shall use an
informal basis. R. D. Tennent [54] has recently formulated a simple set of mechanisms for
procedure parameters and local declarations, such that the same lerms denote the same
mechanisms in both contexts. The following seclions expand his work into a sel Vof
mechanisms sufficiently rich to describe the wide variety of actual mechanisms found in
programming languages, but nol necessarily general enough to describe every conceivable

mechanism.

2.1. Notation

In order not lo prejudice the reader by using too-famitiar defimiters in my examples, | have
created a neutral syntax for example programs. Each example will consist of three columns.
The left column contains the range in which new bindings are being made. The right column
lists the ranges which form the context from which the new range may obtain names, objects,

or values for some of its new bindings. The keywords insert, declare, and invoke mark the

exact points where the new range touches ils conlext. Invoke marks the point where control
transfers from the context to the range, and returns when the range terminates. Declare
marks the point where the name of the range is declared. Insert simultaneously declares and
invokes the range. The middle column defines lhe interface between the new range and its
context. Explicit relationships use the symbol 1 (double colon) to relate a variable from the
new range, on the left, to some piece of the context, on the right. Names occurring free in the
teft column, and bound by a contex! in the right tolumn, are listed in the interface column,

between angle-brackets.

2.2. Explicit Binding Mechanisms

The mechanisms described in this section each present a way of defining the relationship

of an identifier being declared in one range lo the abjects and identifiers in the range’s‘

Scope Issues in Programming Languages 7 ' Chapter 2

context (as defined in section 1.1.3), whelher that be a surrounding block (In the case of

declaralions), or the calling context for a procedure (in the case of parameters},

2.2.1. NEW Variables

A NEW variable is one which has no explicit relationship to the context of its defining
range. It consisis of a name bound to an object, possibly initialized to a locally computed
value. Both the name and the object are normally onty accessible within the range in which

they are declared. Thus execuling rangie R below would prin{ the value 3:

range S = interface range R =
new A new A :: (nothing) ' new A
A= q | . A:=3
endrange S ' E insert range S
? print A
endrange R

2.2.2. VAL Variables

A VAL variable brings into ils defining range the value of an object found in the range’s
context. A VAL variable may not be assigned to. Thus il cannot be used to modity the object
from which its value comes. 1 purposely leave unspecified whether l‘.he name ts bound to the
object or directly to the value. In simple cases (ie. no aliases or parallefism), it doesn’
matter. In early programming languages the VAL mechanism only shows up as a copied value,
used as a building block for other mechanisms. In later sections 1 discuss the perils of aliases

and parallelism in some detail. Execuling range R in the following example also prints the

value 3:
range S = interface range R=
val A : vat A= B new B
8:=3
insert range S
- print B
endrange S endrange R

No matter what the raﬁge S does, it can't tamper with the object naméd by B (at least not via

the interface mechanism).

Scope Issues in Programming Languages 8 Chapter 2

2.2.3. VAR variables

A VAR variable brings inlo its defining range an entire object from the range'’s conlext. It
consists of a local name bound to that objecl. This means that any assignmen! to a VAR
variable is also an assignment to the variable (from the surrounding conlext) which provided

the object the VAR name is bound fo.

range S = interface range R=
var B var Bz A new A
print 8 Aw=3
B:=B-1 Insert ranpe S
print B - A=A-1]
endrange S ' : print A
: endrange R

Executing range R above prints the sequence of values 3, 2, l,lbecause the names A and B

are defined by the interface to denote the same object.

2.2.4. EXPR variables

An EXPR variable aciually brings into ils range a piece of text from the surrounding
context. It consnsts of a name bound o an expression, which can be any expression which
would be legal in the enclosing range, The value of a EXPR variable at any time is the value
which would be oblained by evaluating the corresponding expression in the énclosing range!
I the expression would also be legal as the destination of an assignment statement, an
assignment to the EXPR variable becomes an assighment to the dbjecl described by the

expression. Otherwise, assignment to an EXPR variabie has no effect.

range S = _ interface range R.=
expr A expr A4 B new B
expr C expr C & B+3 : B:=2
A= A=x2 5 insert range S
Ci=C#3 | print B
print AC { endrange R
endrange S :

?

When the code of range S multipliesiA by 2 and stores it back into A, It is manipulating the
same object thal B is bound {to. When il tries to triple B+3, via C, nothing happens. Then
when it prints A and C, it gets A’s value from that same object, and computes C’s value as the

current value of B, plus 3. So the program prints 4,7,4.

Scope Issues In Programming Languages 9 Chapter 2

PROC wvariables are very similar to EXPR variables, in that they both transport a piece of
program lex! inlo a range from its context. The only ditlerence Is thal for an EXPR variable
the tex! is writlen out explicitly al the binding site, whereas a PROC variable Is bound to a
procedure previously declared in the surrounding context. That procedure can then be
invoked inside the PROC variable’s defining range. Most of what 1 -wiil say about. EXPR or
PROC variables applies equally o either.

2.2.5. LABEL variables

A LABEL variable brings inlo its defining range a statement label from the range’s context.
The LABEL variable is trealed exactly as if it were an ordinary label. For instance, GOTO
<label variable> causes control 1o transfer lo the stalement named when the variable was
bound. LABEL variables, like EXPR andl PROC variables, permil more -comp]icated interaction
between a range and its contexi. Unlike other mechanisms, however, LABEL variables may be

used lo affect the conlrol Hlow, rather than the data, of the range’s conlext.

2.3. Free Name Binding

In. mathematics, a variable occurring in a particular context without being defined in that
context is said lo be free in lhat context. Many programming languages permit a name to be
used in a range in which it is not explicitly defined. To provide a meaning for the name, the
Ianguagé specifies a rule for searching through relaled ranges to find the declaration which

defines if. There are four main concepls involved in such searching:

2.3.1. CLOSED ranges

A CLOSED range islone thal cannot contain any free names. Such occurrences would be
flagge& as errors. This means that ali of the interactions between a CLOSED range and its
'envill'onment will be through explicit bindings. A CLOSED range with no VAR, EXPR or LABEL
in its interface woﬁld have absolutely no way lo cause any exlernal side effects when
executed, In the example use of the VAL mechanism in section 2.2.2, 1 qualified my assertion
that the object paired with the VAL variable was safe. With CLOSED ranges, we can remove
that qualification. By adding the word CLOSED fo the example in that section, we gel a range

Scope Issues in Programming Language 10 Chapter 2

guaranteed nol lo cause side effects: }
1

closed range § = inferface range R=
val A val A = B new B
E B:=3
| insert range S
print B
endrange § endrange R

Execuling range R above must print the value 3.

2.3.2. OPEN ranges

An OPEN range inberils all of the names accessible in the range’s conlext, except for any

names it redeclares.

openrange S = inlerface range R=
- new B <A> new A
B:=A ' Am=3
A=8B=x+2 : print A
endrange S ‘ insert range $
print A
| endrange R

The expressions involving A in range S refer to ihe identifier declared at the beginniné of
range R. Thus the program above prinls 3, 6. In general, if the scope of a name N.includes

a range R, it also includes any OPEN ranges found within R,

2.3.3. DYNAMIC and STATIC ranges

The context of a range actually consisls of two parts. The static part is the name
environment in which the range is declared. The dynamic part is the name environment in
which the range is invoked. When a range is inserted {see section 1.1.3), the two parts of ils

context coincide. In the last example, for instance, range R is both the static and dynamic

~context for range S, because the insert statement in range R both declares and invokes range

5.

Free name binding may be done in either the dynamic or stalic context of a range; we shall
Iabel_ an open range as either STATIC or DYNAMIC according to which context shall be used

to bind free names. In the following program, if range S had been marked STATIC, it would

Scope Issues in Programming Lanpuages 11 Chapter 2

have printed the vaiue 3, found in the variable B in range R, where S is declared. Because
range S is DYNAMIC, however, the name B inside il refers to the variable declared in range T,

where range S Is invoked; thus the program prints the value 4.

range R=
declare range S
new B
B:=3
dynamic range S = interface . endrange R
print B
endrange S range T=
: : new B
B:=4
invoke range S
endrange T

2.4. Summary of Mechanisms

The scope mechanisms define_d in this chapter are tabulated here for convenient reference:

Mechanism Shares with contexl

NEW nothin
VAL O vale |

VAR object!

EXPR part ‘o‘f the execution environment of the context
PRCC procec\ure, and ils free variables.

CLOSED nothing

CPEN all variables occurring free in inner range
STATIC | variables in declaration context

DYNAMIC variables in invocation context

The mechanisms defined in this chapler represent the major concepls behind the scope
mechanisms found in early programming languages. In the tollowing chapler [survey those

actual mechanisms in detail.

Scope Issues in Programming Languages 12 Chapter 3

3. Scope Mechanisms in Early Languages

The scope mechanisms in Chapler 2 were carefully defined to be independent of whether
the mechanisms were lo be used for procedure parameters or variable declarations.
However, in the standard early languages, most of the variety in binding mechanisms showed
up in procedure parameters. Declarations were ordinarity similar to the NEW mechanism
(section 2.2.1). It wasn’t unlil fater languages began to worry about initialization that variety

in declaration binding mechanisms began lo appear.

In this chapler, when [contrast LISP with Algol and Fortran, 1 will sometimes refer to
so-called "pure LISP". LISP was built around the mathematician’s notion of a function as a
straighiforward mapping from one sel of values 1o anolher, such that one only need think
aboul values and expressions, never aboul madifiable objects. However, LISP programmers
apparently found that the conventional notion of objects was a useful one, because mos! of
the languages in the LISP family have some sort of destructive operations, i.e. operations
which modify exisling "values” (in other words, objects) instead of creating new ones. These
operations form the "impure” part of LISP systems. Without them, the language is free of the

notion of object, and thus free from a number of problems.

In the folloiaving seclions we shall survey and compare the parameter mechanisms and free

‘hame mechanisms in Algol, Fortran, and LISP. Then we shall study the notion of a side effect,

inctuding the Alias Problem, and its manifestalion in those languaées.

3.1. Free Name‘Mechar.\isms

Fortran has no free variables. Every name occurring in a procedure and not explicitly
declared in that procedure, is implicitly declared to be a variable with attributes derived from
its spelling and the numbélr of subscripts occu.rring with it. Fortran procedures {main
programs and subprograms) are ils only range delimiters. The names used in each procedure
are private {o it. The only mechanism for stalically sharing a set of objects among
procedures is the COMMON mechanism, which permils sharing of slorage areas, but does not
require that different procedures refer to the same location in the same way. Indeed, the
declarations which name the objects in a COMMON area must be repeated for each procedure,
with no check for consistency between procedures. Thus, what lo one procedure locks like a

sequence of characlers might look lo janother like integers. This quirk has its uses, but is

|

Scope Issues in Programming Langlages 13 Chapter 3

prone to errors as well. The labelled common mechanism is powerful for a second reason: it
is the only mechanism in Algol, Fortran, or LISP which permils an arbitrary set of procedures
to share a sel of objects without having lo make those objects available to other procedures
as well. A colleague, on reading an early draft, pointed out to me that this permits one to

write Parnas modutes [45] in Fortran,

In LISP, all variables are either global variables or formal parameters, and all ranges are
DYNAMIC. Free names are handied in it the same way they are in mathematics: names free
in one expression are subject to bindings occurring in the next enclosing expression. 1f no
binding can be found in this manner, the name in mathemalics is left unbound, {implicitly
quantified "for ali"). Analogously, a name which is free in one LISP roufine is left unbound
until the routine is invoked in some context; then the names are bound to the definiﬁons'

provided for them by the caliing envirgnment,

Algol 60 ranges are STATIC . Procedures are defined in terms of blocks, which can be
textuaily nested in other blocks. A name free in one block derives its meaning from the
textually enclosing block. If it Is also free in that block, the one enclasing it is checked next,

and 5D on.

By avmdmg free names allogether, Foriran also avoided some of the pitfalls of Aigol 60
and LISP. The named COMMON mechanism, although permitting sharmg of objects, provides
no assistance In mainlaining the Integrity of those objecls. (To its credit, Fortran was
desngned before dividing up programs into lots of conceptual units was a serious concern.)
The LISP mechanism makes sense in a pure malhemalical context, where the "meaning” of a
function is independent of the values put inlo it, whether ?hey are put there explicitly or
implicitly. Furthermore, LISP programmers for the most part do not define functions inside
other funclions, even thOUgh they could, so STATIC free name resolution wouldn’t be very
useful. However, when a procedure can modity variables and not just qbtair\ values; from
them, the procedure can hardly be undersiood without knowing which variables its free
names denote. Since the parameler mechanism provides a flexible means for obtaining
objects from the dynamic conlext, stalic inheritance of names, as in Algol, seems 19 make

more sense.

3.2. Parameter mechanisms

S

Scope Issues in Programming Languages ta Chapter 3

3.2.1. Fortran: REFERENCE paramelers

The Foriran paramefer mechanism was derived from assembly language programming
practice: all paramelers are passed by address. This has the interesling property that {abels.
and procedure names can be passed as parameters as easily as variables; since no safety
checks are made on paramelers, no other informaiiOn need be passed. Thus the Fortran
mechanism, often called a REFEREN parameter mechanism, corresponds to the VAR
mechanism in section 2.2.3. (Of course,’the power and speed obtained by omitting checking is
very unsafe. If a programmer should pass a constant, say 3, to a procedure which expecled
to store values Inlo ils formal parameter many Fortran systems would have that procedure

changing the value of the "consiant” 3.)F

3.2.2. Algol: VALUE and NAME paramelers

Most early languages had no facilities for defining constants, so it isn’t surprising that most
didn’t have pure VAL ‘parameters either. Algol's VALUE parameter, however, is closely
related. A VALUE parameter may be Ihoﬁghl of as a NEW variable which is inilialized at
procedure entry with the value of the corresponding actual paraméler. it may be assigned
to, like any other variable, but because it is a NEW variable, the assignment does not affect

the calling context.

Algol has a second kind of parameter, the NAME parameter. It is very much like the EXPR
mechanism defined in section 2.2.9. The actual parameter can be any expression which would
be Iegal in the caller’s conlext, with the exception that if the formal parameter occurs inside
the procedure as the destination of an asmgnmeni statement, the actual parameter must be an
expression which would be a legal destination in the caller’s context. Thus one could wrile a

procedure for zeroing veclors:

Scope Issues in Programming Languagesl5 Chapter 3

begin
procedure zerolvecelement, index, !bound, hbound)
value lbound, hbound;
begin
for index := lbound siep 1 unti! hbound do
vecelement 1= B
end zeroj

integer i

integer array all:18), bll1:10,1:18];
zerolalil, 1, 1, 18);
zero(bli,il,1, 1, 18}

end

The first call to zero in the example above would put O In each element of array a. The

second call would put O in each diagonal element of array b.

3.2.3. LISP: VAL, VALUE, or REFERENCE?

LISP 1.5 differ# from pure LISP by including two sels of modifying operators: the SET
group, and the RPLACA group. The SET operators change the name-value binding of a
variable so thal the name is bound to a new value, abandoning the old value. | The RPLACA
operators modify an exisling value, inslead of copying parts of it and constructing a new one.

Consider the following program (the syntax is contrived):

SET (A, 3)
SET { B, A)
SET (C, 4)
SET (D, C
SET (B, 5

RPLACA { D, 6) .
PRINT (A, B, C, D}

The second operation binds B o the same "3" that A is bound to. The fourth operation binds
D to the same "4* that C is bound to. The fifth operation binds B to the value ™5", leaving A
bound to 3. But the RPLACA operation i:hanges the 4" to "6", so that both C and D are bound
to the value "6". The print stalement ;;_rinls 3,5, 6, 6. Observe that the SET operators do not
introduce the notion of objects into LISIP. SETling one variable will never change the value of
another. It is only the RPLACA group which makes the notion of object distinguishable from

that of value.

LISP programmers are well aware of the implications of the SET and RPLACA groups, and

will often refrain from using one or both groups in large sections of their programs.

Scope Issues in Prograhming Lanpuages 16 Chapter 3

Therefore, 1 will describe the LISP pérameler mechanism as It behaves In sach of three

versions of the language.

Parameters In pure LISP are VAL paramelers. In fact, VAR or EXFR paramelters in pure
LISP would behave idenlically with VAL paramelers, because only assignment dislinguishes

VAR from VAL, and only variables with changing values distinguish EXPR from VAL.

Add SET operalors lo pure LISP, and the parameters become VALUE parameters (sec 3.2.2).
That is, the name of the formal parameter is bound initially to the value of the actual
parameter, bul may later be re-bound (i.e. SET to a different value), without affecting the
célfing context. Note, however, thal SETling a free variable is more confusing in a DYNAMIC
range than in a STATIC one.

Full LISP 1.5 makes the parameter mechanism behave somewhat like a REFERENCE
mechanism. The RPLACA operator makes it possible to modify the value of the actual
parameter, unless SET rebinds It first. But what jt really amounts to Is that all hames are

bound to pointers lo objects, and all parameters are pointers, passed by VALUE.

What | have described above is the underlying mechanism. LISP values may actually be
expressions or funclions, which may or may nal contain free variables. Ultimately, however,

the programmer must always be aware that he Is dealing with pointers to objects.

3.2.4. Analysis '

Larry Snyder’s thesis [53] conlains an exhaustive analysis of the computational po.wer of
various parameter mechanisms. It shows that VAL, VALUE, REFERENCE, and COPY mechanisms
are all equivalent in power, by giving simple rewrite rules for implementing any one of them
in terms of any other. The NAME parameler is the only mechanism in his study which could
not be rewrilten in terms of the others, because of the repealed re-evaluation feature. So
the {ollowing_anaiysis is based more on considerations such as convenience and efficiency,

rather than power,

Each of the parameter mechanisms in Algol, Fortran, and LISP is well suiled. for certain
kinds of computations, independent of the language In which it occurs. As mentioned before,
the VALUE mechanism is side effect {ree, except when the value is a pointer. It also turns

out to be cheaper to execute than the others. The mechanisms of LISP are well suited to

Scope lssues in Programming Language 17 Chapter 3

symbol manipulation, especially list prqcessing. In addition, by dislinguishing between CONS,
SET, and RPLACA, the programmergcan tell which “assignments” can cause non-local
cide-effects. The relalive merils of REFERENCE and NAME are not as clear. The NAME
mechanism permils one to write procl‘edures whose primary purpose is lo express some
control struclure, such as the array sequencing example above. The generalization to other
array operations, such as inner and ouler products, should be obvious. It also has the delayed
evalualion property; That is, the aclual parameter will not be evaluated until it is needed.
This permits one 1o pass as parameters expressions which would produce runtime errors if
evalualed (e.g. subscripl out of bounds), provided lhat the procedure receives enough
informalion to deduce that il can avoid using the polentially invalid expression. Bul the fact
that the name parameter imports a whole environment into the procedure range implies that
the .ascocialed overhead musl be somewhat high. The REFERENCE parameter is thus
appealing because Il allows side effects on paramelers in a simpler way, and generalizes well

to passing procedures, arrays, and 1abels, although not expressions.

The NAME mechanism turned out 1o be more powertul than its designers thought. Indeed,
it is so powerful that there are some very simple things it cannot do. The most famous
example is the Exchange procedure: it'is impossibie to write a procedure in Algol 60 which

exchanges Its {integer) arguments, for all possible actual parameters.

The obvious Iaigorilhm using a temporary variable will fail when one of the actual
parameters is an index to the ather:

hegin
procedure EXCH [A, B)3
begin
integer temp;
temp := B
= Ag
A 1= TENMP

ends

integer array Al1:18];
integer I;

[:= 13 '
All) := 23 '
EXCH t All1}, 1) i
end '

When the exchange routine puts the value of Al]into], A[l}is no lbnger A[1] 1f the routine

happens to do its operations in the right order lo handle tf\e above case correctly, it will fail

Scope Issues in Programming Languages 18 ' Chipter 3

on EXCH(LA[I)).

The simple array index exchange problem was solved in the late 60’s using a non-obvious
feature of the assignment statement, namely that the desllnalron address s compuied before
the source expression is evalualed. Consider the following procedure

procedure EXCH(A,B):
begin
integer procedure EX1(M,N); | : o
begin
EX1 := M
M= N;
end EX1;

A := EX1(B,A)}
end EXCH:

This procedure first computes the address of A, then invokes EX1 which saves the value of B,
stores the value of A info B, and returns the value of B, which. is then slored into A. The
critical property is that the addresses of both variables are computed before either is
assigned to. But even the above doesn't work, because it is legal to write an actual
parameter in Algol 60 which evaluates]o a different address every time it Is accessed [11];

begin
integer array A{1:18);
integer J;
integer procedure 1;
begin
Ji=J s+ 1,
I := O3
end 1;

J = B
EXCH (ALI1,ATI)):
end

If this last call were fo the “clever” solulion above, it would have the effect of copying At2]

into A{1], and A[4] into A[3)!

The problem with the NAME parameter, then, is precisely its strength: the actual

parameter must be recomputed on absolutely every examine and store operation. In contrast

‘to that, the address of a REFERENCE parameter is computed exactly once, which makes many

situations clearer and simpler.

These difficulties with the NAME parameler are examples of problems with “side effects”,

which we examine next. !

Scope lssues in Programming Languages 19 Chapter 3

3.3. Side effects

A side effect is any non-obvious effect of executing a statement of a program. There are
basically lwo calegories of side effects: a} evalualing an expression may modify variables,
and b) an explicit modification may also effect changes to variables not named in the

statement.

The principal issue with side-effects is nol whether they occur, but how unexpected they
are, and how well they can be described. Evalualion side effects permit compact code, but
raise serious semantic problems and efficiency issues. Implicit consequences of explicit

effects, on the other hand, can often be documented unambiguously.

3.3.1. The AIiaAs Problem

The Atlias Problem is the class of problems that comes up when one tries to explain a
program in which two names, occurring in the same range, may Or may not be simultaneously
bound lo the same object. In such situations, modifying one variable may affect the value of
another. We shall study the probiem in the context of aliases created by parameter binding,

" then see how aliases can occur via free name binding or painter variables.

3.3.2. Parameter Aliases

in the procedure call EXCHA[I}I) in section 3.2.4, the object of the actual para;neter 1 was
also referenced in the evaluation of A[l} Thus the exchange routine would unwittingly
*modify” one of its parameters when assigning 10 the other. The REFERENCE mechanism is
tree of these more sophisticated problems, but stilt exhibits the very basic problem intrinsic
to the notion of multiple names for an object. Consider the following procedure, which
divides each of its two parameters by their greatest common divisor, leaving them in their

"simplest ratio™

Scope Issues in Programming Languages20 : Chapter 3

procedure simpleratio (A,B};

begin

Integer C,D;

C:= A

0 := B; :

While C = D do ' This loop reduces € and 0 to
FfC>D thenC t= ¢ - 0 ftheir greatest common
else D := D - C; ! denominator

B :=B/ C;

A=A/ Cy

end

- One would hope thal a procedure compuling the simples! ralio of equal numbers would leave

them both equal to 1. But SIMPLERATIO(N, N) would set N equal to zerp, assuming N was
greater than | belorehand. Once again, the reason is that the assignment to B would change

the value of A, because both would be bound {e the same ocbject,

Algol W [52] has a procedure mechanism, called VALUE RESULT ; which avoids the problem
of side effects during computation. The VALUE part of the mechanism is the same as in
standard Algoi: a NEW variable named with the formal parameter name Is initialized from the
actual parameter. The RESULT mechanism also mandaltes the creation of a NEW variable, and
in‘ addition specifies that when the procedure lerminates, the value of the RESULT variable
must be copied into the corresponding actual parameter. A VALUE RESULT parameter,
sometimes called a COPY parameter, would thus create a NEW variable, initialize it from the
actual parameter, execule the Procedure, and slore its final value back into the actual
parameler. Thu.s in the simplest ratio procedure, the assignment to B would not affect the
value of A ever, because A and B would denote separate, local objects. The final copying of A
and B back into the same actual parameter would be harmless, becayse they would have the

same value.

Unfortunalely, the Algol W form of COPY has a serious flaw, namely that the address of the
actual parameler variable is calculated twice: once before enlering the routine, ﬁ: obtain the
parameter’s value, and again after leéving the rouline, to store the resulling value. When an
actual parameter is an element seiected from an array, side effects on the index variable will
change the destination of the value copied out on routine exit. Thus that mechanism still does
not solve the Exchange problem, even though the REFERENCE mechanism does so nicely.
Whal’s worse, if the same procedure has more than one VALUE RESULT parametler, the order
in which the final copies are done is not specified, so that the effect of é probiematic call

tannot be determined at al. Thus, although call by VALUE RESULT handles SIMPLERATIO(N,N)

Scope lIssues In Programming Languapes 21 . Chapler 3

correctly, it would fail on something like SIMPLERATIO(A(D), D).

None of the major languages of this period took the obvious step of defining a
reference-style COPY mechaniem, which wouid save the address used to obtain the Initial

value and use it as the destination for copying back the final value of the variable.

3.3.3. Free Name Aliases

Free name binding mechanisms can,also create aliases. Consider the following Algol 60

program skeleton:

begin
integer 13
procedure P A
integer Aj

hegin

t
l
|
|

1 HE (] };
P i Cave A es O3
end;

)
}

- -

p“(I
P (3

.end
During the invocalion P(1), A and | would be bound o the same object, so that assignments to

1 would change A. During the invocation P(3), assignments to 1 would not change A. Thus we

see that the meaning of procedure P depends heavily on how it Is invoked.

3.3.4. Pointer Aliases

LISP 15 has facilities for building rather general graphs, using pointers. Graph
manipulations are particularly susceptible to alias problems, hecause lwo pointers into a
graph may point fo the same ncde, or to a father-son pair, or to two nodes related in some
other important way.- Several modern languages have attacked this problem; see section

4.4.2.1 for details.

Scope Issues in Programming LVanguages 22 Chapter 3

3.3.5. Evaluation side-effecls

These come abou! when one of the components of an expression is a function call (or an
EXPR variable bound to an expression conlaining a function call). There are two problems
with such side-effects: a) the etlect of the function call on the value of the expression can be
obscure, and b) if that effect is precisely defined, the definition forces the code generated to

be inefficient.

A function call causes a side effec! whenever it modifies a variable whose extent is longer
than the function call. {This does not include the pseudo-variable, with the same name as the
function, used in some fanguages to contain the resyit of the function.) The varjable modified

may be a parameler o the function, a free variable, or an own variable,

Mathematicians often object to the whole idea of permitiing a function to produce
side-effects, since this is contrary to the mathematical notion of a function. They argue that
a function should. always produce the same value for a given sel of input values. (They
include the values of free v.ariables as inputs). Accordingly, some languages distinguish
between procédures, which have side-effecls, and tunctions, which do not. ‘However, we are

interested here in functions which both produce side elfects and return a valye.

The effects of a function call on its parameters and free variables are not In themselves
hard to specify. Specifying effects 6n OWN variables is somewhat difficult, because the
effects are only manifested in the results of subsequent calls to the function. The real
difficulty comes from the fact that the expression conlaining the function call may contain
other occurrences of the variables and functions involved. Consider the expression

A+ FI(A) |

where F is a function with a VAR parameler. The value of the expression depends on
whether A is evalualed before or after F(A). This makes addilion be non-commutative, as
well as preventing a number of usefyl n;'yplimizalions. For example, consider the oplimization of
Boolean expressions. It is well knov;m thal in many such expressions the value of one
subexpression can determine the va!uefe of the entire expression. For example, (X or true)
always evaluales to true. If evalualing X will produce a side-effect, the compiler must

produce code to evaluale it, even though the value of the main expression is known at

. compile time,

A third kind of anomaly occurs when the side effect is a transfer of control, e.g. a GOTO to

Scope Jssues in Programming Languages 23 Chapter 3

a statement putside the function. Which of the eftects ot the statement containing the

function call actually occur?

Scope Issues In Programming Language 24 Chapter 4
4. Modern Language Designs

4.1. Overview

In previous chapters we have sludiéd the basic elements of scope mechanisms, and how
they show up in early languages. Up lo this point, language design has mostly been of an
experimental and pragmalic type (i.e. lel’s try this construct and see if it works any better, is
more efficient, elc.) Recent developments in programming theory, however, have provided
much firmer foundalions for coherent language design. The languages discussed in this
chapter have each been based on a formalized theory of programming, with a clearly

understood set of concerns motivaling the design. We will explore the scope constructs of

‘these languages in the light of the concerns motivating them, -

4.1.1. The Software Crisis

In the late 1960, the compuling community became increasingly alarmed over the
regularity with which software projects ran past deadlines and over budgets, Contrary to
earlier expectations, debugging and modification had come lo be an enormous, unpredictable
part of the cost of a project (often 50 per cent or more of the total cost [13, 2]). Dijkstra [7]
was.one of the first lo realize that this cost came from the fact that programs were getling
too complex to be tully understood, and that better methods for controlling complexity wera
needed. This idea slimulated research into "structured programming®, seeking methods of
programming which provide structyre strong enough to support the weight of very large,
complicaled programs. This work had two main themes, One was oriented toward coding,
looking at the syntactic characteristics of clear programs. Dijksira’s GOTQ letter [5] was a
landmark in this area, leading to fruitful discussions about disciplined control flow [25] The
other theme, which emerged from work on program design methods [6], sought .organizational

tools for dividing up a large program into semi-independent parts (41, 42, 44, 55, 48]

By the end of the decade the combined maturity of language analysis and programming
experience was enough to precipitale a new generation of languages rooted both in

theoretical ideals and practical experience.

Scope Issues in Programming Languages 25 Chapter 4

4.1.2. Modern concerns of language designers

The rapid development of new ideas in programming has produced an avalanche of new
lerms. In order to make lhe resl of this chapler clear, | present here -2 brief glossary of the

major concerns voiced by researchers studying the qualily of programming.

4.1 .2.1. Programming Methodologies

The “"software crisis” has prompled a variety of attempts to develop methods of

programming based on formal principles.

- Structured Programming: Designing a program so thal the interrelationships
among its parts may be clearly grasped [6, 16} Note that this is different from a
ctructured program, which is one whose structured design is embedded in the
code [60] Both of the above are different from struclured coding, which is a
programming standard restricting the ways in which certain language constructs
may be used, in order to produce programs with simpler patterns of control flow

(11

- Incremental Development: Conslructing a large program a piece at a time, such
that each new piece can be writlen and tesled based only on the pieces that
have already been constructed.

- Understandability: When referrinL to programs, the extent to which the program
author’s intentions are made apparent to ihe reader. When referring to
languages, the exient to which the language provides constructs which permit
programmers {0 express the structure of lheir programs directly in the code, in
nalural ways. ;

|
4.1.2.2. Overall Struclure

The following terms all relate lo the siructure of programs:

- Modularity: This lerm has been used in a variety of retated senses. In general,
modularity is simply the quality of being divided up. into coherent pieces. Often
this means that each module of a program must be compilabie separately. But
Parnas [49] has proposed a slightly different notion of modularity, which is even

. more desirable in a system of programs. He proposes that a modularization of a
syslem of programs be done along conceptual lines, ralher than by compilation
units. In parlicutar, he advocales that each module make a very small number of
assumptions about olher modules, and each hard design decision be contained by
a single module, so that a design decision, and the corresponding module, may be
changed without atfecting other modules, s0 thal major design changes cause a
minimum of program changes. Pul in the terminology of graph theory, Parnas
would have us divide a software system into a weakly connected set of strongly
connected subsystems. Remember, however, that the division is only at the
source code level, not at the machine code level. An appropriate

i

Scope Issues in Programming Languapes 26 Chapter 4

macro-definition facility can permit an actual machine code routine fo be
composed of code from several different modules. Parnas’s concepl implies that
in mos! cases a complex dala structure will he accessible within only one module,
conlrary to the prior practice of spreading knowledge of the format of complex
data structures over several different modules. For the remainder of this paper
we will ordinarily use the term modularity in Parnas’s sense.

- Modifiabilily: The ease with which a mainlainer can locate the set of places
where the program text must be changed to accommodate an intended
medification. In a highly modular Program, most design changes will only affect
one module, because the decision being changed pertains only to that module.

~ Abstraction: Representing a group of relaled things by a single term which
expresses their alikeness and suppresses their differences. For instance, a
procedure with parameters actually describes a large set of possible
computations, one for each different set of parameter values. Thus the
procedure would be an absiraclion dencling lhe common properties of all the
different computalions. Abstraclion is the principal means by which one can
control the complexity of large programs. For instance, the procedurai
abstraction just menlioned may be invoked in many different places in a
program. Each place it is used it will represent the same absiract computation
(e.g. binary search), but with dilferent parameters lo indicale exactly which
version of the computalion is meant (e.g. which item is being sought).

- Specification: Independent, concise, precise description of the external
properties of a program or subprogram. If a module is to isolate a design
decision or conceal lhe implementation of an abstraction, it must be possibie to
specify exactly whal that module does, independently of how it does jt [43, 30].

4.1.2.3. Fulfilling Requiremenls

A program Is correct If it completely satisfies its intended purpose (8] - But since

intentions are hard to quantify, several other concepts have emerged.

- Verification: proving that a program meets its specifications. Ordinarily such a
proof must be based solely on the program text, and not on test data [32]

- Validation: Proving properties of a program by executing it on test data, or by
embedding executable tesls at various paints-in the program lext.
4.1.2.4. Robustness of Programs and Languages

The reliability of a program is the subjeclive confidence level of its users. Bul several
factors contribute to this confidence.
- Protection: Controlling the rights of different pPrograms lo access various data

objects and other programs. This should not be confused with security, which is
concerned with controlling the flow of information, in the military sense.

- Safely: Invoking an operation whose semantics are not well-defined should not

|
F
|

Scope lssues in Programming Lanpuages 27 Chapler 4

violate the integrity of user or run-time-system data struclures {(or programs!). \

4.]1.2.5. Efficiency

Ideally, a programming language should permit compilers for it to generate generally
efficient code, while also ailowing the programmer to control code generation and space

allocation fairly explicitly in portions of lhe program where time and space are critical.

4.1.3. Goals of Modern Languages

_Algol 68 and Simula 67 are 1ransi|io}\ languages belween the early and modern phaseé of
language design. Algol 68 was designed to be a small, understandable language consisting of
2 small set of constructs which meshed smoothly to produce 2 powerful, expressh}e language
[56] U cucceeded well al these goals, bul several common combinations of its features
proved to be hard to undersiand, and prone to error. Simula 67 introduced the class and
subclass concepls, which were the forerunners of modern data abstraction mechanisms;

however, the language appeared oo soon fo incorporale modern theories of programming.

Wirth brought out Pascal in 1969 with the stated purpose of providing a language which
was easy {o explain, easilly compiled into efficient code, and which encoﬁraged "transparent”
(i.e. understandable) programming [57] CLU, Mesa, and Gypsy were all designéd o support .
structured progrémming, particularly through data absiraction. Modula and Concurrent Pascal
came out as languages which supported modular decomposition of ‘programs, p_érticular[y in
the reaim of multiprogramming. Alphard and Euclid, along with some of the goals mentioned

above, were specifically designed to support verification.

4.1.4. Scope Control and Modern Concerns

Modern programming theory has guided the development of scope in tanguages in a variety
of ways. We observe four major areas of influence, which are the subject of the remainder
of this chapter.

1. Simple Binding Mechanisms. Modern language designers have reached a
consensus on the appropriate uses of each of the standard binding mechanisms,
Much of this agreement grew out of studies of side effec! problems, as well as
out of modern concerns over undersiandability, verifiability, and programming
style.

Scope lssues in Programming Languapes 28 Chapter 4

2. Data Abslraction. Semi-independent resulls in programming methodology,
modularity, specification, verificalion, and language extensibilily have all poinled
to the need for a new kind of range which encapsulates a group of related
procedures, type declarations, and dala objects. Data abstraction mechanisms
provide a more powerful, coherent means of describing the structure of a
program, and simultaneously take pressure off other scope control mechanisms
which would otherwise be used for descriplion purposes for which they were
not designed.

3. Relationships among objecls, types, and ranges. Previously, ranges coincided with
controf structures. However, data encapsulation ranges do not, and thus add a
new dimension of complexily of jossible relationships.

e?

4. Classical Problems. Besides the! well known scope problems, eg. Aliases and
Dangling Reference, there are several well-known programming problems which
have become clearer and sometimes easier when viewed as scope problems in
the lighl of modern programming theory. Data encapsulation has been a powerful
tool for lackling these probiems. .

I

!

4.2. Modern Binding Mechanisms

Early languages, we have seen, conlained a variety of interesting binding mechanisms for.
paramelers and declarations. In modern languages we find a substantial degree of uniformity
in the selection and use of these mechanisms. In this section we review the historical and

theoretical bases for the use .. or disuse .. of the various base mechanisms,

4.2.1. VAL mechanisms

Early languages lended to treat a variable name as always denoling a memory location.
Thus when the language designer wanted a parameler mechanism which passed only the
value of the actual parameter, he provided a place to put that value, and made it available to
the programmer. Similarly, programmer-defined constants had to be stored in memory
locations anyway, so no special mechanisms were provided to distinguish consfan!s from
variables. But modern theory has recognized the usefuiness of truly constant "variables™,
and at the same time unified the notions of conslant declarations and constant parameters.
Named constants are a means of localizing design decisions, such as the size of tables and the
numeric representation of non-numeric informalion. Marking a parameter as constant makes
clear the point that it will not be modified, thus simplitying understanding. Optimizing

compilers can use the constani property to great advantage (e.g. in constant folding, code

Scope lIssues in Programming Lanpuages 29 Chapler 4

motion, and indexing). A constant can be broadcast widely without fear of side-effects.
Consequently, modern languages usually provide a means for declaring a variable as having a
constant value, and for declaring 2 parameter either as being a constant whose value is
provided by the caller, or as being a rcad-only reference lo 2 caller-provided object. In
most languages only one of these lwo allernatives are provided; ho‘wever, Euclid is designed
in such a way that the two allernatives are exaclly equivalent, so neither Is specified
exclusively. Many modern languages permit free names for constants, while prohibiting free

names {or variables, because the latter practice inviles side-effects.

4.2.2. VAR mechanisms

We have already pointed out in section 224 that the VAR parameler mechanism is often
cheaper to implement than other side-eftect-permitting mechanisms. We also saw by studying
the exchange problem thal VAR paramelers were conceptually simpler ihan EXPR and
VALUE-RESULT parameters. This simplicity iranslates directly into verifiability. Consequentiy
VAR mechanisms are the dominant form of side-etfect permitling parameter mechanism in
modern languages. Once again Euclid, which has eliminated parameter-related alias problems,
does nol distinguish be‘ween VAR and VALUE-RESULT, since the lwo are equivalent in the
absence of aliases. Thls non-specificalion permits the compiler to choose, on a case -by-case

basis, which implemeniation is most efficient.

4.2.3. EXPR and PROC mechanisms

EXPR mechanisms have largely disappeared from modern language designs. Algol 68 was
the last major mainstream language lo include them (as a special sort of procedure constant).
Experiences with the NAME mechapisms in Algol 60 showed that it was difficult to
understand, as well as being expensiv[lo implement. We have already seen that the VAR
mechanism is both simpler and cheaper EXPR's chief enduring value is as a toal for
constructing control abstractions, and research in Alphard and CLU (see sections 4.3 and 45.1
), as well as elsewhere, is seeking to fill the gap there. Similarly, PROC mechanisms have
become an endangered species. Algol B8's version is much cleaner than Algol 60's, for it

requires that the parameter and result specifications for the PROC parameler be included in

the parameter specification for Ihe procedure receiving the PROC parameter. Moses {34] has

Scope Issues in Programming Languapes 30 Chapter 4

unified the implementation problems of name paramelers, funclional parameters, and
functional values into whal he calls the Environment Problem, which is the problem of keeping
track of the name binding environment in which the parameter or functional value originated.
The cost of maintaining this information pervades the enlire language system, slowing down
compilalion and execution even in programs which never use it. In addition, functional values
pose a dangling reference problem (see section 4.4.2.1) if the funclicllr; contains free variables
which must be bound in ils STATIC conlext. Functional arguments and values, like name
paramelers, continue to have value as control abslractions. However, to separate control
from data, this writer believes that “funargs” and "funvals” should nol be permilled to conlain

free variables. Without free variables, there are no scope problems {o argue againsl them.

4.2.4. Free Name Meéhanisms

DYNAMIC free name binding has been eliminaled from the most recent languages, because
of ils limited utility. Some languages also eliminate free name binding altogether in ranges
whose DYNAMIC and STATIC conltexts do not coincide, {0 enhance modularity and reduce

opporttunities for side-effects. _

4.3. Data Encapsulation ..

The ability to group together and isolale a dala slructure and the operations defined upon
it, has heen the single most important recent development in programming languages. In this
section we will trace some of the origins of the idea, describe Its essential components, and

survey its manifestation in modern Programming fanguages.

4.3.1. Origins

Data encapsulation has emerged in response lo a variety of modern pProgramming concerns.
Each of the concerns has evoked a slightly different nolion of what the construct should look

like; it is not yel clear whelher a single construct c:an salisfy all the concerns.

One line of research has sought to generalize the notion of a data type to make it possible
for a programmer to define his own types. Early languages had only a few base types (e.g.

infegers, reals, booleans) and only one or two structuring methods (e.g. arrays, records).

Scope lssues in Programming Languages - 31 Chapter 4

Pascal, Simula 67, and Algol 63 pursuel data slructuring as a reasonable nolion of type, and
provided facilities for creating and naming dala structuring templates, so that the same
structure could be used for objects crealed in various places, especially as formal paramelers

to procedures. ‘This notion. drew its 1heorct|ca| basis from mathematics, which defines a type

as a set of values {18] Algol 68 and leula 67 both had tacilities tor associaling procedures -

directly with their types (classes in Simula). However, the fult impact of this notion was not
realized for several years. The last step in this line of development was the notion of
resiricting access lo the representation of a type lo the collection of procedures associated

with it. We shall discuss this more in the nexi seclion.

Parnas, in his studies of large software projects, discovered that decomposing a program
according to compilation units was nol a conceptually natural method [45] That is, such
decompositions tend {o spread across several modules the code implementing a single design
decision. In particular, Parnas realized that often times the main concepls in a system are
best characlerized by data structures, rather than by algorithrﬁs alone. Theréfore, he
proposed decomposing 3 system into modules which each include both data and procedures,
taking special care to conceal all but the most basic design decisions inside modules. This
proposal implied that the interfaces beiween modules had to be as "narrow" as possible, and
in particular would not include any elaborate data structures, control blocks, or such things.
Parnas modules, then, can be thought of as data structures which can only be accessed via
operations defined right along with them in the same module. Note that Parnas intended that
his modules only be separale ‘in source form, and thal lhe accessmg procedures could be
expanded in line when appropriate, rather than incurring the cost of a procedure call each

time

. Research in progfam verification has shown data encapsulation to be a powerful tool for

- simplifying the verification of a program {60). When the data contained in a module may only

bé modilied by procedures delined in that module, many properties of thal data may be
verified by regarding ihe procedures as predicate transformers, and doing induction on the
number of procedures applied to the data [17) Verification has brought Into focus the

concepl that the initial values of variables can be vital lo the Integrity of programs.

4.3.2. A Data Capsule

Scope Issues in Programming Languages 32 Chapter 4

I shall now define a simple dala abs!raciion mechanism, showing the essential components
of such mechanisms, and why those components are useful. In the next section, Il compare

the actual mechanisms found in real languages.

A capsule is a data structuring templale, in many respects siml:!ar to any of the-Pascal
structured types, or Algol 68 modes. In particular, a capsule can be the template for creating
an unlimited number of objecls, each of whose "type" Is the hame bf the capsule. Herealter,
when | use the term type, I include capsules as well as other structured and primitive types.

A capsule defines a range consisting of lhree major parts: a representation, a set of

operations, and supporting declarations. The represenlation section contains a2 set of
declarations of data structures which will contain the data of the capsule variable. That is,
each variable created from the capsule ‘will contain an instance of each of the data structures
declared in the representalion. The operalions are procedures which may be cailed by the
user of the capsule variable, to examine and modify it. The capsule may define an operation
with the reserved name INIT, which is to be automatically called whenever a variable is
created from the capsule definition. . This routine can then inilialize the represantation
structures so that they have reasonablt values in them the first time any operation is applied
to the variable. The supporting decia: ations include whalever procedures, data types, and
capsule definitions the capsule crea:lor reguires lo Implement the representation and
operations. The documentalion of a hapsu!e will always include a sel of specifications
sufficient to let the tapsule be used w!rlhout inspecting its amplemenlahon. and to verity that
the mplemeniahon salisfies the external specifications. For further introduction fo abstract

data types, see [28]

A capsule definition may appear anywhere a type definition may appear, and variables may
be declared to be of the type defined by the capsule, anywhere the capsule name is

accessible,

Scope lssues in Programming Languages33 _ ' Chapter 4

type queue = capsule
operationsg size, insert, remove, full, clrculate
representation
integer array all:100}
integer front, back
endrepresentation

procedure modincr (isinteger} =
J 1= (i mod 108) + 1

procedure initlg:queuel = q. front = q. back 1= 1

procedure sizelg:queuel returns count:integer' =
count := (g.back - q.front) mod 169

procedure inser t {q: queue, item: integer) =
if sizelg) equals 93 then fail else
q.alg.back) := item
modincr (q.back}

procedure remove (q: queue} returns item:integer =
if sizelg) equals B then fail else ‘
i := g.alg. front)
modincr (g. front)

procedure full {q: queue) returns b:boolean =
¢.size equals 39

procedure circulate {g:queue} returns i:integer = ‘
inser t {g,remove(q)) - '
| ¢+= q.alg.frontl

endcapsule

In this example, the capsule .. endcapsule pair delimit a range, SO that each of the

declarations ip it may make use of each of the other declarations. The representation
variable names become field selectors for the ‘queue variables passed to the operations. The
procedure circulate uses other procedure definilions as well. The operations clause lists the
procedures declared inside. the capsule which may be used oulside it. These operations
defined for the capsule are the only means by which o variable of tﬁnt type may be
manipulated by code outside the cepsule! Thus the writer or reader of a capsule may be
assured that he has before him all of the code which is relevant to the data structures in the

representation. For example, a program using a queue named M could include the statement

if not full(m) then nsert(m,3}

but that program could not contain the‘ expression

!

Scope lssues in-Programming Languages34 Chapter 4

m.alm. front-3)

n_n

because "a".and “fronl” are not exported from the queue capsule. Conversely, the only
variables which may be manipulaled by the code inside a capsule are the variables passed as
parameters to i, or declared in supporting declarations. A capsule may not contain any
occurrences of free variables! Thus the programs which use capsule variables are immune 1o
thanges in the implementation of lhe capsule, so long as the implementation satisfies the

capsule’s specifications.

-

In summary, capsules have these tmportant properties:

- Madularity. Many times a design (E'Jecision will only affect one data abstraction. A
capsule gathers into a single range all of the code pertaining to a particular data
abstraction. '

- Modifiability. A capsule is sufficiently isolated that changes in the design
decisions contained in il usually have no effect on any olher code. :

- Efficiency. Capsules need not be compiled separately. A compiler is free to
expand any operation in line at ils call sites, if efficiency so dictates, '

- Understandability. A capsule variable may be used as if il really were a primitive
lype in the language, without reference to ils implementation. Conversely, its
implementation may be understood without reference to how it will be used.

- Verifiability. A capsule correctly implements the abstract data type described in
its specification if a) the initial value of a capsule variable represents a
legitimale abstract value, b} every operation on a capsule variable transforms
legitimate values into legitimate values, and ¢) the transfarmation on the concrete
representation coincides with the specified transformalion on the abstract
variable. The two critical properties of capsules here are the concealment of the

- data structures to prohibit outside access, and the INIT routine to assure initial
consistency.)

4.3.3. Mechanisms in Modern Languages

Simula 67 and Algol 68 both had mechanisms for associating procedures with dafa
structures (classes and modes, respeclively). Algal 68's mechanism seems 10 have been an
accident of its generality; Ihe syniax required to use such a procedure seems exceedingly
~awkward. Simula 67, however, plainly intended that programmers would ordinarily associate
procedures manipulaling.a class object directly with the class. It also provided a convenient
initialization mechanism. Not until recently {40], however, has Simula 67 added a protection
facility 1o conceal some of the names declared in a class definition from code outside the

class.

Scope Issues in Programming Languages 35 . Chapter 4

Moaula, Euclid, and Alphard are lypical of modern languages implementing capsules. Their
origins, and resuiting mechanisms, however, are very different. Modula modules are very
similar to Parnas’s module concepl, with primary emphasis on isolating a module from its
context. Alphard forms were designed lo suppor! the design of abstract data types, ba\,ed an
Hoare's verification methodology. Euclid’s module facility is a generalization of Modula‘s, with

suppor! for verification.

The module in Modula is not an absllrad data type; it is simply a colleclion of declaralions,
plus a piece of inilialization code for the variables declared there. The inlerface between a
module and its context is completely { excepl for an initialization problem, discussed later)
under the programmer’s conirol. A module is a CLOSED range. Any identifiers brought in
from its conlext must be listed in ils uses clause. Any identifiers occurring ‘within it which
are 1o be available outside, must be Inamed in an g_xp_g_ﬁ_g clause. However, not all of the
atiributes of identifiers may be exported. In particular, a type definition may be exported,
but its field seleclors may not, so that objects of that type may be declared oulside the
module and passed around as parameters, but their cﬁntenis may no! be examined or
modified except within the module. Simitarly, yariable names may be exporteg; however, they
can only be read oulside the module, not modified. Thus a module is respbnsib|e for all of the
objecis it dectares, and for the use of all the lypes il declarles. It méy release information via
exported variables, but need have no fear of side-effects on them. Moduia has thus achieved
a greal deal of flexibility for ils mechanism white still maintaining sharply defined boundaries
belween modules. In particuiar, although a Modula module is not a type, a module which
consists only of one lype declaration and associated procedures, would corfespond directly

to a capsule

Modula types are not compiele!y prolected by its modules. First of all Modula type
definitions do nol provide for initialization. Consequently no procedure provided for an
exported type may be sure that the varuabie passed to il has been initialized. Secondly, the
language report [58] is ambiguous aboul whether exported types are forgeable, i.e. whether
a p'rocedure expecting a parameter of an exporled type will accept a parameter of any type
having the same structure. However, Wirth {59] did not intend thal Modula should probhibit
bad style, but only that il encourage good style, so he probably' doesn’t c‘are whether
exporied types are forgeable. He would simply say thal the verification of a moduié assumes

faithful initialization for exported types, and no forgery of them. Given those programming -

-Scope Issues in Programming Languages 36 Chapter 4

conventions, such an exporled type is definitely a data abslraction, and a module containing

only one such type and its procedures, would be a fully general capsule.

A Euclid module, though similar to a Modula module, may be used either as a simple
collection of declarations, or as a template for a new dala type (ie., as a capsule). When the
module is used as a lype, the initializalion code becomes the initializalion procedure for the
type, and the variables become the representation of the lype Exporied names may be used
only in conjunction with the name of the module or the name of a variable whose type is the

‘module. This applies uniformly to exported constants, variables, types, and procedures,

Euclid also has a conventional type mechanism, with inilialization based on parameters to
the .2ype. It such a type is exporled from a module, none of ils field selectors are availabie
outside the module, unless exported with i. Even assignment. and tesis.for equality are
concealed untess explicilly exported. :

Alphard forms are designed o model dala types directly. A form definition defines both
the representation and the operations for the type being defined, and provides convenient
means for Incorporaling the specificalions for the type, such that it may be understood

without reference to its implementation. The supporting declarations In an Alphard form may

include other form declarahorls which may also be exported

The crucial difference between the types modeled by forms and thoese modeled by Euclid
modules is that form operations may operale on several instances of the form s:multaneously,
whereas a module operation may only operale on one msiance of the module. This latter
view is perfectly adequale for many purposes, e.g. stacks and queues. However, consider a
capsule implementing sorted lists, which mus! include an _opelralioh lo merge two lists. A
Euclid module defining a sorted list couldn’t do i, except by repeated remove and insert
operations, which wouldn” be very ef li'.:ieni. An Alphard form for sorted lists, on the other
hand, could easily include an operation kuhich took two such lists as paramelers, and accessed
the representations of both. This dlfference in mechanism might well be due to the view
taken by Modula, and partially adopled by Euclid, that a module exls!s to manage resources.
It would be strange indeed to merge two lists of objecls built from different resource pools,
What has in fact happened in Euclid Lnd Moduia s that the principal data type definition
facility has been separated from the encapsutation mechanism.” [n Alphard, the usual
programming paradigm is to define one type per form, giving abstract and concrete

specifications for it. Any data shared among instances of the form is declared specially.

Scope Issues in Programming Languages 37 . Chapler 4

Procedures which access the common data must do so through an instance of the form. In
Modula, the normal case is to create a module which declares both variables and types, and
précedures wﬁich operate on both. Procedures which take parameters of those types may be
thought of as operations on them; those that don’t are just operalions on the main variables
of the module. Euclid tried to blend the two ideas, and only partially succeeded. Since a
module’s variables represeni a resource pool, of which there may be several inslances, the
module definition may be used as the definition for a type. It the module also defines and
exports conventional types, they must be accessed through the name of the parent module,
e.g.

Spaceﬂanager.BlockTgpe

If thal module is acltually a lype definition, the BlockType must be accessed through a
particutar variable of type SpaceManager, so that the block is allocated from the right
storage pool. Unfortunately, this means that even lypes which are not part of resource
managers, must still accessed through a medule name every time, if they are to be protected.
The language report even gives an example of a module implementing floaking point numbers,
which forces every operalion on floating point numbers to give the name of the floating point
module as well as the name of the rouline -- even though floating point numbers do not

shrare datal

4.4. Relationships among objects, lypes, and ranges

Scope, after all, is concerned not primarily with individual objects, names, and ranges, but
with the lnterachons belween them. In this section we study the ways in whlch objects,
types, and ranges can interact in modern languages. We explore the role of initialization in
| data absiraction and data integrity. We study lhe problems of describing and verifying
rélaﬁonships between objecls. Finally, we study relationships among types, both when the
types are aimost unrelated, as with generic types, and when they are closely related, as with

exported lypés.

4.4.1. Initialization

Inlhallzahon has become very important in language design, because of issues of safetly

and verifiability, Unlnsliahzed pointer variables are unsale, because a dereference. for

-- Scope Issues in Programming Languageé 38 ‘ Chapter 4

assignment via such a variable will deify some arbitrary storage location. Inilializalion is
important for verification, because lhe proof that a data objecl taithfully represents its
abstraction ordinarily sltarts from the assumplion that the object starts out with 3 legal value

[17). (The alternalive is lo show thal it receives a legal value prior fo the first time it is

read.)

|

Initialization facilities in early langdages were fairly weak., Of the three studied earlier,
none had any facilities whalsoever, In'particular, tack of inilialization was one of the fatal
weaknesses of the OWN construct in Algel 60. An OWN variable is supposed to réfain its
value between invocations of the block in which it is declared. To use this faciiity, the code
of the block must assume that the variable already has a legal value when éxecufion of the
block commences. But during the first invocation, this assumptitlan will be false. So the

programmer using an OWN variable had to add a mechanism to check, on every invbcalion,

whelher or not it was the first.

Three main s'lralegies have been developed to handle Initialization:

- Default Values. This scheme inserts a value in every variable when it is created.
It may be an ordinary value, like zero for integers, or it may be the special value
UNDEFINED, which causes the program to hait if it is ever examined. Both
schemes incur the initializalion cost for all variables. The former conceals many
of the bugs caused by omilted inilialization. The latter requires special
processing on every felch operation, which requires special hardware support to
avoid being excessively expensive.

- Expticit initiatizalion. Alphard, Euclid, and Algot 68 all provide explicit facilities for
specifying the initial value of a variable. Algol 68 permits the declaration to be
. the left hand side of an assignmenl statement, and permits the intermingling of .
. statements and declarations, as long as each variable |s declared before ‘it is .
" used. The initial operations in Euclid and Alphard can sel up the initial value at
the time the object is created. Both languages require the programmer to either
. provide an initial value, or somehow prove that nane is required.

- Virgin scopes. Dijkstra [9] has suggested thal special syniactic support be
provided so that lhe programmer may separale the declaration of a variable
from its inilialization, yet slill have lhe compiler. check that the variable is
initialized before it is used. This separation is important because the initial value

. of a variable might not be known upon entry to the block in which it is declared.
Inserling a dummy value would be distracting. Instead he proposes thal the
stafement sequence comprising the range in which a variable is dectared be
parlitioned into three subsequences: ihe initial sequence of statementis in which
the name does not appear, the stalement in which the variable is initialized, and
the sequence of stalements in which the value of the variable may be used. If
the initializing statement happens to be a compound statement, the variable must
be imported into it as a virgin variable, and the statements comprising the inner
range must be partitioned in the same manner as the top level. Dijkstra then

Scope Issues in Programming Languapes 39 . Chapter 4

applies the reslriction that inilializing slatements may not be repetitive
slatements, and thus guaraniees that the initialization is not performed more

than once, Furthermolre, he requires lhat if the initializing stalement is an
allernative slatement®, thal all allernalives be initializing statements. This

guarantees that the variable is inilialized exactly once. Algol 68’s mechanism
corresponds somewhat to Dijkstra’s proposal. Because it permits inlermingling of
declarations and stalements, it overcomes the problem of meaningless initial
values. However, il provides no syntactic assistance for preventing mulliple
initializalion, nor does it permil inilialization inside alternative or compound.
ciatements, since the scope of the variable would then be limited to that
statement.

Euclid’s approach to inilializalion relies on the assumption that programs will be verified
before they are run [48) From this assumption .one may conclude that the only time a
variable may be read before it has been assigned to, is when the value doesn’t matter! More
precisely, the specifications for an operalion may state that the variable must be in some
paﬂicular state when the operalion is applied. Thus, if the capsule did not provide an explicit

initial vaiue, it could simply provide some operalions which did not examine the value of the
variable, but did set it, and specify that one of them must be applied to the variable before

applying any of the operalions which do make use of the current value of the variable.

Alphard’s approach lo initlalization i3 the same as Euclid’s; thus both languages achieve by

verification what Dijksira would do syntaclically.

4.4.2. Object-Object Relalionships

Most of the data structuring facilities in modern languages, including data absiraction
mechanisms, have been orienied iowar-d simple composition of related objects. That is, oﬁe
lype is composed of objects of another type, and one module may be composed of other
modules. Thus, the relationships among objecls and among modules form trees. However,
many programs require more general, graph-like relations among objects. Here we describe

old and new mechanisms for such programming, and the perils therein,

A.42.1. The Problem of Pointers

The general pointer variable was a direct descendant from assembly language

le.g. if-then-else

- Scope-Issues in Programming Languages 40 Chapter 4

programming. When one data objecl needed 1o refer to another, it simply recorded the
aadress of the other. LISP and PL/l adopted the notion unchanged. Programmers quickly:
found it both powerful and dangerous, because of the possibility of treating an uninitialized
pointer variable as if it confained a legitimate address, and because of the possibililty of
undetected misiakes concerning lhe Tyﬁe of the object pointed to. The transition languages,
Algol W, Pascal and Algol 68, all required thal a painter variable be declared to only point to
one type of objecl. This solved the data misinterpretation problem, but not the initialization

problem,

A second problem with bointers involves those objecls which can be created and deleted
independently from the block struclure of program control. Because such objects provide the
potential for graph-iike structures which grow and shrink arbitrarily, they introduce the
possibility that an object might be deleted while some variables are still pointing to it. This is
called the dangling reference problem . If the space formerly occupied by the deleted object
is now reused for some other objecl, one again has the potential for very obscure bugs.
Most language systems now handle this problem by retaining a count of all pointers to an

‘object {reference count), and not deleling the abjecl until the reference count becomes zero.

However, the dangiing reference problem recurs when some of the objects and pointer
variables are.allocated from a stack. Then one has the possibility of the stack discipline
forcing the deletion of an object with outstanding references. Algol 68 comes very close to
.running afoul of this problem. In that language, all variable names are pointer (ref} constanté.
Thus any stack objeét may be referred to by ref variables of the appropriate type. To keep
the problem from being unmanageable, Algol 68 requires that the extent of a ref variable
must fall entirely within the extent of any object assigned to it. Since Algol 68’s dynamica‘lly
allocated (heap) objects are reference counted, it is safe for a stack variable to refer to a
heap object, and illegal for a.b_e_a‘g object 1o refer fo a stack objecl. Furlhermo;e, it is illegal

for a stack variable o refer to a more recently allocated stack object.

Algol 68, however, confuses the language user with two rules involving stacks and scope.
First, if an expression could evaluate to a reference to any of several stack objet;is, with
different scopes, and al least one of those objects has a scope which would be legal for the
context in which the expression occurs, the language permits the scope checking to be
deferred until run-time, on the chance that the legal object might be selected. Second, Algo!

68 permits the programmer lo allocate objects from the stack without naming them, but

Scope Issues in Programming Languages a1 Chapter 4.

defines the scope of such objects to be the smallest enclosing statement which includes
named slack-allocated objecls. Thus the scope of the stack allocated objecls depends on the

presence or absence of possibly unrelated declarations,

Graph-like structures have an intrinsic problem wilh aliases. If two pointer variables in a
particular range have the same type, it is in general impossible to prove that they don't refer
to the same object. Bul more imporlantly, graph-like siructures are useful precisely because

they often do incorporate more than one way of referring fo an object.

Euclid has tackled the first of il1gse lwo problems directly, by introducing ‘collection
variables , which partition the space bf objects of a given type. The type of a pointer in
Euclid includes both the type of the object it will paint to, and the collection from which the
object will come. Thus two objects from different graphs will ordinarily also come from
different collections, and poinlers to those objects may be shown syntactically nat to be
aliases for one another. The second alias problem mentioned above, however, is intrinsic o
the data siructure being described, and is the source of the dilemma discussed in: the next

section.

4.4.2.2. VAR Parameters To Capsules

We have seen that general graphs provide lillle assistance in managing the complexity of a
data structure. On the other hand, there are several more restricted classes of graphs which
humans can understand weil, such as lists and trees. Data capsules very nalurally describe
tree-like relations among objects, where the relalion is "is composed of". For instance, a
capsule might define a symbol table entry to be composed of a string, an address, and a
value. Similarly (but not quite the same), a ree is compased of a left son, a right son, and a
value, where lhe sons are references to trees. This second example Is somewhat more
tenuous, because one could envision operalions which could cause the feft son of a tree to be
the tree itself. However, if a tree can only acquire a son by "growing” one, and can only lose

a son by deleting it, such trregularities cannot occur.

Nonetheless, there are many cases where a programmer would like to construct graph
structures containing cycles, wilhoul permitting the full generality and unmanagea'b.ility of
general graphs. The chief mechanism proposed for achieving this in modern languages is the

VAR parameter to capsule definitions. An object passed as a VAR parameter to a capsule

. Scope lssues in Programming Languages 42 . Chapter 4

varlable instantiation is accessible within any operation applied to thal variable, throughout
the lifetime of the variable, in lhe same way that an initial value for a pointér field in a
record creales a graph edge. Nole that the parameler object might well be stack allocated,
opening up opportunities for dangling references. It also provides an alias of sorts for the
parémeter variable, since any operation on the capsule variable may modity the original
parameter variable. (The alias could become more explicil if the parameler name were also
exporied by the capsule!) Conversely, the object passed as a parameter to the declaration
might also be a parameter lo some operalion on the capsule variable, creating an alias
problem inside the capsule range. Becpuse of the difficullies listed above, the designers of

Alphard have still nol settled on the right sel of restrictions to place upon VAR parameters to

capsules. .

Euclid has a novel parameler mechan“ism which bears a superficial similarity o VAR capsule
parameters, but serves a very differenji purpase, and lhereby avoids some of the conceptual
difficullies. Instead of permitting VAR parameters lo a capsule, Euclid provides an imports
clause, which lists a set of identifiers from the conlext of the capsule which are to be
available inside every instance of the capsule. A procedure body in Euclid may atso have an
imports clause. The variables in an imporis clause must be available at both the definition
site and the invocation site of the range (procedure or capsule) o which the clause is
altached. (A variable is considered available _at an invocation sile even if it is a concealed
fieid of a variable which Is actually visible in the invocation conlext.) Thus these identifiers
are ri'ough!-y equivalent to normal parameters, excep! that the actual parameter is specified al
the definition sile instead of the invocalion site. The motivation for this construct is that
Euclid’s capsules and procedures are both closed rangeé, and may not contain any free
varlables. The Imports clause provides most of the same functionality as Inherited names, but
with two important differences: the inherited names are specified explicitly in the range
header, and the names are bound beth statically and dynamically to the same variables. The
static—dynamié rule for imports gives imported objects full status as candidates for
side—ef{ecls. That is, it guarantees thal any object available within a capsule operalion can
be treated as if it were a parameter to thal operation. This is in contrast lo a VAR capsule
parameter, which might nol be available at the site of every operdlion invocation on the

capsule variable, and thus nol considered when noting side-effects.

Despite the potential complexily of VAR parameters to capsules, the following two’

examples show their importance.

Scope Issues In Programming Languages a3 Chapter 4

4.4.2.3. Binary Trees

Shaw et al [B0] have written and verified a capsule which defines a binary tree. Their
tree definition actually defines two dala abstractions: a tree and a node. Every node belongs
to at most one ltree; each lree may contain many nodes. One means of moditying a tree is by
"growing™ a son for one of its nodes. Such a growing operation affects both the original
node and the iree fo which .ii bglongs. The most nalural way lo express the relationships
Involved is to permit a tree to refer to its nodes, and also to permit a node to refer to its

tree. Otherwise the "grow” operation is hard lo define. Consider:

- Grow(lree, node): does the node really belong to the tree?

- Grow(node): unless the node refers lo the tree, how can this operation update
the node count for the tree?

- Grow(tree, balh): what if the palh from the root of the tree lo the desired node
isn’t known? '

Shaw et al use a VAR parameler to the node capsule to let the node refer to its parent
tree. The Alphard group is contemplating reslricting VAR parameters to capsules to be aof the
type of the smatlest conlaining capsule. Eucli'd’s.imports clause would per.mii this kind of
reiationshib. The‘node capsule would be defined inside the tree capsule, and Wou[d import the
name of the tree, or of the appropriate companents of the tree. Then any operation to
creale a node would have to select the "node capsule” field from a parlicular tree, and that

particular tree would be imporled into the node being created.

4.4.2.4. Resource Problem

Resource consumplion is an aspect of program behavior which untl! fairly recently has not
been treated with the tools of prt‘.’ograr’nI verification. In many high-level language sy.stems it is
of no concern, because the language bystem conceals the finileness of resources from the
user. .However, in programs which imp:lemenl operating syslems, resource consumplion is_ a
vilai concern. Nonelheless, it is USUa")) separable from other correctness concerns, and often

should be treated separalely, although with the same toals.
i

! _ _
Consider a symboi table in a language translalor. The capsules which implement the types

symbol table and symbol table eniry will ordinarily be considered correct if they faithfully

represent the information stored in them. But what if the symbol table overflows? Is the

Scape Issues in Programming Languages 44 Chapter 4
program still correct? In many conlexis it would be, because the user would simply
reconfigure the translalor wilh a larger symbol table, and try again. But Hf the symbol table
were sloring airplanes in an air traffic control system, symbol table overflow (i.e. 100 many
airplanes) would be a fatal error. S50 consumption of symbol table resources must be

considered in the verification of such a system.

VAR paramelers lo capsules have been proposed as a vehicle for propagating access to
resources. We have already seen the side-effect problem inherent in such relationships. It
becomes particularly critical here, since capsules which otherwise have nothing to do with
each other might draw resources from the same pool, when neither is aware that he is

consuming resources al all, because the consumption Is hidden in the capsules it uses.

The Resource Problem is a topic of ongoing research.

4,4,3. Generic Types

VAL parameters to variable declarations provide information for two forms of initialization:
initial values, and slruclure seleclion. In early languages, array declarations included
"parameters” which indicated size and index bounds of the array. In transition and modern
languages, a VAL declaralion parameter might also select one of a finite set of allernative
structures for objects of the specified type. Such alternative structures, usually called
variant records or variant types, are a powerful means of grm:iping related types. For
instance, a factory inventory program might like to use the same procedures for processing
all requisition forms, except for small pieces of the program which specialized in. office
requisitions or maintenance supplies. The programmer could declare a type "requisition™ to
be a record with a set of fields for requisitioner, account number, date, etc, and then a
different set of fields for each category of requisitions. The declaration of a variable would
then supply a parameter to indicale whether It would handle ail kinds of requisitions, t:;r only

some particular kind. .

A generic type is a data capsule in which some of the component types of the
representation are p'rovided by the user of the capsule, Similarly, a generic procedure is one
for which the types of some of the parameters are likewise provided by the caller of the
procedure. Thus a generic type defines a whole set of capsules, one for each bossib!e set of

user-provided types, and a generic procedure defines a set of actual procedures, one for

Scope Issues in Programming Language"s 45 Chapter 4

each possible set of parameter types.

!
That ubiquilous example, the stack.‘, is also suitable for iilusiraling generics. A stack

capsule might well be defined indcpendently from the type of object being stacked. Such a

definition might look something like Iheifollowing:

capsule stack(T:type) operations push,pop, top, empty =
begin
proc push{s:stack(T),item:T)=

proc topls:stack(T)) returns itemT =

end stack

The stack defined above can stack any sort of object, provided that {a) all oﬁjecls are of
the ;ame type as specified al slack declaralion time via the parameter T, and (b) the type of
the actual parameler provided for T must have an assignment operation defined for it. The
procedures for the stack might or might not be considered generic procedures. At the sile of
the procedure definition, the lype T is a bona fide type, However, since T s defined
parametrically at the cépsqle head, the ' procedures defined will have many different versions,
depending on whal paramelers are prc;vided for various stack variable declarations, Here 55

a simpler version of a generic procedure:

proc equal (T:type, a,b:{l..18) array of T) =
beqgin ‘
for i =1 ., 1B do 1f ali) naotequal bli) then return false;
end

This procedure can test for the equality of the vslues of any lwo arrays with indices
between 1 and 10, provided that bolh arrays contain the same type of value, and that type

has a "notequal” operator defined on it.

Generics are a logical generalization of the abstraction method Introduced by capsules.
They represent the nolion thal a parlicular body of code may be written based only on the
specifications of the data lypes used in it, without reference to the implementation, or even
the true identily, of those types. Genéric types are parlicularly useful for describing types
whose principal purpose is organization. In the stack example, there is no realson why the
code implementing stacks should have access to the representalion of the objects being

stacked. Conversely, operations on an element of a set should nol necessarily have access to

- Scope -Issues im-Programming Lanpguages 46 ' Chapter G = =

the link or tag fields which connect it wilh other elements of a sel.

Generic lypes and procedures take over one af the functions previously provided by PROC
_parameters. Procedures which otherwise might be passed explicitly as separate parameters
may sometimes be passed implicitly as one of the operations defir‘sed on the type of some
parameter. In particular, the chief complaint aboul procedures as parameters was the cost
and confusion involved in free name binding; with generic types the data invalved is passed
explicitly, with procedure atlached. There is no cpportunity for side-effects olher than on the
actual parameters, or via whalever other side-effect mechanisms are present in {he
parameter type. (The {ree name argument against procedures as arguments applies equally
well 1o returning a procedure as the value of another procedure. The chief complaint against
them is the complexily of free name binding; in such cases an abstract data object as the
procedure value, with the appropriate operation defined on {1, makes the data passing explicit

and well controlied.)

Simufa 67 had a simple generic lype facility which was a generalizalion of the notion of
variant records. Its subclass mechanisn? made it possible to exiend a class wi‘lh another class,
producing an object which was eligible[for operalions defined on either ctass, with operations
on the base class ignorant of the existence of the extension. The base class could be
exiended by different class in the samé program; each exlending class is called a subclass of
the base .class {class). When Simula !167 added facilities for concealing representaiions, it
included facilities for permitting a basé class to conceal pa.rfs of its representation from any
subclasses defined on it. Note that the base class (corresponding to a generic type) need not

make any assumptions aboul properlies of the subciasses (parameler types).

CLYU has always included lypes as parameters to capsules, requiring only that the
parameter type have operations with specified names and parameler types. Euclid omitted
generic types primarily due to skeplicism about the cost of implementation. Alphard’s work
in generic types is one of ils major conlributions to language design; it provides very
convenient mechanisms for specifying a wide variety of properties of a type passed as a

paraméter. without tying down the implementation of those properties. For an example, see
{331

4.4.4. Closely Related Types

Scope Issues in Programming Languages 47 _ Chapter 4

We have already seen In previous sections lwo kinds of close relationships between types.
We have seen lhat the relation "is composed of" is ceniral to the melhodology of dala
abstraction. We saw in the binary tree example thal a type might want to export one of the
types of which it is composed, because thal type provided a different view of the same
‘object. From that nolion we may generalize fo the possibility of defining two types which
.are intimalely related by common design decisions, shared data, or mixed-mode operators
(e.g. "compute the area covered by this square and this circle, even if they overlap™). To
handle such situations one. would like {o be able to access the representation of two types
simultaneously. Such access is quite convenient in Euclid and Modula, since a module defining
more than one type provides access to the representation of each type to all procedures in
the module. Alphard provides even finer control over such overlapping, by permitting the
specificalions exported with a form to be more abstiract than the specifications used inside

the parent form. ‘

4.5. Applying Data Abstraclion To Several Scope-related Problems

The notion of data abstraction has revolutionized the enlire field of language design. it
has produced new insights into a variety of problem domains. New implications continue to

emerge. The following problem areas have received significant benefils.

4.5.1. Loops as ranges

One of the more famous shortcomings of Algol 60 was its iteration statement definition.
The rewrite rule used to define it implied that the quantities used lo compute the steps af an
iteration would be computed as many as three times for each iteration. Rnuth {23] bas

described the debate over what was really intended, in great detail.

Afgol 60’s problems arose from the fact that the iteration variable, step-control
expressions, and loop body were all considered o be in the same range as the surrounding
stalements. Thus it was perfectly permissible, if not altogether reasonable, to include
statemenls in the procedure body which would change the step size of the ileration, or even
change the value of the conlrol variable. Languages like Pascal, ‘Algo! 68, and Bliss have

taken some variant of the posilion that the iteration variable is a NEW variable, implicitly
‘ N

1

- Scope Issues in-Programming Languages 43 Chapter 4

imporied as a VAL variable into the loop body, and changed only by the stepping code.
Similarly, they view the conlrol expressions as values computed at loop entry and constant

thereafter. (Of course, many compilers do nol enforce these rules.)

The above constrainls make il lrivial lo prove that a for-loop statement terminates,
independent of what the loop body does. However, they also restricts the kinds of ilerations
which the counted loop may describe. Those which have been excluded must be described

by the while-loop.

Complex data struclures oflen require correspondingly complex iteration sequences over
their elements. One common operation on trees, for inslance, is printing them in order.
Searching for an element with a particular property is another common operation on large
data structures. For this reason, fanguages which permit definilion of large structures also
define ileration methods for them, Arrays, for instance, may be easily traversed in subscripf
order. Euclid has a special variant of its iteration construct for iterating over the elements of
a set. Alphard, Euclid, and CLU are all developing mechanisms by which the author of an
abstract data type ‘may specify, and conceal, a set of procedures which will generate the
elements of the type one by one [51, 31] All of the conslructs define a closed range which
takes an object of the type as a parameter, creates a concealed object to maint_;ain the state
of the iteration, explortvs a variable conlaining the curreﬁt element of the generaléd sequence,

and provides a means to "pulse” the state to produce the next item in the sequence.

.The unsolved problem in this line of research is the question of how to describe the ways
in which the object which is the pararﬁeler to the iteration module may be modified, both
“within the module and in the loop body. Nolice that this is the same problem thal Algol and
Fortran had with their step-control expressions. One early solution proposed for Alphard
was to prohibit the loop hody from modifying the parameler objects. This was finally rejecled
because it excluded the common operation of examining the elements of a sel and removing
some of them. Ancther proposal provides syntactic means for specifying precisely which
operations on the parameter objects are permissible within the loop body. None of the
solutions proposed so far makes it possible in general lo specify an iteration rpodgle which

will terminate regardiess of what the loop body does.

4.5,2. Aliases Revisited

Scope Issues in Programming Languages 49 Chapter 4

Concern over aliases and side-effecls has been a recurrent theme throughout this paper.
It has been a primary criterion for judging binding mechanisms, for designing pointer
mechanisms, and for anaiysin_g refalionships among objects, types, and ranges. Indeed, one
language in particular, Euclid, has sel the removal of aliases as one of its most important

goals [48] It has done extremely well. :

Euclid’s rule regarding aliases is the lollowing:

"The language guarantees lhat lwo identifiers in the same scope can never refer
to the same or overlapping variables."[26]

To do lhis, Euclid introduced a number lof innovations. First, any range wh|ch can be entered
other than via the textually precedmg stalement is a CLOSED range. This eliminales the
possibility of aliases or side-eflecls through free names. In the place of this, Euclid provides
the imports clause, which permits a range to name and use i_denlifiers'declared oulside it,
provided they are available in both iheistalic and dynamic contexts of the raﬁge Thus every
objeci used in such a range must be ava!lable in the dynamlcally enclosmg range, or created
locally. It a given range contains no aliases, and all of Ihe paramefers and imports to each
range it invokes are distinct, then it has not inlroduced any aliases into the ranges it calls. By
induction, all Euclid programs are alias-free. (The variables listed in the imports clause are.

considered to be parameters, and thus eligible for modification.)

The other major cause of aliases is poinlers. We have aiready mentioned that Euclid’s
collection variables were designed to alleviate pointer afias problems. This requires further
explanation. A colleclion.variable is considered to be an unbounded vector of objects of the
type for which it is a collection. Then a poinler variable is considered to be an index into the
collection vector. If two pointer variables point into the .same colleclion, one cannot
determine statically that they do not conlam the same index. However, this is no worse than
proving thal two indices into an array are not equal, and Fuclid relegates that lask to the

verifier, or inserts runtime checks if so insirucled.

The two innovalions above indeed make alias free programs achievable. One might wonder -
what f!exibilily Euclid sacrificed to do this. Reviewing all of the comparisons given so far in
this paper, the only major expressive lechniques unavaitable in Euclid are generic types, VAR
parameters to types, and simullanecus access lo the representations of refated tapsules. Of
these lhree, we have shown thal the first can be partially simulated by variant records. The

cecond mechanism can be partially simulated by imports, and those uses which cannot be

"~ Scope Issues in Programming Languages 50 ‘) Chapler 4

simulaled seem perilous. The third technique cannol be imitaled In Euclid, but the issues
involved dont seem lo include aliases. Ullimately, only experience and further research will

tell whether Euclid has sacrificed oo much o avoid aliases.

The designers of Alphard, while skeplical of aliases, are less militant than Euclid. They

permit aliasing when It is carefully documenled.

4.5.3. Exception Handling

One of the chief complaints voiced about exceplion handling mechanismsi in standard
programming languages is that they either don’t permit the handling routine to access the
objects it needs, or don'l preserve the integrity of the data sitructures which were being

.modified when the exceptlion occurred.

Levin [27] has used the concepts of objects, ranges, and capsules to ctarity, the issues,
survey existing facilities, and present a new mechanism. He describes exceplion handling in
terms of the signalling environment, ihe ent‘ity to which the exception applies, and the
environments which may process the exception. A condition may be associated either with an
instance of a control construct, as when a procedure call receives unusual paramelers, or
with an instance of an object, such as when a file is found to contain parity errors. A handler
is always associated with a "user” of the instance on which the condition is defined, whether
that be the caller of a funclion, or a raﬁge in which an object is accessible. The signaller of a

condition is the program segment which detects the condition.

An exception handling mechanism, then, may be characterized by the ways in which
handlers may be associaled with instances, and by the ways in which control and data may
flow belween the range signalling a cTndilion on an instance, and the ranges with handlers

attached lo that instance. Prior to dala absiraction, most mechanisms associated conditions

only with control inslances. Handlers for condilions were generally either statically defined,

or provided by the callers of the prociedure raising the condition. Little provision was made
for passing data between the signaller’ and the handling range. Algol 68 introduced, with its
fiie exception mechar;nism, the idea of iassociating condilions and handlers with objecis. In
data abstraction languages, a handler could be associated with a variable at its declaration
site, or for the dura‘ﬁon of a parlicular conlrol construct, or could even be defined in a2 type

definition to hold for all instances of thal lype. Refer fo Levin’s thesis for more detail.

Scope Issues in Programming Languages 51 Chapter 4

4.5.4. Type Breaching

Most systems programmers sooner or laler find themselves faced with a programming
problem for which the mosl direct solulion is fo treat a single object in the task domain as
having two different lypes. In mosl cases it Is impossible 1o prove anything aboul objects
{reated that way, because ihe inlerpretation must include information about the exact
bit-level represenlation of both types; this informalion is often not available. Consequently
modern programming theory frowns upon such practices. Houirever, modern theory has not
provided an adequale set of allernative techniques, so for the time being most languages, at
least those intended for syslems programming, provide some mechanism for it. Pascal didn™
intend to provide such a mechanism, but programmers quickly discovered that the variant
record construct permitted il by not forcing a variant field to be trealed as having the type
implied by the tag field. Indegd, several Pascal compilers, writlen in Pascal, make heavy use
of this feature. Euclid attempts to provide a carefully coniroliéd feature of this nature,
narnély an explicit conversion operator. To support {hal operator, Euclid insists that it occur
in a "machine dependenl” module, and thal it only map between types whose 'standard |
representations are defined in the language. Euclid provides one other mechanism, for
conversion in cases where one of the types has no meaningful values, like rlnachine words, In

all other cases, uninlerpreled type conversion is illegal. 7 : .

4.5.5. Scope Aspects of Mulliprogramming

Modern scope mechanisms also make programming.of cooperating processes a liltle -easier.
The uhderlying scope problem in this area is very much like the Alias Problem: a program

cannot be verified If the values of variables it relies upon may change unexpectedly.

Hoare[zb] has produced a language construct, called a monitor, for controlling data sharing
among processes. In its simplest form, it is a general module, accessible by any process, but
with the restriction that only one process may be executing in it at a lime. If a process
_attempts to enter a monilor while another is executing in it, the entering process is
suspended until the other is done wilth the monitor. ‘Modula interface modules and device
modules are exlensions of that construcl, providing certain ways that a process rﬁay suspend
itself in the middle of the module, permilling other processes to execuie in the module whiler

it’s suspended,

- Scope Issues: i Programming Languapes 52 ' Chapter 4

The monitor is useful for verification|because when verifying the code of a module, one can
assume that no other process will change lhe variables declared tn the module , excepl
possibly during wait and signal operal‘ons. thus making verification nearly as simple as with
serial programs. Unfortunalely, the mcj:nilor is now being pushed beyond the limits of its
usefulness [47] Many are now Iryibg to use it to implement elaborate synchronization

protocols, not just simple mutual exclusion.

Owicki [38] has laken the fechnique a step farther and shown that pre- and
post-conditions of the abstract specifications for monitor procedures must be phrased in
terms only of variables private lo the calling process, and not in terms of the shared
variables. Only the invarianl properties of the module specificalion may mention its parallel
hature. The reason for this is thal any non-private, non-invariant property occurring in the

post-condition of a procedure might immediately be made false by another process.

Scope lssues in Programming Languages 53 ‘ Chapter 5

5. Programming Examples

In this chapter we shall sample the scope philosophies of several of the languages used in
this study, by sludyihg how a parlicular programming exercise would be writlen in each of
‘them. The languages we have studied cover an exlremely broad range of expressive power
and intended usage, so it would be inappropriale to try to solve exactly the same problem in
each language. Instead, for each language 1 shall state and solve a slightly different version

of the problem, désigned to show the strengths and weaknesses of that language.

5.1. The Problem

Each of the programming examples in this chapter shall implement a a queuve. For our

purposes we define a queue to be a se;quence of objects with the following restrictions:

- Objects may only be added fo the sequence by appending them to the left-hand
end. For this purpose each program will include the operation insert.

- Objects may only be removed from the sequence by deleting them from the
lefl-hand end, via the operation remove, which also returns the value of the
object removed.)

- The sequence is initially emply
i
- The length of the sequence may never exceed a specified maximum. Inserting an
object In a queue of maximum ‘ength is not permitted. (Similarly, removing an
object from an emply gueue is not allowed). :
|
- The current length of the queue tnust be available to the user.

5.2. Fortran

Fortran was invenled before scope was considered an issue; nonetheless it is possible to
write a collection of programs fo implemen! a queue in a reasanably straightforward way. The
principal issue here is the sharing of the representation of the queue among several
subprograms, without forcing the user o be aware of too much detail. If the items to be
queued are integers then a soiution could encode the "front™ and "back” pointers into the
array holding the dala, and pass it as a paraﬁueler. However, | prefer a version which would
apply io real numbers as well. Therefore the queue is stored in 2 named COMMON area.

Examples for other languages will build queues of characlers; in Fortran characters may be

Scope Issues-in Programming.Languages 24

conveniently represented as Inlegers.

Subroutine Oinit

Integer Q(180)

Integer front, back

Common /Queue/ front, back, O
front = 1

back = 1

return

end

Integer Function Qsize
Integyer G{188))

Integer front, back

Common /Queue/ front, back, 0
Usize = Mod f{(back-front),180)
return

end

Subroutine Qinsrt (])
Integer Q{188)

Integer front, back

Common /Queue/ frant, back, 0
If Qasize .eq. 99 STOP

G (back J =1

back = Mod [back, 188 } + 1
return

end

Integer Function QOremov
Integer Q(128)

Integer front, back

Common /Queue/ front, back, Q
If Oslze .eq. B STOP

Qremov = Q (front)

front = Mod (front, 188) + 1
return

end

Integer Function Qfirst
Integer Q(188} |
Integer front, back

Common /Queue/ front, back, 0
if Osize .eq. B STOP

Qtirst = 0 { front)

return

end

Scope lssues in Programming Languages 85 Chapter 5

The principal shorlcomings of this technique are the weaknesses of the named COMMON
construct: discrepancies in the variable lists for a given area belween different subprograms
aré nol checked, and any subprogram declaring a common area with the same name, has

access to the data.

5.3. Algol 60

Algol 60 permils one lo implement a queue whose size is a parameter (of sorts), by the
trick of declaring and initializing a variable holding the queue size, in an outer block. The
user of the stack need nol be aware of the representation of it, except that he must avoid
using the names of variables used to implement the queue. (This may be enforced by the

clever use of blocks, 100.)

beqgin

integer glimit:

glimit = 188;
begin
string array qll:qtimitl;
integer front,back;

integer procedure gsizes
geize t= (back - front) rem qglimity

procedure modincr [i)i

integer I3 .
i 1= (i rem giimit) + 1

procedure ginsert [s };
string s; value s3
if lgsize = gqlimit - 1) then fail
else heqin
glback] := s
modincr (back)
ends

string procedure qremovej
if qsize = B then fail
else beqin
gremove := glfrontl;
modincr { front }
end; '

Scope Issues in Programming Languagesbb Chaptler 5

string Moceduré gfirst;
if gsize = B then fail
else gfirst 1= qlfirstl);

Comment queue initiallization:

first 1= 1

last := 13

end I
end

Rather than define a separate proceéiure fo initialize the queue, 1 have written out its

inittalization as the first execulable stalements of the block. This Is reasonable when the
| .

scope of the queue and the scope of its implementation are the same. In the next section we

: !
will examine a different technique. |

Observe that Algoli 60 has no provision for cchsiructing complex objects which are not

arrays, so that the representation of a queue must span several variables.

5.4, Pascal

One of the chief contributions of Pascal was ils generalization of data structuring
mechanisms, within the framework of a language committed to minimal runtime overhead. In
the following program we define the type queue, enabling the user to declare as many queues

as he nheeds.

alimit = 168;
gmax = 99;
queue = record ®
front: 1.. glimit; }
back: 1.. glimit; 1
data: array [l..qlimit] of char
end

procedure ginit { var q:queue);
begin
q.front :=1;
g.back := 1
end;

Scope lssues in Programming Languapesb? ' Chapter 5

function gsize (giqueue):integer;
gsitze := (g.back - q.front) mod giimit;

procedure modincr { var i:integer b
i t= (i mod gqlimit) + 1

procedure ginsert (var g:queue, c:char};
if gsize (g) = gmax then fail
else begin

q.dataly.back] := ¢
modincr [g.back]
end

function gremove (var q:queue}:char;
if qsize { g} = 8 then fail

elge begin
qremove := g.datalq. frontl;
modincr { g.front)

end;

function gqfirst (g:iqueue):chars
qfirst := q.datalg. frontl;

This implementation once again Includes an initiatization routine, but this time it is because
there may be many queues declared in different places. Observe that this implementation
does not use any global variables, and only two global constants, qlimit and gmax. Thus the
user of queues may be sure that his operalions are not affecting any variables except the

queues on which they operate.

Pascal is notorious [14] for its decision to include array bounds as part of the lype of a
variable, leading 1o the reguirement that array bounds be compile .time constants. If a
program had to have gueues of two di ferent sizes, it would have lo have two complete sets
of de.finitions of the type queue and its routines, with the only difference between the two

b

being the value of glimit. i
|

|

5.5. Algol 68

Algol 68 does not include the dimensions of arrays in the lype of a structured object.

Therefore, In the following program the size of the queue s stored as a field of its

-~ Scope Issues in. Programming Languages 58 Chapter 5

representation. The inilialization rouline is written so that it may be used as part of the
statement in which the queue is declared, i.e. so that the declaration may be followed by a

collateral assignment to its fields.

begin :

int glimit := 188;

mote nueuve = struct
tint front,back, limit,mx,
[glimit]l char datal;

proc aqinit = gueue: {1,1,qlimit,qlimit-1, skipl:

roc ¢gsize = (gueue gl)int:
((back of g - front of g) mod limit of ql;

comodincr would need too many parameters to he worthuhile co

proc qginsert = (ref gueue q, char clvaid: |
if gsize { g) = mx of q then fail
else beqin
(data of gl [back of q} := ¢;
back of gueue t= (back of g mod limit of q) + 1
end);

proc gremave = {ref gueue qglc
'r_quize(ql=8th
else bedin
char c := ldata of g} [front of ql;
front of q := {(front of g mod fimit of) + 1
end};

v!
il

proc qfirst = (gueue qlchar:{data-of qg) [front of gl

end

Unforiunately, both the array dimensions and the initial vaiues for the limit énd mx fields had
to be computéd from‘global variables, since Algol 68 has no means for parameterizing a'type
.definition. Furthermore, neither Algol 68 nor Pascal provide a means to resirict the scope of
the represenfation of a type, so thal any part of the program text which hés access to the

name of a queue variable may also modify its fields individually,

Scope lssues in Programming Lanpuapes 59 Chapter 5

5.6. Euclid

The following Euclid module both impiements and protects the type queue. Furthermore,
the length of the queue is a parameler to the type definition, so that each queue dedafaﬁqn
may specify concisely what its size will be. Even better, all of the initialization is taken care

of by the module at declaration lime, based on the same parameter, so that the declarer need
not be concerned about initial values. . '

type queuel pervasive limit:integer) = modute
exports { insert, remove, size, front)
var front,back:l..limit

pervasive mx = limit - 1
var data = array l..}limit of char

Inline function size returna s:lnieger =

imports (front, back }
g := (back - front) mod limit

iniine procedure modincr {var i!integer) =
i 1= (i mod limit) + 1

procedure insert (cichar) =
imports (var data, var back, front, size)

pre size < mx
post ...
heqgin
datalback] := c
modincr { back)
end

procedure remove returns cichar =
imports { var front, data, back, size)

pre size > @

post ...

bhegin
c := datalfront]

modincr { front }
end

~Scope Issues.in Programming Languapes60 Chapter 5

inline function first returhs cichar =
imports {front, back, data, size)
¢ = datalfront] !

initially !
begin |
front =1 |
back 1=]
end
end

The imporls clauses in this example seem rather long. This is primarily due to the Euclid rule
that imports must come from both the slatic and dynamic contexts of a range. Notice how the

pervasive designation permilted the use of constants without importing them.

Both Pascal and Algol 68 specified the fields of a queue by using the tield names as
selectors on the queue variable. Euclid’s synlax is such that the module variable to be used in
a, module operation is a prefix parameter of the call. Then any field name imported into the
operation implicitly refers to thal field of the prefix parameter, rather than having to
explicitly altach it to a module variable name. However, thié makes il impossible to refer to
fields of two module variables in the same procedure, because the field variable would be

!

ambiguous. !
i

5.7. Alphard

In this example, even the lype of object being queued is a parameter to the form
definition. Alphard uses the name qualification synlax of Pascal and Algol 68 to refer to the
fields of form insiancés, making possible the function “transfer” which moves a specified

number of objects from the head of one queue lo the back of another,

Due to the index computations in the transfer function, the data array in this program s

based at zero rather than one.

Scope Issues in Programming Languages6 Chapler 5

Form QUEUE(T: form <:=>, limbt: INTY =
e limit > B}
N

ec

func size (q:QUEUE)}:INT

proc Insert {q:QUEUE, x:T)
vproc remove (q:QUEUE}:T

func first (q:OUEUE):T

proc transfer (g, r:QUEUE, n:INT)

H
£l

;]
[

impi
var data:VECTORI(T,B, limit- 1}, front, back:INT = @
Thvariant 1 B € front € limit-1 A @ < back s {imit-1]

func size is {g.back - q.frcnt} mod q.limit
proc insert is If size (g} 2 q.limit - 2 then fail else

g.datalg.back] := x;
g.back t= (g.back + 1} mod q.limit fi

vproc remove = if size {q) = B8 then fail else
var x:INT := g.datalq. frontl
d. front t= (q front + 1) mod q.limit
x fi

func first is if size (g) = B then fail else
g.datalq. frontl f£

proc transfer is
if (sizely) < n) or {size(rl > (r.limit-n-1} then fail else
for i:uptoil,n) do
r.datal(r.back' + i) mod r.limit] =
g.datal(q. front + 1) mod q.limitl od
r.back t= (r.back .+ n} mod r. L limits
g. front := [g.front + nl mod q.limit £1

end QUEUE

5.8. Modula

Queues are the basis for a set of synchronization problems cailed producer /consumer
problems. The simplest such problem is composed of two processes. One process is
producmg objects and placing them in a queue; the other is removing them from the queue
and consuming them. The problem is 1o synchronize the insertions and deletions so that
simuitaneous activily doesnt destroy the consistency of the data, and so that instead of
haiting the program when the queue overflows or runs out, the code for the queue will

suspend the process atlempling an inserlion or deletion until the size of the queue is

- _Scope. Issues in Programming Languages 62 o (;hap!er 5

appropriale for the operation.

The following interface module solves the simple producer fconsumer problem. An
interface module may only be enlered by one process al a time, except for processes
suspended in the middle by excculing wait or signal stalements. Thus the consistency of the
queue data may be assured by simply making sure lhat it is correct al procedure entry,
procedure exil, and at each wait and signal statement.

inter face module queue;
define qsize, tinsert, gremove, qgfirst;
use Iqlimitl;
var front, back:inteqer;
var full, empty:signal;
var datatarray l:qiimit of char;

procedure modincr (itinteger 13
use [glimitl;
begin
i += (i mod glimit} + 1;
end;
procedure ginsert {cichar } 3
use [data, back, size, !imit, modincr 1;
begin :
if qsize = qlimit-1
then wait (full)
else beqin
" datalback] := c;
modincr { back)i
if size = 1 then signal (empty)
ends
"endj o .

procedure gremove:char;
use [data, front, size, modincr, qlimit]
beqgin :
if qsize = B
then wait { empty)
else beqin _
gremove := datalfrontl;
modincr {(front); |
if gelze = glimit - 2 then signal (full);
end : - o
end;

Scope lIssues in Programming Languages63 Chapter 5

procedure gfirst:char;

use [data, front, size 1y
if size = B then fail
glse gflirst := datalfront]
end;

end gueue;

Unfortunately, Interface modules do not adequalely support queues of more complex objects.
If the objects being queued were buffers of, say, 256 characlers each, it would be important
for efficiency reasons not 1o-cppy the buffers into and out of the queue. Furthermare, one
would fike to permit the prccfucer and the consumer to fill and empty their respective buffers
simultaneously. Therefore each bulferf would have to reside in a different interface module,
or in no inlerface module at all. The former solution is ridiculous; the latter gives up the very
protection the interface module was supposed to provide. In either case, due to the fact that
Modula has no pointers, the interface module could only be used to protect the computation
of a buffer index, and not 1o protect the buffer itself. Even so there would be no protection

agains! either the producer or consumer using bulfers for which it haa not received indices.

5.9. Simula 67

-1 have saved Simula 67 for last because, though in many respects it is not an elegant
language, it permits a degree of {lexibility in queues nol available in other languages. By
careful use of the subclass facility it is possible, indeed reasonable, fo implement queues
which contain objects of any type, indeed of lypes not known at the declaration site of the

queue.

In the following program, lhe Queue class knows nothing about the buffer class. The
buffer class is actually a dummy class; it takes no parameters, and has no altributes.
However, u.sers- of the Queue class can construct subclasses of the buffer class, without
changing either the buffer or queue classes. Since a queue contains references to buffers,
and those buffers may be any subclass of the buffer class, a queue may contain any arbitrary
mixture of elements. Indeed, the INSPECT stalement is sufficienlly flexible that a program
removing elements from the queue can pick out exactly those elements it knows how to

process, and skip those whose class it does not recognize.

_ Scope lssues in Programming Languapes64 ' ' Chapter 5

class buffer;
begin
entl;

class queue (limit): integer llmit;

hidden protected limit, front, back, data, modincr;
beqin

integer front, back;

ref (buffer) array data [l:limitdy

procedure medincr (1)3

integer 1
1 ¢= (i mod limit) + 13

procedure insert {b):
ref (buffer) b

if size = limit - 1 then fail
else begin
data [back 1 t= by
modincr { back) i
ends =

ref (buffer) procedure remove;
if size = B then fail
else heqin
remove := data [front 1}
modincr {(front)

end:

ref {buffer} procedure qfirst;
if size = B then fail
else gqfirst := data [front 1;

front := 13
back := 1
end el quUBUE Yeledr }

buffer class a (b };
beqin

Scope Issues In Programming Languapes6s ‘ Chapter 5

buffer class c | d };
beqalin

[y

|

{queus) q;
(buffer) x;

-
a1
-+

|

-
[v]
—+

o

x t= remove { g)
inspect x when a do ...
vhen c do ...

Scope Issues in Programming Languapes 66 Chapter 6

6. Summary

We have seen that scope is a sirong element of program structure. The set of range
definition facilities provided by a language determine the class of permissible program
struclures. Languages which have a sufficiently rich sel of range facilities have been able to
simplify their parameler and binding mechanisms. Many of the problems formerly associaled
with the extent of variables are also simplitied in a richer ranget-environment.‘ Modern
understanding and Implementation of data abstraction concepts has contributed to the

sofulion of a number of imporiant program and system structuring problems.

The first major inhovation in scﬁpe structure was Algol 60’s nesled block concept. 1t
pl;'OVided a ool for building programs. .in a hierarchical scope structure, where both the
conirol structure of the algorithm and the scope and exlent structure of the data had to fit
into the same hierarchy. The resulting structure turned out to be better suited for
expressing algorithmic structure than for expressing the structure of data, as evidenced by

the Alias and Hole-in-Scope probiems.

Data encapsulation mechanisms, the single most important development in modern language

design, provide the means to express the structure of data in a way which distinguishes it

from the structure of _algofiihms. A dala abstraction is often a natural tool for describing a - -

design decision, or group of decisions, making it possible to concentrate all of the parts of a
program which are affected by such a decision into a concise package. This improves the

modularity of programs, thus e_nhancin'g understandabilily and verifiability.

Languages supporting dala absiraclion have been able to simplify théir parameter
mechanisms and reduce their overhead due to free variables. The NAME, PROC, and LABEL
mechanisms are disappearing from modern languages because they embody both data and
conirol information, which can now be better expressed with range definition mechanisms.
Many of the control abstractions necessilaling EXPR or PROC paramelers can be implemented
as well or belter using data absiraclion facilities. Dala abstraction languages also provide a

firmer foundation for exception handling mechanisms, reducing the need for PROC and LABEL

-parameters in this capacity.

Free variable binding, highly desirable in an Algol-like scope environment, has receded in
importance in mpdern languages because of the distinction between the structure of
algorithms and of data. Such binding is no longer necessary lo -provide common data to

Scope Issues in Programming Languages .67 " Chapter 6

multiple procedures, nor is there a tendency to need a large number of global: variables in
any one environment. Furthermore, tee name binding was a major source of alias and
side-effect problems, Consequently, most data abstraction languages do not permit .free
variable blndlng across procedure or chp,.ule boundaries. Note, however, that constants, field

selectors, and procedures are often inherited in the conventional Algol way,

The OWN concepl!, considered innovialive and promising when introduced in Algol 60, has
been displaced somewhat by data absitraction. The OWN concept separaled the extent of a
variable from the duration of the control construct delimiting its scope; data abslraction has
done that and more by separaling the scope of the name of a variable from the scope of its

object. ‘ o ‘ |

Data abstraction, we have seen, has shed light on a number of Iong-slahding systems
programming problems. It has provided the basis for a sound exception handling proposal
which generalizes to multiprogramming. it has shown the way o reasonably conirolled
type-breaching. It h_as suggested useful methodologies for parallel programming. Most
importantly, however, it has provided the means for decomposing a syslem into coherent
modules while relaining meaningful structure and disciplined scope relations between

modules,

By studymg implementations of queues in various languages, we find that indeed the
modern !anguages provide a greal deal more structure to programs. We find the data
structuring lools of Pascal and Algol 68 to fit naturally into good programming style. We find
the modules and of Euclid and Modula to be convenient encapsulation tools. We find Alphard
forms to be excellent tools for constructing data abstractions. Surprisingly, though, we find
that Simula 67, which was the first language to permit grouping of procedures around a data

type, still excels in the flexibility of its generic types, ten years after Hs crealion,

. Scope lssues in Programming Languages 68

References

(1]

[2]

(3]

(4]

(5]

(6]

(7]

(8]

{9)

[10]

(11

F.T. Baker, Struclured Programming in a Production Programming Environment.
Proceedings of the Internalional Conference on Reliable Software, SIGPLAN Notices
10,6 (1975).

Presents managemenl tools for impiementing the Chiet Programmer Team concept,
including the notion of structured coding as dislinct from struciured programmmg

Frederick P. Brooks, The Mythical Man-Month, Addison Wesiey, 1975,

An entertaining set of essays on the management of large software projects.

Ole-Johan Dahl et al, Simula 67 Common Base Language, Norwegian Computing Center,

Oslo.

Reference manual.

Ole-Johan Dahl and C.AR. Hoare, Hierarchical Dala Structures. In Structured
Programming, Dahl, Dijkstra and Hoare, Academic Press, London, 1972, -

Presents the class and subclass mechanisms of Simula 67.

Edsger W. Dijkstra, GOTO Statement Considered Harmful. Communi.cations of tha ACM

{March 1968).

An early example of the influence of language on the quahty of soﬂware

Edsger W. Dijksira, Noles on Structured Programming. In Structured Programming, Dahl,
Dijkstra and Hoare, Academic Press, London, 1972,

A fandmark work on structured programming.

Edsger W. Dijkstra, 1972 ACJ Turing Award Lecture: The Humble‘ Programmer.
Communicalions of the ACM (Ociober 1972).

Describes the human limitations whlch make slructured programmmg imperative.

Edsger W. Dijkstra, Correciness Concerns and Among Other Things, Why They Are

Resented. Proceedings of the International Conference on Reliable Software, SIGPLAN
Nolices 10,6 (June 1975), 546-550.

Motivales program verilication.

Edsger W. Dijkstra, A Discipline of Programming, Prentice Hail, 1976.

Presents a programming and verificalion methodology which places heavy emphasis on
proving termination and conlrolling the scope of names. Also introduces a novel
approach to initialization.

Mark Elson, Concepls of Programming Languages, SRA, 1973, 67-84.
Uses an elaborate formal basis for classifying binding mechanisms In programming
Ianguages

A.C. Fleck, On The Impossibility of Content Exchange Through The By- Name Parameter
Transmission Mechanism. SIGPLAN Notices (1976), November. '

Scope Issues in Programming Languages 69

[12]

[iG]
(14]

(15]

[16]

{17]

[18]
[19]

[20]

(21}

[22]

[23]

NMustrates the problem of repeated evaluation In the NAME parameter mechanism,

Lawrence Flon, On the Design and Verificalion of Operating Syslems, Computer Science
Department, Carnegie-Mellon University,

Jack Goldberg (ed.), Proceedings of a Symposium on the High Cost of Software; SRI. -
An example of the lileralure of the "software crisis”, including analysis of the
components of the cost of software.

A. Nico Habermann, Critical Commenls on the Programming Language Pascal, Computer
Science Department, Carnegie-Mellon University,

Criticizes the concepl of type underlying Pascal,

Paul N. Hilfinger et al, An Informal Definition of Alphard, Computer Science Department,
Carnegie-Mellon University {in preparalion), o '
Reference manual.

C.A.R. Hoare, Nofes on Data Structuring. In Structured Programming.-Dahl, Dijkstra and
Hoare, Academic Press, London, 1972.

C.AR. Hoare, Proof of Correclﬁess of Data Representations. Acta Informatica 1 {1972).
Presents the verification methodology eventually adopted by Alphard, Clu, and Euclid.

C.A.R. Hoare, Data Reliability. Proceedings of the International Conference on Reliable
Software, SIGPLAN Nolices 10,6 {(1975), 528-533.

Presents the mathematical notion of type.

C.AR. Hoare and Niklaus Wirth, An Axiomatic Definition of the Progra'mmiﬁg Language
Pascal. Acta Informatica2,4 (April 1973). '

The axioms for variant records are internally inconsistent, precisely where variant
records in Pascal are type-unsale,

C.AR. Hoare, Monitors: An Operating System Structuring Concept. Communications of
the ACM 17,10 (Qctober 1974), 549-557. '

The synchronization concepl behind interface modules in Modula.

John B. Johnston, The Contour Model Of Biock Structured Processes. SIGPLAN Nolices

-February 1971, 55-82,

Anita K. Jones and Barbara Liskov, An Access Contral Facility For Programming
Languages, Computer Science Department, Carnegie-Mellon University. '

A refinement of binding mechanisms in data abstraction languages, permitling the
programmer to specify precisely which of the operations defined on an object are
permissible, ' .

Donald E. Knulh, Remaining Trouble Spots in Algol 60. Communicalions of the ACM
(October 1967). '

One of the last papers analyzing Algol -60, describing among other things the binding
lssues surrounding the Joop construct,

. Scope.lssues in Programming-Languaae5 70

(24]

{25]

[26]

- [27]

(28]

[29]

(30}

[31]

[32]

[33]

{34]

Donald E. Knuth, The Art of Compuler Programming: Fundamental Algorithms,Vol. 1, 2nd
Edition, Addison-Wesley, 1973. ; :

Donald E. Knuth, Structured Programming With GOTO Stalements. Computing Survéys
{December 1874). :

Shows proper and improper uses for the GOTO statement, eventually arguing that the
GOTO is necessary for cerlain cases of muitiple exit points from a compound statement.

~ Points oul that improper use of the GOTO is harmful, but the GOTO itself is not.

Butler W. Lampson et al, Report On The Programming Language Euclid. SIGPLAN Notices
{February 1977).

Reference manual.

Roy Levin, Program Structures For Exceplional Condition Handling, Ph. D. Thesis,
Computer Science Department, Carnegie—MelIon University. : :

)

‘Representative of the stale of the art in exceplion handling, presenting the scope

issues and a promising solution. -

Barbara Liskov and S. Zilles, Programming With Abstract Data Types. SIGPLAN Notices
{April _1974), 50-59. e ’

A reasonable tulorial on the concept of an abstract data type, and a basic intraduction
to CLU.

Barbara Liskov, An Introduction To CLU. In New Directions !g Algoriihmic Lanpuapes
1975, S. Schuman, ed,, IRIA, Paris, 1975. :

Barbara Liskov and §. Zilles, Specificalion Techniques for Data Abstractions.
Proceedings of the International Conference on Reliable Software, SIGPLAN Noticas '
10,6 {June 1976}, 72-87. :

A survey of specification techniques, highlighting those properties of an abstract data
type which are visible outside it, and must therefore be precisely specified.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert, Abstraction
Mechanisms in CLU. Proceedings of the ACM Conference on Language Design for

" Reliable Software, SIGPLAN Nofices 12,3 (March 1977).

An introduction to abstraclion in CLU, including its iteration construct.

Ralph L. London, A View of Program Verification. Proceedings of the International
Conference on Reliable Software, SIGPLAN Notices 10,6 (1375), 534-545,

A gentle introduction to verificalion.

Ralph L. London, Mary Shaw, and William A. Wult, Abstraction and Verificafion in
Alphard: A Symbol Table Example, Compuler Science Depariment, Carnegie-Mellon
University, : ,

A non-trivial example of a generic type.

Joel Moses, The Function of FUNCTION in LISP, or, Why the FUNARG Problem Should be
Called the Environment Problem, Project MAC, Massachusetts Institute of Technology

Scope Issues in Programming Languages 71 ' -

(35]

(36]
{37}
[58]
(39]

(40]

[41]
[42]
[43]

[44]

[45]

MAC-M-428 Al-199.

Describes how certain deceptively simple binding mechanlsms can' cause enormous’
implementalion and conceptualizalion difficulties. : :

Peter Naur (ed.) , Revised Reporf on {he Alg‘drilhmic Language Algoi 60. Communicalions
of the ACM (January 1963), 1-17.

Reference manual.

Eliot 1. Organick and Loren P. Meissner, Fortran IV, Addison Wesley, 1974,

Reference manual. :

Susan Owicki and D. Gries, Verifying Properties of Parallel Programs: An Axiomatic
Approach. Communications of the ACM 19,5 (May 1976), 279-285.

Susan Owicki, Specifications a+d Proofs for Abstract Dala Types In Cancurrent
Programs, Digital Systems Labora1[ory, Stanford University TR No, 133.

Data abstraction combined with monitors permits nafyral extension of Hoare’s

methodelogy to parallel programs.

Frank G. Pagan, A Practical Guide to Algol 68, John Wiley & Sons, 1978.

Provides plenty of examples, and enough conventional prose to expiain the Algol 68
terminology. | '

Jacob Palme, New Feature for Module Protection in Simula. SIGPLAN Notices (May
1976).

Turns classes into protecled capsules, and permits fine control over sharing with
-

-subclasses. These features are now part of siandard'Sim'ula.l

David L. Parnas, Informalion Distribution Aspects of Design Methodology. Proceediﬁgs
of the IFIPS Congress 71, Vol. 1 (1972). .

The effect of design information changes an system consfruction.

David L. Parnas, Some Conclusions From an Experiment in Software Engineering
Techniques. Proc. AFIPS FJCC vol. 41, AFIPS Press, Montvale, N. J. (1972), 325-329.

‘How a methodology based on modules facilitated construction of a toy system.

David L. Parnas, A Technique for Software Module Specification With Examples.
Communications of the ACM 155 (May 1972), 330-338.

Specifying a moduie as a black box with lights and buttons, _
David L. Parnas and DP. Siewiorék, Use of the.Concept of Transparency in the Design

of Hierarchically Struclured Systems, Computer Science Department, Carnegie-Mellon
University, ’

More methodology based on modules.
David L. Parnas, On the Criteria to be Used in Decomposing Syslems into Modules.
Communications of the ACM 15,12 (December 1972), 1053-1058.

: I
Parnas’s concept of what a moduie should comprise.

-_Scope lssues in Programming Languages 72

{46}

[47]

{48]

[49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

David L. Parnas, On a 'Buzzword’: Hierarchical Slructure. Proceedings of the IFIPS
Congress 74 (1974). ‘ '

It is necessary to specify exaclly which relalion among modules is hierarchical.

David L. Parnas, The Non-problem of Nested Monitor Calls. Opersling Systems Reviaw
12,1 {January 1978).

Points out the difference belween the monitor as a synchronization construct, and the
monilor as a resource manager,

G.J. Popek et al, Notes on the Design of Euclid. Proceedings of the ACM Conference on
Language Design for Reliable Software, SIGPLAN Nolices 12,3, SIGPLAN Notices 12,3
{(March 1977), 11-18.

Discussion of, among other things, the scope issues in the design of Euclid.

Craig Schatfert, Alan Snyder, and Russell Atkinson, The CLU Reference Manual, Project
MAC, Massachusetts Inslitute of Technology.

Mary Shaw, Abstraction and Verificationin Alphard: Design and Verificalion of a Tree
Handler, Computer Science Department, Carnegie-Mellon University.

An example of a complex relationship between two abstract data types.
Mary Shaw,William A. Wulf and Ralph L. London, Abslractlon and Verification in Alphard:
Iteration and Generators, Computer Science Department, Carnegie-Mellon Unwersﬂy

Uses dala capsules to solve a control abstraction problem,

Richard Gites, Algol W Reference Manual Computer Science Department, Stanford
University STAN-CS-71-230.

Lawrence Snyder, An Analysis of Parameter Evaluation For Recursive Procedures,
Computer Science Deparlment, Carnegie-Mellon Universily.

Comparing the power of parameter mechanisms using program schemata.

R.D. Tennent, PASQUAL: A Proposed Generalizalion of PASCAL, Department of
Computing and Information Science, Queens University.

Advocates using a uniform binding mechanism for declaralions and parameters.

Clark Weissman, Lisp 1.5 Primer, Dickenson, 1967.
Introduction to LISP

SIGPLAN Notices (May 1977), 1-

A. van Wijngaarden (ed), Revis;rd Reporf on the Algorithmic Language ALGOL 68.
Reference manual. ‘

Niklaus Wirth, The Programming Language PASCAL (Revised Report), Berichle der
Fachgruppe Computer-Wissenschaften, Eidgenossische Technische Hochschule, Zurich.

Reference manual |

Scope Issues in Programming Languages 73

[58) Niklaus Wirth, Modula: A language for modular mulliprogramming, Institut fur
Informalik, Eidgenossische Technische Hochschule, Zurich. :

Reference manual.
[53] Niklaus Wirth, Toward a Discipline of Real-Time Programming. Pr0céedings of the ACM

Conference on Language Design for Reliable Software, SIGPLAN Nofices 12,3 (May
1977), Communicalions of the ACM.

The methodology behind Moduta.
[60] William A. Wulf, Ralph L. London, and Mary Shaw, Abslraction and Verificalion in

ALPHARD: Introduction fo Language and Methodology, Computer Science Cepariment,
Carnegie-Mellon University, .

