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1. Introduction

Let D be a subset of the real numbers R, and let % = {v : domain{v)c R -» R}
be a set of functions, such that the initial value problem of finding a function
x : [0, 1] = R satistying

(1) = wv{x(1) C<t<l

(1.1)

x(0) = X0

has a unique solution for every (xg s ¥) € DX (The differential equation in (1.1} is

said to be a scalar autonomous differential equation) We are interested in the

computational complexity of using one-step methods to generate an approximation to

(1.1} on an equidistant grid (in the sense of Stetter [73]); that is, the methods

considered give approximations x; to x(ih) by the recurrence
(1.2) Xig] = % +h¢(xi,h) (O<sigsn-1)

where h = n"1 g the step-size of a grid with n points, and ¢ is the increment function

(Henrici [62]) for the method. (For brevity, we will refer to “the method ¢.")

In Werschulz [76a), we discussed the complexity of solving autonomous systems
of differential equations; in this paper, we will consider only the case of a single scalar
autonomous equation. Clearly, the results of Werschulz t?ﬁa] hold for problems of the
form (1.1). However, in this paper we will discuss the complexity of solving (1.1} via

nonlinear Runge-Kutta methods (abbreviated, "NRK methods"). We only consider the

scalar case (1.1}, since it is not known whether NRK methods exist for more general
systems,
In Section 2, we give the formal definition of "NRK method," and show that no

NRK method using s evaluations of v ("stages”) can have order exceeding 2s - 1. Thus,



the set of s-stage methods of order 2s - 1 described in Brent [74] has maximal order
in the class of NRK methods,

In Section 3, we use the results of Brent [74] and Section 2 to find upper and
lower bounds on the complexity of finding an approximate solution whose error does
not exceed s, using a method of fixed order. These results are then used to calculate
optimal orders which minimize these complexity bounds. We show that the optimal
order increases as s decreases, tending to infinity as ¢ tends to zero. Finally, we
compare the complexities of NRK methods, Taylor series methods, and linear Runge-
Kutta methods. We show that the best NRK methods known are asymptotically better
(as s tends to zero) than the best linear Runge-Kutta methods possible, but are
asymptaotically worse than the best Taylor series methods known if the cost of

evaluating the kth derivative of v is bounded for all &.



2. Maximal Order for NRK Methods

Before proceeding any further, we will review some basic notions from
Werschulz [76b]. The following notational conventions will be used. Let X be an
ordered ring; then "X*" and "X**" respectively denote the nonnegative and positive
elements of L. (This is used in the cases F = IR, the reat numbers, and X = Z, the
integers.) The symbol ":=" means "is defined to be." We use "I" to denote the unit
interval [0, 1]. The notations "x | a" and "x T a" are used to indicate one-sided limits,
as in Buck [65]) Finally, if xj>X2:R 2R and w: RZ5 R are differentiable, then
for i =1, 2, we write

9; wix (1), xo(t)
tor the result of differentiating wix|, xp) with respect to x;, and then substituting
x1 = x3{t) xp = xo(t).

We next describe the model of computation to be used. We assume anly that all
arithmetic operations are performed exactly in R (ie., infinite-precision arithmetic) and
that for all v ¢ 99, we are able to compute the value of v at any point in its domain. In
addition, we must pick an error measure, so that we may measure the discrepancy
between the approximate solution produced by ¢ (via (1.2)} and the true solution. For
the sake of definiteness, we use the global error

(2.1) egleh) = max ggicn I¥Gih) - xf .

Other error measures may be used, such as the local error per step and the local

error per unit step (see Henrici [62] and Stetter [73] for definitions); this would

involve only a slight modification of the results contained in the sequel.

Finally, we will say that ¢ = {ep 1P € Z**} is a basic sequence of methods if

there exist functions « : R¥x] » R and ki, xy i RY =5 R such that



(2.2) ogleph) = «ph) WP forhelandpe T+,
where

(2.3) 0 < x(p) sxlph) < xy{p) < +0  forhel .
We say that ¥p has order p. This is a slight extension ot the definition of order given
in Cooper and Verner [72]; the function «_introduced here is necessary and sufficient
for the "order" of a method to be unique. (Here we introduce the convention of
attaching the subscripts "L" and "U" to quantities dealing with lower and upper bounds
{respectively} on complexity.)

We now consider a generalization of the familiar linear Runge-Kutta methods
which are found in standard texts such as Henrici (62] A basic sequence @ is said to

be a sequence of nonlinear Runge-Kutta methods ("NRK methods”) if each increment

function ¥p € ¥ may be written in the form

(2.9) ‘ qpp(xi,h} = £ (X0 Koy o Heop) o
where

(2.5) kj o= v(yj), yj = rj(x;,h; Koy - ,kj_l) {0sjss-1)
for suitable functions T RXRXRI > R (0 < j €s). We say that Yo has s = s(p)
stages, so that an s-stage NRK method uses s evaluations of v. Since the one-step
method Yo defined by (2.4) and (25} is stationary (i.e., does no! change from step to
step), we need only describe how x| is generated from xq.

Brent {74], {76] considered the problem of finding a simple root } of a nonlinear

function F : IR = R, using the Brent-information (Meersman {76])

(2.6} mB,s(F) = {Flxgh F/lxgh F/Cy ) s Fiyg-1)} s
where xqg is an initial approximation to f, and yy, .., Yg_1 are to be determined. Let

xy be a sufficiently good approximation ot the appropriate zero of the minimal-degree



polynomial interpolating the information mB,s(F)' Then Brent [74] showed how to
choose yy , ..., Yg-1 $0 that

(2.7) by - ¢l = Olxg - }1%S) as xg =t .

This deﬁnes an iterative method of order 2s for finding {.

Let us now define a function F by setting

(2.8) Flz) = j’:o dE/v®) - h,
and note that x(h) is the zero of F. Recalling that order for iterations is defined
differently than is order for one-step methods, (2.8) shows how an s-stage NRK
method of order p may be derived from a (p + 1tN_order iterative method for zero-
finding which uses the Brent-information (2.6). Using this transformation and (2.7),
Brent (74}, [76] exhibited a sequence ®\Rri of "modified” Brent-Runge-Kutta methods
("BRK methods"), in which the s-stage method has order

(2.9) p = 25-1.

Furthermore, Meersman [76] proved that this order is the greatest possible in the
class of all such BRK methods. We now extend Meersman’s result to include all NRK
methods.

Theorem 2.1: No s-stage NRK method can have order greater than 2s - 1.

Proof: Let ¢ be an s-stage method with order p. We will construct (from y) an
iterative method ¢ of order q:=p + 1 for finding a simple zero F of an arbitrary
analytic function F : IR - R,

The method ¥ is defined as follows. Let xp be an approximation to ' such that
F/ is nonzero between ¥ and £ (Since F/(t)} # O, such an xq exists.} Write tg = F(xg);
without loss of generality, assume tg < 0. Now apply one step of ¢, using a step-size
of -t to the problem

CHD = Pl (tg<t<0)  with  x(tg) = xq,



(whose solution is the functional inverse of F, so that x(0) = F“I(O) = t) then ¢ is
given by
vixg) = xp-to elxg~tg) -
By the definition of order for iterative methods, it is clear that ¢ has order q;

moreover, ¢ uses the generatized Brent information (Definition 11.3.8 of Meersman (761}

mGB,s(F) = {Flxgh Fyph F/ Oy h s Fyg 1)} -
Suppose that yg ¥ xp; then g < 2s by Theorem 11.3.3 of Meersman [76] On the other
hand, if yg =xp then ¥ uses the Brent-information (2.6); by Theorem I1.2.4 of
Meersman [76] (also due to WoZniakowski), we have g < 2s in this cese also. Thus in
either case, we find that
p+l = q s 25,

and the desired result follows. [

Thus ®psgRK 1S informationally-optimal in the class of NRK methods, in the sense
that each ¥p in ®)4grK Uses the minimum number of stages possible for a pth-order

NRK method.



3. Complexity Bounds for NRK Methods

In this Section, we will compute lower and upper bounds on the total number of
arithmetic operations Clp,a) required to guarantee that if p, is a pth-order NRK
method, then

(3.1) uG(wp,h) <§ =@
for a given p ¢ Zl“' and a € R**. (Here e is the base of the natural logarithms.) Since
a >0, we have 0 < < 1; clearly a increases as s decreases, and a tends to infinity as
s tends to zero.

In the methods we consider, we may write

(3.2) Clpa) = ne(p) = htclp) ,
where n is the minimal number of steps required (so that h = n~} is the maximal step-
size permitted), and the cost per step c(p) is the number of arithmetic operations
required for the execution of one step of a pth-order NRK method. As in Traub and
Woéniakowski [76], we shall express the cost per step in the form

(3.3) tlp) = e(iﬁp(v)) + dip) .

Here mp(v) is the information about v required to perform one step of a pth—order

NRK method P and we write e(mp(v)) for the informational cost of Ppi We call dip)

the combinatory cost of ¥p- For exampte, Euler’s method

Xjpp = % +hvix)
has informational cost
(3.4 e(v) := cost of evaluating v at one point.
The combinatory cost is two operations (i.e., one addition and one multiplication).
We now assume that the solution x of (1.1} is analytic on I Thus Cauchy's

Integral Theorem (Ahlfors [66], pg. 122) shows that there exists an M > O such that



KRy 2kt s ME foralltel .
Finally, we shall restrict our attention to problems which are "sufficiently difficult,” i.e.,
for which there exists an M| > 0 independent of h and p so that

(3.5 ogleph) 2 (M WP if hel and pe z*t .

(See Section 4 of Werschulz {76b])

We will now derive a lower bound for the complexity C(p,a) via NRK methods.
Clearly, Theorem 2.1 implies that for any pth—order NRK method, we must have

(3.6) e(mp(v)) > elvi(p+ 1}/ 2,
and a linear lower bound on the combinatory cost states that

(3.7) dip) 2 a_ p
for some a_ > 0. By (3.6) and (3.7), a lower bound on the cost per step for o is

(3.8) c{p) = (g +ev)f2)p + elv)/2,
which leads to

Theorem 3.1:

Clp) 2 Cp(pa) = M [a +e(v)/2) p + e(v}/2} e%/P .

Proof: From (3.5), we see that if {3.1) holds, then

h s hipa) := ML"I e"a/pP,
Using this result, (3.2), and {3.8), the theorem follows. @

Next, we consider upper bounds on the number of operations required. Instead
of using ®)grk> We Wil use the class ¢gryk of “unmodified" BRK methods described in
the Appendix, where it is shown that dpgpy is order-convergent in the sense of
Werschulz [76b]. That is, there is an My, > O such that

(3.9 rileph) < (My hP;

no such bound is known for &\ppk- In addition, ®)\4gpK requires the solution of p - 1



linear systems of equations, the ith having p - i unknowns, in order to perform a
“reorthogonalization." So the smallest known combinatory cost for this class is about
O(pa'gl) arithmetic operations; this is obtained by using Strassen’s technique for linear
systems (described in Borodin and Munro (78]} On the other hand, most of the
combinatory cost for ¥p in ®gpx is involved in finding the coefficients of the
polynomial Pn+1 (see the Appendix); once these coefficients are known, the remaining
combinatory cost is O(p In p) as p T . An estimate of how much work is required to
compute these coefficients is given in

Lemma 3.1: Let X0: Y11 -5 ¥ps Wou Zyy -, Z, be given, and let

Qfx) = Z::c: q; X
be the unique polynomial of degree at most r + | satisfying
Qlxg) = wp, Qxp) = z5, and QMy)) = z; (I1<isr) .
If T(r} is the time required to compute g, .., A4+, then
T(r) = O(rInr) asrT o .

Proof: The coefficients dy. 2ay, .. , ("+1)qr+1 of Q' may be computed in time
O(r ln2r) by using a fast algorithm for computing the coefficients of the Lagrange
polynomial interpolating the points o zgh (y(zgh o, (Yps2, )i see Borodin end
Munro [75] for details. Then O(r) operations yield A1s = 1 Gpyps and Horner’s rule gives
Gp with O(r) additional operations. [ |

Thus there exists ay > 0 such that

(3.10) d(p) < ayy p In®(pre) .
(We write "In (p+e)", where e is the base of the natural logarithms, rather than "In p"
as a technical convenience. However, an expression of the form "in (p+4)" with 4 > 0
is necessary to guarantee that d(1) > 0.) In order to simplify matters a bit, note that

Theorem A.l of the Appendix implies that
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@1y SR,V < o) P
Although the estimate above is not exact for p > 2, it is asymptotically equal to that in
Theorem A.l. (If necessary, the sharper estimate given there may be used, but the
calculation of optimal order {see below) involves considerably more detail; moreover,
the asymptotic formulae for optimal complexity, order, and step-size are the same in
either case.) Combining (3.10} and (3.11), we see that the cost per step is bounded by

(3.12) cyfp) = olv) p +ay p Inpse)
which leads to

Theorem 3.2:

o) < Cip) = My Te(v) p + ay p InZlp+e)] e?/P .
Proof: If we set
h = hypa) = MU'l e-a/p ,

we find that (3.9) implies that (3.1) holds. Using this result, {3.2), and (3.12), the
theorem follows. 11

Thus we have found bounds

(3.13) Cupa) < Clp,a) < Cipsa)
on the number of operations required for a pth—order NRK method to provide an
approximate solution satisfying (3.1). We would lke to compute

(3.14) C¥a) := inf {Clp):p€Z*'} .
This is not possible, since we only have bounds for C{p,a), and hence cannot compute
C(p,a) exactly, However, we can pick optimal orders which minimize these bounds.
First, we prove

Lemma 3.2: Define

G (p) = p2 c P} / cilp} and G fp) = p? cy’(p) / eylp) -

Then for p > 0, we have G ‘(p) > 0 and Gy’(p) > O.
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Proof: Since ¢, is a linear polynomial with a negative zero, the first part follows
immediately. Now write cylp) = cy{p) co{p), where
cy(p) = p and colp) = 1 +ﬂ|n2(p +e),
with g = ay / e(v). Define
Gip) = P2c/(P) /) (i=1,2) .
Clearly Gi{p}>0if p>0. Now
Golp} = 28 p? In (p+e) / Dalp), where Dap) = (p+e) fo(p),
so that
Go'(P) = 28pgyp) / Dyp)?
where
go(p) = Bp Fn2(p+e) [In(p+e) - 1]+ 28 e In2(p+e) +{p +2e)in{p+e) +p
Thus G»/{p) > 0 for p > 0. Since Gy = Gy + Gy, the desired result follows. [
We now have the following
Theorem 3.3: For any a > 0, there exist p *(a) and pt(a) such that
@ = Gp) iff p=pHa) and e = Gyp) ift p = pyXa) .
Moreover,
ClMa) = Cpp Ha)a) < Cl(pa) unless p = p He)
and
C Ma) = CuleyMaa < Culp) unless p = p;Xa)

Proof: Using (3.5), (3.9), and Lemma 3.2, this follows immediately from Lemma 2.1

of Werschulz [76a). |
From (3.13), (3.14), and the above Theorem, we have bounds

(3.15) CLl*a) < CHa) < CMa) .

We call pl_*(a) {respectively, pU*(a)) the lower (upper) optimal eorder, CL*(a)

(respectively, CU*(a)) the lower {upper) optimal complexity, and
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(3.16) h *@ = hy(p ")) (respectively, hyta@) = htpye)e)
the lower {upper) optimal step-size. We now examine how these quantities behave as
a ihcreases.

Theorem 3.4: p *a), pyta), C *a), and Cyta) all increase monotonically and
tend to infinity with a. Moreover, the following asymptotic formulae hold as a tends to
infinity,

(1) pL*(a) ~ a and pU*(a) ~oa .

(2) C Ma) ~ M efa + e(v)/2]a and Cyfa) ~ Myayea In2a .

@) h*a ~ (et and by ~ My )l .

Proof: The first statement foliows from Lemma 3.2 and trom Theorem 2.3 of
Werschulz [76b]. Now Lemma 3.2 implies that

G p) ~ p and Gylp ~ P aspTo .
Using this result and the fact that lim e pL*(a) = lim 4te0 pU*(a) - 400,
(1.) follows. Finally, (2.} and (3.) follow from (L.}, Theorem 3.1, and Theorem 3.2. [ |

So in the class of nonlinear Runge-Kutta methods, we tind that

(3.17) C X@ = Ol < CHa) s Cyf(a) = Ola InZa)
as a tends to infinity; so, the ratio

C @ / C M@ = Olna) asaf o
indicates the gap in our knowledge of the complexity of nonlinear Runge-Kutta
methods.

Finally, we wish to compare the complexities of NRK methods, Taylor series
methods, and linear Runge-Kutta ("LRK™) methods. We write CU,NRK*’ CU,LRK*’ CU,T*
for CU* in the class of NRK methods, LRK methods, and Taylor series methods; other
notations (CL,LRK*' CLRK*' etc) are formed in an analogous manner. Finaly, if

f, g1 R > RY* satisty lim g1o0 fl@) = fim groo gla) = +®, we write
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(3.18) t<g iff f{a) = olg(a)) asat o ;
we say f is asymptotically less than g. (See Section 5 of Werschulz [76a]) We then
have
Theorem 3.5:
(L) Cynre® < Cpipe*
(2.) CU,T* < Cypnrk if the cost of evaluating the kM derivative of v is
bounded for all k.

Proof: Immediate from (3.20) and (4.14) of Werschulz [76a) and (3.17). §

As a corollary we see that Chrk® < CLrk": so that the best NRK method known
is better than the best LRK method possible. Moreover, if the derivatives of v are
easy to evaluate, the best Taylor series method known is better than the best NRK
method known. However, if the cost of evaluating the kth derivative of v increases

faster than O(In k) as k 1 oo, then it is easy to show that the opposite will be true.
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Appendix: Order-Convergence of a Basic Sequence

In this Appendix, we describe a subclass of a class of iterative methods for the
solution of scalar nonlinear equations. This subclass will then be used to generate an
order-convergent basic sequence ®gpy of nonlinear Runge-Kutta methods.

Lemma A.l: Let F: DcR - R have a simple zero [, and suppose that F is
analytic at f. Pick k, m ¢ Z+* with m + 1 2 k. Then there is a sequence
Yim = ¥gmn ' NE Z**} of stationary muitipoint methods without memory such that
the following hold:

(1.) The method ¥, uses the information

Ry (F) = (Flxoh - s FMAxg), F&Yy F&Xy )}
(the points yi , - » Y being suitably chosen) to compute a new
approximation xy to | from a given approximation xq by setting
Xy = ¥ymn(XQ) -
(2) There exists aB >0 and an hy > 0 such that if |xg - tl s hg , then
kg -t € Blxg - P for all ne ZHY,
where
(A.1) p = min{m+ 2n + 1, 2m +n + 1) .
Before proving the Lemma, we describe how the method ¥ypmn computes an

improved approximation x; from the old approximation xq .
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Algorithm for computing X1 = ¥emniXoh

(1.} Letd := [Fixgd/F{xg)] .
(2.) Let 2z be an approximate zero of
P10 = I (x - xg) Flikgo) /it
satisfying
(A.2) 2 = xp+0B) and [pyiz))f < (A BT,

where A, is independent of n.

(3.) Let

Yi = Xg * @y, (z) -xg) (lsisn,
where
ap = L 4x) /2
and xp, > . > ¥nn are the zeros of the Jacobi polynomial
Pax) = P{k=b, mel-k)y,)

(see Szegh [59]).

(4) Let Ppr+1 be the polynomial of degree at most m + n that interpolates the
information Rumn(F) and let x| be an approximate zero of Prsl
satisfying

(A.3) X| = Xp+0() and |pp . (x)f < (A, 8)P,
where A, is independent of n and p is given by (A.1).

Here we use the notation of Brent [74] Clearly, Yumn € C/k, m, n), the only
difference being that conditions (A.2) and (A.3) replace (2.2) and (2.4) of Brent [74] 1t
is easy to see that (A.2) and (A.3) may be realized by using flogy(m+1)] - 1 and
[logo{pf(m+1))] iterations of Newton’s method, with the respective starting

approximations of X ~ Flixg) / F(xg) and z; .
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Proof of Lemma A.l: Let xy’ be the exact zero of p,,y near Xg. We then find

that there is a f between x; and z such that

(A8 [Fxy™ < lppsyfzy) - Flz)l + pfe 1 8 - FUOE ixy’ - 24l -
Using (A.3), the analyticity of F, and standard technigques of interpolation theory
(Traub [643), it is easy to show that (2.9) and (2.10) of Brent [74] may be rewritten as

Ipps () - FOI € (Ag 8M*M*L and
(A5)
pr, 1 () - FIO0 < (Ag M
for |x ~ xgl s 48, (Here all constants A, will be independent of n.) Similarly, we find
that
[y’ -t < (Ag DM and 2y -8 (g pm+l,

so that the triangle inequality gives

(A.6) Xy - zgl < (A7 B
Using (A.8), (A5), and (A.6), we see that

xS IPpaylzy) = Flzp)l + (Ag py2mn+l

(A7) _ Zm+n+l
< Ipml(zl} Fl(zl)l + |F2(21H +{Ag LY .

where

Fiox = EMeE™ (- xg) Flideg) /it and - Falx) = Foa) - Fyox)
Clearly IF (x)] < (Ag BY"*20*L, 5o that (A7) becomes

(A.8) |F("1’)| b |pn+1(21) - F1(21)| + (Alo by .

As in Brent [74), we now write
Prs1tX} = rikad+ rofx),
where r; (i = 1, 2) is the polynomial of degree at most m +n satisfying
riixg) = Fldxg) (O <jsm)

and

rRhyp) = FRyp  (tgisn)
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If we lat
Plx} = rifx + xg) - Fyix + X0
and write s ;= Zy - xg (in this Appendix only), we find that
PO =0 ©sicm and PR, =0 (1sism) .
We may easily alter the proof of Lemma 4.3 in Brent [74] to show that
ri) -Fizy) = Ple) = 0 .
Thus (A.8) becomes
(A.9) IFOxy /0 < frofzg)f + (Agg 8.
To bound the remaining term, iet us write
rolx) = E;:«I Ay (x - xo)j+m ,
recalling that r> has a zero of multiplicity m at Xp - Using the notation of Stewart (73],
we see that the nonzero coefficients of fo are given by the solution of the linear
system
Wy = ¢,
where
wj = o{;l (1si,jsn),
o= A MG m) Gem- Kt (1 $j<n), and
Y = ! Fz(k)(yi) / air:hkﬂ (lsizn) .
Since W' is a Vandermonde matrix, we find that the entries of U = W1 are given by
Yij " %n (-pn-t n-in-1,j [ Megj (@i - @),
where
Sun-1,j = b “pl,n apwn ,
the sum being taken over all multi-indices py .. Py hot including j (Gregory and

Karney [69]). Since there are fewer than 2P summands, each of which lies in [0, 1],

we see that un-1,j < 2", implying that
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l“ij| < 2" «jn / Ilr#j (“jn -apy) -
So we have
n
ml = 12y vl

(A.10)
< 12" max 1gjgn | o Foyy) £ [l Gatajpll 1

where
G (x) := Gpm + 1, m + 2-kx) = [1:“=1 {x - apy)
(see Abramowitz and Stegun [64]).

Now it is clear that

m-k m-k
max 1 <j¢n 1 /ajn 1 l"nn .
By Theorem 8.9.1 of Szegh [59), we may show that

-2 .
any 2 Appn S

using this result and (22.5.2) of Abramowitz and Stegun [64), we find that

m-k -
max jqj<n [“jn G (aj)] 1

m+2n+1 -
< App n(m-k) ( . ) MmaX {gi<n lpnl("jn)l )1 ,

(A1)

By the symmetry relation (4.1.3) of Szegd [59]), we may assume that 0 5 %;, < 1. Using
Theorem &.9.1 of SzegB [59), we may show that
Prtxjl ™ s (Aya)"
and so (A.10), (A.11), the definition of F5, and the above imply that
l”jl < (Alﬂa)m+2n+1'
yielding the result
h‘z(zl)l s E?l:l aj+m ij"'m £ N max |¢i<n ]llil < (Als 5)m+2n+1 .
So (A.9) becomes

|F(Kl')l < (A].B 5)" .

By Taylor’s Theorem, this implies



19

by’ -t s (A7 8 .
The desired result then follows trom (A.3) and from (2.5) of Brent [74) B
We now describe the basic sequence ¥gpy . The methods in this basic sequence
are given by
¢1{x0, h) = vixy),
v2{Xg, h) = vixg + h vixg) / 2),
and for p > 2,
¥plxg s h) = hl ¥1,1,p-20x0) - %],
with wl,l,p~2 applied to the function F given by (2.8) and the approximation %] toxy”’
being given by an appropriate number of iterations of Newton’s method (as described
above),

Theorem A.1: The basic sequence ®ppy is order-convergent with respect to the

global arror. Moreover, the number of stages s(p) required by ¥p ¢ ¥pRK is given by
p ifp<?2
s(p) =
p-1 ifp>2
Proof: We use the notation of Lemma A.1, writing z(h} for the computed pth-
order approximation x; to x(h) and Phe1( s xo) for the polynomial Ph+1 - The result
of Lemma A.1 is that
hLlath) - xth)| < (@ hP,
the desired result for a single unit step. To prove the global result, we must consider
the Lipschitz constants for PRk
We implicitly differentiate the result pn+l("l" ¥g) = 0 to find
91 ¢pxp, h) = -7l Qnaxp’, xg) + sp(xo),
where

Qns1(1% x0) = 148, p,,1(x,7, Xp} / 31 Ppeplxp’, xg)
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and
spligh = L (g [xy - T -
It is easy to see that xy and x;/ are analytic functions of xq - Since their difference
tends to zero uniformly on the domain of v as p T o0 , it foilows that
lim pteo ip(XO) = 0.
We claim that
an,l(xl’g xo) = O(h ln n) as n T oo '
uniformty in xg . To see this, note that we may write the interpalation polynomial pp 41
in terms of Jacobi polynomial Py, finding that
$ix) n

Prap(xxg) = (1" (h/2) 5_1 P dt + hvlxg) Tyoyln - P

where
px) = 2 -xg)/[h vixgdl -1
and
: P S I LTSI ROWAT. dt

Ly = (2 {1+ %) V0K Pr/ O] j‘_l (t + 1) P(t) / (- xpp dt

Now
3y Prari¥frxg) = CUMPAE [ vixgd + (L £ 2 g 8Kn) LknFL) »
Where
f1 = r(x]_')r
Lkn(X) = Pn(X) / [Pn’(xkn) (x - xkn)]l and
gty = 1 /[(1+ ) vixg + (1 + 1 h vixg) [ 2] .

By (8.21.10) of Szegh [59), the first term in the expression for o¢ Prs1X1’ s ) g0es
to zero as n T o . A minor modification of the proof of Theorem 14.4 of Szegh [59]
shows that the sum in the remaining term tends to gtix(h))) as n T 0. So

3y Pra1lXy” s %0 ™ vix(yt asnto .
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Using Lemma A.1 of the Appendix in Werschulz [76a] and techniques similar to those
yielding the above estimate, we find
3 Ppa1*1’ s xg) = Olhln n) - v(x(h))“l asntow.
This gives the estimate claimed for Q11 xg) -
So the Lipschitz constant for ¥p € $ppy Erows as the logarithm of p. By

Proposition 4.3 of Werschulz [76b], #gRrK s order-convergent. [
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