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1. Introduction 

Let 5) be a subset of the real numbers IR, and let ^ - {v : domain(v) c R -* IR} 

be a set of functions, such that the initial value problem of finding a function 

x : [0, 1] -> IR satisfying 

x(t) = v(x(t)) 0 < t < 1 
(1.1) 

x(0) «= x 0 

has a unique solution for every (XQ , v) « 5)x^. (The differential equation in (1.1) is 

said to be a scalar autonomous differential equation.) We are interested in the 

computational complexity of using one-step methods to generate an approximation to 

(1.1) on an equidistant grid (in the sense of Stetter [73]); that is, the methods 

considered give approximations Xj to x(ih) by the recurrence 

(1.2) x i + 1 = Xj + h ?(xj,h) (0 < i < n - 1), 

where h = n"* is the step-size of a grid with n points, and ? is the increment function 

(Henrici [62]) for the method. (For brevity, we will refer to "the method f " ) 

In Werschulz [76a], we discussed the complexity of solving autonomous systems 

of differential equations; in this paper, we will consider only the case of a single scalar 

autonomous equation. Clearly, the results of Werschulz [76a] hold for problems of the 

form (1.1). However, in this paper we will discuss the complexity of solving (1.1) via 

nonlinear Runge-Kutta methods (abbreviated, "NRK methods"). We only consider the 

scalar case (1.1), since it is not known whether NRK methods exist for more general 

systems. 

In Section 2, we give the formal definition of "NRK method," and show that no 

NRK method using s evaluations of v ("stages") can have order exceeding 2s - 1. Thus, 
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the set of s-stage methods of order 2s - 1 described in Brent [74] has maximal order 

in the class of NRK methods. 

In Section 3, we use the results of Brent [74] and Section 2 to find upper and 

lower bounds on the complexity of finding an approximate solution whose error does 

not exceed <, using a method of fixed order. These results are then used to calculate 

optimal orders which minimize these complexity bounds. We show that the optimal 

order increases as t decreases, tending to infinity as $ tends to zero. Finally, we 

compare the complexities of NRK methods, Taylor series methods, and linear Runge-

Kutta methods. We show that the best NRK methods known are asymptotically better 

(as i tends to zero) than the best linear Runge-Kutta methods possible, but are 

asymptotically worse than the best Taylor series methods known if the cost of 

evaluating the k**1 derivative of v is bounded for all k. 



3 

2 . Maximal Order for NRK Methods 

Before proceeding any further, we will review some basic notions from 

Werschulz [76b]. The following notational conventions will be used. Let DC be an 

ordered ring; then "DC*" and "X**" respectively denote the nonnegative and positive 

elements of X. (This is used in the cases X = IR, the real numbers, and X - Z , the 

integers.) The symbol ":=" means "is defined to be." We use T to denote the unit 

interval [0, 1]. The notations "x 1 a" and "x t a" are used to indicate one-sided limits, 

as in Buck [65]. Finally, if * i , %2 : R "* R and « : IR 2 IR are differentiate, then 

for i « 1, 2, we write 

dj «<XiU),X2<t)> 

for the result of differentiating co(xi> X2) with respect to x (, and then substituting 

X I = Xi<t), %2 = X 2 ^ ) -

We next describe the model of computation to be used. We assume only that all 

arithmetic operations are performed exactly in IR (i.e., infinite-precision arithmetic) and 

that for all v ( 1?, we are able to compute the value of v at any point in its domain. In 

addition, we must pick an error measure, so that we may measure the discrepancy 

between the approximate solution produced by <p (via (1.2)) and the true solution. For 

the sake of definiteness, we use the global error 

(2.1) <rQV,h) :« max 0 < j < n |x(ih) - X j | . 

Other error measures may be used, such as the local error per step and the local  

error per unit step (see Henrici [62] and Stetter [73] for definitions); this would 

involve only a slight modification of the results contained in the sequel. 

Finally, we will say that * - {̂ >p : p ( Z * + } is a basic sequence of methods if 

there exist functions * : IR^xI -* IR and * L , «jj : IR+ IR* such that 
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(2.2) * G ( V h ) " * ( p , h ) h P for h ( I and p * Z , 

where 

(2.3) 0 < * L(p) ^ *(p,h) < *(j(p) < +cx) for h * I . 

We say that has order p. This is a slight extension of the definition of order given 

in Cooper and Verner [ 7 2 ] ; the function * L introduced here is necessary and sufficient 

for the "order" of a method to be unique. (Here we introduce the convention of 

attaching the subscripts "L" and "IT to quantities dealing with lower and upper bounds 

(respectively) on complexity.) 

We now consider a generalization of the familiar linear Runge-Kutta methods 

which are found in standard texts such as Henrici [62]. A basic sequence • is said to 

be a sequence of nonlinear Runge-Kutta methods ("NRK methods") if each increment 

function ^ * may be written in the form 

(2.4) *>p(xj,h) :« r s (x 0 ,h ; K0, ... , k s - 1 ) , 

where 

(2.5) kj :« v(yj) f yj := Tj(x i 9h; kQ,... (0 < j < s - 1) 

for suitable functions TJ : IRxIRxIR* -> IR (0 < j < s). We say that y>p has s « s(p) 

stages, so that an s-stage NRK method uses s evaluations of v. Since the one-step 

method ^ p defined by (2.4) and (2.5) is stationary (i.e., does not change from step to 

step), we need only describe how xj is generated from X Q . 

Brent [74], [76] considered the problem of finding a simple root f of a nonlinear 

function F : IR IR, using the Brent-information (Meersman [76]) 

(2.6) W B | S (F) :« {F (x 0 ) f F ' (x 0 ) f F ' (y 1 > l . . . , F ' ( y s . 1 ) } l 

where X Q is an initial approximation to f, and yj ,... , y s _j are to be determined. Let 

X | be a sufficiently good approximation of the appropriate zero of the minimal-degree 
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polynomial interpolating the information 9ig j S(F). Then Brent [74] showed how to 

choose y^ ,... , y s _ i so that 

(2.7) |x x - r l - O ( | x 0 - r l 2 s > as x 0 - * r • 

This defines an iterative method of order 2s for finding f. 

Let us now define a function F by setting 

(2.8) F(z) :- fZ d$/v($) - h , 

and note that x(h) is the zero of F. Recalling that order for iterations is defined 

differently than is order for one-step methods, (2.8) shows how an s-stage NRK 

method of order p may be derived from a (p + l)*h-order iterative method for zero-

finding which uses the Brent-information (2.6). Using this transformation and (2.7), 

Brent [74], [76] exhibited a sequence * M B R K ° * u^o6\f\ed'% Brent-Runge-Kutta methods 

("BRK methods"), in which the s-stage method has order 

(2.9) p * 2s - 1 . 

Furthermore, Meersman [76] proved that this order is the greatest possible in the 

class of all such BRK methods. We now extend Meersman's result to include all NRK 

methods. 

Theorem 2.1; No s-stage NRK method can have order greater than 2s - 1. 

Proof: Let \p be an s-stage method with order p. We will construct (from Y>) an 

iterative method i of order q :« p + 1 for finding a simple zero f of an arbitrary 

analytic function F : IR -> IR. 

The method ^ is defined as follows. Let X Q be an approximation to f such that 

F' is nonzero between X Q and f. (Since F'{[) ^ 0, such an X Q exists.) Write to F ( X Q ) ; 

without loss of generality, assume to < 0. Now apply one step of using a step-size 

of -tQ> to the problem 

x(t) - F ' M O r 1 ( t 0 < t < 0) with x(t 0) - x 0 , 
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(whose solution is the functional inverse of F, so that x(0) - F^O) - f ) ; then ^ is 

given by 

* (x 0 ) x 0 - t 0 ^ ( x o r t 0 ) . 

By the definition of order for iterative methods, it is clear that + has order q; 

moreover, f uses the generalized Brent information (Definition II.3.8 of Meersman [76]) 

« G B f 8 < F ) : = { F < x 0 ) ^ / ^ i ' r / ( y i ) i - - . . ' r / < y 8 . 1 » • 

Suppose that y 0 + X 0 J then q < 2s by Theorem II.3.3 of Meersman [76]. On the other 

hand, if yq « X Q , then ^ uses the Brent-information (2.6); by Theorem 11.2.4 of 

Meersman [76] (also due to Wofniakowski), we have q < 2s in this case also. Thus in 

either case, we find that 

p + 1 - q < 2s , 

and the desired result follows. | 

Thus * M B R K ' s informationally-optimal in the class of NRK methods, in the sense 

that each ip^ in *MBRK uses the minimum number of stages possible for a p^-order 

NRK method. 
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3 . Complexity Bounds for NRK Methods 

In this Section, we will compute lower and upper bounds on the total number of 

arithmetic operations C(p,a) required to guarantee that if ? p is a p^-order NRK 

method, then 

(3.1) <rG(*p,h) - f : x s e ~ ° 

for a given p « Z + + and a * IR + + . (Here e is the base of the natural logarithms.) Since 

a > 0, we have 0 < § < 1; clearly a increases as i decreases, and a tends to infinity as 

« tends to zero. 

In the methods we consider, we may write 

(3.2) C(p,a) - n c(p) = h" 1 c(p) , 

where n is the minimal number of steps required (so that h « n"^ is the maximal step-

size permitted), and the cost per step c(p) is the number of arithmetic operations 

required for the execution of one step of a p*h-order NRK method. As in Traub and 

Wofniakowski [76], we shall express the cost per step in the form 

(3.3) c(p) := e($ p (v)) + d(p) . 

Here 9?p(v) is the information about v required to perform one step of a p^-order 

NRK method ^ p , and we write e($ftp(v)) for the informational cost of ? p ; we call d(p) 

the combinatory cost of »/>p. For example, Euler's method 

x i+ l " x i + h v<xi> 

has informational cost 

(3.4) e(v) := cost of evaluating v at one point. 

The combinatory cost is two operations (i.e., one addition and one multiplication). 

We now assume that the solution x of (1.1) is analytic on I. Thus Cauchy's 

Integral Theorem (Ahlfors [66], pg. 122) shows that there exists an M > 0 such that 
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|x < k )(t)| / k! < M k for all t < I . 

Finally, we shall restrict our attention to problems which are "sufficiently difficult/* i.e., 

for which there exists an ML > 0 independent of h and p so that 

(3.5) "G ( *p» h ) * < M L h ) P if h ( l and p ( 2 H . 

(See Section 4 of Werschulz [76b].) 

We will now derive a lower bound for the complexity C(p,«) via NRK methods. 

Clearly, Theorem 2.1 implies that for any p^-order NRK method, we must have 

(3.6) e(JKp<v» * e(v)(p + l ) / 2 , 

and a linear lower bound on the combinatory cost states that 

(3.7) d(p) > a L p 

for some â_ > 0. By (3.6) and (3.7), a lower bound on the cost per step for ?p is 

(3.8) cL(p) = (a L + e(v)/2)p + e(v)/2 , 

which leads to 

Theorem 3.1: 

C(p,a) > CL(p,«) M L [<aL + e(v)/2) p + e(v)/2] e«/P . 

Proof: From (3.5), we see that if (3.1) holds, then 

h < hL(p,a) := M f 1 e"*/P , 

Using this result, (3.2), and (3.8), the theorem follows. | 

Next, we consider upper bounds on the number of operations required. Instead 

of using *MBRK' w e w i " u s e t h e c , a s s *BRK o f "unmodified" BRK methods described in 

the Appendix, where it is shown that *BRK ' s order-convergent ' n the sense of 

Werschulz [76b], That is, there is an My > 0 such that 

(3.9) * G ( V h ) ~ ( M U h ) P ; 

no such bound is known for *MBRK* * n edition, *MBRK r e c 1 u ' r e $ ^ e solution of p - 1 



linear systems of equations, the № having p - i unknowns, in order to perform a 

"reorthogonalization." So the smallest known combinatory cost for this class is about 

0(p3.81) a rjthmetic operations; this is obtained by using Strassen's technique for linear 

systems (described in Borodin and Munro [75]). On the other hand, most of the 

combinatory cost for in <$BRK '
s involved in finding the coefficients of the 

polynomial p n + j (see the Appendix); once these coefficients are known, the remaining 

combinatory cost is 0(p In p) as p t oo. An estimate of how much work is required to 

compute these coefficients is given in 

Lemma 3.1: Let X Q , yj , . . . , y r , W Q , Z Q , ... , z r be given, and let 

QM : - 2 ^ q; x' 

be the unique polynomial of degree at most r + 1 satisfying 

Q(x 0) - w 0 , Q'(x 0) = z 0 , and Q'ty) - Z j (1 < i S r) . 

If T(r) is the time required to compute qQ,... , q r +i , then 

T(r) = 0(r ln
2

r) as r T oo . 

Proof: The coefficients q^, 2q2, ... , (r+l )q r + ^ of Q' may be computed in time 

0(r ln
2

r ) by using a fast algorithm for computing the coefficients of the Lagrange 

polynomial interpolating the points (x 0 , z Q ) , (y^z^), ... , (y r ,z r); see Borodin and 

Munro [75] for details. Then 0(r) operations yield q j , . . . , q r < f j , and Horner's rule gives 

qQ with 0(r) additional operations. | 

Thus there exists ay > 0 such that 

(3.10) d(p) < ay p ln2

(p+e) . 

(We write "In (р+е)
и

, where e is the base of the natural logarithms, rather than "In p" 

as a technical convenience. However, an expression of the form "In (p*?)" with у > 0 

is necessary to guarantee that d(l) > 0.) In order to simplify matters a bit, note that 

Theorem A.l of the Appendix implies that 
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(3.11) e(Wp(v)) < e(v)p . 

Although the estimate above is not exact for p > 2, it is asymptotically equal to that in 

Theorem A.l . (If necessary, the sharper estimate given there may be used, but the 

calculation of optimal order (see below) involves considerably more detail; moreover, 

the asymptotic formulae for optimal complexity, order, and step-size are the same in 

either case.) Combining (3.10) and (3.11), we see that the cost per step is bounded by 

(3.12) с и(р) - e(v) p + a y p ln2

(p+e) , 

which leads to 

Theorem 3.2: 

C(p,a) < Си(р,а) :« My [e(v) p + а у p ln2

(p+e)] e*/P . 

Proof: If we set 

h « h|j<p,a) :- My"
1 e~*/P , 

we find that (3.9) implies that (3.1) holds. Using this result, (3.2), and (3.12), the 

theorem follows. | 

Thus we have found bounds 

(3.13) CL(p,or) < C(p,a) < Cu(p,«) 

on the number of operations required for a p*
h

-order NRK method to provide an 

approximate solution satisfying (3.1). We would like to compute 

(3.14) C*(a) := inf {C(p,a) : p < . 

This is not possible, since we only have bounds for C(p,e), and hence cannot compute 

C(p,a) exactly. However, we can pick optimal orders which minimize these bounds. 

First, we prove 

Lemma 3.2: Define 

G L(p) :- p
2 c L

7

(p) / cL(p) and G^p) :- p
2 cu'{p) I с и(р) . 

Then for p > 0, we have G|/(p) > 0 and G|/(p) > 0. 
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Proof: Since c^ is a linear polynomial with a negative zero, the first part follows 

immediately. Now write cy(p) - cj(p)c 2(p), where 

C j ( p ) :» p and c 2(p) :- 1 + 0 ln2(p + e ) , 

with 0 ;« ay / e(v) . Define 

Gj(p) p 2 cj'fp) / Cj(p) (i - 1, 2) . 

Clearly Gi'(p) > 0 if p > 0. Now 

G 2(p) - 2 0 p 2 In (p+e) / D 2 (p) , where D2(p) (p+e) f 2 ( p ) , 

so that 

G 2 '(p) - 2 0 p g 2(p) / D 2<p) 2 , 

where 

g 2 (p) 0 P ln2(p+e) [In (p+e) - 1] + 2 0 e ln2(p+e) + (p + 2e) In (p+e) + p . 

Thus G 2

/ (p ) > 0 for p > 0. Since Gy = Gj + G 2 , t h e desired result follows. | 

We now have the following 

Theorem 3.3: For any or > 0, there exist Pi*(a) and Py*(a) such that 

a = G(_(p) iff p » PL*(«) and or « Gy<p) iff p - Py*(«) • 

Moreover, 

C L*(a) :» CL(pL*(a),a) < CL(p,a) unless p - pL*(a) 

and 

Cy*(cr) := Cy{py*(a),a) < Cy(p,a) unless p « py*(a) . 

Proof: Using (3.5>, (3.9), and Lemma 3.2, this follows immediately from Lemma 2.1 

of Werschulz [76a]. 1 

From (3.13), (3.14), and the above Theorem, we have bounds 

(3.15) CL*(a) < C*(a) < Cy*(a) . 

We call p L*(a) (respectively, Py*(cr)) the lower (upper) optimal order, C L * ( « ) 

(respectively, Cy*(a)) the lower (upper) optimal complexity, and 
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(3.16) h L*(o) := hL(pL*(o),o) (respectively, hy*(a) :- h ^ p y * ^ ) ) 

the lower (upper) optimal step-size. We now examine how these quantities behave as 

a increases. 

Theorem 3.4: p L*(«), P(j*(«>> C L * ( a ) , a n d C U * ^ a " i n c r e a s e monotonically and 

tend to infinity with a. Moreover, the following asymptotic formulae hold as or tends to 

infinity. 

(1.) pL*(a> ~ « and Py * (a ) * a . 

(2.) C L*(a) ~ M L e [a L + e(v)/2] a and Cy(a ) ~ My ay e a ln2or . 

(3.) h L*(a) - ( M L O ) " 1 and hy * (a ) - (My e)" 1 . 

Proof: The first statement follows from Lemma 3.2 and from Theorem 2.3 of 

Werschulz [76b]. Now Lemma 3.2 implies that 

GL(p) ~ p and Gy(p) ~ p as p t OD . 

Using this result and the fact that lim a ^ Pi*(a) - lim py*(a) * +oo, 

(1.) follows. Finally, (2.) and (3.) follow from (1.), Theorem 3.1, and Theorem 3.2. | 

So in the class of nonlinear Runge-Kutta methods, we find that 

(3.17) C L * ( a ) = 0 ( a ) < C * ( a ) < Cy* (a ) - 0 ( a In 2 *) 

as a tends to infinity; so, the ratio 

C y * ( a ) / C L * ( a ) = 0 ( ln 2 a) asa too 

indicates the gap in our knowledge of the complexity of nonlinear Runge-Kutta 

methods. 

Finally, we wish to compare the complexities of NRK methods, Taylor series 

methods, and linear Runge-Kutta ("LRKM) methods. We write Cy^ N R K * , C U > L RK*> C U,T* 

for Cy* in the class of NRK methods, LRK methods, and Taylor series methods; other 

notations ( C L L R K * , ^LRK*' e* c*^ a r e f o r m e c l i n a n analogous manner. Finaly, if 

U g : IR** -* I R + + satisfy lim f ( a ) - lim g(ar) - +oo, we write 
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(3.18) f < g iff f(a) = o(g(a)) asa too ; 

we say f is asymptotically less than g. (See Section 5 of Werschulz [76a].) We then 

have 

Theorem 3.5: 

( L ) C U , N R K * < C L , L R K * -

(2.) C y j * < ^ U , N R K ^ t h e c o s * °* evaluating the k t h derivative of v is 

bounded for all k. 

Proof: Immediate from (3.20) and (4.14) of Werschulz [76a] and (3.17). | 

As a corollary we see that C ^ R K * < C L R K * , so that the best NRK method known 

is better than the best LRK method possible. Moreover, if the derivatives of v are 

easy to evaluate, the best Taylor series method known is better than the best N R K 

method known. However, if the cost of evaluating the k*h derivative of v increases 

faster than 0(ln k) as k T oo, then it is easy to show that the opposite will be true. 
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Appendix: Order-Convergence of a Basic Sequence 

In this Appendix, we describe a subclass of a class of iterative methods FOR T H E 

solution of scalar nonlinear equations. This subclass will then be used to generate A N 

order-convergent basic sequence * B R K of nonlinear Runge-Kutta methods. 

Lemma A.l: Let F: DclR -> |R have a simple zero F , and suppose that F is 

analytic at F . Pick k, m < Z + + with m + 1 ;> k. Then there is a sequence 

* k m : a = t^kmn : n € Z + + } of stationary multipoint methods without memory such T H A T 

the following hold: 

(1.) The method ^ m n uses the information 

Wkmn<F> W F ( m ^ 0 > ,F ( K ) ( y i > , . . . , F ( K ) ( y n ) } 

(the points y j , .„ , y n being suitably chosen) to compute A new 

approximation xj to F from a given approximation X Q by setting 

x l : e s *kmn ( x0> • 

(2.) There exists a B > 0 and an h Q > 0 such that if |x 0 - F | S H Q , then 

\x{ - R L * ( B l x Q - R L ^ for all n € l + \ 

where 

(A.l) p := min (m + 2n + 1, 2m + n + 1) . 

Before proving the Lemma, we describe how the method ^ m n computes an 

improved approximation xj from the old approximation X Q . 
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Algorithm for computing x t :« * k m n ( x 0 ) . 

( 1 . ) Let 8 : « |F<x 0 ) /F ' (x 0 >| . 

(2.) Let z j be an approximate zero of 

satisfying 

(A.2) Z l - x 0 + 0(«) and | P l ( 2 l ) | < ( A j J ) ™ * 1 , 

where Aj is independent of n. 

(3.) Let 

Y\ { m x 0 + *in ( z l " X 0 > ( 1 S • S n ) , 

where 

"in ( 1 + *in> / 2 

and x^ n > ... > x n n are the zeros of the Jacobi polynomial 

Pn(x) :- p<K-l,m+l-k) ( x ) 

(see Szegft [59]). 

(4.) Let p n + ^ be the polynomial of degree at most m + n that interpolates the 

information 92km n(F), and let xj be an approximate zero of p n + j 

satisfying 

(A.3) x{ - x 0 + 0(«> and | p n + i < x 1 ) | < ( A 2 « ) * , 

where A 2 is independent of n and p is given by (A.l). 

Here we use the notation of Brent [74]. Clearly, ^ k m n * C'(k, m, n), the only 

difference being that conditions (A.2) and (A.3) replace (2.2) and (2.4) of Brent [ 7 4 } It 

is easy to see that (A.2) and (A.3) may be realized by using pog 2(m+l)l - 1 and 

p o g 2 ( p / ( m + D ) l iterations of Newton's method, with the respective starting 

approximations of X Q - F(x 0) / F ^ X Q ) and Z j . 
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Proof of Lemma A.1; Let x^' be the exact zero of p n + j near X Q . We then find 

that there is a {• between X j / and z^ such that 

(A.4) \F(H')\ S |p n + i<zi> - F ( 2 l ) | + |p n + 1 (*> - F'<|)| - Z j | . 

Using <A.3), the analyticity of F, and standard techniques of interpolation theory 

(Traub [64]), it is easy to show that (2.9) and (2.10) of Brent [74] may be rewritten as 

|p n + 1 ( x ) - F(x)| £ (A 3 « ) m + n + l and 
(A.5) 

|p n +l<x> - F'(x)| S ( A 4 « ) m + n 

for |x - X Q | S 46. (Here all constants A r will be independent of n.) Similarly, we find 
that 

I x ^ - f l < ( A 5 « ) m + n and | Z l - f | S ( A 6 « ) m + l , 

so that the triangle inequality gives 

(A.6) I x i ' - z ^ < ( A 7 « ) m + 1 . 

Using (A.4), (A.5), and (A.6), we see that 

IKxi'H * |P n + l<«l) " F < * l > l + <A8 « ) 2 m + n + 1 

( A 7 > 
s IPn+l<zl> " F l < z l > l + l F 2 < z l > l + < A8 « ) 2 m + n + 1 , 

where 

F l ( x > : " 2 H o 2 n
 ( x " x 0 > ' F < i > ( x 0 ) I i ! a n d F 2 ( x > : " F(x) -F i (x ) . 

Clearly |F 2(x)| < (A 9 $>m+2n+l ( s 0 that (A.7) becomes 

(A.8) |F< X l ' ) | * | p n + i < z l > - F 1 ( z 1 > | + ( A 1 0 « > ' . 

As in Brent [74], we now write 

P n + l (x ) - rj(x) + r 2 (x ) , 

where r{ (i = 1, 2) is the polynomial of degree at most m + n satisfying 

rj ( j )<x 0> = F i ( j > ( x 0 > (0<i<m) 

and 

rj ( k ) (yj) - Fj<k)(yj) (1 < j < n) . 
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Wy « c , 

where 

»jj : = (1 * i, j * n) , 

nj a j + m | i + m (j + m)! / (j + m - k)! (1 < j < n) , and 

T} :- i k F2<k)(y,) / « £ ~ k + 1 < l £ i < n ) . 

Since W T is a Vandermonde matrix, we find that the entries of U - W~* are given by 

MJJ - " j n ^ ^ ^ ^ n - l j / n ^ j U j n - o t r n ) , 

where 

V n - l , j ; t s 2 * P l , n - «pM,n • 

the sum being taken over all multi-indices pj ... p^ not including j (Gregory and 

Karney [69]). Since there are fewer than 2 n summands, each of which lies in [0, 1] , 

we see that ^ > n - i j ^ 2 n , implying that 

If we let 

P(x) := rj(x + x 0 ) - F^x + x 0 ) , 

and write t z j - X Q (in this Appendix only), we find that 

P ( i ) (0) = 0 (0 < i < m) and P ( k ) ( a i n i ) « 0 (1 ^ i s n) . 

We may easily alter the proof of Lemma 4.3 in Brent [74] to show that 

r ^ z ^ - F ^ ) « P ( i ) - 0 . 

Thus (A.8) becomes 

(A.9) | F ( X l 0 | < | r 2 ( Z l ) | + ( A 1 0 «>̂ . 

To bound the remaining term, let us write 

recalling that r 2 has a zero of multiplicity m at x Q . Using the notation of Stewart [ 7 3 ] , 

we see that the nonzero coefficients of r 2 are given by the solution of the linear 

system 
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|UJJ| < 2 n « j n / n ^ j ( « j n - « r n ) 

So we have 

(A.10) < n 2" max l s j S n | « k F 2< k>( y j) / G n '(«r j n)] I . 

where 

Gn(x) := Gn(m + 1, m + 2 - k, x) * n j ^ (x - « r n ) 

(see Abramowitz and Stegun [64]). 

Now it is clear that 
- / m-k * * m-k 

m « l<j<n 1 / « j n - W « n n • 

By Theorem 8.9.1 of Szego [59], we may show that 

«nn * A l l n _ 2 5 

using this result and (22.5.2) of Abramowitz and Stegun [64], we find that 

max l s j s n [«™~K G^cr^)]" 1 

0 / . v / m + 2n + 1 I , 
< A 1 2 n2<m-k) [ ^ J max U j , n | P n ' ( x j n ) f l , 

By the symmetry relation (4.1.3) of Szegfi [59], we may assume that 0 £ x j n < 1 . Using 

Theorem 8.9.1 of Szegft [59], we may show that 

| P n ' ( x j n > r l * ( A 1 3 ) " , 

and so (A. 10), (A. l l ) , the definition of F 2 , and the above imply that 

H I * ( A 1 4 « ) M + 2 N + 1 . 

yielding the result 

| r 2 ( Z l ) | £ I N

M L a J + M . J + M S nmax l s l $ N H,L S ( A 1 5 « ) m + 2 n + 1 . 

So (A.9) becomes 

|F<x1')| * ( A 1 6 « > * . 

By Taylor's Theorem, this implies 



1 9 

The desired result then follows from (A.3) and from (2.5) of Brent [74} | 

We now describe the basic sequence * B R K • The methods in this basic sequence 

are given by 

* l < x 0 , h ) :- v (x 0 ) , 

*2< x0 > h> ; s s v < x 0 + h v ( x 0 > / 2> » 
and for p > 2, 

*p<x 0 , h) :- h" 1 [ * U > p . 2 ( x 0 ) " x 03> 

with a P P | i e d t o * h e function F given by (2.8) and the approximation xj to x j ' 

being given by an appropriate number of iterations of Newton's method (as described 

above). 

Theorem A.l: The basic sequence is order-convergent with respect to the 

global error. Moreover, the number of stages s(p) required by ? p i * B R K I S 8 i v e n by 

f p i f p < 2 
s(p) - < 

I p - 1 if p > 2 . 

Proof: We use the notation of Lemma A,l, writing z(h) for the computed p* h -

order approximation xj to x(h) and p n + 1 ( • , x 0 ) for the polynomial p n + 1 . The result 

of Lemma A.l is that 

h" 1 |z(h) - x(h)| < (B h)P , 

the desired result for a single unit step. To prove the global result, we must consider 

the Lipschitz constants for * B R « . 

We implicitly differentiate the result P ^ i ^ ' , x Q ) a 0 to find 

¿1 *p<*0 ' h ) * " h - 1 Qn+l<xl'> x0> + i p < x 0 > ' 
where 

Q n + l ( x l ' ' x0> " 1 + d2 Pn+l<xl'> x0> / d l Pn+l (*l'> x0> 
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and 

«p<*0> 8 8 h ^ f d / d x o U x j - X ! ' ] • 

It is easy to see that xj and x j ' are analytic functions of X Q . Since their difference 

tends to zero uniformly on the domain of v as p t oo , it follows that 

l i m pf oo ^ 0 ) - 0 . 

We claim that 

Qn+l ( x l '» x O> * 0 ( h l n n > a s n T 0 0 » 

uniformly in X Q . To see this, note that we may write the interpolation polynomial p n + j 

in terms of Jacobi polynomial P n , finding that 

Pn+l< x'*0> - ( " D n ( h / 2 ) J ^ P ^ d t + h v(x 0) X ^ j I k n - h , 

where 

f(x) :« 2 (x - x 0 ) / [h v(x 0)] - 1 

and 

I k n s- [2 (1 . x k n ) v(y k) Pn^x^)]" 1 (t + 1) P n(t) / (t - x k n ) dt . 

Now 

* i P n + i < * i ' . * o > - <-D n P n <f i> / V <V + u + r i>xJ . 1 g<XK n >iWri>, 
where 

t\ :- r (x i ' ) , 

L k n (x) :- Pn(x> / [P n ' (x k n ) (x - x k n ) ] , and 

g(t) := 1 / [<1 + t) v(x 0 + (1 + t) h v(x 0) / 2)] . 

By (8.21.10) of Szego [59], the first term in the expression for P n + i ( x i ' , x Q ) goes 

to zero as n T oo . A minor modification of the proof of Theorem 14.4 of Szegft [ 5 9 ] 

shows that the sum in the remaining term tends to g(f(x(h») as n t oo . So 

d l P n + l ( x l ' » x0> ~ v (x (h» _ 1 as n t oo . 
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Using Lemma A.l of the Appendix in Werschulz [76a] and techniques similar to those 

yielding the above estimate, we find 

ô 2 P n + l<* l ' > *6> " 0(h In n) - v(x(h))"1 as n Too . 

This gives the estimate claimed for Q n + i ( * i ' > X Q > . 

So the Lipschitz constant for y>p * * B R K grows as the logarithm of p. By 

Proposition 4.3 of Werschulz [76b], * B R K is order-convergent. | 
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