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1. Introduction 

With few exceptions, past work in analytic computational complexity has focused 

on the problem of finding a zero of a (nonlinear) transformation of Banach spaces; in 

most work, this problem is specialized to that of finding a zero of an operator on a 

finite-dimensional real or complex vector space (and in much of this work, the problem 

is further specialized to the one-dimensional case). Much has been discovered about 

the computational aspects of iterative schemes for the solution of such problems, 

especially in the areas of minimal complexity (e.g., Kung and Traub [73], Traub and 

Wo^niakowski [76]) and maximal order (e.g., Kung and Traub [74], Wofniakowski [75]). 

In this paper, we will consider another topic in analytic computational complexity 

theory, that of finding complexity bounds for the numerical solution of ordinary 

differential equation initial-value problems on a fixed interval. We will not be 

interested in questions of the existence and the uniqueness of the solutions to such 

problems. In fact, we will restrict our discussion of the application of general results 

to the case where the unique solutions to these problems are analytic functions. (The 

techniques described in this paper are applied to several well-known classes of 

methods in Werschulz [76a], [76b].) 

We will limit ourselves here to classes of one-step methods for the numerical 

solution of these problems; in terms of informational usage, these methods are 

analogous to iterative zero-finding methods without memory (Traub [64], [72]). 

Analogous to the one-point iterative methods with memory are the multistep methods 

for initial-value problems; these methods will be dealt with in a future paper. 

Our approach will be to assume that an initial-value problem is given, along with 
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some error criterion t , where 0 < i < 1; we then wish to compute an approximate 

solution with error no greater than i. Two basic questions concern us: 

(1.) For any given method, what is the complexity of solving this problem? 

(2.) Given any "basic" sequence of methods with increasing order, which method 
has minimal complexity? 

In Section 2, we describe a methodology that handles both questions for classes 

consisting of methods whose error functions have a special form. Furthermore, we 

find that within such a basic sequence of methods, the following hold under very 

general conditions: 

(1.) For any i , there is a unique choice of order and step size minimizing the 
complexity. 

(2.) As * decreases, both the optimal order and the complexity increase 
monotonically, tending to infinity as § tends to zero. 

Furthermore, within many classes of problems and methods, the "penalty" (e.g., the 

amount the cost curve turns near the optimum) associated with using non-optimal 

order tends to infinity as « tends to zero. 

These conclusions are an interesting contrast to known results on zero-finding 

via iterations without memory. The latter results tend to support the "folklore" idea 

that it is "better" to use a low-order method many times, than to use a high-order 

method a few times. In the one-point case, optimal order is low, while in the multipoint 

case, optimal order increases with the problem complexity (but with little penalty for 

using a method of non-optimal order) (Kung and Traub [73]). In addition, optimal order 

for these problems does not depend on the error criterion; it is computed for the 

limiting case as § approaches zero. 

One may wonder why there is this discrepancy between the results for the 

initial-value problem and those for the zero-finding problem, since any initial-value 
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problem may be written as an operator equation, as in Stetter [73]. The reason for 

this is that the methods used for the two problems differ greatly—those for the initial-

value problem compute estimates for solution values at new points by discretization. 

while those for zero-finding compute improved estimates for the zero of a function by 

iteration. 

In Section 3, we discuss the extension of these results to classes consisting of 

methods whose error functions are somewhat more complicated than those considered 

in Section 2. 

In Section 4, we introduce the notions of normality and order-convergence for a 

basic sequence of one-step methods. We prove that they are equivalent under certain 

circumstances. A basic sequence of methods enjoying these properties is very easy to 

deal with in many respects, especially when one is interested in comparing upper and 

lower complexity bounds for such a class. 

Finally, in Section 5, we describe some numerical data that support the above 

theoretical results. In particular, these data seem to indicate that even for modest 

values of «, there are considerable savings in using methods of optimal, rather than 

fixed, order. 
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We are interested in the numerical solution of a class of ordinary differential 

equation initial-value problems on a fixed interval I of finite length; we take I « [0, 1] 

without loss of generality. More precisely, let S) be a set of initial-value points in the 

real N-dimensional linear space RN , and let ^ be a set of operators on , such that 

the initial-value problem of finding a function x: I -» IR^ satisfying 

x(t) = v(x(t)) if t i int I , 
(2.1) 

x(0) = x 0 

has a unique solution for every (XQ , v) ( 5 ) x ^ . The autonomous form of this system 

is no restriction, since any non-autonomous system may be made autonomous by 

increasing the dimension of the system by one. 

The model of computation to be used is fairly general. We assume only that all 

arithmetic operations are performed exactly in IR (i.e., infinite-precision arithmetic), 

and that for any algorithm to be considered for the solution of (2.1), a set of 

procedures is given for the computation of any information about v required by that 

algorithm. (For instance, with Runge-Kutta methods, we must be able to compute v at 

any point in its domain.) 

In this paper, we are interested in the numerical solution of (2.1) via one-step  

methods, using an equidistant grid as defined in Stetter [73]. (We limit ourselves to 

equidistant grids in order to facilitate the comparison of methods of different orders; 

the other extreme is taken by Lindberg [74], who considers the problem of picking an 

optimal grid for a given method of fixed order.) Thus the methods considered will 

generate approximations X j to x(t f) by the recursion 

(2.2) x ^ - X j + h ?(XJ , h) (0 £ i £ n - 1 , n « h"1) , 

2 . Optlmality Within a Strong Basic Sequence 
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where h is the step-size and ? is the increment function for the method (Henrici [ 6 2 ] ) ; 

for briefness, we will refer to "the method f . " Despite the fact that ^(XJ , h) will 

depend on some information about v, we will not explicitly indicate this dependence. 

Thus, the method ip produces an approximation to the true solution of (2,1). We 

want to measure the discrepancy between the approximate and true solutions. Various 

error measures have been introduced in the literature. These include the local  

truncation error per step, the local truncation error per unit step, and the global error; 

see Henrici [62] or Stetter [73] for definitions. These error measures may be either 

absolute or relative (in the usual sense); they may be measured either at the endpoint 

of the interval (as in Henrici [62], Hindmarsh [74]) or over the entire grid (as in 

Sandberg [67], Lindberg [74]). There has been a great deal of discussion of which 

error criterion is the best one to use; for instance, Gear [71] (Section 9.3) uses local 

error per step, while Hull et al. [72] use local error per unit step. We take no sides in 

this discussion, since any of these error measures may be used in the analysis to 

follow. 

Before proceeding any further, we will establish some notational conventions. 

Let 3G be an ordered ring; then 3G+ and X** will respectively denote the nonnegative 

and positive elements of 3C. (This will be used in the cases X - IR, the real numbers, 

and 3G =» Z , the integers.) The symbol means "is defined to be," while "•" means 

"is identically equal to." If xi> X 2 : , R "* , R a n d w: IR 2 -> IR are differentiable, then for 

i «= 1, 2, we will write 

*i «(xi(t),X2<t)> 

for the result of differentiating o>(xi,X2) w i t h respect to Xj> and then substituting 

X i & Xi<t), X 2 * X 2 ^ ) - W e u s e t h e notations "x i a" and "x T a" to indicate one-sided 
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limits as in Buck [65]. Finaly, we shall write "(a.b)c" to inidicate the c*h part of 

equation (a.b), as in Gurtin [75]. 

Now we are prepared to define our problem. Let S> and *ty be as above; 

consider a problem (x 0 ,v) in Sfrxty Let * be a class of one-step methods, and let 

cr: * x l -HR + satisfying lim e(<pth) * 0 be a given function that will serve as an 

error measure. Choose an error criterion i satisfying the technical restriction 0 < • < 

1. We then wish to answer two questions: 

(1.) Given if * *, how may we pick h < I such that 

(2.3) <r(*,h) < i, 

and what is the complexity of the process defined by ip and h? 

(2.) How may one choose among all < ,̂h) * **I such that (2.3) holds, that pair 
(^*,h*) giving minimal complexity? 

In order to get useful bounds on cr(f,h), it is necessary to introduce the concept 

of order. In this section, we will use a highly restricted definition, which we will relax 

in Section 3. Let * « { ^ p : p « Z and suppose that there is an analytic function 

it: IR * -» IR * such that lim *(p)*/p exists and is nonzero and 

(2.4) cbpp,h) - *(p) hP for h < I and p * Z + + . 

Then ^ p is said to have strong order p with respect to <r, and • is said to be a strong  

basic sequence, (Although the error coefficient * will generally depend on the solution 

x of (2.1), we do not explicitly indicate this dependence.) Note that the order of a 

method depends on the error measure; for example, the order with respect to the local 

error per step is one greater than that with respect to the local error per unit step or 

the global error. 

Equation (2.4) is somewhat more restrictive than that which is usually 

encountered in practice; more often, we expect K to depend on h. We consider the 

extension of our results to this case in the next section. 
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We now are able to measure the complexity of computing an approximate 

solution to (2.1), with error not exceeding i , using a strong basic sequence *. Indeed, 

(2.4) implies that a necessary and sufficient condition for *(?p,h) • i is that 

(2.5) h = h(p,«) ^ p r ^ P e ^ / P , 

where 

(2.6) a : « In d" 1 ) . 

(Note that since 0 < i < 1, we have a t I R T h u s , the number of steps needed is 

given by 

(2.7) n I T 1 - *(p)J/P e*/P . 

(Note that n (as given by (2.7)) need not be an integer. But this poses no essential 

difficulty; see (e.g.) Traub and Wofniakowski [76].) Next, suppose that there exists an 

analytic function c: IR + -> IR4" such that c(p) is the cost per step associated with the 

method ^>p. Finally, we assume that the cost per step does not vary from step to step; 

for the classes of methods we consider, this means only that we assume that the cost 

of evaluating v (or its derivatives) does not depend on the point of evaluation. Thus 

the complexity C(p,a) of solving (2.1) to within an error criterion * « e~a is simply 

given by 

(2.8) C(p,«) = nc(p) = f (p)e a /P, 

where we define f: IR4" -> IR* by 

(2.9) f(p) := *(p)l/P c(p) . 

We now turn to the question of picking for each a * IR** that order p giving 

minimal complexity. In the analysis to follow, we will drop the restriction that p must 

be an integer. However, we will recover optimality over the integers from optimality 

over the real numbers in Corollary 2.1 . Without loss of generality, we assume that 

(2.10) p > 0 implies f(p) > 0 . 
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(If there were a p > 0 with f(p) « 0, use of the method ^ p would yield a solution with 

zero complexity, i.e., "with no effort.") In addition, we assume that 

(2.11) l 'm p T o o f(p) « + o o . 

By (2.9), this assumption maybe viewed as a simple consequence of two conditions, 

both of which are quite natural. The first is that l imp^ c(p) « + o o ; the "better" a 

method is (i.e., the higher its order is), the more we should expect to pay for its use. 

The second condition is that if lim *(p) « 0 , then there must exist a 0 t I such that 

*(p) ;> (f P for p sufficiently large. (For example, in the class of Taylor series methods, 

using the worst-case local error per unit step as the error measure, this second 

condition would follow from the assumption that any problem (XQ,V) d S)**® must have 

an analytic solution.) 

Thus in order to find a minimum for C( • ,a), we merely differentiate (2.8) with 

respect to p, finding 

(2.12) d{ C(p,«) - p - 2 f(p) e*/P [G(p) - a], 

where G: \R** -> IR is given by 

(2.13) G(p) := p 2 f'(p)/f(p) . 

Thus a necessary condition that p be a minimum for C( • ,or) is that C(p,a) • 0, i.e., 

(2.14) G ( p ) - « . 

Sufficient conditions for the existence and uniqueness of a p satisfying (2.14) and 

minimizing C( * ,ar) are given in 
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Theorem 2.1: Let f satisfy (2.10) and (2.11). Suppose also that 

(2.15) G'(p) > 0 whenever G(p) > 0. 

Then there is a function p*: I R + + -> I R + + such that (2.14) holds if and only if p - p * ( a ) . 

Moreover, for all p « IR**, 

(2.16) C*(a) C (p*(a) ,a ) < C(p,a), 

with equality holding if and only if p « p*(a). 

(Since p*(a) satisfies (2.16), we call p*(a) the optimal order. C*(«) the optimal  

complexity, and 

(2.17) h*(a) : - h(p*(a),«) 

the optimal step-size.) 

Proof o£ Theorem 2.1: If we write the Maclaurin series of f and substitute it 

into (2.13), it is easy to see that 

(2.18) l i m p i 0 G(p) - 0. 

We now claim that 

(2.19) Hm p t o o G(p) = + o o . 

Indeed, since (2.11) holds there is a p 0 > 0 such that f'(pQ) > 0, i.e., G(PQ) > 0. Thus 

by (2.15), G is monotone increasing on [PQ, + o o ) , and hence either (2.19) holds or there 

exists a y > 0 such that limpid G(p) • y. If the latter holds, then G is bounded, and 

we have 

f'(t)/f«) < fit"2 (1 < t < + o o ) 

for some 6 > Oj integrating the above inequality over 1 < t < p yields 

f(p) < f ( l ) e f i ( 1 * A/P> F 

so that l i m p T o o f(p) < f( l ) e S , contradicting (2.11). Thus (2.18) and (2.19) hold; 

together, they imply that for any a > 0, there is a choice of p such that (2.14) holds. 
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Suppose that for some a > 0, there were two numbers pQ < p j with G(PQ) • 

G ( p j ) - a. Then by Rolle's Theorem, there is a P 2 between PQ and pj with G ' ( p 2 ) * 0, 

contradicting (2.15). Thus for each a > 0, there is a unique choice of p such that (2.14) 

holds; we denote this choice by p * ( a ) . 

To prove (2,16), differentiate (2.12) with respect to p to find 

(2.20) d^Cfp,*) = p ' 2 f (p)e f l /PG' (p) + [G(p) - a] (d/dp) [ p " 2 f(p) e«/P] . 

But upon substituting p = p*(a), the second term in (2,20) vanishes and the first term 

is positive; so we have 

d ^ C t p ^ a ) > 0 . 

Thus p*(a) gives a local minimum for C( • ,«), which has only one critical point (since 

(2.14) has a unique solution) and (2.16) follows. | 

Note that we have not said that p*(a) is an integer; in fact, this need not be true 

in general. Since the basic sequence • is indexed by Z"4"1", we have not yet solved the 

problem of choosing from among all (v>p,h) such that (2,3) holds, that pair yielding 

minimal complexity. This problem is solved by 

Corollary 2.1: For any or > 0, define p**(a) « Z * * to be that element of the set 

{[p*(cr)J , fp*(«)l} which gives the smaller value of C( • ,a). Then 

C(p**(a),a) <; C(p,a) for p « Z , 

with equality if and only if p « p**(a). 

Proof: Clearly we need only consider the case where p*(a) is not an integer. 

Suppose there exists p 0 « Z ++, not equal to p**(cr), with C(p0,a) < C(p**(cr),cr). Without 

loss of generality, assume p 0 < LP*(«>J- Then C(p0,a) < C ( L p * ( a ) J , a ) .> C ( p * ( a ) , a ) , which 

implies that there is a p 1 < ( p 0 , p*(a)) such that a 1 Cip^a) - 0. Hence, G ^ ) « or, but 

^ p*(a). This contradicts Theorem 2.1. | 
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It may be readily verified that the hypotheses of Theorem 2.1 are satisfied for 

many classes of functions f. Some of these are 

logarithmic: f(p) « In (p + e ) , 

monomial: f(p) - p m (m*IR**), 

exponential: f(p) - 0? (fi> 1), 

super-exponential: f(p) « pP , and 
p 

hyper-exponential: f(p) - 0? . 

(We write "In (p + e)", where e is the base of the natural logarithms, rather than "In p" 

as a technical convenience. However, an expression of the form "In (p + y)" with y > 0 

is necessary to guarantee that f(l) > 0.) Furthermore, we find that if f has the 

monomial-logarithmic form 

f(p) = p a ( ln(p+e)) b (a, b<f IR**), 

then the hypotheses of Theorem 2.1 hold. This may be verified either directly, or by 

using the following Lemma, along with the fact that the hypotheses hold for f(p) - p 

and f(p) « In (p + e). 

Lemma 2.1: Let f have the form 

« P ) - a nj^ (fj(p)) r i , 

where a ( IR**, and for each i (1 < i < m), fj satisfies the hypotheses of Theorem 2.1 

and r f < IR**. Then f satisfies the hypotheses of Theorem 2.L 

Proof: It is clear that if each fj satisfies (2.10) and (2.11), then so does f. If 

each fj yields (via (2.13)) a Gj satisfying (2.15), then f yields a G in the form 

G(p) » X™ml rjGj(p), 

and so it is clear that G satisfies (2.15). | 

For the important methods of practical interest, we will only be interested in 
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monomial and monomial-logarithmic growth; see Werschulz [76a], [76b]. We include the 

other examples of functions that satisfy the hypotheses of Theorem 2.1 to illustrate 

the wide variety of functions that qualify. 

So we have seen that under the hypotheses of Theorem 2.1, there is a unique 

choice of order and step size minimizing the total complexity for any error criterion. 

What happens to these choices as or changes? 

Theorem 2.2: Let f satisfy the hypotheses of Theorem 2.1. Then 

(1.) p*(a) and C*(a) increase monotonically with a. 

(2.) l i m a t o o p*(a) - limat<x) C*(a) - +OD. 

(3.) If there exists M > 0 such that K(P)1^ < M for all p, then 
lim i n f ^ Q Q h*(a) > 0 if a / p * ( a ) is bounded as at<x>. 

Proof: To prove (1.), note that p* is the functional inverse of G. Thus p*'(ot) •» 

G'(p*(or»~* > 0, so that p*(a) increases with or. Now use the chain rule: 

C*'(a) « 6 { C(p*(a),a) p*'(a) + d2 C (p*(a ) ,a ) . 

But the first term on the right-hand side vanishes by the definition of p*(or). So 

C*'(a) = d 2 C(p*(a>.a) « (pHa))"1 f(p*<«» e*/P*(flf) > 0 

and C*(or) increases with a. 

Suppose that lim p*(a) + +oo . Since p*(a) increases monotonically with a , 

there is an L > 0 such that l i m ^ ^ p*(cr) = L So (2.14) implies that 

G(L) = H m a t o o G(p*(a)) « l im a T 

CO A " + 0 ° » 

contradicting the continuity of G. This proves the first part of (2.) . Now for any 

a > 0, we have 

C*(«> - f<p*(a)) e«/t>*{a) > f < p * ( a » . 

Let atooj then (2.11) and the first part of (2.) imply that the second part of (2.) holds. 

To prove (3.), let such an M > 0 exist, so that [h^o)]" 1 < M e"/P* ( a ). Then we 
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see that lim i n f ^ ^ h*(a) > 0 if [h^a)]" 1 is bounded as atoo, which itself is true if 

a/p*(a) is bounded as atcx>. | 

Therefore under a very general set of conditions, we see that the more 

accuracy we want in our computed solution, the greater its complexity becomes. Of 

course, this is just what we would expect. What is somewhat surprising is that the 

minimal complexity is obtained by letting the order p increase as the error § 

decreases, with p increasing without bound as § tends to zero. Moreover, the last part 

of the theorem says that not only should the order be increased when trying to obtain 

a more accurate solution, but that it may actually turn out that the step-size should 

not be allowed to tend to zero. In addition, it is clear that the proof of the result 

concerning the limiting behavior is valid, provided that we only assume that f is 

continuously differentiable on the positive real axis and that p*(a) tends to a (possibly 

infinite) limiting value as a T oo. 

We now determine whether we are saving a great deal by using the optimal-

order method. This may be thought of in several ways; we will consider how sharply 

the cost curve turns at the optimum, the cost-difference between using a method of 

fixed order and a method of optimal order, and the cost-ratio of a fixed-order method 

to an optimal-order method. We will show that under certain reasonable conditions, all 

of these measures tend to infinity with a. 

How sharply the cost curve turns at the maximum is measured by d j 2 C(p*(«r),a). 

If we consider five of the growth models mentioned above (e.g., monomial, monomial-

logarithmic, exponential, hyper-exponential, and super-exponential), we find that 

d± C(p ( a ) , a ) is monotone increasing for a sufficiently large, and tends to infinity with 

a, with but one exception; in the case of "linear growth" (f(p) » p), we find that 
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C(p (a),a) s e. However, in the classes of algorithms we study, the case f(p) - p 

does not arise, provided that we include "combinatory cost" (defined as in Kung and 

Traub [74]) in our complexity measure. Thus in general, we find that the "pointedness" 

of the cost curve near the minimum increases without bound as ata>. 

Next, we will show that for any, f satisfying the hypotheses of Theorem 2.1, the 

difference in complexity between using a method of fixed order and a method of 

optimal order tends to infinity with a. 

Proposition 2.2: For any fixed p 0 < IR** such that G'(p 0) £ 0, 

l i matoo [ c<P0' a ) - C * ( a ) 3 8 8 * ( X ) • 

Proof: Pick a so large that p*(a) > pQ, and let PQ < p < p*(a). If we write out 

the partial derivative in the last term of (2.20), we find that 

d j 2 C(p,«) = p - 2 f(p) ea/P G'(p) + p" 4 [a - G(p)] [(a • 2p) - G(p)] f(p) . 

Since PQ < p < p*(a), we have G(p) < a; it then follows that dj2C(p,of) is positive and 

bounded away from zero as a tends to infinity. Since 

C(p0,<r) - C*(a) = d{

2 C(p,a) [ p 0 - p*(a)]2 / 2 

for some p between pQ and p*(a), the result follows. | 

As for the cost-ratio, a simple calculation shows that 

, i m atoD C(p0,<r)/C*(a) - +oo 

in all of the examples given above. Thus there are a number of ways in which we 

incur a large additional cost by not using the optimal order. 

One may wonder whether the result that optimal order increases and tends to 

infinity with a is "reasonable." One way of determining this is to examine actual 

numerical tests; we cite Hull et al. [72] as a well-known example. Since we are only 

dealing with methods of fixed order, our theory does not attempt to handle methods 
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such as Bulirsch-Stoer, Krogh, or Gear. However, let us look at the results of Hull et 

al. for the Runge-Kutta methods. Even though there are only three methods (of orders 

four, six, and eight) and three error criteria ( i = 10"^, 10~*\ and 10"^), Table 1 in Hull 

et al. [72] indicates that the optimal order does increase as t decreases. (We give 

more extensive numerical data in Section 5.) 

Finally, we note that the restriction that the grid be equidistant may be 

weakened somewhat, provided that we use a local error measure. Indeed, let I be 

partitioned as I = I j u ... u I|_, and now assume that we use a grid that is equidistant on 

each subinterval I j , ... , 1̂ . Then the total complexity is given by the sum of the 

complexities of all subintervals 

C(p1,...,pL,«) zj-^j Cj(pj,a), 

where we set 

Cj(p,a) := fj(p,a)ea/P , fj(p) ^ ( p ) 1 ^ c(p) ; 

here *j(p) is the error constant of fp on Ij. Since we use a local error measure, we 

find that C(pj,...,pL,a) is minimized by choosing each pj to minimize Cj( • , a). Thus the 

earlier results apply; in particular, if we define Pj*(a) to be the optimal order on Ij, we 

find that if f f satisfies (2.10), (2.11), and (2.15), then Pj*(«) increases and tends to 

infinity with a. 
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3 . Optimality Within a Basic Sequence 

There are two difficulties with the approach taken in Section 2. The first has 

already been mentioned~we generally expect the error coefficient to depend on the 

step-size. The second is based on the fact that there are a large number of p^-order 

methods of a given type, and we wish to use the best method possible. In theory, this 

would involve finding a p^-order method with minimal cost per step. In practice, this 

is not often possible; there is a gap between the minimal cost theoretically possible 

and the cost of the best method known. So we now consider the extension of the 

results in Section 2 to a more general setting, which will take these two difficulties 

into account. 

We first refine our notion of order. Let <r: #xl -> IR* be an error measure, 

where * » { ^ p : p ( Z + , f } is a class of one-step methods, and suppose that a function 

*: IR + xI -+ IR* and analytic functions * L > *(J : R * , R + e x i s * s u c h *h a* " m p-+0 

and lim p_>Q i f y ( p ) ^ p exist and are nonzero and 

(3.1) tr(* p ,h) » K(p,h) hP for h < I and p < , 

where 

(3.2) 0 < *L(p) < *(p,h) < *LJ(P) < +c* for h * I . 

Then *>p is said to have order p with respect to e, and $ is said to be a basic  

sequence (as in Traub [64]); *<p,h) is said to be the error coefficient of ^ p . (Here we 

introduce the convention of attaching the subscripts V and MLT to quantities that 

refer to lower and upper bounds on complexity, respectively.) 

This definition of order is similar to that in Cooper [69] and Cooper and Verner 

[72], except that we include a lower bound *L(p) o n *(P>h>» t h i s '°wer bound is 
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necessary and sufficient to guarantee that the order of a method is well-defined. Note 

that this definition makes sense for all values of h * I; thus, it is non-asymptotic in that 

we do not require h i 0 in order for it to make sense. Clearly, a strong basic 

sequence is a basic sequence; hence, the definition of order is an extension of the 

definition of strong order given in Section 2. Finally, note that the order depends on 

the choice of the error measure c; for instance, the order with respect to the local 

error per step exceeds that with respect to the local error per unit step by one. 

We next discuss the notion of cost per step. As pointed out above, we will 

generally have only bounds on the cost c(p) required per step of a given p^-order 

method: 

(3.3) c L(p) < c(p) < cy(p). 

That is, c^(p) is a lower bound on the minimum possible cost per step, usually derived 

via theoretical considerations, and Cjj(p) is an upper bound on the minimum possible 

cost per step, which is derived by exhibiting an algorithm for computing ^p. (In what 

follows, we shall assume that c^ > C y : IR* -» IR + are analytic functions.) 

We now wish to give bounds on C(p,a), the complexity of finding an approximate 

solution of (2.1) using the method such that <r(^p,h) < e~a. Suppose that (2.3) 

holds. Then by (3.1) and (3.2), we must have 

(3.4) *L(p)hP < e" a , i.e., h < hL(p,a) := ^ ( p ^ / P e ^ / P . 

Hence, the number of steps n « h*"* must satisfy 

(3.5) n ;> ^ ( p ^ / P e ^ P . 

Defining (as in Section 2) 

(3.6) C(p,a) := n c(p) 

(i.e., total complexity equals number of steps required multiplied by cost required per 

step), (3.3) and (3.5) imply that 
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(3.7) C(p,a) > CL(p,a) : « f L(p) e«/P , 

where 

(3.8) f L(p) := ^ (p^/Pc^p) . 

That is, regardless of the algorithm used to compute ? p , the total complexity of finding  

an approximate solution of (2.1) must exceed C^p,*). 

On the other hand, we find that in order to use ? p to find such an approximate 

solution, it suffices (by (3.1) and (3.2)) to take 

(3.9) *(j<p)hP « e" a , i.e., h « h|j(p,«) :« j c ^ p ) " 1 ^ e~«/P . 

so that we need only take n steps, where 

(3.10) n = ^ / P e ^ P . 

(As in Section 2, the value of n given by (3.10) need not be an integer; again, this is 

handled as in Traub and WoSniakowski [76].) Thus (3.3), (3.6), and (3.10) imply that 

(3.11) C(p,«) < Cu (p,a) fy(p) e*/P , 

where 

(3.12) y p ) := *u(p)l/P cu(p). 

That is, there exists an algorithm for computing ^ p such that the total complexity of 

finding an approximate solution of (2.1) equals Cy(p,a), We summarize the above 

results in 

Theorem 3.1: Let C(p,a) be the complexity of finding an approximate solution of 

(2.1), using the method ^>p, with <r(^p,h) < e"a. Then 

(3.13) CL(p,a) < C(p,a) < C|j(p,a) , 

where C L and Cy are given by (3.7) and (3.11). Moreover, if h « h(p,«) is the maximal 

step-size for the method v*p such that cr(^p,h) < e" a , then 

(3.14) hy(p,a) < h(p,a) < hL(p,a) . | 

Next, we consider the problem of optimality. Define the optimal complexity by 



1 9 

(3 .15) C*(a) := inf {C(p,a): ? p < *} . 

We are interested in bounds for C*(a). These are derived in 

Lemma 3.1; Let f L and fy satisfy (2.10) and (2.11), and suppose that f L and fy 

respectively yield (via (2.15)) G L and Gy satisfying (2.15). Then G L and Gy have 

respective inverse functions p^*, Py*: IR"1"1" •*» IR*"1' such that for all p * IR*+, 

(3 .16) CL*(a) : - CL(pL*(a),a) <; CL(p,a) 

and 

(3 .17) Cy*(a> := Cy<py*(a),a) < Cy(p,«) , 

with equality in (3.16) (respectively, (3.17)) if and only if p - PL*(<») (respectively, p -

PU*<«»-

Proof: This is an immediate corollary of Theorem 2.1. | 

We call P|_*(a) (respectively, py*(a)) the lower (upper) optimal order, C ^ a ) 

(respectively, Cy*(a)) the lower (upper) optimal complexity, and 

(3 .18) hL*(a) hL(pL*(a),a) (respectively, hy*(a) : « hy(pu*(a),a» 

the lower (upper) optimal step-size. Combining (3.13), (3.15), and Lemma 3.1, we have 

Theorem 3.2: Let f[_ and fy be as in Theorem 3.1. Then 

CL*(a) < C*(a) < Cy*(a). | 

Note that if we define p*(a) by 

C<p*(a),«) - C*(a), 

we can make no statement relating p*(a), P[_*(a), and py*(cr). This is because we only 

have bounds for C(p,a); we do not know C(p,or) itself. In fact, it is important to realize 

what P|_*(a) and Py*(a) tell us. First, consider py*(a). We can achieve a complexity of 

Cy*(a) by using a step-size of hy*(a), along with the method of order Py*(a). This will 

give optimal complexity within the sequence of algorithms for computing with cost 
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per step of ^ p given by Cy(p). Next, consider Pi*(a). It is of perhaps theoretical 

rather than computational interest, in that we cannot compute with it. What does 

interest us is C[*(a\ since it limits the theoretical improvement in Cy*(«r). Thus, we 

are interested in P|_*(a) solely as a means of computing C^or). 

We now consider behavior of these quantities as a increases and tends to 

infinity. 

Theorem 3 . 3 : Let f^ and fy be as in Theorem 3 . 1 . Then 

( 1 . ) pL*(a), py*(a), CL*(a), and Cy*(a) increase monotonically and tend to 
infinity with a. 

( 2 . ) If there exists an My > 0 such that *\j(p)^p < My for all p, then 
' i m in*aToD h U * ^ > 0 if cr/py*(a) is bounded as CTTGD. 

( 3 . ) If there exists an M L > 0 such that K ^ P * 1 ^ * M L f o r a " p ' * h e n 

lim i n f ^ Q Q h^(a) > 0 only if a/p[_*(a) is bounded as atoo. 

Proof: To prove ( 1 . ) , it suffices to apply ( 1 . ) and ( 2 . ) of Theorem 2 . 2 to PL* and 

C|_*, and to py* and Cy*. The proof of ( 2 . ) and ( 3 . ) is similar to the proof of ( 3 . ) in 

Theorem 2 . 2 . | 

Note that ( 1 . ) in Theorem 3 . 3 does not. state how p*(a) varies with or; as we have 

pointed out above, no statement about p*(a) may be obtained from the information 

available. However, it is easy to see that C*(cr) increases monotonically with or and that 

Thus, we have extended the optimality theory of Section 2 to a more realistic 

situation. In Werschulz [76a], [76b], the techniques of this section are applied to some 

important basic sequences of one-step methods; we will see that the conclusions of 

Lemma 3 . 1 and Theorems 3 . 2 and 3 . 3 hold for these basic sequences. 
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Let • be a basic sequence with respect to the error measure we say that • is 

order-convergent if there exists an hQ > 0 such that 

(4.1) l«™pToo *U*P* h P " 0 f 0 r h " h 0 ' 

Clearly, the order convergence of • implies that limpid *(?p,h) « 0 for h £ hQ. We 

use the term "order-convergence" rather than "convergence," since the latter term 

appears extensively in the literature (e.g., Henrici [62]) and is always used to mean a 

"step-size convergence," i.e., lim^^Q e{<p,h) = 0 for a fixed method ^. 

It is intuitively plausible that as the order of an approximation increases, the 

approximation should improve, especially when one is trying to approximate a very 

smooth function. Unfortunately, Gear [71] points out that an increase in order need 

not always decrease the error. This situation appears in other situations in numerical 

mathematics; for instance, the family of Newton-Cotes quadrature formulae is not 

order-convergent. But suppose there exists a step-size hQ > 0 for which the upper-

bound error is exponentially bounded for p sufficiently large; that is, there exists 

A > 0 and p 0 * Z++ such that 

(4.2) ic^p) hQP < AP for p > p 0 . 

If we define 

My := max { m a x j ^ p {*(j(p>1 / p} , AhQ - 1 } , 

we then have 

(4.3) <r(*p,h) < (Myh)P for h < h Q , p < Z + + . 

Note that the bound in (4,3) is similar to that given by Cauchy's Integral Theorem 

(Ahlfors [66], pg. 122) on the normalized derivatives of an analytic function. In fact, 
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for several classes of methods, the bound (4.3) holds whenever the solution of (2.1) is 

analytic. 

We also formalize a weakened version of (4.3), which will be important in our 

study of one-step methods. Let * be a basic sequence, and suppose that for each 

(*0>v) * 5>K^> there is a sequence {h p : p ( Z H } d and a positive constant My such 

that 

(4.4) <r(?p,h) < (Myh)P if h < h p ; 

then * is said to be normal. Note that (4.3) implies (4.4), while (4.4) implies (4.3) only 

when the sequence {hp} has non-vanishing support: 

(4.5) h$ :» lim i n f p t o o h p > 0 . 

If h<j - 0, normality gives an exponential upper bound on the sequence of principal  

error functions (Section 3.3-5 of Henrici [62]), which are an asymptotic measure of the 

error as h i 0. 

There is a simple relation between normality and order-convergence. 

Proposition 4.1: * is order-convergent if and only if * is normal with 

nonvanishing support. 

Proof: If (4.1) holds, then (in particular) we have limpid *y(p) hgP « 0, so that 

*y(p) h 0
p < 1 for p sufficiently large; i.e., (4.2) holds with A « 1. Then (as in the 

discussion above) (4.3) holds, implying normality with finite support. 

Conversely, if (4.4) holds with finite support, we pick a positive h Q which is less 

than 

n := min {My" 1 , inf {h p : p i } . 

(Note that tj > 0 by (4.5).) Let h £ h Q be given, so that for some t with 0 < * < 1, we 

have h • (1 - 8)ij; if we define *y by 

* u ( P > M U P > 
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we find (since h < hp) that 

<r(?p,h) < (Myh)P . 

Thus 

« y (p )hP = (Muh)P - ( M y ( l -«>i,)P < (1 - « ) P 

(the last step since ij < My" 1 ) , so that (4.1) holds. | 

We are now interested in normality and order-convergence for a specific error 

measure c\ we will be interested in C^JJ » *L » a n c * » w ^'ch a r e (respectively) defined 

to be the maximum local error per unit step, local error per step, and global error per 

step over the grid. It is easy to see that a normal (order-convergent) sequence • -

{ ^ p : p * Z + + } with respect to naturally yields a normal (order-convergent) 

sequence • 8 5 { ^ p : p « Z**} with respect to *|_y by setting ^ p : « ^ p + j for p * Z + 4 \ 

We now look at the relationships between ^ ( j a n c * *G* 

Proposition 4.2: Let v have Lipschitz constant K on IR^, and let • be normal 

(respectively, order-convergent) with respect to (ryj, with My in (4.4) independent of 

X Q « domain(v). Then * is normal (respectively, order-convergent) with respect to <TQ. 

Proof: Let p be the exact relative increment function of (2.1) (as defined in 

Henrici [62]), so that 

x ( t j + 1 ) = X(tj) + h p(x(tj), h ) . 

Subtract (2.2) (with ? replaced by <pp) from the above to get 

e j + 1 = e(- + h [p(x(tj),h) - <pp(x j fh)], 

where e f := x(tj) - X j for 0 < i < n. Thus 

||ej + 1|| < ||e,|| + h - p(x|ih)|| • h ||p(xj,h) - y>p(x;,h)|| 

< (1 + hK) ||ej|| + MyP hP + 1 if h < h p ; 

this last step follows from the Lipschitz condition and the "uniform" normality with 

respect to By Lemma 1.2 of Henrici [62] and the condition eQ - 0, we have 
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||e;|| < K"1 [(1 +HK)1 - l]<Myh)P 

< K"1 [(1 + hK)n - l](Myh)P 

< K"1 (e K - l)(Myh)P 

for all i; this gives 

<rG<*pfh) < K"1 (e K - 1) (Myh)P < (Mh)P if h < h p , 

for a suitably-defined M > 0. This proves the normality part; the remainder of the 

result follows from Proposition 4.1. | 

If it is undesirable to use the "uniform normality" (i.e., the condition that My be 

independent of XQ t domain(v) in (4.4)), we may use the following result. 

Proposition 4.3; Let v be Lipschitz continuous, let * be normal (respectively, 

order-convergent) with respect to ^ y , and suppose that there exists a X > 0 such that 

for all ^ p < • and all x, y < I R N , 

ll*p<*> - *P<y>ll * * P II* - Vll • 

Then * is normal (respectively, order-convergent) with respect to * Q . 

Proof: Immediate from Theorem 3.3 of Henrici [62]. | 

Thus normality for CQ follows from normality for cr̂ y , a Lipschitz condition on v 

and the elements of and a linear upper bound on the Lipschitz constants for the 

elements of 

We now(discuss the problem of finding uniform lower bounds on the error which 

are similar to the uniform upper bounds which normality provides. This will amount to 

a restriction of the admissible problem class 5)x^ so as to guarantee that the 

problems are "sufficiently difficult." However, this restriction may be abandoned if we 

are interested only in upper bounds. We shall assume throughout the rest g£ this  

section that there is an M L > 0 (which will generally depend on *, v, and the problem 
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(4 .6 ) *<*p,h) * (MLh)P for h € I . 

Note that (4 .6) will hold for any situation in which there is no order-convergence, or in 

which the order-convergence (if any) is no faster than an exponential decay; 

moreover, in the methods we consider in Sections 5 and 6, (4.6) is a consequence of 

the assumption that all derivatives assume the (sharp) worst-case upper bound 

provided by Cauchy's estimate. It is clear that if (4.6) holds for ^ > holds for * U J > 

if (4 .6 ) holds for <TQJ and if the gradient matrix Vp has only non-negative entries (with 

at least one positive entry), then (4.6) holds for CQ . 

It is possible to present a simplified version of the expressions derived in 

Section 3 , under the assumption that * is order-convergent. We first look at the 

complexity of a single method within an order-convergent basic sequence. 

Theorem 4.1: Let * be order-convergent with respect to e. Then 

CL(p,a) < C(p,a) £ Cy<p,a), 

where 

C L (p,«) := M L c L (p )e a /P and Cy(p,a) := My cy(p) e"/? . 

Proof: This is an immediate corollary of Theorem 3.1 and the definition of 

order-convergence. | 

We may now do the optimality theory of Section 3, finding that 

(4 .7 ) G L(p) = p 2 c L'(p)/c L(p) and Gy(p) = p 2 Cy'<p)/cy(p) . 

Note that the assumptions (2.10) and (2.11) now state that c L(p) and Cy(p) must be 

positive for p > 0 and tend to infinity with p, which is a natural way to expect the cost 

per step to behave. The results stated in Theorems 3.2 and 3.3 hold as before. 

Moreover, it should be noted that the My and M L needed in (2.) and (3.) in the 

statement of Theorem 3.3 are precisely the My and M L in (4.4) and (4.6). Thus 
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, i m i n V f o o h U * ^ > 0 if a/pu*(<r) is bounded as a t o o , and or/pL*(a) is bounded as 

a T oo if lim i n f ^ ^ hL*(a) > 0. 

Thus, the order-convergence of a basic sequence is useful in simplifying the 

analysis of its complexity. Of the three basic sequences studied in 

Werschulz [76a], [76b], two are known to be order-convergent. The proof of the 

order-convergence of the class of Taylor series methods is a simple consequence of 

the Cauchy estimate; that of the order-convergence of the (non-optimally ordered) 

nonlinear Brent-Runge-Kutta methods (based on the iterative methods defined in 

pp. 4-7 of Brent [74]) involves using some classical results on orthogonal polynomials 

to sharpen the proofs in Brent [74] . We note that it is not known whether the 

optimally-ordered nonlinear Brent-Runge-Kutta methods (based on the iterative 

methods defined in pp. 10-13 of Brent [74]) are order-convergent; it does appear 

likely that they are normal with vanishing support. However, we do not pursue this 

class of methods in Werschulz [76b], because of their high combinatory cost. 

It is not known whether the linear Runge-Kutta methods found in Cooper [69] 

and in Cooper and Verner [72] are order-convergent; the best result known is the 

(My log(p+e))P result given in Werschulz [76a], which involves strengthening the 

original proof with other estimates from the theory of orthogonal polynomials. But it 

should be pointed out that there does exist a class of order-convergent linear Runge-

Kutta methods; this is the sequence given by using the weights and abscissae for 

Gauss quadrature in the methods defined on page 144 of Stetter [73]. The problem 

with this class of methods is that each step of ^ p requires 2~p(p+l)! function 

evaluations; the prohibitive cost per step outweighs by far any advantage to be gained 

from the order-convergence. Thus, the question of whether there exist any order 
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convergent linear Runge-Kutta methods which are more efficient (i.e., have smaller cost 

per step) remains open. 
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5 . Numerical Results 

In the previous sections, we showed that the optimal order increases as the 

error criterion « decreases, tending to infinity as « tends to zero. Here, we consider 

actual numerical results of optimal order and minimal cost for various test problems 

and classes of methods; these results show that the optimal order does indeed exhibit 

the behavior indicated. (The optimal order for a given error criterion was determined 

by finding, for each method implemented, the coarsest mesh that allowed the error 

criterion to be satisfied; the resulting complexities were then compared to determine 

the optimal order.) The error measure used was the "endpoint error," i.e., the oo-norm 

(see e.g., Stewart [73], pg. 164) of the difference between the true and computed 

solutions, evaluated at the endpoint of the interval of interest (the unit interval I). All 

testing was carried out on the Carnegie-Mellon University Computer Science 

Department's PDP-10 in ALGOL and FORTRAN, using double precision. 

The first problems considered were of the form 

(5.1) x(t) = Ax(t) x(0) = 1 

on the unit interval I. Although this problem is easy to handle analytically, any general 

problem of the form (2.1) may be locally approximated by a linear system of ordinary 

differential equations (see e.g., Hindmarsh [74], pp. 17-18). If the coefficient matrix of 

this linear system is diagonalizable, an uncoupled set of scalar equations of the form 

(5.1) will result. 

These problems were solved via Taylor series methods; the optimal order is 

given in Table 5.1 for the choices of X indicated. Here the optimal order was taken to 

be that order which minimizes the number of evaluations of the right-hand side of (5.1) 
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required to attain the desired error criterion. As expected, the number of evaluations 

required increases as the error criterion i decreases. Moreover, the optimal order 

also increases monotonically as s decreases, just as the theory predicts. 

We next turn to the solution of the test problem 

For this problem, we searched for the optimum "unmodified" Brent-Runge-Kutta 

method. For this problem, the optimal order was taken to be that for which the actual 

CPU time (in milliseconds) required to solve the problem to within a given i was 

minimized. Since there is a certain amount of randomness in such a measure, the mean 

time for ten runs was analyzed. Not surprisingly, it turned out that the order which 

minimized the CPU time also minimized the number of evaluations of the right-hand 

side of (5.2). Since the (n + 2)*h-order method requires the zeros of the Jacobi 

polynomial G n(2, 2, • ), and the best set of values available only contained the zeros 

for 1 < n £ 8 (Table 25.8 of Abramowitz and Stegun [64]), only the methods of order 

not exceeding ten were implemented. 

The results for problem (5.2) are given in Table 5.2. Here, the optimal order p*, 

the optimal number of mesh points n*, the minimal number of evaluations C*, and the 

minimal mean CPU time C* are given. Note that these all behave as predicted. In 

addition, we computed the ratio of the mean CPU time for a fourth-order method 

C*(4, • ) to the minimal mean runtime. As the theory predicts, this ratio appears to be 

increasing without bound as i tends to zero. (The same behavior was found for the 

ratio C e (4, • ) / C* , where C e(4, • ) is the number of evaluations required by a fourth-

order method.) 

Finally, we looked at the "hard" problem 

(5.2) x(t) = cos2x(t) x(0) = 0 . 

*8<t) 
> 1 wii «ii(t) Xj(t) Xj(t) (1 < i < 2) 

(5.3) 
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RK1 
RK2 
RK3 
RK4 
RK5 
RK6 
RK7 
RK8 

. Euler's method 

. Ralston [66] (5.6-40) "modified Euler" 

. Ralston [66] (5.6-45) 

. Ralston [66] (5.6-48) "classical method" 

. Cassity [66] 

. Butcher [64] (first method on page 192) 

. Shanks [66] 

. Cooper and Verner [72] 

The methods of order less than eight have the optimal number of stages per step, 

while the method of Cooper and Verner has the minimum number of stages of all 

eighth-order methods known. 

Most of the work involved in solving (5.3) was in evaluating otjj(t). An obvious 

change of variable reduces this to a Gauss-Hermite quadrature; a twenty-point 

quadrature (Table 25.10 of Abramowitz and Stegun [64]) was used for maximal 

accuracy. The Chebyshev rational function approximation given on page 356 of 

FrBberg [69] was used to compute (sin r ) / r for | r | < 1; the system double-precision 

sine routine was used for |r| > 1 . 

* i j ( t ) " y\j J ! £ exp(-*jj (t - r ) 2 ) T ' 1 sin r dr (1 5 i, j S 2) 

(where "exp" denotes the exponential function), with initial conditions 

x^O) = x 2(0) * 1 . 

The 7jj were all taken to be one, while the were taken to be 

PH « 1 , M *22 = ^ > M21 m ^ 

(This system of differential equations is similar to the system governing a two-species 

gas chemical reaction; see e.g., Finlayson [71],) 

Since the system (5.3) is nonscalar and nonautonomous, the Brent-Runge-Kutta 

methods are not appropriate. Since the derivatives of Xj(t) are not readily available, 

the Taylor series methods are not particularly easy to apply. Thus we used linear 

Runge-Kutta methods for the solution of (5.3), The particular methods RKp of order p 

(1 < p < 8) used were as follows. 
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Since so much of the time required to solve (5.3) was spent in evaluating <*jj(t), 

the measure of cost was the number of evaluations of the set {<*jj(t) : 1 £ i, j £ 2} ; 

that is, we measured the number of evaluations of the (vector) right-hand side of (5.3). 

(Moreover, the amount of computer time required to search for the optimum was so 

great as to preclude running the problem a large number of times and averaging the 

results, as was done in the previous example.) Results are given in Table 5.3, where 

p*, n*, and C* (defined as for (5.2)) are given as a function of the error criterion. The 

table stops at i « 10"^, since the eighth-order method (i.e., the highest-order method 

implemented for testing) was reached at that level. Again, note that the theoretical 

results predicted are confirmed in this difficult example. 

So, our three numerical examples yield data which agree with the theoretical 

result that the optimal order p*(a) increases with a - In i " * . Moreover, in 

Werschulz [76a], [76b], we show that p*(a) « 0(a) as a t oo for these classes of 

methods; i.e., the optimal order increases linearly with a. The data in Tables 5.1-5.3 

support this result. 



TABLE 5.1 

-log 10* X - -e X - -1 X - -1/e X - 1/e X - 1 X - e 

1 2 3 1 1 3 8 

2 9 4 2 2 4 9 

3 11 6 3 3 6 11 

4 12 7 4 4 7 12 

5 14 8 5 5 8 14 

6 15 9 6 G 9 15 

7 IB 10 7 7 18 16 

8 17 11 8 8 11 18 

9 19 12 9 9 12 19 

Notes: 

1. In all cases except X • -e, i • 10"*, the optimal mesh-size was 
h = 1.0; for this exceptional case, it was h = 0.5 . 

2. Entry in table is the optimal order for the given X and i . This equals 
the minimal number of function evaluations required to solve the 
problem on the entire unit interval, except for the exceptional case 
noted above, where four was the minimal number of evaluations. 

Taylor Series Methods for Test Problem 

*<t) - Xx(t) x(0) - 1 



TABLE 5.2 

- l o g 1 0 i P* n* C* e C t(4, • )/C* 

1 1 2 2 2.789 3.93 

2 2 2 4 7.B24 3.28 

3 4 2 6 23.144 1.80 

4 5 2 8 32.481 1.38 

5 G 2 10 4B.837 1.87 

B 7 2 12 60.979 2.15 

7 8 2 14 75.613 3.18 

8 9 2 IB 92.852 4.58 

9 18 2 18 188.632 6.85 

Brent-Runge-Kutta Methods for Test Problem 

x(t) •= cos2x(t) x(0) - 0 



TABLE 5.3 

- l o g 1 0 i P* n* C* e 

1 3 8 24 

2 4 10 40 

3 4 15 68 

4 7 9 81 

5 8 9 99 

Linear Runge-Kutta Methods for Test Problem 

x(t) - «ij<t) Xj(t) Xj(t) Xj(0) - 1 (1 <, i S 2) 

a i j W " -Tij J ! £ e x P ( ' " i j ( t " r ) 2 ) r _ 1 s i n f d T 0 S I, J S 2 ) 
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