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ABSTRACT

The problem of intersecling N half-spaces in K space is transformed to 2:K
problems of constructing the convex hull of N points in K space and a simple
intersection problem. This enables one lo inlersect the N K-dimensionai half spaces in
O(K+H(N,K)) time, where H(NK) is the time required to construct the convex huil of N
points in K space. For two and three dimensions the algorithm takes O{NlogN) time in
the worslt case, but under fairly robust conditions the expecled time is only O(N). 1t is
also shown thal an aigorithm for intersection of half spaces can be used !o construct
the convex hull of poinls in K space. Thus, the intersection of half spaces and convex
hull of points problems are essentially equivalent.
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1. Introduction

There has been much recent work on the problem of intersecting half
spaces, Shamos[75] and Shamos and Hoey[76] describe an O{NlogN) time algorithim in
two dimensions, and Zolnowsky[77]} and Preparata and Muller{77] have developed
O(NlogN) time algorithms for three dimensions. These algorithms are optimal within a
constant faclor because there is an R(NlogN) lower bound for two or more dimensions
(Shamos[75)).

We will show thal an ‘algorithm for constructing the convex hull of a set of
points in K space can be used to intersect half spaces in K space, and vice-versa. In
fact, within a factor of K, the upper and lower bounds for ore problem apply to the
other. Thus, {much of) lhe knowledge concerning convex hulls of paints in K space
applies to the intersection of half spaces in K space. Graham{72] and Preparata and
Hong[77] describe O(NlogN) time algorithms for constructing the convex hull of N poinls
in the plane. Bentley and Shamos[78] and Eddy[77] give fast expected time algorithms
in the plane. Preparata and Hong[77] have aiso produced an Q{NlogN) time aigorithm
for the convex hull of N poinls in 3 space. However, in four dimensions there is an
Q(Nz) lower bound hecause the convex huil can have G(Nz) edges (Grunbaum{67),
p.193). Chand and Kapur{70] describe a convex hull algarithm for an arbitrary number
of dimensions whose complexity has yel to be analyzed.

This paper will first describe the two dimensional problem and the sclution
obtained by use of the transform. Then we move up to three dimensions, using the
_transform to solve the probiem in O(NlogN) time. Finally, four (and more) dimensions
"will-be tackled, followed by some fast expected time algorithms and applications. Al

" +.algorithms in this paper use the RAM (with reals) model of computation,

o

2. The two dimensional problem
e, Shamos{75] and Shamos and Hoey[76] show that the intersection of N half
- . planes has time complexity 8(NlegN). Their algorithm for constructing the intersection
™in O(NlogN) time relies on Shamos™ O(N) time algorithm for intersection of convex
polygons. In this paper an entirely different ({NlogN) time algorithm is described.

‘ In Figure 1 the interseclion of N half planes is indicated by the shaded
region. The half planes are partitioned into two sets, UPPER and LOWER. A half plane
is in set UPPER if the line al its boundary is above the rest of the haif plane. Similarly,
a half plane is in the set LOWER if the line at its boundary is below the rest of the half
plane. (If any boundary lines are vertical, then rotate all N half planes a smail angle.)
The reason for producing this parlition will not be explained now, but it will be
apparent later. Thus, the problem is now divided inlo three parts: (1) the intersection
of the UPPER half planes, (2) the intersection of the LOWER half planes, and (3) the
intersection of the results of paris (1) and (2).
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(1) Q)

Figure 1: Intersection of N half planes,, Figure 2: Infersection of regions U and L.

As shown in Figure 2, part (3} is relatively easy. If U and L in Figure 2 have
O(N) vertices then the inlersection (shaded region) can be construcled in O(N) time.
The algorithm is described in detail in ALGORITHM INTERSECTCHAINS below.

ALGORITHM INTERSECTCHAINS

input: Integers NI, N2 (where N = NI + N2) and real vectors Ux[O:N1+i], Uy[O:N1+1].
L, [0:N2+1], LY[O:N2+1] such that :
-0 = U, JO] < U[11 <. .. < U [N1] < U Ni+1] = o
-0 = L J0) <L [1]<... <L [N2] <L [N2+1] = o0,
Qutput: Integer K {number of vertices on the intersection), H,[1:K], Hy[l:K].
Time: O(N), Space: O(N).

(1) Scan U and L (vectors U, Uy, Ly and Ly) from left to right until two segments
intersect at a point P. (If no segments intersect then the intersection of U and L is
empty.) The scan can be dore in O(N) time in 3 manner similar to the O(N) time merge
in the merge sort algorithm,

(2) Sean U and L from right o left until two segments intersect at a point Q.

(3) If P ¢ Q, then return (in vectors H_ and H),) the concalenation of the chains of line
segments of U and L belween points P and Q.

(4) If P = Q, then the inlerseclion is unbounded (or just the point P = Q). In the case
of an unbounded intersection one must determine whether to return the chains to the
left of P or the chains to the right of P. This can be determined by comparing the
slopes of the rays bounding the left and right sides of U and L. If the slope of the left
ray of U is less than the slope of the left ray of L, then return the chains to the left of
P. Otherwise, return the chains to the right of P.



This leaves parts {1) and (2), the intersection of the UPPER half plancs and
the intersection of the LOWER half planes. Only (1} will be described since (2) can be
solved similarly. Assume thal the N hall planes are all UPPER half planes. Some of
these half planes, such as balf plane k in Figures 3a and 3b, do nol bound any side of
the region of interseclion. It would be nice o be able to find all such half planes and .
throw them away since they do not conlribute to the final result. Once that is done
one ¢an find the intersection of the UPPER half planes ralher easily. As one can see in
Figure 2, the slopes of the sides of the chain U are rmonotonic decreasing as one
travels from left to right. Thus, given the lines determined by the sides, one need only
sort the lines by slope to determine the order in which they intersect to form the
sides. The sort costs O(MogN) time so once all the redundani half planes, such as k in
Figures 3a and 3b, are removed, the intersection of the UPPER half planes can be
determined in O(NlogN) lime.

(a) (b)

Figure 3: (3) & {b) - k is redundant, {c¢) - k is nonredundant.

How does one delermine which half pianes are redundant and which are not?
There are two conditions which need to be checked.

{1) Line k (Figure 3) must be above the point P where lines | and j meet.

(2) The slope of line k must tie between the slopes of lines i and j. That is,
slope(i) < slope{k} < slape{j) or slope(j) < slope{k) < slope{i). This is true if i and
j have slopes of different sign (Figure 3a) or of the same sign (Figure 3b).

Figure 3c shows whalt will happen if the first condition is salisfied but the second is
not. A half piane Kk is therefore redundanl iff there exist half planes i and j such that
"the two above conditions are satisfied,

How fast can one determine (non)redundancy for each of the N UPPER half
planes? Certainly one approach is to test all pairs of half planes i and j for each
halfpiane k. That costs 0(1\13) time, though, which is not good. One could, perhaps,
modify this approach and oblain a fasler algorithm, However, there is an entirely
different way of looking at this problem that is clearly betler and that is the approach
which will be taken,



3. The Transform

The transform exploils a natural duality between points and lines in the
plane. For an arbitrary point (x,y), consider the set of all lines in slope-intercept form
which pass through the point. (Thus this won'l work for vertical lines.) If a line is
represented by an ordered pair of lhe form (slope,ntercept), then this set is
{{(ab) |y =asx + b }. Nole that lhis fransforms a point {x,y) to a line b = -xta + y,
Note also that the representalion of a line y = atx + b in the form (a,b) is a natural
fransform of a line to a point. Thus, points transform fo lines and lines transform to
points by the formulas

y = asx + b -+ {ab), and
{x,y) = b =-xxa+y,

This transform has an inleresling property: Distances in the y-coordinate
between points and lines are preserved.” The difference in y coordinate between
point (¢,d} and line y = esx + f is d - (exc + {). The difference in the transforms b = -
cxa + d and {(e,f) is {-cte + d) - f, which is the same. It follows from this that incidence
is prese:r\fed.2 If point {c,d) is on [ine y = exx + f, then it holds also for their
transforms - point {e,) is on line b = -c+a + d. Note further that not only is the
magnitude of the distance {in the y-coordinate) preserved but aiso its sign. Thus,
above /below-ness is preserved. If (¢,d) is above (below) line y = esx + {, then the
transform of {c,d} is above (below) the transform of y = e#x + f.

There is another property of the transform which should be mentioned. The
transform is not invotutory, but composition of it four times produces the following:

(x,y} < b=-xta+y - (-xy) = bh=xxa+y = (x,y)

Only 'a slight change is required to make the transform ifs own inverse. Express lines
in the formy + a*x + b = 0 rather than y = asx + b. Then it is true that y + a*x + b =
0 & (ab). But this has the unfortunale side effect that above/below-ness between
points and lines is not preserved; il is reversed. If point (c,d) is above line y + e¥x + f
= O then the transform of {c¢,d) wiil be below the transform of line y + e#x + f = O.

IThe restriction in the y coordinate is imporlant because it can be shown to
be impossible to preserve the Euclidean distance between a point and a line under a
duality transform.

2There are other duality transforms which preserve incidence, such as
Plucker’s transform [Shamos 77]



4, Applicaiidn of the transform to the two dimensional problem

Now it will be shown how the transfarm enables one 1o inlersect the UPPER
(or LOWER) half planes fast. More specifically, the lransform enables an efficient
mechanism for eliminating the “redundani™ half planes. Recall the two conditions for
redundancy of an UPPER half plane: a half plane k is redundant iff there exist half
planes i and j such that (1) line k is above the point P where lines | and j intersect,
and (2) the slope of k is belween the slopes of lines i and j. In the ab plane there is a
corresponding interprefalion, :

Figure 4: Transform of a redundant haif plane.

In Figure 4, line k is above point P in the xy plane. This is transformed to a
point k which is above line P in the ab plane. (Above/below-ness between lines and
points is preserved by the transform.) The slope of a line in the xy plane is the a
coordinate of the corresponding point in 1he ab plane. Thus, as in Figure 4, line k with
a slope between the slopes of lines i and j transforms to a point k with a coordinate
between the a coordinates of points i and | in the ab plane. Figure 5 shows the result
of applying this procedure to several half planes. In the ab plane the poinis
connected by line segments are the lransforms of the “nonredundant” half planes. The
points above these segments correspond to the redundant halt planes.

Figure 5: Transform of N UPPER half planes.

Look closely al those line segments in the ab plane. They are exactly the
bottom part of the conver hull of the points in the ab plane! The problem of
intersecting N UPPER haif planes has been reduced o the problem of constructing the
(bottom part of the) convex hull of N points. The convex hull of N points in the plane
can be constructed in O(NtogN) time (Graham[72]). This leaves only the detail of
separating the top from lhe bottom part of the hull. To do that, find the leftmost point
of the hull in O(N) time. Then traverse the hull on the bottom side until the rightraost
point is reached. :



The problem of intersecting N half planes has been broken into three parts.
Part (1), the intersection of the UPPER hall planes, has just been shown to cost only
O(NiogN) time. Part (2), the intersection of the LOWER half planes, is equivalent to part
(1) so it can also be done in O(NlogN) time. Part (3), the intersection of the resuils of
parts (1) and (2}, has becn shown to cost only O(N) time. Thus, the entire problem can
be solved in O(NlogN) lime. ‘

It is interesting lo note that one can also use an inlersection of half planes
algorithm to produce a convex hull of poinis algorithm. First transform all N points to
UPPER half planes by the formula : '

’ {x,y} = b=xxa+y
“and intersect the half planes. Transform back to obtain the lower part of the hull
Then transform all N poinls to LOWER half planes and inlersect the half planes.
Transform back for the upper part of the hull. Merging the upper and lower parts is
trivial, since the leftmost and rightmost points will be in each one. Total lime is
O{NlogN).

5. The three dimensional problem

The technique just used in two dimensions can be extended lo three
dimensions. The half spaces are, as before, first partitioned into the two sels UPPER
and LOWER. A half space is in the UPPER set if the plane at its boundary is above the
rest of the half space. Similarly for LOWER. The problem of intersecting the hall
spaces is then broken into the subproblems (1) intersect the UPPER half spaces, (2)
intersect the LOWER half spaces, and (3) intersect the resulls of (1) and (2). This
schema will still work in three dimensions, but the algorithm for part (3) is more
complicated and does not seem to generalize well to higher dimensions. To avoid these
complications a slightly different method for intersecling half spaces in three
dimensions will be presented. !

Recall that the partition of the half spaces into the sels UPPER and LOWER is
determined by a comparison in the z coordinate. The choice of the z coordinate is
totally arbitrary. Any of the 3 coordinates will do jusl as well ! Thus, there are 3
possible sets UPPER and LOWER. To distinguish them fram each other, use the notation
UPPER; and LOWER, for the first (x) coordinate, UPPER, and LOWER, far the second
{y) coordinate, and UPPER, and LOWER, for the third (2) coordinale. Also, U and L, the
intersections of the UPPER and LOWER sels, will now be written U; and L; for the ith
coordinate. The new method for solving the intersection of U and L {lhat is, Uy and
L3), uses all 3 of the pairs U; and L;. (See Figure 6 for an iliustration of the three sets
U and L for an octahedron) It will be shown how the extra U; and L; make the
intersection much simpler. Then it will be shown how to construct Ug, L3 Uz, Lo, Ups
and Ll‘

11n fact, so will any linear combination of the coordinates.
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Figure 6: The three sels U and L for an oclahedron.

, An example of the two dimensional case is shown in Figure 7. The curves
Uy and Lo of Figure 7a meet at two points, P and Q. Once P and Q are found, it is
easy to construct the entire polygon defining the intersection of regions Uy and Lo.
(See the last part of INTERSECTCHAINS in Section 2.) The leftmost intersection point P
of Uy and Ly in 7(a) is simply the leftmost point of L in 7{b). Thus, rather than using
algorithm INTERSECTCHAINS (Section 2) to find point P, one can simply consiruct L
and find the leftmost point. (Similarly for point Q.) Does this always work? No, but the
exceptions are not a serious problem.

(b)

Figure 7: An easy way to find P and Q.

Suppose that point P is not only the leftmost point of the shaded region, but
also the highest (or lowest) poinl (Figure 8). Then P will be one of the two
intersection points for nol only Uy and L, but also for U and L. Such points will be
called extreme intersection points. (The cases of unbounded or null intersections will
be treated later.) In fact, as shown in Figure 8, P and Q can be extreme intersection
points simultaneously. Thus, in the two dimensional worst case, the use of Uy and L
to find P and Q does nol seem entirely successful, since the two extreme intersection
points may still be left unknown. However, in higher dimensions the situation looks
relatively better. '
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Figure 8: P and Q are exireme intersection points.

Thr: In K dimensions there are at most two exireme inlersection points of N half
spaces.

Pf: To be an extreme inlersection point, the verlex must be extreme in all K
coordinates. (That is, grealest or smallest of all the vertices in each coordinate.) It is
assumed that no vertices have any coordinates in common, since the probability of that
happening is zero. Assume {hat P, Q, and R are distinct extreme intersection points.
Since P and Q are exireme inlersections, then if the ith coordinate of P is the smallest
(largest) over the verlices, then the ith coordinate of Q is the largest {smallest).
However, the ith coordinale of R must also be the largest or smallest i coordinale and
that can't be because points P and Q exhaust both of those passibilities. Thus there
are at most two exireme verlices. QED.

The fact that there are at most two extreme intersection points is used in
the algorithm (below) for inlersecling half spaces in three space. This algorithm
assumes that one can construct Uyy Ly Uy Loy Uss and L in ((NlogN} time. That will
be proven later in this paper, but for now simply assume that such an algorithm exists
and 1t will be shown how to consiruct the intersection of Uy and Lg (and thus the
intersection of all N half spaces) in O{N) addilional lime.

ALGORITHM TO INTERSECT HALF SPACES IN THREE DIMENSIONS

Input: Integer N > 0, real vectors X{1:N}, Y[1:N], Z[1:N]. _

Output: Integers K (number of vertices of the polytope), E (number of edges), F
(number of faces), real vectors H,[1:K], [1:K}, H,[1:K], integer arrays
EndPointsOfEdges[1:E,1:2]}, FacesOfEdges[1:€,1:2}, EdgesOff acesPointer[1:F],
EdgesOfFaces[1:2+E]. ,

Time: O{NiogN), Space: O(N).

(1) Construct Ug, Lg, Uy, Ly, Uy, and L in O(NtogN) time. (Section 6 of this paper.)
(These structures are represented the same as the output for this algorithm.)

{(2) For the most part, the edges where U3 and L3 meet have already been construcied
as edges of U, and L, (and Uy and L}). For each of the O(N) faces of Uy and Lp
one can determine in O(1) time whether it belongs in UPPERy or LOWERs. Thus,



(a) - (b)

Figure 9: Dashes inditate boundaries of (3) U3 and Lg and (b) U5 and L,

in O(N) time one can search all of the faces of Us and L2 and determine where
the UPPER, faces of U, and Ly meel the LOWER, faces. The edges where these
faces meet are edges of the infersection of Uy and L3. (See Figure 9.}

(3) Compare Ug and Ly with Uy and L as in (2) in O(N) time. By the above theorem,
there will be at most two verlices of U3 n Ly which have not yet been
delermined in steps (2) and (3).

(4) If the chain of edges connecling Uy and Lg {constructed in steps (2) and (3)) is a
cloesed loop then there are no extreme vertices and the intersection of Ug and Lg
is complete,

(5) If the chain of edges connecting U3 and L3 ts open at one end then either (a) the
intersection of Uy and L is an unbounded region, or (b} there is one extreme
intersection. 1t the chain is broken into two parts then either (c) there are two
extreme intersections, or (d) there is one extreme inltersection and the
intersection of Uz and L is unbounded. For these cases of one or two breaks in
the chain, apply step (6} to find any remaining vertices.

(6) To distinguish an exireme intersection point from an unbounded intersection: {(a)
find the two edges al the lwo ends of the chain and call them A and B, (b) find
the faces above and the faces below A and B which have A or B as edges. Call
them A, Ay B, and B, (c) Find the (infinile) faces at the intersection of A, and
A, and B, and B, Call them A| and B} (d) In XN) time find the intersection, if
any, of Aj and By

1t has just been shown that given U3, L3, U2. Ly, Ul' and L, the intersection
of Uz and Ly can be conalructed in O(N) time. Now it must be shown how to construct
Us, Lg, Up Lo, U, and Ly in O(Nlogh) time. Since constructing one of these six
intersections is essentially the same as construcling any olher, the following lext will
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describe just the intersection of a set of half spaces called UPPER and the intersection
will be called U.

The algorithm for construcling U in three dimensions is analogous to the two
dimensional case. In brief, this is how it will proceed: First transform the N UPPER half
spaces to N points in abc space. Conslruct the (bottom part of the) convex huil of the
points in ({NlogN) time. The points above lhe bottom part of the convex hull
correspond to "redundant” half spaces and can be discarded. The bottom part of the
hull is then transformed back lo form U, the intersection of the UPPER half spaces.
This will now be descrilred in detail. :

M

Figure 10: A redundant half space.

Assume that there are N UPPER half spaces. Some of these half spaces
contribute to the infersection U and some are “redundant,” such as half space M in
Figure 1Q. For the plane there are two simple conditions for redundancy of a half
plane. In three dimensions there are two analogous conditions for a half space. The
first condition for redundancy of a half space M is that plane M be above the point P
where planes I, J, and K intersect, as in Figure 10. The second condition, the
"betweenness of slopes” condilion, is more complicated to express. The purpose of
the "betweenness of slopes” condition is to insure that a plane above the point P can’t
drop down fast enough to enter the region below planes |, J, and K. But this is insured
by requiring that plane M remain above the rays ryj, ry, and ry; which define the
edges of the three faces bounding the enclosed region.

Plane M can be written in the form z = atx + by + c. {No vertical planes
satisfying the two conditions are possible, so this form will always work.) Plane I can
be written z = ajtx + byry + ¢ Similarly for planes J and K. The three rays ry}, r
and ry can be expressed as veclors originating at the poinl P. The cross products of
normais to planes I, J, and K give veclors along the lines determined by these three
vectors. Thus,
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r 7 X a, b,

ry= %y By ) = - 3, b! 1| x son a b
a b -1 4
T

Similarly for r and ryy. The first condition, that plane M be above (or on) point P =
(Px,Py,PZ) is

(1) - arP,, +b=th +czP;.
The second {betweenness of slopes) condition depends only on the slopes a and b, not
the intercept ¢c. Thys, il is the same for a plane M which passes through point P as

_one which is strictly above P. The condition that M nol drop below vectors ryj, r ¢, or
rgi is therefore .

aroy; + befy 2 ¥y
(2) A r oy bt/& 2 Uk

aroy + befy 2 U

The four inequalities in (1) and (2} have an equivalent interpretation in the transformed
{abc) space.

6. Application of the transform to the three dimensional- praoblem

The transform used in three dimensions is a straightforward exlension of the
two dimensional transform. Planes transform o paints and paints transform to planes.
The formulas for the transform are:

Z=asx +bty +¢ 2 (abg)
(x,y,2) -+ ©=-x*a+ -ysb + 2z,

1Dantzig[63] uses the above transform in the context of linear programming
and Huffman[77] uses an almost identical transform for an analysis of polyhedral
scenes,
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The distance betlween a point and a plane in the z coordinate is preserved by this
transform. And, most importantly, the sense of above/below-ness {(in the z coordinate)
between points and planes is preserved also.

Plane M (z = axx + bty + c) of Figure 10 transforms to the point (a,b,c} in
abe space, and planes |, J, and K transform lo the points Py = (a;,bfcp), Py = (a b e ),
and Py = (ag,biick) The inequality (1) (of the previous section) for redundancy of half
space M (and point (a,b,c)) is interpreted in abc space as a half space whose boundary
plane passes through all three poinls Pp, P, and Py. Thus condition {1) requires that
the point {a,b,c) be above this plane. Inequalities (2) (of the previous section) define
three verlical planes, each of which passes through two of the three points Py, P, and -
Pk. Thus, the set of half spaces M’which half spaces [, J, and K make redundant is
represented in abc space by the set of all points (a,b,c) which are directly above some
paint in (or on) the trianpie determined by points P, Py, and Py, When conditions (1)
and {2} are applied over all N points in abc space, the only points (half spaces) which
are not made redundant by some poinls (half spaces) |, J, and K are those points on
the bottom part of the convex hull of the N points,

How long does it take to construct the (bottom part of the) convex hull of N
points in three dimensions? Preparata and Hong[77] describe an algorithm to construct
the (entire) convex huil in C{NiogN) time. One way lo separate the bottom of the huli
from the top requires one lo augment Preparata and Hong’s algorithm by maintaining
with each face of the convex hull a vector perpendicular to the face which poinls
toward the inside {as opposed o the oulside) of the hull. The bottom faces of the hull
are those faces whose veclors point upward. The vectors for the top faces point
downward. (Note thal there will be some vertices in both the lop and bottom parts of
the hull. These are the vertices which bound both lop and bottom faces.) The botiom
and top parts of the convex hull are therefore separable in QO(N) time.

Figure 11: Transform of a convex hutl,

To find the intersection of the UPPER half spaces, the bottom part of the
convex hull must be transformed back to xyz space. The O(N) vertices transform, of
course, to planes. Bul there’s much more information than that in the convex hull. For
instance, defining each face of the hull there are three coplanar vertices ], J, and K.
‘The plane which these vertices define is transformed to a point in xyz space. This
point is where plares 1, J, ang X (of xyz space) intersect. (This follows from the fact
that the transform preserves incidence between points and planes.) Also, as illustrated

T Assuming that the vertices are in general position. If not, then there may
be four or more coplanar vertices.



13

in Figure 11, if faces Fic and F|_ of the (bottom part of the) convex hull share an edge
VIVJ, then in xyz space feces Vi and V; share an edge F‘KFL. In fact, even the
unbounded faces of U in xyz space can be obtained from the transfarm. These faces
of U correspond fo vertices at the boundary belween the top and bottom parts of the
convex hull in abc space. Thus, little computation will be required to construct U after
the transform from abc space since all the faces, verlices, edges, etc. are direclly
obtainable from the transform. Since the lransform costs only C{N) time, the total time
to construct U is dominaled by the lime to construct the convex hull in abc space,
which is O{NlogN) time.

It has just been shown that the lime to construct U, the intersection of the
UPPER half spaces is O(NiogM). Thus, Ug, Ly, Uy, Ly, Uy, and Ly can be constructed in
O(NlogN) time. Once the U; and L; are constructed, it costs only O(N) more time to

intersect Uy and Lg. Thus, the tolal time 1o inlersect N half spaces in 3 space is
O(NiogN). .

There is one more item of interest in the three dimensional problem. As
with the two dimensional case, an intersection of half spaces algorithm can be used as
a convex hull (of poinis) algorithm also. Simply transform all N points to UPPER
(LOWER) half spaces, intersect the half spaces, and transform back to obtain the
bottom (top) part of the convex hull. Merging the top and bottom parts of the hull is,
again, trivial since they will share several vertices at the boundary of the top and
botiom parts.

7. Intersecting hait spaces in four or more dimensions

Suppose that in K dimensions the canvex hull of N points can be constructed
in HIN,K) time. Then the intercection of N half spaces can be constructed in O(KxH(N,K))
lime. The problem is zolved by a straightforward exlension of the three dimensional
sojution. The Ui and L are first constructed in O(K+H(NX)) time and then UK and Ly
are intersected with the aid of the other U; and L; as in the three dimensional case. To
construct the U; and L;, one transforms the UPPER; (LOWER;) half spaces lo points,
constructs the convex hull of the points in HNK) time, partitions the top from the
bottom parts of the hull, and transforms the bottom (top) part of the hull back.

Before proving that this aclually works in K dimensions some terminology
will first have to be intrnduced. Le! the UPPER set of half spaces, refer, by default, to
the UPPERK set of half spaces. That is, "up” will be measured in the xkg coordinale.
Also, let a “j-face” of a K dimensional polytope by denoted as follows a vertex is a O-
face, an edge (a line segment) is a 1-face, etc.

Theorem: Let S be a set of N UPPER, K - dimensional half spaces H; defined by

H: a, + z aj%x; < %y, i=1,.N
LR S L i
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and let T be the convex polytope formed by the interseclion of these N half spaces. [f
the transform of halt space H, ¢ S is

L

. Hi -+ A' = (ail,aiz,..aik), i*l,...N,
then the nonredundant half spaces of S correspond to the points an the bottom half of

the convex hull of the points A, Furthermore, the j-faces of the convex hull
correspond to the K-j-1 faces of T.

Proof: The proof is divided inlo five parts: .

{1) For each redundanl half space Hl there is a set Gy ¢ (S-Ht) of half spaces such
that [ INTERSECT{xG}) x ] © Hy and |G| = K (if the haif spaces are in general
position).

(2) The algebraic descriplion of the redundancy of Hy with respect to Gy.
{3) The interpretation of the algebraic description in the transformed space.

(4) The interpretation in (3) implies thal the nonredundant half spaces correspond to
the points on the bottom part of the convex hull of the poinis Ay

(5) The j~faces of the convex hull correspond to the K-j-1 faces of T.

PART (1): T is a convex polylope because it is an intersection of half spaces. If a
halfspace H; is redundant then its boundary plane lies completely above T. Let Vt be
the point of T which is closest to the boundary plane of Hy. (If the closest point to the
boundary of H; is not unique, then let V} be any verlex in the set of closest paints))
Since T is a convex polytope, V; is {or can be chosen to be) a vertex of T. Let Gy ¢ §
be the set of half spaces of S whose boundaries meet at vertex V. If the haif spaces
of S are in general posilion then the set Gy will contain exactly K half spaces. Since T
is convex, one can travel from V; along T in any direction and the distance to the
boundary of H; will be nondecreasing. It follows that [ INTERSECT(x<Gy} x ] = H;. That
is, Hy is redundant with respect to the hall spaces in G;. As in two and three
dimensions, redundancy can be expressed by two sets of conditions: (1) the boundary
of H; is above vertex Vy, and (2) the “betweenness of slopes”™ condition. These
conditions wilt now be shown algebraically.

PART (2): Let H be the half space

g, + z Ag¥%: S XNy,
tk jmlR-1 ") K

and let the half spaces in Gy be, without loss in generality, the half spaces 1 through K:

a + Z a4 £ %, i=1,.K.
1k, j=1R-1 17 !

The point Vi = (V}1,Vyo, - . . V| ) closest 1o the boundary plane of Hy is defined as the
solution to the set of equalions
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j=1,K-1
Letting
a
81p 2 - -1 -l Ik
By 8Bz k-1 -t Aok
A = . and B =

Ay 8z Agk-1 -1 Ak

this can be rewritien
AsVy =B,

where Vt‘ is the tran.s,pose of Vt'

Now the two condilions for redundancy of H; can be described. The
condition that the boundary of Hi is above point V, is

(1) ay, + Z ay:#Vy: 2 Vi,
tk =K1 1R tk

The "betweenness of slopes™ conditions are

(2) 2 M'.}*Cj 20,i=],.XK
j=1K
where M;; = (<1K x cof () * SGN(cof; (A)) and
_ Cj = a“ {or j‘.’-.K-l and Ck a -1,

Equation (1} is straightforward and believable, but (2) requires some
explanation. Describing (2), the "belweenness of sicpes™ condition, is difficult to do by
directly comparing slopes of the K fiats of Gi. Instead, the allernative developed for
the three dimensional case will now be applied to the K dimensional problem. In three
dimensions one constructs the three rays Fiir Tik and Fik determined by the vertex P
where the three planes meel and the intersection of pairs of planes 1 and J, 1 and K,
and J and K, respectively. Condition {(2) is satisfied if the redundant plane stays above
these rays. In K dimensions one construcls the K rays determined by.the verlex V;
and the K sets of K-1 elements of Gj. The notation used for the K dimensional case
will be slightly different than for the three dimensional case. Rather than dencting a
ray by the set of K-1 flals which determine it, the ray will instead be dencted by the
one flat which is rot used lo determine it. If (e¢;,0ti5. . . . =¢jy) is a vector paraliel to
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ray | (the ray which does not include flal i), then ray i may be written in parametric
form as
(XI,Xz, P Xk) = (V“,Vtz, . Vtk) +U¥x (c{tl,cdlz, .. célk).

Now it must be shown how to construet such a vector (o¢),e¢i5, - . - o). Ray iis also
the intersection of the other K-1 half spaces of Gy. Thus,

1 G2 .- p-1 -l X Ak
............... 5
a]_l’l ai—l,z ..... I-lk'l -1 X2 al-l,k
Biiy1 Bjer2 CIMPR R : +1k
............... X ’

k a
Kk
@Ky 82 k-1 -l

9 dz .- -1 -l i 0
3,1 A oo IS %2 Y
a|+1‘1 ai41,2 """ aHl,k-l -1 : -

............... iik O
gy 8 e Apx-1 -l

The probiem is now lo find a general solution to this system of K-1 equations in K
unknowns. Recall the following property of cofactors:

);,K 3,200l m;(A) = deHA) if i=m
=1 =Qitirdm,

It follows that the general solution is

(otil,c-diz, RN dik) = consiant = (COfil(A)'COfiZ(A)' PR COf;k(A)).
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The constant is chosen as (-1)K = SGN(cof;, (A)) so thal the vectors always point
downward. It can now be =een that the inequality expressed in condition (2} is simply
a generalization of the formulas for the three dimensional case.

PART (3): In the transformed space, half space H; becomes a point Hy = (ay},a42, .
. ayi) and the elements of Gy transform lo points similarly. Vertex V, transforms to a
flat vy defined by -

Vi - v
th j=§<:-l t
Since incidence is preserved by the transform, flat Vy passes through ali of the points
Gy and is, in fact, delermined by them. Also, since above/below-ness in the x
coordinate is preserved, point H; is above flat Vt in the transform space. Using the
formula for flat Vl' this can be expressed as

j*Zi i 470

| V“‘- - j=§_1 V‘}*at’ < agy, |
which is equivalent to condition (1) for redundancy of H! Condition (2} defines K
"vertical” half spaces which further constrain point H o be not only above flat V; but
also directly above some point in the (K-1 dimensional) simplex of the points G;. (The
K half spaces are described as "vertical” because their formulas do not include the
term ay, and thus the K coordinate is free.)

PART (4): In Parts (1) through (3) attention has focused only on the conditions for

redundancy of a parlicular half space H.. Given the interpretation of part (3) above,
what can now be said over all N of the half spaces of 57 If has been shown that if
half space H; is redundant with respect to a set of K half spaces Gy, then in the
transform space point Hy is direclly above some point of the (K-1 dimensional} simplex
of the points Gy, and conversely. Thus, a half space H; ¢ S is redundant iff there exists
a set G; © S-H; of K haif spaces such that in the franstorm space point H; is directly
above a point of the (K-1 dimensional) simplex of the points of G! But this eliminates
all points except those on the boltom of the conver hull of the N points H,. This
proves the main parl of the theorem. Now it mus! be shown that the convex huil
produces not only the nonredundant half spaces but also the edges, faces, etc. of T
also.

PART (5): To show that a j-face of the bottom part of the convex huil of the
points H; corresponds to a K-j-1 face of T, a generalized version of the transform taust
first be described, The general transform maps a j-space to a K-j-1 space.

General Transform: The transform of a j dimensional subspace of K
space is the set of all flats which contain it. This is a K-j-1 dimensional
subspace of flals. However, since each flal can be readily represented as
a point, the transform of the j dimensional subspace is -represented as a
K-j-1 dimensional subspace of paints.

Theorem: The general lransform preserves incidence. In other words, if a j
dimensional subspace of K space is a subspace of a jp dimensional subspace, then the
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transform of the j, dimensional subspace is a subspace of the iransform of the j;
dimensional subspace.

Proof: Since the j, dimensional subspace can be interpreted as an intersection of K-j;
flats, it will be sufficient 1o show that if a K-j dimensional subspace is a subspace of a
flat, then the transiorm of the flat is a (zero dimensional) subspace of the transform of
the K-j-space. Let the K-j-space be represenled as an intersection of j fiats

a“ aiz ..... al,k-l -1 X} alk
31 822 Box-1 -1 X2 a g
aj; ap e -1 -l X a

The transform of the K-j space is a j-1 space with points

u
X 1
! a 821 .- - 8 U
X2 a,., a a. 2

_ 12 922 ... @p )
......... o
Xy A1k A2k ajk )

i

It is easy o see that this j-1 space contains the points
(ail,aiz, [ ai,k,l.aik), I'I,J
which are the transforms of the j flals.

Since the general transform preserves incidence and j-spaces transform to K-j-1
spaces, it follows that j-faces of the convex hull transform to K-j-1 faces of T. OED_.

As with the 1wo and three dimensional cases, an algorithm for intersecting N
half spaces in X dimensions can be used to construct the convex hull of N points in K
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dimensions. The procedure is a siraightforward extension of the three dimensional
case: Transform all N points to N UPPER (LOWER) half spaces in K space. Intersect the
haif spaces, then transform back to the LOWER (UPPER) part of the convex hull,
Joining the UPPER and LOWER parts of the hull should be easy because of the vertices
which they have in common on their boundaries.

8. Fast expecled lime algorithms

There have been recent advances in algorithms for constructing the convex
hutl of a set of poinis in fast expected lime. Since the time o intersect N half spaces
is dominated by the lime to construct the convex hull of N points, these fast convex
huil algorithms lead fo fast intersection of haif space algorithms. Bentley and
Shamos[78] have shown thal when the expected number of points on the convex hull
is O{NP} for some p < 1, the convex hull of N points in two and three dimensions can
be constructed in O{N) expecled lime, while maintaining an {NlogN) worst case lime.
Thus, N haif planes or N haif 3-spaces (under the above condilions) can be intersecied
in O(N) expected time and O(NlogN) worst case time.! In four or more dimensions the
worst case time is al leas! R(Nz). However, it is anlicipated that one may slill
construct fast expected lime algorithms.

9. Applications
(A) Linear programming.

The feasible region of a linear programming problem in K variables and N
consiraints is an intersection of N K-dimensional half spaces. Far large K, the time
O(K*H(N,K}) to construct this may nol be an improvement over the simplex method. But
for K £ 3, the feasible region can be consiructed in O(NlogN) time worst case and
(under the conditions described in Seclion 8} OXN) expected time. Thus, the total lime
to solve the linear programming problem is only O(NogN) worst case and O{N)
expected time. Shamos and Hoey[76] bhave previously shown that a lincar
programming problem in two variables {two dimensions) can be solved in O(NlogN) time.
Bentley and Shamos[72] laler showed the O(N) expected lime for the two dimensional
case,

For K > 3 dimensions a different approach is recommended. To solve a
lineat programming problem it is not really necessary to construct the enlire feasible

1Beniley and Shamos[78] showed this result for the two dimensional case
using a duality result of Ziezold[70]
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region. Certainly the simplex method avoids doing any such thing. Dantzig[63] applies
the dualily iransform to a standard linear programming problem of K equations in N
variables. {The interpretation of a linear programming problem as an intersection of N
half spaces in K dimensions is shown equivalent to this standard form by lhe duality
theorem of linear programming.) The objeclive funclion is transformed to a vertical line
in K space and the N variables are each Iransformed to points in K space. The
optimization problem is transformed to the problem of determining where the verlical
line intersects the comvex hull of the N poinis. The simplex method provides one way
to determine this intersection without consiructing the convex hull of the N points. It
remains to be determinced whether or not modern algorithm techniques can produce an
"improvement over the simplex algorithm in the K dimensional case.

(B) Intersection of convex polyhedra

A convex polyhedron of N faces can be described as an intersection of the N
half spaces which determine the faces (and which include the polyhedron). Thus, an
intersection of two convex polyhedra of N faces can he solved as an intersection of
2¢N half spaces, which can be done in O{NlogN) lime. (See Muller and Preparatal?7
for a different O{NlogM) lime algorithm for intersection of convex polyhedra) But it
remains an open question whelher or not the aigorithm can be improved to run in O(N)
time. (It certainly can in two dimensions.)

10. Conclusion

The use of a geometric transform has been shown lo be very useful for
construction of a fas! algorithm for intersection of half spaces. This algorithm, in turn,
has been used in algorithms for a fast expected time algorithm for intersection of half
spaces, intersection of convex polyhedra, and linear programming in three variables.
The geometric transform is applicable to many more problems. The union of a sel of
(the interiors of) N arbitrary planar circles can be constructed by transforming to a set
of N half 3 - spaces which are then intersected in O(NlogN) lime. The Euclidean
diameter of a set of N points in 3 - space can be determined in O(NtogN) time through
use of a transform very similar to the one in this paper. The nearest and {arthest
point Voronoi diagrams of N points on a sphere or on a Euclidean plane can be
constructed in O(Niogh) lime through use of inversion and the methods in this paper.
Also, several two dimensional problems with lines have been solved quickly through
use of this transform (Brown[77]). In addition to the duality transform described in
this paper, other transforms such as inversion, rolation, and various kinds of projeclion
{gnomonic, orthographic, stereographic) have been successfully used to construct {ast
geometric algorithms. 1 is anticipated that the use of geometric transforms will
become a standard tool in the consiruction of geometric algorithms.
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