NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

(Prailminary)
An Intformal Definition of Alphard

Paul Hilfingar
Gary Feldman
Robert Fitzgerald
lzumi Kimura
Ralph L. London
KVS Prasad
VR Prasad
Jonathan Rosenberg
Mary Shaw
Wm. A. Wuit (aditor)

February 12, 1978

Camputar Science Department
Carnegie~Meilon University
Pittsburgh Pa,, 15213

CMU-CS-78-185

This work was supported in part by the Advancad Research Projects Agency of the Department of
Dafense under contracts DAHC 15-72-C-0308 and F44820-73-C-0074 (which is menitcred by the Alr
Force Office of Scientitic Research), and in part by the Nationai Scienca Foundation Grant OCR 74-

04187.

An Informal Definition of Alphard

Prefaca

The authors and their colleagues have been experimanting with a collection of ideas about
programming languages for sevaral years. Our goals incltuded determining the extent to which language
couid support contemporary programming methodology, could aid in the construction of verifiabia
programs, and, at the same time, could be a completaly practicai programming tool.

in the context of that exploratory spirit it seemed inappropriate to rigidly bind decisions about the
details of the language. Hence, although our axplorations were carried out in a relatively uniform
notation and published under tha name "Alphard®, thera raally naver was an Alphard language. The
astute reader of our previous publications will have noted, and probably will have been frustrated by,
the fact that we feit compietely free to change the notation from paper to paper as the needs of our
axploration seemed to warrant.

With this document we are breaking with our previous strategy. We ara now defining a spacific
language which we expect to serve as the basis of our further research. in the future we do not
intend to alter this language in the same free manner as we have In the past. There are two reasons
for this shift in strategy: First, although we didn’t admit it, much of the language was frozen in our
heads, and the minor differences that appearad in published exampies only served to confuse our
readers. Second, and far more importantly, we beliave that the premises on which ail the "data
abstraction” languages are based are untested in practice. Wae fee! the need to gain experience
before we can proceed with any confidenca to tackie the naxt set of axploratory questions. To gain
that experience we need to freeze, and to implemant, at least some portion of the language -- and that
is what we are now doing.

Since we expect to work in the context of the language defined hera for some time to come, the
language is extremely consarvative. Our past experience has been that simuitaneousily achieving
vearifiability and efficiency is possible -~ but delicate. Hence we have chosen to include onfy features
whose implications we fully understand. For exampie, we have omittad features deallng with
concurrency, exceptionai-condition handling, and so on. We fully appreciate that these features will be
needed in & "production” version of Alphard; they are omitted hera becausa they are still the subjact
of our research.

The present version of this report carries the word "Preliminary" in its title; we hope to promptly
cirgulate a second version of the report from which this word has been eilded. Cur purpose in
circulating this first version is to solicit comment. We will deeply appraciate any and ail critiques of
both the *tanguage and its presentation. Such comments should be sent to Bill Wulf,
Computer Science Department, Carnegie-Mailon University, Pittsburgh, Pa. 15213.

1.1,
1.2,

2.1.
2.2,
2.3,
2.4,

3.1,
3.2,
3.3.
3.4.
3.5,

4.1,
4.2,
4.3,
4.4,
4.5,
4.8.
4.7.
4.8.
4.9,
4.10.
4.11,
4,12,

S.

§.1.
3.2,
5.3.
5.4,
5.5.
5.6.
5.7.
5.8,
5.8,
5.10,
8.11.
5.12.

An Informai Definition of Alphard

Introduction

Unusual Aspects of the Language
Style and Conventions of the Raport

Fundamantal Concepts

Objects, Addresses, and Values
Type and Type Descriptions
Binding

Type Matching

Basic Lexical Structure

Symbols

Comments

Identifiers

Speciat Rewrita Rules
Special literals

Program Structure, Expressions and Statements

Program Structure, Blocks
Expressions and Statements
Invecations

Conditional Exprassions
Value Expression

With Expressions

First Expression

Loop Statements

Exit Statements

Nuil Statement

Inner block

Assert Statement

Deciarations

Scope of Declarations
Auxiliary Declarations
Remote Definitions
Label Declarations
Object Deciarations
Evailuation of Type Dascriptions
Formai Parametoers
Routine Decilarations
Form Declarations
Abbreviations
Generators
Assumptions

[¢ IR A

10
11

14

14
14
15
15
17

19

18
18
20
22
23
23
24
25
25
28
26
26

28

28
28
29
29
29
30
32
33
35
el
37
39

An Informal Dafinitian of Alphard

Apx A: Coilected Syntax

Apx B: Standard Prelude

B.1. Primitive Prelude
B.2. Standard Preiude
B.3. Implementation Prelude

Apx C: Special Identifier Assumptions

c.1. Generator routines
c.2. Extensible routinas

Apx D: A Complete Exampie

Apx E: Proof Rules

490

43

43
44

46

46
47

g1

2 An Informal Detinition of Alphard

Chapter 1
Introduction

The Alphard language has bean dasigned to meet several abjectives simuitaneousiy:

To support contamporary programming mathodology, and to encourage the daveicpment of
understandable and modifiabie programs. Specificaily, wa wish to make the abstractions
used during the construction of a program explicit in the resulting program taxt.

To permit formai specification of properties of a program, and to permit practical vearification
. {proof) that the program satisfies thesa specifications.

To permit the programmer to control cartain decisions that have traditionaily been preampted by
the language implemantation (e.g., the represantation of data structures and method of
storage allocation).

To permit the Alphard compiler to generate compact, efficient code. With the ald of an
optimizing compiter, we expact to produce batter code than is typicaily produced by
assembly language programmers.

in setting these objectives, our pringipal concerm is with high quality, real programs -- those which are
usad extensively and are of significant size and complexity. Many of these programs arise in the area
which has been called "systems™: compilars, operating systems, and the like; such appilcations are
reprasentative of our concerns although they are not our exclusive focus. Our intended user
community consists of ralatively experienced protessionals rather than casual or student programmers.

The designers of a programming language generally make a number of philosophical decisions that
have manifoid effects on the product of their effort. We, for axampie, beileve that "powar" oOr
nexpressiveness” is pest achieved through mechanisms which permit the programmer 19 synthesize
more compiex facilities out of reiatively simpler ones. Thus tha compeosition, or structuring
mechanisms play the central roie in Alphard; by contrast, for example, the collection of primitive data
types is smail The philoscphicai justifications for this decision are: (1) ail of the familiar data types
can be built from Alphard's primitives, (2) the pasic language is much simplar withaut & large collection
of data types, and {3) in making the composition mechanism strong anough to define the familiar data
types, we have also made it strong anough to define many more pwblem-speciﬂc ones.

Parhaps nowhere are the language designers' philosophies more gvident than in those decisions
reiating to the tradeoffs betwesen expressiveness, safaty, and efficiency. Alphard, lika ait languages,
strives for a balance between these, hut our notion of palance Is colored by the intended appiication
area(s) and user profiles. For these applications the long term costs of maintaining and running
programs far outweigh their initial development costs. Thus we have tilted the baience in favor of
those language attributes which contribute to afficiancy and maintainability, possibly at tha expense of
thosea which facilitate rapid program construction.

Wa have, for example, not emphasized “gxpressiveness” in the sensae of a large coilection of
constructs -- each of which is "just right” for a particular situation. We believe that we have,

An informal Detinition of Alphard 3

however, supported expressiveness in a larger sense by encouraging program organizations which
convey important, abstract information about the way that the program waorks.

Simitarly, we have emphasized safety and efficiency, sometimes at tha expense of bravity or
convenience. This has led us to restrict some traditional constructs (e.g., scope and parameter rules)
and refrain from making some tempting generalizations. Wa are awara of many areas In which the
present design could be generalized in rather cbvious ways; wa have chosen not to do so, howevaer,
when we might compromise the programmer's canfidance in both the comrectness and performance ot
his pn:u;;ram1

1.1. Unusual Aspects of the Language

Many aspects of programming languages have become fairly standatd In the past dacade. Alphard
constructs are intentionaily similar in style and meaning to the anaiogous constructs in other languages.
In particular, we have leaned heavily on the Algot-Pascal culture; the syntax of axpressions, variable
declarations, procedures, and so on, ars ail derivad from this cuiture. The following, for example, is a
fragment of a valid Alphard program and i3 obviously similar to Pascai:

begin
var xy,zint;
it x2y then z:az+1 fi;
end; ,
Wa expect that the similarity between the Alphard constructs and the analogous ones in othar
janguages will aid both the reader of this report and the programmers who use the languaga.

There are, however, a number of aspects of the language which diffar significantty from many
traditional languages. This saction provides brief notes on these aspects of Alphard. It Is, in affact, a
list of points at which the reader should be aware that things may not be as axpected.

1. Type Deftinitions: The programmer may define a new type through a construct calied a form.
The form permits both the specification of the abstract proparties of (objects of) the new
type and the impiementation of that type in terms of pra-existing types. Type definitions
(forms) may be parameterized; in particular they may accept other form names as
parameters. Such forms are calied "generic® and define a class of types (e.g., array(T)},
whera T is a typse, defines array-of-intagar, array-of-real, array-of-set-of-integer, ate.).

2. Primitive types: Integer, real, complex, etc. are nof primitive typas In Aiphard; stmilarly,
structures such as arrays, records, and references {pointers) ara nat primitive. All of these
familiar notions are available, however. Either they are provided as "syntactic sugar"
through some standard abbreviations, or else they are made availabie to the programmer as a
part of a "standard prelude” -- a set of standard dafinitions which {concaptuaily) prefaces

every program. Specifications for the standard preiude are inciluded as appendix
B to this report.

1 We are convinced that deciding what net to include in a language design is much harder than invanting clever
new things to include.

4 An Informal Detinition of Alphard

There are (only) two distinguished types in Alphard; they are distinguished in the sense that
they must be considered as part of the language and not as part of the standard preiude.
They are "rawstorage"” and "boolean”. Spacifications of these types and their assoclated
eperations may be found in appendix B; informally, howevaer:

a. Type "rawstorage": This type corresponds to a vector of contiguous, addressabie,
untyped memory "cails” of conventional computers {we shalt refar informally to a
rawstorage unit of langth one as a "cell”™ or a "word" bet we maka no a
committment to the number of bits in each such cell); bit-wise logical, shifting, and
integer operations are definad on cslls. All other types are (ultimatsty)
represented in terms of objects of type rawstorage, and the dafinition of this type
contains the basic machanism for associating a "higher level” type with an area of
storage. Type rawstorage is distinguished {oniy) because its implementation
Cannot be expressed in the language.

b. Type "booiean": Objects of type booiean are primitive (unstructured), and possass
values from a set designated {true,false}. Type booiean is distinguished in tha
sense that, aithough it can be dafined in terms of type rawstorage, it is needed
for the definition of other language constructs -- e.g., the conditional statemant.
The customary operations are provided.

3. Type Checking: Most modern programming languages contain some notion of the
"equivalence” of types and reguira that the types of actual parameters to procadures be
equivalent’ to those specified by the corresponding formal parameter definitions. The
prasence of parametaerized and generic type definitions in Alphard makes it advantageous to
replace the notion of equivalence by a more liberal notion of "matching®. Formal parameter
definitions specify a coilection of properties which the corresponding actuai parameter must
possess, specify a collection of propertias which are irrelevant, and provide a limited faciiity
for relating properties of distinct parameters. Together these define a class of valid actual
parameter types, and provide what is generally calfed "strong typing"; in particutar, the
parameter specification and matching is sufficiently strong to ensure veritiability.

4. Scope Rules: Alphard's biock structure is similar to that of Algol 60: deciarations appear at
the head of a block, the meaning of an identifier is determined from its nearest anciosing
declaration, and so on. Unlike Algol, howevar, in Aiphard the bodies of procedures and forms
do not inherit the names of variables avaiable in enclosing blocks. The Intent of thesa ascope
restrictions2 is to ensure that all effects of an action can be determined by examining the
text immediately surrounding the action itself. An additionei benefit is that Alphard can be
implemented (very efficiently) using a stack, but without the need for a display.

5. Operator Overl:sading: The meaning of the usual infix operators {a.g., "+", "*", atc.) may be
extended to programmer-defined data types. The symbols for, the associativity of, and the
pracedence of thesa operators are fixed by tha ianguage (see appendix C).

2 A particular consequence of the scope restrictions -- together with companion restrictions on overlapping actual
parameters and ssiectors -- is to prevent unintended “aliasing”. That is, they ensure that within a given scope
there is at most one name for a given siorage calil

An informal Definition of Alphard 5

6. Seiectors: The programmer may define the representation of a data structure by means of a
selector. Intuitively, a selector defines an aigorithm for naming data, just as a pracedure or
function defines an algorithm for computing vailues. A ssiector may be thought of as a
procedure that returns a pointer (reference, address) to an elemant of a data structure; the
syntax for defining salectors is therefcre similar to that of procedures. "Pointar" ts not,
however, a type in Alphard; no variables of this type can be declared, and hancea the "vaiue™
returned by a selector cannot be storad. The effect of this (coupled with some veriflcation
requirements) is that selectors are “safe”; most of the (useful) flexibility of general address
arithmetic is retainad without Introducing its corresponding dangers. In particular, It is
possibie to define a restricted styie of "raference variable completely within the language
and to ensure that this type is at laast as safe as array indices in other languages.

7. Assertions: Assertions are permitted almost averywhere and special syntax encourages
thair use in appropriate places. The language in which the assertions ara written, however,
is not defined by Alphard. The choica of that language |s, we believe, a private matter
batween the programmer and verifier.

8. [teratiom: Four iteration statements are provided, three of which are somewhat different
from what one might axpect.

a. The do statement repeats its body untll the body Invokes an explicit axit.

b. The for statement serves a function similar to the for-step-until construct of Algol
60, but does so in a manner that parmits the programmar ta define the type of the
control variable, the way it is initialized and incremented, and the nature of the
test for compiation of the loop. These aspects of loop control are ail defined in a
form (usually a speciailzad form ceiled a generator).

c. The first statement provides a special syntax for those common loops that search
a data structure and perform one of two actions depending upon whather or not an
element with a specified property is found. ’

The fourth iteration construct is the familiar while statement.

9, Swgaring: A number of familiar notions such as records and enumerated types are not
primitive notions in Alphard. They are provided, hawever, as abbraviations for the more basic
notions from which they are formed3

71.2. Style and Conventions of the Report

This report is a precisa but informal definition of Alphard; it is neither a primer nor a compietely
rigorous formal definition. It is intended, however, to be the reference for users, implememntors, and
verifiers. To that end we have attempted to bo as precise as cur human limitations and the vagaries of
English permit., We have consciously adopted the styia and tone of the Algoi 50 report, which we
believe remains the exemplar language definition.

The syntactic definition of the language uses conventionali BNF with the foliowing additions and
conventions:

3 Pun intended!

8 An Informal Definition of Alphard
1. Key words (reserved words) are denoted by underiining.
2. Metasymbois are denoted by lower-casa latters enclased in anguiar brackats, e.g., "Cstmtd",

3. The symbois { and } are meta-brackets and are used to group constructs in the mata-
notation.

4, Three superscript characters, possibly in combination with a subscript character, are used to
denote the repetition of & construct {or a group of constructs anclosad in {}). In particuiar:
"2 denotes "zero or more repetitions of"
"+" denotes "one or more repatitions of*
"#%" denotes "precisely zero or one instanca of".
Since it Is often convenient to denote lists of things that are separated by some singla
Punctuation mark, we denota this by piacing the punctuation mark directly baiow the
repetition character. Thus,
<vvv> nm <a> | | <g>)
. defines a <vvv> to be an <a> followed by sither a or a <c>.
CARX> yw L3>
+ defines an <xxx> o be a sequence of zerg or mare a's.
CYyy> nw <a> <h»,
defines a <yyy> to be an <a> followed by zero or more s separatad by
. tommas
<227> nw {<a> | <h>};
defines a <zzz> to be a sequence of one or more things saparatad by
semicoions - whare the “things® may be sither <a>s ar s.
<ugu> om <a>® <>
defines <yuu> (o be sither "cg>" or simply “<h>"

The semantics of the language are describad in English. Proof ruies for some constructs are provided
in appendix E.

Certain portions of this report describe processes in terms of extra variable creations, text
replacemants (copying), or other actions. Thase are Informai axpositions and at all times the language
(compiter) Is required to only produce the same net semantic effact. Such expositions should be
interpreted in their intanded, heipfui sense. Obscure consequencas of the particular processas wili not
be supported.

An Informal Definition of Alphard 7

Chapter 2
Fundamental Concepts

The following chapters define the syntax and semantlcs of Alphard; in this chapter we deascriba
certain pervasive notions that are used in the definition.

A compiete Alphard program consists of a collection of declarations and statements which are
elaborated4 to produce some desired etfect. Deciarations define forms (which, in turn, define ciasses
of types), routines> (which may ba /nvoked to evoke further elaboration), variables, and a number of
othaer antities of lesser immediate importance. Statements dafine actions to be performed; thay may
speacify selectlve'cr iterative siaboration of component statements and expressions, Of particular
immediata interest, because thay cover the major idaas wa wish to discuss, ara the notions invoived in
tha elaboration of the deciaration of variables and in the elaporation of routine invocations.

Tha elabocration of a variable declaration, 8.9.
var x:vector(int,1,10)
begins with eiaboration of the type description (vector(int,1,10)), foilowed by instantlation of an
object of the type resulting from this elaboration (instantiation invoivas both allocation and
initialization); finally, a binding of the name to the instantiation ia performed.

The elaboration of a routine invocation, e.g.,
f(x.y)
begins with the elaboration of the actual parameters (x and y), followed by matching of the nominal
type of the actuai parameters with the type descriptions of the positionaily corresponding tormals; if
this matching succeeds a set of bindings is j::er'l't:wmeu:i6 and the routine body is elaborated.

The words and phrases in bold-face above, lype, object, ..., are representative of the notions we
shall discuss in this chapter. Secause of mutual dependencies between the notions, however, we shall
not discuss them in precisely the order in which they are mentioned above. We have chosan instead
an order which attempts to minimizes the forward referencas.

2.1. Objects, Addresses, and Values

Intuitively an object is a generalized (and typed) storage cell, or variabie; it is used o hoid the
value of some abstract data type.

4 e use the word “elaboration”, in preferencs lo "axaculion®, to connote actions taken at "compile time" as wel
as at "run time". Elaboration may be thought of as an idealized, diract exscution of the textual version of the
Alphard program.

8 The word “routine” is used systamalicaily to cover the notions of grog, vprec, fyne, and sal.

B At this point & result object may also be instantiated, but this is not essential to the present discussion.

8 An Intormal Definition of Alphard

An object possesses a unique {generalized) address, a type, and a valua (or state). Objects may
be dynamically created and destroyed. The address and type of-an object are fixad throughout its
lifatime, but the vaiue it possesses may be aitered.

An object may be primitive, in which case its vaives (i.e., the vaiues it may possess) are members of
an arbitrary set. Qtherwise, tha cbject is composed of a sequance of one or mare (previously creatad)
objects, calied its concrete components. The vaiua of such an objact may be taken to be the
saquence of values of its concrete components. For the purpose of tha following exposition, if x
denotes an object, X; denotes its ith component object,

Two achjects may overiap; that is, their values need not be independent. A common case, though not
the only one, is that one object wholly cantains the other, as a vector contains its elaments. Two
objects that do not overiap are called independent. Any logical dependency (i.e., overlap) between
the values of two objacts is fixed. A newly croated object independent of ail praviously axisting
objects is called a new object.

The creation of an cobject is generally associated with aifocation of storage for the objact and
initialization of its value. The entire process is called instantiation and the rasulting object is called
an instantiation of its type. The first step of instantiation is the elaboration (evaivation) of a type
description to yield a type (see section 5.6). Next the object is created. For primitive objects
this is a direct operation; otherwise it is achieved by (recursive) instantiation of its concreta
components. (Note that at the moment of creation the generalized address of tha object Is
determined.) After allocation, the initiaiization procedure defined with the base type of the object is
invokad as described in section 5.5,

Ohjects are dastroi/ed by first invoking a finishing procedure defined with the base type of the
object (as described in section 5.5), then de-allocating the object (for primitive cobjects) or
destroying its concrete components (for non-primitive objects).

2.2. Type and Type Descriptions

Intuitively, type is that property of an object which definas its possible behaviors? . Mare formally, a
type characterizes the possibie values {states) of an object and the set of operations that may be
applied to it.

There are two explicit syntactic manifestations of the notion of type in the lenguage: form
deciarations (which define a class of types), and type descriptions (which describe a class of objact
types that may be bound to an identifier in dectarations or formal paramater spacifications).

Form dectarations are defined in section 5.9, For our present purpcses it Is sufficient to
no't_ﬁut: {1) every form has a name, (2) a torm may be parametaerized, and (3) the torm daclaration
makes available various operations. A subset of these operations (the side-effect producing ones} is
catiad the update set.

7 Note fhat objects, not values, are typed. Indeed naked values do nat exist in Alphard -- values orfly axist in
objects. Thus, for example, we may speak informaily of the “value preduced by a procedure”, but in fact the
procedure returns an object that contains the valye.

An Intformal Definition of Alphard =)

Type descriptions are used in three contaxts: (1) in variabla declarations, wherae they deflne the
type of an object to be instanfiated, (2} in formal parameter specifications, where they define the
class of legal actual parameters, and {3) In routine deflnitions, where they specify tha type of the
object returned. In addition, in both contexts type descriptions defina the nominal type of any object
bound to a particular identifler. Thus, the nominal type of an object |s the information about its type
that can be inferred by accessing the cbject through a particular identifiar.

The distinction drawn in the last paragraph between "type" and “nominal type" is an important,
though possibly subtle, one. A "type" is associatad with an objlect and daetermines all posaibie
behaviors of that object. A "nominal type” Is associated with an identifier which, in turn, Is bound to an
object. The nominal type associated with an identifier detarmines the possible behavicrs that can be
caused through that identifier. In the generai casa a nominal type will ba "less specific™ than the type
of the object to which the identifier is bound.

in the foilowing sections we more formally define the nations of type, type descriptions, and nominai
type.

2.2.1 Type

A type results from the elaboration of a type description (see section 5.6) and consists of a
base type, a (possibiy null) sequence of actual type qualifiers, and an updatle set.

A base type is a form name; it uniquely identifies a class of types. For axample, the base type of
"veactor(real, 1,10} is "vactor"”. In the following, if T is a type, Basa(T)® represents the base type of
T,

An actual type qualifier is intuitively an actusi paramater in a type description; hence it corresponds
to a formal parameter in a form definition. It may ba an object addrass, an object, a routine name, a
type, or a marker denoted %ﬁ . In *vector(reai,1,10)", the actual type qualifiers ara "reai®, *1%, and
L1 1 Oll_

A type none of whose qualifiers is unk is called a fu/l type; a type with at least one unk qualifier is
called a partial type.

The update set consists of a set of routine designators from among those defined with the base
typea; specifically, the update sat consists of those routines which may have a (visible) effect on an
object of the type. If T is a type, Update(T) denctes its update set.

If T is a type, then Qual(T) denotes the saquence of actual type qualiflers of T and Qual(T) denctes
the ith alement of that sequence.

8 Hare and in the sequel we shall use functions such as Sass(T), Qual{T), Update(k), etc. to explain samantic
aspects of the language; these functions are only part of tha samantic sxposition, not constructs in the language
itself.

9 The marker unk, which is o be read “unknown”, denotes situations in which the corresponding form formal is
not considered a part of the nominal type.

10 An Informai Detinition of Alphard

2.2.2 Type Descriptions

A type description is a syntactic construct which describes a class of types and may designate
restricted access to objects of those typaes. A type description consists of a base type, a sequencs
ot formal type qualifiers and an update set. The elaboration of a typa description yields a type or a
nominal type.

A base type is (as above) a form name.

A formail type qualitier is either the marker unk or eise a description of an objact address, an object,
a routine, or a type. When used to specify a formai parameter, a formai type qualiflar may be an
identifier preceded by a "?" symbol; in such cases an "implicit binding” is impiled (see saction
2.4},

The update set consists of a sat of routine names from among those defined with the base type.
Update sets give restrictions on the effect-producing actions that may be appiled to an objact1° .1t D
is a type description, Update(D) denotes its update set.

2,2,3 Nominal Type

A nominai type, like a type, consists of a base type, a {possibiy nuil) sequence of actual type
quallfiars, and an update sef. These notions are definad exactly as in the definition of type.

A type |z always associated with en object. A nominal type, on the other hand, is aiways associated
with an identifier. The nominal type of an identifier may, in the general case, be less specific than the
type of the object te which that identifier is bound; however, the type of an object will aiways match
the nominal type of the identifiar.

2.3. Binding

During elaboration, some identifiers becoma associated with -- bound to -- entities; these antitias
may be objects, routines, or types. The binding of identiflers to objects is of particular interest and
includes both the declaration of variables (and associated instantiation of an object) and parametar
passing.

In all contexts in which an identifier may become bound to an object {i.e., in & variabie deciaration or
formal parameter position) there is an associated type description. In the case of a variabie
declaration, this description determines the type of the object created. in the case of a formal
parameter, the type description defines the types of ailowed actual parameters. in both cases,
however, the type description is elaborated to a nominal type which datermines the parmitted uses of
the object identified through this identifier.

10 1y practice we allow more than just the names of effect-producing operations in the update sat part of certain
type descriptions, notably those which specify generic formal parameters. In such cases we allow non-sffect-
producing attribute names as well; this is mersly a shorihand for an "assumes clause” (see section S5.12).
This abbreviation is permitted because of its similarity of intent to the update set: it describes a sat of attributes
which the routine or form bady requires for correct operation.

An Informal Definition of Alphard i1

in both declarative and formal parameter positions the description of a binding may be precaeded by
either var or const. The only differance baetween the two is that in the latter case (const) the update.
set of the identitier is set to empty; in the former (!ﬂ) casa the update set is determined from the
associated type description. A particuiar consequence of this mechanism is that parameters in conat
positions are, intuitively, passed "by referenca” but cannct be modified by the caliad procedure.

If k Is an identifier bound to an object, then we rafer to this object as Obj(k) and to its asscciatad
nominai type as Type(k).

2.4. Type Matching

The process of parameter binding reguires a notion of what it means for an actual paramater O
match, or satisfy, a formal paramater specification. intuitively this proceass invoives determining that
the nominal type associated with the formal parameter wincludes”, or "covers", the nominal type of the
actual == that is, ensuring that the behaviors permissible through the formal parameter name are amang
those permissibie through the actuai parameter name. For simplicity we break this process into three
subprocesses: subsumption, syntactic satistaction, and implicit binding. Each of theas is used for a
different kind of actual/formal matching as specifiad below.

A list of actuai parameters
51 3 remy 8’1
is said to match a list of formals
f1 ‘.t1 , fz:ta. vary fﬂ:tﬂ
where tha a; are objects, types, of routine names, if there exists a binding of objects, types, and
routines to the implicit formals in the t; such that If each f is bound to a;, then {or each i,

1. It Yis a description of a routine {proe, vproc, func, or ;._gp. then a;is the name of a “proc®, ...,

or "sel" with formai parameters identical to those of t; after possibie renaming ot formal
parameters.

2. If tis nform® (or *pform), then a; is a type {if 4;is a partisi type ¢; must have been pform}

and the assumed definition of f {ses section 5.12) is syntactically satistled (see
section 2.4) by ;-

3. It t; is a type description, then a; must be an object such that when t is elaborated, 1
subsumes Typelay).

in addition, ali impiicit formals bound to types must be bound to types syntactically satistying the
assumed definition of the form (see section 5.12)

The ncations of subsumption, syntactic satisfaction, and implicit binding are defined beiow; we begin
with the notion of subsumption -- the kind of matching used when an object paramatar is expected.

12 An Informal Definition of Aiphard

Definition: Wa say that a (nominai) type Ts subsumes a (nominai) type Ty, (in symbois, TeOT

)
3 H &

1. Base(Ty) = Base(T,).

2. length{Qual(Ty)) £ length(Quai(T,)). Note: it length{Quali(Ty)) < Iangth(Qual(Ta)), the
formai qualiffer sequence of T¢ I3 extended on the right with a sufficient number of
unik's,

3. For each qguaiifier of T¢, i.e., Quak(Ts):
a. If Qual(Ty) is unk, Quaii(T,) may be anything.
B. If Qual(Ty) is a type, Quai|(T,) is aiso a type and Qualy(Ty)>>Qual(T)

c. if Quali(T¢) describes a routina, then Quai(T,) Is aisc a routine and Qual(T,)
matches Gual(T;).

d. If Quai(Ty) is an object of base type U, Quak(T,) is ailso an object of base
type U and the vaiue of the.result of applying &= for U to Quak{Ts)} and
Quak{T,) would be true.

4. Update(Ty) € Update(T,).

In some cases condition 3d cannot be checked at compile time. At the discretion of the implemantors,
the compiler may provide the options of generating warnings, generating checking code, or refusing to
compile such cases,

Definition: Two types are identical if each subsumas the other.

In Alphard, both routines and forms may be "generic®. That Is, they may require types as paramaters
=~ or, aquivaiently, they may have parameters whose type is not specifiad in the routine (f;orm) header.
In such cases there wiil be an "assumes clause" which specifies the properties that the routine (form)
assumes about the generic parameter; this clause gives sufficient information to check all uses of the
parameter locally. In order for a given use of the form or routine to make sense, the actuai parameter
must at least meet the syntactic assumptions made about it, Thus the notion of matching formel and
actuai parazmeters in such cases invaolves of datermining whether the actual parametar syntacticaily
satisries the formal parameter assumptions 1,

11 More generaily, of course, a preof will be required o demonstrate that the sctuai parameter makes semantic
sanse as weil,

An Informal Detinition of Alphard 13

Detinition: Given an assumed declaration of a genaric parametar, T:
form 7
3pecs
<definitions of fq...fy>
and a candidate actuai type
O(a* ,32....)
whose basa type is declared
form Q(pq....)
spacs ...
we say that the type Q(ay...) syntacticatly satisfies T it textual substitution of "G(ay,...)" for
WY yniformly throughout the specifications of T resuits in T's speciflcations containing
declarations of f4,..f, identical to those in Q's specifications {ignoring assertions and
implementations), though possibiy only after suitabie renaming of formal parameters.

in the process of determining whether an actual parameter of type T matches a formal parametar
specification we may discover that Guai; of the formal is an idantifier preceded by "7?". Such identitiers
are cailed "implicit formal parameters®, and are "implicitly baund” to corresponding {qualitiers of the)
actual parameters. Such bindings are performed befora ather matching.

Detinitiom Let T; be the formai type and T, be the actual type. If, In determining whether
Te>>T,, Base(Ty) or Qual(Ty) is an identifier preceded by a nn the identitier is implicitly
bound to the corresponding Bu(T.) or Qual,(Tn) and becomes an "Impiicit formal parameter”.
The nominai type of an implicit formai is made identical to the nominai type ot the corresponding
form formal. Note that oniy one binding is established for such identifiers, so muitipie
accurrences must ba consistant.

In the procedure deciaration
proc P(x:vactor(int,?ib,?ub)) is ...
for example, "b" and "ub” are such implicit formals. They are, respectiveily, the lower and upper
bounds of an actual parameter vactor. Thus, if some program fragment contains
.. var y:vector(int, 1, 10} ... P(y) ...
than 1 and 10, respectively, will bae implicitly bound to the farmais ib and ub.

The tfolowing table attempts to recap the essential aspects of the notion of actuai/formal parameter
matching:

Formal Actual Matching Rule

x:form fuil type syntactic sattsfaction

x:pform type syntactic satisfaction

x:{routine description> routine nama point 3 of match rule

x: 7T object Type({objact) must syntactically satisfy T
x:{type description> object subsumption

object object equelity undar &= for the type of the formai
unk anything always matches

27T match after implicit binding

routine name routine name same routine

14 An Informal Definition of Alphard

Chapter 3
8asic Lexical Structyre
3.1. Symbols
<lattar> m AlBIl...l2)a{...}2
<digit> O {1 f...]9

<alphanumeric> <detter> | <digit> | *
<special symbol> <basic symboi> | <cpasrator>
<basic symboi> it beginlmlml;l:lfl)[ti.lul&l
£] then | eise [fi | gase |
of f esac | fo | with | i | ni | first | suchthat | from | do | og |
for | exitloop | leave | skip | asser |
ifi

yar | const | ayx | s s d | = | init |
final]u_n_&l?jgroclvro|fnc|s_e_l||agi]
notle!onl'_ﬁ]ﬂlgfgrmiwhil|>]<| | = |

is | forward | external | specs | impl | ghared
invariant | initially | axiom | repmap |
tecord | enumaerated | assumes | valye | generailor

<Qoperator> it <binary opserator> | <unary operator>

<binary operator> :w TI*IHC&I‘MHI-I<ISI-I°IZI>1£4I°_;I&¢IMIMI
<assign op>

<unary operator> i + | = pot

Typographical features such as bianks (spaces), ends of lines, atc., are generaily not significant (but
see section 3.4.3); an implementation may use them to delimit identifiers, numbers, etc. Outside
strings, no such features may appear immediately after the symbol "&" or “?", or around the symbois
"." and "$" when they are used as described in sgctions 3.4.2 and 4.3.

Upper and lower case letters are distinct. Also, note that the grave symbol Is considered a
{signiticant) alphanumeric and thus may be usad in constructing identiflers; it is intended that this be
used to improve program readability by separating mnemonically signifcant portions of such identiflars.

Basic symbols such as begin are conceptually single characters and are underiined in this report to
emphasize that fact. An implementation, however, must reserve (ail vpper/iower case spailings of) the
corresponding identifiers to denote thase symbois. Thus "BEGIN", "bagin®, "Bagin¥, etc. are ali
intarpretad as the basic symboi begin; we strongly encourage, howaver, consistent use of one speiling
in a given program.

3.2. Commants

The following two commenting construots are lexically aquivalent to a space (biank) charactar when
they appear outside of strings.
note <any sequence not containing the iaxeme "eton") aton
!<any sequence up to end of iine)
The first commenting construct encountered in a lina takes precedenca over any contained within it.

An Informal Definition ot Alphard 15
3.3. ldentifiers

3.3.1 Syntax

<identifier> <letter> {<alphanumaric>}®
<speciat identifier> &start | &Iinish | &next | &done | &value | &subscript | &<operator>
<idantifier list> u= <identifier>,

3.3.2 Exampies
A
ald
TheDogTheCatChasad
The'Dog'The'Cat'Chased
the'dog‘the'cat'chased
start
&start
&=
All the above identifiers ara distinct.

3.3.3 Semantics

jdentitiars have n¢ inherent meanings. They identify oblects, forms, types, procadures, selectors,
statemeants, and parametars. Deciarations establish the meanings of identifiers within particuiar
scopes.

Two identifiers are defined to be similar if thay diffar at most in the typographicai case used to
spell them; thus "ABC", "Abc", "aBc”, etc. are all similar. Except when used as routine names, similar
identifiers may not be declared in the same scope12 .

Special identifiers denote entities of special significance in the language. They may be defined but
never directly referenced; they ara invoked as the conseguance of using soma other construct defined
by the language. A simple example of the use of such symbois appears in section 3.4.1, where
the language-defined notion of "+" invokes the usar-definable function named "&+"; mora Interasting
examples may be found in sections 4.7 and 4.8 (Requirements on the definitions of
such routines appear in appendix C.)

3.4. Special Rewrite Rules

In order to simpiify the language definition, a number of famillar and convenient notations are
provided indirectly rather than as a parn ot the syntax. To accomodate these, we defina several
"rawrite rules" that transform programs from the more famiilar notation to that described by the report.
These transformations convert infix operators to function invocations, provide “gualified names", and
introduce semicoions. We shall use the notation C4 —~> C5 to describe some of these transformations;
the notation means that constructs of the form C4 are tranaformed into constructs of the form C5.

127his restriction is imposed in order to prevent sublie errors arising from the use of simitar identitiers in the
same scope. Routines are exempted from the restriction in order ta permit operator averloading.

18 An informal Definition of Alphard
3.4.1 Oparators

Neither the syntax nor semantics of Alphard inciudes the traditional notion of arithmetic or booilean
expressions with infix operators. Rather, the language is defined as though ail operations were
expressed as function invocations. In order to permit the user to write programs in the more famillar
infix-expression format, however, two transformations are performad. First, tha input text Is fully
parenthesized in order to observae the foliowing precedences and assoctativities:

1. Associativities: The operators of highest and lowest precedenca are right associatlve; the
remainder are left associative.

2. Precedenca:
+ (highest precedence)
* / div rem
L ===
£ £ =3 > 2
EEE
and cang
or cor
iﬂg
¥ 4= wm Tz etg. (lowest precedenca)

After being parenthesized, expressions ara converted to functional form. If o« and & denote arbitrary
unary (monadic) and binary (diadic) operators, respectively, then the following transformations are
performed:

Cterm>, 4 {termdo =) &ﬁ((term),.(term)z)

cltermd> -=> Zet(<{term))

{term>y K:= {term>, --> &:=({term>y, &ﬁ((term),.(term)z))
where the {term>s denote any phrasas balanced in parenthesas.

After being placed in functionai form, three of the relational cperators are rewrittan as the boolean
negation of one of the remaining three:
&?‘(t1,t2) -——> &ﬁ)_t(&'(tpta))
&s(t1.t2) =-=> &gg_t_(&)(t,.tz))
&2(t1 ,t2) -—D &n_ot(&((t.,.tz)) .
In addition, two of the boolean operators are rewritten as conditional expressions:
f188nd ty =-> if ty then t; else faise fl
treorty =-> ifty thentrue elset, fi
This rewrite is required to avoid the possibility of undefined argument values in invocations.

Note that, as stated earlier, symbols of the form &<operator> may ba defined by the user. Thus, by
Qiving a dafinition to "&+", the programmer gives a definition to the operstor "+"; thia does not aliow
redefinition of existing operators, but does allow these operators t0 be extanded to new types.

3.4.2 Name Qualification and Subscripting
It is often convenient to refer to the (visible) components of an object by symbolic names; for

axample, the components of a record have traditionaily been named in this way. The conventional
syntax ailows "X.y" to denote the ¥y component of X.

An Intormal Deftinition of Alphard 17

The syntax of Alphard does not support such "dotted name" qualification directly, but instead uses
the functlonal form, y(X). To permit the dotted-name notation and user-defined subscripting, quaiifiad
names are transformed in two steps. First, dotted names are eliminated in favor of a functional form:

<qualname>.<identifierd --> <identifier>{<{qualname>}
where <{gquainame> is any sequence of |dentifiers (including spacial identifiers), '.'s, '$'s, and
sequences of lexemes balanced and enciosed in parenthaeses or square brackets. The ruie is appiied
right-to-left; thus, for exampie

Ay -=> y(A)

Qafs.tlt --> H{g(Q)[t(s}])
After all dots have been removed, square brackets are removed:

{tarm>[<(exprassion listd] --> &subscript({term),{axpression list>)
Thus, the exampie above becomes

Q.gls.t].t -=> f{a(Q)[t(5)]) ~--> f(&subscript{g(Q).t(s))}
Note that the user may define the selector &subscript and hence may specity the access algorithm for
a type.

3.4.3 Automatic introduction of Semicolons
The effect of the following transformation is to eliminate the need for explicit samicoions to saeparate
declarations or statements when those semicoions would fail at the end of a text line. According to the

syntax in this report, certain phrases are separated from each other by semicoions. in those casas
where the finai lexeme on a line couid end such a phrase, a.g.,

the compiler automatically inserts a samicolon between the two uniess, on the basis of pracading
symbois it is possible to determine that doing 30 would rendar an otherwise syntacticaily vailid program
into an invalid one.

3.5. Special literals

Ceortain well-established literal denotations exist for some types (e.g., integer, real, bogiean).

3.5.1 Syntax

<special literai>

e <unsigned integer> | <unsigned real> | <string> | <boatesan> | <radix>
<unsigned integer> o= {<digit=}*
<unsigned real> um <unsigned rational>[E<scale-factor>}¥ | <unsigned integer>E<scale-factor>
<gnsighed rational> = <unsigned integer>.<unsigned integer>
<scale-factor> 11w {+1-}*<unsigned integer>
<string> - “<any sequencs of characters with all quotes doubied>"
<boolean> - true | false
<radix> = {<aiphanumeric>]* s<aiphanumaric>

3.5.2 Exampies
3
147.5€E-3
32#8
true

18 An informal Detinition of Alphard

"ABcdEF"
" Ha said'“NHa’Il Lig 1)

3.5.3 Semanties

Cradix) literals are "of type rawstorage. The <alphanumeric) foliowing the "#" character spacijfias
the representation base. The vaiues of the aiphanumerics are intarpreted as follows: 0-9 denote 0-9,
A-Z denote 10-35, a=z dencte 36-81. Note that 0, 1 and ' {(zero, ona and grave} are not legal base

denctations.

An Informai Deflinition of Alphard 19

Chapter 4
Program Structure, Expressions and Statemaents

4.1. Program Structurae, Blocks

A compilation unit may be either a block or a set of deciarations. (f itis a block, it is a "praogram® in
the traditionali sense -- a stand-aione computation. If it is a sat of daciarations, the scope of the
daclarations is system-dependent.

4.1.1 Syntax

<compilation unit> - begin <block> end | <exac gecl list>

<block> - {<exec deci Iist::}' {<stmt>}; {;}*

<axec dec! list> i { <exec deci> ;

<exec daci> it <var deci> | <const deci> | <proc decl> | <torm deci> | <label dect>

4.1.2 Semantics

A block spacities a computation whose effect is as though the foliowing order of execution were
observed: '

1. Elaborate the declarations in tha order given {see 2.2 and 5.5).
2. Elaborate the statements (<stmt>s) in sequence (aside from axits; seq 4.9).
3. Destroy the objects created jn 1 in the reversa ardar of declaration.

The scope of ali declarations in a biock is the text of the block, where not superseded by nested
declarations.

4.2. Expressions and Statements

Expressions and statements dasignate actions to be performed. Their elaboration resuits in changes
in the execution state of the program. Expressions differ from statements only in that their elaboration
may “produce values® as well as performing other actions; statements only perform actions. For
detinitional brevity and convenience, every axpression |s considered to be a statement, but not
conversealy. When an expression is used in a context requiring a statement, its “valua” ig discarded.

Somewhat more precisely, the "value produced by an axpression* is an object rasuiting from its
elaboration; the type of this object Is uniquely determined by the rulea stated in the remainder of this
chaptar. This rasulting (unnamed) object exists until any immadiately enclosing expression or
statement that uses it has finished axecution.

20 An Informai Definition of Alphard

4.2.1 Syntax

<axpression> o) <invocation> | <conditional sxpression> | <value expression> |
<with expression> | <first expression>

<stmt> = <pxpression> | <loop stmt> | <axit stmt> | <null stmt> |
<inner block> | <labeied simi> | <assert stmi>

<labeied stmi> iom- <identifier> : <stmt>

4,2.2 Semantics
Statement labeis are used by axit statements (section 4.9). Thae affect of an exit
statament is to force control to the point Immediately foliowing tha labeied statement whose labet is

used in the exit. Labeis must be daciared {see saction 5.4) and may be used to labei only
ona statement within the scope of their declaration.

4.3. Invocations

4.3.1 Syntax

<ipvacation> nw <special litergi> | <simple invocaticnb{'tactualp}’ | (<invocation>}
<actuats> - ({<actual>},)

<actual> Rl <expression> | <type description>

<gimple invocation> u= [<identifier>$ }* <identifier> | <special idantifier>

Infix and prefix cperators fall under this syntax by the rewrites of saection 3.4.1. Subscripting,
denoted by "[...]", falls under this syntax by the rewrites of section 3.4.2. Note: <speciai identifiar>s
may not appear in source programs; they rasult oniy from these rewrites.

4,3.2 Exampies

The most obvious <invocation)>s are those denoting routine "calls", e.9.:
sin(x)
integrate(F,a,b,eps)
In addition, however, <invocations)> resuit from tha rewrite ruies for infix operators and subscripting,
a.g.:
&:=x(a, &+(b,c))
&:=(x, &subscript{V,i))
Finally, {invocation>s occur as part of type descriptions:
veactor(int,? ,9_:15)

4.3.3 Semantics

A simpie invocation may designate a type, an ohject, or a routine (a procadure or seigctor) as
indicated In chapter 5. Identifiers may designate muitiple entities in any glven context
(operator overioading), so some means of resolving the conflict is necessary. An identifier may be
qualified on the ieft by the name of the form containing its definition; such gualifiers are saparated by
wgu. Alternatively, the proper definition may be determinad by examining the types of the actuais --
that is, by choosing that definition for which type chacking {(section 2.4) succeeds. (tis an arrof it the
compiier cannot disambiguate statically (l.e., at compile-time).

Assuming that the entity designated by G is uniquely detarmined, an invacation such as:
G{eq,20..8p) ’
denotes an elaboration and possibly a resuiting vaiue as follows:

An Informai Deflnition of Alphard 21

1. The actual parameters, g;, are etaborated in an undefined order. An € designating a routine
without an argument list designates that routine, rather than the vaiue resuiting from its
exacution. The results of thig elaboration are aobjects, typas, and routines (see saction
5.6 for the avaluation of partial types).

2. The number of formai parametars of G must be n (n290). The actuais must match the formais
of G (sea section 2.4); it is an error it they do not.

3. Each formal parameter of G which designates a routine {as in "f:proc(...)"), a type (as in
"T:form"), or a reference parameter (as in "var x:.." or "const x:..") is bound to the
carresponding e; (aiso see section 5.7).

4. Each object formai (see 5.7) with an empty <binding> is treated as it It waeare
spacified const (see beiow).

5. For each formai identitier, k, designated to be a const Paramater (see saction 5.7),
Update(k) is made empty. For ail other k¥ bound to objects, Update(k) is derived from the
type description of the formai parameter.

6. var and const Parameters are checked for Posaibie overiap (see section 2.1). In ordar for
the Cinvocation) to be legai it is necessary that eithar)

thera is no overiap betwesn an actuat parameter that stands in a var pesition and any
ather actuai in either a var or const pasition.

ail overlapping positions are designated alias in the formai parameter specifications.

7. For each formal identftier, k, designated to bg a capied parameter, a new ob ject of the same
type is instantiated. The vaiues of tha actual parameters (sae sactions 5.8 and
§.7) are copied into these wvariables from the carresponding ey using the &zt
Procedure detined for that type; it ks an error if the "8 procedure is not defined for the
type.

8. It G is a routine and returns a vaive, or if it is a selector (see section 5.8), ita
definition contains a type description which specifies the type of Its result, This description
is elaborated. I G s a vproc or func, an object of the type s instantfated to recaive the
"value" that will be returned. if G (s a selector no object is instantiated; the typea
description defines the type of the object whose (generaiized) addrass is returned. Note
that a vproc or func must spacity a full typa for the rasuit; a sai need only specity a partiai
type.

9. If G is a routine its body is elaborated with the estabdlished bindings. If G is a type
description either an Instantiation or a matching is performed, depending on the context.

10. Any auxiliary objects (L.e., copieg parameters or actuais which are themseives resuit
objects of procadures) are deallocated.

It shouid be notaed that, by the ruies above, the invocation of a paramateriess procedure, P, is
necessarily written *p()",

22 An Informal Deflnition of Alphard
4.4. Conditional Expressions

4.4,1 Syntax

<conditional expression> = <if expression> | <casa exprassion>

<if exprassion> i if <exprassion> then <block> { glif <expression> then <block> 1* {atsg <block>}* i
<casa sxpression> o= case <expression> of <case> { glof <case> 1* { eige <block> }* esac
<case> 2w [<expression>), = <block>

4.4,2 Examples
if a[i]>max then maxp := i; max :2 afi]fi
y 1= it x>z then x else z i
if a<b then t:= 1 elif ac then t:= 2 else t:a 3 fl
caseiCof
ADD:: M8 := C[EA]; R := R+M8 elof
SUB:: MB := C[EA]; R := R-MB eiof
MUL:: MB := C{EA]; B :3 R*MB eise
ERROR
8sac
T = case n of 1:MALE giot 2:FEMALE eise NEUTER esac

4.4,.3 Semantics

Conditional expressions denote expressions and statemants to be evaluated conditionaily. Such an
axprassion has a value if

a. Ali <block>s in it are single exprassions,

b. All these expressions are of identical type (this type becomes the type of the axprassion),
and

c. An else ciause is present.

The expression
if By then S elif B then S e glif By then S, glse Sp,q fl
is equivalent to
it 81 then Sy eige
if Bp then Sp glse

if By then Sy, alse Speq 8

In tha expression
if B then Sy eise Sp 1)
B must have a resuit of type boolean, and the eiaboration of B must not have chservable effects. If
the value of B is true, S is evajuated, otherwise S, is evajuated. !f the if expression accurs in a
context requiring a value, the value is that of the expression chosen (by the ruies above, 5S4 and 53
must be simple expressions of the same type}. In the absence of an gise clausa, So is taken to be
skip (see section 4.10).

An intormal Detinition of Alphard 23

In the expression
case Ej of
E1 Tr ovee ETH1 4 51 elof
E21, . E2n2 H 32 elof

Em1' . Emnm i Sm else

Sm+q
asac

€o: Eqq, Emnm must all ba expressions of the same typa. &g is avaiuated. The £jj are avaluated (in
unspecifiad order) and the results ara compsred with Eg using the &= operator for Type (Eg). It i an
error if there is no such operator. The evaluation of Eg and the E”'s must not have obsarvabia effacts.
AS soon as a match yialds true (say with EU)' 5; is evaluated. Jf ajf Mmatches faif, Smﬂ la evaiuated,
Exactly one block 5 is evaiuated for each corract evaivation of tha £ase expression. The vajueg of the
Case expression is that of the S| evailuatad (again, each 5; must be a single axprassion).

4.5. Value Expression

4.5.1 Syntax

<vaiue expression> .w vaiys <identifier>{:<obj type>}® of <biack> fo

4.5.2 Examples
3 :2 value yiint of yi=0; for x:invec(A) do y:zyex od fg
vaive A of Munge(A,43) to

4.5.3 Semantics

A vaiue expression is used to convert a <block>, and hence a sequence of declarations and
statements, into a (value-»yie!ding) axpression, In the exprassion
value x:T of S o
the variable x (whose Scope is S) is instantiatad and 5 is execytad. 1 “:{obj type>* is omittad, as in
vaiye x ofSfo
the existing instantiation of x is usad. In both cases, the result of the Vaiue expression is the object
Obj(x}.

4.6. With Expressions

4.6.1 Syntax

<with axpression> ;m with <with list> jn <bloek> pj
<with list> - { <identifisr>=<invocation> h

4.8.2 Exampies
with Z:A[i].son(k] In Z.age := 0; Z.number ;= k ni
with R:x.y.z, Qix.y.w invar :T; g :=z QQ:=R:R;=g ni

24 An informal Definition of Alphard

4.6.3 Semantics
A with expression provides a local shorthand for camplicated Invocations. Tha phrase
with x:R in § ni

causes asiaboration of R, binding of x to R, and eiaboration of 5 with that binding. If the <block> is a
single expression, the with expression yields a vaive (the vaiuae of tha <{block>).

4.7. First Expression

4.7.1 Syntax

<first expression> o= first<template> suchthat <expression> [then<black>}" {eise <block>}™ fi
<tempiate> - <identifier> from {<iden!ifiar>:!"<tyga description> | <identifier> from <invocation>

4,7.2 Examples
first i trom upto(1,n) suchthat A[IT>max then max := A[i]; jmax := i fl
y = first x from invec(aA) suchthat x)max then x else ofi

4.,7.3 Semantics

The first expression invokes the generator specified in its tamplate (see section 5.11) to
produce a sequence of vailues. These values are tested in turn by the suchthat clause, which must be
a boolean expression and which may not have chservabia side affscts. It the first axpression

first x from g:Q suchthat B then S; eise Sp fi
occurs in a contaxt whera a value is not raguired, its semantics are pracisely those aof the statemant

L1:begin
L2: begin
var g:Q; &start(g);
do
it &done(g) than &finish(g); leave L2 fi
with x:&vaiue(g) in if B then $q;&finish(q); leava L1 fini
&naxi(g)
od
end L2
S2
end L1

where &start, &done, etc. are provided by the form {ar geﬂerator) Q (see also sections 4.8
and 4.9). !f either the then or the else clause is absent, it defauits to skip (see section
4.10). If "g:" is absent, an elsewhere unusad identifier is substituted by the compiler. If the
full type in the template Is absent, the declaration (var g:Q) is omitted; in such cases an axisting
instantiation {(namety *9") is used.

Mote that the statement Sy in the expansion above is outside the scope of the declarations of g and
x; neither of these may be referenced in Sp.

1 the first expression occurs in a context requiring a value, 54 and 3, must both be present and be
single expressions of identical type (say T). |n these contexts, the semantics are precisely those of
value t:T of first x from g:@ suchthat B then t:» 54 alse 1:254 fi fo

An Informal Definition of Alphard 25
4.8. Loop Statements

4.8.1 Syntax

<loop stmt> - <simpie loop> | <while stmt> | <for stmt>
<simple loop> - gdo <block> od

<while stmi> it while <axpression> <simple loop>

<for stmt> iim for <tempiate> <simple Ipop>

4.8.2 Examptes
do
if x=y then exitioop fi
Ex)yglg_gxﬁx-y _elﬂy:ny-xﬁ
od

while x#nij da P(ear(x)); x :2 cdr(x) od
for x from invec{a) dox:20 od
4.8.3 Semantics

The simple loop, "do § od", executes S repeatedly; it will terminata only if an axit command (see
section 4.9) is executed. The while loop, "while B do S od", is Semantically equivalent to
do if not(B) then gxitloop fi; § od

The for Icop, "for x from g:q do s od”, is semantically equivaient to
begin
var g:Q; &start(g)
do
it &done(g) then exitioop hi}
with x: &value(g) in S ni
&next{g)
E
&tinish(g)
E_IJE
ASs in the first expression (section 4.7), it "g:® s absent, an sisewhere-unused ldentitier is substituted
by the compiler. If the full type in the tempiate is absent, the deciaration (ﬂ g:Q) is omittad and an
existing instantiation is used,

4.9, Exit Statements

4.9.1 Syntax

<exit stmt> = gxitioap | leave <identifisr>

4.9.2 Exampies
leave [
exitioop
See also sections 4.8 and 4.7.

26 An Intormal Definition of Alphard

4,9.3 Semantics

The statement "eave L" occuring within a statement labeled "L" (or a routing named "L") causes
evaluation of the innermost such statement (routine} to terminate; axecution resumes at the paint it
wouid have if the statement (routine) had terminated normaily. (Mote: if the relative nesting of the
labeled statement i3 such that, had the lesave not baen axecuted, objects would havae baen
deallocated and final clauses axecuted, thesa same deailocation actions and finalizations are
pertformed in the same arder as part of the laave.)

An exitloop causes termination of the innermost loop statement {do, whita, or for, section 4.8)

containing the exitioop.

4.10. Nuil Statement

4,19.1 Syntax

<nuil strt> - skip

4.10.2 Semantics

The null statement does nothing.

4.11. Inner block

4.11.1 Syntax

<inner black> e begin <block> end | pegin <block> endot {<identifier>}"

4.11.2 Semantics

The declarations and statements of the biock are executed as given in section 4,1. If the optional
identifier is present, it must match the label of the inner block or the name of the routine whosa body is
the inner block.

4.12. Assert Statement

4,12.1 Syntax

<assert simt> Ead assert <assertion>

4.12.2 Examples
do assert {GCD(x,y) = GCO(s0.y0} 1
if x=y then exitioop fi
if x>y then x -=y eise y == X i
od

An Informai Definition of Alphard 27
4,.12.3 Semantics

An assert statement indicates a condition that must be true when control passes through the
statement. it has no semantic effect. The syntax of <assertion) is not specified by the language
(other than that the assartion text must be enclosed in, and balanced in brackets, "{..}") It is the
province of a verifier or verifying compiler oniy.

28 An Informal Definition of Aiphard

Chapter 5
Declarations

Declarations define routines (proc, vproc, func, and sel daclarations) and classes of types (form
deciarations), specify the instantiation of objects (var, conat), and bind identifiers to thasa antities.

5.1. Scope of Daclarations

The scope of a declaration -~ the program text in which the binding it establishes is valid -- depends
on the kind of declaration and the placa it appears. In the saquel, narmal Algol scope maans the
innermost block containing the declaration, inciuding all biocks it encloses that do not redefine the
identifiar. Restricted Algol scope is the same as normal Algol scope, but excludes the text of routine
and form declarations.

Generally identifiers naming routines and forms obey Algol scope rutes; identtfiers naming objacts
(i.e., variabie names) cbey restricted Algol scope. Thus, no free veriable names appear in routine or
form bodies; ail variables are either iocally declarad or passed in through the paramater ilst. A few
additional scope restrictions are discussed later.

5.2. Auxiliary Declarations

Any declaration may be preceded by the keyword aux. identifiers defined in such dectarations may
not be used (except within the assertion janguage), Auxiliary deciarations serve as modasting toois in
the specifications; the entities described by such declarations may or may not axist in the
implementation. It such entities do exist, they may pa implemanted in a manner diffarent from that
described in the aux declaration. (Note, however, that the clause a3 specified may be used in an
impiementation to force precisely the representation appearing in an AuXx definition of an entity).

An auxiliary declaration of a boolean-valued function, for axample, might be conveniently used o
axpress a condition that is useful for verification or specification purposes. No obligation to actuaily
jmpiement this function (whose impiementation might be undesirable or impractical in some
environments) is implied by the aux daclaration. Consider, for exampie, the form:

form DirectedGraph{size:int) is
specs
aux func |sTree(g:DirectedGraph):boolean
post { returns trua iff gis & tree };

end DirectedGraph;
This form provides the predicate »isTree" which teats an arbitrary diracted graph for treeness; sinca
the predicate is specifiad aux it can only be usad in specifications, not in coda.

. An Informal Definition of Alphard 29
5.3. Remots Definitions

Occasionally the detailed implemantation of an entity (variabla, routine, or form) may appear at s
Point remote from its declaration. The following important cases arisa:

1. forward: it may be necessary to mention an antity befora is definad; this s logicaily
necessary in mutuailly recursive routine and form definftions. A forward indicates that the
required definition appears later in the currant program text.

2. as specified: In the implementation of a form it may be desirabie to define an implementation
of an entity to be identical to its specification; such definitions arae denoted &3 specified.
Somewhat similarly, a form implementation Mmay mention an {object) parametar of the form,
describing it &s specified, to denote that a run-time reprasantation of the parameter is to
axist,

3. external(<{systam specs?): The deflnition of some aentities may be defined axtamal to the
Present program text, e.g., on a “tile” or a “library" supparted by the host system. In stich
cases the entity may be defined as external, The <system speca) is a system-dapendant

notion (and syntax) that dascribes the place where tha definition is to be found (.9, in a
particuiar "fila"),

5.4. Label Declarations

5.4.1 Syntax
<label deci> - label <identifier iist>
5.4.2 Examples
label L1, EXIT, Rethink;
5.4.3 Semantics

Labels, like all other identifiers, must be deciared befora use. A labei may be *placed” (used to tabel
a statement) only once in the scope of its declaration.

§.5. Object Dacilarations

§.5.1 Svyntax

Tre e n -

<var deel> = “aux® var {<obj dect group>{<init fin clause>1®)’

<const decl> wm “aux> const {<obj decl group> {<init fin clause>}® | <conet assign=)’
<aux> e {aux}*

<cbj decl group> i <identifier list> ; <obj type>

<obj type> = <type descriptian> | as specified

<init fin ¢lause> = = <expression> [{init<stmi>}* {final <stmi>}*

<const assign> i <identifier list> = <expression>

a0 An Informal Definition of Alphard

5.5.2 Exampies
var a,b,c:int, g:real
aux const azint = 5
var INF:file(vector(mumbie,1,unk)) Init open(INF)
var q,x,r:as specified
var G:queue(int) init new(Q) finai destroy(Q)
const ADD=0, SUB=1, MULT=2

5.56.3 Semantics

Object deciarations may occur inside form declarations or in blocks; their meanings in the two
contaxts differ. See saction 5.9 for a discussion of their meanings in form daclarations.

In blocks, object daclarations have restrictad Algol scope (see sectlon 5.1). Semantically, constant
declarations {<{const deci>s) differ from variable declarations {¢var deci>s) onty in that, outsida the
initialization and finalization clauses, Update(c) is empty for ¢ a censtant; for varlabies the update saet
is determined from the {type description>.

The <obj dec! group>s within an object deciaration are processed In unspecified order (nota,
however, that deciarations are processed in jeft~-to-right ordar; thus the programmer may Impose an
ordering |f that is appropriate). For each group, the full type is avaluatad, and for sach identifler, a
new objact of that type is instantiated and bound to the identifier. If an Init clause is present, it Is
executed. The declaration

XY, 2iT=E
is eaquivalent 1o
LauXy,2i T nit x:2y:=z:3E
if ":T" is absent (from a constant daclaration), as in "const azs5", tha type is that of the axprassion 10
the right of the equal sign.

A final clausa, if presant, is executed just befora deallocation of the variabies or constants with
which it is associated. Deasilocation is always in reverse of the (possibiy unspecifled) order of

creation.

Objects may be designated "ag spacifiad® only in form implementations (section 5.9). This
indicates that the <{type description> is to be copied from the form specifications.

An <init fin clause) in a constant deciaration can be omitted only in the specifications part of a form
(see saction 5.9).

5.6. Evaluation ot Type Descriptions

<type description>s are syntactic entities which appear in object declarations and {formal parametar
speacifications.

An informai Definition of Alphard 31

§.6.1 Svntax

<type description> im <simple invocation> { ([<formal qual>},‘) 1* {<update sat>}* |
2<identifier>{<update set>}*

<tormal quai> = <expression> | ?<idantifier>{<ypdate sat>}* | {<identifier>:}* <type description> |
ok .

<update set> - < { <identifiar> | <spacial identifier>) >

Note that the outer <>'s in the definition of {updata sat> are part of the language, not metabrackats
(see examples beiow).

5.8.2 Examples
integer
vector(real,1,10)
stack(T:M(&:t)zZ)
collection(unk)
queve(process,?length)

5.6.3 Semantics

The <simple invocation) (see 4.3) must dasignate a unique form {"$" quaiitication ailows dupiicate
nested form definitions), Disambiguation on the basis of argument typas is not performed.

Etaboration of a {type description), T(e1,....en)<p1,...,pm>. procesds as follows 1S

1. The 8 are-alaborated in an undafined order. Tha reauits of this alabcration are objects,
routines, and types. The foilowing special cases should b noted:

a. The elsboration of unk is unk,

b. The alabaration of ?identifiers implies an impiicit binding; it is itagat it this is not in
the context of a formai/actual parameter matching.

2. The number of formal parameters of T must be n (n20). The actuais must match the formals
of T (see section 2.4). 1t s an arror if they do not.

3. Each object actual is handled as in section 4.3.3.

4. The sequence of foutines, typas, objects, and unk markers produced by the preceding
becomes the Quai property of the resuit type. T is the Sase tyre (see saction 2.2). The Pi
become the update sat,

The <update set} defines the update set of the type description (sea 2.2). The listed identifiars
fmust be names of routines declared with the base type. Only these routines and routines with no visibie
effects may be appited to the object within the scope coverad by the declaration in which the typa
description appears. In the case that the update set Is attached to a ?identifier or a {type formai>,
the listed identifiers must be further specified in an “assumes clause® (sea 5.12) uniess they

13Note that an implementation may require compile-time slaboration of thoss type descriplions used as formai
parameter specifications.

a2 An Informai Detinition of Alphard

are {special identifier>s such as "&a". The assumptions about {special |dentifier>s are uniform and
- are included in appendix C. [f no <{update seot> Is given It |3 assumed toO contain tha fuil
update set of the type; the <update saet> "{O" denota the empty set.

5.7. Formal Parameters

Cartain entities -- forms and routines -- can be parametarizad. Formal parameters spacify thesa
parameterizations. The process of determining whether a given saguanca of actuals conforms to the
sequence of formal parameters is known as matching ot type checking. This process binds actual
parameters to the corresponding formai parameters. [t may also cause certain /mplicit bindings of
identifiars marked with a "?" iexeme in the tormals; these ldentifiers are Imalicit parameters with the
same scope as ordingry formals. The implicit bindings are in effect whenaver the axplicit bindings of
ordinary formals are.

Thae scope of a formal parameter to & routine is the taxt of the parameterized declaration, in the
nrestricted Algol scope” sense. That is, the scope of a farmal doas not include routine or form
deciarations within the paramaterized routina text.

The scope of a formal parameter to a form is at most the taxt ot the parametarized form deciaration:
it is aiso subject to "restricted Algoi scope”. In addition, udess explicitly redeclared in the impl
(specificaily, redeclared as spacified), the scopa of form formais is iimited to the specifications and
object declarations {including init ctauses) of the form other than shared objects.

5.7.1 Syntax

<formals> = { {<rouline formal> | <binding><obj formal> | <type formal>},+)

<routine formal> e <formal id list> prog <parms> | <formal id list> {vprog | fung | sei}<v parms>
<binding> = {copy | { alias}*{ const | yar)}*

<formal id fist> 1w <identifier list> :

<gbj formal>] <formal id list> <type description>

<type formal> e <formal id list> { form | pform J{<update set>}*

5.7.2 Examples
(const x:T1, var g:7T2, copy r:ivector(?72,1,n))
(T:form, h:proc{x:reai):int)

£.7.3 Semantics

Formal parameters give the specifications of allowabte actual paramaters and pravide locai names for
these parameters. A {routine formal? indlcates & paramster position to be fillad with a procedure or
selector. A (type formal> indicates a position to be filled by a typa daescripticn. An <obj formal>
indicates a position to be filled by an object. The association of actual parameters to formais is
datermined positionaliy.

The specification of an object parameter may be preceded by a qualifier that controls the binding of
actual to formal; the possible qualifiers are copy, const, var, and alias. Tha qualifiers const and var
denote "by reference"” parameters; in both cases the parameter name is bound to the actual parameter
object. const parameters (like names declarad in const object declarations), have an empty update
sat. As specified in section 4.3, the qualifier copy indicates that a local object is 1o pe instantiatad

An informal Deflnition of Alphard 33

and initialized from the actual by copying using the &:= operation defined for the type. The update sat
of copied parameters is set to empty, hence they may be used onty for input. The qualifier alias has no
Samantic effect. !t indicatas that a reference paramater may overlap other refarance paramatars;
uniess the alias qualifier |3 present, overiapping reference Parametars are prohibited.

For type formais the actuat type description must ba & full typae if the tormal is specifiad as a farm, It
may be a fuil or partiai typa if the formai is spacified as a pfarm,

It no <binding> is spacifiad, const is assumed. it shouid be noted that for routine paramatars not
qualifled by alias, the compiler assumes that the samantics of const and copy are identicail4 -- hence
the compiler is free to Copy const parameters if it seams dasirabie to do so. This statament is not true
for forms or in the presence of alias, and the aptimization may nat be performad in those casas.

The notation
a,b,e:T
is short for
a:T, b:T, e:T

ldentitiers preceded by "?" are implicit tormals. One binding Is aestablisheg for the identifier during
matching, no matter how often it appears. It is an arror if it is nut possibie to astabiish such a binding.
All instances of the identifler inside a given (formals> list must be praceded by "7,

5.8. Routine Declarations

Routines encapsulate computations. A routing (mc_, veroc, !t_;_n_l.:) may of may not return a result
object. If it does, the updata set of the compiler-generated name bound to the returned object is
aiways null; there can be no effacts on a procedure resuit. A seiector always has a resuit and must
not have effects: unless axpheitly restricted, the {updata set> of a salector rasuit is the fylf update
set of the base type. Except within form spacifications (seaction 5.8), routine deciarations
have normai Algol scoge. —

5.8.1 Syntax

<routine deci> e <vproc decl> | <proc decl> | <sei daci>

<vproc decl> L <aux> {inline}* fvproc | fungi<routine id> <v parms> <pre post> <gssumes>
{<routine body>}*

<proc decl> = <aux> [inline }* proc <routing ig> “parms> <pre post> <assumes> {<routine hody>}*

<sel deci> - <aux> {inling }* sel<routing id><v Parma> <pre post> <assumes> [<roytine body>}*

"<routine ig> 1w <identifier> | <spaciai identifier>

<parms> = {<tormals>}*

<v parms> i [<formais>}®:<type description>

<pre> e {pre <assertion>;}®

<pre post> e <pre> {post <asssrtion>}®

<routine body> - is <stmi> | is ag specified | ig forward | is axternal (<system specs>)

13 rhis assumpticn is valid only so leng as user-defined assignment operators, "%:=", presarve the intended
meaning. The zompiler cannot enforce the correctness of any user-defined aparabiom e oo s o r@Aded
rw® Thite bhraes a0 o g

34 An Informai Definition of Alphard

5.8.2 Examples
vproc f(x:int):real
pre {abs(x)<maxintreai};
Is float(x);
intine sel triang(var A:vactor(?T,1,7n), ,j:int):T
Is Afi"(i-1) div 2+j]
proc empty is as specified

5.8.3 Semantics

Selectors (deciared s_el) name objects. Procedures (declared g_rg_c_:_) praduce effects but do not
return values. Value-returning procedures {declared y_mg). may produce aftfects and aiso return
valuas (actually objects). Functions {declared func) are semantically aquivalent to vproc's except that
they are deterministic15 and do not have observabla effects on their parameters. The <{atmt> portion
of the <routine body> of a vproc or func must be a singie axpression of the type returned by the
routine.

The quaiifier inlina has no semantic effect. It indicates that the compiler should make the daciared
routine "open” -- i.e., producae & copy of the object coda at aach invocation site.

The pre and post clauses have no semantic effect, but are specifications of the routine's behavior.
The pre clause gives conditions which will be true at entry; post gives conditions at routine exit (the
keyword resuit is conventionally used in post conditions to specily the value roturned).

The routine body may be absant only in form spacifications {see 5.8). It may be given "as
specified" only In form implementations; this indicates that the body is to ba carried down from the
specitications. The routine body may be specified as forward if its declaration appaars later in the
same <biock>. The body may be specified as extarnal if the text of the definition is to be found in the
system-dependent entity spacifiad by (system spocs).

The formal parameter lists and resuit types must be omitted in torm impiementations if the same
routine (name) is declared in the specifications of the form. They are copied from the daciaration of
the routine in tha specifications.

The assumes clause (see section 5.12) declares generic parameters (impiicit and explicit).
Throughout the text of the routine declaration, only those properties declared in tha assumas clause
are used in testing syntactic and semantic valiidity.

As stated previcusly, identifiers that name objects observe restricted Algol scope. Thus, the body of
a routine cannot access objects declared cutside itselt uniass thay are passad through the parameter
list. Also, as stated previously, the objects named by distinct formai parameter names cannaot cveriap
uniess they are explicitly qualified with aiias.

15 That is, invocations with equal inputs yield equal outputs. More pracisaly, for F to be a furg, &={A,B) must
imply &=(F{A),F(B))." If &= is not defined, invacations with identical inputs must have identicai outputs.

An informai Definition of Alphard 35
5.9. Form Declarations

Forms define classes of types. There is one form declaration for each base type. identifiars
deciared in form deciarations have normai Aigol scope.

5.9.1 Syntax

<form deci> L <aux> form <identifier>{<tormais>}* <pra><assumes> is <form body>

<form body> P {*specs>}*{<impi>]* end {<identifier>}* | <abbrav bady> | forward | external
{<system specs>) | as specified .

<specs> s specs { <var deci> | <other form decls> 1A .

<impi> - impl { <shared> <var decl> | <other form decls> h

<gther form decis> = <routine deci> | <form daci> | <axiom>| <shared> <const deci>

<sharesg> trm sharag*

<axiom> - invariant <assartion> | initially <assertion> | axiom <assertion> | repmap

<assertion> | ruig <identifier> <assartion>

5.9.2 Examples
form F(T:form, x:int) is
specs
var m:int;
vproc p(f:F):T pre {m<x} post {m>x}; ...

const x:as specified

var m:as specified;

vProc p is F.m:=F.x+1; ...
end

5.9.3 Semantics

The -names defined in the specifications (¢spec3d) of a form are available outside the form
deciaration, The scope of these names is the same as it thay had been dectarad immediately outside
the form, except that var and const declarations become routina declarations as described balow. The
scope of the names in the specifications doas not include the implamentation (<impi>). Note, howevar,
that ail these names must be redeclared in the implementation. The implementation may be omitted if
the form declaration appears as part of the specifications of another form. The specification may be
omitted if the deciaration appears in the impiementation of ancther form, In which case it is copiad from
the specifications of the containing form.

The scope of object names appearing in the formal parameter (Ist of the form is restricted to the
Specs and <var decls> of the <form body> uniess they are explicitly redeciared (a_s_ specifiad) in the
impt. In the latter case a run-time representation of these objects becomes part of the impiementation
of objects instantiated from the form. in such cases it is also possibie for these names to be mentioned
{again as specified) in the specs, and hence to be externally available. These radeciarations in the
impl and specs must be compatible with the <binding> of the formal paramater; that Is, an identifier
redeclared var must aiso have a var <binding> (an identifier redecliared const may have a var, const, or
copy <bindin—g?). — - —

Objects declared in a form usuglly bacome the concrete components of the objects that resuit from
instantiating the form; there are thus distinct instantiations of thesa objects for different instantiations
of the form. An exception occurs whan a declaration is prefixed by by the modifler shared: A singla

36 An informal Definition of Alphard

instantiation of a shared object is common to all instantlations of the form. In particuiar, 1t makas
perfect sense to define a shared const of a given type within the definition of that type. Such a
constant functions as a named literal of the type.

CAxiom>s have no semantic effect, but provide further specifications.

Non-shared constant and variabla declarations within form spacifications are shorthand for certain
procedura and selector declarations. That Is,
form T..
specs...
var P:Q
const A:R
is short for
form T..
sel P(var t:T):Q
func A(t:TXR

in the implementation, object declarations again become salector and procedure declarations as
foillows. When an object of basae type T is Instantiated, the object declarations In its impiamentation
are elaborated as usual (and the init clauses are performed). This reauits in a sat of newly created
objects which become the concrete components of the object being created. These components may
be accessed within the bodies of the routines in the impiemantation by using Implicit selactors
{procedures) with tha same nameas as thosa given in the object deciarations. Thus, we can write ‘
torm T...
i_n_'\ﬂ
var x:int;
proc H{Q:T)is ... QX ..
That is, inside f, "x" is treatad as a selector on objacts of type T and is applied to the tormal
parameter, Q, to access the x-component of the particular actual. Nota in particular that *x*, Hke all
object names, cbays restrictad Algol scopa and hence is nat inherited by the bady of the proc, f.

5.10. Abbraviations

Abbreviated form body definitions are provided for two commoniy occurring kinds of abstractions,
"racords” and ordered "enumerated” types.

£.10.1 Syntax

<apibrev body> um <record type> | Qnumer:&ed typa>
<record type> - record {{<obj dect groug>},}
<enumerated type>» = enumerated (<identifier list> }

5.10.2 Examples
record {re,im:real)
record (x,y:int, ioad:reai, thaeta:radiang)
enumerated (red, biue, green, purpie, bardat)

An informail Definition of Alphary 37
5.10.3 Semantics

The deciaration
form F(...) is record (dy 1824, dy)
i3 semantically equivaient to
form F(...) is
specs
var dy, .., dy;
func cons(dy, ..., d): F(...);
func &=(lhs,rhs:F): boolean;
vproc &:=(var lhs,rhs:F): F(...);
M
!g_l: d1 s seny dk;
func cons is
velue v:F{...)
of note assign to componants of v eton fo
z_qg_g &= ig note compare components for aquaiity eton
VProc &:s is note assign rhs to ths cemponant-by-component aton
and F
In addition, all parametars of F are converted to "?ldentifiers” when they appear in formal parametar
lists of “cons”, "&=", or "&:=",

The declaration
form C is enumerated (i seamin)
is semanticaily equivaient to
form G is
specs
shared const iq) e in:C; ! distinet constants;
func &= ...; ! equality test
vproec &:= ...; ! assignment
func min ...; minimym element (=i)
func max ..; maximum alemeant (=)
fune succ ..,; succesasor (not defined on i)
fune pred ...; predecessor (not defined on i4)
fune card ...; cardinality of enumeration (=n)

func decode ...;
func code ...;
func spell ...;

converts element to its ordinai (a.g., decode(iy)=3)
converts ordinai to element (e.g., code(z)siz)

!
! convert element to stringtet (its printname)
! convert stringlet (printname) to eiement

! generates elements in order (iq

func unspeil ...;

generator gen ...;

end C

o)

5.11. Generators

Generators are speciaiized forms. They ars useful for defining objects that will be bound to tha
control variables of the for and first constructs (see 4.7, 4.8). {(Any form may provide such objects,
but their use is sufficiently constrained by the language that Spaciai abbreviated syntax is provided
for defining forms intended specificaily for this purpose.)

38 An informai Definition of Alphard

£.11.1 Syntax

<farm deci> - <aux> generator <identifier> {<formais>}* : <type description> <pre> <assumes>
is <form body>

5.11.2 Example
generator upto(ib,ub:int): int is
specs
pre {ub<maxint-1 A IbZminint}
aux var k:int=ub+1;
rule for
{premise 1Sksu A I([l.k-1]) {ST(X)} K[L.k])
conei ([]) {for k trom g: upto(i,u) do ST(k} od} IKL.u])}
rule first
{premisa P A IXkSu A (YwHSw<k = ~4lw)) A B(Kk) {81(k)} Q
premise P A (Yw}(iSwsu 2 ~4(w) {82} Q
conc! P {first k from g: upto(lu) suchthat &(k) then S$1(k) gise 52 fi} a}
impi
var k: as specified;
const lb,up: as specified;
unc &done is g.k>g.ub;
sel &vaiue is g.k;
proc &start is g.k:=g.lb;
proc &next is g.k+:21;
proc &finish is g.k:=g.ub+1;
endof upto
Note that in this exampie we have chosen to ignore statement and predicate parameters other than K.

—-

5.11.3 Semantics

In order to generate loop control variables, a form must provide definitions for the routines &start,
&next, &done and &vaiue. A definition of tha routine &finish is optional. If no definition is provided for
&finish, the compiler will provide (1) an appropriate header, (2) the body skip in the specifications, and
(3) the body as specified in the implementation. Restrictions on the definitions of &done, &atart,
&next, &finish, and &vaiue are provided in appendix (o

A distinguished class of forms defining objects for controliing loops is designated by the reserved
word generator and the syntax indicated abave. This class is significant becausa the behavior ot these
cbjects Is sufficiently constrained to be specified by a proof rule. Necessary properties of the
specifications of the generator routines can be derived from the proof ruies and the r::.:mstrairt!:s'I6 . As
a result, these specifications are not writtan explicitly. Instead, proof rules for first and for locps that
use the generator are written as shown above. An instantiation of a generator may be used only to
control ipop constructs for which it provides proof rules.

16 gee 'Abstraction' and Verification in Alphard: Defining and Specifying [teration and Generators” by Mary Shaw,
Wm. A. Wulf, and Ralph L. London, in Communications of the ACM, August 1377, pp. 553-564.

An Informai Detinition of Alphard 38
8.12. Assumptions

Assumptions pravide “skelaton” declarations for genaric paramaters and provide sufficiant
information to verify aill uses of thass parameters locail.y

5.12.1 Svyntax

<assumas> iim {assumes <form dad:'},'

5.12.2 Exampies
assumes form T s specs func &=(a,b:T):boolean ...

5.12.3 Semantics

Assumed forms may not be parameterized and Mmay nat have implementations. Identifiers appearing in
the update sets of generic parametars must be specified in an assumes clause (see 5.8). Actual
parameters corresponding to generic formais must syntacticaily satisty the asaumptions about the
formal (see 2.4), '

Tha foilowing routine ilustrates the use of assumptions and generic parameters:
tunc equai'vectors(x,y:vector(?T »?1b,?ub)):boolean

assumes form T is specs func &=(a,b:T):boglean and

is first i from upto(ib,ub) suchthat x[i]#y(1] then faise else true fi
This routine will determine whether two vectors, X and y, are aquai so iong as (1) the type of the
eiemeants of the vectors, T, provides an equality operater and (2) the two vectors hava the same upper
and lower bounds. An assumes declaration bahaves as though it had normal Algol scope; in particuiar,
assumptions about generic parameters of a form need not be repeated within routines (or other forms)
daciared within the form.

aQ

<letter>

<digit>
<alphanumeric>
<special symbol>
<basic symbol>

<operater>
<binary operator>

<unary cperator>

<idenlifier>
<special identifier>
<identifisr list>

<special literai>
<unsigned integer>
<unsigned real>
<ynsigned rationai>
<seale-factor>
<string>
<booigan>

<radix>

<compilation unit>
<block>

<exac decl list>
<exec decl>

<gxpression>
<gimt>
<labeted stmt>
<jnvocation>
<actuals>

<actuai>
<gimple invocation>

e
HiJ

An Informal Definition of Alphard

Appendix A
Coilected Syntax

AlBl...1Zlal...]z2
ol 1]...189

<letter> | <digit> | °

<hasic symbol> | <operator>

begin in Jand | sndof |31 :i (1)1 8L, 1= &l

if | then | else § fi | case |

of | esac | fo | with | in | ni | first | suchthat i from | do | od |
for | exitigop | leave | skip | assert |

var | const | aux | ag spegified | = [tnit |

final | unk { ? | proc | wproe | func | sel i label |

o
:
1
&
i
3
il
3
‘i
=
(]
R
B
il
~
[
5

is | forward | external | specg | impl | shar |
invariant | ipitially | axiom | repmap |
record | snumarated | assumes | value | generator

—_—

<binary operator> | <unary operator>

Tisi /Iﬂzlwmhl‘!ﬂﬂ-|012I>l1nsil£|gan.d_1mli.mv_l

<assign ap>
+]-|not

<etter> (<alphanumeric>}®

&start | &iinish | &next | &done | &vaive | &subscript | &<operator>

<idantifizr>,

<unsigned integer> | <unsigned reai> | <string>] <boolean> | <radix>

{<digit>}*

<unsigned rational>{E<scale-factor>}® | <unsigned integer>E<scaie-factor>

<ynsigned integer>.<unsigned integsr>

{+]-}*<unsigned integer>

"<any sequence of characters with 3l quctes doubled>®
true | false

{<alphanumeric>]* s<aiphanumeric>

begin <block> gnd | <exec geci list>
{<exec dac! listy}® [<stmi>}; LE*
E 2
{ <axec decl> };
<yar dacl>] <const daci> | <proc dect> { <farm decl> | <labei decl>

<invocation> | <conditionai expression> | <value sxpression> |
<with sxpression> | <first expression>

<expression> | <loop stmt> | <exit stmt> | <nuil stmt> |
cinner block> | <labeled stmt> | <assert simt>

<identifier> : <stmi>

<special literal> | <simple invecation>{<actuais>}® | (<invocation)
({<actuai=}, }

<expression> | <lype description>

[<identifier>$;* <identifier> | <special identifier>

<conditional expression>

<if axpression>
“Caso expression>
<casa>

<value expression>

<with expression>
<with list>

<first exprassion>
<templata>

<ioop stmt>
<simple loop>
<while stmt>
<for stmt>

<exit stmi>
<null stmt>
<inner block>
<assert stmt>
<label deci>

<var dec|>
<const dact>
<gux>

<obj decl group>
<obj type>

<init fin clause>
<const assign>

<type description>
<formal quai>
<update set>

<formais>
<routine formai>
<binding>
<farmal id iist>
<obj formal>
<type formai>

An Informal Definition of Alphard

uw <if expression> | <case sxprassion>

41

if <expression> then <block> { elif <expression> then <block> }* [aise <block>}* £

case <axprassi3p> gt <case> { elgf <casa> }* { else <biock> }* esac
{<expression>}, = <block>

¥alye <identifier>{r<obj type>}* of <block> fg

with <with list> in <biock> ni

{ <identitier

first<tempia

“identifier> from {<identifiar>:}*<type

. B e
><invocation> },

te> suchthat <expression> {then<bioek>)® {alse <block>}* fi

description> | <identifiar> from <invocation>

<simple laop> | <whiie stmi> | <far stmt>
go <bigck> og

while <expressions <simpie loop>
for <tempigte> <simpie loop>

exitloop | leave <identifier>

skip

kegin <block> end | begin <block> godof {<identifier>}®

asgert <assertion>

label <identifier list>

<aux> var {<ab;

“aux> const
{aux)®

decl group>{<init fin clause>1*)*

{<obj deci group> {<init tin clause>}* | <const assign»)’

<identifier list> ; <obj type>

<type descr

iption> | 3s specifiad

= <expressian> | (ipit<stmt>]® {tinal <simi>}®

<identifier I

<simple invoeation> { ((<formal

st> = <gxpression>

P<identifier>{<update ssi>}*

<expression> | ’<idantifier>

unk

{<update sat>}*

qual>)”) J® {<update set>}* |

[[<identifier>:}® <type description> |

< { <identifier> | <speciai identifier> }" >

({ {<routine formai> | <bindi
<formal id list>

{eopy | {
<identifier i

alias}*{ const | yarj }*

st> :

<format id list> <type description>
<formal id list> { form | pform){<update set>]*

PE><0bj farmai> | <type form:P}.‘ }
BLIC <parms> | <formai id list> {vproe | fung | setl<v parms>

42

<rputine decl>
<yproc dech>

<proc decl>
<sel deci>
<routine id>
<parms>

<y parms>
<pre>

<pre post>
<routine body>

<form deci>
<form body>

<specs>

<impl>

<gther form decis>
<gshared>

<axiom>

<abibrev body>
<rmscord type>
<gnumerated type>

<form decl>

<assumes>

An Informal Definition of Alphard

is <stmt> | is as specified | is

[assumes <form tiat:l>}.t

<vproc dect> | <proc decl> | <sel decl>
<aux> [inline}*® {vproc | funcl<routine id>» <y parms> <pre post> <assumes>
{<routine body>}*
<aux> {inling}* proc <routine id> <parms> <pre post> <assumes>
<aux> {inling}* sei<routine id><v parms> <pre past> <assumes> {<roytine body>}*
<identifier> | <special identifier>
{<formals>}®
{<tormais>]*:<type description>
{pre <assertion>;}®
<pra> {post <assartion>;}*

{<routine body>}*

ferward | is external (<system specs>)

+-

<record typa> | <enumerat+ed type>
record ({<obj dac¢l group>},}
enumerated (<identifier list> }

+

<aux? form <igentifier>{<formals>}® <pre><assumes> ig <form body>

{<specs>}#l<impl>}" gnd [<identifier>}" | <abbrev body> | ferward | external
{<system specs>) | as specified
specs { <var dec/> | <other form decls> h
impt { <shared> <var deci> | <other form decis> };
<rouline decl> | <torm deci> | <axiom>| <sharad> <canst decl>
shared®
invariant <assartion> | initiaily <assertion> | axiom <assertion> | repmap
<assertion> | rulg <identifier> <assartion>

<aux> generator <identifier> {<igrmals>]® : <type description> <pre> <assumes>
is <form body>

4n Informai Detinition of Alphard a3

: Appendix 8
Standard Prelude

The compiete Specifications of the types in the standard prelude will appear in a future tachnical
report. This appendix previews that report by listing the types to be Included and summarizing their
main proparties. This, together with the reader's experience and goadwili, shouid sutfice to understand
the language definition,

The typa definitions lcosely raferred to a3 the "standard prelude® actually comprise three classes of
definitions. The pPrimitive prefude detines cperationaily the basic notion of linear contiguous storage
and ail of the common machine operations. The Standard prefude proper inciudes types that we
2xpect to be implemented for ail versions of the language, usuaily as a part of the compiler. The
impiementation prelude includes types that provide facilities of the underiying hardware, Operating
System, or support environment of a particular implementation, in addition, types (such as raai} which
shouid be detined for a large class of systems (but not ail) are defined hare. It is cur intentlon that
whanever a particular Implementation chooses to dafing a type given hera, it foliows our specifications
to the greatest extent possibla.

B.1. Primitive Preiude

The RawsStorage form suppliea the fundamentai abstraction of linear contigucus storage as
described in Chapter 1, Fetching and storing ara defined for RawStorage cbjects of aqual iength. The
integer and bitwise boolean operations are provided for RawStorage objects of langth onea. In addition
we provide support here for the subsequent definition of forms such as collections and raferancas, as
well as the ability to do storage managemant,

B.2. Standard Prelude

These types werea chosan for their simpiicity and common utility. They are intended to provide only
primitive facilities that may reasonably be expected to appear (and be efficiently implementabia) on all
systems. The reader must bear in mind that these specifications were salactad with the undarstanding
that they become essentially required of ajl impiementations. When in doubt, therefore, we have
tended to exciude teatures rather than to include them.

There are three major ciasses of types in the standard prelude. The sections below skatch the
Mmajor properties of each.

B8.2.1 Scalars

defined in section 3.5,

S8ocolean is the other form required by the language definition {Chapter 1). Objects of type Booiean
are unstructured; they possess valuas from a set designatad {true, faisa}. The customary unary and
binary functions are provided, along with assignment,

44 An informal Definition of Alphard

integers are restricted to machine precision. The standard preiude supports the customary unary
- and binary arithmetic operators on integers, the arithmatic reiations, named constants to describe the
finite range of a particuiar implementation, assignment, and transfer functions to and from Stringlets.

B.2.2 Linear Structures

Two linear, homogeneous, fixad-length data structures are provided In the standard preluda.
Vectors may have elements of many types; Siringlets are minimaily sufficlent to support 1/O
operations.

Vectors may have elements of aimost any type (the type must be allocatable without spacial
restrictions). Any particular Vector, of coursa, contains elamants of only ona type. The length of a
Vector is fixed at instantiation time. A subscript selector for Integer indtces and a generator that
produces the elements in order are provided. |t the alemant type supports aithar assignment or
equality test, that operation is axtanded to the antira Vector. Thare is a siice routine which returns a
subvector of the original vactor {(with the new origin forced to 20r0).

Stringlets closely resemble vectors of characters. The same operations are provided for Stringlets
as for Vectors. In addition, literals are supported by the syntax of section 3.5 and an assortment of
special predicates on Stringiets of length 1 is provided (isCharactar, |sLetter, sDlgit, atc.). Transfer
functions to and from /nfegers are also provided. Note that type ngharacter® is not included In the
standard prelude; use Stringlets of length 1 instead.

B.3. Implementation Preiude

Certain other types appear in some fashion In almost every language. Thesa types do not have
uniform specifications across implementations, but rather depend on the hast machine. Since we don't
want to require these for ail systems, we cannot include them in the standard preiude. Instead, such
typas are provided in an impiementation prelude +- a segment of the definition of each implementation
that is frankly machine-dependent. In addition, certain typas which may not exist under all
impiementations, but which must have uniform specifications for those aystems on which they do axist,
are included here.

The types defined here may provide direct access to festures of the underlying hardware; they may
support special facliities of the environment or the operating system; they may simply be data types
that are best supported directly by the compiler.

B.3.1 Scaiers

Reals have the properties of hardware floating-point vaiues. tUnary and binary arithmatic operators
and relations are supported to the extent that the underlying machine allows. Constants describing
floating point accuracy, assignment, and transfer functions to and from Integers and Stringlets are
aiso provided. There is NO mixed-mode arithmetic.

An Informal Definition of Alphard a5
B8.3.2 Input and Qutput

The implementation prelude requires a minimal set of operations on files of characters. This, together
with transfer functions to and from Stringlets, is intendad to guarantee the avdilability of at laast
primitive tnput/output facilities. It Is intended that each implementation prelude provide such richer
support as is appropriate, provided such support is an upward compatible extension of the tacilitias
described here.

Form 1OFile supports sequential fles of characters. Files are saquencas of stringleats of length
one. They are constructed by appanding Stringiets and decomposed Into Sttinglets. The available
operations are commands to open or close an File for raading or writing, to test the status of an Fita,
and to read or write a Siringlet from or to an File. Note that File is an suxilliary form definition--such
objects cannot be declared. /OFile, on the other hand, has a null rapresaentation. Hence It is not
meaaninaful to declare objects of this typa.

B.3.3 Machine Dependent Types

These types may provide direct access to teatures of the underlying hardware or to speacial facilities
of the environment or the aperating system,

48 An Informal Definition of Alphard

Appendix C
Special Identifier Assumptions

A certain number of Alphard routines ara used for special purposea. Their definitlons are thus more
constrained than has been Indicated eisewhere In this report. These routinas ara distinguished Iin that
their names begin with ampersand ("&"); syntacticaily, they are {special identifier>s. The routines are
invokad by specific language constructs rather than by ordinary routine invocation.

These routines are grouped into two classes. Genarator routines are invoked hy the for and firat
iteration constructs in the manner described in sactions 4.7 and 4.8. Extensible oparators are
affected by the infix oparator rewrite rules as weil as by the subscript rewrite rule (see section 3.4).
Extensible operators include ail operators named by <{speacial identifiar>s othar than genarator routines;
they can be overivnaded by user-defined forms.

C.1. Generator routines
The generator routines are &done, &start, Xnext, &finish and &vaive.
C.1.1 Use r=strictions

The restrictions on the invocation of ganarator routines as an ordinary routines are intended - to
support two conflicting requirements. First, it is mandatory that a far or first loop body not be able to
use these functions on the object generating the loop control variable. !t s, in generai, desirabie that
they not be invoked in other arbitrary places outside of loops either. [t is, however, useful 1o be abie
to use thesa routines in the definitions of other generatora, specificaily those which simuitanaousiy
genearate elements of two or more data structures.

The invocation restriction is thus that: &start, &next and &flnish ¢can oniy ba invekad in the definition
of an &start, &next or &finish routine of ancther generatar; &dona can only be invoked in the definition
of an &start, &next, &finish or &done routine In another generator; &vaiue can only be invoked within
another generator. This wouid seem to permit usa of the same generator object to create control
variabies in two nested loops. Any problems which this might cause for the generator object wouid be
detected as violations of sufficient indepandence of the object from the body of the cuter loop.

C.1.2 Definition restrictions

Suppose a generator named gen defines a type of object that provides a controi variable of type t
for the "<identifler> from" construct. The generator routinas must have header specifications
subysuming:

tunc Zdone(g:gen):booi;
sei &value(g:gen):t;
proc Sstart(g:gen);
proc &next(g:gen);
proc &finish(g:gen);

An Informal Definition of Alphard a7
C.2. Extensible routines

The extensible routines are &t, &*, &/, &div, &rem, &+{unary and binary), &-(unary and binery), &<,
&=, &>, &and, &or, &imp, ¬, &:= and &subscript.

C.2.1 Use restrictions

Extensible routines can be invoked sither by using the Infix operator rewrite ruie or by using the
subscript rewrite ruie {see 3.4). Thera is no loss of generality in prohibiting their Invocation as ordinary
routines. :

C.2,2 Deftinition restrictions

Within form t, specifications of thesa operators must subsume:

func &r(leftparm:f,rightparm:t):t1;

func &*(leftparmrightparm:f}:f;

func &/{leftparm,rightparm:f):f;

func Xdiv(leftparm,rightparm:f):t;

func &rem(leftparmrightparm:f):t;

func &+(leftparm rightparm:£):f;

func &+(parm:f):f;

func &-{leftparm.rightparm:¢):f:

func &-(parm:f):f;

func &<(leftparm,rightparm:f):bool;

func &=(leftparm,rightparm:f):book;

func &>(leftparm,rightparm:f):bool;

VProc &:s(aliﬁ var ieftparm:f, alias rightparm:f):f;

sel &subscript(afterdot:f,p1:t1, .. ,pn:tn):t;
The compiler is ablie to anforce only the precedence and syntax of these operators. However, thair
traditional use in mathematics raises other expectations about them; most peopia, for example,
presume "+" is at least associative and possibly commutative. Wa strongly urge that the programmar
overioad these operators only with operations that preserve those axpectations; failure to cbserve
this convention may badly misiead the reader.

a8 An Informal Definition of Alphard

Appendix D
A Completa Example

We now presant a compiete Alphard program. This program dafinas finite sefs with a fixed maximum
size, then uses them in a smail program. Seversl aspects of the program deaarve special nota.

M FinSet defines one variaty of sets. These sats must be homogeneous (l.a., all elements must be
of the same type), but the eiemants may be of any type that providas assignment and aquality
operators. Thus FinSet is a generic type definition. The spaecifications of FinSat are stated in terms of
ordinary mathematical sets; the restrictions that apply to sets of type FinSat are explicit.

We assume the types of the standard preiude, Appendix B. In particuiar, we use vecters, intagers,
and the generator upto for integers. The main program definas an ordered enumerated type and usas
the generator that Is automaticaily defined for such a type.

The names V¥ and m used in the implamentation of FinSet are avaiiabie io the bodies of the routines
defined in that form. V and m may be used as quaiifiers on any objects of type FinSet that those
' routines receive as parameters. The names V and m are not avatabia outside the form.

FinSet defines routines X+{union), &*(intersect), &:=(assign), and a&=(equality). Thase axtend the
definitions of the binary infix operators +, %, :s, and = to pairs of FinSats. The FinSet impiementation
also takes advantage of the rawrite rule for +:= and -:=,

Assartions are inciuded in the specifications of the FinSat operators. {Wa usa “prime" notation in
post conditions: §' is the vaiue that S had on entry to tha procadure.) Some have also heen included in
the main program to explain the operation of the program.

Three kinds of loops are used. Routines Insert, Removae, and Has ail use first loops to search for
elements. Insert defauits the then part and Remove defauits the g_l_s_g part. Note that the equality test
in the suchthat clauses of thesa loops uses the aquailty deflnad for EitType. As a result, tha code for
these routines may depend on the definition of the type passed as an Instantiation parameter to
FinSet. The main pragram declares three sats -- one is & set of colors and the other two are sats of
sets (of colors). The program uses for joops with the generator color§gen on colors. 1t aisc uses &
conventional whiie.

The '$’ name qualification is used for names color$card and color§gen. These are constants dafined
for the ordered enumeratad typa color (number of glements and a standard genarator, respectively),
They are associated with the type rather than with any variable of the type. The qualification is used
to distinguish ord and gen from the corresponding definitions associated with other anumerated types,

An Informal Definition of Alphard

begin

form FinSet(EltType: formed: =, §=>, MaxSize: integer

pre [MaxSize 2 8 }
is specs

aux var FS:nathematicaISet{EltTgpeJ
invariant | cardinality(F$) s HaxSizs }

initialiy [FSe{ |)

Broc Insertivar SiFinSet,x:E]tType) pre

pest
groc Remove{var S:FinSet,x:E| tTypa) post
vproc Chooee(S:Finset):EltTgpe pre

Rost
fune Has(S:FinSet,x:E1tType}:boociean post
fune &+ {R,5:FinSet):Finset pra

Rost
func & (R,5:FinSet}:iFinSet post
voroc &:={yar R,S5:FinSet}:FinSet post
fung &={R,S5:FinSet):bgalean post
fung EmptySet (Ehtype: form, HaxSize: integer):f

post | result - {) }

impli

i
{
{
{
t
{

1

{
{
(
{
{
{
nS

43

cardinalityl(ix} U 5,F5) £ S.MaxSize !}
S.FS=8.FS" U Ix} }

S.F5 = S.FS' - Ix 1

SFS = {]}

result ¢ S.FS |

result & x¢S.FS |}
cardinaltty(R.FS U S.FS} 5 R.MaxSizm }

resytt = R.FS° U S.F5' |
result « R,FS' n S.FS* }
result = R,FS = S.FS* }
result » (R.FS' « S5.FS*) |
ot (El type,MaxSizal

var Yivector (E]tType,l,MaxSize}, m:integer init m:«d

gongt MaxSize: as specified:

cepmap [FS = (V{il | lsismi }
invarisnt {({@smsMaxSize} A Wi, jelloml (YUTaVIjIoinji) }

prog Insert

is first p from uptofl,S.m} suchthat S.V([plex

elae S.m 4= 1; S.YI[S.mlsamx fi
proc Remove

is first p from uptell,S.m} suchthat S.V[pl=x

then S.¥{pl:=5.¥[S.mi; S.m
vbrog Choose js S.V{1]

~tn 1 fi

func Has
ig firat p from uptof(l,S.m} guchihat S.V[p)ex
then true else false fj
func &+
is vaiue T:Finseti{R,EitType,R.MaxSize) of
T.m ;= R.om
for j from upto(l,R.m} do T.V[j] := R.Y{j] qd
for } from upto(i,S.mige [nsert(T,5.Y(jllgd
fo
fung &«

i3 value T:Finset (R.E)tTypa,R.MaxSizel of
for ; from uptoll,R.m) go if Has (5,R.¥{j]}

then Insert(T,R.Y[j)} .1t od
fo
ypbrog &t =

-

is value R of Rom := S.m; for i from upto(l,S.m} dg R.VYI[il :a S.YI[i]

ed fo

28 Ar: Informal Definition of Alphard

fung &=
ig R.m=S.m and first i from uptoli,A.m} guchthat not Has (5,R. Y]}
then falise glse true fi
fung EmptySet
is value x of gkip fg

end

f Compute powersat of enumerated type
form color ig enumerated {red,orange,yel low,grean,niue,violet] end
var ColorSet: FinSat(FinSet{color,ceiorScard), 2tcolorScard)

asgsert | ColorSet = {1} }
Insert{ColorSet,EmptySet (FinSet(coior,colorscard)}}
asgert [ColorSet = { {} 11

for ¢ from colorSgen dg
var Tamp: FinSet(FinSet(coior,color$card), 2%*color$card}
Temp := ColorSet
uhile Temp = EmptySet (FinSet{color,color$card)) dg
var Current: FinSet{color,color$cara}
Remove (Temp, Current: «Choose (Tenpl}
Insert {Current,c}; [nsert{ColorSet,Current)
gd

od .
ggsert { ColorSet = { S 1 5 g {xIx is a value of type ColorSet! |}
end

An Informai Definition of Alphard

Appendix E
Proof Rules

Proof Rules Omitted From Preliminary Version

51

