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ABSTRACT 

We d e a l w i t h t h e r o u n d i n g e r r o r a n a l y s i s o f s u c c e s s i v e a p p r o x i m a t i o n 

i t e r a t i o n s f o r t h e s o l u t i o n o f l a r g e l i n e a r s y s t e m s Ax • b . We p r o v e t h a t 

J a c o b i , R i c h a r d s o n , G a u s s - S e i d e l and SOR i t e r a t i o n s a r e n u m e r i c a l l y s t a b l e 

w h e n e v e r A 2 3 A > 0 and A h a s P r o p e r t y A. T h i s m e a n s t h a t t h e c o m p u t e d 

r e s u l t x ^ a p p r o x i m a t e s t h e e x a c t s o l u t i o n or w i t h r e l a t i v e e r r o r o f o r d e r 

• |K * | | w h e r e £ i s t h e r e l a t i v e c o m p u t e r p r e c i s i o n . However w i t h t h e 

e x c e p t i o n o f G a u s s - S e i d e l i t e r a t i o n t h e r e s i d u a l v e c t o r IKx^-bJI i s o f o r d e r 

CJKlPlK * | | IMI a n c * h e n c e t h e r e m a i n i n g t h r e e i t e r a t i o n s a r e n o t w e l l - b e h a v e d . 



1. INTRODUCTION 

This paper deals with the rounding error analysis in floating point 

arithmetic of successive approximation iterations for the solution of large 

sparse linear systems Ax =* b. 

We summarize the results of this paper. Basic concepts of numerical 

stability and good-behavior are recalled in Section 2. We give necessary 

and sufficient conditions for numerical stability and good-behavior in 

Sections 3 and 5. In Section 4 we deal with several examples of successive 

approximation iterations. We prove that Jacobi, Richardson, Gauss-Seidel 

and SOR iterations are numerically stable whenever A • A > 0 and A has 

Property A. In Section 6 we show that with the exception of Gauss-Seidel 

iteration they are not well-behaved. In the last section we indicate that 

good-behavior of any numerically stable method can be achieved by the use 

of iterative refinement even if all computations are performed in single 

precision. 
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2. PRELIMINARIES 

In this section we briefly recall what we mean by numerical stability 

and good-behavior of an iteration for solving a linear system Ax • b where 

A is a n X n nonsingular complex matrix and b is a n X 1 vector. We shall 

assume throughout this paper that denotes the spectral norm. 

Let [x^] be a computed sequence of successive approximations of the solu

tion Of a A ^ by an iteration cp in t digit floating point arithmetic fl, see 

Wilkinson [63]. 

An iteration cp is called numerically stable if 

(2.1) Tto |k - a|| £ £c cond (A) | | 0(C2) 
k k 1 

where £ 3 2 is the relative computer precision, c^ is a constant which 

depends only on the size n of the problem, and cond(A) 5 3 | |A|| • || A *|| is 

the condition number of A. 

An iteration cp is called well-behaved (or equivalently cp has good-behavior) 

if 

(2.2) I S || AaL - b|| * £c || A|| || a|| + 0(£ 2) 
k K 1 

where = (n). 

It is easy to verify that good-behavior implies numerical stability but 

not, in general, vice versa. Furthermore, cp is well-behaved iff there exist 

matrices E^ such that for large k 

(2.3) (A + E k) x k =* b and || Efc|| * £c 3 || A | | + 0(£ 2) 

for c^ = c^ (n). 
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Thus good-behavior means that x^ is the exact solution of a slightly 

perturbed system or equivalently that the residual vector r^ =* Ax^ - b is 

small in the sense of (2.2). 

Recall that commonly used direct methods such as Gaussian elimination 

with pivoting, Householder method, modified Gram-Schmidt, or Gram-Schmidt 

with reorthogonalization are well-behaved. Let us also mention that Chebyshev 

iteration is numerically stable but, in general, is not well-behaved; see 

Wozniakowski [75] where a detailed discussion of these concepts may be found. 
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3. NUMERICAL STABILITY OF SUCCESSIVE APPROXIMATION ITERATIONS 

We consider the numerical solution of a large linear system 

(3.1) Ax • b 

where A is a nonsingular complex n X n matrix and b is a n x 1 complex vector. 

We assume that A is a sparse matrix of high order and ct 9 A *b is the solution 

of (3.1). 

A successive approximation iteration is defined as follows: 

(i) Transform Ax 5 3 b to an equivalent system 

(3.2) x * Hx + h, (a » Ha + h) . 

Sometimes H = H(A) is chosen to minimize the spectral radius a(H) of H, 

a(H) < 1, in a certain class of (H(A)}. 

(ii) Solve (3.2) by the iteration 

(3.3) x k + 1 - Hx k + h, k = 0,1,... 

where x^ is a given initial approximation. 

Using different transformations we get different iterations; see Section 

4 where Jacobi, Richardson, Gauss-Seidel and successive overrelaxation (SOR) 

iterations are considered. 
Let e^ • x^ - a. From (3.3) we get the theoretical error formula 

(3.4) e k = H ke Q. 
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Thus the theoretical iteration is convergent for any x Q iff the spectral 

radius cr(H) is less than 1. Furthermore the character of convergence mainly 

depends on a(H) since 

II ek|| 1 ^ * - = 0 
K ( A ( H ) + E ) K 

for any e > 0, 

Due to the sparseness of A in many cases we can compute the product Hx^ 
2 

and x^ +j in time and storage proportional to n rather than n . However in 

floating point arithmetic fl we cannot compute Hx^ or from (3.3) exactly. 

Assume that 

(3.5) fl(Hxk + h) = (H + 6Hk) x k + (I + 6lk) h =» Hx k + h + § k 

where || 6Hk|| ̂  C c ^ || H||, || 6lk|| ^ C c

2 > °1 a n d c2 d e p e n d o a ^ y o n n a n d 

(3.6) ? k ~ 81^ x k + 6 ^ ( 1 - H) a. 

Note that (3.5) holds for most algorithms used in numerical practice with c^ 

and of order unity. 

Thus, instead of the theoretical relation (3.3) we get 

< 3- 7> * k + i a H x k + h + V 

It follows that the error formula for the computed sequence e k •» x̂ ^ - a is 

equal to 
k 

(3.8) e k + 1 = H k + 1 e Q + ^ Z " 1
 ? i , 

i=>0 

compare with (3.4). 
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From (3.5) and (3.6) the vectors have a bound 

(3.9) || ?k|| * Cc3(|| н|| + И I - H|| ) || «|| + c c j ^ - «|| 

for c 3 = тах(с 1 Э c 2 ) . 

Let { T ^ } be a sequence such that || T| || £ 1. Define 

к 

(зло) к<н) - (||н||+ | | I - H | | ) sup I S И H

K _ I T I | | . 
I I V I *

1 k i-'o 

From (3.8), (3.9) and (3.10) it easily follows that 

(3.11) Т Й || x. - a|| * С k(H) cJ| a|| + 0(C
2

). 
к

 R 5 

We want to determine when (3.11) is sharp. In order to do this we must 

assume something more about Recall that the vector ^ is the rounding 

error vector at the kth iterative step^ see (3.6) and (3.9). In general, §^ 

can have an arbitrary direction and || ̂  H
k - i can be of order £k(H)c,j|| cr||. 

i-0 

To make this point clear we shall assume throughout this paper that {5^} can 

be any sequence satisfying (3.9). Thus to prove the sharpness of (3.11) it 

is enough to define {^} such that § k * (|| н|| + || I - н|| ) c3|| <*|| T|£ where 

the supremum in (3.10) is attainable for T^. 

Note that 
00 

(3.12) к<H) * < J| иII + И I - н|| ) u И н
£

| | 

i-0 

and the inequality in (ЗЛ2) holds for a hermitian H, H e H . 

Comparing (3.11) with the definition of numerical stability (2.1) we 

see that to get numerical stability of the successive approximation iteration, 

k(H) has to be of order cond(A). Thus we have proven 
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Theorem 3.1 

If (3.5) holds then the successive approximation iteration given by 

(3.12) and (3.3) is numerically stable iff 

(ЗЛЗ) k(H) £ c 5 cond(A) 

where c^ =• c^(n) and k(H) is given by (ЗЛО). • 

In the next section we determine for which transformations k(H) is 

comparable with cond(A). We want to end this section by showing that for 

II H|| not too close to unity we get numerical stability. More precisely let 

q € [0Л) be a number not too close to unity (q £ .9, say). If || н|| ^ q 

then due to (3.12) k(H) £ (2q+l)/(lq) and (3.13) holds with 

c 5

 s (2q+l)/ {(1q) cond(A)} £ (2q+l)/(1q) . This means that the successive 

approximation iteration is always numerically stable for a class of problems 

for which К н|| £ q. However, usually for illconditioned problems (for 

large cond(A)), some eigenvalues of H have moduli close to 1 and k(H) is 

large. Furthermore we shall see that even for wellconditioned problems it 

can happen that k(H) is large which indicates an unstable case of the succes

sive approximation iteration. 
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4. EXAMPLES OF NUMERICAL STABILITY 

In this section we consider some examples of transformations from 

Ax = b to x a Hx + g and we find conditions assuring numerical stability. 

For the sake of simplicity we assume throughout this section that A is 

a hermitian, positive definite matrix and A has a form 

(4.1) A = I - B 

where B is hermitian and has zero diagonal elements. Furthermore we assume 

that || A|| < 2. Let ^ m^ n
 a n c* ^ m a x ^ e the smallest and the largest eigenvalue 

of A. Thus 0 < X . £ 1 and 1 £ X £ 2. Note that cond(A) » X J\ . . 
m m max v max min 

Example 4.1 Jacobi Iteration 

In this case H 3 B and h = b. Thus assumption (2.5) holds for any 

reasonable algorithm for computing Hx^ + h. Since H 3 3 I - A is hermit ian 

then 

IIHII = cr(H) = max(l - X . , X - 1) < 1. 11 11 min1 max 

Note that cr(H) is close to 1 if X , is close to zero (which means that the v m m 
problem is ill-conditioned) or X is close to two which can happen even r max 
for well-conditioned problems. 

From (3.12) we get 

a(H) + X 
(4.2) k(H) = - T T T W " * 

In general k(H) can considerably exceed the condition number cond(A) even 

for very small n. For instance let n = 3 and 
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(4.3) A - [ a 1 a 1 , 0 < a < 1/2, 

whose eigenvalues are 1 - a, 1 - a and 1 + 2a, see Young [71, p # 1 1 1 ] , We 

have <j(H) 8 3 2a and 

i /u\ • 1 + 4a . / A v B 1 + 2a k(H) =* l _ 2 a > cond(A) - i , a • 

Thus 

lim k(H) =» 4-00 and lim cond(A) 5 3 4 
a-l/2~ a-l/2 

which means that (3.13) does not hold for values of a close to l/2. We per

formed some numerical tests on the PDP-10 computer where 

C » 3xl0" 9 with a » [1,1,1] T for a - | - 10" 1, i - 2,3,4 and 5. 

-9+i 

The best computed results had relative error of order 10 which confirms 

theoretical considerations. Thus Jacobi iteration for very well-conditioned 

system (4.3) with the value of a close to l/2 is numerically unstable. 

To assure that k(H) is of order cond(A) we have to assume something 

more concerning the eigenvalues of A. 
Theorem 4.1 

Jacobi iteration is numerically stable for A • A > 0 and A is of the 

form 4.1 iff 

<*-4> F ^ * < 6 
max 

c 6 = c 6 ( n ) . • 
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Proof 

Assume that (4.4) holds. Consider two cases. 

Case I. Let 1 - X . * X - 1. Then k(H) - (1 - X 4 + X )/X . £ 2 cond(A) — — — min max m m max m m 
and (3.13) holds with c 5 » 2. 

Case II. Let 1 - X . < X - 1. Then k(H) »(2 X - l)/(2 - X ) . But min max max 1 v max 
from (4.4) we have 1/(2 - X ) £ c j \ . and k(H) £ 2 c. cond(A) and once 

v ' v max 6' min 6 
more (3.13) holds with c 5 =» 2 c &. 

The necessity of (4.4) easily follows from the above example (4.3) with 

a - 1/2". Since X . - 1 - a ± l/2 and X - 1 + 2a * 2, the lefthand side 1 min max * 
of (4.4) tends to infinity as a tends to l/2 which causes instability of 

Jacobi iteration. • 

Note that if A has Property A or equivalently B has the form 

(4.5) B 

where 0^ and are square mull matrices (see Young [71, p. 42]) then 

X . » 2 - X and (4.4) holds with c. 3 3 1. Thus we get min max 6 

Corollary 4.1 

If A = A > 0 and A has the form 4.1 and Property A then Jacobi iteration 

is numerically stable. • 

Example 4.2 Richardson Iteration 

In this case 

(4.6) H - I - c A and h = -c b 
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X - X 
where c » 2 / ( X M L N + X ^ ) . Then ||H|| = a ( H ) = X " " ^ and 

3 X - X max min 
k(H) = S i B <;2. cond(A) which due to ( 3 . 1 3 ) proves 

min 

Theorem 4 . 2 
* 

If A • A > 0 then Richardson iteration is numerically stable. 

Example 4 . 3 Gauss-Seidel Iteration 

Assume that A = I - B has Property A. Thus 

B - L + 

where L and U are strictly lower and strictly upper triangular matrices. Gauss-

Seidel Iteration is defined by 

H = (I - L 
\0 F F / 

h = (I - L _ 1 ) b. 

It is easy to verify that 

( 4 . 6 ) ( * k-1\ 
° x F f T ) . il H kn - ^ ( B ) 2 ^ 1 jma>. * * i 
o ( F F ) K / 

From ( 3 . 1 2 ) we get 

k(H) s (l + 2 a(B)7l + a2(B))(l + Jl + cr2(B) a ( B ) 2 k _ 1 (B) ^ a ( B ) " ) £ 
k=l 

* (1 + 2 V2*)(i + Jif 2 * (i . a(B))" 1). 
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Since a(B) » 1 - X . we have ( 1 - cr(B))"1 = cond(A) / X £ cond(A). This min ' max v 

proves that 

k(H) £ c 5 cond(A) with c 5 ^ ( 1 + 2,fc ) ( 1 + ,Jl / 2 ) * 6 . 5 . 

Hence we have proven 

Theorem 4 . 3 

If A - A > 0 and A has the form 4 . 1 and Property A then Gauss-Seidel 

iteration is numerically stable. • 

Example 4 . 4 Successive Overrelaxation Iteration (SOR) 

Assume that A =* I - B has Property A. SOR iteration is defined by 

H = (I - w L)"1(w U + (l-w)I), 
(4-9) _! 

h =* w(I - w L) b 

where the optimal w is given by 

w 
1 + J\ - a 2(B) 

It is easy to verify that 

a(H) - w - 1 (Jcond(A) - 1 V 
^cond(A) + 1 I 

Furthermore from Young [ 7 1 , p. 2 4 8 ] it follows that 

|| H|| » a K ( H ) {k(a ( H ) L / 2 + a ( H ) " L / 2 ) + l 2 ( a ( H ) 1 / 2 + a ( H ) " 1 / 2 ) 2 + l} 

£ 2.3 k a k(H)(a(H) 1 / / 2 + a(H)" 1 / / 2) 

which yields 
C D 

k ( H ) * ( 1 + 2 || H|| ) [ 1 + 2 . 3 ( a ( H ) L / 2 + a ( H ) " L / 2 ) " k a ( H ) K ] * 

k=l 
1 0 . 2 ( 1 + 4 . 6 ( 1 - a(H))" 2)• 
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Since 

(1 - a(H))~ 2 » cond(A)(l 4- cond(A)" 1 / / 2) 4 / 16 

we have k(H) £ c 5 cond(A) with c 5 £ 10.2 * 5.6 » 57. However if cond(A) is 

large then is less than 4. Hence we have proven 

Theorem 4.4 

If A =» A > 0 and A has the form 4.1 and Property A then SOR iteration 
is numerically stable. • 
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5. GOOD-BEHAVIOR OF SUCCESSIVE APPROXIMATION ITERATIONS 

Recall that we transform the linear system Ax + g « 0 to an equivalent 

system (I - H) x 5 3 h which is solved by constructing (x^) such that 

(5.1) x k + 1 =» H x k + h. 

We define two different sequences of residuals vectors, A(x^ - a) for the 

original system and (I - H) (x^ - or) for the transformed one. Let 

(5.2) r k » M(x k - a) 

where M ^ A o r M ^ I - H . We want to verify good-behavior of the successive 

approximation iteration with respect to A or I - H. Due to (2.2) we need to 

prove that 

(5.3) TI5 || r || * c c || M|| || «|| + o(C 2) 

k k / 

for a constant " c^in). From (3.8) we get 

k 
V4-1 k-i 

(5.4) r k + 1 - M H k + 1 e Q + ^ M H ? 1 

i-0 

where 8^ is given by (3.6) and (3.10). 

Let {Tf̂ } be a sequence such that || Tl̂  || £ 1. Define 

k 
(5.5) k(M,H) = (|| H||+ II I - H|| ) sup Ti5 || M H k ' 1 T) || . 

II W 1 k i-0 

Note that k(I,H) » k(H) . 

From 5.4 it easily follows 

(5.6) "IS || rk|| * C k(M,H) c3|| cr||+ 0(C 2). 
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Since (5.6) is sharp, (5.3) yields 

Theorem 5.1 

If (3.5) holds then the successive approximation iteration is well-behaved 

with respect to M iff 

(5.7) k(M,H) * c 6 || M|| . 

where c^ = c ^ ( n ) • 

Remark 5.1 

We showed in Section 3 that || H|| ̂  q where q is not too close to unity 

implies numerical stability of the successive approximation iteration. It 

is also obvious that ||H || ^ q yields good-behavior since 

k(M,H) || M|| 

and (5.7) holds with c & - (2q + 1) / (1 - q) . • 

In general, it is rather hard to evaluate k(M,H). However for many 

cases it is enough to know some bounds on k(M,H). 

Lemma 5«1 

Let X ̂  0 be an eigenvalue of H, H? 3 3 X? with || ?|| 538 1. Then 

(5.8) k(M,H) * x / | X | || MS || . 

Proof 
X 1 

Define T). =* —^-r §. Then 
1 N 1 
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к к 

which proves (5.8). 

Lemma 5.2 

Let M • I  H. If an iteration is wellbehaved then 

(5.9) max \\ ][i * с ||lH|| 
Xfepect(H)

 1 | X | 6 

Proof 

From Lemma 5.1 and 5.7 we get 

тгщ
 i | m 5 | |

-
J

t t t m * * ' б I I
1

- » " 

for any eigenvalue of H which proves (5.9). 

Lemma 5.2 states a necessary condition for goodbehavior with M * 

which means that |\| » 1 implies X • 1 for any eigenvalue of H. 

Lemma 5*3 

Let M m I  H and H a H • Then an iteration is wellbehaved iff 

(5.10) max ] ~ \ , * cfi || I - н|| . X€spect(H)
 1 " I

х

'
 6 

Proof 

Let H e U D U where U U = I and D  diag(X ,...,X f t). Let 

S i  [ z J ^ .  .  . z ^ ] 1 = U* T)±. Then 

к к к 
) M H k _ i TL  U(I  D) D

k  i U* Tl  U[(l  X ) X
k _ 1 z

( i ) .. 
i^ 0

 1 i=0
 1 i0 

n i-o
 n n 
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AND 

( 5 . 1 1 ) K ( I - H , H ) * 3 MAX 

J 

S INCE ( 5 . 1 1 ) I S SHARP, ( 5 . 1 0 ) I S PROVEN. 

NOTE THAT ( 5 . 1 0 ) MEANS THAT H DOES NOT HAVE EIGENVALUES CLOSE TO - 1 . 

WE END T H I S SECTION BY SHOWING THAT FOR H A H I T I S OFTEN POSSIBLE TO 

REDEFINE THE TRANSFORMED SYSTEM SUCH THAT ( 5 . 1 0 ) HOLDS AND Y I E L D S GOOD-BEHAVIOR. 

2 
MULTIPLY ( I - H ) X - H BY I + H . THEN X = H X + ( I + H ) H AND WE CAN ITERATE 

WE SHALL CALL THE I T E R A T I O N ( 5 . 1 2 ) AS THE M O D I F I E D SUCCESSIVE APPROXIMATION 

2 2 * 
I T E R A T I O N . NOTE THAT H - [ H ] ^ 0 AND THE LEFTHAND S I D E OF ( 5 . 1 0 ) I S EQUAL 

2 2 
TO U N I T Y . THUS, I F || I - H || I S NOT TOO SMALL, || I - H || ^ C^ FOR C^ ^ . 1 , 

SAY, THEN WE GET GOOD-BEHAVIOR. HENCE WE HAVE PROVEN 

LEMMA 5 . 4 

I F H = H AND || I - H || ^ > 0 THEN THE MODIFED SUCCESSIVE APPROXIMATION 

2 2 
ITERAT ION ( 5 . 1 2 ) I S WELL-BEHAVED FOR M 3 8 I - H AND C . 3 3 7 - 7 — • • 

( 5 . 1 2 ) X K + 1 » H 2 X K + ( I + H ) H . 
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6. EXAMPLES OF GOOD-BEHAVIOR 

• 

As in Section 4 we assume that A • A > 0. Except Example 6.2 we addi

tionally assume that A has Property A, see (4.1) and (4.5). 

Example 6.1 Jacobi Iteration 

In this case H 5 3 I - A is hermitian and \ =» 2 - X . Apply Lemma 5.1 
min max 

with X 3 1 - X for M a A and next M a I - H. In both cases we get max 

X 
k(M,H) * 2 » cond(A) 

max 

which shows that Jacobi iteration is not well-behaved. 
2 

For the modified Jacobi iteration (5.12) let X * (1 - X ) . Then 
v v max 

U ( A , H 2 ) * J S S _ . 2 _ ^ * con^Al 
1 - (1 - X ) max max 

which contradicts good-behavior. Finally notice that 

|| I - H2|| = max X(2 - X) - c ?. 
X€spect (A) 

If one of eigenvalues of A is close to unity then c^ s 1 which yields good-

behavior of the modified Jacobi iteration for M =» I. Thus we get 

Theorem 6.1 

Jacobi iteration is not well-behaved for M a A or M a I - H, The modified 

Jacobi iteration is not well-behaved for M - A and it JLs well behaved for 

M =» I - H whenever A has an eigenvalue close to unity. • 
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Example 6.2 Richardson Iteration 

The matrix H = I - cA with c =* 2/ (X . 4- X ) is also hermitian. Apply 
1 m m max r r J 

Lemma 5.1 with X = (1 - c X ) i and M =* A for i = 1,2. Then 
max 

, /X + X . V x 2 " 1 , / A , . / A n L I max m m 1 max . cond(A) 
k ( A , H ) = ^ ^ / — * ~ 4 

min 

which proves that Richardson and the modified Richardson iterations are not 

well-behaved for M = A. 

Next note that H has eigenvalues close to -1 for ill-conditioned problems. 

Lemma 5.3 shows that Richardson iteration cannot have good-behavior for M =* I - H. 

Finally 

I I I - H2|| = c 2 max X(X . + X - X) - c 7. 11 11 . r _ ,k N m m max 7 X6spect(A) 

If one of eigenvalues of A is close to l/c then c^ = 1 which implies good-behavior 

of the modified Richardson iteration for M =* I - H. Thus we have proven 

Theorem 6.3 

Richardson iteration is not well-behaved for M ^ A o r M ^ I - H . The 

modified Richardson iteration is not well-behaved for M 3 3 A and it Jjb well-behaved 

for M - I - H whenever A has an eigenvalue close to (X . + X ) / 2. • 
m m max 

Example 6.3 Gauss-Seidel Iteration 

The matrix H is now defined by 

\0 F* F / 

From (4.6) we have 
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/ * * k-l\ 
/ 0 1 F(I - F F)(F P) \ 

(I - H)H k - [ * * fc 1, 
\ 0 (I - F F)(F F) / 

/ * * k-l\ / O x F(I - F F)(F F) 1 
AH k = I /, V k J l . 

\o 0 ' 

T T 
(I) f2> T We estimate k(M,H) from (5.5). Let » [T]̂  , T£ ' ] . Then 

^ (I - H ) ^ 1 H, - [ w < » T , v f V 
i-0 i k k 

where 

w k
( 1 ) - F(I - F* F) ^ (F* F ) ^ 1 - 1 i f > + l£» - F f >. 

i=0 

-P> = (I - F* F) £ (F* F ) " " 1 1»> . 
i=0 

Since F F is nonnegative definite then repeating the proof of Lemma 5.3 it is 

easy to verify that 

H v ^ H * (2 ||F||+ 1) Tim- | | H J|*3. 
Ic k 

k k 

which yields 

k(I - H , H ) ^ ( | | H | | + II I- H | | ) * lM * 6.3. 

Due to the form of A H it can be verified that 

k ( A , H ) £ 6. 

Since ||A|| and || I - H|| are both not less than unity we finally get 
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k(I - H, H) £ 2 JlO I) I - H||, k(A,H) £ 6 || A|| 

which due to (5.7) proves good-behavior. Hence we have shown 

Theorem 6.3 

Gauss-Seidel iteration is well-behaved for M = A and M 3 3 I - H. 

Example 6.4 SOR Iteration 

In this case 

H * (I - wL)" 1(wU + (1 - w)I) 

where w = 2 / (1 + Jl - <J2(B)) and A = I - B. 

Let \i be an eigenvalue of B. Then the eigenvalues of H are equal to 

1 2 2 i 2 2 2 2 X * ~ ( w u " 2(w - 1)) + W(4(w - 1) - w • u ) w u 

where i see Young [71, p. 203]. From this 

| X| = w - 1 = or(H) and |l - X| - ujl - u

2. 

We apply Lemma 5.1 with M = I - H and next M = A. Then 

« 1 - H, H) = ^ 1 - ^ ( A ) ¿ 7 7 

It is known that u = 0 is an eigenvalue of B whenever the size of the problem n 

is odd which yields 

1 , 
k(T - H,H) ,/cond(A) . 

Hence SOR is not well-behaved for M = I - H. 
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Now let M = A, u =» - CT(B) and let % be an eigenvector associated with 

X » w - 1, ? - [ZT
V ?j^]T, || ej|| = 1. From Young [71, p. 237] it follows 

. r —T .-1/2 _T.,T .„,,,..1 ,-l/2 _T,T A[C X> X 7 5 2] - (1 + CT(B))[?1, X 1 5 2] . 

Thus 

k ( A,H) * T ^ f x f * ( 1 - "(h))" 1!. acs*. x- 1/ 2 ^ ] T -

- A[o t, ( x " i / 2 . i) e2fw* 

| Jcond(A) [1 + a ( B ) - 2 (a(H)" 1 / / 2 - 1)] 

which tends to infinity as cond(A) does. Hence SOR is also not well-behaved 

for M 8 3 A . Hence we have 

Theorem 6.4 

SOR iteration is not well-behaved for M 8 I - H or M • A. • 
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7. FINAL REMARKS 

We have shown that certain well-known iterations are numerically stable 

and except Gauss-Seidel they are not well-behaved. However it is possible 

to get good-behavior for M =» A using iterative refinement with single or 

double precision for the computation of the residual vectors. 

It is shown in Jankowski and Wozniakowski [77] that if C cond (A) is of 

order of unity then any numerically stable method (direct or iterative) with 

iterative refinement using only single precision is well-behaved for M » A. 
2 

Since C cond (A) is much less than unity in most practical cases, Jacobi, 

Richardson and SOR iterations with iterative refinement in single precision 

are well-behaved. 
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