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ABSTRACT

We deal with the rounding error analysis of successive approximation
iterations for the solution of large linear systems Ax = b, We prove that

Jacobi, Richardson, Gauss-Seidel and SOR iterations are nurerically stable

whenever A = A* > 0 and A has Property A. This means that the computed
result X, approximates the exact solution o with relative error of order
§|h,]- ]h-lll where [ is the relative computer precision. However with the
exception of Gauss-Seidel iteration the residual vector lhxk-bl| ig of order

Clh[flh-1|]|b[[ and hence the remaining three iterations are not well-behaved.




1. INTRODUCTION

This paper deals with the rounding error analysis in floating point
arithmetic of successive approximation iterations for the solution of large
sparse linear systems Ax = b.

We summarize the results of this paper. Basic concepts of numerical
stability and good-behavior are recalled in Section 2. We give necessary
and sufficient conditions for numerical stability and gocd-behavior in
Sections 3 and 5. In Section 4 we deal with several examples of successive
approximation iterations. We prove that Jacobi, Richardson, Gauss-Seidel

*
and SOR iterations are numerically stable whenever A = A > 0 and A has

Property A. In Section 6 we show that with the exception of Gauss-Seidel

iteration they are not well-behaved. 1In the last section we Indicate that

good-behavior of any numerically stable method can be achieved by the use
of iterative refinement even if all computations are performed in single

precision.



2. PRELIMINARIES

In this section we briefly recall what we mean by numerical stability
and good-behavior of an iteration for solving a linear system Ax = b where
A is a n X n nonsingular complex matrix and b is a n x 1 vector. We shall
assume throughout this paper that ||-|| denotes the spectral norm.

Let [xk} be a computed sequence of successive approximations of the solu-
tion o = A-lb by an iteration ® in t digit floating point arithmetic fl, see
Wilkinson [63].

An iteration ¢ is called numerically stable if

2.1) Tim |, - all = Ge; cond@a) || al|+ ocD)
k

where ( = Z-t is the relative computer precision, €y is & constant which
depends only on the size n of the problem, and cond(A) = IlA[|- IIA-III is

the condition number of A.

An iteration ¢ is called well-behaved (or equivalently @ has good-behavior)

if

(2.2) Tim [[ax - bf[ s Ce, |[af] || of + o)
k

where c, = cz(n).
It is easy to verify that good-behavior implies numerical stability but
not, in general, vice versa. TFurthermore, @ 1s well-behaved iff there exist

matrices Ek such that for large k
2
(2.3) (A+E) x, =band || E = Ceqy Il &AM+ 0(E5

for cy = ca(n).
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Thus good-behavior means that X is the exact solution of a slightly
perturbed system or equivalently that the residual vector r, = Axk - b 1is

small in the sense of (2.2).

Recall that commonly used direct methods such as Gaussian elimination
with pivoting, Householder method, modified Gram-Schmidt, or Gram-Schmidt
with reorthogonalization are well-behaved. Let us also mention that Chebyshev
iteration is numerically stable but, in general, is not well-behaved; see

Wozniakowski {75]) where a detailed discussion of these concepts may be found.



3. NUMERICAL STABILITY OF SUCCESSIVE APPROXTMATION ITERATIONS

We consider the numerical solution of a large linear system

(3.1) Ax=0b

where A is a nonsingular complex n X n matrix and b is a n x 1 complex vector.
We assume that A 1is a sparse matrix of high order and o = Aﬁlb is the solution

of (3.1).

A successive approximation iteration is defined as follows:
(i) Transform Ax = b to an equivalent system

(3.2) x=Hx+h, (o= Hx+ h).

Sometimes H = H(A) is chosen to minimize the spectral radius o(H) of H,

o(H) < 1, in a certain class of {H(A)}.
(ii) Solve (3.2) by the iteration
(3.3 xk+1=ka+h, k=20,1,...

where X, is a given initial approximatiom.
Using different transformations we get different iterations; see Section
4 where Jacobi, Richardson, Gauss-Seidel and successive overrelaxation (SOR)

iterations are considered.

Let e = x - o From (3.3) we get the theoretical error formula

k
(3.4) e, H ey
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0 iff the spectral

radius g(H) is less than 1. Furthermore the character of convergence mainly

Thus the theoretical iteration is convergent for any x

depends on o(H) since

Il el

k (o) + e

for any e > 0.
Due to the sparseness of A in many cases we can compute the product ka
2
and X4 in time and storage proportional to n rather than n°. However in
floating point arithmetic fl we cannot compute ka or Xt 1 from (3.3) exactly.

Assume that
(3.5) fl(Ex, + h) = (H + ) x + (I+ 6I,) h = Hx, +h+ §k
where ,]6Hk,|5 Qc1‘|H|L IIGIRIIS gcz, ¢, and <, depend only on n and

(3.6) & = 8 x + 5L (I- W) o

Note that (3.5) holds for most algorithms used in numerical practice with ¢y

and c, of order unity.

Thus, instead of the theoretical relation {(3.3) we get

3.7) X1 = Hx.k + h + gk'

It follows that the error formula for the computed sequence e, = x =~ o is

equal to
k
k+1 k-1
(3.8) €1 = B ey + , H P
i=0

compare with (3.4),
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From (3.5) and (3.6) the vectors gk have a bound
@9 &l s eycllnll + 1I1- "D all+ gl x, - of

for Cq = max(cl, c2).

Let {ﬂi} be a sequence such that ]|ﬂi][5 1. Define

k
(3.100 k@ = (ull+ f1-u)> swp T, #F .
inlls1 w "2

From (3.8), (3.9) and (3.10) it easily follows that

3.1 Tim || x - ol = C k) eyl ofl + 0ccD.
k

We want to determine when (3.11) is sharp. 1In order to do this we must
assume something more about §k. Recall that the vector Ek is the rounding
error vector at the kth iterative step12 see (3.6) and (3.9). In general, Ek

can have an arbitrary direction and ][L‘ Tl §i]fcan be of order Qk(H)callalL

i=0
To make this point clear we shall assume throughout this paper that {gk] can

be any sequence satisfying (3.9). Thus to prove the sharpness of (3.11) 1t
*
is enough to define {gk} such that §k = (|lu|]+ |l 1-ulhH c3]|a” ﬂk where
*
the supremum in (3.10) is attainable for ﬂk.

Note that

[+ ]

G2 k@ < (iull o+ f1-wiy L e
i=0

*
and the inequality in (3.12) holds for a hermitian H, H = H .
Comparing (3.11) with the definition of numerical stability (2.1) we
see that to get numerical stability of the successive approximation iteratiom,

k(H) has to be of order cond(A). Thus we have proven
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Theorem 3.1
If (3.5) holds then the successive approximation iteration given by

(3.12) and (3.3) is numerically stable 1iff

(3.13) k(H) = c_. cond(A)

5

where ¢g = cs(n) and k(H) is given by (3.10). .
In the next section we determine for which transformations k(H) is
comparable with cond(A). We want to end this section by showing that for
IIH|[ not too close to unity we get numerical stability. More precisely let
q €{0,1) be a number not too close to unity (q s .9, say). If || H|| <q
then due to (3.12) k(d) < (2q+1)/(1-q) and (3.13) holds with
c. = (29+1)/ {(1~q) cond(A)} s (2q+1)/(l-q). This means that the successive
approximation iteration is always numerically stable for a class of problems
for which ]fH||S q. However, usually for ill-conditioned problems (for
large cond(A)), some eigenvalues of H have moduli close to 1 and k(H) is
large. Furthermore we shall see that even for well-conditioned problems it

can happen that k(H) is large which indicates an unstable case of the succes-

sive approximation iteration.



4. EXAMPLES OF NUMERICAL STABILITY

In this section we consider some examples of transformations from
Ax = b to x @ Hx + g and we find conditions assuring numerical stability.
For the sake of simplicity we assume throughout this section that A is

a hermitian, positive definite matrix and A has a form
4.1) A=1-B

where B is hermitian and has zero diagonal elements, Furthermore we assume
that |]A||< 2, Let X\ and A be the smallest and the largest eigenvalue
min max

of A, Thus 0 < xmin <1land 1 < lmax S 2, Note that cond(A) = /kmin'

Example 4.1 Jacobi Ilteration

In this case H =B and h = b. Thus assumption (2.5) holds for any
reasonable algorithm for computing ka + h. Since H =1 - A is hermitian
then

||4]| = o(B) = max(l - Mint Apay = D <L

Note that o(H) is close to 1 if Kmin is close to zero (which means that the
problem is ill-conditioned) or %max is close to two which can happen even
for well-conditioned problems,

From (3.12) we get

o(H) + Kmax
(4.2) k(H) =_-i-_-_0_'(_1:1)_ .

In general k(H) can considerably exceed the condition number cond(A) even

for very small n. For instance let n = 3 and



1 a a
4.3y A=1a 1 a ,» 0<a<1/2,
a 1

whose eigenvalues are 1 - a, 1 - a and 1 + 2a, see Young [71, p. 111]. We

have o(H) = 2a and

o 1+ 4a e 1+ 2a
k(H) T 2a’ cond (A) 1-a -

Thus

lim k(H) = += and lim cond(A) = 4
a~1/2 a-1/2

which means that (3.13) does not hold for values of a close to 1/2. We per-

formed some numerical tests on the PDP-10 computer where

£3x10"% with o=[1,1,1)7 for a=2-10%, 1=2,34 and s.
2

The best computed results had relative error of order 10‘9+1 which confirms
theoretical considerations. Thus Jacobi iteration for very well-conditioned

system (4.3) with the value of a close to 1/2 is numerically unstable,

To assure that k(H) is of order cond(A) we have to assume something

more concerning the eigenvalues of A.

Theorem 4.1

*
Jacobi iteration 1s numerically stable for A = A > 0 and A is of the

form 4.1 iff
min
4.4) I < P
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Proof

Assume that (4.4) holds. Comsider two cases,

Case I. Let 1=~ A . 2\ -1, Thenk() = (1-1,  + Amx)/kmms 2 cond(A)

and (3.13) holds with ¢y = 2.

Case TI. Let 1= A <A - 1. Then k(H) =(2 _, - /@2 - o) But
from (4.4) we have 1/(2 - Aa) S c6/lmin and k(H) =<2 ce cond(A) and once

more (3.13) holds with c5 = 2 c6.

The necessity of (4.4) easily follows from the above example (4.3) with
- = - = / =
a = 1/2°. Since Njn = 1-a=1/2and A =14+ 2a42, the lefthand side
of (4.4) tends to infinity as a tends to 1/2° which causes instability of

Jacobi iteration. | |

Note that if A has Property A or equivalently B has the form
4.5) B=

where 01 and 02 are square mull matrices (see Young [71, p. 42]) then

?\min =2 - lmax and (4.4) holds with Cg = 1. Thus we get

Corollary 4.1

*
If A=A > 0 and A has the form 4.1 and Property A then Jacobl iteration

is numerically stable. i |

Example 4.2 Richardson Iteration

In this case

(4.6) H=1~cAand h=-c b
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A
max min
where ¢ = 2/(A .+ % ). Then |[H|| = o) = S2X__WIM .4
N min max xmax+ )\m in

k(H) = max min S% cond(A) which due to (3.13) proves

2 lmin

Theorem 4.2

*
If A= A > 0 then Richardson iteration is numerically stable,

Example 4.3 Gauss-Seidel Iteration

Assume that A = I - B has Property A. Thus

B=L+U=

where L and U are strictly lower and strictly upper triangular matrices.

Seidel Iteration is defined by

) F
-1 1
H=(I-L)U= * ]
0 F F
-1
h=(I=1L"7) b.
It is easy to verify that
* k-1
0 F (F F) —
4 k-1
(4.6) H = ! * K s ffHk||= cr(B)2 wA + 02(3), Vk 21
o) (F F)

From (3.12) we get
K S (1+2 oA+ (B (1 + 1 + o2 (B) ol <
k=1
< (1 + 2 "}2_)(1 +AE/ 2 *x (1 - g(B))-I)_

Gauss-
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-1
Since o(B) = 1 - A . we have (1 - o(B)) ~ = cond(A) / Aoy = cond(A). This

proves that

k(H) <e¢, cond(A) with ¢, < (1 + 221 + .2/ 2) * 6.5,

5

Hence we have proven

Theorem 4.3

*
IfF A=A >0 and A has the form 4.1 and Property A then Gauss-Seidel

iteration is numerically stable. [

Example 4.4 Successive Overrelaxation Iteration (SOR)

Assume that A = I - B has Property A. SOR iteration i{s defined by

H= (I-w L)-l(w U+ (1-w)I),

(4 .9) 1
h=w(I-wL) b

where the optimal w is given by

= 2

w .
1+ .1 - GZ(B)

It is easy to verify that

o) =w - 1= Jeond(A) - 1 2 .
.kond(A) + 1

Furthermore from Young (71, p. 248) it follows that

-1/2,2

| u]| = Uk(H){k(U(H)l/z + U(H)-l/z) + J{(z(c(n)l/2 + g(H) + 1)

1/2

<2.3 k ck(H)(c(H)l/z + o 75

which yields

Y | ko)X s
£
k=1

k@H) s (1+ 2 ||H||)1+ 2.3(c(n)1/2 + c(H)'l/2

10.2(1 + 4.6(1 - c(u))‘z).
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Since

(1 - o)™ = cond(a) (1 + conda)"Y2)% / 16

we have k(H) < Cg cond(A) with cg = 10.2 * 5,6 = 57. However if cond(A) is

large then c5 is less than 4. Hence we have proven

Theorem 4.4

*
If A=A >0 and A has the form 4.1 and Property A then SOR iteration

is numerically stable. a
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. GOOD-BEHAVIOR OF SUCCESSIVE APPROXIMATION ITERATIONS

Recall that we transform the linear system Ax + g = 0 to an equivalent

system (I - H) x = h which is solved by constructing {xk] such that

(5.1) %, = Hx +h.

We define two different sequences of residuals vectors, A(xk - qa) for the

original system and (I ~ H)(xk - o) for the transformed cme. Let
(5.2) r, = M(xk - a)

where M= A or M = I - H. We want to verify good-behavior of the successive
approximation iteration with respect to Aor IT-H. Due to (2.2) we need to

prove that
5.3 T frll=ce, [Nl lall + o0
k
for a constant ¢, = cz(n). From (3.8) we get

k+1 k-1i
(5.4) el M H ey + M H 51

where Ei is given by (3.6) and (3.10).

Let {ﬂi} be a sequence such that |}ﬂi||s 1. Define
k

(5.5 kB = (JJHfj+ f1-H|) su = ||, wa? O lh

[

”Tlil Sl k 1=20

Note that k(I,H) = k(H).

From 5.4 it easily follows

(5.6) Tim || r Il < ¢ ko) oyl all + 0(H.
k
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Since (5.6) is sharp, (5.3) yields

Theorem 5.1

If (3.5) holds then the successive approximation iteration is well-behaved

with respect to M iff
(5.7 k(M,B) sc. [[M].
where ce = c6(n).

Remark 5.1
We showad in Section 3 that l]H“ % q where q is not too close to unity
implies numerical stability of the successive approximation iteration. It

is also obvious that lh{IIS q yields good-behavior since
konp) < P [u]

and (5.7) holds with ¢, = (29 + D) / (- q). [
In general, it is rather hard to evaluate k(M,H). However for many

cases it is enough to know some bounds on k(M,H).

Lemma 5.1

Let X # 0 be an eigenvalue of H, HE = AE with || €]/ = 1. Then

1
(5.8) k(M,H) Zm “ MEH .
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k k
v > k k+1
‘ k-1 . _ k 1 S N b
;. MH 'ﬂi (" |Mi)M lklkl' X ME
i=0 i=0
which proves (5.8). ]

Lemma 5.2

Let M= I - H. 1If an iteration is well-behaved then

1 -2
(5.9) max T < 6 [|x-u|} .

A€Espect (H)

Proof

From Lemma 5.1 and 5.7 we get

o0 el = <kM,H) Scg [J1-u|

Ik |7~I

for any eigenvalue of H which proves (5.9). [ ]
Lemma 5.2 states a necessary condition for good-behavior with M = 1 - H

which means that ]ll = 1 implies A 3 1 for any eigenvalue of H.

Lemma 5.3

*
let M= I~ Hand H=H . Then an iteration is well-behaved iff

(5.10) max 1= )

———— I-H| .
AEspect (H) 1- Ill "6 | |

Proof

* *
Let H =17 DU where U U=Iandl)=diag(7\1,...,7\n). let

I €3 (1) ,T _ *
j. [ :'--szn ] U T]i- Then
k k k
. x-1i T k=i o ® k-1 (1)
© MH M, =UWI-D . D U T, = Uuf(l - A) LY z -
150 t 150 t Ui b1
k
(1) T
S(1 = 3D Rz ]
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and
1 - X 1 -2

(5.11) k(I - H,H) ssmejlxl_ N l_i'“”zkuah“;"l—-l{?'

Since (5.11) is sharp, (5.10) is proven. L
Note that (5.10) means that H does not have eigenvalues close to -1,
We end this section by showing that for H = H* it is often possible to

redefine the transformed system such that (5.10) holds and yields good-behavior.

Multiply (I - H}x = h by I + H. Then x = Hzx + (I + H) h and we can iterate

) _
(5.12) Xt 1 H Xt (I + 8) h.

We shall call the iteration (5.12) as the modified successive approximation
*

iteration. Note that H2 = [H2] Z 0 and the lefthand side of (5.10) 1is equal

to unity. Thus, if III - Hzllis not too small, |II - Hzl'z ¢y for cq 2 .1,

say, then we get good-behavior. Hence we have proven

Lemma 5.4

*
If H=H and || T - HZH zc, > 0 then the modifed successive approximation

. : 2 2
iteration (5.12) is well-behaved for M = T - H and oh WC_-] . |
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6. EXAMPLES OF GOOD-BEHAVIOR

*
As in Section 4 we assume that A = A > 0. Except Example 6.2 we addi-

tionally assume that A has Property A, see {(4.1) and (4.5).

Example 6.1 Jacobi Iteration

In thi e H= - A is hermitian and = -
n s cas I is he n an lmin 2 lmax' Apply Lemma 5.1

with A =1 ~ lmax for M = A and next M = I - H. 1In both cases we get

A
max
kM,H) 25—

max

= cond(A)

which shows that Jacobi iteration is not well-behaved.

For the modified Jacobi iteration (5.12) let A = (1 - lmax)z' Then

A
2
K(A,H) = max 5 = a’ > conifA)

1 - (1 - lma ) max

X

which contradicts good-behavior. Finally notice that

hi -n2||= max A2 - W) =c

\Espect (A) 7

If one of eigenvalues of A is close to unity then <, 5 1 which yields good-

behavior of the modified Jacobi iteration for M = I. Thus we get

Theorem 6.1

Jacobi iteration is not well-behaved for M = A or M = I - H. The modified
Jacobi iteration is not well-behaved for M = A and it is well behaved for

M = I - H whenever A has an eigenvalue close to unity. a
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Example 6.2 Richardson Iteration

The matrix H = T - cA with ¢ = 2/(7‘:“1

int kmax) is also hermitian. Apply

Lerma 5.1 with A = (1 - ¢ lmax)i and M = A for i = 1,2, Then

i 2-1
K i lmax + Kmin max cond(A)
(A,H") = 2
2 N 4
min

which proves that Richardson and the modified Richardson 4{terations are not
well-behaved for M = A, B

Next note that H has eigenvalues close to -1 for ill-conditioned problems.
Lemma 5.3 shows that Richardson iteration cannot have good-behavior for M = I - H.
Finally

“I -'HZH =c2 max A(h + A - A) =m¢

AEspect(A) min max 7

If one of eigenvalues of A is close to 1/c then ¢, £ 1 which implies good-behavior

7

of the modified Richardson iteration for M = I - H. Thus we have proven

Theorem 6.3
Richardson iteration is not well-behaved for M = A or M = T - H. The
modified Richardson iteration is not well~behaved for M = A and it is well-behaved

for M = 1 - H whenever A has an eigenvalue close to (A, + A ) / 2. [
min max

Example 6.3 Gauss-Seidel Iteration

The matrix H is now defined by

0 F
1
H=( *).
0 F F

From (4.6) we have
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* % -
0, FI-F B el
Kk
(1 -0 = * *  k ’
0 (I -F F)F F)
* * -
. 01 F(I1 - F F)(F F)k !
AR = , ¥k =z 1.
0 0

T T
We estimate k(M,H) from (5.5). Let ﬂi = {ﬂil) s niz) ]T. Then

k
g i, - [“'ﬁl)T’ ‘ﬁinTlT
where

k-1

wk(l) -F(L-F F) N 5 pyk-l-d “§2) + .0‘51) - F 1.|l£2).
1=0
kl

“}(cz) = (I - F F) L_‘ (F* ki 'niz) .
i=0

*
Since F F is nonnegative definite then repeating the proof of Lemma 5.3 it is

easy to verify that

1w 1wl < @ Fll+ v T i< s,
—_— 2
iim ||w ] =1
K k
which yields

k(I - H, B) < (|| 1]+ ||]1- H]) B+l s2.i0 * 6.3,
Due to the form of A Hk it can be verified that
k(A, H) < 6.

Since ||A|| and ||I - H||are both not less than unity we finally get
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k(L = H, H) <2./10 || 1 - 1|, ka,0) <6 | Al]
which due to (5.7) proves good-behavior. Hence we have shown

Theorem 6.3

Gauss-Seidel iteration is well-behaved for M = A and M = T - H. 8

Example 6.4 SOR Iteration
In this case

H= (I- wL)'l(wu + (1 -wT)

where w =2 / (1 4+ J1 - GZ(B)) and A = I - B.

Let L be an eigenvalue of B, Then the eigenvalues of H are equal to

2

A =§1‘<w Fe2w- ) s e - D= B WP 2

where i = +/~1, see Young [71, p. 203]. From this

[A\] =w - 1=0o@) and |1 - 2| = wdé - 2

We apply Lemma 5.1 with M =1 - H and next M = A, Then

/ 2
K(r - m 2o M Swe w1 ey 2

1- A T-om ~2

It is known that y =0 is an eigenvalue of B whenever the size of the problem n

is odd which yields
k(I - H,H) =2 % Jcond (A) .

Hence SOR is not well-behaved for M = I - H.
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Now let M = A, = - o(B) and let € be an eigenvector associated with

A=w~1, £=[g, §17, [|§]l= 1. From Young (71, p. 237] it follows

-1/2 _T.T

arel, vY2 ENT o (v omnrel, vV )T

1.

Thus

A

k(A,H) = T o 1

= (1 - o@ ™ aLg],

- apet, V2o )T

Zlafcond(A) [1+ o(B) - 2 (g(H)~

-1/2 _T
A £,

1/2 -]

which tends to infinity as cond(A) does. Hence SOR is also not well-behaved

for M = A. Hence we have

Theorem 6.4

SOR iteration is not well-behaved for M = I - Hor M = A.
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7. TFINAL REMARKS

We have shown that certain well-known iterations are numerically stable
and except Gauss-Seidel they are not well-behaved. However it {s possible
to get good-behavior for M = A using iterative refinement with single or
double precision for the computation of the residual vectors.

It 1s shown in Jankowski and Wozniakowski [77] that if condz(A) is of
order of unity then any numerically stable method (direct or iterative) with
iterative refinement using only single precision is well-behaved for M = A.
Since [ condz(A) is much less than unity in most practical cases, Jacobi,
Richardson and SOR iterations with iterative refinement in single precision

are well-behaved,
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