NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

ROUND-OFF ERROR ANALYSIS OF ITERATIONS FOR LARGE LINEAR SYSTEMS

H. Woźniakowski
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

April 1977

This work was partly done during the author's visit at Carnegie-Mellon University and it was supported in part by the Office of Naval Research under Contract N00014-76-C-0370; NR 044-422 and by the National Science Foundation under Grant MCS75-222-55.

ABSTRACT

We deal with the rounding error analysis of successive approximation iterations for the solution of large linear systems $A x=b$. We prove that Jacobi, Richardson, Gauss-Seidel and SOR iterations are numerically stable whenever $A=A^{*}>0$ and A has Property A. This means that the computed result x_{k} approximates the exact solution α with ralative error of order $\zeta \mid A\|\cdot\| A^{-1} \|$ where S is the relative computer precision. However with the exception of Gauss-Seidel iteration the residual vector $\| A x_{k}-b| |$ is of order $\zeta\|A\|^{2}\left\|A^{-1}\right\|\|\alpha\|$ and hence the remaining three iterations are not well-behaved.

1. INTRODUCTION

This paper deals with the rounding error analysis in floating point arithmetic of successive approximation iterations for the solution of large sparse linear systems $A x=b$.

We sumarize the results of this paper. Basic concepts of numerical stability and good-behavior are recalled in Section 2 . We give necessary and sufficient conditions for numerical stability and good-behavior in Sections 3 and 5. In Section 4 we deal with several examples of successive approximation iterations. We prove that Jacobi, Richardson, Gauss-Seidel and SOR iterations are numerically stable whenever $A=A^{*}>0$ and A has Property A. In Section 6 we show that with the exception of Gauss-Seidel iteration they are not well-behaved. In the last section we indicate that good-behavior of any numerically stable method can be achieved by the use of iterative refinement even if all computations are performed in single precision.

2. PRELIMINARIES

In this section we briefly recall what we mean by numerical stability and good-behavior of an iteration for solving a linear system $A x=b$ where A is a $n \times n$ nonsingular complex matrix and b is $a n \times 1$ vector. We shall assume throughout this paper that $\|\cdot\|$ denotes the spectral norm.

Let $\left\{x_{k}\right\}$ be a computed sequence of successive approximations of the solution $\alpha=A^{-1} b$ by an iteration φ in t digit floating point arithmetic fl, see Wilkinson [63].

An iteration φ is called numerically stable if
(2.1) $\overline{\lim }\left\|x_{k}-\alpha\right\| \leq \zeta_{k} \operatorname{cond}(A)\|\alpha\|+O\left(\zeta^{2}\right)$
where $\zeta=2^{-t}$ is the relative computer precision, c_{1} is a constant which depends only on the size n of the problem, and cond $(A)=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A.

An iteration φ is called well-behaved (or equivalently φ has good-behavior)
if
(2.2) $\overline{\lim }\left\|A x_{k}-b\right\| \leq \zeta c_{2}\|A\|\|\alpha\|+0\left(\zeta^{2}\right)$
where $c_{2}=c_{2}(n)$.
It is easy to verify that good-behavior implies numerical stability but not, in general, vice versa. Furthermore, φ is well-behaved iff there exist matrices E_{k} such that for large k
(2.3) $\left(A+E_{k}\right) x_{k}=b$ and $\left\|E_{k}\right\| \leq \zeta c_{3}\|A\|+O\left(\zeta^{2}\right)$
for $c_{3}=c_{3}(n)$.

-3-

Thus good-behavior means that x_{k} is the exact solution of a slightly perturbed system or equivalently that the residual vector $r_{k}=A x_{k}-b$ is small in the sense of (2.2).

Recall that commonly used direct methods such as Gaussian elimination with pivoting, Householder method, modified Gram-Schmidt, or Gram-Schmidt with reorthogonalization are well-behaved. Let us also mention that Chebyshev iteration is numerically stable but, in general, is not well-behaved; see Woźniakowski [75] where a detailed discussion of these concepts may be found.
3. NUMERICAL STABILITY OF SUCCESSIVE APPROXIMATION ITERATIONS

We consider the numerical solution of a large linear system
(3.1) $A x=b$
where A is a nonsingular complex $n \times n$ matrix and b is $a n \times 1$ complex vector. We assume that A is a sparse matrix of high order and $\alpha=A^{-1} b$ is the solution of (3.1).

A successive approximation iteration is defined as follows:
(i) Transform $A x=b$ to an equivalent system
(3.2) $\quad x=H x+h, \quad(\alpha=H \alpha+h)$.

Sometimes $H=H(A)$ is chosen to minimize the spectral radius $\sigma(H)$ of H, $\sigma(H)<1$, in a certain class of $\{H(A)\}$.
(ii) Solve (3.2) by the iteration
(3.3) $x_{k+1}=H x_{k}+h, \quad k=0,1, \ldots$
where x_{0} is a given initial approximation.
Using different transformations we get different iterations; see Section
4 where Jacobi, Richardson, Gauss-Seidel and successive overrelaxation (SOR)
iterations are considered.
Let $e_{k}=x_{k}-\alpha$. From (3.3) we get the theoretical error formula
(3.4) $e_{k}=H^{k} e_{0}$.

Thus the theoretical iteration is convergent for any x_{0} iff the spectral radius $\sigma(H)$ is less than 1 . Furthermore the character of convergence mainly depends on $\sigma(H)$ since

$$
\lim _{k} \frac{\left\|e_{k}\right\|}{(\sigma(H)+e)^{k}}=0
$$

for any $\varepsilon>0$.

Due to the sparseness of A in many cases we can compute the product Hx_{k} and x_{k+1} in time and storage proportional to n rather than n^{2}. However in floating point arithmetic $f 1$ we cannot compute $H x_{k}$ or x_{k+1} from (3.3) exactly.

Assume that
(3.5) $f 1\left(H x_{k}+h\right)=\left(H+\delta H_{k}\right) x_{k}+\left(I+\delta I_{k}\right) h=H x_{k}+h+\xi_{k}$
where $\left\|\delta H_{k}\right\| \leq \delta c_{1}\|H\|,\left\|\delta I_{k}\right\| \leq \zeta_{2}, c_{1}$ and c_{2} depend only on n and

$$
\begin{equation*}
\xi_{k}=\delta H_{k} x_{k}+\delta I_{k}(I-H) \alpha \tag{3.6}
\end{equation*}
$$

Note that (3.5) holds for most algorithms used in numerical practice with c_{1} and c_{2} of order unity.

Thus, instead of the theoretical relation (3.3) we get
(3.7) $\mathrm{x}_{\mathrm{k}+1}=\mathrm{Hx} \mathrm{k}+\mathrm{h}+\xi_{\mathrm{k}}$.

It follows that the error formula for the computed sequence $e_{k}=x_{k}=\alpha$ is equal to
k
(3.8) $e_{k+1}=H^{k+1} e_{0}+\sum_{i=0} H^{k-i} \xi_{i}$,
compare with (3.4).

From (3.5) and (3.6) the vectors ξ_{k} have a bound
(3.9) $\quad\left\|\xi_{k}\right\| \leq \zeta c_{3}(\|H\|+\|I-H\|)\|\alpha\|+\zeta c_{1}\left\|x_{k}-\alpha\right\|$
for $c_{3}=\max \left(c_{1}, c_{2}\right)$.
Let $\left\{\eta_{i}\right\}$ be a sequence such that $\left\|\eta_{i}\right\| \leq 1$. Define
k
(3.10) $k(H)=(\|H\|+\|I-H\|) \sup _{\left\|\eta_{i}\right\| \leq 1}^{\overline{1 i m}\left\|_{i=0} H^{k-i} \eta_{i}\right\| . ~ . ~ . ~}$

From (3.8), (3.9) and (3.10) it easily follows that
(3.11) $\overline{\lim _{k}}\left\|x_{k}-\alpha\right\| \leq \zeta k(H) c_{3}\|\alpha\|+O\left(\zeta^{2}\right)$.

We want to determine when (3.11) is sharp. In order to do this we must assume something more about ξ_{k}. Recall that the vector ξ_{k} is the rounding error vector at the k th iterative step \hat{k}_{k} see (3.6) and (3.9). In general, 5_{k} can have an arbitrary direction and $\left\|H_{i=0} H^{k-i} \xi_{i}\right\|$ can be of order $\zeta k(H) c_{3}\|\alpha\|$. $i=0$
To make this point clear we shall assume throughout this paper that $\left\{\mathbb{F}_{\mathrm{k}}\right\}$ can be any sequence satisfying (3.9). Thus to prove the sharpness of (3.11) it is enough to define $\left\{\xi_{k}\right\}$ such that $\xi_{k}=(\|H\|+\|I-H\|) c_{3}\|\alpha\| \eta_{k}^{*}$ where the supremum in (3.10) is attainable for π_{k}^{*}.

Note that

$$
\text { (3.12) } k(H) \leq(\|H\|+\|I-H\|) \sum_{i=0}^{\infty}\left\|H^{i}\right\|
$$

and the inequality in (3.12) holds for a hermitian $H, H=H^{\star}$.
Comparing (3.11) with the definition of numerical stability (2.1) we see that to get numerical stability of the successive approximation iteration, $k(H)$ has to be of order cond (A). Thus we have proven

$$
-7-
$$

Theorem 3.1
If (3.5) holds then the successive approximation iteration given by (3.12) and (3.3) is numerically stable iff
(3.13) $k(H) \leq c_{5} \operatorname{cond}(A)$
where $c_{5}=c_{5}(n)$ and $k(H)$ is given by (3.10).
In the next section we determine for which transformations $k(H)$ is comparable with cond(A). We want to end this section by showing that for $\|\mathrm{H}\|$ not too close to unity we get numerical stability. More precisely let $q \in[0,1$) be a number not too close to unity ($q \leq .9$, say). If $\|H\| \leq q$ then due to (3.12) $k(H) \leq(2 q+1) /(1-q)$ and (3.13) holds with $c_{5}=(2 q+1) /\{(1-q)$ cond $(A)\} \leq(2 q+1) /(1-q)$. This means that the successive approximation iteration is always numerically stable for a class of problems for which $\|\mathrm{H}\| \leq \mathrm{q}$. However, usually for ill-conditioned problems (for large cond(A)), some eigenvalues of H have moduli close to 1 and $k(H)$ is large. Furthermore we shall see that even for well-conditioned problems it can happen that $k(H)$ is large which indicates an unstable case of the successive approximation iteration.
4. EXAMPLES OF NUMERICAL STABILITY

In this section we consider some examples of transformations from $A x=b$ to $x=H x+g$ and we find conditions assuring numerical stability.

For the sake of simplicity we assume throughout this section that A is a hermitian, positive definite matrix and A has a form
(4.1) $A=I-B$
where B is hermitian and has zero diagonal elements. Furthermore we assume that $\|A\|<2$. Let $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ be the smallest and the largest eigenvalue of A. Thus $0<\lambda_{\text {min }} \leq 1$ and $1 \leq \lambda_{\max } \leq 2$. Note that cond $(A)=\lambda_{\max } / \lambda_{\text {min }}$. Example 4.1 Jacobi Iteration

In this case $H=B$ and $h=b$. Thus assumption (2.5) holds for any reasonable algorithm for computing $\mathrm{Hx}_{\mathrm{k}}+\mathrm{h}$. Since $\mathrm{H}=\mathrm{I}-\mathrm{A}$ is hermitian then

$$
\|H\|=\sigma(H)=\max \left(1-\lambda_{\min }, \lambda_{\max }-1\right)<1
$$

Note that $\sigma(H)$ is close to 1 if $\lambda_{\text {min }}$ is close to zero (which means that the problem is ill-conditioned) or $\lambda_{\max }$ is close to two which can happen even for well-conditioned problems.

From (3.12) we get
(4.2) $k(H)=\frac{\sigma(H)+\lambda_{\text {max }}}{1-\sigma(H)}$.

In general $k(H)$ can considerably exceed the condition number cond(A) even for very small n. For instance let $n=3$ and

$$
\text { (4.3) } A=\left(\begin{array}{lll}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right), 0<a<1 / 2,
$$

whose eigenvalues are $1-a, 1-a$ and $1+2 a$, see Young [71, p. 111]. We have $\sigma(H)=2 a$ and

$$
k(H)=\frac{1+4 a}{1-2 a}, \operatorname{cond}(A)=\frac{1+2 a}{1-a} .
$$

Thus

$$
\lim _{a \rightarrow 1 / 2^{-}} k(H)=+\infty \quad \text { and } \quad \lim _{a \rightarrow 1 / 2} \text { cond }(A)=4
$$

which means that (3.13) does not hold for values of a close to $1 / 2$. We performed some numerical tests on the PDP-10 computer where

$$
\zeta \doteq 3 \times 10^{-9} \text { with } \alpha=[1,1,1]^{T} \text { for } a=\frac{1}{2}-10^{-i}, i=2,3,4 \text { and } 5
$$

The best computed results had relative error of order 10^{-9+1} which confirms theoretical considerations. Thus Jacobi iteration for very well-conditioned system (4.3) with the value of a close to $1 / 2$ is numerically unstable.

To assure that $k(H)$ is of order cond (A) we have to assume something more concerning the eigenvalues of A.

Theorem 4.1
Jacobi iteration is numerically stable for $A=A^{*}>0$ and A is of the form 4.1 iff
(4.4) $\frac{\lambda_{\min }}{2-\lambda_{\max }} \leq c_{6}$
$c_{6}=c_{6}(n)$.

Proof

Assume that (4.4) holds. Consider two cases.

Case I. Let $1-\lambda_{\min } \geq \lambda_{\max }-1$. Then $k(H)=\left(1-\lambda_{\min }+\lambda_{\max }\right) / \lambda_{\min } \leq 2 \operatorname{cond}(A)$ and (3.13) holds with $c_{5}=2$.

Case II. Let $1-\lambda_{\min }<\lambda_{\max }-1$. Then $k(H)=\left(2 \lambda_{\max }-1\right) /\left(2-\lambda_{\max }\right)$. But from (4.4) we have $1 /\left(2-\lambda_{\text {max }}\right) \leq c_{6} / \lambda_{\text {min }}$ and $k(H) \leq 2 c_{6}$ cond(A) and once more (3.13) holds with $c_{5}=2 c_{6}$.

The necessity of (4.4) easily follows from the above example (4.3) with
 of (4.4) tends to infinity as a tends to $1 / 2^{-}$which causes instability of Jacobi iteration.

Note that if A has Property A or equivalently B has the form
(4.5) $\quad B=\left(\begin{array}{ll}O_{1} & F \\ F & o_{2}\end{array}\right)$
where O_{1} and o_{2} are square mull matrices (see Young [71, p. 42]) then $\lambda_{\min }=2-\lambda_{\max }$ and (4.4) holds with $c_{6}=1$. Thus we get

Corollary 4.1

If $A=A^{*}>0$ and A has the form 4.1 and Property A then Jacobi iteration is numerically stable.

Example 4.2 Richardson Iteration
In this case
(4.6) $\mathrm{H}=\mathrm{I}-\mathrm{cA}$ and $\mathrm{h}=-\mathrm{c} \mathrm{b}$
where $c=2 /\left(\lambda_{\min }+\lambda_{\max }\right)$. Then $\|H\|=\sigma(H)=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}$ and $k(H)=\frac{3 \lambda_{\text {max }}-\lambda_{\text {min }}}{2 \lambda_{\text {min }}} \leq \frac{3}{2}$ cond (A) which due to (3.13) proves

Theorem 4.2
If $A=A^{*}>0$ then Richardson iteration is numerically stable.

Example 4.3 Gauss-Seidel Iteration

Assume that $A=I-B$ has Property A. Thus

$$
B=L+U=\left(\begin{array}{ll}
O_{1} & F \\
F & o_{2}
\end{array}\right)
$$

where L and U are strictly lower and strictly upper triangular matrices. GaussSeidel Iteration is defined by

$$
\begin{aligned}
& H=\left(I-L^{-1}\right) U=\left(\begin{array}{lll}
O_{1} & F & \\
0 & F^{*} & F
\end{array}\right), \\
& h=\left(I-L^{-1}\right) b .
\end{aligned}
$$

It is easy to verify that
(4.6) $\quad H^{k}=\left(\begin{array}{ll}0_{1} & F\left(F^{*} F\right)^{k-1} \\ 0 & \left(F^{*} F\right)^{k}\end{array}\right),\left\|H^{k}\right\|=\sigma(B)^{2 k-1} \sqrt{1+\sigma^{2}(B), \forall k \geq 1}$

From (3.12) we get

$$
\begin{aligned}
k(H) \leq(1+ & \left.2 \sigma(B) \sqrt{1+\sigma^{2}(B)}\right)\left(1+\sqrt{1+\sigma^{2}(B)}{\left.\underset{k=1}{\infty} \sigma(B)^{2 k-1}\right) \leq}_{\infty}^{\infty}(1+2 \sqrt{2})\left(1+\sqrt{2} / 2 *(1-\sigma(B))^{-1}\right) .\right.
\end{aligned}
$$

Since $\sigma(B)=1-\lambda_{\text {min }}$ we have $(1-\sigma(B))^{-1}=\operatorname{cond}(A) / \lambda_{\text {max }} \leq \operatorname{cond}(A)$. This proves that

$$
k(H) \leq c_{5} \text { cond (A) with } \quad c_{5} \leq(1+2 \sqrt{2})(1+\sqrt{2} / 2) \pm 6.5
$$

Hence we have proven

Theorem 4.3
If $A=A^{*}>0$ and A has the form 4.1 and Property A then Gauss-Seide1 iteration is numerically stable.

Example 4.4 Successive Overrelaxation Iteration (SOR)
Assume that $A=I-B$ has Property A. SOR iteration is defined by

$$
\begin{aligned}
& H=(I-w L)^{-1}(w U+(1-w) I), \\
& h=w(I-w L)^{-1} b
\end{aligned}
$$

where the optimal w is given by

$$
w=\frac{2}{1+\sqrt{1-\sigma^{2}(B)}}
$$

It is easy to verify that

$$
\sigma(H)=w-1=\left(\frac{\sqrt{\operatorname{cond}(A)}-1}{\sqrt{\operatorname{cond}(A)}+1}\right)^{2}
$$

Furthermore from Young [71, p. 248] it follows that

$$
\begin{gathered}
\|H\|=\sigma^{k}(\mathrm{H})\left\{\mathrm{k}\left(\sigma(\mathrm{H})^{1 / 2}+\sigma(\mathrm{H})^{-1 / 2}\right)+\sqrt{k^{2}\left(\sigma(\mathrm{H})^{1 / 2}+\sigma(\mathrm{H})^{-1 / 2}\right)^{2}+1}\right\} \\
\leq 2.3 \mathrm{k} \sigma^{\mathrm{k}(\mathrm{H})\left(\sigma(\mathrm{H})^{1 / 2}+\sigma(\mathrm{H})^{-1 / 2}\right)}
\end{gathered}
$$

which yields

$$
\begin{gathered}
k(\mathrm{H}) \leq(1+2\|\mathrm{H}\|)\left[1+2.3\left(\sigma(\mathrm{H})^{1 / 2}+\sigma(\mathrm{H})^{-1 / 2}\right)_{\mathrm{k}=1}^{\infty} \mathrm{k} \sigma(\mathrm{H})^{\mathrm{k}}\right] \leq \\
10.2\left(1+4.6(1-\sigma(\mathrm{H}))^{-2}\right) .
\end{gathered}
$$

Since

$$
(1-\sigma(H))^{-2}=\operatorname{cond}(A)\left(1+\operatorname{cond}(A)^{-1 / 2}\right)^{4} / 16
$$

we have $k(H) \leq c_{5}$ cond(A) with $c_{5} \leq 10.2 * 5.6 \div 57$. However if cond (A) is large then c_{5} is less than 4 . Hence we have proven

Theorem 4.4
If $A=A^{*}>0$ and A has the form 4.1 and Property A then SOR iteration is numerically stable.
5. GOOD-BEHAVIOR OF SUCCESSIVE APPROXIMATION ITERATIONS

Recall that we transform the linear system $A x+g=0$ to an equivalent system ($I-H$) $x=h$ which is solved by constructing $\left\{x_{k}\right\}$ such that
(5.1) $x_{k+1}=H x_{k}+h$.

We define two different sequences of residuals vectors, $A\left(x_{k}-\alpha\right)$ for the original system and $(I-H)\left(x_{k}-\alpha\right)$ for the transformed one. Let
(5.2) $\quad r_{k}=M\left(x_{k}-\alpha\right)$
where $M=A$ or $M=I-H$. We want to verify good-behavior of the successive approximation iteration with respect to A or $I-H$. Due to (2.2) we need to prove that
(5.3) $\underset{\mathrm{l}}{\overline{\lim }\left\|r_{k}\right\| \leq \zeta c_{2}\|M\|\|\alpha\|+O\left(\zeta^{2}\right)}$
for a constant $c_{2}=c_{2}(n)$. From (3.8) we get
k
(5.4) $\quad r_{k+1}=M H^{k+1} e_{0}+\underset{i=0}{\mathrm{MH}^{k-i}} \xi_{i}$
where ξ_{i} is given by (3.6) and (3.10).
Let $\left\{\eta_{i}\right\}$ be a sequence such that $\left\|\eta_{i}\right\| \leq 1$. Define
k
(5.5) $k(M, H)=(\|H\|+\|I-H\|) \quad \sup _{\|} \overline{\overline{1 \operatorname{im}} \|}\left\|_{i=0} M H^{k-i} \eta_{i}\right\|$.

Note that $k(\mathrm{I}, \mathrm{H})=\mathrm{k}(\mathrm{H})$.
From 5.4 it easily follows
(5.6) $\underset{\mathrm{k}}{\overline{\operatorname{igm}}\left\|\mathrm{r}_{\mathrm{k}}\right\| \leq \zeta \mathrm{k}(\mathrm{M}, \mathrm{H}) \mathrm{c}_{3}\|\alpha\|+O\left(t^{2}\right) .}$

Since (5.6) is sharp, (5.3) yields

Theorem 5.1
If (3.5) holds then the successive approximation iteration is well-behaved with respect to M iff
(5.7) $\quad k(M, H) \leq c_{6}\|M\|$.
where $c_{6}=c_{6}(n)$.

Remark 5.1

We showad in Section 3 that $\|H\| \leq q$ where q is not too close to unity implies numerical stability of the successive approximation iteration. It is also obvious that $\|H\| \leq q$ yields good-behavior since

$$
k(M, H) \leq \frac{2 q+1}{1-q}\|M\|
$$

and (5.7) holds with $c_{6}=(2 q+1) /(1-q)$.
In general, it is rather hard to evaluate $k(M, H)$. However for many cases it is enough to know some bounds on $k(M, H)$.

Lemma 5.1
Let $\lambda \neq 0$ be an eigenvalue of $H, H \xi=\lambda \xi$ with $\|\xi\|=1$. Then
(5.8) $k(M, H) \geq \frac{1}{1-|\lambda|}\|M E\|$.

Proof
Define $\eta_{i}=\frac{\lambda^{i}}{|\lambda|^{i}} \xi$. Then
which proves (5.8).

Lemma 5.2

Let $M=1$ - H. If an iteration is well-behaved then
(5.9) $\max _{\lambda \in \operatorname{spect}(H)} \frac{|1-\lambda|}{1-|\lambda|} \leq c_{6}\|I-H\|$.

Proof

From Lemma 5.1 and 5.7 we get

$$
\frac{1}{1-|\lambda|}\|M \xi\|=\frac{|1-\lambda|}{1-|\lambda|} \leq k(M, H) \leq c_{6}\|I-H\|
$$

for any eigenvalue of H which proves (5.9).
Lemma 5.2 states a necessary condition for good-behavior with M $=1$ - H which means that $|\lambda| \cong 1$ implies $\lambda \cong 1$ for any eigenvalue of H.

Lemma 5.3

Let $M=I-H$ and $H=H^{*}$. Then an iteration is well-behaved iff
(5.10) $\max _{\lambda \in \operatorname{spect}(\mathrm{H})} \frac{1-\lambda}{1-|\lambda|} \leq \mathrm{c}_{6}\|\mathrm{I}-\mathrm{H}\|$.

Proof

$$
\begin{gathered}
\text { Let } H=U D U^{\star} \text { where } U^{*} U=I \text { and } D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \text {. Let } \\
z_{i}=\left[z_{1}^{(i)}, \ldots, z_{n}^{(i)}\right]^{T}=U^{*} \eta_{i} \text {. Then } \\
\sum_{i=0}^{k} M H^{k-i} \eta_{i}=U(I-D) \sum_{i \leqq 0}^{k} D^{k-i} U^{*} \eta_{i}=U\left[\left(1-\lambda_{1}\right) \sum_{i=0}^{k} \lambda_{1}^{k-1} z_{1}^{(i)} \ldots\right. \\
\left.\ldots,\left(1-\lambda_{n}\right) \sum_{i=0}^{k} \lambda_{n}^{k-i} z_{n}^{(i)}\right]^{T}
\end{gathered}
$$

and
(5.11)

$$
k(I-H, H) \leq 3 \max _{j} \frac{1-\lambda_{j}}{1-\left|\lambda_{j}\right|} \overline{l_{k}}\left\|z_{k}\right\|=3 \max _{j} \frac{1-\lambda_{j}}{1-\left|\lambda_{j}\right|} .
$$

Since (5.11) is sharp, (5.10) is proven.
Note that (5.10) means that H does not have eigenvalues close to -1 . We end this section by showing that for $H=H^{*}$ it is of possible to redefine the transformed system such that (5.10) holds and yields good-behavior. Multiply $(\mathrm{I}-\mathrm{H}) \mathrm{x}=\mathrm{h}$ by $\mathrm{I}+\mathrm{H}$. Then $\mathrm{x}=\mathrm{H}^{2} \mathrm{x}+(\mathrm{I}+\mathrm{H}) \mathrm{h}$ and we can iterate (5.12) $x_{k+1}=H^{2} x_{k}+(I+H) h$.

We shall call the iteration (5.12) as the modified successive approximation iteration. Note that $H^{2}=\left[H^{2}\right]^{*} \geq 0$ and the lefthand side of (5.10) is equal to unity. Thus, if $\left\|I-H^{2}\right\|$ is not too small, $\left\|I-H^{2}\right\| \geq c_{7}$ for $c_{7} \geq .1$, say, then we get good-behavior. Hence we have proven

Lemma 5.4
If $\mathrm{H}=\mathrm{H}^{*}$ and $\left\|\mathrm{I}-\mathrm{H}^{2}\right\| \geq \mathrm{c}_{7}>0$ then the modifed successive approximation iteration (5.12) is well-behaved for $M=I-H^{2}$ and $c_{6}=\frac{2}{2 / c_{7}}$.

6. EXAMPLES OF GOOD-BEHAVIOR

As in Section 4 we assume that $A=A^{*}>0$. Except Example 6.2 we additionally assume that A has Property A, see (4.1) and (4.5).

Example 6.1 Jacobi Iteration
In this case $H=I-A$ is hermitian and $\lambda_{\min }=2-\lambda_{\max }$. Apply Lemma 5.1 with $\lambda=1-\lambda_{\max }$ for $M=A$ and next $M=I-H$. In both cases we get

$$
k(M, H) \geq \frac{\lambda_{\max }}{2-\lambda_{\max }}=\operatorname{cond}(A)
$$

which shows that Jacobi iteration is not well-behaved.
For the modified Jacobi iteration (5.12) let $\lambda=\left(1-\lambda_{\text {max }}\right)^{2}$. Then

$$
k\left(A, H^{2}\right) \geq \frac{\lambda_{\max }}{1-\left(1-\lambda_{\max }\right)^{2}}=\frac{1}{2-\lambda_{\max }} \geq \frac{\operatorname{cond}(A)}{2}
$$

which contradicts good-behavior. Finally notice that

$$
\left\|I-H^{2}\right\|=\max _{\lambda \operatorname{mspect}(A)} \lambda(2-\lambda)=c_{7}
$$

If one of eigenvalues of A is close to unity then $c_{7} \cong 1$ which yields goodbehavior of the modified Jacobi iteration for $M=I$. Thus we get

Theorem 6.1

Jacobi iteration is not well-behaved for $M=A$ or $M=I-H$. The modified Jacobi iteration is not well-behaved for $M=A$ and it is well behaved for $M=I-H$ whenever A has an eigenvalue close to unity.

Example 6.2 Richardson Iteration

The matrix $H=I-c A$ with $c=2 /\left(\lambda_{\text {min }}+\lambda_{\text {max }}\right)$ is also hermitian. Apply Lemma 5.1 with $\lambda=\left(1-c \lambda_{\text {max }}\right)^{i}$ and $M=A$ for $i=1,2$. Then

$$
k\left(A, H^{i}\right)=\left(\frac{\lambda_{\max }+\lambda_{\min }}{2}\right)^{i} \frac{\lambda_{\max }^{2-1}}{\lambda_{\min }} \geq \frac{\operatorname{cond}(A)}{4}
$$

which proves that Richardson and the modified Richardson iterations are not well-behaved for $M=A$.

Next note that H has eigenvalues close to -1 for 111 -conditioned problems. Lemana 5.3 shows that Richardson iteration cannot have good-behavior for $M=I-H$. Finally

$$
\left\|I-H^{2}\right\|=c^{2} \max _{\lambda \in \operatorname{spect}(A)} \lambda\left(\lambda_{\min }+\lambda_{\max }-\lambda\right)=c_{7}
$$

If one of eigenvalues of A is close to $1 / c$ then $c_{7} \cong 1$ which implies good-behavior of the modified Richardson iteration for $M=I-H$. Thus we have proven

Theorem 6.3

Richardson iteration is not well-behaved for $M=A$ or $M=I-H$. The modified Richardson iteration is not well-behaved for $M=A$ and it is well-behaved for $M=I-H$ whenever A has an eigenvalue close to $\left(\lambda_{\min }+\lambda_{\max }\right) / 2$.

Example 6.3 Gauss-Seidel Iteration
The matrix H is now defined by

$$
H=\left(\begin{array}{lll}
0_{1} & F & \\
0 & F^{*} & F
\end{array}\right)
$$

From (4.6) we have

$$
\begin{aligned}
(I-H) H^{k} & =\left(\begin{array}{cc}
0_{1} & F\left(I-F^{*} F\right)\left(F^{*} F\right)^{k-1} \\
0 & \left(I-F^{*} F\right)\left(F^{*} F\right)^{k}
\end{array}\right), \\
A H^{k} & =\left(\begin{array}{lc}
0_{1} & F\left(I-F^{*} F\right)\left(F^{*} F\right)^{k-1} \\
0 & 0
\end{array}\right), \quad \forall k \geq 1 .
\end{aligned}
$$

We estimate $k(M, H)$ from (5.5). Let $\eta_{i}=\left[\eta_{i}^{(1)^{T}}, \eta_{i}^{(2)}\right]^{T}$. Then
where

$$
\begin{aligned}
& w_{k}^{(1)}=F\left(I-F^{*} F\right) \sum_{i=0}^{k-1}\left(F^{*} F\right)^{k-1-i} \eta_{i}^{(2)}+\eta_{k}^{(1)}-F \eta_{k}^{(2),} \\
& w_{k}^{(2)}=\left(I-F^{*} F\right) \sum_{i=0}^{k}\left(F^{*} F\right)^{k-i} \eta_{i}^{(2)} .
\end{aligned}
$$

Since $F^{*} F$ is nonnegative definite then repeating the proof of Lemma 5.3 it is easy to verify that

$$
\begin{aligned}
& \overline{\lim }\left\|w_{k}^{(1)}\right\| \leq(2\|F\|+1) \overline{\lim _{k}}\left\|\eta_{k}\right\| \leq 3, \\
& \overline{\lim _{k}}\left\|w_{k}^{2}\right\| \leq 1
\end{aligned}
$$

which yields

$$
\mathrm{k}(\mathrm{I}-\mathrm{H}, \mathrm{H}) \leq(\|\mathrm{H}\|+\|\mathrm{I}-\mathrm{H}\|) \sqrt{9+1} \leq 2 \sqrt{10} \neq 6.3 .
$$

Due to the form of AH^{k} it can be verified that

$$
k(A, H) \leq 6 .
$$

Since $\|A\|$ and $\|I-H\|$ are both not less than unity we finally get

$$
k(I-H, H) \leq 2 \sqrt{10}\|I-H\|, k(A, H) \leq 6\|A\|
$$

which due to (5.7) proves good-behavior. Hence we have shown

Theorem 6.3

Gauss-Seidel iteration is well-behaved for $M=A$ and $M=I-H$.

Example 6.4 SOR Iteration
In this case

$$
H \neq(I-w L)^{-1}(w U+(1-w) I)
$$

where $w=2 /\left(1+\sqrt{1-\sigma^{2}(B)}\right)$ and $A=I-B$.
Let μ be an eigenvalue of B. Then the eigenvalues of H are equal to

$$
\lambda=\frac{1}{2}\left(w^{2} u^{2}-2(w-1)\right) \pm i \sqrt{\left(4(w-1)-w^{2} u^{2}\right) w^{2} u^{2}}
$$

where $i=\sqrt{-1}$, see Young [71, p. 203]. From this

$$
|\lambda|=w-1=\sigma(H) \text { and }|1-\lambda|=w \sqrt{1-\mu^{2}}
$$

We apply Lemma 5.1 with $M=I-H$ and next $M=A$. Then

$$
k(I-H, H) \quad 2 \frac{1-\lambda \mid}{1-|\lambda|}=\frac{w_{1} \sqrt{1-\mu^{2}}}{1-\sigma(H)} \geq \frac{1}{2}, \sqrt{\operatorname{cond}(A)} \sqrt{1-u^{2}}
$$

It is known that $u=0$ is an eigenvalue of B whenever the size of the problem n is odd which yields

$$
k(T-H, H) \geq \frac{1}{2}, \sqrt{\operatorname{cond}(A)} .
$$

Hence SOR is not well-behaved for $\mathrm{M}=\mathrm{I}-\mathrm{H}$.

Now let $M=A, \mu=-\sigma(B)$ and let ξ be an eigenvector associated with $\lambda=w-1, \xi=\left[\xi_{1}^{T}, \xi_{2}^{T}\right]^{T},\|\xi\|=1$. From Young [71, p. 237] it follows

$$
\mathrm{A}\left[\xi_{1}^{\mathrm{T}}, \lambda^{-1 / 2} \xi_{2}^{\mathrm{T}}\right]^{\mathrm{T}}=(1+\sigma(\mathrm{B}))\left[\xi_{1}^{\mathrm{T}}, \lambda^{-1 / 2} \varepsilon_{2}^{\mathrm{T}}\right]^{\mathrm{T}}
$$

Thus

$$
\begin{aligned}
k(A, H) \geq \frac{\|A \xi\|}{1-|\lambda|}= & (1-\sigma(H))^{-1} \| A\left[\xi_{1}^{T}, \lambda^{-1 / 2} E_{2}^{T}\right]^{T}- \\
- & A\left[0^{T},\left(\lambda^{-1 / 2}-1\right) \xi_{2}^{T}\right]^{T} \| \geq \\
& \frac{1}{4} \sqrt{\operatorname{cond}(A)}\left[1+\sigma(B)-2\left(\sigma(H)^{-1 / 2}-1\right)\right]
\end{aligned}
$$

which tends to infinity as cond(A) does. Hence SOR is also not well-behaved for $M=A$. Hence we have

Theorem 6.4
SOR iteration is not well-behaved for $M=I-H$ or $M=A$.

7. FINAL REMARKS

We have shown that certain well-known iterations are numerically stable and except Gauss-Seidel they are not well-behaved. However it is possible to get good-behavior for $M=A$ using iterative refinement with single or double precision for the computation of the residual vectors.

It is shown in Jankowski and Woźniakowski [77] that if ζ cond $^{2}(A)$ is of order of unity then any numerically stable method (direct or iterative) with iterative refinement using only single precision is well-behaved for $M=A$. Since ζ cond $^{2}(A)$ is much less than unity in most practical cases, Jacobi, Richardson and $S O R$ iterations with iterative refinement in single precision are well-behaved.

ACKNOWLEDGMENT

I am indebted to A. Kielbasiński and J. F. Traub for their valuable comments on this paper.

Jankowski and Woźniakowski [77]	Jankowski, M., Woźniakovaki, H, "Iterative Refinement Implies Numerical Stability," to appear in BIT.
Wilkinson [63]	Wilkinson, J.H., braic Processes, Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.	

SECURITY CLASSIFICATION OF THIS PAGE (Whan DAEA Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER ${ }^{\text {a. GOVT ACCESSION NO. }}$	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtille) ROUND-OFF ERROR ANALYSIS OF ITERATIONS FOR LARGE LINEAR SYSTEMS	5. TYPE OF REPORT A PEAIOD COVERED Interim 6. PERFORMING ORG. REPORT NUMPER
7. AUTHOR(\cdot) H. Woźniakowski	$\begin{aligned} & \text { C. CONTRACT OR GIANT NUMIER(:) } \\ & \text { NOO014-76-C-0370; } \\ & \text { NR 044-422 } \end{aligned}$
9. PERFORMING ORGANIZATION NAME AND ADDRESS Carnegie-Mellon University Computer Science Dept. Pittsburgh, PA 15213	10. PROGRAMELEMENT:PROJECT.TASK AREA Q WORK UNIT NUMERSS
11. CONTROLLING OFFICE NAME AND ADORESS Office of Naval Research Arlington, VA 22217	12. REPORT OATE April 1977 13. Number of pages 27 2
T4. MONITORING AGENCY NAME A ADDRESS(If diflermit from Controllind Offlce)	15. SECUMITY CLASS. (of thie roport) UNCLASSTFIED
	15. DECLASSIFICATION.OOWNGAADING

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abetract entered in BIock 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on roverat alde lf neceasery end fdenfify by block ncenber)
 error analysis of successive approximation iterations for the solution of large linear systems $A x=b$. We prove that Jacobi, Richardson, Gauss-Seidel and SOR iterations are numerically stable whenever $A=A^{\star}>0$ and A has Property A. This means that the computed result x_{k} approximates the exact solution α with relative error of order $\zeta\|A\|$. $\left\|A^{-1}\right\|^{k}$ where ζ is the relative computer precision However with the exception of Gauss-Seidel iteration the residual vector $\left\|A x_{k}-b\right\|$ is of order $\zeta\|A\|^{2}\left\|A^{-1}\right\|\|\alpha\|$ and hence the remaining three iterations are not well-behaved.

