NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Survey of Analysis Techniques

for Combinatorial Algorithms

Bruce Weide

September 1976

This work was supported in part by a National Science Foundation Graduate

Fellowship.

Abstract - This survey includes an introduction to the concepis of probiem
complexity, analysis of algorithms to find bounds on complexity, average-case behavior,
and approximation algorithms. The major techniques used in analysis of algorithms are
reviewed and examples of the use of these methods are explained. A brief explanation
of the problem ctasses P and NP, as well as the class of NP-complete problems, is also
presented.

Acknowledgements - The author would like to thank Profs. S.H Fulier, H.T.
Kung, and M.I. Shamos for their helpful suggestions.

I. Introduction

A. MOTIVATION

We shall express our darker purpose.
~William Shakespeare

It has long been recognized that the study of the behavior of algorithms plays
a crucial role in intelligent algorithm design. Aho, Hoperoft, and Ullman [1974] begin the
preface of their recent book on algorithmic design and analysis by pointing out that
"The study of algorithms is at the very heart of computer science." At the foundation
of every computational discipline is a collection of algorithms. After a problem (speech
understanding, picture processing, compiling, etc.) is analyzed at a high level and
design decisions are finalized, algorithmic decisions must be made in order to
implement the design on a real machine. One job of the computer scientist is to isolate
and study these algorithms, which abound in graph theory, statistics, operations
research, and many other areas. Hence the pervasive nature of analysis of algorithms.

Despite (or perhaps because of) many significant new results in analysis of
algorithms in the past few years, there is no current survey of the mathematical
techniques used in algorithmic analysis. For the reader who wants to see the gory
details of the analysis of many algorithms, and is willing to and capable of supplying
many more details himself, the three volumes of The Art of Computer Programming by
Knuth [1968, 1969, 1973] are unsurpassed for completeness. Aho, Hopcroft, and Ullman
[1974] is an excellent text with many examples of both design and analysis but, like
Knuth, does not provide an overview of the area,

For one who does not have the months or years to spend on details, however,
but wants simply an overview of technigues and a list of some important results, the
literature is sparse. The articles by Knuth [1971], Reingold {1972], and Frazer [1972]
provide some relief, but concentrate heavily on presenting the detailed analysis of one
or two example algorithms. Also, new results since 1972 are abundant and are
obviously not contained in those papers. A fine paper by Borodin [1973] treats
primarily the theoretical concepls of computational complexity, reviewing the
definitions and properties of complexity classes for various automata.

This survey is an attempt to collect some of the important techniques used in
algorithmic analysis and to list some of the results produced, and thereby (albeit
temporarily) help fill the gap in this area. It is designed to be primarily a survey, with
tutorial comments where appropriate,

[-2

The reader is assumed to be familiar with the notion of an algorithm and with
the nature of some of the important discrete (combinatorial) problems: sorting,
searching, graph problems, discrete optimization problems, etc. For those who are not,
Knuth [1968, 1973] and Aho, Hopcroft, and Ullman [1974] provide explanations. These
sources should in fact be referenced at practically every major point; to avoid this
inconvenience, the default references are to the three volumes of Knuth [1968, 1969,
1973] and to Aho, Hopcroft, and Uliman [1974].

B. THE NOTION Of COMPLEXITY

If you wish to converse with me, define your terms.
-Voltaire

I hate definitions.
-Benjamin Disraeli

Numerous questions immediately come to mind regarding the very definition of
complexity, which can be described as a function mapping problem size into the time
required to solve the probiem. {(Note that we have already limited ourselves to
consideration of time complexity, ignoring questions of the amount of space required,
comprehensibility of the algorithm, and the literally scores of other factors which must
be taken into account when designing an algorithm. Time complexity, white important, is
certainly only one dimension of algorithm-space.) Among these questions, which are
discussed in this section, are the notions of upper and lower bounds on complexity,
models of computation, and problem representation. Clearly, for any measure of
probliem difficuity to be precise enough to be useful, a particutar model of computation
(including permissible operations and their associated costs) and a probiem
representation (making a definition of problem size possible) must be specified
unambiguously.

DOES COMPLEXITY PERTAIN TO A PROBLEM OR TO AN ALGORITHM?

Typically, we are interested in the {inherent) complexity of computing the
solution to problems in a particular class. For example, we might want to know how
fast we can hope to sort a list of n items, initially in an arbitrary order, regardiess of
the algorithm we use. In this case, we seek a "lower bound” L(n) on sorting, which Is a
property of the sorting problem and not of any particuiar aigorithm. This lower bound
says that no algorithm can do the job in fewer than L(n) time units for arbitrary inputs;
i.e., that sorting takes time af least L{n).

On the other hand, we might also like to know how long it could take us to sort
such a list with a worst-case input. Here, we are after an "upper bound" U(n}, which

-3

says that for arbitrary inputs we can always sort in time at most U{n). Such an upper
bound can be thought of as being associated with the problem, but is most often
proved by demonstrating an algorithm which solves the problem in at most U(n) time.
Hence, algorithms are normally analyzed primarily to determine their worst-case
behavior.

One way of seeing the distinction between lower and upper bounds is to note
that L(n) is the minimum (over all possible algorithms) of the maximum complexity (over
all inputs), whereas Xn) is the minimum (over all known algorithms) of the maximum
complexity (over all inputs). In trying to prove lower bounds, we concentrate on
techniques which will allow us to increase the precision with which the minimum (over
all possible algorithms) can be bounded. Improving an upper bound means finding an
algorithm with better worst-case performance. This difference leads to the differences
in techniques developed in complexity analysis.

While there are apparently two tomplexity functions for problems (lower and
upper bounds), it is the ultimate goal in computational complexity to make these two
functions coincide and provide a single complexity measure for the problem class by
finding an "optimal" algorithm; however, for most of the problems we will mention, this
remains a goal and is not yet a reality.

DOES COMPLEXITY HAVE TO REFER TO THE WORST CASE, OR COULD IT
MEASURE THE AVERAGE CASE?

Traditionally, the worst-case complexity has been of major theoretical interest
for the reasons just cited, Recently, however, there has been greater effort in the
analysis of the behavior of algorithms "on the average”, since (intuitively, at least) this
seems to provide the kind of information which would be more useful in the application
of complexity results to real-world problems. For example, the simplex algorithm for
linear programming is known to perform miserably (require time which is an
exponential function of the problem size) in the worst case, but for problems
encountered in practice it almost always does extremely well.

There are problems with this approach, however. This first is simply that
averaging over many cases complicates the analysis considerably. Secondly, while the
average alone might be of some value, finding the distribution of solution times or even
the variance is an added burden, and therefore too often neglected in practice. And of
course there is the biggest objection of all: the typical assumptions which must be
made regarding the probability distribution over all possible inputs (usually simple
ones to make the analysis tractable) are normally either grossly unrealistic or even
meaningless. Despite these objections, which will be covered later in more detail, work
On average-case behavior has continued to expand to the point where it has now made
its mark on the design of algorithms for very hard problems, as well as on algorithmic
analysis.

1-4

DOES COMPLEXITY MEASURE THE NUMBER OF STEPS ON A TURING MACHINE, OR
THE NUMBER OF SECONDS ON AN 1BM-370/195?

Again, we are usually not interested in either of these figures exactly, atthough
each is a legitimate measure of complexity in certain cases. The issue at hand is the
"model of computation”, and except for the most thearetically-oriented results, Turing
complexity is not appropriate. Likewise, a particular machine like the IBM-370/195 is
probably a bad choice because it makes the analysis even more complicated than it
needs to be for most purposes (aithough Knuth [1968, 1969, 1973] detines his own
machine and proceeds to derive functions giving the run times for some particular
implementations of algorithms on that machine). In choosing a model of computation,
we try to achieve a batance between realism and mathematical tractability, and this
trade-off typically results in both being short-changed. However, in order to get any
results whatsoever, this compromise must be made; experience indicates that useful
results can be obtained despite what appear to be overly simplified computational
models.

What is more appropriate than finding exact run times on particular machines
(since it factors out many implementation details) is a mode! of computation in which
only certain important "elementary” operations are counted, and the complexity is
reported to be O(f(n)}, read "of order f(ny". Mathematically, g{n) is O(f(n}} if there is a
constant ¢>0 such that as n-oo, g{n)/fin)=c. Intuitively, the number of elementary
operations required, g(n), is approximately some constant times f(n) for large values of
n. Other definitions are also found in the literature. Knuth [1968] uses g(n) = O(f(n)) to
mean that cf(n) is an upper bound on g(n} for all sufficiently large values of n. What
has been called "big-0" notation here is one instance of what Knuth [1976] would call
"big-theta” notation, which means that g(n}/f{n) is bounded above by some constant
and is also bounded below by some constant, as n-o. The reason for using this
variation rather than the version which only describes an upper bound is that it
contains more information, and that information can be useful in comparing algorithm
behavior. Also, it is inappropriate to bound a lower bound from above, which is what
Knuth’s definition of O{f{n)} does.

Consider as an example the problem of finding the maximum element in a list of
n items from a linearly ordered set. An appropriate choice for an elementary operation
is a comparison between two items of the list, because the items might be records for
which comparisons are non-trivial, even while loop control, pointer management, elc.
remain easy. Another natural choice is the "uniform cost criterion”, where memory
references, comparisons, additions, etc, all take unit time. It the operation which must
be done most often (as n gets large) 1s chosen, then counting auxiliary operalions
would only change the constant ¢ and would not affect the asymptolic behavior of the
algorithm,

Normally, the choice of operations to count is not crucial to the analysis,
assuming that the dominant one is among them. However, there are examples of
extremely clever algorithms which almost surefy resuited from careful consideration
{by the algorithm designer) of which operation is most important. One particularly
instructive case is Strassen’s algorithm for muitiplying n x n matrices {(see Strassen
[1969]). He shows how to multiply two 2 x 2 matrices, with elements from an arbitrary

-5

ring, using 7 multiplications and 18 additions (as opposed to the obvious method using
8 multiplications and 4 additions). His algorithm for multiplying two n x n matrices,
where n = 2"‘, begins by partitioning each of the original matrices into four sub-
matrices of size 2%°1 x 2! (to which the algorithm is applied recursively), then
multiplying the 2 x 2 matrices (which have 2%~1 x 2k-1 matrices as elements) using the
7 multiplication, 18 addition algorithm.

At first glance, this looks fike a losing proposition on real machines (if we count
addition and multiplication as elementary operations), since the obvious method for
multiplying 2 x 2 matrices uses only 12 operations as opposed to 25. This is a very
bad choice of elementary operations, though, because the multiplications and additions
are of matrices, and matrix multiplications really do cost more. A careful analysis
(covered later) reveals the trade-offs involved, and leads to the conclusion that the
total number of operations is not O{nS) as in the obvious method, but rather
O(n'o8 7y = O(n2'81) (all logarithms in this paper are base-2). This is true even though
the obvious algorithm takes significantly fewer elementary operations for the case of 2
x 2 matrices of scalars.

The main point is that even while the end resuit, that the algorithm is O(n""g 7),
applies whether we count scalar multiplications or both additions and multiplications,
the key to understanding the algorithm’s efficiency (and to designing it in the first
place!} is realizing that multiplication of matrices is much more costly than addition of
matrices. Therefore, because the algorithm is applied recursively to matrices whose
elements are matrices, for sufficiently large values of n we should be quite willing to
perform many more additions in order to save just one multiplication. Except for that
crucial observation, one would be very unliely to even try to find a new algorithm for
multiplying 2 x 2 matrices.

HOW IS THE "SIZE" OF A PROBLEM MEASURED?

The measure of problem size is another vague concept. It can be made exact
by letting n be the number of symbols required to encode the problem for a particular
Turing machine or for some other computational model. We must be careful that clever
encoding tricks are not used which drastically affect our results, however. For
example, if we encode integers in binary representation for an algorithm which then
takes O(2") steps (where n is the number of bits used to represent the input), the
same algorithm would require only O{n) steps if we could encode the input in unary
notation (since a number which could be represented using k bits in binary requires
about 2K "marks" in unary). For this reason, along with the fact that in practice we use
anything but unary notation, the latter representation is not appropriate.

In most cases, though, the problem size is simply some natural measure which,
of course, must be explicitly dafined in each case in order for results to have any
meaning. For example, in sorting problems, n is the number of items in the list; for
graph problems, it may be the number of vertices. Describing the problem size may
even be more convenient if two or more parameters are used, for example the number
of edges and the number of vertices in a graph. If a graph has V vertices and E edges,
then it is clear what is meant by "an algorithm which requires Q(V+E) steps".

-6

For results which are to be of interest in real-world situations, definitions of
both the measure of problem size and the measure of computing time should be closely
related to the well-defined meanings which these terms have for actual machines. Thus,
the random-access machine model is more commonly used than the Turing machine
model in all but primarily theoretical analyses. Aho, Hopcroft, and Uliman [1974]
contains a good account of the similarities and differences between these two models
of computation.

II. Lower Bounds

« abounding in intuitions without method...
-George Santayana

It is generally agreed that the more difficult of the bounds on problem
complexity is the lower bound. There is no algorithm to analyze, few general principies
to apply; proofs of results in this area often require outright cleverness. The results
must apply to any conceivable algorithm, including undiscovered ones. Still, a few
techniques have shown themselves to be applicable to many problems, and others
seem to have promise.

A._ TRIVIAL LOWER BQUNDS

Among those in the former category is the most obvious (and also the weakest)
method, which produces what are appropriately called trivial lower bounds. The
method consists of simply counting the number of inputs that must be examined and
the number of outputs that must be produced, and noting that any algorithm for
solving the problem must do enough work to accomplish these tasks.

There are many examples of the use of such a technigue. One interesting graph
problem is Dijkstra’s {1959] single-source shortest path problem. Given a directed
graph G with non-negative edge weights, and a distinguished vertex v, find the
minimum-weight path from v to each other vertex of G. A more interesting variation
allows negative-weight edges but no negative-weight cycles. Let n be the number of
vertices of G; then there may be as many as n(n-1) edges in G, and any algorithm for
solving the modified problem must "look at" each of them. If some edge were ignored
by any algorithm, we could change its weight so that a shortest path was missed and
force the algorithm to give a wrong answer, so there are inputs which require O(n)
time for any algorithm to solve the modified single-source shortest path problem.

Similarly, muitiplication of a pair of nxn matrices requires that n? outputs be
produced, and is therefore at least O(nz). Notice that this says nothing about the
number of multiplications, for example, required to solve the problem, but only that
gome operation must be performed at least O(nz) times; therefore, the dominant
operation must be performed at least that many times.

Generally speaking, trivia! lower bounds are easy to come by and, therefore, of

-2

less interest than sharper bounds which can sometimes be proved by more
sophisticated methods. However, trivial bounds are often the only lower bounds
available, and because they are usually easy to prove, should probably be tried before
less obvious techniques or tricks are applied.

B. INFORMATION-THEQRETIC BOUNDS

Several authors have used arguments from information theory to show that any
algorithm for solving some problem must do some minimal amount of work. The most
useful principle of this kind is that the outcome of a comparison between two items
contains at most one "bit" of information (where “bit" is used in the technical sense).
Hence, if there are m possible input strings, and an algorithm purports to identity
which one it was given solely on the basis of comparisons hetween input symbols, then
log m] comparisons are needed. This is because Mog m| bits are necessary to specify,
one of the m possibilities (in standard binary notation, for example).

The most celebrated example of a lower bound from information theory is for
the problem of sorting a list of elements from a linearly ardered set (see Knuth [1973],
who uses a "decision tree" model which is based on the same argument). For a list of
n items, there are n! possible permutations. If an algorithm would sort any of them (or
equivalently, identify the original permutation), it must perform at least {log ni]
comparisons, Using Stirling’s approximation to n! betore taking the logarithm gives a
lower bound of O(n log n) for the sorting problem.

Application of this technique to the problem of merging two ordered lists from
a linearly ordered set gives a lower bound for that problem as well.

C. ORACLES

Knuth [1973] points out that a better bound can be obtained for the merging
problem by another technique which he calls the construction of an "oracle”. An oracle
is a fiendish enemy of an algorithm which at every opportunity tries to make the
algorithm do as much work as possible. In the case of merging the two lists Ay < Ap <

C < Ay and By < By <. < B,, by any comparison-based algorithm, the oracle will
provide the result of any comparison on the basis of some rute; in this case, a useful
rule is A; < By iff i<j. Of course, this rule applies only for certain inputs, but the
algorithm does’ not know which input it has, nor does it know the rule, and must
therefore ask the questions anyway.

Now if comparisons are resolved by this oracle, merging must end with the
configuration:

81<A1<82<A2<...<Bn<1ﬁ.n

since this is the only ordering consistent with the oracle’s rule, and the algorithm must
produce this output if it works properly.

i1-3

Suppose that one of the comparisons between adjacent elements from this final
list had not been made during the course of execution of the algorithm; say, A,Bo.
Then the configuration:

BI<B2<A1<A2<‘“<BH<AH

would also be a iegitimate possible outcome, being indistinguishable from the correct
answer on the basis of the comparisons which were made. Hence, all 2n-1 comparisons
between adjacent elements of the final list must be performed for the algorithm to
produce the correct output.

It may be argued that this bound is not very interesting, since it is less than
the trivial bound of 2n. However, as a bound on the number of comparisons it is not so
trivial, and it serves to illustrate the technique. Also, comparisons may take much
fonger than bookkeeping operations in some applications, and the trivial bound simply
says that something must be done 2n times. Asymptotically, this distinction is of no
consequence, but for practical values of n it may be quite important. Hyafil [1976] has
used an oracle to prove a lower bound for the selection problem (finding the k!t
fargest of n elements), where the trivial bound is sintply n. In this case, both upper and
lower bounds are known to be O(n), and the oracle provides a way of refining the
lower bound to permit comparison with precise upper bounds,

D. PROBLEM REDUCTION

One of the most elegant means of proving a lower bound on a problem Py is to
show that an algorithm for solving Py could be used to solve another problem P, for
which a lower bound is known. This means that P can be solved no faster than P, and
provides a lower bound on Py, provided that an instance of P can be mapped into an
instance of P, at least as fast as P> can be solved. The power of this approach is
substantial.

Shamos [1975] uses problem reduction to show that an algorithm for finding
the convex hull of n points in the plane could be used to sort on one of the
coordinates and therefore must take time at least O(n log n). Other celebrated
applications include the reduction of context-free language recognition to matrix
multiplication (see Valiant [1975]) the mutual reductions between boolean matrix
multiplication and transitive closure (see Fischer and Meyer [1971]; and the
refationship between integer multiplication and the discrete Fourier transform (see
Schonhage and Strassen [1971]).

Many other examples of this technique are found in transformations between
so-called NP-complete problems (see section V). Note that it is not always too clear
how to identify the problem Po, which is of course a requirement for ustng this
approach.

-4

E. OTHER TRICKS

Among the newer approaches for proving lower bounds is the use of graph
models of algorithms. Kung and Hyafil [1975] show trade-offs between the depth and
breadth of trees describing the paratlel evaluation of arithmetic expressions to show
that the possible speed-up using k processors is bounded by (2k+1)/3. This result is
counter to the intuition that having k processors available would allow a speed-up of
k. In fact, for certain computations (such as adding up a list of k numbers) the speed-
up is even less, in this case only kflog kK. The lack of a good mode! for paralle!
computation has hindered further development of ways of decomposing problems for
parallel solutions, even though the prospect of inexpensive parallet hardware compels
us to study such algorithms.

Valiant [1975] uses a similar approach to find various non-linear lower bounds
by concentrating on graph-theoretic properties. Lawler [1975] expresses confidence
that such arguments will continue to prove usefut in demonstrating lower bounds, and
recent results show this optimism to be well-founded.

Another new approach is the use of theorems from complex analysis by
Shamos and Yuval [1976] to show that finding the mean distance between n points in
the plane requires O(n2) square-root operations. Their proof is based on the ambiguity
of the square root function. The primary significance of this result is that it had
previously been almost impossible to obtain lower bounds except for the four common
arithmetic operations and comparisons, whereas the new approach applies to any
multiple-valued function (such as square root, inverse trigonometrics, logarithms, etc.).

It remains to be seen whether these and other tricks will be applicable to
enough problems to be called “methods" for proving lower bounds. At present, non-
trivial results and general techniques are quite sparse.

I[II. Upper Bounds

Mathod is good in all things, Order governs the world.
-Jonathan Swift

In contrast to the lack of methods for proving lower bounds, there are two
widely used ways of proving upper bounds by analyzing the worst-case behavior of
an algorithm, One technique (the use of recurrence relations) sometimes dominates the
other, but it is usually so easy to simply count instructions that this approach is
considered separately. A third alternative, the application of brute force, has been
known to work in at least one instance, but has littte else to recommend it and is dealt
with only briefly,

A. IDENTIFYING A WORST CASE AND COUNTING STEPS

Since we seek an upper bound on a problem, and our approach is to
demonstrate that a particular algorithm to solve the problem never takes more than
U{n} time, the first task is to identify a "worst case"; i.e, an input of size n which
requires the algorithm to do as much work as any other input of the same size.

In some cases, this is not difficult, because the algorithm may do the same
amount of work for every input of size n. This phenomenon is easily recognized by
inspection of a description of the algorithm in which the flow of control is clearly
stated. If this flow does not depend on the data, then every case is a “worst" one. For
example, the obvious algorithm for finding the largest element in & set S is:

procedure largest(S);
begin
big := first element in S;
for each remaining element x of S do big := max(big,x);
return(big)

end;

Clearly, for every set S with n elements, the algorithm makes n-1 comparisons
(and this is optimal since the lower bound is also n-1), Similarly, multiplication of two
nxn matrices in the classical way takes O{na) steps regardless of the data. There are
many more examples of such algorithms for which identifying the worst case is easy
because every case is a worst case.

-2

However, sometimes there are data-dependent decisions which affect the flow
of control and make the job of finding a worst case slightly more difficult. Search
algorithms have this feature; for example, the binary search algorithm fooks through a
sorted array consisting of n elements for the position of a particular "key" item which
is known to be in the array:

procedure binsearch(Akey)
begin
compare key to middle element of A
doing < : refurn{binsearchifirst half of Akey))
> ; return{binsearch(last half of Akey))
= : returp(pointer to middie of A)
end;

It is not too difficult to see that a worst case input is one for which each
comparison results in another recursive call to the procedure, and we only find the
key when the array has been narrowed down to just one element. This takes
Llog n] +1 comparisons {which is essentially optimal, since a lower bound of [log QJ is
obtained from information-theoretic arguments).

A worst case which is only slightly harder to manufacture is one for guicksort,
an ingenious sorting algorithm which was proposed by Hoare [1962] The algorithm is
very simpie to describe:

procedure quicksort(S)
begin
if 151 51 then return(S)
choose some element x from 5;
partition § into those elements less than x (Sgh
those equal to x (S5), and those greater than x {S3)
return{auicksort(S{) followed by Sp followed by
quicksort{Sg))
end;

Note that if all elements of 5 are distinct and the algorithm is unlucky enough
to pick x as the smallest element of & at every stage, then S is empty, Sp contains
one element, and S, contains only one element fewer than §. Using recurrences, as in
the next subsection, it is found thal quicksort requires 0(n2) time in this case. This is
not optimal, since sorting algorithms which never require more than O(n log n) steps
are known, and the lower bound is O(n log n}. An easy modification to quicksort
(choosing x as the median element of 5) produces one such algorithm which is within a
constant factor of being optimal,

For more complex algorithms, particularly those for graph problems and
discrete optimization problems, finding a worst case can be more difficult. An
interesting case in point is the modified single-source shortest path problem. In an
article on globa! flow analysis, Edmonds and Karp [1972] mention in passing that a

HI-3

modified version of Dijkstra’s [1959] algorithm runs in O(n3) time for any directed
graph satisfying the conditions of the modified problem (see section lI). Their one-
sentence justification is convincing to most, but D.B. Johnson [1973] shows an entire
family of directed graphs which require O(n2") time! All of which demonstrates that
even the most respected people in the field can be misled by faulty identification of
the worst case.

B. RECURRENCES

Although analysis of worst-case behavior by directly counting the number of
steps is greatly simplified by a concrete description of the algorithm, it is not always
necessary to be so explicit. In deriving recurrence relations for solution times, it is
sometimes more convenient to think in abstract terms about what the algorithm does.
This is especially true when the algorithm itself is not written recursively.

In accordance with established usage, let {n} be denoted by T(n); "T" is for
"time to solve the problem". Then it is usually possible to find a recurrence relation
{difference equation) for T(n), and to solve it exactly (or even just approximately,
concluding that T(n) is O(f(n)), for example) to discover the worst-case behavior of an
algorithm.

Recall the first example of the previous subsection, where the problem is to
find the largest element in a set S of n elements, Although the algorithm is not written
as a recursive procedure, it can nevertheless be viewed as finding the largest element
of a set §” consisting of the first n-1 elements, then comparing the result to the nth
element of S. The recurrence obtained is:

T{n) = T{n-1) + 1 for n>1
T(1) =0

where the initial condition is zero because no comparisons are needed to find the
maximum element of a singleton set. The solution to this recurrence is clearly T(n) = n-
1, the same result as before.

Next consider the binary search algorithm, where it is true that:
T(n) s T(nf2) + 1 forn> |
(l)=0

Again, the initial condition is zero because by hypothesis the key item is in the array
A, and if A consists of just one element it must be the key. The recurrence is
discovered by recognizing that in the worst case, one comparison is used to determine
which remaining half to search recursively, so the total number of comparisons T(n) is
the sum of this comparison and the number T(n/2) required to find the key in an array
essentially half as large. Because n may be odd, the relation is not exact, hence the

1I-4

use of "<" rather than "=", The remaining part can never be larger than n/2 whether n
is odd or even,

Solving for T(n) and noting that the number of comparisons must be an integer
gives T(n) sLlog Qj, which is optimal. The particular implementation of binary search
discussed in the previous subsection makes a redundant comparison for n=1, which
causes the slight discrepancy between this result and the one obtained for that
implementation.

A more complicated recurrence results from analyzing the worst case of
quicksort, Here, the equation is:

T(n) = T{n-1} + P(n} + C{n} forn>1
T =TC)=0

where C(n) is the number of comparisons required to choose an element x from S, and
P(n) is the number needed to parfition S on the chosen element x. Since we are
counting only comparisons, C(n} = 0 and P(n) = n-1, so:

Tim =T{h-1) +n -1 for n>1
T{1)=TOY=0

for which the exact solution is T(n) = n(n-1)/2. Of course, it is apparently not too
intelligent to choose x arbitrarily if a worst case of 0(n?) must be avoided. Rather, x
should partition S info approximately equal parts {Aho, Hopcroft, and Ullman [1974] call
this the "principle of balancing™). This can be accomplished by choosing x as the
median element of S, whereupon the recurrence becomes:

T(n) < 2T{(n/2) + P(n) + C(n) forn>1
Ty =T{C)=0

As in the case of binary search, "<” replaces =" hecause n may be odd, and T(n) still
provides an upper bound.

Now, P{n) =n-1 as before, but C(n) is no longer zero but the number of
comparisons necessary fo find the median of n elements. Blum, et. al. [1973] present
an algorithm which finds the median in at most 5.43n comparisons, and Hyafil [1976]
reports that Paterson, Pippenger, and Schonhage have an algorithm which uses at most
3n comparisons. Taking C(n) = 3n:

T(n) € 2T(n/2) + 4n - 1 forn>1
T(1) =T(@Q) =0

for which the sotution is T(n} s 4nlogn -n + 1,50 that T(n) is O(n log n} in the worst
case.

11-5

As a final example, consider Strassen’s [1969] algorithm for matrix
multiplication. In order to multiply two nxn matrices (for n a power of two; if it is not,
embed the original matrices in ones with n equal to the next higher power of two), the
algorithm performs 7 multiplications of 2x2 matrices (recursively) and 18 additions of
(n/2)x(n/2) matrices. Assuming that the matrix additions take (n/2)2 scalar additions,
the recurrence is:

T(n) = 7T(n/2) + 18(n/2)2 for n > 1
T(1) = 1

Here, all scalar multiplications and additions are counted as elementary operations, and
the initial condition is obvious because multiplication of two Ix1 matrices consists of a
single scalar multiplication. The solution is T(n) = 7n'08 7 - 6n2, so T(n) is O(n'OE 7)
compared to O(nS) for the classical method. Because of the factor of 7, though, the
classical algorithm (which takes 2nS - p2 operations) is still faster for n less than
about 600. By using a hybrid scheme which uses Strassen’s algorithm for large
matrices and the classical algorithm for smaller ones, this crossover point can be
reduced (for a real implementation) to about n=38 (see Spiess [1974]).

Simply finding a recurrence is only part of the problem; the other half, of
course, is solving it. It is relatively easy to find an upper bound on the solution by
simply guessing a solution and then trying it. For example, given the recurrence:

Tin) = 2T(n/2) + n log n

with some initial condition T{1), we might guess that T{n) should be no larger than
On?). 1If we assume that T(n) = cn? and can show that the right-hand side of the
recurrence is at most cn + lower order terms, then O(n<) is an upper bound on T(n).
That this is true for the present example is easily verified.

A better guess in this case is that T{n) is O(n logzn), which means that our
guess is cn-log“n, resulting in:

T(n) = 2T(n/2) + nlog n

cn Iogz(n/Z) + nipogn
2

If

cntogn + Oln log n)
so that O(n logzn) is an upper bound for T{(n). In tact, since the coefticients of n logzn
are the same on both sides, T(n) = O(n Iogzn).

This computation can be extended to find the exact solution. Suppose that T{n)
is a linear combination of linearly independent functions, the dominant one of which is
n Iog2n. Substituting an-logzn into the recurrence gives rise to terms in n log n and in
n, which appear on the right-hand side but not on the left. Consequently, T(n) must
also have terms bn-fog n + cn, which, when expanded on the right, produce no new
fower order terms. Now it is a simpie malter to equate coetticients of like functions to
get the solution: T(n) = (n Iogzn +nlog n)f2 + T{1n.

111-6

More powerful techniques must sometimes be applied. Generating functions {z-
transforms), which are atso of value in solving problems associated with average-case
analysis, are among the most useful of these tools. Knuth [1968], Liu [1968], and
Kieinrock [1975] give excellent accounts of how to use this method. Some relatively
easy recurrences can also be solved by referring to standard formulas (see, for
example, Dablguist and Bjorck [1974] on ditference equations), while at least
references to others can be found by iterating the recurrence to find the first few
terms and then looking up the sequence in Sloane [1973]

C. BRUTE FORCE

Even though the method to be described here is not often practical, it is
interesting because it is possible at all only with the aid of high-speed computers and,
therefore, has only recently been attempted. Despite lacking finesse and thereby
appealing to some, it has really only proven to be useful in one rather minor instance
which is primarily a curiosity.

The question of how to sort using a minimum number of comparisons is
considered in detail by Knuth [1973], who paints out that the merge-insertion
algorithm of Ford and Johnson [1959] is optimal for n < 12 and for n = 20 and 21. That
is, the number of comparisons is exactly ﬁog n!] for these cases.

The question of the optimality of merge-insertion for n =12 was settled by
Wells [1965) by using brute force computing power to exhaustively demonstrate that
no algorithm could sort 12 items using fewer than 30 comparisons, and so merge-
insertion (which uses 30} is optimal even though ﬁog 1211=29. In a sense, he refined
the lower bound on sorting 12 elements by effectively bounding the worst-case
performance of every possible algorithm! One can imagine finding worst cases in a
similar manner, by running an algorithm on every possible input, to prove upper
bounds., Such an approach is not to be recommended so long as there remain useful
ways to consume computer time.

IV. The Average Case

What is normal is at once most convenient, most honest, and most wholesome.
-Frederic Amiel

The normal is what you find but rarely.
-W. Somerset Maugham

Recent efforts in algorithmic analysis have been largely directed toward
analyzing behavior on the average; ie., finding the complexity of a computation
averaged over some distribution of inputs. Generally, the same techniques reported in
the previous section are still applicable, although some of the recurrences are tougher
to handle and therefore stronger solution methods may need to be applied.

A. PROS AND CONS OF AVERAGE-CASE ANALYSIS

The primary reason for analyzing the behavior of algorithms on the average is,
of course, that a worst case may arise so rarely (perhaps never) in practice that some
other complexity measure would be more useful. An alternative to worst-case analysis
that immediately comes to mind ts some sort of average-case analysis. Rather than try
to define and analyze a particular case which is somehow “average", a better approach
is to simultaneously analyze all cases and to weight the individual case complexities
with the appropriate probabilities of each case occurring.

Obviously, this complicates the mathematics to a considerable extent. If this
were the only objection to doing average-case analysis, all that would be required
would be more sophisticated tools, and this section could dwell on those. However,
more serious questions have been raised which tend to cast considerable doubt on the
entire adventure; this is the reason for not going into a more detailed description of
the methods used in average-case analysis. Rather, the reader is urged to consult the
original sources,

The most important objection is that there is typically no way to identify the
probability distribution over all problem occurrences. While it may be reasonable in
some situations to assume thal every possible problem is equally likely (such as
assuming that every item is equally likely to be the key in a binary search, or that
every permutation is equally likely fo be the input to quicksort), this assumption really

v-2

only makes sense if the problem space 15 finite. It apparently makes no sense, for
example, to say that every integer program is equally likely, Furthermore, even when
it does have meaning, the assumption of a uniform distribution over all possible inputs
may not be at all realistic in some situations,

In one attempt to answer this objection, Yuval [1975] has suggested that
algorithms might "randomize" their inpuls in order to make the assumption appear
valid. He has pointed out that with suitable random steps being taken at certain
stages, an algorithm could have good expected behavior tor every inpul, and thereby
assure good expected-case solution times regardless of the probability distribution
being assumed (see aiso Rabin [1976]). For example, quicksort could choose the
partitioning element randomly (this idea was offered by Hoare [1962] in his original
paper on quicksort). Even though this might seem like a case of the tail wagging the
dog, there is some justification for such an approach in this case. In order to make the
analysis of the algorithm tractable, Sedgewick [1975] assumes that the files to be
sorted are random, but presents evidence that the algorithm works better if they are!

Clearly, not all algorithms can be modified in this manner. The key element in a
binary search can not be "randomized"; it is given as the sole input. Similarly, the
array in which the search is to be made is certainly fixed during the search, so there
is no room to maniputate the algorithm in this way. The best hope is that if there is
some reason to believe that certain keys are more likely, some kind of balanced tree
should be used in place of the sorted array as the data structure for holding the list
elements, and we are therefore analyzing the wrong algorithm,

There is some evidence that despite the shaky basis for the assumption of
random inputs, the results of analysis may nol be extremely sensitive to this
assumption, so long as the distribution over inputs is not too far from random. Also,
no other distribution is likely to yield to anmalysis at all, owing to the difficulty of
dealing with recurrences that result from such aiternative assumptions. Any other
distribution would undoubtedly have as little as or even less basis than the uniform, in
any event. The justification seems to be: "Better some kind of average than none at
all”,

The objections do not stop there, however. Knowing the behavior of an
algorithm on the average provides some information, but it would bolster our
confidence in the result if we also knew the variance. Few attempts at average-case
analysis take this next step and find higher moments ot the solution time. One notable
exception is Sedgewick’s [1975] analysis of quicksort (see also Knuth {1973]), in which
he shows that while the average number of comparisons is about 2nlog n, the
standard deviation is approximately .68n, so that our confidence that the algorithm will
work efficiently grows with n. This is clearly a nice property for an algorithm to
possess and contributes to the explanation of why quicksort works so well in practice.
Unfortunately, such attempts at this more thorough analysis are rare.

One further step, which to the author’s knowledge has not been explored, is to
characterize the distribution of solution times by making use of the underlying
mechanisms which govern the operation of the algorithm. For example, if an algorithm
can be considered to consist of many separate tasks, no ane of which dominates the

¥

V-3

running time (in a sense which must be made explicit; see Feller [1968], tor example),
then under certain conditions the central limit theorem could be applied to show that
the distribution of solution times is approximately normal. This is true for any
distributions of times to complete the subtasks which satisfy rather weak conditions, so
that the randomness assumption is not as critical. If we are willing to make that
assumpftion, finding the mean and variance by the usual methods would then complete a
tairly good description of the algorithm’s behavior.

B. SOME EXAMPLES OF AVFRAGE-CASE ANALYSIS

There is a large and growing number of algorithms which have been subjected
to analysis of average-case complexity. Only a few will be discussed here, but they are
among the most important. Many others can be found in the two "standard"
references,

What is surely the most comprehensive analysis of any algorithm is presented
by Sedgewick [1975] in his Ph.D. thesis entitled "Quicksort", which telts everything you
always wanted to know about quicksort (and much, much more that you didn’t). His
analysis of the average number of comparisons, exchanges, partitioning stages, etc. is
carried out through the use of recurrences, just as for the simple worst-case analysis
of the number of comparisons described in section IIL Along with Appendix B of the
thesis, a good reference for the kinds of techniques used by Sedgewick is Knuth
(1968, 1973) The recurrences are solved by standard methods described in both
places, and look more complicaled than they are, due in part to the large number of
symbols needed to represent the important quantities using their notation.

All recurrences are not easy to solve, however. In an analysis of radix
exchange sorting, Knuth [1973] uses properties of the gamma function and complex
variable theory to derive asymptotic results from what looks like a fairly simple
recurrence for which the usual techniques fail.

One algorithm which has been analyzed in at least three different ways is the
alpha-beta search algorithm for ganie trees. Good descriptions of the algorithm can be
found in Fulier, Gaschnig, and Gillogly [1973] and in Knuth and Moore [1975] The
former authors assume that the game tree is a complete tree with branching factor N
and depth D, and that each permutation of the ranks of the values of the leaf nodes is
equally likely, They proceed to derive expressions for the probability of expanding
individual nodes, and the expected number of bottom positions evaluated. While the
answers in this case look simple enough because of concise notation, the authors point
out the computational infeasibility of calculating these quantities for any but very small
values of N and D. However, they surmise from simu'ation results that the average
number of nodes examined is about O(N-7 20,

Knuth and Moore [1975] make the same assumptions about the tree and the
random ordering of leaf-node values, and show an upper and lower bound on the
average behavior of the algorithm of O((N;ki_j; N)D). They suggest that the simulation
results by Fuller, et. al,, result in a fit to N/ 2 because N is 50 small.

V-4

Newborn [1976] uses a model in which the branch (rather than the node)
values are randomly ranked and obtains even different results, but only for the cases
D=2,3,4. This is yet another example of the dependence of results on the assumptions
of the model being used in the analysis: the three different methods for D=2 give
complexities of ON>4%), O((N/log N)2), and O(N log N, respectively. Of course, the first
is an estimate and the second a bound using the same model, whereas the third is
different because the model is different.

Other examples of average-case analysis include Guibas and Szemeredi [1976]
on double hashing, O'Neil and O'Neil [1973] on boolean matrix multiplication, and Knuth
[1971] and Floyd and Rivest [1975] on selection.

V. Approximation Aigorithms

Trouble creates a capacity to handle it.
~-Oliver Wendell Holmes, Jr.

Untit very recently, the focus of attention in algorithmic analysis has been on
"tractable" combinatorial probiems such as searching, sorting, and matrix multiplication,
which have been previously mentioned. These are among the "easy" problems (which
in current terminology means that their complexity is bounded by a polynomial in n);
on the other hand, most optimization and graph problems are “hard” (their complexity
is apparently not bounded by any such polynomial), Since so many important problems
are, unfortunately, in the tatter category, an entire new group of algorithms which find
approximate solutions to hard problems has been developed. Along with these
algorithms have come new measures of “goodness” and associated techniques for
designing and analyzing approximation algorithms. Two classes of approximation
(guaranteeing a near-optimal solution always, and producing an optimal or near-optimal
solution “almost everywhere") are discussed.

A. PROBLEM CLASSES AND REDUCIBILITY

For the moment it is necessary to return to the formal setting of Turing
machines (TM) and languages to define a couple of important concepts. It is somewhat
artificial, but convenient, to state a problem in terms of a language recognition task by
formulating it so that it has a yes-no solution (for example, "does this traveling
salesman problem have a solution with cost less than k?"), and then asking a TM to
accept the input if the answer is yes and to reject it if it is not. A TM to solve the
problem then accepts only input strings from some language L which consists of
precisely those problem instances with "yes"” answers. It is appropriate to refer to the
original problem and the language L more or less interchangeably in the context of the
classes P and NP (see Aho, Hopcroft, and Ullman [1974] for more details).

Formally, the class P (for “polynomial™) is the set of languages L for which each
string x<L is either accepted or rejected by a deterministic TM in a number of steps
which is bounded by a fixed polynomial in the length of x (i.e., in "polynomial time").
Similarly, the class NP (for "nondeterministic polynomial") is the set of languages L for
which each x¢L is either accepted or rejected by a nondeterministic TM in polynomial
time,

V-2

Ciearly, PeNP from the definitions. Undoubtedly the most intriguing open
guestion in the complexity area is whether P=NP, or whether there are problems in NP
which cannot be solved in polynomial time by a deterministic TM. Problems known to
_be in P include the "easy" problems previously discussed. Other problems in NP, which

might also be in P, are most of the so-called optimization and graph problems, such as
0/1 integer programming, certain scheduling problems, finding Hamiltonian circuits,
graph coloring, and many others {see Karp [1972, 1975]). So far as is known, there is
no deterministic polynomial-time algorithm for solving any of these "hard” problems; ail
known algorithms have a worst-case complexity which is an exponential function of the
problem size.

Fortunately, it is sufficient to consider solving these problems in polynomial
time on a normal random-access computer rather than on a TM, and the problems in P
remain the same (see Aho, Hopcroft, and Ullman [1974]). Roughly speaking, problems
which seem to require some sort of backirack searching through a tree of
polynomially-bounded depth are the difficuit probiems of NP. While there is
overwhelming circumstantial evidence that such problems are not also in P, no proof of
this conjecture has ever been produced.

A language Ly is "polynomially reducible” to Ly if there is a deterministic
polynomial-time algorithm which transforms a string x into a string f{x) such that xel |
iff f(x)L,. The key to the argument that P#ZNP is a remarkable theorem by Cook
{1971] which says thal every problem in NP can be polynomially reduced to boolean
satisfiability (is there an assignment of truth values to the literals of a boolean
expression which makes the expression true?). This means that every problem which
can be solved in polynomial time on a nondeterministic TM can also be solved by
subjecting the input string to a transformation (done deterministically in polynomial
time) which converts it to an instance of satisfiability, and then solving the resulting
satisfiability problem. A general-purpose problem like satisfiability is called "NP-
complete”, “P-complete”, or simply "complete”.

Karp [1972] shows reducibilities among other problems which demonstrate that
the class of NP-complete problems is guite Jarge, and includes all the optimization and
graph problems mentioned above. This fact represents the basis for believing (even if
not being able to prove) that P£NP, since none of the hundreds of algorithms for the
scores of problems which are NP-complete runs in polynomial time. 1f any of these
problems could be solved fast, all of them could be; the fact that so tar none of them
can be is a convincing argument (but not a proof) that they never will be.

The question of whether P=NP is not the only open question to be answered,
however. Some problems are still unclassified. For example, deciding the equivalence of
regular expressions and context-sensitive language recognition are at least as hard as
any problems in NP, but are not known to be in NP themselves; they (along with the
NP-complete problems) are called "NP-hard" since their incfusion in P would imply that
P=NP. On the other hand, graph isomorphism {which is clearly in NP) has not been
shown to be in P, but also has not been shown to be NP-complete, so there may be
problems which require non-polynomial deterministic time but whose solutions will not
help solve the other hard problems in NP. While the latter possibitity would hardly
have been thought unlikely only a few years ago, the discovery that practically all

V-3

hard problems in NP are in fact NP-complete makes the existence of such a problem of
“intermediate” difficulty seem less plausibie.

B. DESIGN AND ANALYSIS OF "GUARANTEED" APPROXIMATION ALGORITHMS

Since all known algorithms for solving NP-complete problems exactly require
exponential time, it is impractical to solve very large instances of these problems.
Happily, many real-world applications which require solutions to optimization or graph
problems do not require exact solutions, but only approximately correct solutions. As a
result, many researchers have developed new approximation algorithms (or are now
analyzing old approximation schemes) for these applications, which attempt to
guarantee near-optimat solutions to all instances of a problem, :

A generally accepted measure of the efficacy of this type of approximation
algorithm (see D.S. Johnson [1973}) is the maximum relative error introduced by the
algorithm; normally, this error appears along with the problem size in the complexity.
Most often, the quantities to be compared to determine the relative error are obvicus:
the objective function value for an integer program, the number of colors required for
graph coloring, and so forth. Occasionally (for example, with the satisfiability problem)
some artificial problem must be created so that the original one looks like some kind of
optimization, The ratio of the absolute error to the exact solution value is given the
symbol ¢,

In designing approximation algorithms, one is, in this case, concerned with
guaranteeing that the refative error ¢ is never larger than some prescribed maximum,
which essentially means that ¢ is taken as given. The goal is to develop an algorithm
that always s<olves the problem to within a factor of li¢. For this reason, many of
these algorithms tend to foliow the same patterns as are commonly encountered in
calculus proofs, with strange functions of ¢ appearing, as if by magic, in the early
stages of the algorithm, in order to assure that the final solution is within a factor of
1t¢ of being oplimal. Recognizing this takes much of the mystery out of what can
appear to be very complicated algorithms.

Because many algorithms are designed n this fashion, their analysis is often
"built-in", and is straightforward. Sahni [1976] gives a very nice summary of the
general techniques in this class, dividing the methods into three categories: digit
truncation (the most complicated; see, for example, Ibarra and Kim {1975]), interval
partitioning, and separation. These are especially usefut for the knapsack problem,
packing problems, and certain scheduling problems. They are particuiarly attractive
from the point of view of analysis, having "templates” for complexity analysis as a part
of the design. The worst-case complexities they produce are usually like Q(n¢/¢) for
some constant ¢ which depends on the problem.

An example of the interval partitioning technique is a simple algorithm for
solving the Of1 knapsack problem:

V-4

maximize: c-%
subject to: a-x < b
x ¢ {0,130

Here, ¢ and a are n-vectors of positive "utilities" and “weights”, respectively, and b is
a scalar representing the capacity of a knapsack. The objective is to fill the knapsack
with some of the n items in such a way that the total utility cx is maximized while the
capacity constraint ax<b is satisfied. item i is to be inctuded iff x; = L.

The problem can be solved by a straighttorward tree search method. Clearty,
for any partial assignment to the variables x), xp, ... X which we may have at level i of
the tree, there correspond two more assignments (letting x;,; be either 0 or 1) at
level i+1. A feasible solution is one for which ax<b, and a partial assignment at level i
consists of the fixed variables x; through x;, with the remaining ones set to O. It is
easy to see that if a partial assignment is not feasibte, then no completion of it will be
feasible, and we may prune the tree at that point. However, even with such pruning

rules, the total number of solution candidates generated may be exponential inn

An approximation scheme using interval partitioning is constructed as follows:
let P; be the maximum total utility of partial solutions on level i, Divide the interval
[0,P;] into subintervals of size P,¢/n, and discard all candidates with total utility in the
same interval except that one with the least total weight. There are now at most
l_n/é_]+ ! nodes on each level, and therefore only O{nz/() nodes in the entire tree. The
errors introduced at each stage are additive, so the total error is bounded by ¢ This
means that in O(n2/() time we can solve the Of1 knapsack problem to within €, for
every 0.

One interesting feature of the NP-complete problems is that not all seem to be
equally well suited to approximation, even though they are in some sense of equivatent
difficulty to solve exactly. D.5. Johnson [1973] points out that for some problems
(those for which Sahni’s technigues are applicable) the relative ercor ¢ can be hounded
by a constant independent of problem size. However, for others {such as the maximum
cligue problem) no algorithm has yet been found for which ¢ does not grow at least as
fast as O(n€) for some c>0. Garey and Johnson [1976a] show that approximating the
chromatic number of a graph to within a factor of 2 is NP-hard; in fact, no known
polynomial-time algorithm solves the problem to within any bounded ratio. Similarly
discouraging is another result reported in the same paper that if there is a polynomial-
time algorithm for approximating the cize of the maximum cligue of a graph to within
some bounded ratio, then there is a polynomial-time algorithm for approximating it to
within any bounded ratio. Despite being of comparable comptexity for exact solution,
the NP-complete problems are not all equally easy to approximate.

For more examples of approximation algorithms and analysis of errors and
complexities, see also Johnson [1974], Sahni [L975], and Coftman and Sethi [1976],
among many others. Garey and Johnson [1976b] is a fine annofated bibliography for
this area. Also of interest is an algorithm by Shamos and Yuval [1976] for

V-5

approximating the solution to a problem which is relatively easy (the mean distance in
the ptane); the problem requires and can be solved in O(nz) time exactly. Their
algorithm guarantees an ¢-approximation in O(n) time.

C. PROBABILISTIC BEHAVIOR OF APPROXIMATION ALGORITHMS

As mentioned above, it is not easy to guarantee good approximate solutions to
certain NP-complete problems. These negative results suggest thal finding an
alternative to the "guaranteed" approximation approach is warranted. One such scheme
which looks promising is to, etfectively, make such a sophisticated guess about the
solution that the likelihood of being wrong is negligibly small. These ideas can be made
explicit; define Pp as the probability that such an algorithm gives an unacceptably bad
answer to a randomly chosen problem of size n (some distribution of problem instances
is assumed). Then the algorithm is said to work correctly "almost everywhere" if
Pp*ppt.. is finite,

Optimality or near-optimality “almost everywhere” is a strong condition.
Suppose that we randomly chose one problem instance of each size n, for n=1,2,.., and
ran the algorithm on each of them. Then not only would the algorithm give good
answers infinitely often, but (with probability one) it would fail to give good answers
only finitety often.

Karp [1976] gives some examples of such algorithms. He demonstrates an
On log n) algorithm for soiving random Euclidean traveling salesman problems which,
for every >0 finds a2 sofution within a factor of [+ of being optimal, almost
everywhere. The analysis depends heavily on an interesting theorem by Beardwood,
Halton, and Hammerstey {1959] that for n points chosen at random in a plane figure of
area A, there is a constant ¢ such that the length of the shortest tour is within ¢ of
{an)l /2, almost everywhere. This theorem is, in turn, based on an application of the
central limit theorem.

This example of the use of results from geometry and probability s typical of
the nature of design and analysis of probabilistic algorithms. Results and techniques
from a large number of fields of mathematics seem to apply in this area. For example,
much pertinent material is found in the theory of random graphs (see Erdos and
Spencer [1974]), where one finds many theorems regarding connectedness, maximum
cligues, chromatic numbers, etc. Rabin [1976} presents a very fast algorithm for
testing whether a number is prime, and for which the probability of error {guessing
that a composite number is prime} is halved at each step regardiess of the size of the
number being tested,

Many of the algorithms being proposed for probab:listic analysis are incredibly
simple, yet have been shown to work extremely well almost everywhere. Addition of
heuristics which would seem to improve the behavior of an algorithm add to the
difficulty of analysis, but (if they can be shown not to reduce the accuracy of a
guessed solution) may still be used in practice without weakening the resuits.

V-6

The probabilistic approach sutfers from the same objections as average-case
analysis, primarily the question of the underlying distribution over problem instances.
However, it provides some assurance that an approximation algorithm which might tail
in some cases will not fail very often, and hence instills some confidence in the user
that he will be "surprised” only rarely. For some applications, this may be insufficient;
since the alternative may be to expend a horrendous amount of computer time on a
problem, or not to solve it at all, the method stil may be useful.

VI. Conclusions

He that takes up conclusions on the trust of authors ... loses his labour, and

does not know anything, but only believeth,
-Thomas Hobbes

There is a clear need for development of more sophisticated tools for proving
lower bounds, a gap which may be partially filled by the approaches using data flow
graphs and similar models. Techniques for proving upper bounds will not change
significantly, although algorithm design will continue to advance with more unified
principles (this prediction seems safe!), Average-case analyses must expand to include
estimates of the variance and/or the nature of the distribution of solution times.

One practically unexplored path for future work in analysis of algorithms
consists of developing a realistic model of parailel computation and techniques for
decomposing problems on a “macroscopic” level {as opposed to previous approaches,
which have concentrated primarily on parallei computation at the single-instruction
level; see, for example, Traub [1973)). This area is practically devoid of design and
analysis techniques, and because of the proliferation of actual parallel hardware, offers
a unigue opportunity for one inclined to work in this field.

Probably the most exciting and potentially rewarding area in the near future
will be in designing and analyzing algorithms for hard problems. Of course, the
interesting theoretical questions include the now-infamous P = NP problem. Presumably
P # NP, so that approximate algorithms wili predominate. For those problems which are
not conducive to guaranteed approximate solutions, an appreoach such as Karp's [1976]
which works probabilistically may be preferred. However, the "almost everywhere"
concept is too restrictive and says too litlle about problems of a particular size, so a
new definition of what constitutes an acceptable approximation algorithm might result
in a new family of practical algorithms for some NP-complete problems. Results in this
area will likely stem from application of concepts from probability and statistics.

VII. References

Aho, AV, Hopcroft, JE, and Ullman, JO, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974,

Beardwood, J, Halton, JH., and Hammersley, JM, "The shortest path through many
points®, Proceedings of the Cambridge Philosophical Society 55, 4 (Oct. 1959),
299-327. '

Blum, M, Floyd, RW.,, Pratt, V., Rivest, RL, and Tarjan, RE, “Time bounds for selection”,
Journal of Computer and System Sciences 7, 4 (Aug. 1973}, 448-461,

Borodin, A, in Aho, AV, ed, Currents in th

Englewood Cliffs, NJ, 1973, 35-89.

Theory of Computing, Prentice-Hall, Inc,,

Coffman, E.G, and Sethi, R, "A generalized bound on LPT sequencing", Proceedings of
the International Symposium on Computer Performance Modeling, Measurement,
and Evaluation, Mar. 1976, 306-310.

Cook, S.A, "The complexity of theorem proving procedures”, Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, 1971, 151-158.

Dabhlquist, G., and Bjorck, A, Numerical Methods, Prentice-Hall, Inc., Engiewood Cliffs, NJ,
1974,

Dijkstra, EW., "A note on two problems in connexion with graphs”, Numerische
Mathematik 1, (1959), 269-27].

Edmonds, J, and Karp, R.M., "Theoretical improvements in algorithmic efficiency for
network flow problems”, Journal of the ACM 19, 2 (Apr. 1972), 248-264.

Erdos, P, and Spencer, J., Probabilistic Methods in Combinatorics, Academic Press, New
York, 1974

Feller, W,, An Introduction to Probability Theory and lts Applications, John Wiley and
Sons, Inc., New York, 1968.

Fischer, M.J, and Meyer, AR, "Boolean matrix multiplication and transitive closure”,
Conference Record, IEEE 12th Annual Symposium on Switching and Automata
Theory, 1971, 129-131.

VII-2

Floyd, RW, and Rivest, RL, "Expected time bounds for selection”, Communications of
the ACM 18, 3 (Mar. 1975), 165-172.

Ford, L.R, and Johnson, S.M, "A tournament problem”, American Mathematical Monthiy
66, (1959), 387-389.

Frazer, W.D., “Analysis of combinatory algorithms - a sample of current methodotogy”,
AFIPS Conference Proceedings 40, 1972, 483-491.

Fuller, S.H, Gaschnig, J.G, and Gillogly, J.J, "Analysis of the alpha-beta pruning
algorithm®, Carnegie-Mellon University, Dept. of Computer Science, Pittsburgh,
PA, (July 1973}

Garey, MR, and Johnson, OS5 [1976a], "The complexity of near-optimal graph
coloring”, Journal of the ACM 23, 1 (Jan. 1976), 43-49.

Garey, M.R, and Johnson, 0.S. [1976b], "Approximation algorithms for combinatorial
problems”, Proceedings of the Symposium on New Directions and Recent
Results in Algorithms and Complexity, Academic Press, to appear in Fall 1976.

Guibas, L.J,, and Szemeredi, £, "The analysis of double hashing”, extended abstract in
Proceedings of the 8th Annual ACM Symposium on Theory of Computing, 1976,
187-151. -

Hoare, C.AR., "Quicksort", Computer Journat 5, (1962), 10-15.

Hopcroft, JE., "Complexity of computer computations”, Proceedings of IFIP Congress
74, vol. 3, 1974, 620-626.

Hyafil, L., "Bounds on selection”, SIAM Journal on Computing 5, 1 (Mar. 1976), 109-114,

Ibarra, O., and Kim, C.,, "Fast approximation algorithms for the knapsack and sum of
subsets problems”, Journal of the ACM 22, 4 (Oct. 1975), 463-468.

Johnson, D.B, "A note on Dijkstra’s shortest path algorithm”, Journal of the ACM 20, 3
(July 1973), 385-388.

Johnson, D.S., "Approximation algorithms for combinatorial problems”, Proceedings of
the 5th Annua}l ACM Symposium on Theory of Computing, 1973, 38-49; also in
Journal of Computer and System Sciences 9, 3 {Dec. 1974), 256-278.

Johnson, D.S., "Fast algorithms for bin packing”, Journal of Computer and System
Sciences 8, 3 (June 1974), 272-314.

Karp, RM., "Reducibility among combinatorial problems", in Miller, RE, and Thatcher,
JW., eds, Complexity of Computer Computations, Plenum Press, New York,
1972, 85-103.

Karp, RM, "On the computational complexity of combinatarial problems”, Networks 5, 1
(Jan. 1975), 45-68.

ViI-3

Karp, RM., "The probabilistic anatysis of some combinatorial search algorithms™,
Proceedings of the Symposium on New Directions and Recent Results in
Algorithms and Complexity, Academic Press, to appear in Fall 1976,

Kleinrock, L., Queueing Systems, Vol. I: Theory, John Wiley and Sons, Inc,, New York,
1975,

Knuth, D.E.,, The Art of Computer Programming, Vol. I: Fundamenta! Algorithms, Addison-
Wesley, Reading, MA, 1968,

Knuth, D.E, The Art of Computer Programming, Vol. II: Seminumerical Algorithms,
Addison-Wesley, Reading, MA, 1969,

Knuth, D.E,, "Mathematical analysis of algorithms”, Proceedings of IFIP Congress 71, vol.
1, 1971, 135-143.

Knuth, D.E, The Art of Computer Programming, Vol. lll: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

Knuth, D.E., and Moore, RW. "An analysis of alpha-beta pruning”, Artificial Intelligence
6, (1975), 293-326.

Knuth, D.E, "Big omicron and big omega and big theta", SIGACT News 8, 2 {Apr.-June
1976), 18-24,

Kung, HT, and Hyafil, L, "Bounds on the speed-up of parallel evaluation of
recurrences”, Carnegie-Mellon University, Cept. of Computer Science,
Pittsburgh, PA, (Sept. 1975).

Lawler, E.L., "Algorithms, graphs, and complexity”, Networks 5, 1 (Jan. 1975), 89-92.

Liu, C.L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

Newborn, MM, "The efficiency of the alpha-beta search on trees with branch-
dependent termina! node scores”, abstract in Proceedings of the Symposium on
New Directions and Recent Results in Algorithms and Complexity, Academic
Press, to appear in Fall 1976,

O’Neil, P.E, and O'Neil, £J, “A fast expected-time algorithm for boolean matrix
multiplication and transitive closure”, Information and Control 22, 2 (Mar. 1973),
132-138

Rabin, M.O., "Probabilistic algorithms”, Proceedings of the Symposium on New Directions
and Recent Results in Algorithms and Complexity, Academic Press, to appear in
Fall 1976.

Reingold, E.M,, "Establishing lower bounds on algorithms: a survey", AFIPS Conference
Proceedings 40, 1972, 471-481,

Vil-4

Sahni, S., "Approximate algorithms for the 0/1 knapsack problem", Journa! of the ACM
22, 1 (Jan. 1975), 115-124.

Sahni, 5., "General techniques for combinatorial approximation”, University of
Minnesota, Dept. of Computer Science, Minneapolis, MN, technical report 76-6,
(June 1976).

Schonhage, A., and Strassen, V., "Schnelle Multiplikation grosser Zahlen®, Computing 7,
(1971), 281-292.

Sedgewick, R, "Quicksort", Stanford University Ph.D. thesis, Stanford, CA, technical
report STAN-C5-75-492, (May 1975).

Shamos, ML, “Geometric complexity”, Proceedings of the 7th Annual ACM Sympaosium
on Theory of Computing, 1975, 224-233.

Shamos, ML, and Yuva, G, "Lower bounds from complex function theory", Proceedings
of the 17th Annual IEEE Symposium on Foundations of Computer Science, (Oct.
1976).

Sloane, N.JA., A Handbook of Integer Sequences, Academic Press, New York, 1973.

Spiess, J, "Untersuchungen zur Implementierung der Algorithmen von $. Winograd und
V. Strassen zur Matrizenmuitiplikation®, Gesellschaft fur Wissenschaftliche
Datenverarbeitung MBH Gottingen, Bericht Nr. 10, (Aug. 1974).

Strassen, V., "Gaussian elimination is not optimal”, Numerische Mathematik 13, (1969),
345-356.

Traub, JF., ed, Complexity of Sequential and Parallel Numerical Algorithms, Academi.c
Press, New York, 1973

Valiant, L.G,, "General context-free recognition in less than cubic time", Journal of
Computer and System Sciences 10, 2 (Apr. 1975), 308-315.

Valiant, L.G., "On non-linear lower bounds in computational complexity", Proceedings of
the 7th Annual ACM Symposium on Theory of Computing, 1975, 45-53.

Wells, M.B, "Applications of a language for computing in combinatorics®, Proceedings of
IFIP Congress 65, vol. 2, 1965, 497-498.

Yuval, G., personal communication, 1975,

