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I. Introduction 

A. M O T I V A T I O N 

We shall express our darker purpose. 
-William Shakespeare 

It has long been recognized that the study of the behavior of algorithms plays 
a cruc ia l ro le in intelligent algorithm design. Aho, Hopcroft, and Ullman [1974] begin the 
p r e f a c e of their recent book on algorithmic design and analysis b y pointing out that 
" T h e s t u d y of algorithms is at the v e r y heart of computer science." At the foundation 
of e v e r y computational discipline is a collection of algorithms. After a problem (speech 
unders tand ing , p icture processing, compiling, etc.) is analyzed at a high level and 
d e s i g n decisions are finalized, algorithmic decisions must be made in o rder to 
implement the design on a real machine. One job of the computer scientist is to isolate 
and s t u d y these algorithms, which abound in graph theory , statistics, operat ions 
r e s e a r c h , and many other areas. Hence the pervasive nature of analysis of algorithms. 

Despi te (or perhaps because of) many significant new results in analysis of 
a lgor i thms in the past few years , there is no current s u r v e y of the mathematical 
techn iques used in algorithmic analysis. For the reader who wants to see the g o r y 
detai ls of the analysis of many algorithms, and is willing to and capable of supply ing 
many more details himself, the three volumes of The Art of Computer Programming b y 
K n u t h [1968, 1969, 1973] are unsurpassed for completeness. Aho, Hopcroft , and Ullman 
[ 1 9 7 4 ] is an excel lent text with many examples of both design and analysis but , like 
K n u t h , does not p rov ide an overv iew of the area. 

For one who does not have the months or years to spend on details, h o w e v e r , 
but wants simply an ove rv iew of techniques and a list of some important resul ts , the 
l i t e r a t u r e is sparse . The articles by Knuth [1971], Reingold [1972], and Frazer [ 1 9 7 2 ] 
p r o v i d e some rel ief , but concentrate heavily on presenting the detailed analysis of one 
o r t w o example algorithms. Also, new results since 1972 are abundant and are 
o b v i o u s l y not contained in those papers. A fine paper by Borodin [1973] t reats 
p r imar i l y the theoretical concepts of computational complexity, rev iewing the 
def in i t ions and proper t ies of complexity classes for various automata. 

Th is s u r v e y is an attempt to collect some of the important techniques used in 
algor i thmic analysis and to list some of the results produced, and t h e r e b y (albeit 
t e m p o r a r i l y ) help fill the gap in this area. It is designed to be primarily a s u r v e y , w i t h 
tu to r ia l comments w h e r e appropriate. 
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T h e reader is assumed to be familiar with the notion of an algorithm and w i th 
the nature of some of the important discrete (combinatorial) problems: sor t ing , 
sea rch ing , g r a p h problems, discrete optimization problems, etc. For those who are not , 
Knuth [1968, 1973] and Aho, Hopcroft, and Ullman [1974] provide explanations. T h e s e 
s o u r c e s should in fact be referenced at practically e v e r y major point; to avoid this 
i nconven ience , the default references are to the three volumes of Knuth [1968, 1969, 
1973] and to Aho , Hopcroft , and Ullman [1974]. 

B. T H E N O T I O N OF COMPLEXITY 

If you wish to converse with me, define your terms. 
-Voltaire 

I hate definitions. 
-Benjamin Disraeli 

Numerous questions immediately come to mind regarding the v e r y definit ion of 
c o m p l e x i t y , wh ich can be descr ibed as a function mapping problem size into the time 
r e q u i r e d to so lve the problem, (Note that we have already limited ourse lves to 
cons ide ra t ion of time complexity, ignoring questions of the amount of space requ i red , 
comprehens ib i l i t y of the algorithm, and the literally scores of other factors which must 
b e taken into account when designing an algorithm. Time complexity, while important, is 
c e r t a i n l y o n l y one dimension of algorithm-space.) Among these questions, which are 
d i scussed in this sect ion, are the notions of upper and lower bounds on complex i ty , 
models of computation, and problem representation. Clearly , for any measure of 
p r o b l e m di f f icul ty to be precise enough to be useful, a particular model of computation 
( inc luding permissible operations and their associated costs) and a prob lem 
r e p r e s e n t a t i o n (making a definition of problem size possible) must be speci f ied 

unambiguous ly . 

DOES COMPLEXITY PERTAIN TO A PROBLEM OR TO AN ALGORITHM? 

T y p i c a l l y , w e are interested in the (inherent) complexity of computing the 
so lu t ion to problems in a particular class. For example, we might want to know how 
fast w e can hope to sort a list of n items, initially in an arbi t rary o rder , regardless of 
t h e algor i thm w e use. In this case, we seek a "lower bound" L(n> on sort ing, which is a 
property of the sort ing problem and not of any particular algorithm. This lower bound 
s a y s that no algorithm can do the job in fewer than L(n) time units for a rb i t ra ry inputs; 
i.e., that sor t ing takes time at least L(n). 

On the other hand, we might also like to know how long it could take us to so r t 
s u c h a list w i t h a w o r s t - c a s e input. Here, we are after an "upper bound" U{n), wh ich 



1-3 

s a y s that fo r a r b i t r a r y inputs we can always sort in time at most U(n). Such an u p p e r 
b o u n d can be thought of as being associated with the problem, but is most o f ten 
p r o v e d b y demonstrat ing an algorithm which solves the problem in at most U(n> time. 
Hence , algorithms are normally analyzed primarily to determine their w o r s t - c a s e 
b e h a v i o r . 

One w a y of seeing the distinction between lower and upper bounds is to note 
that L(n) is the minimum (over all possible algorithms) of the maximum complexi ty ( o v e r 
all inputs ) , w h e r e a s U(n) is the minimum (over all Known algorithms) of the maximum 
c o m p l e x i t y ( o v e r all inputs). In try ing to prove lower bounds, we concentrate on 
techn iques wh ich will allow us to increase the precision with which the minimum ( o v e r 
all poss ib le algorithms) can be bounded. Improving an upper bound means finding an 
a lgor i thm w i t h bet ter wors t - case performance. This difference leads to the d i f ferences 
in techniques deve loped in complexity analysis. 

While there are apparently two complexity functions for problems ( lower and 
u p p e r bounds ) , it is the ultimate goal in computational complexity to make these t w o 
funct ions coincide and prov ide a single complexity measure for the problem class b y 
f inding an "optimal" algorithm; however , for most of the problems w e will mention, this 
remains a goal and is not y e t a reality. 

DOES COMPLEXITY HAVE TO REFER TO THE WORST CASE, OR COULD I T 
M E A S U R E THE AVERAGE CASE? 

Tradi t ional ly , the wors t - case complexity has been of major theoretical interest 
f o r the reasons just cited. Recently, however , there has been greater e f fo r t in the 
analys is of the behavior of algorithms "on the average", since ( intuit ively, at least) this 
seems to p r o v i d e the kind of information which would be more useful in the application 
o f complex i t y results to rea l -wor ld problems. For example, the simplex algorithm for 
l inear programming is known to perform miserably ( require time which is an 
e x p o n e n t i a l funct ion of the problem size) in the worst case, but for problems 
e n c o u n t e r e d in pract ice it almost always does extremely well. 

T h e r e are problems with this approach, however . This f irst is simply that 
a v e r a g i n g o v e r many cases complicates the analysis considerably. Secondly, whi le the 
a v e r a g e alone might be of some value, finding the distribution of solution times or e v e n 
the va r iance is an added burden, and therefore too often neglected in practice. A n d of 
c o u r s e t h e r e is the biggest objection of all: the typical assumptions which must be 
made regard ing the probabi l i ty distribution over all possible inputs (usual ly simple 
o n e s to make the analysis tractable) are normally either gross ly unrealistic or e v e n 
meaningless. Despite these objections, which will be covered later in more detail , w o r k 
o n a v e r a g e - c a s e behavior has continued to expand to the point where it has now made 
its mark on the design of algorithms for v e r y hard problems, as well as on algorithmic 
analys is . 
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DOES COMPLEXITY MEASURE THE NUMBER OF STEPS ON A TURING MACHINE, OR 

T H E NUMBER OF SECONDS ON A N 1BM-370/195? 

Aga in , w e are usually not interested in either of these figures exact ly , although 
e a c h is a legitimate measure of complexity in certain cases. The issue at hand is the 
"model of computation", and except for the most theoret ical ly -or iented results , T u r i n g 
c o m p l e x i t y is not appropr iate . Likewise, a particular machine like the IBM-370/195 is 
p r o b a b l y a bad choice because it makes the analysis even more complicated than it 
needs to be for most purposes (although Knuth [1968, 1969, 1973] defines his o w n 
machine and proceeds to der ive functions giving the run times for some part icular 
implementations of algorithms on that machine). In choosing a model of computat ion, 
w e t r y to achieve a balance between realism and mathematical tractabi l i ty , and this 
t r a d e - o f f t yp ica l l y results in both being short -changed. However , in order to get any 
resu l t s w h a t s o e v e r , this compromise must be made; experience indicates that useful 
resu l t s can be obtained despite what appear to be over l y simplified computational 
models. 

What is more appropr iate than finding exact run times on particular machines 
(s ince it factors out many implementation details) is a model of computation in wh ich 
o n l y ce r ta in important "elementary" operations are counted, and the complexi ty is 
r e p o r t e d to be 0(f (n) ) , read "of order f(n)". Mathematically, g(n) is 0(f(n)) if there is a 
constant c>0 such that as n^oo, g(n)/f(n)->c. Intuitively, the number of e lementary 
o p e r a t i o n s r e q u i r e d , g(n), is approximately some constant times f(n) for large values of 
n. O the r def init ions are also found in the literature. Knuth [1968] uses g(n) » 0( f (n) ) to 
mean that cf (n) is an upper bound on g(n) for all sufficiently large values of n. What 
has b e e n called " b i g - 0 M notation here is one instance of what Knuth [1976] would call 
" b i g - t h e t a " notat ion, which means that g(n)/f(n) is bounded above by some constant 
and is also bounded below by some constant, as n-»oo. The reason for using this 
v a r i a t i o n ra ther than the vers ion which only describes an upper bound is that it 
conta ins more information, and that information can be useful in comparing algorithm 
b e h a v i o r . A lso , it is inappropriate to bound a lower bound from above, which is what 
Knuth 's def in i t ion of 0 ( f ( n » does. 

Cons ider as an example the problem of finding the maximum element in a list of 
n items f rom a l inearly o rdered set. An appropriate choice for an elementary operat ion 
is a compar ison be tween two items of the list, because the items might be records for 
w h i c h comparisons are non- t r iv ia l , even while loop control , pointer management, etc. 
remain e a s y . Another natural choice is the "uniform cost cr i ter ion", w h e r e memory 
r e f e r e n c e s , comparisons, additions, etc. all take unit time. If the operat ion which must 
b e done most of ten (as n gets large) is chosen, then counting auxil iary operat ions 
w o u l d o n l y change the constant c and would not affect the asymptotic behavior of the 
a lgor i thm. 

Normal ly , the choice of operations to count is not crucial to the analysis , 
assuming that the dominant one is among them. However , there are examples of 
e x t r e m e l y c leve r algorithms which almost surely resulted from careful considerat ion 
( b y the algorithm designer ) of which operation is most important. One part icu lar ly 
i n s t r u c t i v e case is Strassen's algorithm for multiplying n x n matrices (see St rassen 
[1969] ) . He shows how to multiply two 2 x 2 matrices, with elements from an a r b i t r a r y 
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r ing , using 7 multiplications and 18 additions (as opposed to the obvious method using 
8 multipl ications and 4 additions). His algorithm for multiplying two n x n matrices, 
w h e r e n = 2*\ begins b y partitioning each of the original matrices into four s u b -
matr ices of s ize 2 ^ - 1 x 2^"* (to which the algorithm is applied recurs i ve l y ) , then 
mul t ip ly ing the 2 x 2 matrices (which have 2k""* x 2 ^ matrices as elements) using the 
7 mult ipl icat ion, 18 addition algorithm. 

At f i rst glance, this looks like a losing proposition on real machines (if w e count 
addi t ion and multiplication as elementary operations), since the obvious method fo r 
mult ip ly ing 2 x 2 matrices uses only 12 operations as opposed to 25. This is a v e r y 
b a d choice of e lementary operations, though, because the multiplications and additions 
a re of matrices, and matrix multiplications really do cost more. A careful analysis 
( c o v e r e d later ) reveals the t rade-of fs involved, and leads to the conclusion that the 
total number of operat ions is not O(n^) as in the obvious method, but rather 
0(n '°8 ^) = C K n ^ * ) (all logarithms in this paper are base-2) . This is t rue e v e n though 
the o b v i o u s algorithm takes significantly fewer elementary operations for the case of 2 
x 2 matrices of scalars. 

T h e main point is that even while the end result, that the algorithm is 0(n'°8 
appl ies w h e t h e r w e count scalar multiplications or both additions and multiplications, 
the k e y to understanding the algorithm's efficiency (and to designing it in the f i rs t 
p lace! ) is real iz ing that multiplication of matrices is much more costly than addition of 
matr ices. T h e r e f o r e , because the algorithm is applied recurs ively to matrices w h o s e 
e lements are matrices, for sufficiently large values of n we should be quite will ing to 
p e r f o r m many more additions in order to save just one multiplication. Except for that 
c ruc ia l o b s e r v a t i o n , one would be v e r y unlikely to even t ry to find a new algorithm for 
mult ip ly ing 2 x 2 matrices. 

HOW IS THE "SIZE" OF A PROBLEM MEASURED? 

T h e measure of problem size is another vague concept. It can be made exact 
b y lett ing n be the number of symbols required to encode the problem for a part icular 
T u r i n g machine or for some other computational model. We must be careful that c lever 
encod ing tr icks are not used which drastically affect our results, h o w e v e r . Fo r 
example , if w e encode integers in binary representation for an algorithm which then 
takes 0 ( 2 n ) s teps (where n is the number of bits used to represent the input) , the 
same algorithm would require only 0(n) steps if we could encode the input in u n a r y 
notat ion (s ince a number which could be represented using k bits in b inary requ i res 
about 2^ "marks" in unary) . For this reason, along with the fact that in pract ice w e use 
any th ing but u n a r y notation, the latter representation is not appropriate. 

In most cases, though, the problem size is simply some natural measure which , 
o f c o u r s e , must be expl icit ly defined in each case in order for results to have any 
meaning. For example, in sorting problems, n is the number of items in the list; for 
g r a p h prob lems, it may be the number of vertices. Describing the problem size may 
e v e n be more convenient if two or more parameters are used, for example the number 
o f edges and the number of vert ices in a graph. If a graph has V vert ices and E edges , 
t h e n it is c lear what is meant by "an algorithm which requires 0(V+E) steps". 
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For resul ts which are to be of interest in rea l -wor ld situations, definit ions of 
b o t h the measure of problem size and the measure of computing time should be c lose ly 
r e l a t e d to the we l l -de f ined meanings which these terms have for actual machines. Thus , 
the random-access machine model is more commonly used than the Tur ing machine 
model in all but primari ly theoretical analyses. Aho, Hopcroft , and Ullman [ 1 9 7 4 ] 
conta ins a g o o d account of the similarities and differences between these t w o models 
of computat ion. 



I I . Lower Bounds 

... abounding in intuitions without method,,. 
-George Santayana 

It is genera l l y agreed that the more difficult of the bounds on problem 
c o m p l e x i t y is the lower bound. There is no algorithm to analyze, few general pr inciples 
to a p p l y ; p roo fs of results in this area often require outright c leverness. The resul ts 
must a p p l y to any conceivable algorithm, including undiscovered ones. Still , a f e w 
techn iques have shown themselves to be applicable to many problems, and o thers 
seem to have promise. 

A . T R I V I A L LOWER BOUNDS 

Among those in the former category is the most obvious (and also the weakest ) 
method , wh ich produces what are appropriately called trivial lower bounds. T h e 
method consists of simply counting the number of inputs that must be examined and 
the number of outputs that must be produced, and noting that any algorithm for 
s o l v i n g the problem must do enough work to accomplish these tasks. 

T h e r e are many examples of the use of such a technique. One interesting g r a p h 
p r o b l e m is Di jkstra's [1959] s ingle-source shortest path problem. Given a d i rec ted 
g r a p h G w i t h non -negat i ve edge weights, and a distinguished ver tex v , f ind the 
min imum-weight path from v to each other vertex of G. A more interesting var iat ion 
a l lows n e g a t i v e - w e i g h t edges but no negative-weight cycles. Let n be the number of 
v e r t i c e s of G; then there may be as many as n ( n - l ) edges in G, and any algorithm for 
s o l v i n g the modified problem must "look at" each of them. If some edge w e r e ignored 
b y any algorithm, w e could change its weight so that a shortest path was missed and 
f o r c e the algorithm to g ive a wrong answer, so there are inputs which requi re O (n^ ) 
t ime for any algorithm to solve the modified single-source shortest path problem. 

Similarly, multiplication of a pair of nxn matrices requires that n^ outputs be 
p r o d u c e d , and is therefore at least 0 ( n 2 ) . Notice that this says nothing about the 
number of multiplications, for example, required to solve the problem, but only that 
some o p e r a t i o n must be performed at least O(n^) times; therefore , the dominant 
o p e r a t i o n must be per formed at least that many times. 

Genera l l y speaking, trivial lower bounds are easy to come by and, t h e r e f o r e , of 
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less in terest than sharper bounds which can sometimes be p roved b y more 
soph is t i ca ted methods. However , trivial bounds are often the only lower bounds 
avai lable , and because they are usually easy to prove , should probably be t r ied b e f o r e 
less o b v i o u s techniques or tricks are applied. 

B. I N F O R M A T I O N - T H E O R E T I C BOUNDS 

Severa l authors have used arguments from information theory to show that any 
a lgor i thm for solv ing some problem must do some minimal amount of work. The most 
usefu l p r inc ip le of this kind is that the outcome of a comparison between t w o items 
conta ins at most one "bit" of information (where "bit" is used in the technical sense) . 
Hence , if t h e r e are m possible input strings, and an algorithm purpor ts to ident i fy 
w h i c h one it was g i ven solely on the basis of comparisons between input symbols , then 
f log ml comparisons are needed. This is because pog m] bits are necessary to s p e c i f y 
o n e of the m possibil it ies (in standard binary notation, for example). 

T h e most ce lebrated example of a lower bound from information t h e o r y is fo r 
t h e p rob lem of sort ing a list of elements from a linearly ordered set (see Knuth [1973] , 
w h o uses a "decision t ree" model which is based on the same argument). For a list of 
n items, t h e r e are n! possible permutations. If an algorithm would sort any of them (or 
e q u i v a l e n t l y , ident i fy the original permutation), it must perform at least f log nf] 
compar isons . Using Stirl ing's approximation to n! before taking the logarithm g ives a 
l o w e r b o u n d of 0 (n log n) for the sorting problem, 

Appl icat ion of this technique to the problem of merging two o r d e r e d lists f rom 
a l inear l y o r d e r e d set gives a lower bound for that problem as well . 

C. O R A C L E S 

Knuth [1973] points out that a better bound can be obtained for the merging 
p r o b l e m b y another technique which he calls the construction of an "oracle". An oracle 
is a f iendish enemy of an algorithm which at e v e r y opportunity tr ies to make the 
a lgor i thm do as much work as possible. In the case of merging the two lists A j < A 2 < 
... < A n and B j < B 2 < ... < B n by any comparison-based algorithm, the oracle wil l 
p r o v i d e the resul t of any comparison on the basis of some rule; in this case, a useful 
ru le is Aj < Bj iff i<j. Of course, this rule applies only for certain inputs, but the 
a lgor i thm does not know which input it has, nor does it know the rule, and must 
t h e r e f o r e ask the questions anyway. 

Now if comparisons are resolved by this oracle, merging must end wi th the 

c o n f i g u r a t i o n : 

B j < A j < B 2 < A 2 < ... < B n < A n 

s ince this is the only order ing consistent with the oracle's rule, and the algorithm must 

p r o d u c e this output if it works proper ly . 
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S u p p o s e that one of the comparisons between adjacent elements from this final 
list had not been made during the course of execution of the algorithm; say , A j ^ . 
T h e n the conf igurat ion : 

B i < B 2 < A 1 < A 2 < . . . < B n < A n 

w o u l d also be a legitimate possible outcome, being indistinguishable from the co r rec t 
a n s w e r on the basis of the comparisons which were made. Hence, all 2 n - l comparisons 
b e t w e e n adjacent elements of the final list must be performed for the algorithm to 
p r o d u c e the c o r r e c t output . 

It may be argued that this bound is not v e r y interesting, since it is less than 
the t r iv ia l bound of 2n. However , as a bound on the number of comparisons it is not so 
t r i v i a l , and it s e r v e s to illustrate the technique. Also, comparisons may take much 
l o n g e r than bookkeeping operations in some applications, and the trivial bound simply 
s a y s that something must be done 2n times. Asymptotically, this distinction is of no 
c o n s e q u e n c e , but for practical values of n it may be quite important. Hyafil [1976] has 
u s e d an orac le to p r o v e a lower bound for the selection problem (finding the k^1 

l a rges t of n elements), where the trivial bound is simply n. In this case, both upper and 
l o w e r bounds are known to be 0(n), and the oracle provides a w a y of ref ining the 
l o w e r bound to permit comparison with precise upper bounds. 

D. P R O B L E M REDUCTION 

One of the most elegant means of proving a lower bound on a problem is to 
s h o w that an algorithm for solving P j could be used to solve another problem P 2 for 
w h i c h a lower bound is known. This means that P^ can be solved no faster than P 2 and 
p r o v i d e s a lower bound on P j , provided that an instance of P j can be mapped into an 
instance of P 2 at least as fast as P 2 can be solved. The power of this approach is 
substant ia l . 

Shamos [1975] uses problem reduction to show that an algorithm for f inding 
t h e c o n v e x hull of n points in the plane could be used to sort on one of the 
coord ina tes and therefore must take time at least 0(n log n). Other ce lebrated 
appl icat ions include the reduction of context - f ree language recognit ion to matrix 
mult ipl icat ion (see Valiant [1975]); the mutual reductions between boolean matrix 
mult ipl icat ion and transit ive closure (see Fischer and Meyer [1971]) ; and the 
re la t ionsh ip be tween integer multiplication and the discrete Fourier t ransform (see 
Schonhage and Strassen [1971]). 

Many other examples of this technique are found in transformations b e t w e e n 
s o - c a l l e d NP-complete problems (see section V). Note that it is not always too clear 
h o w to ident i fy the problem P 2 , which is of course a requirement for using this 
a p p r o a c h . 
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E. O T H E R TRICKS 

Among the newer approaches for proving lower bounds is the use of g r a p h 
models of algorithms. Kung and Hyafil [1975] show trade-of fs between the depth and 
b r e a d t h of t rees descr ibing the parallel evaluation of arithmetic express ions to show 
that the poss ib le s p e e d - u p using k processors is bounded b y (2k+l )/3. This result is 
c o u n t e r to the intuition that having k processors available would allow a s p e e d - u p of 
k. In fact , for certa in computations (such as adding up a list of k numbers) the s p e e d 
u p is e v e n less, in this case only k/log k. The lack of a good model for paral lel 
computat ion has h indered further development of ways of decomposing problems for 
para l le l solut ions, e v e n though the prospect of inexpensive parallel hardware compels 
us to s t u d y such algorithms. 

Val iant [1975] uses a similar approach to find various non- l inear lower bounds 
b y concent rat ing on graph- theoret ic propert ies. Lawler [1975] expresses conf idence 
that such arguments will continue to prove useful in demonstrating lower bounds, and 
r e c e n t resu l ts show this optimism to be wel l - founded. 

A n o t h e r new approach is the use of theorems from complex analysis b y 
Shamos and Yuval [1976] to show that finding the mean distance between n points in 
the plane requ i res O(n^) square - root operations. Their proof is based on the ambiguity 
o f the square root function. The pnmary significance of this result is that it had 
p r e v i o u s l y been almost impossible to obtain lower bounds except for the four common 
ar i thmetic operat ions and comparisons, whereas the new approach applies to any 
m u l t i p l e - v a l u e d function (such as square root, inverse trigonometries, logarithms, etc.) . 

It remains to be seen whether these and other tricks will be applicable to 
e n o u g h problems to be called "methods" for proving lower bounds. At p resent , n o n -
t r i v ia l resu l ts and general techniques are quite sparse. 
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Method is good in all things. Order governs the world. 
-Jonathan Swift 

In contrast to the lack of methods for proving lower bounds, there are t w o 
w i d e l y used w a y s of proving upper bounds by analyzing the wors t - case behav ior of 
an algor i thm. One technique (the use of recurrence relations) sometimes dominates the 
o t h e r , but it is usually so easy to simply count instructions that this approach is 
c o n s i d e r e d separate ly . A third alternative, the application of brute force , has been 
k n o w n to w o r k in at least one instance, but has little else to recommend it and is dealt 
w i t h o n l y b r ie f l y . 

A . I D E N T I F Y I N G A WORST CASE AND COUNTING STEPS 

Since w e seek an upper bound on a problem, and our approach is to 
demonst ra te that a particular algorithm to solve the problem never takes more than 
U ( n ) time, the f irst task is to identify a "worst case"; i.e., an input of s ize n wh ich 
r e q u i r e s the algorithm to do as much work as any other input of the same size. 

In some cases, this is not difficult, because the algorithm may do the same 
amount of w o r k for e v e r y input of size n. This phenomenon is easily recogn ized b y 
inspec t ion of a descr ipt ion of the algorithm in which the flow of control is c lear ly 
s t a t e d . If this f low does not depend on the data, then e v e r y case is a " w o r s t " one. For 
example , the obv ious algorithm for finding the largest element in a set S is: 

p rocedure largest(S); 
begin 

big := first element in S; 
for each remaining element x of S do big := max(big.x); 
return(b ig) 

end; 

C lea r l y , for e v e r y set S with n elements, the algorithm makes n-1 comparisons 
(and this is optimal since the lower bound is also n-1). Similarly, multiplication of t w o 
n x n matrices in the classical way takes 0 ( n 3 ) steps regardless of the data. T h e r e are 
many more examples of such algorithms for which identifying the wors t case is easy 
b e c a u s e e v e r y case is a worst case. 
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H o w e v e r , sometimes there are data-dependent decisions which affect the f low 
of cont ro l and make the job of finding a worst case slightly more difficult. Search 
algor i thms have this feature; for example, the binary search algorithm looks th rough a 
s o r t e d a r r a y consisting of n elements for the position of a particular "key" item w h i c h 
is k n o w n to be in the ar ray : 

p rocedure binsearch(A,key); 
begin 

compare key to middle element of A 
doing < : return(binsearch(first half of A,key)) j 

> : return(binsearch(last half of A,key)) ; 
= : return(pointer to middle of A) 

end ; 

It is not too difficult to see that a worst case input is one for which each 
compar i son results in another recursive call to the procedure, and w e on ly f ind the 
k e y w h e n the a r ray has been narrowed down to just one element. This takes 
[ j o g n j +1 comparisons (which is essentially optimal, since a lower bound of ( j og nj is 
o b t a i n e d f rom information-theoret ic arguments). 

A w o r s t case which is only slightly harder to manufacture is one for quicksort , 
an ingenious sort ing algorithm which was proposed by Hoare [1962]. The algorithm is 
v e r y simple to descr ibe : 

p rocedure quicksort(S); 
begin 

if IS l < 1 then return(S); 
choose some element x from S; 
part it ion S into those elements less than x (S j ) » 

those equal to x ( S 2 ) , and those greater than x ( S 3 ) ; 
re tu rn fau icksorKS j ) fol lowed by S 2 fol lowed b y 

q u i c k s o r t ^ ) ) 
end; 

Note that if all elements of S are distinct and the algorithm is unlucky enough 
t o pick x as the smallest element of S at e v e r y stage, then S^ is empty, S 2 contains 
o n e element, and S Q contains only one element fewer than S. Using recur rences , as in 
t h e nex t subsect ion , it is found that quicksort requires 0(ri ) time in this case. This is 
not optimal, s ince sort ing algorithms which never require more than 0(n log n) s teps 
a r e k n o w n , and the lower bound is 0(n log n). An easy modification to quicksort 
( choos ing x as the median element of S) produces one such algorithm which is wi th in a 
constant factor of being optimal. 

For more complex algorithms, particularly those for graph problems and 
d i s c r e t e optimization problems, finding a worst case can be more difficult. A n 
in te res t ing case in point is the modified single-source shortest path problem. In an 
ar t ic le on global f low analysis, Edmonds and Karp [1972] mention in passing that a 
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modif ied v e r s i o n of Dijkstra's [1959] algorithm runs in 0 ( n 3 ) time for any d i rec ted 
g r a p h sat is fy ing the conditions of the modified problem (see section II). Thei r o n e -
s e n t e n c e just i f icat ion is convincing to most, but D.B. Johnson [1973] shows an ent i re 
family of d i rec ted graphs which require 0 ( n 2 n ) time! All of which demonstrates that 
e v e n the most respected people in the field can be misled by faulty identif ication of 
t h e w o r s t case. 

B. RECURRENCES 

A l though analysis of worst -case behavior by directly counting the number of 
s t e p s is g r e a t l y simplified by a concrete description of the algorithm, it is not a lways 
n e c e s s a r y to be so explicit . In deriving recurrence relations for solution times, it is 
sometimes more convenient to think in abstract terms about what the algorithm does. 
T h i s is espec ia l ly t rue when the algorithm itself is not wri t ten recurs ive ly . 

In accordance wi th established usage, let U(n) be denoted b y T (n) ; M T " is for 
"time to so lve the problem". Then it is usually possible to find a recur rence re lat ion 
( d i f f e r e n c e equation) for T(n) , and to solve it exactly (or even just approx imately , 
conc lud ing that T (n ) is 0(f(n)) , for example) to discover the wors t - case behavior of an 
a lgor i thm. 

Recall the f irst example of the previous subsection, where the problem is to 
f ind the largest element in a set S of n elements. Although the algorithm is not w r i t t e n 
as a r e c u r s i v e p rocedure , it can nevertheless be v iewed as finding the largest element 
of a set S ' consist ing of the first n-1 elements, then comparing the result to the n ^ 1 

element of S. T h e recur rence obtained is: 

T (n ) = T ( n - l ) + 1 for n > 1 

T ( l ) = 0 

w h e r e the initial condition is zero because no comparisons are needed to f ind the 
maximum element of a singleton set. The solution to this recurrence is c lear ly T (n ) « n -
1, the same result as before . 

Next consider the binary search algorithm, where it is true that: 

T (n ) < T(n/2) + 1 for n > 1 

T ( l ) = 0 

A g a i n , the initial condition is ze ro because by hypothesis the key item is in the a r r a y 
A, and if A consists of just one element it must be the key. The recur rence is 
d i s c o v e r e d b y recogniz ing that in the worst case, one comparison is used to determine 
w h i c h remaining half to search recurs ively , so the total number of comparisons T (n ) is 
the sum of this comparison and the number T(n/2) required to find the key in an a r r a y 
essent ia l l y half as large. Because n may be odd, the relation is not exact , hence the 
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use of " < " rather than "=". The remaining part can never be larger than n/2 whether n 

is o d d o r e v e n . 

Solv ing for T (n ) and noting that the number of comparisons must be an integer 
g i v e s T ( n ) < | j o g n j , which is optimal. The particular implementation of b inary search 
d i s c u s s e d in the prev ious subsection makes a redundant comparison for n « l , w h i c h 
causes the slight d iscrepancy between this result and the one obtained for that 
implementat ion. 

A more complicated recurrence results from analyzing the w o r s t case of 

qu icksor t . Here , the equation is: 

T (n ) » T ( n - l ) + P(n> + C(n) for n > 1 

T ( l ) - T ( 0 ) - 0 

w h e r e C (n ) is the number of comparisons required to choose an element x from S, and 
P (n ) is the number needed to partition S on the chosen element x. Since w e are 
count ing on l y comparisons, C(n) = 0 and P(n) = n-1, so: 

T ( n > - T ( n - l ) + n - 1 

T (1 ) = T (0) = 0 

for n > 1 

fo r w h i c h the exact solution is T(n) = n ( n - l ) / 2 . Of course, it is apparent ly not too 
intel l igent to choose x arbitrar i ly if a worst case of O(n^) must be avoided •Rather, x 
s h o u l d par t i t ion S into approximately equal parts (Aho, Hopcroft, and Ullman [1974] call 
this the "pr inc ip le of balancing"). This can be accomplished by choosing x as the 
median element of S, whereupon the recurrence becomes: 

T ( n ) < 2T(n/2) + P(n) + C(n) 

T ( l ) - T ( 0 ) - 0 

for n > 1 

because n may be odd, and T (n ) still A s in the case of b inary search, " < " replaces 
p r o v i d e s an upper bound. 

Now, P(n) « n-1 as before , but C(n) is no longer ze ro but the number of 
compar isons necessary to find the median of n elements. Blum, et. al. [1973] present 
an algor i thm which finds the median in at most 5.43n comparisons, and Hyafi l [ 1 9 7 6 ] 
r e p o r t s that Paterson, Pippenger, and Schonhage have an algorithm which uses at most 
3 n compar isons . Taking C(n) = 3n: 

T(n> < 2T(n/2) + 4n - 1 for n > 1 

T ( l ) - T ( 0 ) - 0 

f o r w h i c h the solution is T(n> < 4n log n - n + 1, so that T(n) is 0(n log n) in the w o r s t 

case . 
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As a final example, consider Strassen's [1969] algorithm for matrix 
mult ipl ication. In order to multiply two nxn matrices (for n a power of two ; if it is not , 
e m b e d the or iginal matrices in ones with n equal to the next higher power of two) , the 
a lgor i thm per fo rms 7 multiplications of 2x2 matrices ( recurs ive ly ) and 18 additions of 
(n/2 )x (n/2 ) matrices. Assuming that the matrix additions take ( n / 2 ) 2 scalar additions, 
the r e c u r r e n c e is: 

T (n ) = 7T(n/2) + 18(n/2) 2 for n > 1 

T ( l ) - 1 

H e r e , all scalar multiplications and additions are counted as elementary operat ions , and 
t h e initial condit ion is obvious because multiplication of two 1x1 matrices consists of a 
s ing le scalar multiplication. The solution is T(n) = 7n'°B 7 - 6 n 2 , so T (n ) is 0(n'°g 7 ) 
c o m p a r e d to O(n^) for the classical method. Because of the factor of 7, though, the 
classical algorithm (which takes 2n^ - n 2 operations) is still faster for n less than 
about 600. B y using a hybr id scheme which uses Strassen's algorithm for large 
matr ices and the classical algorithm for smaller ones, this c rossover point can be 
r e d u c e d ( for a real implementation) to about n=38 (see Spiess [1974]). 

Simply finding a recurrence is only part of the problem; the other half, of 
c o u r s e , is so lv ing it. It is relat ively easy to find an upper bound on the solut ion b y 
s imply guess ing a solution and then trying it. For example, g iven the recur rence : 

T (n ) = 2T(n/2) + n log n 

w i t h some initial condition T ( l ) , we might guess that T(n) should be no larger than 
0 ( n 2 ) . If w e assume that T (n) = c n 2 and can show that the r ight -hand side of the 
r e c u r r e n c e is at most c n ^ ••- lower order terms, then O(n^) is an upper bound on T(n) . 
T h a t this is t rue for the present example is easily verif ied. 

A bet te r guess in this case is that T(n) is 0(n l o g 2 n ) , which means that our 
g u e s s is c n * l o g 2 n , resulting in: 

T (n ) = 2T(n/2) + n log n 

= cn l o g 2 ( n / 2 ) + n log n 

= cn l o g 2 n + 0(n log n) 

so that 0 (n l o g 2 n ) is an upper bound for T(n). In fact, since the coefficients of n l o g 2 n 
a re the same on both sides, T(n) = 0(n log 2 n) . 

This computation can be extended to find the exact solution, Suppose that T (n ) 
is a l inear combination of l inearly independent functions, the dominant one of which is 
n l o g 2 n . Subst i tut ing an*!og 2 n into the recurrence gives rise to terms in n log n and in 
n, w h i c h appear on the r ight -hand side but not on the left. Consequently , T (n ) must 
also have terms bn' log n + cn, which, when expanded on the right, produce no new 
l o w e r o r d e r terms. Now it is a simple matter to equate coefficients of like functions to 
g e t the so lut ion : T (n ) - (n l o g 2 n + n log n)/2 + T ( l ) n . 
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More power fu l techniques must sometimes be applied. Generating functions ( z -
t r a n s f o r m s ) , which are also of value in solving problems associated with a v e r a g e - c a s e 
ana lys is , are among the most useful of these tools. Knuth [1968], Liu [1968] , and 
K le inrock [ 1 9 7 5 ] g ive excellent accounts of how to use this method. Some re la t i ve ly 
e a s y r e c u r r e n c e s can also be solved by referr ing to standard formulas (see , for 
example , Dahlquist and Bjorck [1974] on difference equations), whi le at least 
r e f e r e n c e s to others can be found by iterating the recurrence to find the f i rst f e w 
terms and then looking up the sequence in Sloane [1973], 

C. B R U T E FORCE 

E v e n though the method to be described here is not often practical , it is 
i n te res t ing because it is possible at all only with the aid of h igh -speed computers and, 
t h e r e f o r e , has on ly recent ly been attempted. Despite lacking finesse and t h e r e b y 
appeal ing to some, it has really only proven to be useful in one rather minor instance 
w h i c h is pr imar i ly a cur iosity . 

T h e quest ion of how to sort using a minimum number of comparisons is 
c o n s i d e r e d in detail b y Knuth [1973], who points out that the merge - inser t ion 
a lgor i thm of F o r d and Johnson [1959] is optimal for n < 12 and for n « 20 and 21. That 
is, the number of comparisons is exactly Hog nT| for these cases. 

T h e quest ion of the optimality of merge- insert ion for n « 12 was sett led b y 
Wel ls [ 1 9 6 5 ] b y using brute force computing power to exhaustively demonstrate that 
no algor i thm could sort 12 items using fewer than 30 comparisons, and so m e r g e -
i n s e r t i o n (wh ich uses 30) is optimal even though flog 12l]=29. In a sense, he re f ined 
the l o w e r bound on sort ing 12 elements by effect ively bounding the w o r s t - c a s e 
p e r f o r m a n c e of e v e r y possible algorithm! One can imagine finding wors t cases in a 
similar manner, b y running an algorithm on e v e r y possible input, to p r o v e u p p e r 
bounds . Such an approach is not to be recommended so long as there remain useful 
w a y s to consume computer time. 



IV. The Average Case 

What is normal is at once most convenient, most honest, and most wholesome. 
-Frederic Amiel 

The normal is what you find but rarely. 
-W. Somerset Maugham 

Recent ef for ts in algorithmic analysis have been largely d i rected t o w a r d 
ana lyz ing behav ior on the average; i.e., finding the complexity of a computation 
a v e r a g e d o v e r some distr ibution of inputs. Generally, the same techniques r e p o r t e d in 
the p r e v i o u s sect ion are still applicable, although some of the recurrences are tougher 
to handle and there fo re st ronger solution methods may need to be applied. 

A. PROS AND CONS OF A V E R A G E - C A S E ANALYSIS 

T h e pr imary reason for analyzing the behavior of algorithms on the average is, 
of c o u r s e , that a wors t case may arise so rarely (perhaps never) in practice that some 
o t h e r complex i ty measure would be more useful. An alternative to wors t - case analysis 
that immediately comes to mind is some sort of average-case analysis. Rather than t r y 
to def ine and analyze a particular case which is somehow "average", a better approach 
is to s imultaneously analyze all cases and to weight the individual case complexit ies 
w i t h the appropr ia te probabil it ies of each case occurring. 

Obv ious l y , this complicates the mathematics to a considerable extent . If this 
w e r e the on ly object ion to doing average-case analysis, all that would be requ i red 
w o u l d be more sophisticated tools, and this section could dwell on those. H o w e v e r , 
more ser ious questions have been raised which tend to cast considerable doubt on the 
e n t i r e a d v e n t u r e ; this is the reason for not going into a more detailed descr ipt ion of 
the methods used in average-case analysis. Rather, the reader is urged to consult the 
or ig ina l sources . 

T h e most important objection is that there is typically no way to identify the 
p r o b a b i l i t y d istr ibut ion over all problem occurrences. While it may be reasonable in 
some situations to assume that e v e r y possible problem is equally likely (such as 
assuming that e v e r y item is equally likely to be the key in a binary search, or that 
e v e r y permutat ion is equally likely to be the input to quicksort), this assumption rea l ly 
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o n l y makes sense if the problem space is finite. It apparently makes no sense, for 
example , to say that e v e r y integer program is equally likely. Furthermore, e v e n w h e n 
it does have meaning, the assumption of a uniform distribution over all possible inputs 
may not be at all realistic in some situations. 

In one attempt to answer this objection, Yuval [1975] has suggested that 
a lgor i thms might "randomize" their inputs in order to make the assumption appear 
va l id . He has pointed out that with suitable random steps being taken at cer ta in 
s t a g e s , an algorithm could have good expected behavior for e v e r y input, and t h e r e b y 
a s s u r e good expec ted -case solution times regardless of the probabi l i ty d ist r ibut ion 
be ing assumed (see also Rabin [1976]). For example, quicksort could choose the 
par t i t ion ing element randomly (this idea was offered by Hoare [1962] in his or iginal 
p a p e r on quicksort ) . Even though this might seem like a case of the tail wagging the 
d o g , the re is some justif ication for such an approach in this case. In order to make the 
analys is of the algorithm tractable, Sedgewick [1975] assumes that the files to be 
s o r t e d are random, but presents evidence that the algorithm works better if they are! 

C lea r l y , not all algorithms can be modified in this manner. The key element in a 
b i n a r y search can not be "randomized"; it is given as the sole input. Similarly, the 
a r r a y in wh ich the search is to be made is certainly f ixed during the search, so t h e r e 
is no room to manipulate the algorithm in this way. The best hope is that if there is 
some reason to bel ieve that certain keys are more likely, some kind of balanced t ree 
s h o u l d be used in place of the sorted array as the data structure for holding the list 
e lements , and w e are therefore analyzing the wrong algorithm. 

T h e r e is some evidence that despite the shaky basis for the assumption of 
random inputs , the results of analysis may not be extremely sensit ive to this 
assumpt ion , so long as the distribution over inputs is not too far from random. Also, 
no o t h e r d is t r ibut ion is likely to yield to analysis at all, owing to the di f f iculty of 
deal ing w i t h recur rences that result from such alternative assumptions. A n y o ther 
d i s t r i b u t i o n wou ld undoubtedly have as little as or even less basis than the uniform, in 
a n y e v e n t . The justif ication seems to be: "Better some kind of average than none at 
all" . 

T h e object ions do not stop there, however . Knowing the behavior of an 
a lgor i thm on the average provides some information, but it would bolster our 
con f idence in the result if we also knew the variance. Few attempts at a v e r a g e - c a s e 
analys is take this next step and find higher moments of the solution time. One notable 
e x c e p t i o n is Sedgewick's [1975] analysis of quicksort (see also Knuth [1973]) , in which 
he s h o w s that while the average number of comparisons is about 2n log n, the 
s t a n d a r d dev iat ion is approximately .68n, so that our confidence that the algorithm wili 
w o r k ef f ic ient ly g r o w s with n. This is clearly a nice p roper t y for an algorithm to 
p o s s e s s and contr ibutes to the explanation of why quicksort works so well in pract ice. 
U n f o r t u n a t e l y , such attempts at this more thorough analysis are rare. 

One fu r ther s tep, which to the author's knowledge has not been exp lo red , is to 
c h a r a c t e r i z e the distr ibution of solution times by making use of the under ly ing 
mechanisms wh ich g o v e r n the operation of the algorithm. For example, if an algorithm 
can be cons idered to consist of many separate tasks, no one of which dominates the 



I V - 3 

runn ing time (in a sense which must be made explicit; see Feller [1968], for example) , 
t h e n under certa in conditions the central limit theorem could be applied to show that 
t h e d is t r ibut ion of solution times is approximately normal. This is t rue for any 
d i s t r ibu t ions of times to complete the subtasks which satisfy rather weak condit ions, so 
that the randomness assumption is not as critical. If we are willing to make that 
assumpt ion , f inding the mean and variance by the usual methods would then complete a 
f a i r l y g o o d descr ipt ion of the algorithm's behavior. 

B. SOME EXAMPLES OF A V E R A G E - C A S E ANALYSIS 

T h e r e is a large and growing number of algorithms which have been sub jec ted 
to analysis of ave rage -case complexity. Only a few will be discussed here, but they are 
among the most important. Many others can be found in the two "s tandard" 
r e f e r e n c e s . 

What is su re l y the most comprehensive analysis of any algorithm is p resented 
b y Sedgewick [1975] in his Ph.D. thesis entitled "Quicksort", which tells e v e r y t h i n g y o u 
a l w a y s w a n t e d to know about quicksort (and much, much more that y o u didn't). His 
analys is of the average number of comparisons, exchanges, partitioning stages, etc. is 
c a r r i e d out th rough the use of recurrences, just as for the simple w o r s t - c a s e analysis 
of the number of comparisons described in section III . Along with Appendix B of the 
thes is , a good re ference for the kinds of techniques used by Sedgewick is Knuth 
[ 1 9 6 8 , 1973]. The recurrences are solved by standard methods descr ibed in both 
p laces , and look more complicated than they are, due in part to the large number of 
s y m b o l s needed to represent the important quantities using their notation. 

All recur rences are not easy to solve, however . In an analysis of radix 
e x c h a n g e sor t ing , Knuth [1973] uses propert ies of the gamma function and complex 
v a r i a b l e t h e o r y to der ive asymptotic results from what looks like a fair ly simple 
r e c u r r e n c e for which the usual techniques fail. 

One algorithm which has been analyzed in at least three different ways is the 
a l p h a - b e t a search algorithm for game trees. Good descriptions of the algorithm can be 
f o u n d in Ful ler , Gaschnig, and Gillogly [1973] and in Knuth and Moore [1975] . T h e 
f o r m e r authors assume that the game tree is a complete tree with branching factor N 
and d e p t h D, and that each permutation of the ranks of the values of the leaf nodes is 
equa l l y l ikely. T h e y proceed to derive expressions for the probabi l i ty of expanding 
indiv idual nodes, and the expected number of bottom positions evaluated. While the 
a n s w e r s in this case look simple enough because of concise notation, the authors point 
o u t the computational infeasibility of calculating these quantities for any but v e r y small 
va lues of N and D. However , they surmise from simulation results that the average 
number of nodes examined is about O ( N - ^ D ) . 

Knuth and Moore [1975] make the same assumptions about the t ree and the 
random order ing of leaf -node values, and show an upper and lower bound on the 
a v e r a g e behav ior of the algorithm of 0((N/log N ) D ) . They suggest that the simulation 
resu l t s b y Ful ler , et. a!., result in a fit to N*'^D because N is so small. 
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N e w b o r n [1976] uses a model in which the branch (rather than the node) 
v a l u e s are randomly ranked and obtains even different results, but only for the cases 
D«2 ,3 ,4 . This is y e t another example of the dependence of results on the assumptions 
of the model being used in the analysis: the three different methods for D « 2 g i v e 
complex i t ies of 0 ( N * , / W ) , 0((N/log N ) 2 ) , and 0(N log N), respect ively . Of course , the f i rs t 
is an estimate and the second a bound using the same model, whereas the th i rd is 
d i f f e r e n t because the model is different. 

O ther examples of average-case analysis include Guibas and Szemeredi [ 1 9 7 6 ] 
o n d o u b l e hashing, O'Neil and O'Neil [1973] on boolean matrix multiplication, and Knuth 
[ 1 9 7 1 ] and F l o y d and Rivest [1975] on selection. 



V. Approximation Algorithms 

Trouble creates a capacity to handle it. 
-Oliver Wendell Holmes^ Jr. 

Until v e r y recent ly , the focus of attention in algorithmic analysis has been on 
" t r a c t a b l e " combinatorial problems such as searching, sorting, and matrix multiplication, 
w h i c h have been prev ious ly mentioned. These are among the "easy" problems (which 
in c u r r e n t terminology means that their complexity is bounded by a polynomial in n); 
o n the o ther hand, most optimization and graph problems are "hard" (their complexi ty 
is a p p a r e n t l y not bounded by any such polynomial). Since so many important problems 
a r e , un fo r tunate l y , in the latter category, an entire new group of algorithms which f ind 
approx imate solutions to hard problems has been developed. Along wi th these 
algor i thms have come new measures of "goodness" and associated techniques for 
des ign ing and analyzing approximation algorithms. Two classes of approximation 
(guarantee ing a near-opt imal solution always, and producing an optimal or near -opt imal 
so lu t ion "almost e v e r y w h e r e " ) are discussed. 

A. PROBLEM CLASSES AND REDUCTIBILITY 

For the moment it is necessary to return to the formal setting of Tur ing 
machines ( T M ) and languages to define a couple of important concepts. It is somewhat 
art i f ic ia l , but convenient , to state a problem in terms of a language recognit ion task b y 
formulat ing it so that it has a y e s - n o solution (for example, "does this t ravel ing 
salesman problem have a solution with cost less than k?"), and then asking a T M to 
accept the input if the answer is yes and to reject it if it is not. A T M to solve the 
p r o b l e m then accepts only input strings from some language L which consists of 
p r e c i s e l y those problem instances with "yes" answers. It is appropriate to re fer to the 
or ig ina l prob lem and the language L more or less interchangeably in the context of the 
c lasses P and NP (see Aho, Hopcroft , and Ullman [1974] for more details). 

Formal ly , the class P (for "polynomial") is the set of languages L for which each 
s t r i n g xcL is e i ther accepted or rejected by a deterministic T M in a number of s teps 
w h i c h is bounded b y a f ixed polynomial in the length of x (i.e., in "polynomial time"). 
S imi lar ly , the class NP (for "nondeterministic polynomial") is the set of languages L for 
w h i c h each xC-L is either accepted or rejected by a nondeterministic T M in polynomial 
t ime. 
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C l e a r l y , PcNP from the definitions. Undoubtedly the most intriguing o p e n 
q u e s t i o n in the complexi ty area is whether P=NP, or whether there are problems in NP 
w h i c h cannot be so lved in polynomial time by a deterministic TM. Problems known to 

4 b e in P include the "easy" problems previously discussed. Other problems in NP, wh ich 
might also be in P, are most of the so-called optimization and graph problems, such as 
0/1 integer programming, certain scheduling problems, finding Hamiltonian c i rcuits , 
g r a p h co lor ing , and many others (see Karp [1972, 1975]). So far as is known, there is 
no determinist ic polynomial-t ime algorithm for solving any of these "hard" problems; all 
k n o w n algorithms have a wors t - case complexity which is an exponential function of the 
p r o b l e m s ize . 

Fo r tunate l y , it is sufficient to consider solving these problems in polynomial 
t ime on a normal random-access computer rather than on a TM, and the problems in P 
remain the same (see Aho, Hopcroft, and Ullman [1974]). Roughly speaking, problems 
w h i c h seem to require some sort of backtrack searching through a t ree of 
p o l y n o m i a l l y - b o u n d e d depth are the difficult problems of NP. While there is 
o v e r w h e l m i n g circumstantial evidence that such problems are not also in P, no p roo f of 
th is c o n j e c t u r e has e v e r been produced. 

A language is "polynomially reducible" to L 2 if there is a deterministic 
po lynomia l - t ime algorithm which transforms a string x into a string f(x) such that x ( L j 
iff f ( x ) ( L 2 . T h e key to the argument that P^NP is a remarkable theorem b y Cook 
[ 1 9 7 1 ] wh ich says that e v e r y problem in NP can be polynomially reduced to boolean 
sat is f iab i l i ty (is there an assignment of truth values to the literals of a boolean 
e x p r e s s i o n wh ich makes the expression true?). This means that e v e r y problem which 
can be s o l v e d in polynomial time on a nondeterministic T M can also be so l ved b y 
s u b j e c t i n g the input str ing to a transformation (done deterministically in polynomial 
t ime) w h i c h conver ts it to an instance of satisfiability, and then solving the result ing 
sat is f iab i l i ty problem. A genera l -purpose problem like satisfiability is called " N P -
complete" , "P -complete" , or simply "complete". 

Karp [1972] shows reducibilities among other problems which demonstrate that 
the class of NP-complete problems is quite large, and includes all the optimization and 
g r a p h problems mentioned above. This fact represents the basis for bel ieving ( e v e n if 
not being able to p r o v e ) that Pj^NP, since none of the hundreds of algorithms for the 
s c o r e s of problems which are NP-complete runs in polynomial time. If any of these 
p rob lems could be solved fast, all of them could be; the fact that so far none of them 
can be is a convincing argument (but not a proof) that they never will be. 

T h e quest ion of whether P=NP is not the only open question to be a n s w e r e d , 
h o w e v e r . Some problems are still unclassified. For example, deciding the equivalence of 
r e g u l a r exp ress ions and context -sensi t ive language recognition are at least as hard as 
a n y problems in NP, but are not known to be in NP themselves; they (along wi th the 
N P - c o m p l e t e problems) are called "NP-hard" since their inclusion in P would imply that 
P=NP. On the other hand, graph isomorphism (which is clearly in NP) has not been 
s h o w n to be in P, but also has not been shown to be NP-complete, so there may be 
p rob lems wh ich require non-polynomial deterministic time but whose solutions will not 
he lp s o l v e the other hard problems in NP. While the latter possibi l i ty wou ld hard ly 
h a v e b e e n thought unlikely only a few years ago, the d iscovery that pract ical ly all 
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h a r d problems in NP are in fact NP-complete makes the existence of such a problem of 
" in te rmediate" diff iculty seem less plausible. 

B. D E S I G N AND ANALYSIS OF "GUARANTEED" APPROXIMATION ALGORITHMS 

Since all known algorithms for solving NP-complete problems exact ly requ i re 
exponent ia l time, it is impractical to solve v e r y large instances of these problems. 
Happ i l y , many r e a l - w o r l d applications which require solutions to optimization or g r a p h 
p rob lems do not requi re exact solutions, but only approximately correct solutions. As a 
r e s u l t , many researchers have developed new approximation algorithms (or are now 
ana lyz ing old approximation schemes) for these applications, which attempt to 
g u a r a n t e e near -opt imal solutions to all instances of a problem. 

A genera l l y accepted measure of the efficacy of this t ype of approximation 
algor i thm (see D.S. Johnson [1973]) is the maximum relative e r ro r introduced b y the 
a lgor i thm; normally, this e r ro r appears along with the problem size in the complexi ty . 
Most o f t e n , the quantities to be compared to determine the relative e r r o r are obv ious : 
the o b j e c t i v e function value for an integer program, the number of colors requ i red for 
g r a p h co lor ing , and so for th . Occasionally (for example, with the satisfiability problem) 
some artif icial problem must be created so that the original one looks like some kind of 
opt imizat ion . T h e ratio of the absolute er ror to the exact solution value is g iven the 
s y m b o l 

In designing approximation algorithms, one is, in this case, concerned wi th 
guarantee ing that the relative er ror ( is never larger than some prescr ibed maximum, 
w h i c h essent ia l ly means that < is taken as given. The goal is to develop an algorithm 
that a lways solves the problem to within a factor of 1±(. For this reason, many of 
these algorithms tend to follow the same patterns as are commonly encountered in 
calculus p roo fs , wi th strange functions of ( appearing, as if by magic, in the ear l y 
s tages of the algorithm, in order to assure that the final solution is within a factor of 
1±( of being optimal. Recognizing this takes much of the mystery out of what can 
a p p e a r to be v e r y complicated algorithms. 

Because many algorithms are designed in this fashion, their analysis is o f ten 
" b u i l t - i n " , and is s t ra ight forward . Sahni [1976] gives a v e r y nice summary of the 
g e n e r a l techniques in this class, dividing the methods into three categor ies : digit 
t runcat ion ( the most complicated; see, for example, Ibarra and Kim [1975]) , interval 
par t i t ion ing , and separation. These are especially useful for the knapsack problem, 
packing problems, and certain scheduling problems. They are part icular ly att ract ive 
f rom the point of v iew of analysis, having "templates" for complexity analysis as a part 
of the des ign. The wors t - case complexities they produce are usually like 0 ( n c / O for 
some constant c which depends on the problem. 

A n example of the interval partitioning technique is a simple algorithm for 
so l v ing the 0/1 knapsack problem: 
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maximize: c*x 

subject to : a*x < b 

x ( {0,1 } n 

H e r e , c and a are n - vec to rs of positive "utilities" and "weights", respect ive ly , and b is 
a scalar represent ing the capacity of a Knapsack. The object ive is to fill the knapsack 
w i t h some of the n items in such a way that the total utility cx is maximized whi le the 
c a p a c i t y constra int ax<b is satisfied. Item i is to be included iff X j = 1. 

T h e problem can be solved by a straightforward tree search method. C lear l y , 
f o r any part ial assignment to the variables x j , , x 2 , . . . X j which we may have at level i of 
the t r e e , t h e r e co r respond two more assignments (letting X j + j be either 0 or 1) at 
l e v e l i + 1. A feasible solution is one for which ax<b, and a partial assignment at level i 
cons is ts of the f ixed variables x j through X j , with the remaining ones set to 0. It is 
e a s y to see that if a partial assignment is not feasible, then no completion of it will be 
f e a s i b l e , and w e may prune the tree at that point. However , even with such pruning 
r u l e s , the total number of solution candidates generated may be exponential in n. 

A n approximation scheme using interval partitioning is constructed as fo l lows : 
let Pj be the maximum total utility of partial solutions on level i. Divide the interval 
[0 ,P j ] into subinterva ls of size P,c/n, and discard all candidates with total uti l i ty in the 
same in terva l except that one with the least total weight. There are now at most 
[ n / ^ J + 1 nodes on each level , and therefore only 0(n^/O nodes in the ent i re t ree . T h e 
e r r o r s in t roduced at each stage are additive, so the total e r ro r is bounded b y This 
means that in 0 ( n ^ / ( ) time we can solve the 0/1 knapsack problem to wi th in for 
e v e r y (>0. 

One interest ing feature of the NP-complete problems is that not all seem to be 
equa l l y wel l sui ted to approximation, even though they are in some sense of equivalent 
d i f f i cu l t y to so lve exact ly . D.S. Johnson [1973] points out that for some problems 
( t h o s e for wh ich Sahni's techniques are applicable) the relative e r ro r « can be bounded 
b y a constant independent of problem size. However , for others (such as the maximum 
cl ique prob lem) no algorithm has yet been found for which < does not g r o w at least as 
fast as 0 ( n c ) for some c>0. Garey and Johnson [1976a] show that approximating the 
chromatic number of a graph to within a factor of 2 is NP-hard ; in fact, no known 
po lynomia l - t ime algorithm solves the problem to within any bounded ratio. Similarly 
d i scourag ing is another result reported in the same paper that if there is a po lynomia l -
t ime algorithm for approximating the size of the maximum clique of a g raph to wi th in 
some b o u n d e d rat io, then there is a polynomial-time algorithm for approximating it to 
w i t h i n any bounded ratio. Despite being of comparable complexity for exact solut ion, 
t h e NP -comple te problems are not all equally easy to approximate. 

For more examples of approximation algorithms and analysis of e r r o r s and 
complex i t ies , see also Johnson [1974], Sahni [1975], and Coffman and Sethi [1976] , 
among many others . Garey and Johnson [1976b] is a fine annotated b ib l iography for 
this area. A lso of interest is an algorithm by Shamos and Yuval [1976] for 
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approx imat ing the solution to a problem which is relatively easy (the mean distance in 
the plane) ; the problem requires and can be solved in 0 ( n 2 ) time exact ly . The i r 
a lgor i thm guarantees an ( -approximation in 0(n) time. 

C. P R O B A B I L I S T I C BEHAVIOR OF APPROXIMATION ALGORITHMS 

As mentioned above, it is not easy to guarantee good approximate solutions to 
c e r t a i n NP-complete problems. These negative results suggest that finding an 
a l te rnat i ve to the "guaranteed" approximation approach is warranted. One such scheme 
w h i c h looks promising is to, effect ively , make such a sophisticated guess about the 
so lu t ion that the likelihood of being wrong is negligibly small, These ideas can be made 
exp l i c i t ; def ine p n as the probabi l i ty that such an algorithm gives an unacceptably bad 
a n s w e r to a randomly chosen problem of size n (some distribution of problem instances 
is assumed). Then the algorithm is said to work correct ly "almost e v e r y w h e r e " if 
Pj ,+P2+.. . is f inite. 

Optimali ty or near-optimality "almost e v e r y w h e r e " is a strong condit ion. 
S u p p o s e that w e randomly chose one problem instance of each size n, for n=l ,2, . . . , and 
r a n the algorithm on each of them. Then not only would the algorithm g ive good 
a n s w e r s inf in i tely of ten, but (with probabil ity one) it would fail to give good answers 
o n l y f in i te ly o f ten . 

Karp [1976] gives some examples of such algorithms. He demonstrates an 
0 ( n log n) algorithm for solving random Euclidean traveling salesman problems which , 
f o r e v e r y (>0 finds a solution within a factor of 1-K of being optimal, almost 
e v e r y w h e r e . T h e analysis depends heavily on an interesting theorem by Beardwood , 
Hal ton, and Hammersley [1959] that for n points chosen at random in a plane f igure of 
a rea A, t h e r e is a constant c such that the length of the shortest tour is within £ of 
( c n A ) 1 / 2 almost e v e r y w h e r e . This theorem is, in turn, based on an application of the 
cent ra l limit theorem. 

This example of the use of results from geometry and probabi l i ty is typical of 
the nature of design and analysis of probabilistic algorithms. Results and techniques 
f rom a large number of fields of mathematics seem to apply in this area. For example, 
much per t inent material is found in the theory of random graphs (see Erdos and 
S p e n c e r [1974] ) , w h e r e one finds many theorems regarding connectedness, maximum 
c l iques , chromatic numbers, etc. Rabin [1976] presents a v e r y fast algorithm for 
tes t ing w h e t h e r a number is prime, and for which the probabil i ty of e r r o r (guessing 
that a composite number is prime) is halved at each step regardless of the size of the 
number being tested. 

Many of the algorithms being proposed for probabilistic analysis are incredib ly 
s imple , y e t have been shown to work extremely well almost e v e r y w h e r e . Addit ion of 
heur is t i cs wh ich would seem to improve the behavior of an algorithm add to the 
d i f f i cu l t y of analysis, but (if they can be shown not to reduce the accuracy of a 
g u e s s e d solut ion) may still be used in practice without weakening the results. 
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T h e probabi l ist ic approach suffers from the same objections as a v e r a g e - c a s e 
ana lys is , pr imar i ly the question of the underlying distribution over problem instances. 
H o w e v e r , it p rov ides some assurance that an approximation algorithm which might fail 
in some cases will not fail v e r y often, and hence instills some confidence in the user 
that he wil l be " su rp r i sed" only rarely . For some applications, this may be insuff ic ient ; 
s ince the al ternat ive may be to expend a horrendous amount of computer time on a 
p r o b l e m , o r not to so lve it at all, the method still may be useful. 



VL Conclusions 

He that takes up conclusions on the trust of authors .,. Loses his Labour, and 
does not know anything, but only belieueth 

-Thomas Hobbes 

T h e r e is a clear need for development of more sophisticated tools for p rov ing 
l o w e r bounds , a gap which may be partially filled by the approaches using data f low 
g r a p h s and similar models. Techniques for proving upper bounds will not change 
s ign i f icant ly , although algorithm design will continue to advance with more unif ied 
p r inc ip les (this predict ion seems safe!}. Average-case analyses must expand to include 
est imates of the var iance and/or the nature of the distribution of solution times. 

One pract ical ly unexplored path for future work in analysis of algorithms 
cons is ts of developing a realistic model of parallel computation and techniques for 
decompos ing problems on a "macroscopic" level (as opposed to previous approaches, 
w h i c h have concentrated primarily on parallel computation at the s ing le - inst ruct ion 
l e v e l ; see , for example, T raub [1973]). This area is practically devoid of design and 
analys is techniques, and because of the proliferation of actual parallel hardware , o f fe rs 
a unique o p p o r t u n i t y for one inclined to work in this field. 

P r o b a b l y the most exciting and potentially rewarding area in the near future 
wi l l be in designing and analyzing algorithms for hard problems. Of course , the 
in te res t ing theoret ical questions include the now-infamous P = NP problem. Presumably 
P / NP, so that approximate algorithms will predominate. For those problems which are 
not c o n d u c i v e to guaranteed approximate solutions, an approach such as Karp's [1976] 
w h i c h w o r k s probabil ist ical ly may be preferred. However, the "almost e v e r y w h e r e " 
c o n c e p t is too rest r ic t ive and says too little about problems of a particular s ize , so a 
n e w def in i t ion of what constitutes an acceptable approximation algorithm might resul t 
in a n e w family of practical algorithms for some NP-complete problems. Results in this 
a r e a wil l l ikely stem from application of concepts from probabil ity and statistics. 
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