NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-79-106

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-389¢

Dynamic Prograreming in Computer Science

Kevin Q. Brown
February 1979

DEPARTMENT
of

COMPUTER SCIENCE

=

Carnegie-Mellon University

510.7808
C28R
79-106

nm b WON -

W 0 N>

PAGE I

Table af Contents

. Introduction

. An Example

. Brief Summary of the Theory

. Single Source Shortest Path Problems

. Optimal Parenthesization Problems

5.1 Optimizing the Multiplication of N Matrices

5.2 Context Free Language Recognition

5.3 Optimal Alphabetic Encoding and Optimal Search Trees
5.4 Optimizing the Search for N Order Statistics

. Optimal Partition Problems
. Optimal Matching Problams
. '"Hard' Combinatorial Problems

. Conclusion

References

PAGE 1

1. Introduction

“Dynamic programming is an important technique for the solution of problems

involving the optimization of a sequence of decisions. The simple idea underlying

this technique is to represent the problem by a process which evolves from state

to state in response to decisions. A typical optimization problem then becomes

one of guiding the system to a terminal state at minimum cost. When the cost

structure is appropriate, the determination of an optimal policy (sequence of

decisions) may be reduced to the solution of a functional equation in which the
state appears as an independent variable.” Karp and Held, 1967.
Dynamic programming (DP) is one of several problem solving methods used in computer
science {(and operations research). One of the distinguishing features of a DP aigorithm is the
way it decomposes a problem into subproblems. A problem of size N (that is, N stages)
typically decomposes to several probiems of size N - 1, each of which decomposes to several
problems of size N - 2, etc. To avoid recomputation of common subproblems, a DP aigorithm
typically records the solutions to all subproblems it encounters. Thus, at the expense of
extra storage, a DP algorithm can reduce the time required to solve the original problem. DP
is most appropriately applied to problems for which this table of subproblem solutions helps
eliminate a great number of redundant computations. As the quote at the beginning of this
chapter suggests, DP is applicable primarily to the types of problems that can be expressed

as a sequence of decisions to be made at each of several stages.

For other types of problems there are corresponding problem solving methods. These
methods include divide-and-conquer, linear and integer programming, and branch-and-bound.
Divide-and-conquer is applicable to problems that can be divided into subproblems of
(approximately)} equal size, the results of which can be efficiently used to solve the original
problem [2]. For example, a divide-and-congquer decomposition of a problem of size N may
produce two subproblems of size N/2. Linear and integer programming are appiicable to
problems with linear optimization functions and linear constraints [11]. (Giimore [23]
describes some interesting interrelationships between linear and integer programming and
dynamic programming.}) Branch-and-bound is commoniy used for pruning of large tree
searches, and is also closely related to DP [39, 49].

Dynamic programming originated with the work of Beliman [5] and has been applied to
problems in operations research, economics, control theory, computer science, and several
other areas. The theory has evoived in several directions: discrete vs. continuoué states,
finite wvs. infinite.(countable and uncountable) number of states, and deterministic vs.
stochastic systems. Not surprisingly, the literature on dynamic programming is enormous.
The survey paper by Themas [69] is a good overview of the several branches of DP. The
orientation of this paper is toward the uses of DP in computer science, in particular

combinatorial problems. The DP aigorithms for these probiems are typically discrete, finite,

PAGE 2

and deterministic. Tarjans [68] recent survey article on combinatorial algorithms includes a

brief description of the applications of DP to computer science.

This paper is intended to be a reference to the uses of dynamic programming in-computer
science. Many problems are covered, along with the DP algorithms and references to related
problems and more advanced results. We intraduce dynamic programming in the form of an
example in Chapter 2 below, and in Chapter 3 present some of the theory of DP and
subsequently apply it to the problem of Chapter 2. In the following four chapters we
present and analyze examples from several subclasses of DP problems. These subclasses are
(for the most part) defined by the form of the recursion for breaking a problem into
subproblems, Chapter 4 covers Single Source Shortest Path'ProbIems, Chapter 5 describes
Optimal Parenthesization Problems, Optimal Partition Problems are analyzed in Chapter 6, in
Chapter 7 we present Optimal Matching Problems, and 'Hard’ Combinatorial Problems are the
topic of Chapter 8. Each of these chapters are independent and can be read saparately from
the others. (It is suggested, however, that Chapters 2 and 3 be read before attacking any of .
the material in the later chapters.)

PAGE 3

2. An Example

Before diving into the theory, it will be helpful to give some of the flavor of DP algorithms
by giving an example. The diagram in Figure 2-1 is a graph with (non-negative) weighted
edges. These weights are interpreted as the "distances" along the edges connecting the
nodes. Thus, the distance from node (1,1} to node (2,1} is 3 and the distance from node (2,1)
to node (3,2) is 2. (The distance from node (2,1) to node (1,1), on the other hand, is not
defined in the graph and can thus be assumed to be infinite.) The distance along path (1,1) -
(2,1) - (3,2)is 3 + 2 =5. The problem is to find the shortest path from node (0,1) to node (4,
1).

Figure 2-1: Find the shortest path from Node {0,1) to Node (4,1}

There are several approaches that we can take to solve this problem. One approach is to
enumerate all of the paths from node (0,1) to node {(4,1) and choose the one with minimum
distance. For the graph of Figure 2-1 there are 33 = 27 different paths from node (0,1} to
node (4,1). Examing all these paths is somewhat tedious, but definitely manageable. If,
however, instead of 3 columns of 3 nodes there were K columns of L nodes, then there would
be LK paths to examine! Thus, the number of paths grows very rapidly with L and K and for
large problems of this type another method will have to be used.

A dynamic programming approach turns out to be just what we need. Let
Cijk = the {nonnegative) "distance” from node {i,j) to node (i+1,k)

PAGE 4

and let
Mij = length of the shortest path from node (0,1) to node (i,j).

The optimization for the problem in Figure 2-1 proceeds in four stages. In each stage i we
find the iengths of the shortest paths from node (0,1} to the nodes (i,j), for all j, which we
denote by Mij' Stage 1 is easy since there is only one path from node (0,1) to each of the
nodes (1,1), (1,2), and {1,3). Thus, we have
Mi1 = Cor1 M12 = Co12: My3 = Co1 3

Stage 2, however, requires some computation since there are three paths from node (0,1) to
each of the nodes (2,1), (2,2), and (2,3). Thus,

Mz =min (Co11 +Cy11:Co12 * C1215 Co13 * Cra1)

Maz =min (Coy; +Cp12 Co12 + C122: Co13 + C132)

Mpg =min (Cp1; +C)13 Coi2 + C123: €013+ C133)
In stage 3 we find the lengths of the shortest paths from node (0,1) to nodes (3,1), (3,2), and

(3,3). Here is where the great advantage of dynamic programming becomes apparent. It is
hat necessary to examine all paths from node (0,1) to nodes (3,1), (3,2), and (3,3) because we

can use the results from stage 2 as follows:

Mg = min (Mp; +Cpyp, Map + Cppys Mpg + Co3j)

Mgz = min (Mz + Cp12 Mp2 + Cpop, Mpg + Cp32)

Mgz = min (Mp) + Cp13, Mag + Cpo3, Mpg + Cp33)
Similarly, in stage 4 we can use the results from stage 3.

Mgy = min (Mgy + C3)1. Map + C3py, Mg + Cg3y)
The solution for Figure 2-1 is path (0,1) - (1,1) - (2,2) - (3,3) - (4,1) of length 7. Note that it
is straightforward to determine that the length Mgy = 7, but recovering the corresponding
path (or paths) is a slightly different problem. It is, however, simply solved by simply
recording a pointer Pij with each distance Mij which points back to the node (i-1,k) from
which the shortest path to node (i,j) came.

Why can the results of stage 2 be used to solve stage 3, and the results of stage 3 be
used to solve stage 4? This is because of the Markov property of this type of problem. The
optimum path from a node (i,j) to node (4,1) does not depend on the path taken from node (0,
1) to node (i,j). This property can be expressed as Beliman’s Principle of Optimality:

"An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimai policy with regard
to the state resulting from the first decision.” Beilman[57], p.83.

PAGE 5

We can use this principle for the general case of K columns of L nodes. The dynamic
programming approach will take only O(K*Lz) time, a significant improvement over the
exhaustive approach of examining all LK paths. Both of these methods require O(K*Lz)
storage to store the distances (Cijk)' The general formulas describing the optimization for

this type of problem, known as the functional equations for this problem, are

_ min
Mi ="k (M * Chon)

where MO,k = 0, for all k. In the next chapter we show how to derive this equation.

PAGE 6

3. Brief Summary of the Theory

Bellman’s Principie of Optimality, as shown in the example of Chapter 2, is an important and
powerful principle for dynamic programming. It is, however, lacking in at least two ways: (1)
It is not stated very rigorously, and (2} the problem of obtaining the functionat equations is
not even addressed. To obtain the functional equations, we must rely on methods beyond the

scope of the Principle of Optimality.

By the mid 1960’s several people had solved the first problem by showing that the
Principle of Optimality derives from a monotonicity property of the cost functions. (See Karp
and Held [44] for references.} Karp and Held subseguently made considerable progress on the
second problem. In their formulation, a combinatorial decision problem is assumed to be
expressed in the form of a discrete decision process (DDP). This form is usually a fairly
natural way to express the problem. The dynamic programming algarithm to solve the
problem, on the other hand, corresponds to a sequential decision process (SDP). Karp and
Held describe the transform (if it exists) from a discrete decision process to a sequential

decision process,

The result of Karp and Held can be used to derive the functional equations for the problem
of Figure 2-1. Their resuit, however, will not be followed exactly because it is long and
complicated to explain {and thus discouraging for readers). Thus, {o derive the functional
equations as painlessly as possible, a modified approach will be described which shouldn't go
too far wrong. The first step is to define the discrete decision process. The DDP is a
four-tuple D = (A, S, P, f) where

A = { primitive decisions },

S = { feasible policies } = { tuples of primitive decisions which transform the
start state to a final state },

P = { sets of data used by the cost function f }, and

f = cost function, defined over all x ¢ A¥,
where A¥ is the set of all n-tuples of elements of A for n 2 Q. The case n = 0 is the empty
string and is denoted "e". For the problem of Figure 2-1 the DDP D =(A, S, P, f } is defined
by

A ={aj, ap ag } where 3 transforms the state from node (i-1,k} to node (i,j},

S ={ aiajakal | ik € {1,2,3} },

P = { matrices C | Cijk 20, ¥ic¢{0,1,23), ke {1,23}}, and

f is defined recursively by: f(e;p) = 0, f(a;p) = Coyis f(xaiaj,p) = f(xa;;p) + C
where n = length(x) + I, and p ¢ P.

nij

PAGE 7

The conversion from DDP to SDP (seguential decision process) is not entirely automatic.
We must first define the states for the SDP (and thus the DP algorithm) or do something else
that is e:qt.livalea'-nt.1 Once the states are defined, the other components of the SDP convert
fairly automatically from the DDP. The discrete decision process D is transformed to a

sequential decision pracess W = (Z, P, h, k) where

Z is a finite state automaton Z = (A, Q, gp, F, A) where

A
Q

qp = initial state,

alphabet for Z (same A as for the DDP above),

{ states },

F = { final states }, ! correspond to § in the DDP
A = transition function,

P = data for the cost functions h and k {same as P for the DOP),

h = cost function defined by: h{r,q,ap) = cost of reaching state \(q,a) by first
reaching state q at a cost r and then applying the sequence of decisions a. The
function h relates to f by: h(r,q,a,p) = f{xa,p) where f(x,p} = r and Mqg,x) = a.

kip) is the cost of the null sequence (of primitive decisions) e.
The SDP for the problem of Figure 2-1 is a four - tuple W = (Z, P, h, k) where
ZisanfsaZ=(A, Q qp F, A) where

A={aj,ay 33}
Q = {s01» 511 512 513 521+ S22 523 S31 5327 533 541 b
gag = {spy h
F=1{sg;}
X is defined by: Msij*ak) = S(j+1) ke
P = { matrices C | Cijk 2 o,Vie€{01,23}jk¢{1,23} },
h is defined by: h(r,sij,ak,p) =r + Cijk’ and
k is defined by: k{p}=0.
Now that we have defined the SDP, if the monotone property (described below) is satisfied
then the SDP is a monotone sequential decision process (MSDP) from which the functional

equations for the DP algorithm can be derived.

1Karp and Held use a complicated argument that involves a (finite rank) aquiresponse relation of an automaton from
which the states are derived.

PAGE 8

Monotone property: If ry < rp then hiry,q0,%,p) < h(rp,an0,x,p), Yx¢A*,

(For the problem of Figure 2-1 this is easily satisfied because of the additivity of h(r,q,a,
p).} The functional equations define a function G such that

min

G(QDp) = {X|Mqo,x)=q}

h(k(p),ag%/p)-
That is, G(qg,p) is the minimum possible cost to get to state q, under the cost function h. Now it

is possible to define the functional equations.

Functionai Equations:

G(gg,p) = Min (k(p), {(s,a)lfz;?a)mo} h(G(s,p),a,3,p))

_ min
Glg,p) = {(s,)\(s,2)=q} h(G(s,p),q,a,p) for q # q,.
For the problem of Figure 2-1 this is

Glsqp) =0
min

LA S

(Glsg 1y wP) *+ Chpyy?

Letting Mij = G(sij,p), this is

Mgy =0

min .
M, = K (M(i_“,k + Ch ki), for (i,j) # (01).

This equation is the same as the functional equation given for this problem in Chapter 2.

The results of Karp and Held provide a powerful approach for the construction of DP
algorithms but severai details are left unsolved. For example, Karp and Held note that a good
heuristic for reducing the time required by a DP algorithm is to minimize the number of states
in the SDP. The problem of minimizing the number of states, however, is not in general
solvable in a finite number of steps [38]. Another detail left unsoived by Karp and Held is
the problem of transforming the problem statement to a discrete decision process. Given a
problem statement, there may be several ways to represent the corresponding DDP.

In the following chapters we will apply the techniques presented in this chapter to several
subclasses of DP problems. Since the notation is somewhat cumbersame a small compromise
has been made. The cost functions f{x,p) and h(r,q,a,p) shall be (more conveniently, although
less correctly) denoted by simply f(x) and h{r,q,a), respectively.

PAGE 9

4. Single Source Shortest Path Problems

The problem of Chapter 2 is a special case of the singie source shortest path problem. But
before describing the general problem, we should first note some other interesting problems
that fall into this special case. One of the beiter known problems of this type is the
stagecoach problem ([72]]), which is commonly used as an introduction to DP in operations
research textbooks. A rather curious example of this type of algorithm is the ordinary, grade
school algorithm for long division [8]. But of more interest to computer scientists is the
Viterbi algorithm. The Viterbi algorithm [71, 19]is formally a stagecoach type of prabiem, so
it is not necessary to describe it in detail here. Its applications, however, include nat only
estimation problems in digital communications [9] but also text recognition [19] and syntactic
pattern recognition [61]. The stagecoach problem has aiso been encountered in speech

recognition [3] and in image understanding systems [16].

We will now describe the general single source shortest path problem. Let G be a
(directed) graph of N nodes and E edges. The edge {if any) from node N; to node Nj is edge
Eij' The cost structure is defined by the weights Cij > 0 corresponding to the edges Eij‘ The
problem is to find the shortest path from node N; to node Ny For now we will assume that
the graph G is a complete graph. (For each pair of nodes N; and Nj there is an edge Eij.) If a
particular graph is not already complete, we can easily make it so by augmenting it with

edges Eij with weights Cij = 00,

QOur goal now is to obtain the functional equations for a DP algorithm that solves this
probiem. To do this, however, the problem wiil have to reworded slightty. Instead of directly
finding the shortest path from node N; to node Ny the algorithm will find the length of the
shortest path. For this problem only a trivial modification of the algorithm is then necessary
to obtain the actual shortest path. For some problems in other chapters, however, the’

distinction is not so trivial.

To obtain the functional equations the first step is to define the discrete decision process

(DOP) D = (A, S, P, f). For the single source shortest path problem this is:

A={ay,as. . . a3y }, where "a;" means "go to node "

S = A*aN }, = set of all feasible paths from node 1 to node N

P = { matrices C | Cij 20,C; =0,ij=1,2,.N }, and

f, the cost funcfion, is defined recursively by: fle) = 0, f(a)) = Cy;s f(xaiaj) =

f(xai) + C”, Vx ¢ A%
The corresponding SOP W = { Z, P, h, k) is

PAGE 10

Z =fsa (A, Qag F,A)where
A = same as for the DDP,

Q={ $i{»Spy. . . Sy} where "s;” means “at node i"
9p = { 5 b
F={ SN h
J\(si,aj) = Sj,
P = same as for the DOP,
h(r,si,a}-) = + C”, and
kip} = 0.

The monotonicity property is satisfied easily by the additivity of the cost function. Thus, the

functional equations are:

G(sl) =0

min min
G(s;) = (Sj'ai) h(G(s))s,2) = j (G(sj) + Cji)

Letting M(i) = G(s)) this is

M(1) = 0
M) = "‘j'” (M(j) + C,)

We will now show how to sclve these functional equations.

It is not as intuitively obvious how to solve these equations as it was for the stagecoach
problems. The solution is known as Dijkstra’s algorithm [12, 6, 60] and requires O(N2) time
and storage. (For a general graph this is the best that ocne can do because there are O{Nz)
edges and any shortest path algorithm will, in the worst case, have to look at ali of the
edges.) The algorithm runs in N - 1 stages and in each stage i finds the ith closest node to
node N;. But each stage requires a comparison between O(N) nodes, so the total time is
O(N2),

PAGE 11

Algorithm for Single Source Shortest Path

Input: Complete graph G with internode distances C(I,J).
Output: G(I) = distance of shortest path from Node 1 to Node L.

H(I) = last node before Node I in an optimal path from Node 1 to Node 1
Time: O(N2), Storage: O(N?)

! Initialization;
For 1« 1 thruNdo

begin G(I) « C(1,D); H(I) « 1; end;
NODES «{1,2,3,...N}

! S = set of nodes for which an optimal path has been found;
Se«{1l} NEWGe«I;

! Optimization;
For I « 2 thru N do

begin
MINCOST ¢« oo;
For J ¢ NODES - S do
begin
NEWCOST « G(1,NEW) + C(NEW,J);
If NEWCOST < G(J) then
begin
G(J) « NEWCOST; H(J) « NEW;
end;
If G(J) < MINCOST then
begin
MINCOST « G(J% MINJ « J;
end
end;

S« Su{MINI}L NEW « MINJ;
end;

This algorithm can be modified to run in O(E logN) time and O(E) storage, where E is the
number of edges in the graph. (Aho, Hopcroft, and Uliman [2] give credit to Johnson [42])
For graphs where E < NzllogN this is better than O(N?) time and space. For example, any
planar graph of N nodes (N > 2) has at most 3xN - 6 (undirected) edges (or 6sN - 12 directed
edges) [26]). Thus, the single source shortest path problem for a planar graph can be solved
in O(N logN) time and O(N) storage. These and related graph algorithms are described in Aho,
Hopcroft, and Ullman [2]. An interesting application of Dijkstra’s algorithm since 1974 is
described in Duncan [14). A recent survey of fast expected time algorithms for the shortest
path probilem (and other simple path probiems) is provided in Peri [57] Fredman [20] {and
references) describe the all points shortest path problem.

PAGE 12

5. Optimal Parenthesization Problems

In this chapter we present several problems that can be described as optimal
parenthesization probiems. That is, they can all be put in the form:
Given a string of N elements, find an optimal {in some sense) parenthesization of
the string. -
These problems include optimization of the multiplication of N matrices, context free language
recognition, various kinds of optimal search trees, and optimizing the search for N order

statistics.

The obvious brute force method for solving an optimal parenthesization problem is to
simply examine all of the possible complete parenthesizations of N elements and choose the
best one. Unfortunately, this rapidly becomes unmanageable. The number of ways to
completely parenthesize a string of N elements is the Nth Catalan number

(%)
N
A Y,

It can bé shown that X(N) = 2N-2 ([2], p.73).

The DP algorithms for these problems offer substantial improvement over the brute force
method. This is because an optimally parenthesized string must be composed of optimally
parenthesized substrings. (If a substring can be better parenthesized, then the entire string
can be better parenthesized.) DP uses this property of optimal parenthesization prablems to
achieve functional equations of the form

min
M = i<j<k fijk(Mij' M(j.l).k 2
The optimal parenthesization for the substring (i,k) is determined by examining the k - i pairs

of M;j and M(j+l),k (which have already been computed). Since there are O(N2) substrings (i,
k), the total time is O(NS), much less than Q(XC(N)).

For two of the problems, optimal alphabetic encoding and optimal search for N order
statistics, the O(NS) time can be improved to O(N log N) time. Unfortunately, this speedup
relies on properties that are peculiar to these individual problems and cannot be applied to
all of the parenthesization problems. A nice decomposition into parailel computations,
however, is available for any optimal parenthesization problem. Guibas, Kung, and Thompson
[25] have shown how (N + 1) (N + 2) / 2 = O(N2) mesh-connected paraltel processors can
solve an optimal parenthesization problem in O(N) time. (In general, a K by K triangular
mesh-connected processor can improve the time to O(N3/K2).)

PAGE 13

5.1 Optimizing the Multiplication of N Matrices

The first problem that we will describe in this chapter is the problem of optimizing the
multiplication of N matrices. Since matrix multiplication is associative, the multipiications can
be grouped as desired and (mathematically) the result will still be the same. Computationally,
however, it may make a tremendous difference. For example, consider the following

muitiplication problem:

M = Mlx M2 xMaqust.
[5x10] [10x100] [100x2] [2x20] [20x50]}

We will assume in this discussion that the muitiplication of a p x q matrix and a q x r matrix

costs pqr operations. (Probert [62] generalizes this problem to allow Strassen matrix

multiplication as well as the ordinary block multiplication.) If the multiplications are grouped
M=Mlx(M2x((M3xM4)xM5))

then the multiplication will cost 156,500 operations. If, however, the grouping is
M=(M1X(M2xM3))X(M4XM5)

then the multiplication will cost only 4600 operations.

We will now describe the general problem and the corresponding O(NS) time DP algorithm.1

Let
M=M;xMpx. .. x My
where M is a cg by ¢ matrix, My is a ¢y by ¢p matrix, etc. The discrete decision process
D=(AS,P,f)is defined by
A={ 2k |1 <i<j<ksN}, wherea;; means “multiply the result of M, x M, ¢
L o X Mj by the result of M, ; z Mj+2 z .. x M

S = { sequences of 3k corresponding to complete parenthesization of the N
. matrices },

P={c¢ (I"')N+l }, and

fle) = 0, f(xaijk) = f{x} + Ci-l * Cj * Ck.
We must first define the states Q before constructing the SDP. The most natural set of states
for this problem is the set of all partial parenthesizations of N elements. The SDP
W ={(2, P, h, k) is then defined by

Lchin [10] describes a non-DF G(N) time approximation algorithm that is never worse than a factor of 5/4 from
optimal.

;B B

PAGE 14

Z
P
h(r,q,aijk) =1+ Gl ¥ ¢ *Cp and
kip) = Q.

(A, Q, g0, F, A), (The components are obvious.)

same as for the DDP,

Monotonicity of the SDP is assured by the additivity of h, Thus the functional equations are

Glag) = 0, and ‘
= min
Gla) = ((s,a)a(s,a)=q) ME(E)s2)

The optimization procedure suggested by these equations will certainly produce an optimal
parenthesizatian. The time spent, however, will be prohibitive, This is because the number
of states that will have to be examined is the number of partial parenthesizations of N
efements, which is at least as greal as the Nth Catalan number X(N). This does not compare
well with the O(NS) time that was promised above. Cbviously, the choice of states will have

to be made more carefully. The natural choice is not always the best,

Let’s re-examine the situation. To produce a faster DP algorithm the number of states
must be reduced. There is no general procedure for this. In fact, Ibaraki [38] has shown
that the problem is in general unsoivabile. Thus, to reduce the number of states we must
exploit properties peculiar to this particular problem. In this case a ciue is provided by a
closer examination of the primitive operators 3jjk in the set A. If the substrings (Mi'Mi+1""Mj
and (Mj+l’Mj+2""Mk) are already fully parenthesized, then application of the operatar 3jjk will
make (Mi=M'+l""Mj""Mk) a fully parenthesized substring. This implies that the states should

be of the form s;.

ijp 1sisjsN where s;; has the interpretation "substring (MM g 1M} s fully

1
parenthesized.”

Unfortunately, there is no way that a parenthesization such as ((M xM)x (M x M)) can
be produced by the primitive operators with only these states Sij- Thus, ancother property
peculiar to parenthesization problems will have to be pulied out of a hat. This one is a kind
of decomposition property and it looks more like divide-and-conquer [2] than dynamic
programming. The property is that the parenthesization of a substring (i,j} is independent of
the parenthesization of a substring (k) iff i<j<k<lor k<{<i<|. Thus, the problem of
producing a state, call it (Sij v S(j+l),k)’ for which 3jjk fully parenthesizes substring (i,k} {(and
produces state S;,) can be decomposed into the problem of solving Sij and solving s(j-i-l),k'
Since the cost function is additive,

_ G(Sij v Sgjayw = G(Sij) * GOS(j41y)
Thus, the functional equations become

PAGE 1S
G(qo) = 0, and
min
GiSi) = (S v S(j.n.k)G((Sii U S *eiy * € * G
min
= : G(Sjj) + G(S(M),k) +C XC O

Letting Gij = G(Sij), this becomes

G, =0, and

_ min
G =" Gi*Chonx* Gt * 6%

which is the type of recurrence desired. Here is a pseudo-Algot algorithm that solves the

functional equations:

Algorithm For Computing Optimal Multiplication of N Matrices

Input: integer N > Q, array C[1:N+1] of positive integers

Output: Array G where G(i,j) = minimum cost of parenthesizing substring (i,j).
Array H where H(i,j) = subscript k where optimai parenthesis for substring {i,j) is
jocated.

Time: O(N3), Storage: O(N2)

For L « 1 thru N do

G(L,L) « O
For L « 2 thru N do ! L = length of substrings optimized

For 1 « | thru N+1-L do

begin
MINCOST « oo;
Jel+L -1
For K « I thru J-1 do [Find optimal paren for substring (.,
begin

COST & G(LK) + G(K+1,J) + C(I-1) * C(K) * C(J)
If COST < MINCOST then
begin
MINCOST « COST;
G(1,J) « COST;
H(1,J) « K
end
end
end;

PAGE 16

5.2 Context Free Language Recognition

Context free language recognition is a well studied problem. Younger [75] showed that a
Turing machine can recognize a general context free language in O(N3) time, where N is the
length of the string being recognized. Kasami and Torii [45] constructed an O(N?) time (RAM)
algorithm for unambiguous context free language recognition and Early [15] produced an
algorithm that not only recognizes general context free languages in O(N3) time, but also
unambiguous languages in O(N?) time, and some further restricted classes of languages (such
as LR(k)) in O(N) time. Since then Valiant [70] constructed an O(N2-81)! time general context
free recognition algorithm (by using Strassen matrix muitiplication), and Graham, Harrison, and
Ruzzo [24] produced an O(N3/|OgN) time on-line algorithm for general context free
recognition. In this paper we describe the simplest O(NS) time algorithm for general context

free language recognition.

The DP algorithm for general context free recognition that is presented in this paper
requires the context free grammar to be put in Chomsky normal form [32]. (Early [15] does
not require Chomsky normal form, but his algorithm is more complicated, too.) The grammar is
a 4 - tuple

= (Nonterminals, Terminals, Productions, Start symbol).
Nonterminal symbols are indicated by upper case letters (A, B, C,. . .) and terminal symbois
are indicated by lower case letters (a, b, c,...). The productions are all of the form A - BC
or A = a (Chomsky normal form). if m, n, and q are strings of terminals and nonterminals,
then mAn - mqn iff A > g is a production. The language generated by the grammar is the set

of strings of terminals w such that S »* w where - is the transitive closure of -.

To construct the DP algorithm we must first define the DDOP. The DDP makes use of a
function called "Prefix" defined as foliows:

Let the input string be 7 = z12p..2, and let x be a string of primitive operators

ajjk- Prefix(x, auk) = the string x minus all cperators to the right of a ijke If 3ijk
does not occur in x then Pretix(x, auk) = e,

For example, if x = 8233812334553 35, then Prefix(x,asgg)= ap332)933455. The DDP is
D=(AS5 P, f)

= { g ik il <i<jzks<N)} where 3jk produces the set { B | B-»CD and
C-ch z|+l -2; and D—mzj_,,lz“z Zp b

= { A*ale b

INow improved to 0(N2’79) with the new matrix muiliplication aigorithm of Pan [54)

PAGE 17

P = { productions }, and

fle) = e, f(xaijk) = { B | BoCD where 3p C ¢ f(Prefix(x,aipj)) and 3q D ¢

f(Prefix(x,a(j_,,l),q’k)) 1
This is a most curious way to define a DDP. The primitive operators and, especially, the cost
function return sets rather than scalars. The reason for returning sets is that in this problem
we are interested in finding all of the nonterminals that produce the substrings 2iZjy 12 If
there are two or more nonterminals that can generate a substring ZiZj41--2] it is not sufficient
to keep only one nonterminal and throw the others away because the productions do not
treat the nonterminals equivalently. Thus, if f("aipk) ={B D E} and f("‘aiqk) ={DE} then
Apk will certainly be preferred over 3jgk: If, however, f("aipk) ={B,D,E}and f(xa,,) ={C
} then we cannot say which is better because the two sets are not comparable. This
situation is described as a partial order relation. It is defined by

f(xaipk

Furthermore, the object is to maximize rather than minimize f under the partial order in this

) < f(xajgy) iff flxajpi) < f{xajqp)-

problem. (Accordingly, we will replace "min" with "union” in the functional equations.}

Now it is time to produce the SDP. Let the state §j; be interpreted as “zjz;,1-2; has been
parsed”. To produce an efficient algorithm, we use pseudo-states (sij U Sip as in the
previous parenthesization problem. The SDP is W=(2Z,P, h k) where

Z=fsa(AQaqqF, A Y where
A = same as for the DDP,
Q = {8 (555 v Sy b
o = {el
F={Sn}
A{ (Sij U S(j+l),k)' 3jjk Y = Sy
P = same as for the DDP,
h(r,(Sij- u S(j-i'l),k)’aijk) = f(xai}k) where)\(qo,x) = (sij v S(j+1),k)’ and
kip) = e.
Before we derive the functional equations we must first show that the monotonicity property
is satisfied. Note that the cost function is not simply additive as in the previous problems so
monotonicity does not come quite as automatically. Thus, we must show that if x,y € A%, then
If A{qgg,x) = ANMag,y) and f(x) 2 f(y) then f(xw) 2 flyw), YwcA¥*,
This is true because if f(x) > f(y) then certainly VweA* f(xw) > f{yw). We conclude that the

functional equations are

PAGE 18

Glay) = e, and

G(S;) = U h(G(S;uS;,), i) (S;USia > 2y P
(SiUS¢u 1y ' '

= U f(xlxza.jk) where Mqo,xl) = Sij and)‘(qu"‘z) = S\JHI.K

Here is an algorithm for solving the functional equations:

Algorithm For General Context Free Language Recognition

Input: Nonterminals = {A|,A,, ... AyT} I A = start symbol
Terminals = {tl,tz, et
Finite set of productions of the form: Ai—bAjAk or Ai"’tj
String Z = 2,25..z)y where z; ¢ Terminals
Output: Array M where M(LK) = { A | A -% 212141-2K }
Thus, Z is recognized iff start symbol = A € M(1,N).
Time: O(N3), Storage: O(NZ),

For I « 1 thru N do
M(LD) « { A | "A-a;" ¢ Productions }

For L « 2 thru N do ! L = length of string;
For I « | thru N+1-L do
begin
Kel+b -1;
M{LK) « g; e =empty set

For J « I thru K-1 do
MLK)} « M(LK) U { A | SeceM(LJ), BeM(J+1,K) (A 3) }
end;

Note that the inner loop is not implemented the same here as for the previous two algorithms.
This is because the partial order relation forces us to use the union operation rather than a
min. Since the set of nontarminals is finite, the size of each of the sets M(LK) is bounded by
a constant. Thus, the entire algorithm still requires only O(NS) time,

5.3 Optimal Alphabetic Encoding and Optimal Search Trees

There are many kinds of optimal search trees and optimal alphabetic encoding corresponds
naturaily to one of the simpier kinds, An optimal alphabetic encoding bears severai
similarities to a Huffman code [34] We are given an alphabet ALPH of N characters and the
probabilities p; that a randomly chosen character is character i. Each of the characters must

PAGE 19

be represented by a prefix code chosen from a set of r symbc‘.ﬂs.l Furthermore, for an
aiphabetic encoding, the codes for the letters of ALPH must be in increasing numerical order.
(For a Huffman encoding the codes are not restricted to be ordered.) Let [= length of the
encoding of character i. The objective is to minimize the expected length of a message, that is

] N
min l 2 ol
I=l It

{alphabetic encodings] :

Gilbert and Moore [22] were the first to use DP to solve the problem of constructing an
optimal alphabetic encoding. Their aigorithm is very similar to the algorithms for the other
optimal parenthesization problems, and it requires O(N3) time and O(N?2) storage.

The tree corresponding to an optimal alphabetic encoding is illustrated in Figure 5-1. A
"0" in the encoding corresponds to a left branch of the tree and a "1™ corresponds to a right
branch. Each leaf of the tree corresponds to one of the letters of the alphabet. The internal
nodes do not represent letters of the alphabet. A general binary search tree, on the other

hand, may have elements at internal nodes as well as the leaves.

OPTIMAL

ALPHABETIC OPTIMAL ALPHABETIC TREE

CHARACTER PROBABILITY CODE

A 0.15 000

B 0.10 001 .

C 0.15 010

D 0.10 011

E 0.20 10

F 0.05 1100

G 0.10 1101

H 0.15 111

Figure 5-1: Example of Optimal Aiphabetic Encoding and Related Decision Tree

Khuth describes the construction of a general optimal search tree in O(N?) time (and
storage) ([46], [47]p.433-439, [2], p.119-123). Not oniy does this search tree include
elements at internal nodes but it aliso is extended to allow (nonzero) probabilities that

1For this presentation we will assume that r » 2, thus making the codes binary codes,

PAGE 20

unsuccessful searches are made in the tree. That is, the search key may be less than A,
between A and B, between B and C, etc. Hu and Tucker [36] produced a much different (and
complicated) algorithm to construct an optimal alphabetic tree in O(NZ) time and O(N) storage
(see also Hu [33]), which Knuth [47] improved to O(NlogN) time and O(N) storage. Since then,
Itai [40] has produced DP solutions for several constrained variations of the problem. Payne
and Meisel [56] describe an interesting DP aigorithm for an optimal multi-dimensional binary
tree. We will present the optimal alphabetic encoding algorithm of Gilbert and Moore. (For
treatments of the generai optimal search tree the reader is referred to the texts of Knuth
and Aho, Hopcroft, and Ullman cited above.)

The first step toward solving the optimal alphabetic encoding probiem is to define the DDP.
Let the alphabet ALPH = (zy,2p,...2N). The DOP D =(A, 5, P, f)is

A={ 3k 1 gi<gj<k N} where 3ijk appends a "0" to the front of the code

for z;, 2z, 4, . . . z; and appends a "1" to the front of the code for Zja1s Zj4ps -
Zk,
S = { sequences of 3k corresponding to total parenthesizatidns of N elements },
P={(ppp. - . pp) € (Reais")N }, and
fle) = O, f(xaijk) = f(x) + P
. m=i,k

Note that the cost function f does not seem to depend on j at all. The dependence on i
comes from the constraint on the legal parenthesizations in S, as will be shown in the
functional equations.

To construct the SDP we must first define the states. Let the state sij be interpreted as
"an optimal alphabetic code has been constructed for zizi+1...zj". To produce an efficient
algorithm, we will use pseudo-states (Sij U Sy} as in the previous optimal parenthesization
problems. The SDP is W =(2Z,P, h, k) where

PAGE 21

Z=(A QaqyF, 2) where
A = same as for the DDP,
Q = { Sjj, (Sjj U S | Lsisj<ksisN Ju {e },
qp0 = &
F={S|nb
A (Sij U S(j+1),k)= 3ijk) = Sjkr
P = same as for the DDP,

h(r, (SUS g, yky i) =7 + z P and
’ m=i,k

k(p) = 0.

The monotonicity property is satisfied by the additivity of the cost function and thus the

functionai equations are

G(e) = O, and

_ min
G(S;;) = (sijus(jm’k),aijk) h G(Sijus(jd).k)’ {S;YS iy 2,

K
_ min
=7 G, + G(j+1),k +r§i Py

Letting Gij = G(Sij) this becomes

G, = 0, and
k
min
=75 Gyt Ghane Z P

Gik

These functional equations can be soived in O(NS) time because the summation from m=i to

m=k of p,, can be computed in O(1) time after some preprocessing. The following algorithm

.shows how that is done.

PAGE 22

Algorithm for Optimat Alphabetic Encoding

Input: integer N > O, array P[1:N] of positive reals
Output: G(I,K) = cost of optimal encoding of 21214 2K-

H(LK} = subscript J for optimal partition of Z[2[4 2K
Time: O(N°), Storage: O(N<)

I Initialization of G and C.;
C{0} « 0;
For 1« 1 thru N do
begin
G(LI) « 0; C(I) « C(I-1) + P(])
end;
! Optimization over all pairs (I,K).;
For L « 2 thru Ndo [/ L = length of string;
For I « L thru N+1-L do
begin
KeI+L-1;
MINCOST &« oo;
For J« Ithru K-1 do
begin
COST « G(I,J) + G(J+1,K) + C(K) - C(I-1)
If COST < MINCOST then
begin
MINCOST « COST
G({LK) « COST;
H(LK) « J;
end
end
end;

5.4 Optimizing the Search for N Order Statistics

Optimizing the search for N order statistics is very similar to optimal alphabetic encading.
The problem is described as foliows:
Let X be a set of M real numbers x;. We want to find N (N £ M) order statistics
s; where s; equals the a;th smallest element of X. For example, if X = {1,5,2,9,-2},
M=5 N=1, and aj = 4,then s; =5, The probiem is to find the N order statistics

5: as quickly as possible.

One way to find the order statistics is to sort the M elements of X in O(MlogM) time and
then obtain the N order statistics in O(N) time (by using the a; as indices into the sorted set
X) for a total time of O(MlogM). For large M we can do better. For the case N = 1, the order
statistics s; can be found in O(M) time[7, 63]. Pohl [59] describes a special case of N = 2, the

PAGE 23

min and the max, and shows how they can be found in | 3M/2 - 2 | comparisons, which is
better than the obvicus 2M - 2 comparison algorithm. The DP algorithm that we describe in
this paper makes optimal use of a linear time selection algorithm. It does not attempt to do

any optimization of the kind described by Pohi.

To construct the DP algorithm we start, as aiways, with the discrete decision process
D=(ASPf)k

A={ag, aj, ap . - - A\ AN+ Y, ! where a;, 15i2 N finds the order statistic

s, a9 = 0, and ANy = M+,

S={xeA*|all aareinx}

P={ac MN},and

f(e) = 0O, f(ai) = M, f(xai) = f(x) + a, - aj where j = max subscript of a in x that is

less than i, and k = min subscript of a in x that is greater than i.
When constructing the SDP we encounter exactly the same problems with the number of
states as with the problem of optimal muitiplication of N matrices. Fortunately, the
decomposition property still applies so the trick of constructing "states” (sij U Sy will work,
Since the details are basically the same here as for the previous parenthesization problems,

we will present only the recurrence relation and the algorithm.

Functional Equations for Optimizing the Search for N QOrder Statistics

Glii+l) =0
GU,k) = Slay G + GGk + - 8- 1

PAGE 24

Algorithm for Optimizing the use of a Linear Selection Algorithm
to Find N Order Statistics

Input: Vector A such that 0 = A(0) < A(1) < A(2) <.

Output: Array G where G(I,K)} = minimum cost of finding all order statistics A(J),
[<J <K, given that A(l} and A(K) have already been determined.
Array H where H([,K) = subscript J of optimal A(J) for subdividing

the interval [A(I)A(K)].
Time: O(Na), Storage: O(N?)

For L « O thru N do
G(LL+1) « O

For L « 2 thru N+1 do

For] « 0 thru N+1-L do

begin
MINCOST « oo
Kel +1L;

end;

We can improve this algorithm to O(NlogN) time and O(N) storage. This is because it can be

! Find optimal paren for substring (I,K;}
For J « I+1 thru K-1 do
begin
COST « (LJ) + G(J,K} + A(K) - A(I) - 1;
If COST < MINCOST then
begin
G(L,K} « MINCOST « COST;
HLK) « J
end
end

put it in the form of an optimal alphabetic encoding problem.

above, the quantity G(ik) is interpreted to equal the minimum cost of finding all order
statistics aj, i <j <k, given that a; and a, have aiready been determined. Change this to

G(i,k) = minimum cost of finding all order statistics a;, i < j < k, given that a; and

ay .1 have already been determined.

Also rewrite the quantity a,,q - a; as the sum (from m=i to m=k) of (a

functional equations are

< A(N) < A(N+1) = M+]

! L = length of substrings optimized

In the functional equations

m+1 ~ 3m)

ORDER
STATISTICS

20
35
70
90

g H WN - O

PAGE 25

2 3 4 5

34 [103 |177 |229
0 | 49 [1i8 |159

0 | 54| 95

0} 30

0

N HWN — O T

01 2 3 4 5
1 12 |2 }2

2 |3 |3

3 |3

q

Figure 5-2: Example of finding optimal use of a linear selection algorithm.

G(i,i) = 0, and

Gli,k) =

i<j<k

m=l

k
Gl + GG+1K) + 22 (3, - a) - L.

The functional equations are now in the same form as the functional equations for an

optimal alphabetic encoding. Thus, the O(NlogN) time and O(N) storage algorithm follows.

PAGE 26

6. Optimal Partition Problems

Optimal partition problems are not entirely unlike optimal parenthesization problems. They
both involve a parenthesization of a string of N elements. The partition problem, however,
does not produce a complete parenthesization of the N elements. Instead, it partition; the
string into K sets of consecutive elements (with K sets of unnested parentheses) for some

value of K. The value of K may be a given constant or it may be left unspecified.

Peterson, Bitner, and Howard [58] describe a problem for which the number of partitions K
is unspecified. The problem is to select optimal tab settings to minimize the number of blanks
in a document. N is the number of columns and K is the number of tabs set. The functional

equations, however, are of the form

Go = 0, and

max
Gi = Gi + Cij

which is very similar to the solution 1or the single source shortest path problem described in
Chapter 4. Because of this similarity this problem will not be discussed further. The

remainder of this chapter will instead describe an example where K is a given constant.

The author knows of two nontrivial problems which are of the optimal partition type (with
a given value for the required number of partitions K). One is the resource allocation
problem ([13], ch.3), but the best example of this type of problem is the one solved by
Fisher’s algorithm [17, 27'].}L To describe the problem we will first have to introduce some
notation. Let the input string of N etements be dencted X1s X0 X3, . .« Xp Where xj is a real.
A cluster (i,j} is simply the substring XiXi41r - - - xj}. Corresponding to each cluster (i,j) is a
diameter D(i,j} 2 0 that is a function of XX g 1r -+ - xj). The diameter function that will be used

in this description is

j X
. _ 2 - k
D(i,j) = E (x, -), where x E GmD

Let a K - partition of the N elements be represented by a K+1 - tuple (10,11.12, ... Ix) where
O=Ipg<I; < I <...< k-1 < Ix = N. The interpretation is that the first cluster is (Ig+1,11),
the second cluster is (I1+1,15), etc. The optimal partition problem (which Fisher’s algorithm

solves) is

lFast algorithme for several special casas of Figher's clustering problem will be presented by Shamos, Brown, Saxe,
and Weaide [66].

PAGE 27

k
min
{K-partitions] Jgo D(Ii+l'lj+l}'

One method of solution is to simply generate alt possible K - partitions and choose the one

with minimum cost. But there are

(N-l)= (N - 1)t
K-1/ 7 (N-Kp = (K - 1!

possible partitions, which for large K and N will be prohibitive. Dynamic programming

provides considerable improvement. To produce the DP algorithm we first construct the DDP
D=(A S5 P f)

A={a |1si<js N } where aj; defines the substring (xixi+1...xj) as one of the

K sets of the partition,

S = | sequences of K aij‘s that produce legal partitions },

P ={ N - tuples of reais }, and

f(e) = O, f(xaij) = f(x) + D(i,j) for all legal sequences xa;;.
To define the SDP we must first define the states. One way to do this is to let Shij be
interpreted "substring (i,j) is partitioned into h sets of consecutive elements.” This leads to a
DP aigorithm that costs O(KN3) time and O(KNZ) storage. Another choice of states is available,
however, that naturally leads to a DP algorithm that costs only O(KNZ) time and O(KN) storage.

The improvement is to consider only states shj = Shljr which are interpreted as "substring
(1,j} is partitioned into h sets of consecutive elements.” Thus, the SOP W = (Z, P, h, k} is

Z=(A QaqpF A Y where
A = same as for the DDP,
Q={Shj|1sh5k,isisN}u{e},
a0 = &
F={Sknb
MSppa(i+1),) = Sth+ 1),
P = same as for the DOP,
h(r,SpisdGs1), =7+ D(,j), and
k(p) = 0.
Monotonicity of the SDP follows from additivity of the cost function D and the fact that D(i,j) 2

0. Thus, the functional equations are

PAGE 28

G{e) = 0, and
G(S,) =

min

(S(h-l),i'a(iol),j) (h=1),i (h=1), s k)

= MV G(S 1y * Dbi*1,)
Letting Ghj = G(Shj). this becomes

min Lo

Ghi = G(h_l)_.. + DGi+1,)).
Fisher’s version of the algorithm for solving these equations first computes all of the
diameters D(i,j) and stores them in an array, costing O(N2) storage. The algorithm below
creates vectors SUM and SUMSQ, which enable the diameter to be computed in O(N) storage
at no extra expense in time. (This trick does not wark for all diameter functions, though.)

PAGE 29

Atgorithm for Constructing an Optimal K-Partition with the Sum of Squares
About the Mean Diameter Function

Input: X = N - tuple of reals, K =no, of sets in the partition.

Qutput: Array G such that G(h,j} = minimum cost for partitioning x| Xp..X; into h sets of
consecutive elements. Array H such that H(h,j) = subscript k for the h'th
set of the optimal partition of X 1 X Qe X

Time: O(KN?), Storage: O(KN)

! Define statement function;
D(LJ) = (SUMSQ(J) - SUMSQUI-1)) - (SUM(J) = SUM(I-1NZ / (J - T + 1)
! Compute partial sums and sums of squares of X(I;)
SUM(0) « SUMSQ(0} « 0;
For J« 1 thru Ndo
begin
SUM(J) « SUM(J-1) + X{J)}
SUMSQ(J) « SUMSQ(J-1) + X{J)*X(J);
G(1,0) « D{1,0y; H(LJ) « J;
end;
! Optimization;
For L « 2 thru K do ! L = no. of sets in partition;
For J « L thru N do
MINCOST & oo
For I « L-1 thru J-1 do
begin
COST « G(L-1,I) + D{I+1,d)
1f COST < MINCQOST then
begin
MINCQST « COST;
G(L,J) « COST;
HLJD « L

end
end;

We can further reduce the storage required by this aigorithm to O(N). To find the cost of the
optimal partition in O(N) storage and O(KNZ) time is fairly simple, but the recovery of the
optimal partition itself (within the same time and space bounds) is more difficult. First, we

consider finding the cost of the aptimal partition in O(N} storage and O(KNz) time,

The only trick is to eliminate unnecessary storage that is being used. The diameter
function is already computed in O(N} storage. Only the array G costs O(KN) storage. (Forget
about H for now since only the optimal cost is being computed.} But in the inner two loops of
the above algorithm only the vectors G(L-1,*) and G(L,*) are referenced. That is, at stage L
only the vectors G(L-1,%) and G(L,*) are needed. Thus, the K x N array G can be replaced by
two vectors of Iengfh N and the cost of the optimal partition can be computed in O(N) storage

PAGE 30

and O(KN?) time.

The recovery of the optimal partition itself, rather than just the cost, in O(N) storage and
O(KN?) time can be accomplished by combining divide - and - conguer with dynamic
programming. The method is similar to the algorithm of Hirschberg [29] that solves the
longest common subsequence problem (to be described later in this paper} in O(N) storage
and O(N?) time.

Recall that the state Sp; is interpreted to mean "xix,..x; are partitioned into h sets of
consecutive elements.” Define a new set of states 8%, that are interpreted "xjx;,;..xyN are
partitioned into h sets of consecutive elements.” Let G'(h,i) = the minimum cost to reach state
S’hi Alsp, assume for convenience that K is a power of 2. Here is how the
divide-and-conquer algorithm works:

1. Compute G(K/2,) for all i in O(K/2 * N2) time and compute G'(K/2,j) far all j in
O(K/2 * N2) time for O(KN?) total time.

2. Find the subscript i that minimizes G(K/2,i) + G(K/2,i+1). This subscript i equals
the IK/2 in the K+1 - tuple (Ig,l),l5,..1¢) that represents the optimal partition of
the N elements.

3. Now find IK/Q and I3K/4 by applying steps 1. and 2. to the respective

subproblems. (This is the divide step - solving two subproblems of half the
size.)

4. Repeat the divide step of step 3. That is, find [K/S' ISK/S- ISK/B’ and I?K/S’ etc.
After logK iterations we will have determined the entire optimal partition.

The total time to recover the optimal partition may at first appear to be O(KNztIOgK). With
careful analysis, however, we can show it to be only O(KN2). Let U(K,N) be the time to
construct the optimal K-partition of N elements and let T(K,N) = O(KN?) be the time to find the
cost of the optimal K-partitions for all the clusters (1,N), (1,N-1), {1,N-2), etc. The above
divide-and-conquer algorithm leads to the following equations:

PAGE 31

T(I,J) = 1J°
logK 21 .
U(K,N) = 7 zl [2 T(—z—‘, Iiklz"' - I(j-—l)kle") + dekIZM = I(j-l)k/z"‘]
i=l J=
logk i 21 y
2
= O(N) + 2 Z —i(Ijk,’Z"' - ch-m/z'-')
i=0 L j=12
logK
< O(N) + Ll Nz] = O(KN?)
i=1 L 2"

The time U(K,N) depends somewhat on the optimal partition (Ig,11,..Ix} but in the worst case

the total time is still O(KNZ).

PAGE 32

7. Optimal Matching Problems

One of the major differences between optimal matching problems and optimal
parenthesization or partition problems is that instead of just one string of elements, two (or
more) are involved. The author knows of two problems in this class. The first, and most
important, is the longest common subsequence (LCS) probiem (and its variations), for which
DP produces a good (if not optimal) algorithm. The second problem is the game of NIM, for
which a much faster aigorithm is known and thus will not be described further [21]. We will

now describe the LCS problem.

Let Y =y ys...yyand = 212y ... zp be two strings of length N whose elements yi'and
z; are chosen from a finite alphabet ALPH, (The strings Y and Z are chosen to be the same
length only for convenience in presentation.) A string B is a subsequence of Y if B can be
obtained by deleting characters from Y. For example, if ¥ = “dyanamic programming”, then B =
"main” is a subsequence of Y. The longest common subsequence problem (for the two strings
Y and 7} is to find the (not necessarily unique) longest string B that is a subsequence of both

Y and Z.

The LCS problem can be solved in O(N2} time and space [29)]. The string editing problem, a
generalizalion of the LCS problem, is to determine the minimum number of changes, insertions,
or deletions to transform a string Y to a string Z. This problem can also be solved in O(N2)
time and space [73] There have been several efforts to improve these algorithms and/or
~how lower bounds for the problems. Hirschberg [29] reduced the space for the LCS
problem from O(NZ) to O(N) while maintaining the bound of O(N?) time. Paterson [55]
produced an O(NzloglogN/IogN) time algorithm for the LCS probiem [30]), which Masek and
Paterson [B2] have recently improved to O(NZ/IogN) time with their solution to the string
editing problem. Hunt and Szymanski [35] have constructed an aigorithm that spends Q((R+N}
logN) time where R is the total number of pairs of characters at which the two sequences
match. Thus, R may he as large as NC but if it is small, then the algorithm takes only O(N
logN} time. Wong and Chandra [74] showed an ﬂ(Nz) lower (time) bound of the string editing
problem for a model of computation ailowing only equal / unequal comparisons between
_ elements of strings. Aho, Hirschberg, and Uliman [1] showed the Q(N?) lower bound for the
LCS problem (with only equal / unequal comparisons). Hirschberg [31] has produced an
(NlogN) lower bound for the LCS problem where less-than-or-equal comparisons are
allowed. Hirschberg [30] provides an overview of the results for the LCS and related
problems and Selkow [65] describes an extension of these string problems to trees. Itakura
[41] gives an interesting application of the LCS probiem to speech recognition. Fitch and
Margoliash [18] apply the string editing problem to determination of the mutation distance of
the DNA of several species.

PAGE 33

We will now present the O(NZ) time and O(N2) space algorithm for the LCS problem. The
two strings are, as before, ¥ and Z, each consisting of N characters from the alphabet ALPH.
The DDP D = (A, S, P, f) is defined by

= { A } where a.; compares y; and Z; for equality,

i)
={e } U { a; liisNju{ "auakt | x €S and i<k and j<i }, I The subscripts of

the a; j must be strictly increasing.;

= { 2N - tuples of elements in the alphabet ALPH }, and

f(e) = 0, f(ajj) = Cly;2; b fxajjap) = f(xay) + Cly;2)) for x € ALPH* and i<k and j<l,
where C(y.,z D= 1ify; = Z and C(yl,z) =0 otherwuse

Note that the cost function f is written so that the object is to maximize f rather than
minimize it. Let the states of the SDP be wriften Sij and be interpreted "(yl,yz,...yi) has been
compared with (2122...zj) by a sequence ending in aij." Thus, the SDP is W=(V,P, h, k)
where
V=(AQaqqyFA) where
A = same as for the DDP,
Q ={Sj1hi=12.-N}u{Sg b

qo Soo
={SnN b
)\(Su,ak[) = Skl for k>i, [>],

P = same as for the DDP,
h(r,Sij,akt) = r + Cly,2p) for i<k, j<i, and
k(p) = 0

The SDP is monotone by additivity of the cost function. Thus, the functional equations are

G{Sqq) = 0, and

Sy = (5,02 i and 1<j} &Sk + Clvy2):
This gives an O(Nq) time algorithm. However, a monotone property of the function G can
minimize the search for max in the equation above. Since the subscripts of the aj; are
required to be strictly increasing in each legal sequence of comparisons, it foliows that
If i <k andj </ then G(Sij) < G(Syp-
Thus, to find G(Sij) it is sufficient to compute

PAGE 34

X
as,) = max [72r 665, 0] [0 65w]) + Cvzy-

The time is now reduced to O(N3) but further improvement is possible. The max(k<i} and the
max(k<j} can be propagated throughout the computation of all G(Sij) so that only constant
time per state Sij is required. One way to do this is to create an array MAXG(,j) to
propagate these max’s. Let G(i,j) = G(Sij). When G(i,j) is defined, propagate the max’s
through the steps

G(i,j) = MAXG(i-1,j-1) + Cly;z;)
MAXG(i,j) « Gli,j)

MAXG(i+1,j) « max(MAXG(i+1,j), G(i,j))
MAXG(,j+1) « max{ MAXGG,j+1), G(i,j}).

Another way to accomplish the propagation is to make a small change in the definition of G
so that it accomplishes the same task as MAXG, thus saving one array [29]. This is what is
done in the following algorithm,

Algorithm for the Longest Common Subsequence of Two Strings

Input: integer N > 0, arrays Y[1:N], Z[1:N]
Output: Array G such that G(I,J) = length of longest common subsequence of (Y 1Y 2r-Yi}
and (21,22,...zj). Array H such that H(L,J) = pointer to either {i,J-1} or

(I-1,J}, whichever has the |largest value of G.
Time: O(Nz), Storage: O(Nz)

! initialization;
For 1 « O thru N do
For J « Q thru N do
G(LJ) « H(IJ) « 0;
! optimization;
For 1« 1 thru N do
For J« 1 thru N do
begin
I Y(I) = Z{J) then
G(L,J} « G(I-1,J-1) + 1
else ‘
G(1,J) « max(G(I,4-1), G(I-1,) %
If G(I,J-1) = G(I-1,J) then
H(LJ) « (1,J-1)
else
H(L,J) « (I-1,d)
end;

PAGE 35

B

A

B

B

0,0

0,0

1,2

1,3

1,4

0,0

2,1

2,2

2,3

2,4

2,1

3,1

3,2

3,3

3,4

3,1

3,2

4,2

4,3

4,4

G|B|A|B|B |A
AlO 11 11 |11
BABB‘!‘ Bl1(1 |22 |2
ABAB A Allj2 |2 (2|3
B|l1]2 |3 {3 |3
All]l2 |3 |3 |4

» Wl |om|»|XT

4,1

4,2

4,3

5,3

5,4

Figure 7-1: The matrices G and H produced for the strings ABABA and BABBA.

PAGE 36

8. 'Hard' Combinatorial Problems

The problems described in the previous sections can all be solved in O(N2), O(N3), or more
generally time that is bounded above by a polynomial in N. The problems in this section have
rnever been solved in less than O(ZN) time. Many of these problems are NP-Camplete [43, 2]
(The other problems appear to be at least this hard.) For problems where a naive algorithm
costs Q(N!) time, DP can typically bring an improvement to oP(N)x2N) time where P(N) is a
polynomial in N. For example, the traveling salesperson problem (TSP) runs in time O(N22N)
{é& 6]. An improved DP algorithm for the TSP and knapsack problems that utitizes
branch-and-bound is described by Morin [53]. Constructing optimal decision trees from a set
of yes/no tests is NP-complete [37] and the DP algorithm runs in 03Ny time and space [64].
(Lew [50] describes a sclution to a generalization of this problem.) Bayes [4] describes a disk
file placement problem - a variation of the module placement problem in Karp and Held [44] -
for which a DP algorithm spends O(2N) time and O(C(N,N/2)) storage. Kohler and Steiglitz [49]
and Kohler [48] describe DP {(and branch-and-bound) solutions of NP-Complete scheduling
problems. Gilmore [23] shows interconnections between cutting stock, linear programming,
knapsacking, dynamic programming, and integer programming. Shapiro [67] shows how the
knapsack problem can be reduced to a (huge) shortest path problem, and Lloyd [51]
describes a DP algorithm for the minimum weight triangulation problem.

There are far too many problems to describe them all in full detail. But to give some of
the flavor of what a DP algorithm for this type of problem can be like, we will now describe
the traveling salesperson (TSP) problem.

The salesperson must travel to each of N cities, starting and ending at city number one.
The distances Dij between the cities are given. The problem is to find the route with
minimum total distance traveled. The naive solution is to simply compare all (N-1)} possible
routes and choose the minimum. Use of a DP algorithm, however, can reduce this to O(N22N)
fime.

The first step in construction of the DP algorithm is to define the DDP D =(A, S, P, f)
where
A ={ a; } where a, means "go to city i",
S = { permutations of the a; ending in aj },
P = { matrices Dij | D,-j 20, Vi } and
fle} = O, f(g;) = Dy, f(xaiaj) = f(xa;) + Dij'

To construct the SDP we must first define the states. It is tempting to let the states be S;
where S, is interpreted "at city i". But since we must travel to ail of the N cities, not just the

PAGE 37

closest one, this won’t work. Instead, we must consider the cities already visited by the time
the salesperson reaches city i.Let C = { cities } = {1,2,3,...N }. If Mis a subset of C
representing the cities that have been visited by the salesperson and i € M is the city where
the salesperson is currently located, then the state is SM,i' With this definition the SDP is
W=¢(2Z P, h k) where

Z=(A,Q qpy F, A) where
A = same as for the DDP,
Q—-—{SM,ilMcCandi(M},

90 = S{1}10

F={ SC,I b

AMSp,ir#j) = SMuijl,jr
P = same as for the DDP,
h(r,Spy,paj) = r + Djj and
k(p) = 0.

Monotonicity of the SDP follows from the additivity of the cost function. Thus, the functional

equations are

G(S“}) = 0, and

in
G(SM'I) = J G(SM-{I}J) + D”.

Here is an algorithm to solve the functional equations:

PAGE 38

Algorithm for Traveling Salesperson Problem

Input: "Distance™ matrix D(1,J), ¥1,J=1,..N

Qutput: (Let M be a subset of {1,2,..N}.) Array G such that G(M,I) = minimum cost
of traveling to the cities of M and ending at city I. Array H such that
H(M,I) = last city reached before city [in the optimail subtour corresponding
to G(M,I).

Time: O(N22MN), Storage: o2y (The analysis is in (28].)

I MINIMIZE finds the best subtour for (M,i;)
procedure MINIMIZE(G, H, D, M, 1}
begin

MINCOST + oo;
For ail J ¢ M-{I} do
begin
COST « GIM-{ILJy + D(J I}
If COST < MINCOST then
begin '
G{(M,I) « MINCOST « COST;
HMI) «
end
end
end;

! main routine;

! Initialization;

Ce{23,4,...N}

For I « 1 thru N do
G({I},I} « D(1,I%

! Optimization;

For K « 2 thru N-1 do ! K = size of subsets;
For all M < C such that [M] = K do

For all I ¢ M do
MINIMIZE(G,H,D,M,1);
MINIMIZE(G,H,D,Cu{1},1);

PAGE 39

9. Conclusion

Dynamic Programming is a useful problem solving method for many problems in computer
science. In this paper we have described problems in several categbries of DP: Shortest
Path Problems, Optimal Parenthesization Problems, Optimal Partition Problems, Optimal
Matching Problems, and ’Hard” Combinatorial Problems. The approach taken in this paper
toward solution of these problems is a modification of the treatment in Karp and Held [44].

Each analysis of a problem proceeds in the following steps:

i. Produce the discrete decision process for the problem,

2 Decide what are the relevant states and construct the corresponding sequential
decision process,

3. Check the monotonicity conditions and (if satisfied) produce the functicnal
equations, and

4. From the functional equations construct a dynamic programming algorithm that
solves the probiem.

In this paper we have aiso presented new problems and results inciuding optimizing the

search for N order statistics and a more space efficient versian of Fisher’s algorithm for an

optimal partition.

Acknowledgments

Jon Bentley suggested dynamic programming as the topic for my area qualifier and has
given numerous helpful comments that have improved the quality of this paper.

PAGE 40

References

[1] AV. Aho, D.S. Hirschberg, and J.D. Ullman, Bounds on the Complexity of the Longest
Common Subsequence Problem, J. Assoc. Comp, Mach,, 23 (1978), pp. 1-12.

i2] AV. Aho, J. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974. Constructing optimal binary
search tree, pp. 119-123..

[3] JK. Baker, The DRAGON System - An Overview, IEEE Trans. Acoust. Speech Signal
Process., AS5P-23 (1975), pp. 24-29.

4] A.l. Bayes, The Optimised Placing of Files on Disk Using Dynamic Programming,
Optimization, R.S. Anderssen, L.S. Jennings, and D.M. Ryan, ed., University of
Queensiand Press, St. Lucia, Queensland, 1972, pp. 182-186.

5] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New
Jersey, 1957,

[6] R. Beliman, On a routing problem, Quart. Appl. Math., 16 (1958), pp. 87-90.

{7] M. Blum, RW. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan, Time bounds for selection,
J. Comput. System Sci,, 7 (1972), pp. 448-461.

8] D.W. Boyd, Lorg Division: An Example of Dynamic Programming, Amer. Inst. Indust.
Engin. Trans., volume (1974), pp. 365-366.

[9] C. Cafforio and F. Rocca, Methods for Measuring Small Displacements of Television
Images, IEEE Trans. Information Theory, IT-22 (1976), pp. 573-579.

[10] F.Y. Chin, An O(N) Algorithm for Determining a Near-Optimal Computation Order of
Matrix Chain Products, Comm. ACM, 21 (1978), pp. 544-549,

[11] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey, 1963.

[12] E.W. Dijkstra, A Note on Two Problems in Connection With Graphs, Numer. Math., 1
(1959), pp. 269-271.

[13] S.t. Dreyfus and AM. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

[14] G.T. Duncan, Optimal Diagnostic Questionnaires, Operations Res., 23 (1975), pp.
22-32. '

[15] J Early, An efficient context-free parsing algorithm, Comm. ACM, 13 (1970), pp.
94-102.

[16] M.A. Fischler and R.A. Elschiager, The Representation and Matching of Pictorial
Structures, IEEE Trans. Computers, C-22 (1973), pp. 67-92.

(17} W.D. Fisher, On grouping for maximum homogeneity, J. Amer. Statist. Assoc., 53
(1958), pp. 789-798.

[18] W.M. Fitch and E. Margaliash, Construction of Phylogenetic Trees, Science, 155 (1967),

pp. 279-284,

[19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]
Theory.
[31]

[32]

(33]

[(34)

(351

PAGE 41

G.D. Forney Jr., The Viterbi Algorithm, Proc. IEEE, 61 (1973), pp. 268-278.

M.L. Fredman, On the Decision Tree Complexity of the Shortest Path Problems, 16th
Annual Symposium on Foundations of Computer Science, IEEE, Long Beach, CA., Oct.,
1975, pp. 98-99.

M. Gardner, Concerning the game of nim and its mathematical analysis, Mathematical
Games section of Scientific American, 198 {1958), pp. 104-111.

EN. Gilbert and E.F. Moore, Variable length encodings, Bell System Tech. J, 38 (19%59),
pp. 933-968.

P. Gilmore, Cutting stock, Linear Programming, knapsacking, Dynamic Programming,
Integer Programming: some interconnections, Tech. Rep. RC 6528 (28188), 18M
T.J. Watson Research Center, Yorktown Heights, New York, Sept 1977. 33 pages.

S.L. Graham, M.A. Harrison, and W.L. Ruzzo, On Line Context Free Language
Recognition in Less Than Cubic Time, 8th Annual ACM Symposium on Theory of
Computing, Assoc. Comput. Mach. Special Interest Group on Automata and Computing
Theory, New York, May, 1976, pp. 112-120.

L.J. Guibas, H.T. Kung, and C.D. Thompson, Direct VLSI Implementation of
Combinatorial Algorithms, Conference on Very Large Scale Integration, Industrial
Associates, California Institute of Technology, Jan, 1979,

F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.

J.A. Hartigan, Clustering Algorithms, John Wiley & Sons, New York, 1975. Fisher
Algorithm on pages 130-140.

M. Held and R.M. Karp, A Dynamic Programming Approach to Sequencing Problems,
J. SIAM, 10 (1962), pp. 196-210.

D.S. Hirschberg, A Linear Space Algorithm for Computing Mazimal Common
Subsequences, Comm. ACM, 18 (1975), pp. 341-343.

D.S. Hirschberg, Complexity of Common Subsequence Problems, Springer-Verlag, New
York, 1977. Lecture Notes in Computer Science,No. 56, Fundamentals of Computation

D.S. Hirschberg, An information - theoretic lower bound for the longest common
subsequence problem, Information Processing Lett.,, 7 (1978), pp. 40-41,

J.E. Hopcroft and J.D. Uilman, Formal Languages and Their Relation to Automata,
Addison-Wesley, Reading, Mass., 1969.

T.C. Hu, A new proof of the T - C algorithm, SIAM J. Appl. Math,, 25 (1973), pp.
83-94.

D.A. Huffman, A Method for the Construction of Minimum Redundancy Codes, Proc.
Inst. Radio Engin., 40 (1952), pp. 1098-1101.

JW. Hunt and T.G. Szymanski, A Fast Algorithm for Computing Longest Common
Subsequences, Comm. ACM, 20 (1977), pp. 350-353.

(36]

[37]

[38]

[39]

[40]
[41]

42}

(43]

(44]

[45]

[46]
(47]

(48]

[(49]

[50]

(51]

[52]

[53]

PAGE 42

T.C. Hu and A.C. Tucker, Optimum Binary Search Trees, SIAM J. Appl. Math,, 21
(1971), pp. 514-532,

L. Hyafil and R.L. Rivest, Constructing Optimal Binary Decision Trees is NP-Complete,
Information Processing Lett, 5 (1976), pp. 15-17.

T. Ibaraki, Minimol Representations of Some Classes of Dynamic Programming,
Information and Control, 27 (1975}, pp. 289-328.

T. Ibaraki, Branch-and-bound procedure and state-space representation of
combinatorial optimization problems, Information and Control, 36 (1978), pp. 1-27.

A. ltai, Optimal alphabetic trees, SIAM J. Comput., 5 (1976), pp. 9-18.

F. ltakura, Minimum Frediction Residual Principle Applied to Speech Recognition,
IEEE Trans.Acoust. Speech Signal Process., ASSP-23 (1975), pp. 67-72.

D.B. Johnson, Algorithms for shortest paths, Ph.D. Thesis, Dept. of Computer Science,
Cornell University, Ithaca, New York, 1973. Cited in Aho, Hoperoft, and Uliman.

R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer
Computations, Miller and Thatcher, ed,, Plenum Press, New York, 1972, pp. 85-104.

R.M. Karp and M. Held, Finite-State Processes and Dynamic Programming, SIAM
J. Applied Math, 15 (1967), pp. 693-718.)

T. Kasami and K. Torii, A syntaz-analysis procedure for unambiguous context-free
grammars, J. Assoc. Comp. Mach,, 16 (1969), pp. 423-431.

D.E. Knuth, Optimal Binary Search Trees, Acta Informat., | (1971), pp. 14-25,

D.E. Knuth, Sorting and Searching, Addison-Wesley, Reading, Mass., 1973. Algorithm
for binary search tree in Section 6.2.2.

W.H. Kohler, Computational Experience with Efficient Exact and Approzimate
Algorithms for an NP-Complete Scheduling Problem, Proceedings of the Ninth Hawaii
International Conference on System Sciences, University of Hawaii, Manca, 1976, pp.
116-118.

W.H. Kohler and K. Steiglitz, Enumerative and Iterative Computational Approaches,
Computer and Job-Shop Scheduling Theory, E.G. Coffman, Jr,, ed., John Wiley & Sons,
New York, 1976, pp. 229-287.

A. Lew, Optimal Conversion of Extended-Entry Decision Tables with General Cost
Criteria, Comm. ACM, 21 (1978), pp. 269-279.

E.L. Lloyd, On triangulations of a set of points in the plane, 18th Annual Symposium
on Foundations of Computer Science, IEEE, Long Beach, CA, Oct.31-Nov.2, 1977, pp.
228-240. Also available as MIT Technical Report MIT/LCS/TM-88.

W.J. Masek and M.S. Paterson, A Faster Algorithm Computing String Edit Distances,
Tech. Rep. MIT/LCS/TM-105, MIT Laboratory for Computer Science, Cambridge, Mass.,
May 1978.

T.L. Merin, Branch and Bound Strategies for Dynamic Programming, Operations Res.,
24 (1976), pp. 611-627.

[54]

[55]
[56]

(571

(58]

[59]
[60]

(61]

[62]

[63]

(64]

[65]

{66]

{67]

[68]

[69]

[70]

[71]

PAGE 43

V.Y. Pan, An introduction to the trilinear technique of aggregating, uriting and
cancelling and applications of the technique for constructing fast algorithms for
matrix operations, Proceedings of the Nineteenth Annual Symposium on the
Foundations of Computer Science, IEEE, Long Beach, CA, 1978,

M.S. Paterson, University of Warwick, England.

H.J. Payne and W.S. Meisel, An Algorithm for Constructing Optimal Binary Decision
Trees, IEEE Trans. Computers, C-26 (1977), pp. 905-916.

Y. Perl, Average Analysis of Simple Path Algorithms, Tech. Rep. UIUCDCS-R-77-905
UILU-ENG 77 1759, Dept. of Computer Science, University of lilinois,
Urbana-Champaign, Nov. 1977.

JL. Peterson, J.R. Bitner, and JH. Howard, The Selection of Optimal Tab Settings,
Comm. ACM, 21 (1978), pp. 1004-1006.

L. Pohl, A sorting problem and its complezity, Comm. ACM, 15 (1972), pp. 462-464.

M. Pollack and W. Wiebenson, Seolutions of the shortest route problem - A review,
Operations Res., 8 (1960), pp. 224-230.

F.P. Preparata and S.R. Ray, An approach to artificial symbolic cognition, Information
Sci,, 4 (1972), pp. 65-86.

R.L. Probert, An Extension of Computational Duality To Sequences of Bilinear
Computations, SIAM J. Comput., 7 (1978), pp. 91-98.

A. Schonhage, M. Patersan, and N. Pippenger, Finding the median, J. Comput. System
Sci., 13 (1976), pp. 184-189.

H. Schumacher and K.C. Sevcik, The Synthetic Approach to Decision Table Conversion,
Comm. ACM, 19 (1976), pp. 343-351. See also the Technical Correspondence section
of the C.ACM 21(1978), pp. 179-180.

S.M. Selkow, The tree-to-tree éditing problem, Information Processing Lett,, 6 (1977),
pp. 184-186.

M.L. Shamos, K.Q. Brown, J. Saxe, and B.W. Weide, Clustering in One Dimension, In
preparation.

J.F. Shapiro, Shortest Route Methods for Finite State Space Deterministic Dynamic
Programming Problems, SIAM J, 16 {1968), pp. 1232-1250.

R.E. Tarjan, Complexity of Combinatorial Algorithms, SIAM Review, 20 (1978), pp.
457-491.

M.E. Thomas, A Survey of the State of the Art in Dynamic Programming, Amer. Inst.
of Indust. Engin., 8 (1976), pp. 59-69.

L.G. Valiant, Ceneral Context-Free Recognition in Less than Cubic Time, J. Comput.
System Sci, 10 {(1975), pp. 308-315.

A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm, 1EEE Trans. Information Theory, IT-13 (1967), pp. 260-269.

[72]

[73]

[74]

[75]

PAGE 44

H.M. Wagner, Principles of Operations Rescarch, Prentice-Hall, Englewood Cliffs, N.J,

1969,

R.A. Wagner and M.J. Fischer, The string-to-string correction problem, J. Assoc. Comp.
Mach., 21 (1974), pp. 168-173.

C.K. Wong and A.K. Chandra, Bounds for the String Editing Problem, J. Assoc. Comp.
Mach., 23 (1976), pp. 13-16.

D.H. Younger, Recognition and parsing of context-free languages, Infomation and

Control,

10 (1967), pp. 189-208.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entered)

REPORT DOCUMENTATION PAGE

1. REPCRT NUMBER

CMU-CS~-79~106

KT i

2. GOVY ACCESSIUN nmw.

JUN 3 0 1939
iSTRUCTIONS
1022 4o3y MPLETING FORM

(ramwss tmin s - - TALOG NUMBER

4. TITLE (and Subtitle)

DYNAMIC PROGRAMMING IN COMPUTER SCIENCE

5. TYPE OF REPORT & PERIOD COVERED

Interim

8. PERFORMING ORG. REPQORT NUMBER

7. AUTHOR(®)

8, CONTRACT OR GRANT NUMBER(S)

Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213

Kevin Q. Brown N00O14-76-C-0370
5. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
- AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ARDRESS

Qffice of Naval Research
Arlington, VA 22217

12. REPQRT TATE
February 1979

t3. NUMBER OF PAGES

49

T4. MONITORING AGENCY NAME & ADDRESS({! differont fram Cantrolling Office)

Same as above

15. SECURITY CLASS. (of thla report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/QOWNGRADING
SCHEDULE

16, DISTRISUTION STATEMENT (of thiz Report)

Approved for public release; distribution unlimited.

-

7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it ditferent trom Reaport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

20, ABSTRACT (Continue on roverse side If necesaary and ldentify by block numbar)

EDITION OF | NOV 6% IS OBSOLETE

DD 5355, 1473

UNCLASSIFIED

S/N 0102-054~5601 |

SECURITY CLASSIFICATION OF THIS PAGE (¥hen Data Entered)

