
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 7 8 - 1 4 6

The C.mmp Multiprocessor

S. K Fuller

Digital Equipment Corporat ion

S. P. Harbison

Carnegie-Mellon University

October 27, 1978

Carnegie-Mellon University

Computer Science Department

Abstract

The C.mmp mult iprocessor consists of sixteen minicomputers connected to a large sha red
memory through a central crosspoint switch. The system was constructed beginning in 1971 ,
and fo r severa l years has acted as a research vehicle for investigating problems in the
exp lo i ta t ion of multicomputer structures. This paper is a descr ipt ion of the exist ing ha rdware
s y s t em .

Th is research was sponsored by the Defense Advanced Research Projects Agency (DOD),
A R P A Order No. 3597, monitored by the Air Force Avionics Laboratory Under Cont rac t
F 3 3 6 1 5 - 7 8 - C - 1 5 5 1 .

The C.mmp Mult iprocessor

Table of Contents

1. Introduct ion
2. PMS Structure

2.1. The Processor-Memory Switch
2.2. Memory Mapping and the Relocation Unit
2.3. Caches
2.4. Processor Extensions

2.4.1. Address Spaces
2.4.2. Handling the Stack
2.4.3. Instruction Set Modifications
2.4.4. Extensions for Error Detection

2.5. The Interprocessor Bus
3. The Present C.mmp Configuration

3.1. Processors
3.2. Memory
3.3. Switch and IP Bus
3.4. Per iphera l Devices
3.5. Links to Other Facilities
3.6. Addit ional Hardware

4. Comments on the Implementation of Cmmp
4.1. The Processor-Memory Switch
4.2. Processor Modifications
4.3. Relocation and Error Detection
4.4. Interprocessor Bus
4.5. Per iphera ls

5. Techno logy and Costs
6. Per formance
7. Acknowledgements
8. Fur ther Reading
9. References

The C.mmp Mul t iprocessor
Page 1

1. Introduction

In 1971 , we at CMU became interested in research issues surrounding the construct ion and

use of mul t iprocessors . For that reason, we undertook the design and construct ion of C.mmp,

a large mult iprocessor constructed of minicomputer processors. C.mmp has now been in use

for seve ra l years , and many of the research results we original ly hoped for have been

pub l i shed . More are on the way. However, most of C.mmp's exposure in the computer

s c i ence l i te ra ture to date has been via discussions of Hydra, C.mmp's operat ing sys tem.

Hyd ra implements a capabi l i ty-based protection scheme which establ ishes it as a r e sea r ch

p ro jec t in its own right. The only detailed paper on C.mmp itself is [31 which d i scussed the

des ign be fo re actual implementation had taken place. We feel it is important to desc r ibe he re

the actual hardware that has resulted.

C.mmp * is archtypica l of a simple multiprocessor; it consists of a number of equal ,

a synchronous centra l processors that share a large primary memory. C.mmp d i f fers f rom

ear l i e r mul t iprocessors such as the Burroughs D825, IBM 360/67 , Honeywel l 645 (Mult ics),

etc . in two essent ia l respects:

1. C.mmp is des igned to have up to sixteen processors while other mult iprocessors
usual ly have no more than four processors.

2. C.mmp is constructed from minicomputer processors rather than the larger (32 to
4 8 b i t s /word) processors used in the other systems.

In o ther words , the effect ive use of C.mmp requires that we find and exploit a much h igher

deg r ee of paral le l ism than has been needed by earl ier mult iprocessors. In the past f ew

yea r s , the number of exist ing multiprocessors has increased signif igantly to include BBN's

P lur ibus , Stanford 's S - l , and CMLPs CM* systems. However, Cmmp stil l remains notab le for

its un i form st ructure and support of a general-purpose operat ing system. Mo reove r ,

pe r fo rmance studies of C.mmp provide calibration for similar data from these newer machines.

2. PMS Structure

The C.mmp computer system is pictured in figure 1 and its P M S organizat ion is shown in

F igure 2. A s may be seen, the principal components are s ixteen modules of shared memory
< MP0:15>> a 16 x 16 switch (Smp), sixteen processors (P C Q : 1 5) , associated input/output

P r o n o u n c e d "See-dot-em-em-pee", it ia an acronym from the P M S notation of Bell and Newel l[4] . P M S
(P r o c e s s o r - M e m o r y - S w i t c h) notation is used to describe computer systems at the 'block diagram* level; C.mmp stands
f o r mul t i -min i -erocassor Computer system. Other frequently used PMS names include P c for central P r o c e s s o r , M p f o r
p/imary M e m o r y . K f o r [Controller, and L for Link. ~ ~

e

The C.mmp Mu l t i p rocessor
Page 2

dev i ce s (Kio), special relocation hardware (Dmap) associated with each processor, and an

i n t e rp ro ce s so r bus (IP-bus) with special devices attached to it (^interrupt, etc.). We w,

examine each of these major components in greater detail below; first we consider the ove ra l l

o rgan i za t i on more thoroughly.

Figure 1: C.mmp: Smp and memory (I.) and four processors (r.)

The area enclosed by dashed lines in Figure 2 represents a complete m in i compute r 1 : a

Digital Equipment Corporat ion PDP-11 processor, memory (MJocal), and input/output dev i ces .

These minicomputers are connected to the shared memory through the relocat ion ha rdware

(Dmap) and switch (Smp). They are connected to each other and to a few common dev i ces

th rough the interprocessor (IP) bus.

l T h e minicomputer processor* sre s l i f M l y modified; we will discuss the necessary modificstions later.

The C.mmp Mul t iprocessor
Page 3

Mod 5)

MD<I)

Mo(0)

Pc<l5)

M.IQCII

• •I.ttr

Kio

Smp

>6tIS crofmpainl

h e

PDP-11 minicomputer
with standard pt r ipht ra l s

K.lniar-bui

KJt-H/tttrt

IP Bus

K.M irrupt

Figure 2: PMS diagram of C.mmp

A l l communicat ion between components of a single PDP-11 is performed over a s ingle bus,

the U N I B U S . The processor accesses primary memory via the U N 1 8 U S as do

d i r e c t -memory -acces s (DMA) I/O devices. The processor also communicates cont ro l

in format ion to I /O devices on this same bus. Specifically, the control registers of I /O dev ices

have U N I B U S addresses and appear as memory locations to the processor, the p rocesso r

con t ro l s the opera t ion of I/O devices by simply stor ing* appropriate control informat ion into

these locat ions ~ thus there are no special I/O instructions needed in the p rocessor [5].

A l though the pr imary virtue of the UNIBUS is that it has al lowed the cos t -e f fec t i ve

implementat ion of minicomputer systems, it has some other benefits in a sys tem such as

C.mmp. The DMA devices use the UNIBUS to transfer data just as the Pc does and hence the

The C.mmp Mult iprocessor
Page 4

Dmap can manage Pc and DMA requests to shared memory in a uniform manner. This is in

con t ras t to many conventional virtual memory architectures (e.g. the IBM 360 /67) wh i ch

r equ i r e phys ica l (unmapped) addresses for DMA requests.

In making the design descisions described below, we were guided by a des i re to make

C.mmp as symmetr ical as possible. All components of the system were envis ioned as a poo l

of r e sou r ce s to be shared among whatever tasks were to be done. This was to be (is) t rue

of p roces so r s , I/O, and memory singly and in combination. There was to be (is) no

mas te r - s l a ve relat ion between the processors, and any user job was to be (is) able to

e xe cu t e on any processor at any instant. The same was to be (is) true of the opera t ing

s y s t em; v i r tua l ly any port ion of Hydra may execute on any processor.

To ach ieve the des ired symmetry at the software level one must begin with symmetry at

the ha rdwa re level . There are two aspects to this symmetry: access to the shared memory,

and the pass ing of control signals between processors. The relocation hardware and sw i t ch

p r o v i d e the f irst, and the interprocessor bus provides the second.

2.1. The Processor-Memory Switch

Smp, the processor- to-memory crosspoint switch, handles single word t ransfers b e tween

the sha r ed pr imary memory and the processors. Transfers from Kio units also access memory

t h r ough Smp. The memory and switch for C.mmp can be thought of as a memory w i th 16

po r t s and consist ing of 16 independent memory subunits. Up to 16 simultaneous accesses to

Mp are poss ib le if 16 Pc's are active and if they all request words in a di f ferent memory

por t .

Unl ike most other crosspoint switches, this one is located central ly, as opposed to be ing

d i s t r i bu ted in the memory, e.g., as in the DECsystemlO or IBM 370/168 . While this requ i res a

l a rge r init ial configurat ion and implies some non-modularity, the cost of a complete sys tem is

less and we are interested in rather large configurations. A large cost component of a sw i t ch

s y s t em (together with the associated mechanical and c ircuitry problems) is the cab les. This

s t r u c tu r e requi res only 16 + 16 cables, as opposed to 16 x 16 cables required for a fu l ly

connec ted d istr ibuted switch. A centralized switch also has less cable de lays than a

funct iona l l y equivalent d istr ibuted switch. BBN's Pluribus uses a distr ibuted switch and hence

p rov i de s an interest ing contrast to Cmmp. See [6] for a discussion of why re l iab i l i ty and

modu lar i ty arguments dictated the use of a distributed switch for their appl icat ion. CMU 's

C M * mul t iprocessor uses a heirarchical structure and a packet-switching network to a l low for

un l imi ted expandabi l i ty [7 J -

Ano the r important aspect of Smp is the control provided to facil itate reconf igurat ion and

The C.mmp Mul t iprocessor
Page 5

pa r t i t i on ing of the system. Each of the 256 crosspoints of Smp can be enabled or d i sab led

e i t he r manual ly (from a front panel shown in Figure 3) or under program control (by set t ing a

f l i p - f l op addressab le from a UNIBUS). For a crosspoint to be operational in the Smp, bo th its

manual sw i tch and its f l ip- f lop must be 'set'. Thus, for example, a faulty Pc can be r emoved

f r om the sys tem by disabling its column of crosspoints, and C.mmp can be part i t ioned into two

8 x 8 conf igurat ions by disabling the 128 crosspoints that are in the first and th i rd quadrant

of the c rosspo in t array.

Dynamic reconf igurat ion is employed by the operating system to eliminate faulty ha rdware

on the basis of cont inuously-gathered error histories. Manual reconf igurat ion may be u sed

w h e n a separa te system is necessary for off-l ine testing or other maintenance.

Figure 3: Crosspoint switch control panel

The C.mmp Mult iprocessor
Page 6

2.2. Memory Mapping and the Relocation Unit

P robab l y the greatest problem in building a large computing system from minicomputers is

the i r small address space[2]. In C.mmp we must be able to address severa l million by te s of

p r imary memory from the processors. The basic PDP-11 architecture, on the other hand, is

on ly capab le of generating 16-bit addresses and is thus limited to a 64K-by te address space .

Note that this is exactly the opposite situation faced by many operat ing systems which map

large v i r tua l addresses into somewhat smaller physical ones. The goal of these systems is to

keep a por t ion of each process* virtual memory addressable, the so-cal led working set of the

p rocess . The work ing set consists of those pages most recently referenced by the process ;

expe r i ence indicates that future references wil l, with good probabil i ty, also lie within these

pages.

In a minicomputer environment this working set concept can be turned ' inside out ' to

produce an address mapping scheme where the user must explicit ly state which pages are in

his work ing set and when changes in addressabil ity are required. This notion se rves as the

bas is for the address mapping (relocation) scheme adopted for C.mmp.

The PDP-11 processor (and thus programs executing on it) generates a 16-bit address .

The U N I B U S , however , supports an 18-bit address, and the shared memory uses a 25 -b i t

address . Somewhat arbitrar i ly we chose to divide these address spaces into 8K -by t e units

ca l led 'pages ' . Thus processor-generated addresses are divided into eight 8K pages, U N I B U S

addresses are div ided into 32 pages, and the shared memory is divided into 4096 pages.* In

go ing f rom the 16-bit user address to the 18-bt UNIBUS address, the two extra bits are

ob ta ined f rom the Program Status register (PS) in the processor (see Figure 4). As we shal l

see in a moment, these bits may not. be altered by a user program, and thus user programs

are actual ly bound to operate within the eight pages described by a subset of the re locat ion

reg i s te r s .

^ ; T h e re locat ion hardware is attached to the UNIBUS and responds to 30 of the 32 poss ib le

U N I B U S page address ranges. These 30 pages are mapped from the U N I B U S address into

p r imary memory /by means of 30 hardware registers; the mapping is quite s t ra igh t fo rward .

The f ive most significant bits of the UNIBUS address are used as an index into this set of

. e M — • on o . H . r P O P - . V,, «.. . t h . PWMlgJ, , /J- 1 ^ oLit^i.U^ inl^p JLp f r o m t h .

L p r o c e s s o r t d d r p . c . to t h . <r..l> unibo. . d o r p . o C.mmp m . p . ^ ^ ^ / { r , ̂ ,0*
w h i l . other P O P - 1 do not m.p a d d r e . s e . from I/O u n i t * .nd Cmmp h . . fimd p . « t . white oflur P u r

p a g t s to be variable s iza.

http://addre.se

The C.mmp Mult iprocessor Page 7

PS
word

Bank 0 0 1

Bank 01

Re locat ion Registers 7

o
Bank 10 1

Bank 11

MJoctl

2 3 13

|

i
i

1 '

i
" V V

2 3

V

Program

A d d r a s s

U N I B U S
A d d r e s s

Pr imary
M e m o r y
A d d r e s s

Figure 4: Address translation in C.mmp

Each re locat ion register also contains a field of control and status bits, as shown in F igure

5. The non-existent memory bit can be set by the operating system to prevent access to

s h a r ed memory through the register. This permits the system to place a small user job in the

machine without allocating a full 64K-byte address space. The write-protect 6tt, when set,

permi t s read cyc les to proceed through the register but blocks write cycles. This fea ture can

be used to guarantee the integrity of code pages. The written-into bit (or 'dirty* bit) in a

r eg i s t e r is set to T by any write cycle throught that register. This mechanism is u sed b y

the operat ing sys tem to avoid writ ing out pages which have not been a l t e red The cacheable

bit is used in conjunct ion with those processors that have a cache (see sect ion 2.3) to

ind icate which pages may be buffered.

r eg i s te r s . A 12-bit f ield from the selected register is left-concatenated to the remaining 13

b i ts of U N I B U S address, thus forming a 25 bit address in primary memory (see F igure 4).

Shou ld the f ive most significant bits specify page 30 or 31 (i.e. non-existent mapping

reg i s t e r s) the mapping hardware simply ignores the bus cycle. These two pages are

r e s e r v e d for the processor 's pr ivate local memory and access to its per iphera ls ' reg i s te rs .

The C.mmp Mul t iprocessor
Page 8

Control

I I I

Page-frama Numbar

Nonexistent mamory 'Cecheeble

Read-only Written-into ("dirty")

Figure 5: Format of the relocation registers

2.3. Caches

C.mmp has a prov is ion in its design for 1000-word, per-processor caches on all the

P D P - l l ' s . As of November 1978 only one cache was installed, and it is not used b y the

ope ra t i ng system. Therefore, we must describe the intended operat ion of the cache.

Caches present a special difficulty for multiprocessor systems because data sha red

be tween p rocesso rs may be modified in one processor's cache without the modif icat ion be ing

re f l e c ted to other processors. Our caches implement wr i te-through to shared memory, but

the contents of caches on other processors are not affected. C.mmp's solut ion to this

p rob lem is to have the operat ing system designate (via the cacheable bit in the re locat ion

reg i s te r s) wh ich pages are safe to cache. Fortunately, studies on the PDP-11 indicate that

about 70% of all memory references are to code pages, which can be forced by Hydra to be

unmodif iab le and hence cacheable. Stack pages (see section 2.4.2) are guaranteed pr i va te to

a p rocessor , and hence are also cacheable.

The caches des igned for C.mmp are not fast; their importance lies in their abi l i ty to

el iminate swi tch content ion by catching a significant fraction of the memory fetches. This is

espec ia l l y important because Hydra encourages the sharing of code pages among coopera t ing

p rocesses , thus invit ing significant contention. (See [1] for a discussion of the ef fect of this

content ion and how we dealt with it in the absence of caches.)

2.4. Processor Extensions

An important goal in almost every operating system must be the protect ion of itself and of

The C.mmp Mul t iprocessor Page 9

•• other user progrsms.

o the r users should one of the user programs fail.* Attaing this goal invo lves many

cons idera t ions ; the execut ion of a 'halt' instruction by the user is an obvious example of an

act ion wh i ch must be prohibited. A less obvious example is the alteration of the stack po inter

such that an interrupt would cause the overwrit ing of operating system code or tables.

2.4.1. Address Spaces

A cent ra l aspect of the design of the processor modifications is the part i t ion ing of the

18 -b i t UNIBUS address into four address spaces. The natural partit ioning is to associate each

space w i th a part icular configuration of the two bits in the PDP-11 PS reg is ter which form

the h igh -o rde r two bits of the address. Programs not executing in ' I T - s p a c e cannot alter

the PS (thus changing their space) since the PS register itself is addressable only in

U l ' - s p a c e , as are all device registers and interrupt vectors. We there fore des ignated

U T - s p a c e to be the kernel space, in which only operating system code would execute.

'OO' -space became user space, where all user code executes, and the remaining two spaces

w e r e r e s e r v ed for DMA I/O traffic and special applications.

The PDP-11 prov ides a reasonable method for transfering contro l be tween spaces .

Execut ing one of severa l ' t rap ' instructions, or the occurance of any hardware interrupt ,

causes the current (PS,PC) pair to be stacked and a new (PS,PC) pair to be fetched from a

f i xed address in kernel space. Typical ly the new (PS,PC) forces control to pass to operat ing .

s y s t em rout ines in kernel space. The execution of a Veturn-from-interrupt* instruct ion (RTI

o r RTT) reve r ses this process, fetching the old (PS,PC) from the stack.

2.4.2. Handling the Stack

The PDP -11 has severa l addressing modes which facilitate managing a stack, and

programming convent ion dictates the use of a standard stack area for interrupt p rocess ing ,

sub rou t i ne calls, and parameter passing. This stack area is by convention po inted to by a

par t i cu la r PDP-11 register cal led the stack pointer (SP).

The stack introduces some problems in switching address spaces, since the stack ing of the

o ld (PS,PC) at interrupt time occurs in the old (e.g. user) space while the unstacking by RTI or

RTT occurs in the new (kernel) space. Several solutions to this problem are avai lable, the

most obv ious being the addition of mechanisms to retr ieve data from the 'p rev ious ' space.

(Not a t r iv ia l task, since we must provide for multiple nested interrupts.) For C.mmp, however ,

The C.mmp Mult iprocessor
Page 10

we dec ided to force all address spaces to use the same s tack 1 . We do this by f i rs t

es tab l i sh ing the convention that the low-order 8K bytes of each address space are to be

used for the stack. Processor modifications force the SP to point to an even address in this

page (except when executing in kernel space), and the relocation registers are modif ied so

that the stack page register in each space holds the same value. Having the operat ing s y s t em

and the user share the same stack makes changing address spaces easy and al lows users to

pass arguments to the OS simply and efficiently. However, it does present some pro tec t ion

p rob lems.

A programmable stack underflow register is used by the operating system to prevent use r s

f rom access ing data belonging to their callers or to the operating system. A f ixed stack Limit

f u r the r res t r i c ts the stack, defining an area in the lower portion of the stack page wh ich can

be used for the communication of global information between the operat ing system and the

user .

F inal ly , PDP-11 programmers will remember that some hardware trap vectors ((PS,PC)

pa i rs) are located in low addresses which on C.mmp would be in the stack page. We re locate

these U N I B U S addresses by OFTing #740000 with them, placing them in kernel space in the

local memory associated with each processor.

2.4.3. Instruction Se i Modifications

The HALT, WAIT, and RESET instructions were made illegal in any but the kernel space .

L i kewise , RTI and RTT were made illegal since they obtain the new (PS,PC) from an a rea

addressab le by the user.. The trap instructions (TRAP, EMT, IOT) are legal from any space

s ince they obta in their new (PS,PC) from a protected area and the operat ing sys tem can

ve r i f y the environment at the time of the trap.

2.4.4. Extensions for Error Detection

A pr inc ip le advantage of multiprocessors is their (potential) abil ity to withstand va r ious

t ypes of hardware errors by isolating and eliminating faulty components. C.mmp in par t i cu lar

is insens i t ive to both the number of processors and the number of memory pages actua l ly

p resent , so reconf igurat ion techniques are studied carefully. The PDP-11 minicomputer d id

not have adequate error-detect ing capabilities, so we augmented it with severa l mechanisms

of our own.

the change n o w it impract ical

The C.mmp Mul t iprocessor
Page 11

The most signif icant improvement was the implementation of par i ty bits in shared memory.

The re locat ion hardware computes parity bits for each byte wr i t ten to memory and for e v e r y

add res s sent to the memory. To catch common failure modes of 'all ones ' and 'all zeros,* we

use e v en par i ty on one byte of each data word and odd parity on the other byte. Add res s

pa r i t y is checked by the memory control ler on the 'far' side of the switch, and data par i ty is

c h e c k ed on each ' r ead ' cycle by the relocation hardware at the processor.*

The PDP -11 ' s var iable- length instructions and its rich set of addressing modes makes

loca t ing the exact source of an error (e.g. a parity error) difficult. For this reason, we

imp lemented two tracking registers. The bus address tracking register is latched upon the

occu rance of a switch-detected error (e.g. a data or address par i ty error), and thus

accu ra te l y spec i f ies the UNIBUS address causing the error. The PC tracking register latches

the address of the current instruction under the same circumstances, thus prov id ing the

in fo rmat ion needed to ret ry an instruction.

Ma in tenance functions are also implemented, including the abil ity to simulate address par i t y

e r r o r s and the abi l i ty to write incorrect parity into shared memory. There are also faci l i t ies

to address the cache memory as a normal RAM by making it respond to a spec i f ied sha red

memory page.

/ 2.5. The Interprocessor Bus

In te rp rocesso r communication is an important consideratibn in control l ing a mult iprocessor.

Fu r the rmore , to qual i fy as a symmetric multiprocessor it is necessary for each p rocessor to .

c on t r o l these funct ions on every other processor. This might, however, require as many as

120 cab les among the sixteen processors (for the number of functions considered, this wou ld

lead to more than 1000 wires). In order to simplify the situation we have des igned an

i n t e rp ro ce s so r bus, a control ler for it, and interfaces to it. These are shown in the PMS

d iag ram of F igure 2.

The inter face al lows a processor to invoke a certain function on any subset of the

p r o ce s so r s , including itself, by simply 'ORing' a mask into the interface register assoc iated

w i t h that funct ion. The interface current ly contains six such registers, one each for HALT,

START and CONTINUE and three for different levels of pr ior i ty interrupt ion. Each of these

func t i on reg i s te rs is 16 bits wide. Setting the ith bit of the register associated with one of

the funct ions wi l l invoke that function on the i\h processor. Thus for example, moving a mask

A c t u a l l y , the s w i t c h has data paths wide enough for error-correcting codes on each data word ,
mechanism has not been implemented. but s u c h a

The C.mmp Mult iprocessor
Page 12

of all l ' s into the HALT register will stop the entire machine.

In addit ion to these functions, the IP bus provides other facilities to the processors , such

as a (pe r -p rocesso r) programmable interval timer. Each timer consists of a time count

reg i s te r and a control register. The operating system can store a value into the count

reg i s te r which wil l be decremented every 16 microseconds as long as the run bit is set in its

con t ro l reg is ter . Additionally, the control register can cause an interrupt to be gene ra ted

w h e n the count register reaches zero. Because the interrupt might not be se rv i ced right

away , the count register keeps decrementing so that precise timings can be obta ined.

Fu r the rmore , should the count be decremented to zero again before the interrupt is se rv i ced ,

a s tatus bit in the control register is set to indicate counter wrap-around.

F ina l ly the interface provides access to the 56-bit, one-microsecond-reso lut ion,

t ime -o f - day clock. The interprocessor bus controller, which will be descr ibed be low,

cont inuous ly broadcasts this clock value on part of the bus. When a processor wishes to

know the time, it reads the first of the four registers in the interface. This causes the

in te r face to load all four registers from the interprocessor bus. The processor can then read

the o ther three registers without fear of the value changing. The interface alters the c lock

va lue by concatenat ing it with the processor number. This is important to p rov ide

un iqueness s ince Hydra uses the clock value as a unique name generator.

Co r r e spond ing to Smp's switch panel, the IP-bus interface on each processor is equ ipped

w i th an opera to r panel (Figure 6) which permits the IP-bus to be parit loned in the same w a y

as the memory crosspoint. The IP-bus panels also contain status l ights indicat ing the

p r e sence of the var ious error conditions implemented in the relocation hardware.

3. The Present C.mmp Configuration

The PMS diagram of Cmmp in Figure 2 is a conceptual diagram intended to help in t roduce

the cont ro l features of Cmmp; it clearly is not intended to descr ibe an actual C m m p

conf igura t ion at any point in time. However, a number of interesting issues ar ise in

con f igur ing C.mmp and Figure 7 is a PMS diagram of the current Cmmp conf igurat ion.

3 .1 . Processors •

The re are e leven PDP-11/40E processors current ly on Cmmp. The 11/40E d i f fers f rom

the s tandard 11/40 in having a 1000-word x 80-bit writeable control store, a l lowing us to

ta i lor the instruct ion set to special applications and to the operating system. We have used

th is fac i l i ty to implement various block-transfer instructions, f loating-point instruct ions, and

some spec ia l instruct ions to speed up a simulator for the CM* multiprocessor.

The C.mmp Mul t iprocessor
Page 13

Figure 6: P D P - i l / 4 0 with IP-bus interface panel

The C.mmp Mul t iprocessor
Page 14

(empty) —

M core —

M.core —

M.core —

M.core —

M.a/c -

M.core —

(Tota l : 2.4 M b y t e s) M c o r * 1

M.a/c - i

M.a/c -

M.a/c -

M.a/c -

M.cora —

M.core —

M.cora —

M.cora —

Smp

I 6 1 I 6 erooooM

] — Dmap-J L-pc(0) ' — KLcIock'— LPT

Lpc(8)

L-Pc(7)

L Pc(8)

I L . M d e c t a |

L - M d i i s k (1

P c (l) - Pc(5) not present

I— M magtape L M.swap

dectape K i b l — |

(120 M b y t e s)

I M nwap I— M.awap L K>»f A N E T

L . M swap

L . Pc(9) L M s w a p

L. Pc(10) L. 1.2400 baud to Front End

L P c (l l) LlCzof

L p c (1 2) L M.swap

L p c (1 3)

L Pc(14) L M disk (900 M b y t e s)

L Dmap-J L .Pc(15) L. ICiog

Pc(n) includes 8K local memory & TTY interface

M.core • 64K x 18 core memory

M.s/c - 128K x 18 semiconductor memory

M.Bwap • 1 Mbyte fixed-heed swapping disk

C-Kib i — |

K J n t s r b u a
ICclock

K.half/shir«
ICintarrupi j

Figure 7: The Current Configuration of Cmmp

C m m p ' s PDP -11 /40E processors also incorporate a small ROM which faci l i tates the

i n t e rp roces so r START function descr ibed in section 2.5. When invoked, the IP-bus in te r face

loads the address of ROM into the processor and commences execution. The program in the

ROM loads the relocat ion registers and searches shared memory until it f inds a page

conta in ing a part icular key value in its first word. Execution is then passed to the p rog ram

conta ined in that page. This allows us complete freedom in configuring C.mmp's sha red

memory , s ince no specif ic page frame needs to be present. Another program conta ined in the

ROM prov ides a system bootstrapping mechanism to read in the system from a DECtape.

The C.mmp Mul t iprocessor
Page 15

3.2. Memory

C . m m p c u r r e n t „ a s a p p r 0 » i m s l e l y M m | | | i o n „ y , e s 0 (p r j m a r y

the s .x loen m e m o r y ports. Eleven ports use ferr i te .o re d o r i e s whi le (i v e po r t s u s ,
newe r MOS memory. p s e

3.3. Switch and IP Bus

Smp and the IP bus exist in their full 16-processor, 16-memory configuration.

3.4. Per iphera l Devices

C.mmp has a normal complement of I/O equipment including disks, magnetic tape, and a l ine
pr in ter .

Pages are swapped in and out of memory using six f ixed-head disks as a buf fer b e tween

pr imary and secondary storage. The disks are on separate processors, al lowing s imul taneous

t rans fe r s to each device. The backing-to-primary store ratio is about 3:1.

Permanent secondary, storage consists of two moving-head disk systems prov id ing a tota l

of about 700 mill ion bytes of storage. One control ler has two 20-megabyte dr ives and two

40 -megaby t e dr ives , and the other control ler has three 200-megabyte dr ives.

3.5. Links to Other Facilities
•

Hydra has not been developed in a vacuum, nor is C.mmp intended to be used pr imar i l y as

a s tand-a lone computer system. It receives considerable support from other systems. F igure

8 shows how C.mmp is connected to the ARPANET and the other computer systems at the

Computer Sc ience Department. The connection to the ARPANET allows remote access of C.mmp

f rom other points on the network and also provides a reasonably high speed (50K baud) l ink

to all three of the DECsystemlO's in the Department. Since much of the software suppor t fo r

C.mmp is deve loped on the PDP-10's, these links are an important facility,

3.6. Addit ional Hardware

A cer ta in amount of additional hardware is present for special applications. As ind icated in

F igure 7, two advanced terminals for the ZOG man-machine-communication project [9] are on

C.mmp. In the past C.mmp has also been the host of an audio-spectrum analyser for s pee ch

unders tand ing research, a UNIBUS cycle counter, and the Hardware Monitor [10}

The C.mmp Mult iprocessor
Page 16

C M U A

P D P - i O

C M U B

P D P - 1 0

C M U D

P D P - 1 0

ARPANET

IMP

Cmmp

(POP-1 if

Front-End

Cm*

(LSI-l if
IUS

(POP-i if
sus
P D P - 1 1

— J
Terrginaie

DlaVup tints

Figure 8: Interconnection of Cmmp to other computer systems

The Hardware Monitor is a special purpose device that resides on two U N I B U S ' s ; one is the

host that is be ing monitored, while the second is the controller, or superv isor. In addit ion to

moni tor ing the U N I B U S of the host, the monitor has several high impedance probes which can

be at tached to any of a number of interesting signals either in the processor, an I/O dev ice ,

o r the swi tch.

4. Comments on the Implementation of C-mmp

Too o f ten descr ipt ions of new computer systems fail to point out those detai ls in the

cons t ruc t i on of the systems that materially affect its final structure. We now look at some of

the most important implementation features of C.mmp.

A s a genera l comment we note that, with the exception of a few off- the-shel f components

pu r chased later, Cmmp was built ent irely with 1970-1972 technology.

4 1 The Processor-Memory Switch

' S m D the processor-memory switch discussed in section 2.1, Is the largest component of

Cmmp Hs construction mp.i.ied oy buildin, it with oniy tour oesic moduies: —

The C.mmp Mul t iprocessor
Page 17

module, processor interface module, memory control module, and processor priority resolution

module. Each of these modules is simple enough to be implemented on a single p r in ted c i rcui t

boa rd .

The main processor -memory data paths in the switch are 72 bits wide and are implemented

w i t h the swi tch modules in a bit-sl ice fashion. Figure 9 shows a single bi t-s l ice of the sw i t ch .

1 6 - t o - l mult ip lexors (SN74150*$) implement the 256 crosspoints. Sixteen of the mult ip lexors

are used to implement the paths from the Pc's to the Mp ports and the other s i x teen

mul t ip lexors are used to implement the return paths from Mp to the Pc's. Note the

remarkab le symmetry between the multiplexors forming the forward and re turn points. In

fact, a sw i t ch module consists of sixteen multiplexors, and two modules are used to implement

the bit s l ice shown in Figure 10. Control of the multiplexors comes from the p rocesso r

p r i o r i t y reso lut ion modules. The 144 switch modules needed to construct the data paths in

the sw i t ch form the bulk of the logic in the crosspoint switch.

The p rocesso r interface module contains the steering logic to partial ly decode the address

l ines and route the he memory request to the designated memory module. This module also

se t s the se lect ion lines for the switch from memory to the processor, thus determining wh ich

memory the processor will read. Finally, this module buffers data read from memory; this

a l lows the swi tch to over lap the end of a read cycle with the start of the next cyc le for

another p rocessor . The processor interface card is shown in Figure 11.

Figure 10: SW16 switch module

The memory contro l modules (Figure 11) are very straightforward. This module checks the

f*RNF61E-MELtON V^VEkSITY

The C.mmp Mult iprocessor
Page 18

L -O-
M
U
X

\o
mt m o r i e i

16 to 1 Multiplexor

S N 7 4 1 5 0

MUX

MUX

<3 \o P r o c e s s o r s — ^

Figure 9: Bit-sl ice of crosspoint switch data paths

The C.mmp Mult iprocessor
Page 19

Figure 11: Processor interface (I.) and memory control (r.)

add res s par i ty which was generated in the relocation hardware. If an e r ro r occurs, it is

r e p o r t e d back to the processor. This module also allows for easy conf igurat ion of memory by

in forming the processor if it should try to access a section of memory which is not present .

F ina l ly , this module communicates with the processor priority resolut ion module in order to

gene ra t e the timing and control pulses for the actual memory modules.

Figure 13: Pr ior i ty resolution module in Smp

The C.mmp Mul t iprocessor
Page 20

Request f —

Pc<o) ' J r
Complett [1 — '

Request

P c (l)
Complete i==£>

P c (1 5)

Request

Complete

and

and

Delay

o

Request
Buffer

Set

Reset!

Set

Reset!

Set

Reset!

or
< 3 J

Prior i ty
Encoder

Enable

Se lected

C r o s s p o i n t

Figure 12: Simplified processor arbitration logic

The p rocesso r pr io r i ty resolution module (Figure 13) is the most sophist icated component

in the sw i t ch des ign. This module maintains a request buffer whose operat ion is i l lustrated in

F igure 12. The funct ion of the processor prior ity resolution module is to arb i t rate be tween

Pc 's that are s imultaneously requesting access to the same Mp port, and to queue those

reques ts that must wait for other requests to complete. The arbitration logic shown in F igure

12 works in the fol lowing wanner. When Pc(i) requests access to a part icular Mp port (as

ind icated by the value of the four most significant address bits) it attempts to set bit i of the

request buf fer . However, the AND gate in front of the SET input to the buffer p revents Pc(i)

f rom set t ing latch(i) until the request buffer contains all zeros. When the request buffer is

empty all 16 AND gates feeding the SET inputs of the request buffer are enabled v ia the OR

gate and DELAY shown at the bottom of the diagram. Now those Pc's wi th outstanding

requests wi l l set their corresponding latches in the request buffer. As long as a s ingle Pc is

making a request , and sets its corresponding latch, the column of AND gates wi l l be d isabled

s ince the request buffer is no longer empty. Now the outputs of the 16 latches of the

request buf fer are fed into a pr ior i ty encoder that indicates on four output l ines the lowest

numbered latch that is set. It is this prior ity encoder, therefore, that ult imately does the

arb i t ra t ion . A f te r a Pc has been selected and it has read or written a word into Mp, the Pc

The C.mmp Mul t iprocessor Page 21

asse r t s its 'access complete ' line that clears the Pc's latch in the request buffer. The p r i o r i t y

encode r now selects the lowest numbered request of the remaining requests. Hence, Pc's are

s e r v i c e d in pr io r i ty o rder from 0 to 15 and each Pc is guaranteed to wait no more than 15

memory cyc les before gaining access to memory. The scheduling discipl ine induced by the

p r i o r i t y reso lut ion modules can be thought of as a quasi- round-robin discipline.*

4.2. Processor Modifications

The modif ications to the processors can be considered to be in two classes: additions and

actual a l terat ions. On both the POP-11/40 and the 11/20 only a ve ry small percentage of

the wo r k is in alter ing exist ing logic. For instance, the detection and trapping of r e s e r v ed

ins t ruct ions in the user space requires only the addition of two IC's and the replacement of

two o thers on the instruct ion decode module of the processor.
»

The addit ion of the other features requires that about 30 processor-generated sigpals be

acqu i red from the backplane of the processor. Additions to each processor are all conta ined

on one new PDP-11 system board (Figure 14). (A standard PDP-11/40 is implemented on

f i ve such boards.)

Figure 14: PDP-11/40 modification board

hs-h n
 d , . 3 C U 8 8 , 0 ;\ 0 f l hrP r'°" fr r ? » 0 , u i i < > " " ^ f c * • amplification of the actual operet ioa In reality, there i . a lso a

h,*h p r .o r . ty , n P u t to each latch ,n t h . request buffer that c ircumvant. the column of AMD f t . . . T h • h i .h pr iorr ty
V S f y 1 ^ f f — • l ' ° which may not be able to tolerate a hi*h level of memo J

The C.mmp Mul t iprocessor Page 22

4.3. Relocation and Error Detection

The two boards which implement the memory relocation logic (Figure 15) are also the s i te

of much of the er ror -detec t ion circuitry. How the errors are ref lected to the user is an

in teres t ing implementation detail.

Figure 15: Relocation modules for PDP-11/40

Upon detect ion of a switch-re lated error (parity errors, writ ing a read-on ly page, etc.) the

logic causes the processor to take a normal NXM (non-existent memory) trap by b lock ing the

acknowledgment signal (SSYN in PDP-11 terminology) from memory. That a t rap is taken is

important, because traps can take effect before the completion of an instruct ion. Status bits

set in a contro l reg ister allow the software to determine the actual cause of the e r r o r and

can cause later e r ro r s to be ignored until the processor's state is recorded.

Other except ional conditions, including stack underflow, violation of the SP convent ions, and

attempting to execute an illegal instruction, cause normal interrupts.

Even with our er ror -detect ion extensions, the P D P - l T s complicated address ing modes

(which of ten have side effects) makes it almost impossible to 'back up" and r e t r y an

inst ruct ion which fai led. This is unfortunate, since the majority of detected hardware e r r o r s

appear to be transient.

4.4. Interprocessor Bus

The in te rprocessor bus control ler (Figure 16) performs three functions. It implements and

The C.mrnp Mult iprocessor Page 23

b roadcas t s the t ime-of-day clock value discussed above. It generates and broadcasts the

t iming pulses which are used by the interval timer in the interfaces. Finally it generates and

b roadcas t s the timing and control signals necessary to time-multiplex the var ious

i n te rp rocesso r functions on the IP bus. By using a time-sliced function bus we have reduced

a potent ia l 1500+ wire requirement to 16 cables of 20 wires each; however , we g ive up

know ing which processor invoked a function. Neither of these has a major impact on the

Hydra des ign.

F igu re 17 shows the master clock module, which is equipped with a switch panel to al low

manual a l terat ion of the time base.

Figure 16: Interprocessor bus interface

4.5. Peripherals

The paging d isks mentioned in section 3.4 are perhaps worthy of special note. C.mmp's

page s i ze is exac t ly equal to the capacity of one track on the disk. By modify ing the

con t ro l l e r s l ight ly , this coincidence can be exploited in such a way that there is no latency on

d isk t r ans fe r s wh i ch are one page long. Rotational latency is avoided by having the

con t ro l l e r start the transfer at the beginning of the next physical block (16 words) and

t r ans f e r r i ng 8K by t e s without track switching. This zero- latency scheme prov ides bet te r

UNIVERSITY LIBRARIES

PITTSBURGH, PENNSYLVANIA 15213

The C.mmp Mult iprocessor Page 24

Figure 17: Cmmp master clock

se r v i ce than SLTF or any of the other scheduling disciplines that have been deve l oped to

opt imize the performance of paging disks with latency.

5. Technology and Costs

C m m p is a mixture of off-the-shelf and custom-built hardware. Figure 18 g ives an

approx imate breakdown of the equipment in terms of complexity and cost.

The port ions of Cmmp built at CMU use a mixture of TTL and Shottky TTL technology. ECL

was not used because at the time of Cmmp's construction ECL did not offer the range of MSI

components available in T T L Likewise the large amount of ferr i te core memory on C m m p is

due to the state of MOS memory technology co 1972.

The cost f igures given in Figure 18 are only estimates. The cost for the P D P - 1 1 / 4 0 and

for memory was the purchase price of the equipment when we bought It. The o the r

ha rdware was built at CMU, and the figures given are our rough estimates of the rep l i ca t ion

cost, exc lud ing design and setup costs, and excluding any profit margin.

§

6. Performance

We have now had several years to evaluate the performance of C.mmp. To date, Ole in ick 's

wo r k [1] is the most comprehensive study of a single multiprocess application on Cmmp , We

The C.mmp Mult iprocessor Page 25

Part No. Boards No. IC's Unit Cost No. in System

11 /40 5 332 812,000 11 (16 max.)

us to re 2 200 J 1,300 1/Pc

Pc mod's 1 57 8600 1/Pc

Dmap 3 120 81,500 1/Pc

Smp 850,000 (16 x 16 configuration)
SW16 1 24 70
PI 1 26 1/Pc
MC 1 20 1/Mp
PRI 1 54 1/Mp

IP-bus
Ct r l 2 200 83,000 1
I'face 1 200 83,000 1/Pc

Mp (core) Uni t=8Kx l8 81,300 80

Mp (MOS) Un i t=128Kx l8 812,000 5

Approximate total replication cost (excluding peripherals): S600.000

Figure 18: C.mmp Technology and Costs

be l i eve that the exist ing studies confirm our early beliefs that C.mmp is a power fu l and

cos t - e f f e c t i ve computing resource.

A n in -depth performance study is not appropriate here, but we have t r ied to gather

toge the r in Figure 19 some low-level measurements of the C.mmp hardware. The

measurements of Pc and Mp speed are from [1] and are averages over all Pc's and Mp 's of

the same type .

Note that the timings for Pc and Mp indicate that contention wil l degrade per fo rmance

wheneve r more than two processors are trying to access the same memory port.

The C.mmp Mult iprocessor Page 26

P D P - 1 1 / 4 0 execution speed

Mp (core)

Mp (MOS)

2 00 -Mby t e disk

20 ,40 -Mby te disk

Paging disks

Figure 19: C.i

0 . 68x lO b memory references/second

1.49x10** memory references/second'

1.71x10^ memory references/second'

2.5 usec/word transfer rate

28 ms average seek
8 ms average latency

7.5 usec/word transfer rate
29 ms average seek
12.5 ms average latency

4.1 usec/word transfer rate
17 ms page read time
34 ms page write time (w/ver i fy)

hardware performance

7. Acknowledgements

The development of Cmmp and Hydra represents the combined effort of many peop le . The

or ig ina l des ign group included Bill Wulf, Sam Fuller, Ellis Cohen, Bill Corwin, David Je f fe r son ,

Roy Lev in , Chuck Pierson, and Fred Pollack. The project later included Tom Lane, Rick

Gumper tz , Sam Harbison, Guy Almes, Joe Newcomer, Mary Thompson, Hank Mashburn, Dave

Babcock, Navindra Jain, and George Robertson. The hardware was designed and built by Bi l l

B road l ey and the CMU Computer Science Engineering Laboratory.

We wou ld like to thank Bill Wulf and Joe Newcomer for their crit icisms of this paper , and

Roy Lev in , the original editor. We would also like to thank Hank Mashburn, the C m m p / H y d r a

^Measured speed of a single 11/40 executing out of • single memory port with no other p r o c e s s o r s

contending. On en 1 1/40, one instruction requires sbout 2.5 memory references on the average, s o .68 million

r e f / s e c translates to about .27 MIPS (million instructions per second) for each processor , or about 3 M I P S f o r

the 1 1 - P c conf igurat ion and 4.3 MIPS for the full 16-Pc configuration without caches.

^ M e a s u r e d rate of memory references to a memory port when all processors sre contending on that port .

^See note f o r M p (core).

The C.mmp Mult iprocessor Page 27

P ro j ec t Manager, and David Babcock, C.mmp's chief engineer, for their help in prepar ing the

pape r and provid ing the tender loving care which does wonders for system MTBF.

The photographs are by the author (Harbison).

Au thors 1 address: Samuel H. Fuller, Digital Equipment Corporation, Tewksbury, MA 01876 ;

Samuel P. Harbison, Computer Science Deparment, Carnegie-Mellon University, P i t tsburgh, PA

1 5 2 1 3 .

8. Further Reading

[2] is a retrospect ive look at the successes and failures of the C.mmp/Hydra project to

da te . The best introduction to Hydra is found in the original Hydra paper [11] and in the

t h r e e papers presented at the Fifth Symposium on Operating System Principles [12] .

Ha rdwa re and software performance are analyzed in [1]. Potential users should consult [13 ,

14, 15]. Addit ional references can be found in the complete bibl iography in [2\

9. References

[1] Oleinick, P., "Implementation and Evaluation of a Parallel Algorithm on Cmmp," Technical
Report , Computer Science Department, Carnegie-Mellon University, 1978.

[2] Wulf, W. A., and Harbison, S. P., "Reflections in a Pool of Processors," Technical Report,
Computer Science Department, Carnegie-Mellon University, June 1978.

[3] Wulf, W. A. and Bell, C. GL, "C.mmp — A Multi-mini-processor," Proceedings of the Fall
Joint Computer Conference, 1972, pp. 765-777.

[4] Be l l , C. G. and Newell, A., Computer Structures: Readings and Examples, McGraw-Hi l l , New
York, 1971.

[5] Digital Equipment Corporat ion, PDP-U/0S/1Q/3S/40 Processor Handbook, Maynard,
Massachusetts, 1973.

[6] Heart, F. et. al., W A New Minicomputer/Multiprocessor for the ARPA Network," Proceedings
AFIPS National Computer Conference, 42, 1973.

[7] Swan , R. J., Fuller, S. H., and Siewiorek, D. P., "CM*: A Modular, Mult i -processor,"
Proceedings of the National Computer Conference, Dallas, TX, June 1977.

[8] Digital Equipment Corporat ion, LSI-11 Microcomputer, Maynard, Massachusetts, 1975.

[9] Rober t son , G., Newell, A., and Ramakrishna, K., "ZOG: A Man-Machine Communication
Phi losophy," Technical Report, Department of Computer Science, Carneg ie-Mel lon
Univers i ty , August 1977.

UNIVERSITY L I S P A ^ s
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA WlJ

The C.mmp Mul t iprocessor Page 28

[10] Ful ler , S., Swan, R., and Wulf, W., "The Instrumentation of Cmmp: a Mult-min i -processor,"
IEEE Compcon, 1973.

[11] Wulf, W. A. et. al., "Hydra: The Kernel of a Multiprocessor Operating System," CACM 17,6
(June, 1974) pp. 337-345.

[12] Wulf, W. A. et. al., "Overview of the Hydra Operating System," and Levin, R. et. al.,
"Po l i cy/Mechanism Separation in Hydra," and Cohen, E. et. al., "Protect ion in the Hydra
Operat ing System," Proceedings of the Fifth Symposium on Operating System
Principlesy Aust in, Texas, November 1975, pp. 122-160.

[13] Newcomer, J . et. al., "Hydra: Basic Kernel Reference Manual," Technical Report,
Department of Computer Science, Carnegie-Mellon University, 1976.

[14] Reiner, A., and Newcomer, J., ed., "The Hydra User's Manual," Technical Report,
Department of Computer Science, Carnegie-Mellon University, August 1977.

[15] Gumpertz , R. H., Karlton, P. L, and Lamb, D. A., "The Hydra Users ' L ibrary," Technical
Report , Department of Computer Science, Carnegie-Mellon University, August 1978.

