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Abstract 
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1. Introduction 

In 1971 , we at CMU became interested in research issues surrounding the construct ion and 

use of mul t iprocessors . For that reason, we undertook the design and construct ion of C.mmp, 

a large mult iprocessor constructed of minicomputer processors. C.mmp has now been in use 

for seve ra l years , and many of the research results we original ly hoped for have been 

pub l i shed . More are on the way. However, most of C.mmp's exposure in the computer 

s c i ence l i te ra ture to date has been via discussions of Hydra, C.mmp's operat ing sys tem. 

Hyd ra implements a capabi l i ty-based protection scheme which establ ishes it as a r e sea r ch 

p ro jec t in its own right. The only detailed paper on C.mmp itself is [31 which d i scussed the 

des ign be fo re actual implementation had taken place. We feel it is important to desc r ibe he re 

the actual hardware that has resulted. 

C.mmp * is archtypica l of a simple multiprocessor; it consists of a number of equal , 

a synchronous centra l processors that share a large primary memory. C.mmp d i f fers f rom 

ear l i e r mul t iprocessors such as the Burroughs D825, IBM 360/67 , Honeywel l 645 (Mult ics), 

etc . in two essent ia l respects: 

1. C.mmp is des igned to have up to sixteen processors while other mult iprocessors 
usual ly have no more than four processors. 

2. C.mmp is constructed from minicomputer processors rather than the larger (32 to 
4 8 b i t s /word) processors used in the other systems. 

In o ther words , the effect ive use of C.mmp requires that we find and exploit a much h igher 

deg r ee of paral le l ism than has been needed by earl ier mult iprocessors. In the past f ew 

yea r s , the number of exist ing multiprocessors has increased signif igantly to include BBN's 

P lur ibus , Stanford 's S - l , and CMLPs CM* systems. However, Cmmp stil l remains notab le for 

its un i form st ructure and support of a general-purpose operat ing system. Mo reove r , 

pe r fo rmance studies of C.mmp provide calibration for similar data from these newer machines. 

2. PMS Structure 

The C.mmp computer system is pictured in figure 1 and its P M S organizat ion is shown in 

F igure 2. A s may be seen, the principal components are s ixteen modules of shared memory 
< MP0:15>> a 16 x 16 switch (Smp), sixteen processors ( P C Q : 1 5 ) , associated input/output 

P r o n o u n c e d "See-dot-em-em-pee", it ia an acronym from the P M S notation of Bell and Newel l[4] . P M S 
( P r o c e s s o r - M e m o r y - S w i t c h ) notation is used to describe computer systems at the 'block diagram* level; C.mmp stands 
f o r mul t i -min i -erocassor Computer system. Other frequently used PMS names include P c for central P r o c e s s o r , M p f o r 
p/imary M e m o r y . K f o r [Controller, and L for Link. ~ ~ 

e 
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dev i ce s (Kio), special relocation hardware (Dmap) associated with each processor, and an 

i n t e rp ro ce s so r bus (IP-bus) with special devices attached to it (^interrupt, etc.). We w, 

examine each of these major components in greater detail below; first we consider the ove ra l l 

o rgan i za t i on more thoroughly. 

Figure 1: C.mmp: Smp and memory (I.) and four processors (r.) 

The area enclosed by dashed lines in Figure 2 represents a complete m in i compute r 1 : a 

Digital Equipment Corporat ion PDP-11 processor, memory (MJocal), and input/output dev i ces . 

These minicomputers are connected to the shared memory through the relocat ion ha rdware 

(Dmap) and switch (Smp). They are connected to each other and to a few common dev i ces 

th rough the interprocessor (IP) bus. 

l T h e minicomputer processor* sre s l i f M l y modified; we will discuss the necessary modificstions later. 
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Figure 2: PMS diagram of C.mmp 

A l l communicat ion between components of a single PDP-11 is performed over a s ingle bus, 

the U N I B U S . The processor accesses primary memory via the U N 1 8 U S as do 

d i r e c t -memory -acces s (DMA) I/O devices. The processor also communicates cont ro l 

in format ion to I /O devices on this same bus. Specifically, the control registers of I /O dev ices 

have U N I B U S addresses and appear as memory locations to the processor, the p rocesso r 

con t ro l s the opera t ion of I/O devices by simply stor ing* appropriate control informat ion into 

these locat ions ~ thus there are no special I/O instructions needed in the p rocessor [5]. 

A l though the pr imary virtue of the UNIBUS is that it has al lowed the cos t -e f fec t i ve 

implementat ion of minicomputer systems, it has some other benefits in a sys tem such as 

C.mmp. The DMA devices use the UNIBUS to transfer data just as the Pc does and hence the 
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Dmap can manage Pc and DMA requests to shared memory in a uniform manner. This is in 

con t ras t to many conventional virtual memory architectures (e.g. the IBM 360 /67 ) wh i ch 

r equ i r e phys ica l (unmapped) addresses for DMA requests. 

In making the design descisions described below, we were guided by a des i re to make 

C.mmp as symmetr ical as possible. All components of the system were envis ioned as a poo l 

of r e sou r ce s to be shared among whatever tasks were to be done. This was to be (is) t rue 

of p roces so r s , I/O, and memory singly and in combination. There was to be (is) no 

mas te r - s l a ve relat ion between the processors, and any user job was to be (is) able to 

e xe cu t e on any processor at any instant. The same was to be (is) true of the opera t ing 

s y s t em; v i r tua l ly any port ion of Hydra may execute on any processor. 

To ach ieve the des ired symmetry at the software level one must begin with symmetry at 

the ha rdwa re level . There are two aspects to this symmetry: access to the shared memory, 

and the pass ing of control signals between processors. The relocation hardware and sw i t ch 

p r o v i d e the f irst, and the interprocessor bus provides the second. 

2.1. The Processor-Memory Switch 

Smp, the processor- to-memory crosspoint switch, handles single word t ransfers b e tween 

the sha r ed pr imary memory and the processors. Transfers from Kio units also access memory 

t h r ough Smp. The memory and switch for C.mmp can be thought of as a memory w i th 16 

po r t s and consist ing of 16 independent memory subunits. Up to 16 simultaneous accesses to 

Mp are poss ib le if 16 Pc's are active and if they all request words in a di f ferent memory 

por t . 

Unl ike most other crosspoint switches, this one is located central ly, as opposed to be ing 

d i s t r i bu ted in the memory, e.g., as in the DECsystemlO or IBM 370/168 . While this requ i res a 

l a rge r init ial configurat ion and implies some non-modularity, the cost of a complete sys tem is 

less and we are interested in rather large configurations. A large cost component of a sw i t ch 

s y s t em (together with the associated mechanical and c ircuitry problems) is the cab les. This 

s t r u c tu r e requi res only 16 + 16 cables, as opposed to 16 x 16 cables required for a fu l ly 

connec ted d istr ibuted switch. A centralized switch also has less cable de lays than a 

funct iona l l y equivalent d istr ibuted switch. BBN's Pluribus uses a distr ibuted switch and hence 

p rov i de s an interest ing contrast to Cmmp. See [6] for a discussion of why re l iab i l i ty and 

modu lar i ty arguments dictated the use of a distributed switch for their appl icat ion. CMU 's 

C M * mul t iprocessor uses a heirarchical structure and a packet-switching network to a l low for 

un l imi ted expandabi l i ty [ 7 J -

Ano the r important aspect of Smp is the control provided to facil itate reconf igurat ion and 
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pa r t i t i on ing of the system. Each of the 256 crosspoints of Smp can be enabled or d i sab led 

e i t he r manual ly (from a front panel shown in Figure 3) or under program control (by set t ing a 

f l i p - f l op addressab le from a UNIBUS). For a crosspoint to be operational in the Smp, bo th its 

manual sw i tch and its f l ip- f lop must be 'set'. Thus, for example, a faulty Pc can be r emoved 

f r om the sys tem by disabling its column of crosspoints, and C.mmp can be part i t ioned into two 

8 x 8 conf igurat ions by disabling the 128 crosspoints that are in the first and th i rd quadrant 

of the c rosspo in t array. 

Dynamic reconf igurat ion is employed by the operating system to eliminate faulty ha rdware 

on the basis of cont inuously-gathered error histories. Manual reconf igurat ion may be u sed 

w h e n a separa te system is necessary for off-l ine testing or other maintenance. 

Figure 3: Crosspoint switch control panel 
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2.2. Memory Mapping and the Relocation Unit 

P robab l y the greatest problem in building a large computing system from minicomputers is 

the i r small address space[2]. In C.mmp we must be able to address severa l million by te s of 

p r imary memory from the processors. The basic PDP-11 architecture, on the other hand, is 

on ly capab le of generating 16-bit addresses and is thus limited to a 64K-by te address space . 

Note that this is exactly the opposite situation faced by many operat ing systems which map 

large v i r tua l addresses into somewhat smaller physical ones. The goal of these systems is to 

keep a por t ion of each process* virtual memory addressable, the so-cal led working set of the 

p rocess . The work ing set consists of those pages most recently referenced by the process ; 

expe r i ence indicates that future references wil l, with good probabil i ty, also lie within these 

pages. 

In a minicomputer environment this working set concept can be turned ' inside out ' to 

produce an address mapping scheme where the user must explicit ly state which pages are in 

his work ing set and when changes in addressabil ity are required. This notion se rves as the 

bas is for the address mapping (relocation) scheme adopted for C.mmp. 

The PDP-11 processor (and thus programs executing on it) generates a 16-bit address . 

The U N I B U S , however , supports an 18-bit address, and the shared memory uses a 25 -b i t 

address . Somewhat arbitrar i ly we chose to divide these address spaces into 8K -by t e units 

ca l led 'pages ' . Thus processor-generated addresses are divided into eight 8K pages, U N I B U S 

addresses are div ided into 32 pages, and the shared memory is divided into 4096 pages.* In 

go ing f rom the 16-bit user address to the 18-bt UNIBUS address, the two extra bits are 

ob ta ined f rom the Program Status register (PS) in the processor (see Figure 4). As we shal l 

see in a moment, these bits may not. be altered by a user program, and thus user programs 

are actual ly bound to operate within the eight pages described by a subset of the re locat ion 

reg i s te r s . 

^ ; T h e re locat ion hardware is attached to the UNIBUS and responds to 30 of the 32 poss ib le 

U N I B U S page address ranges. These 30 pages are mapped from the U N I B U S address into 

p r imary memory /by means of 30 hardware registers; the mapping is quite s t ra igh t fo rward . 

The f ive most significant bits of the UNIBUS address are used as an index into this set of 

. e M — • on o . H . r P O P - . V,, «.. . t h . PWMlgJ, , /J- 1 ^ oLit^i.U^ inl^p JLp f r o m t h . 

L p r o c e s s o r t d d r . . . . p . c . to t h . <r..l> unibo. . d o r . . . . p . o C.mmp m . p . ^ ^ ^ / { r , ̂ ,0* 
w h i l . other P O P - 1 do not m.p a d d r e . s e . from I/O u n i t * .nd Cmmp h . . fimd p . « t . white oflur P u r 

p a g t s to be variable s iza. 

http://addre.se
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Figure 4: Address translation in C.mmp 

Each re locat ion register also contains a field of control and status bits, as shown in F igure 

5. The non-existent memory bit can be set by the operating system to prevent access to 

s h a r ed memory through the register. This permits the system to place a small user job in the 

machine without allocating a full 64K-byte address space. The write-protect 6tt, when set, 

permi t s read cyc les to proceed through the register but blocks write cycles. This fea ture can 

be used to guarantee the integrity of code pages. The written-into bit (or 'dirty* bit) in a 

r eg i s t e r is set to T by any write cycle throught that register. This mechanism is u sed b y 

the operat ing sys tem to avoid writ ing out pages which have not been a l t e red The cacheable 

bit is used in conjunct ion with those processors that have a cache (see sect ion 2.3) to 

ind icate which pages may be buffered. 

r eg i s te r s . A 12-bit f ield from the selected register is left-concatenated to the remaining 13 

b i ts of U N I B U S address, thus forming a 25 bit address in primary memory (see F igure 4). 

Shou ld the f ive most significant bits specify page 30 or 31 (i.e. non-existent mapping 

reg i s t e r s ) the mapping hardware simply ignores the bus cycle. These two pages are 

r e s e r v e d for the processor 's pr ivate local memory and access to its per iphera ls ' reg i s te rs . 
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Figure 5: Format of the relocation registers 

2.3. Caches 

C.mmp has a prov is ion in its design for 1000-word, per-processor caches on all the 

P D P - l l ' s . As of November 1978 only one cache was installed, and it is not used b y the 

ope ra t i ng system. Therefore, we must describe the intended operat ion of the cache. 

Caches present a special difficulty for multiprocessor systems because data sha red 

be tween p rocesso rs may be modified in one processor's cache without the modif icat ion be ing 

re f l e c ted to other processors. Our caches implement wr i te-through to shared memory, but 

the contents of caches on other processors are not affected. C.mmp's solut ion to this 

p rob lem is to have the operat ing system designate (via the cacheable bit in the re locat ion 

reg i s te r s ) wh ich pages are safe to cache. Fortunately, studies on the PDP-11 indicate that 

about 70% of all memory references are to code pages, which can be forced by Hydra to be 

unmodif iab le and hence cacheable. Stack pages (see section 2.4.2) are guaranteed pr i va te to 

a p rocessor , and hence are also cacheable. 

The caches des igned for C.mmp are not fast; their importance lies in their abi l i ty to 

el iminate swi tch content ion by catching a significant fraction of the memory fetches. This is 

espec ia l l y important because Hydra encourages the sharing of code pages among coopera t ing 

p rocesses , thus invit ing significant contention. (See [1] for a discussion of the ef fect of this 

content ion and how we dealt with it in the absence of caches.) 

2.4. Processor Extensions 

An important goal in almost every operating system must be the protect ion of itself and of 
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•• other user progrsms. 

o the r users should one of the user programs fail.* Attaing this goal invo lves many 

cons idera t ions ; the execut ion of a 'halt' instruction by the user is an obvious example of an 

act ion wh i ch must be prohibited. A less obvious example is the alteration of the stack po inter 

such that an interrupt would cause the overwrit ing of operating system code or tables. 

2.4.1. Address Spaces 

A cent ra l aspect of the design of the processor modifications is the part i t ion ing of the 

18 -b i t UNIBUS address into four address spaces. The natural partit ioning is to associate each 

space w i th a part icular configuration of the two bits in the PDP-11 PS reg is ter which form 

the h igh -o rde r two bits of the address. Programs not executing in ' I T - s p a c e cannot alter 

the PS (thus changing their space) since the PS register itself is addressable only in 

U l ' - s p a c e , as are all device registers and interrupt vectors. We there fore des ignated 

U T - s p a c e to be the kernel space, in which only operating system code would execute. 

'OO' -space became user space, where all user code executes, and the remaining two spaces 

w e r e r e s e r v ed for DMA I/O traffic and special applications. 

The PDP-11 prov ides a reasonable method for transfering contro l be tween spaces . 

Execut ing one of severa l ' t rap ' instructions, or the occurance of any hardware interrupt , 

causes the current (PS,PC) pair to be stacked and a new (PS,PC) pair to be fetched from a 

f i xed address in kernel space. Typical ly the new (PS,PC) forces control to pass to operat ing . 

s y s t em rout ines in kernel space. The execution of a Veturn-from-interrupt* instruct ion (RTI 

o r RTT) reve r ses this process, fetching the old (PS,PC) from the stack. 

2.4.2. Handling the Stack 

The PDP -11 has severa l addressing modes which facilitate managing a stack, and 

programming convent ion dictates the use of a standard stack area for interrupt p rocess ing , 

sub rou t i ne calls, and parameter passing. This stack area is by convention po inted to by a 

par t i cu la r PDP-11 register cal led the stack pointer (SP). 

The stack introduces some problems in switching address spaces, since the stack ing of the 

o ld (PS,PC) at interrupt time occurs in the old (e.g. user) space while the unstacking by RTI or 

RTT occurs in the new (kernel) space. Several solutions to this problem are avai lable, the 

most obv ious being the addition of mechanisms to retr ieve data from the 'p rev ious ' space. 

(Not a t r iv ia l task, since we must provide for multiple nested interrupts.) For C.mmp, however , 
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we dec ided to force all address spaces to use the same s tack 1 . We do this by f i rs t 

es tab l i sh ing the convention that the low-order 8K bytes of each address space are to be 

used for the stack. Processor modifications force the SP to point to an even address in this 

page (except when executing in kernel space), and the relocation registers are modif ied so 

that the stack page register in each space holds the same value. Having the operat ing s y s t em 

and the user share the same stack makes changing address spaces easy and al lows users to 

pass arguments to the OS simply and efficiently. However, it does present some pro tec t ion 

p rob lems. 

A programmable stack underflow register is used by the operating system to prevent use r s 

f rom access ing data belonging to their callers or to the operating system. A f ixed stack Limit 

f u r the r res t r i c ts the stack, defining an area in the lower portion of the stack page wh ich can 

be used for the communication of global information between the operat ing system and the 

user . 

F inal ly , PDP-11 programmers will remember that some hardware trap vectors ((PS,PC) 

pa i rs) are located in low addresses which on C.mmp would be in the stack page. We re locate 

these U N I B U S addresses by OFTing #740000 with them, placing them in kernel space in the 

local memory associated with each processor. 

2.4.3. Instruction Se i Modifications 

The HALT, WAIT, and RESET instructions were made illegal in any but the kernel space . 

L i kewise , RTI and RTT were made illegal since they obtain the new (PS,PC) from an a rea 

addressab le by the user.. The trap instructions (TRAP, EMT, IOT) are legal from any space 

s ince they obta in their new (PS,PC) from a protected area and the operat ing sys tem can 

ve r i f y the environment at the time of the trap. 

2.4.4. Extensions for Error Detection 

A pr inc ip le advantage of multiprocessors is their (potential) abil ity to withstand va r ious 

t ypes of hardware errors by isolating and eliminating faulty components. C.mmp in par t i cu lar 

is insens i t ive to both the number of processors and the number of memory pages actua l ly 

p resent , so reconf igurat ion techniques are studied carefully. The PDP-11 minicomputer d id 

not have adequate error-detect ing capabilities, so we augmented it with severa l mechanisms 

of our own. 

the change n o w it impract ical 
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The most signif icant improvement was the implementation of par i ty bits in shared memory. 

The re locat ion hardware computes parity bits for each byte wr i t ten to memory and for e v e r y 

add res s sent to the memory. To catch common failure modes of 'all ones ' and 'all zeros,* we 

use e v en par i ty on one byte of each data word and odd parity on the other byte. Add res s 

pa r i t y is checked by the memory control ler on the 'far' side of the switch, and data par i ty is 

c h e c k ed on each ' r ead ' cycle by the relocation hardware at the processor.* 

The PDP -11 ' s var iable- length instructions and its rich set of addressing modes makes 

loca t ing the exact source of an error (e.g. a parity error) difficult. For this reason, we 

imp lemented two tracking registers. The bus address tracking register is latched upon the 

occu rance of a switch-detected error (e.g. a data or address par i ty error), and thus 

accu ra te l y spec i f ies the UNIBUS address causing the error. The PC tracking register latches 

the address of the current instruction under the same circumstances, thus prov id ing the 

in fo rmat ion needed to ret ry an instruction. 

Ma in tenance functions are also implemented, including the abil ity to simulate address par i t y 

e r r o r s and the abi l i ty to write incorrect parity into shared memory. There are also faci l i t ies 

to address the cache memory as a normal RAM by making it respond to a spec i f ied sha red 

memory page. 

/ 2.5. The Interprocessor Bus 

In te rp rocesso r communication is an important consideratibn in control l ing a mult iprocessor. 

Fu r the rmore , to qual i fy as a symmetric multiprocessor it is necessary for each p rocessor to . 

c on t r o l these funct ions on every other processor. This might, however, require as many as 

120 cab les among the sixteen processors (for the number of functions considered, this wou ld 

lead to more than 1000 wires). In order to simplify the situation we have des igned an 

i n t e rp ro ce s so r bus, a control ler for it, and interfaces to it. These are shown in the PMS 

d iag ram of F igure 2. 

The inter face al lows a processor to invoke a certain function on any subset of the 

p r o ce s so r s , including itself, by simply 'ORing' a mask into the interface register assoc iated 

w i t h that funct ion. The interface current ly contains six such registers, one each for HALT, 

START and CONTINUE and three for different levels of pr ior i ty interrupt ion. Each of these 

func t i on reg i s te rs is 16 bits wide. Setting the ith bit of the register associated with one of 

the funct ions wi l l invoke that function on the i\h processor. Thus for example, moving a mask 

A c t u a l l y , the s w i t c h has data paths wide enough for error-correcting codes on each data word , 
mechanism has not been implemented. but s u c h a 



The C.mmp Mult iprocessor 
Page 12 

of all l ' s into the HALT register will stop the entire machine. 

In addit ion to these functions, the IP bus provides other facilities to the processors , such 

as a (pe r -p rocesso r ) programmable interval timer. Each timer consists of a time count 

reg i s te r and a control register. The operating system can store a value into the count 

reg i s te r which wil l be decremented every 16 microseconds as long as the run bit is set in its 

con t ro l reg is ter . Additionally, the control register can cause an interrupt to be gene ra ted 

w h e n the count register reaches zero. Because the interrupt might not be se rv i ced right 

away , the count register keeps decrementing so that precise timings can be obta ined. 

Fu r the rmore , should the count be decremented to zero again before the interrupt is se rv i ced , 

a s tatus bit in the control register is set to indicate counter wrap-around. 

F ina l ly the interface provides access to the 56-bit, one-microsecond-reso lut ion, 

t ime -o f - day clock. The interprocessor bus controller, which will be descr ibed be low, 

cont inuous ly broadcasts this clock value on part of the bus. When a processor wishes to 

know the time, it reads the first of the four registers in the interface. This causes the 

in te r face to load all four registers from the interprocessor bus. The processor can then read 

the o ther three registers without fear of the value changing. The interface alters the c lock 

va lue by concatenat ing it with the processor number. This is important to p rov ide 

un iqueness s ince Hydra uses the clock value as a unique name generator. 

Co r r e spond ing to Smp's switch panel, the IP-bus interface on each processor is equ ipped 

w i th an opera to r panel (Figure 6) which permits the IP-bus to be parit loned in the same w a y 

as the memory crosspoint. The IP-bus panels also contain status l ights indicat ing the 

p r e sence of the var ious error conditions implemented in the relocation hardware. 

3. The Present C.mmp Configuration 

The PMS diagram of Cmmp in Figure 2 is a conceptual diagram intended to help in t roduce 

the cont ro l features of Cmmp; it clearly is not intended to descr ibe an actual C m m p 

conf igura t ion at any point in time. However, a number of interesting issues ar ise in 

con f igur ing C.mmp and Figure 7 is a PMS diagram of the current Cmmp conf igurat ion. 

3 .1 . Processors • 

The re are e leven PDP-11/40E processors current ly on Cmmp. The 11/40E d i f fers f rom 

the s tandard 11/40 in having a 1000-word x 80-bit writeable control store, a l lowing us to 

ta i lor the instruct ion set to special applications and to the operating system. We have used 

th is fac i l i ty to implement various block-transfer instructions, f loating-point instruct ions, and 

some spec ia l instruct ions to speed up a simulator for the CM* multiprocessor. 
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Figure 6: P D P - i l / 4 0 with IP-bus interface panel 
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Figure 7: The Current Configuration of Cmmp 

C m m p ' s PDP -11 /40E processors also incorporate a small ROM which faci l i tates the 

i n t e rp roces so r START function descr ibed in section 2.5. When invoked, the IP-bus in te r face 

loads the address of ROM into the processor and commences execution. The program in the 

ROM loads the relocat ion registers and searches shared memory until it f inds a page 

conta in ing a part icular key value in its first word. Execution is then passed to the p rog ram 

conta ined in that page. This allows us complete freedom in configuring C.mmp's sha red 

memory , s ince no specif ic page frame needs to be present. Another program conta ined in the 

ROM prov ides a system bootstrapping mechanism to read in the system from a DECtape. 
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3.2. Memory 

C . m m p c u r r e n t „ a s a p p r 0 » i m s l e l y M m | | | i o n „ y , e s 0 ( p r j m a r y 

the s .x loen m e m o r y ports. Eleven ports use ferr i te .o re d o r i e s whi le ( i v e po r t s u s , 
newe r MOS memory. p s e 

3.3. Switch and IP Bus 

Smp and the IP bus exist in their full 16-processor, 16-memory configuration. 

3.4. Per iphera l Devices 

C.mmp has a normal complement of I/O equipment including disks, magnetic tape, and a l ine 
pr in ter . 

Pages are swapped in and out of memory using six f ixed-head disks as a buf fer b e tween 

pr imary and secondary storage. The disks are on separate processors, al lowing s imul taneous 

t rans fe r s to each device. The backing-to-primary store ratio is about 3:1. 

Permanent secondary, storage consists of two moving-head disk systems prov id ing a tota l 

of about 700 mill ion bytes of storage. One control ler has two 20-megabyte dr ives and two 

40 -megaby t e dr ives , and the other control ler has three 200-megabyte dr ives. 

3.5. Links to Other Facilities 
• 

Hydra has not been developed in a vacuum, nor is C.mmp intended to be used pr imar i l y as 

a s tand-a lone computer system. It receives considerable support from other systems. F igure 

8 shows how C.mmp is connected to the ARPANET and the other computer systems at the 

Computer Sc ience Department. The connection to the ARPANET allows remote access of C.mmp 

f rom other points on the network and also provides a reasonably high speed (50K baud) l ink 

to all three of the DECsystemlO's in the Department. Since much of the software suppor t fo r 

C.mmp is deve loped on the PDP-10's, these links are an important facility, 

3.6. Addit ional Hardware 

A cer ta in amount of additional hardware is present for special applications. As ind icated in 

F igure 7, two advanced terminals for the ZOG man-machine-communication project [9] are on 

C.mmp. In the past C.mmp has also been the host of an audio-spectrum analyser for s pee ch 

unders tand ing research, a UNIBUS cycle counter, and the Hardware Monitor [ 10} 
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Figure 8: Interconnection of Cmmp to other computer systems 

The Hardware Monitor is a special purpose device that resides on two U N I B U S ' s ; one is the 

host that is be ing monitored, while the second is the controller, or superv isor. In addit ion to 

moni tor ing the U N I B U S of the host, the monitor has several high impedance probes which can 

be at tached to any of a number of interesting signals either in the processor, an I/O dev ice , 

o r the swi tch. 

4. Comments on the Implementation of C-mmp 

Too o f ten descr ipt ions of new computer systems fail to point out those detai ls in the 

cons t ruc t i on of the systems that materially affect its final structure. We now look at some of 

the most important implementation features of C.mmp. 

A s a genera l comment we note that, with the exception of a few off- the-shel f components 

pu r chased later, Cmmp was built ent irely with 1970-1972 technology. 

4 1 The Processor-Memory Switch 

' S m D the processor-memory switch discussed in section 2.1, Is the largest component of 

Cmmp Hs construction mp.i.ied oy buildin, it with oniy tour oesic moduies: — 
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module, processor interface module, memory control module, and processor priority resolution 

module. Each of these modules is simple enough to be implemented on a single p r in ted c i rcui t 

boa rd . 

The main processor -memory data paths in the switch are 72 bits wide and are implemented 

w i t h the swi tch modules in a bit-sl ice fashion. Figure 9 shows a single bi t-s l ice of the sw i t ch . 

1 6 - t o - l mult ip lexors (SN74150*$) implement the 256 crosspoints. Sixteen of the mult ip lexors 

are used to implement the paths from the Pc's to the Mp ports and the other s i x teen 

mul t ip lexors are used to implement the return paths from Mp to the Pc's. Note the 

remarkab le symmetry between the multiplexors forming the forward and re turn points. In 

fact, a sw i t ch module consists of sixteen multiplexors, and two modules are used to implement 

the bit s l ice shown in Figure 10. Control of the multiplexors comes from the p rocesso r 

p r i o r i t y reso lut ion modules. The 144 switch modules needed to construct the data paths in 

the sw i t ch form the bulk of the logic in the crosspoint switch. 

The p rocesso r interface module contains the steering logic to partial ly decode the address 

l ines and route the he memory request to the designated memory module. This module also 

se t s the se lect ion lines for the switch from memory to the processor, thus determining wh ich 

memory the processor will read. Finally, this module buffers data read from memory; this 

a l lows the swi tch to over lap the end of a read cycle with the start of the next cyc le for 

another p rocessor . The processor interface card is shown in Figure 11. 

Figure 10: SW16 switch module 

The memory contro l modules (Figure 11) are very straightforward. This module checks the 

f*RNF61E-MELtON V^VEkSITY 
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Figure 9: Bit-sl ice of crosspoint switch data paths 
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Figure 11: Processor interface (I.) and memory control (r.) 

add res s par i ty which was generated in the relocation hardware. If an e r ro r occurs, it is 

r e p o r t e d back to the processor. This module also allows for easy conf igurat ion of memory by 

in forming the processor if it should try to access a section of memory which is not present . 

F ina l ly , this module communicates with the processor priority resolut ion module in order to 

gene ra t e the timing and control pulses for the actual memory modules. 

Figure 13: Pr ior i ty resolution module in Smp 
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Figure 12: Simplified processor arbitration logic 

The p rocesso r pr io r i ty resolution module (Figure 13) is the most sophist icated component 

in the sw i t ch des ign. This module maintains a request buffer whose operat ion is i l lustrated in 

F igure 12. The funct ion of the processor prior ity resolution module is to arb i t rate be tween 

Pc 's that are s imultaneously requesting access to the same Mp port, and to queue those 

reques ts that must wait for other requests to complete. The arbitration logic shown in F igure 

12 works in the fol lowing wanner. When Pc(i) requests access to a part icular Mp port (as 

ind icated by the value of the four most significant address bits) it attempts to set bit i of the 

request buf fer . However, the AND gate in front of the SET input to the buffer p revents Pc(i) 

f rom set t ing latch(i) until the request buffer contains all zeros. When the request buffer is 

empty all 16 AND gates feeding the SET inputs of the request buffer are enabled v ia the OR 

gate and DELAY shown at the bottom of the diagram. Now those Pc's wi th outstanding 

requests wi l l set their corresponding latches in the request buffer. As long as a s ingle Pc is 

making a request , and sets its corresponding latch, the column of AND gates wi l l be d isabled 

s ince the request buffer is no longer empty. Now the outputs of the 16 latches of the 

request buf fer are fed into a pr ior i ty encoder that indicates on four output l ines the lowest 

numbered latch that is set. It is this prior ity encoder, therefore, that ult imately does the 

arb i t ra t ion . A f te r a Pc has been selected and it has read or written a word into Mp, the Pc 
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asse r t s its 'access complete ' line that clears the Pc's latch in the request buffer. The p r i o r i t y 

encode r now selects the lowest numbered request of the remaining requests. Hence, Pc's are 

s e r v i c e d in pr io r i ty o rder from 0 to 15 and each Pc is guaranteed to wait no more than 15 

memory cyc les before gaining access to memory. The scheduling discipl ine induced by the 

p r i o r i t y reso lut ion modules can be thought of as a quasi- round-robin discipline.* 

4.2. Processor Modifications 

The modif ications to the processors can be considered to be in two classes: additions and 

actual a l terat ions. On both the POP-11/40 and the 11/20 only a ve ry small percentage of 

the wo r k is in alter ing exist ing logic. For instance, the detection and trapping of r e s e r v ed 

ins t ruct ions in the user space requires only the addition of two IC's and the replacement of 

two o thers on the instruct ion decode module of the processor. 
» 

The addit ion of the other features requires that about 30 processor-generated sigpals be 

acqu i red from the backplane of the processor. Additions to each processor are all conta ined 

on one new PDP-11 system board (Figure 14). (A standard PDP-11/40 is implemented on 

f i ve such boards.) 

Figure 14: PDP-11/40 modification board 

hs-h n
 d , . 3 C U 8 8 , 0 ;\ 0 f l hrP r'°" fr r ? » 0 , u i i < > " " ^ f c * • amplification of the actual operet ioa In reality, there i . a lso a 

h,*h p r .o r . ty , n P u t to each latch ,n t h . request buffer that c ircumvant. the column of AMD f t . . . T h • h i .h pr iorr ty 
V S f y 1 ^ f f — • l ' ° which may not be able to tolerate a hi*h level of memo J 
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4.3. Relocation and Error Detection 

The two boards which implement the memory relocation logic (Figure 15) are also the s i te 

of much of the er ror -detec t ion circuitry. How the errors are ref lected to the user is an 

in teres t ing implementation detail. 

Figure 15: Relocation modules for PDP-11/40 

Upon detect ion of a switch-re lated error (parity errors, writ ing a read-on ly page, etc.) the 

logic causes the processor to take a normal NXM (non-existent memory) trap by b lock ing the 

acknowledgment signal (SSYN in PDP-11 terminology) from memory. That a t rap is taken is 

important, because traps can take effect before the completion of an instruct ion. Status bits 

set in a contro l reg ister allow the software to determine the actual cause of the e r r o r and 

can cause later e r ro r s to be ignored until the processor's state is recorded. 

Other except ional conditions, including stack underflow, violation of the SP convent ions, and 

attempting to execute an illegal instruction, cause normal interrupts. 

Even with our er ror -detect ion extensions, the P D P - l T s complicated address ing modes 

(which of ten have side effects) makes it almost impossible to 'back up" and r e t r y an 

inst ruct ion which fai led. This is unfortunate, since the majority of detected hardware e r r o r s 

appear to be transient. 

4.4. Interprocessor Bus 

The in te rprocessor bus control ler (Figure 16) performs three functions. It implements and 
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b roadcas t s the t ime-of-day clock value discussed above. It generates and broadcasts the 

t iming pulses which are used by the interval timer in the interfaces. Finally it generates and 

b roadcas t s the timing and control signals necessary to time-multiplex the var ious 

i n te rp rocesso r functions on the IP bus. By using a time-sliced function bus we have reduced 

a potent ia l 1500+ wire requirement to 16 cables of 20 wires each; however , we g ive up 

know ing which processor invoked a function. Neither of these has a major impact on the 

Hydra des ign. 

F igu re 17 shows the master clock module, which is equipped with a switch panel to al low 

manual a l terat ion of the time base. 

Figure 16: Interprocessor bus interface 

4.5. Peripherals 

The paging d isks mentioned in section 3.4 are perhaps worthy of special note. C.mmp's 

page s i ze is exac t ly equal to the capacity of one track on the disk. By modify ing the 

con t ro l l e r s l ight ly , this coincidence can be exploited in such a way that there is no latency on 

d isk t r ans fe r s wh i ch are one page long. Rotational latency is avoided by having the 

con t ro l l e r start the transfer at the beginning of the next physical block (16 words) and 

t r ans f e r r i ng 8K by t e s without track switching. This zero- latency scheme prov ides bet te r 

UNIVERSITY LIBRARIES 
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Figure 17: Cmmp master clock 

se r v i ce than SLTF or any of the other scheduling disciplines that have been deve l oped to 

opt imize the performance of paging disks with latency. 

5. Technology and Costs 

C m m p is a mixture of off-the-shelf and custom-built hardware. Figure 18 g ives an 

approx imate breakdown of the equipment in terms of complexity and cost. 

The port ions of Cmmp built at CMU use a mixture of TTL and Shottky TTL technology. ECL 

was not used because at the time of Cmmp's construction ECL did not offer the range of MSI 

components available in T T L Likewise the large amount of ferr i te core memory on C m m p is 

due to the state of MOS memory technology co 1972. 

The cost f igures given in Figure 18 are only estimates. The cost for the P D P - 1 1 / 4 0 and 

for memory was the purchase price of the equipment when we bought It. The o the r 

ha rdware was built at CMU, and the figures given are our rough estimates of the rep l i ca t ion 

cost, exc lud ing design and setup costs, and excluding any profit margin. 

§ 

6. Performance 

We have now had several years to evaluate the performance of C.mmp. To date, Ole in ick 's 

wo r k [1] is the most comprehensive study of a single multiprocess application on Cmmp , We 
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Part No. Boards No. IC's Unit Cost No. in System 

11 /40 5 332 812,000 11 (16 max.) 

us to re 2 200 J 1,300 1/Pc 

Pc mod's 1 57 8600 1/Pc 

Dmap 3 120 81,500 1/Pc 

Smp 850,000 (16 x 16 configuration) 
SW16 1 24 70 
PI 1 26 1/Pc 
MC 1 20 1/Mp 
PRI 1 54 1/Mp 

IP-bus 
Ct r l 2 200 83,000 1 
I'face 1 200 83,000 1/Pc 

Mp (core) Uni t=8Kx l8 81,300 80 

Mp (MOS) Un i t=128Kx l8 812,000 5 

Approximate total replication cost (excluding peripherals): S600.000 

Figure 18: C.mmp Technology and Costs 

be l i eve that the exist ing studies confirm our early beliefs that C.mmp is a power fu l and 

cos t - e f f e c t i ve computing resource. 

A n in -depth performance study is not appropriate here, but we have t r ied to gather 

toge the r in Figure 19 some low-level measurements of the C.mmp hardware. The 

measurements of Pc and Mp speed are from [1] and are averages over all Pc's and Mp 's of 

the same type . 

Note that the timings for Pc and Mp indicate that contention wil l degrade per fo rmance 

wheneve r more than two processors are trying to access the same memory port. 
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P D P - 1 1 / 4 0 execution speed 

Mp (core) 

Mp (MOS) 

2 00 -Mby t e disk 

20 ,40 -Mby te disk 

Paging disks 

Figure 19: C.i 

0 . 68x lO b memory references/second 

1.49x10** memory references/second' 

1.71x10^ memory references/second' 

2.5 usec/word transfer rate 

28 ms average seek 
8 ms average latency 

7.5 usec/word transfer rate 
29 ms average seek 
12.5 ms average latency 

4.1 usec/word transfer rate 
17 ms page read time 
34 ms page write time (w/ver i fy) 

hardware performance 
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8. Further Reading 

[2] is a retrospect ive look at the successes and failures of the C.mmp/Hydra project to 

da te . The best introduction to Hydra is found in the original Hydra paper [11] and in the 

t h r e e papers presented at the Fifth Symposium on Operating System Principles [12] . 

Ha rdwa re and software performance are analyzed in [1]. Potential users should consult [13 , 

14, 15]. Addit ional references can be found in the complete bibl iography in [2\ 
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