
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 7 8 - 1 5 6

ANA: AN ASSIMILATING AND ACCOMMODATING
PRODUCTION SYSTEM

John McDermott

December, 1978

75 / - J U

Abstract

In o r d e r fo r a sys tem to learn how to do new tasks, it must be capable of assimilation and
accommodat ion . T h e assimilation capabil ity enables a system to relate unfamiliar s i tuat ions to
s i tua t ions that it Knows about. Th rough assimilation, an unfamiliar situation is t r a n s f o r m e d ,
f o r a t ime, into a familiar situation. The accommodation capabil ity enables a sys tem to make
s u c h t rans fo rmat ions permanent. ANA, the system descr ibed in this paper , is a p r o d u c t i o n
s y s t e m that is capable of both assimilation and accommodation. Initially, A N A has a f e w
m e t h o d s fo r accomplishing a va r ie ty of simple tasks. When it is g i ven a not too unfamil iar
task , it p e r f o r m s that task b y analogy with one of the tasks it has a method fo r . W h e n it
accompl ishes a new task (and typical ly this happens only after the method has b e e n e x t e n d e d
t o handle p rob lems that it was not designed to cope with) , it s tores the knowledge of h o w it
d i d the task. If A N A is subsequent ly faced with the same task, it recogn izes the task and
p e r f o r m s it using the knowledge prev ious ly gained.

This research was sponsored by the Defense Advanced Research Projects Aaencv (DOD) ARPA O r H o , Q K Q 7 ^

monitored by the Air Force Avionics Laboratory under Contract F3361 ¿78.0 -1151. '

University Libraries
Carnegie Mellon Universi**
Pittsburgh PA 15213-389?

1

1. Introduction

A n y A I s y s t e m that hopes to eve r amount to much must have two capabil i t ies. F i r s t , it

must be capable of assimilation; it must be able to bring to bear w h a t e v e r knowledge it has

that is r e l e v a n t to an unfamiliar task — even though that knowledge was acquired in a v a r i e t y

o f u n r e l a t e d contex ts . Second, it must be capable of accommodation; It must be able t o

augment and modify the knowledge that is has so that unfamiliar tasks become familiar. T h e

w o r k d e s c r i b e d in this paper , shows one way in which these two capabilit ies can, in a modest

w a y , b e r e a l i z e d .

T h e s y s t e m d e s c r i b e d , ANA, has a limited amount of knowledge about how to funct ion in a

s imple e n v i r o n m e n t . When presented with an unfamiliar task, it tr ies to determine w h e t h e r it

has k n o w l e d g e re levant to that task. If it finds such knowledge and the knowledge e n a b l e s it

t o p e r f o r m the task, then it associates that knowledge wi th the task. If it e n c o u n t e r s

d i f f i cu l t i es as it pe r fo rms the task, it augments its knowledge in a w a y that enables it to a v o i d

t h e s e d i f f icu l t ies w h e n they subsequent ly arise. ANA is a product ion sys tem; its p r o d u c t i o n s

a r e o r g a n i z e d as a set of methods. The particular (and on ly) assimilation and accommodation

s t r a t e g y that A N A employs is to use these methods analogically. When g i v e n an unfamil iar

task , it maps the descr ip t ion of a task for which it has a method into the desc r ip t ion of that

unfamil iar task. T h e n as it uses its method, instead of executing the actions p r e s c r i b e d b y

the m e t h o d , it executes the actions dictated by the mapping. Whenever ANA is able to use a

m e t h o d success fu l l y on an unfamiliar task, it builds a product ion that associates that method

w i t h the d e s c r i p t i o n of the task (thereby making the unfamiliar task familiar). If in the c o u r s e

o f do ing a task the analogy breaks down, ANA attempts to patch the method; if it f inds a

p a t c h , it bui lds a p roduct ion that associates the patch with whatever caused the b r e a k d o w n .

A N A sometimes encounters difficulties that it cannot f igure out how to remedy . W h e n this

o c c u r s , A N A asks the pe rson instructing it how to resolve the problem; it then bui lds a

p r o d u c t i o n that associates the instructor 's remedy with the diff iculty.

O n e of A N A ' s limitations should be noted from the start. ANA cannot " lea rn" new methods .

T h e methods that it uses are all sets of hand-coded productions that form part of the initial

c o n t e n t s of its p roduct ion memory. The productions that it builds do in fact augment its

ab i l i t ies , but t h e y do so b y extending the domain of the methods that it a l ready has. A N A

c o u l d , of c o u r s e , s tar t off wi th a different set of methods or with additional methods, but it

c u r r e n t l y has no w a y of acquiring methods from scratch.

f h o b o d y of the paper is d iv ided into four sections. In the next sect ion I d e s c r i b e in

c o n s i d e r a b l e detai l the w a y in which ANA's knowledge is represented . In the th i rd s e c t i o n , I

2

d e s c r i b e A N A ' s task envi ronment (an automatic paint shop), discuss four of the tasks that A N A

has b e e n g i v e n , and display one of ANA's methods. The fourth section deals w i t h assimilat ion;

I d i scuss h o w A N A makes use of its methods to perform unfamiliar tasks b y ana logy and

d e s c r i b e the va r ious strategies that ANA uses when an analogy breaks d o w n . T h e f i f th

s e c t i o n deals w i t h accommodation; I describe the various productions that A N A bui lds in o r d e r

t o t r a n s f o r m unfamiliar tasks and unfamiliar difficulties into familiar (and unproblemat ic) o n e s .

2. Some Context

O n e of my reasons for doing the research described below was to e x p l o r e the d e g r e e of

s u p p o r t that a p roduct ion system architecture provides for assimilation and accommodation.

T a k i n g the a rch i tec tu re as g i ven , I looked for a w a y of represent ing ANA's k n o w l e d g e that

w o u l d make it ^easy for ANA to transform unfamiliar tasks into familiar ones. A f t e r d e s c r i b i n g

t h e r e p r e s e n t a t i o n that I deve loped , I will discuss the extent to which it constra ins the cho ice

of assimilat ion and accommodation strategies, and I will br ief ly character ize the s t r a t e g y that

A N A e m p l o y s . 1

2.1 How ANA Represents Its Knowledge

T h e p r o d u c t i o n sys tem architecture used to implement ANA is called OPS2 [F o r g y and

M c D e r m o t t , 1977; McDermott , 1978; Newell , 1977]. An 0PS2 product ion sys tem cons is ts o f a

c o l l e c t i o n of p roduct ions held in production memory and a collection of data elements he ld in

w o r k i n g memory. A product ion is a conditional statement composed of z e r o or more c o n d i t i o n

e l e m e n t s and z e r o o r more action elements. Condition elements are templates; w h e n each can

b e matched b y an element in working memory, the production containing them is said to b e

ins tan t ia ted . A n instantiation is an ordered pair of a product ion and the elements f r o m

w o r k i n g memory that sat isfy the conditions of the product ion. The p roduct ion s y s t e m

i n t e r p r e t e r o p e r a t e s within a control framework called the recognize-act cycle. In r e c o g n i t i o n ,

it f inds t h o instantiat ions to be executed, and in action, executes one of them, p e r f o r m i n g

w h a t e v e r act ions occur in the action side of the production. The r e c o g n i z e - a c t c y c l e is

r e p e a t e d unti l e i ther no product ion can be instantiated or an action element exp l i c i t l y s t o p s

t h e p r o c e s s i n g . Recognit ion can be divided into match and conflict resolut ion. In match, the

i n t e r p r e t e r f inds the conflict set , the set of all instantiations of product ions that are sat i s f ied

1 Anderson's production system, ACT, which models human cognitive processes, uses rather different assimilation and
accommodation strategies [Anderson, Kline, and Beasley, 1978a and 1978b} Comparing ACT's strategies with ANA s
gives some hint of the space of strategies that are available to production systems. For a general discussion of the
issues that face anyone designing a system with assimilation and accommodation capabilities, see Moore and Newell
[1973].

3

o n the c u r r e n t c y c l e ; OPS2 is implemented in such a way that the time needed to compute t h e

conf l i c t set is essent ia l ly independent of the size of product ion memory (see F o r g y [1 9 7 7]) .

In conf l ic t reso lu t ion , the in terpreter selects (on the basis of a few simple ru les) o n e

ins tant ia t ion to execute (see McDermott and Forgy [1978]). The actions that can b e

p e r f o r m e d include adding elements to and deleting elements from work ing memory and

bu i ld ing n e w product ions composed of elements in working memory.

In o r d e r to p r o v i d e ANA wi th the capability of performing a var ie ty of tasks, its k n o w l e d g e

is r e p r e s e n t e d as a set of methods. Each method contains the knowledge that A N A needs in

o r d e r to ach ieve some goal. Since part of this knowledge is the knowledge of subgoals that

h a v e to be ach ieved , ANA's knowledge is organized, though only implicitly, as a h i e r a r c h y of

m e t h o d s . T h e product ions that comprise each of ANA's methods have condit ion s ides w i t h a

q u i t e s imple form. This form is perhaps most easily descr ibed in terms of the t y p e of data

e l e m e n t that each condit ion can match. A data element contains information about a goal o r

a b o u t some feature of ANA's environment. In addition, each data element conta ins a

s u b e l e m e n t , w h i c h I will re fe r to as the marker, that specifies, among other th ings, the t y p e

of the data element [see Rychener , 1977]. There are four t ypes of data e lements : goals,

constraints , percepts , and concepts.

A data element marked "goal" contains two subelements (in addition to the marker) . One of

t h e s e sube lements is a pointer to the set of constraints on the action to be p e r f o r m e d ; the

o t h e r is a po in te r to the set of constraints on the object to be acted on. A data e lement

m a r k e d "cons t ra in t " contains three subelements (in addition to the marker) ; const ra in ts a re

a t t r i b u t e - n a m e - v a l u e t r ip les . A goal element and the two sets of constraints that it po in ts to

a re c o l l e c t i v e l y a goal descr ipt ion. When ANA attempts a task, it finds an ob ject that f i ts the

d e s c r i p t i o n s t ipu lated b y the object constraints and performs the t y p e of action s t ipu la ted b y

t h e c o n s t r a i n t containing the t ype of the action. The other action constraints s p e c i f y the

e x p e c t e d e f fec t of performing that t ype of action on the class of objects d e s c r i b e d . F i g u r e

2 - 1 d i s p l a y s a goal descr ip t ion . The stipulated action type is paint. The ob ject to be p a i n t e d

is a y e l l o w table in a location whose label is L32. The expected effect is a change to the

s u r f a c e of the o b j e c t ; specif ical ly , the color of the object should be red once the goal is

a c h i e v e d .

A data element marked "percept " contains information about one of the ob jec ts in A N A ' s

e n v i r o n m e n t . In ANA 's w o r l d , an object is just a bundle of percepts (a set of a t t r i b u t e - v a l u e

p a i r s) . A N A " s e e s " an object whenever a production containing the o p e r a t o r (ftscan f i r e s .

<s>scan takes a (part ia l) descr ipt ion (a set of at t r ibute -value pairs) as its argument and

s e a r c h e s the env i ronment for an object matching that descr ipt ion. If it f inds such an o b j e c t ,

it d e p o s i t s a set of elements, each of which is marked "percept" , in work ing memory ; e a c h of

4

Goal desc r ip t ion : Paint the yel low table in L32 red .

(ac t* l object*2 (goal not -achieved 3))

(t y p e a d * l (constraint g iven 4) paint)
(e f fect act*l (constraint g iven 4) effect*5 surface)
(co lor effect*5 (constraint g iven 4) red)
(t y p e object*2 (constraint g iven 4) table)
(co lor object*2 (constraint g iven 4) ye l low)
(locat ion object*2 (constraint given 4) location*6)
(label location*6 (constraint g iven 4) L32)

F igure 2 -1 : A goal and a set of constraints

t h e s e data elements co r responds to one of the att r ibute -value pairs of the ob jec t f o u n d .

C l e a r l y , in o r d e r for ANA to be able to distinguish among objects , these p e r c e p t s must

s o m e h o w be l inked. Thus , (H>scan puts a "token-name", as well as an attr ibute and a v a l u e , in

e a c h p e r c e p t that it deposi ts in working memory.*

A data element marked "concept" can be thought of as a processed pe rcept . W h e n A N A

looks at something, it does so for a reason — ie, to find out something about the o b j e c t . F o r

e a c h p e r c e p t that contains information that it cares about, it asserts an identical e lement

m a r k e d "concept " . In addition, it asserts an element, also marked "concept" , that re la tes t h e

se t of const ra in ts on the object with the object's token-name. The concept marker has

s e v e r a l uses : (1) It enables ANA to focus its attention on particular features of an o b j e c t .

(2) A N A can p r e t e n d that an object has a value that it in fact does not have b y asser t ing a

c o n c e p t contain ing that value. (3) ANA can use concepts to store n o n - p e r c e p t u a l k n o w l e d g e

about an o b j e c t . F igure 2 -2 shows a collection of percepts (the a t t r ibu te - va lue pa i rs that

c o m p r i s e the ob jec t that ANA thinks of as table*l) ; the f igure also d isplays t w o c o n c e p t s .

W h e n A N A is g i v e n a task, the descr ipt ion of the object that is to be o p e r a t e d on may, but

n e e d not , un ique ly spec i f y an object . In order to do the task, ANA must f ind an o b j e c t that

matches the desc r ip t ion g iven . ANA's productions distinguish b e t w e e n information that is

g i v e n that const ra ins the selection of an object and information about a part icular o b j e c t .

E lements that contain the first sort of information are marked "constraint" , whi le e lements the

^ s c a n does not actually generate the token-name. Every object has a token attribute, and the value of this attribute
(which can be thought of as ANA's private name for the object) is used to tie the bundle of percepts together. I f
<ô>scan generated a token-name itself each time it was executed then ANA either would be unable to recognize t w o
perceptual bundles as descriptions of the same object at different times or would need a fairly sophisticated recognition
capability.

c o n t a i n the s e c o n d sor t of information are marked "concept". If ANA w e r e g i v e n the task

s h o w n in F i g u r e 2 - 1 , and if it looked for a chair whose color was blue in o r d e r to de te rmine

its locat ion , then A N A would assert the concepts shown in Figure 2 -2 . T h e concepts w o u l d

ind icate to A N A that the table that it re fers to as table*l is the one to be o p e r a t e d o n .

P e r c e p t : T h e r e is a light weight , ye l low table at the top of the stack in L32.

(t y p e tab le*l (percept true 7) table)
(co lor tab le*l (percept t rue 7) ye l low)
(we ight tab le*l (percept true 7) light)
(locat ion table*l (percept true 7) L*32)
(pos i t ion tab le*l (percept true 7) (1))

C o n c e p t : T h e r e is a table in L32 that satisfies the constraints on object*2.

(locat ion tab ie* l (concept t rue 8) L*32)
(token object*2 (concept true 8) table*l)

F igure 2 - 2 : A set of percepts and a concept

A s is e v i d e n t f rom Figures 2-1 and 2 -2 , an element's marker specif ies more than jus t the

t y p e of the element . It contains information about the status of the element. A goal may b e

" n o t - a c h i e v e d " , "ach ieved" , or may have the status "no-method". A constraint may be " g i v e n " ,

" n o t - g i v e n " , o r "possib le" . Concepts and percepts may be either " t r u e " o r " false" . T h e

m a r k e r also contains information indicating the element's recency .

2.2 ANA's Assimilation and Accommodation Strategies

O P S 2 (ie , the arch i tecture itself) prov ides little direct support for assimilation. Ass imi lat ion

i n v o l v e s mapping new knowledge into existing knowledge. The OPS2 i n t e r p r e t e r , h o w e v e r ,

has a match algor i thm wi th only the most primitive mapping capabilities. Each atom in a data

e l e m e n t is a constant . Each atom in a condition element is either a constant (o r a se t of

e q u i v a l e n t constants) o r a var iable. In order for a condition element to match a data e lement

(i e , in o r d e r fo r OPS2 to generate a mapping), corresponding constants must be ident ica l .

T h u s O P S 2 can o n l y map constants into identical constants or into a semantically i m p o v e r i s h e d

v a r i a b l e . In o r d e r for a product ion system to be capable of assimilation, then , it must h a v e

k n o w l e d g e that enables it to generate more interesting mappings.

6

0 P S 2 d o e s , h o w e v e r , p rov ide some support for accommodation. Once a p roduc t ion s y s t e m

has m a p p e d n e w knowledge into existing knowledge and begins to per fo rm some task, t h e r e

a r e t w o t y p e s of diff icult ies that it can encounter. One t y p e arises w h e n the method that it

is us ing is u n d e r - s p e c i f i e d , ie, does not contain sufficient knowledge to enable the n e w task

to be d o n e in a sat is factory way . When a system finds that it is using an u n d e r - s p e c i f i e d

m e t h o d , it must f ind a w a y of dealing with whatever problems it has c rea ted . If it is

s u c c e s s f u l , its accommodation capabil ity should provide it with a w a y of avoid ing t h o s e

p r o b l e m s in the future . 0PS2 makes this relat ively easy to achieve because of its conf l i c t

r e s o l u t i o n ru les . Each of the rules provides some support , but the principal s u p p o r t comes

f r o m the s p e c i a l - c a s e rule. G iven two instantiations, if the data of one is a p r o p e r s u b s e t of

the data of the o t h e r , this rule selects the instantiation containing more elements. T h u s t h e

s y s t e m can s imply bui ld a product ion that is a special case of the product ion w h i c h , if f i r e d ,

w o u l d c r e a t e a prob lem. The condition side of the new product ion can contain all of t h e

c o n d i t i o n e lements of the faulty production plus one or more additional elements that a r e

s e n s i t i v e to the context within which the problem develops. The other t y p e of d i f f i c u l t y

a r i s e s w h e n the method that is being used is over - spec i f ied , ie, contains expectat ions spec i f i c

to a par t i cu la r task or class of tasks, but not relevant in the current s i tuation. If t h e r e is

no th ing in the unfamiliar situation that corresponds to these expectat ions, then the s y s t e m

d o e s not know w h e t h e r the expectations are relevant (and indicate b y not being sat is f ied that

it is in t r o u b l e) o r i r re levant . Again, once the system finds out which , it wants to r e m e m b e r

s o that in f u t u r e situations w h e r e they are not relevant they can simply be ignored . In o r d e r

f o r O P S 2 to p r o v i d e direct support for this t ype of accommodation, it would have to p r o v i d e

a means of modi fy ing exist ing productions. 0PS2 provides only the most limited s u p p o r t f o r

th i s .

S ince O P S 2 p r o v i d e s almost no direct support for assimilation, in o r d e r fo r a p r o d u c t i o n

s y s t e m w h o s e knowledge is organized as a collection of methods to assimilate n e w

k n o w l e d g e , it must know how to do two things. First , as I have said, it must know h o w t o

make contact b e t w e e n the knowledge given to it in the current task desc r ip t ion and a

r e l e v a n t method. Second , it must know how to use the knowledge contained in the method to

d o t h e unfamiliar task. But these two requirements are somewhat at odds. G i v e n the 0 P S 2

match a lgor i thm, the most likely approach to contact is to make the methods that the s y s t e m

has as g e n e r a l as possib le . In particular, whenever an attr ibute is re levant but its par t i cu la r

v a l u e is of no c o n c e r n , the value should be a variable. The problem wi th this a p p r o a c h is

that it makes unfamiliar tasks more difficult to accomplish since little information is a r o u n d if a

m e t h o d p r o v e s inadequate. If a system is using a method and runs into t roub le , p r e s u m a b l y

the method is being used in a w a y not foreseen b y its creator . In o r d e r fo r the s y s t e m to

f i g u r e out w h y the method is inadequate, it needs to know how the cur rent s i tuat ion d i f f e r s

f r o m the set of s ituations for which the method is adequate. But if the method is full o f

v a r i a b l e s , that information is simply not available. Thus it will be highly d e p e n d e n t o n

w h o m e v e r g a v e it its task for information about how to get out of the di f f iculty that it is in .

So that A N A wil l have some information to help it recover when one of its methods p r o v e s

i n a d e q u a t e , each of its methods for operating on its environment is ta i lored to a spec i f i c

s i t u a t i o n . A N A has, fo r example, a method for carry ing tables from one specif ic locat ion in its

e n v i r o n m e n t to another specific location. Since this method is tai lored to this one s i tuat ion , it

c a n be u s e d e f f e c t i v e l y both for its intended class of tasks and for o ther quite d i f f e r e n t

tasks . S ince the class of tasks for which the method is intended is so const ra ined , it is l ike ly

that the method wil l be adequate for any task in the class. If the method is u s e d to

accompl i sh some task for which it was not intended, it will of ten turn out to be inadequate .

But the k n o w l e d g e of the di f ferences between the task it was g iven and the task that t h e

m e t h o d k n o w s how to accomplish will be easy to discover . ANA's response to an unfamil iar

task is to map it into a task that one of its methods can accomplish, and then use that method

ana log ica l l y . In e f fec t , ANA's s t rategy is to severe ly limit the immediate appl icabi l i ty of its

m e t h o d s so that w h e n it is asked to perform an unfamiliar task, it will know exac t l y h o w to

p e r f o r m a comparable task, and it will know from the mappings all of the d i f fe rences b e t w e e n

that familiar task and the unfamiliar task. The expected gain is that this knowledge wi l l

e n a b l e it to modify its behav ior in precisely the way needed to per form the unfamiliar task.

A N A ' s techn ique fo r dealing with method inadequacy is simply to watch for th ings to g o

w r o n g . It has some product ions that are sensitive to the most common t y p e s of p rob lems (eg ,

i ts inab i l i t y to app ly one of its operators to an object in the environment) . Be fo re it t r ies an

unfamil iar task, it builds additional productions that are sensit ive to specif ic p rob lems that

c o u l d ar ise (eg , its fai lure to real ize some particular expectation). The reason for c h o o s i n g

th is techn ique is one of eff ic iency. If a production system has a set of ru les that a re

s e n s i t i v e to manifestations of inadequacy, then the system does not need to c o n t i n u o u s l y

a t t e n d to the adequacy of its method; it can set up an initial set of mappings, assume that that

s e t o f mappings is adequate, and just cycle until some event occurs that f o r c e s it to

r e c o g n i z e that a modified set of mappings is required. The alternat ive is to bui ld the

p r o d u c t i o n s y s t e m in such a w a y that it interrupts itself after each cyc le , examines the

c o n s e q u e n c e s of the p rev ious product ion firing for the task it is t r y ing to accompl ish ,

modi f ies its mappings if it sees that that is required, and then continues. T h e o v e r h e a d cost

o f th is a l te rnat i ve technique is v e r y high, and it is not clear that anything wou ld be ga ined b y

us ing it. A N A i n t e r r u p t s itself enough to keep itself on the right path most of the t ime. O n

t h o s e occas ions w h e n it does get off the path, the amount of time that it w o u l d take it t o

f o r e s e e that it was going astray may in fact be greater than the amount of time it takes it to

c o r r e c t its mistakes.

8

T h o u g h accommodation is simply the process by which the results of assimilation can b e

made p e r m a n e n t , the new knowledge can be stored in a var ie ty of w a y s . A f t e r a s y s t e m has

s u c c e s s f u l l y used a method to perform an unfamiliar task, it is in a posit ion to make that

m e t h o d more genera l . It can t r y to modify the method in such a w a y that the method wi l l

n o w a p p l y to the union of the class of tasks for which it was original ly intended and the c lass

of tasks w h i c h the task it just accomplished is an instance of. One possible a p p r o a c h t o

g e n e r a l i z i n g a method would be to find the constants in the descr ipt ion of the unfamiliar task

that cou ld be s t ra igh t fo rward l y mapped into constants in the product ions compr is ing t h e

m e t h o d ; these constants could be replaced with variables. T h e n for each p r o d u c t i o n

conta in ing a cr i t ical constant a second production could be built containing the c o r r e s p o n d i n g

c o n s t a n t f rom the descr ipt ion of the unfamiliar task. The advantages of this use o f

accommodat ion , if it w o r k s , are clear. But there are two difficulties. F i rst , it is not c lear h o w

a s y s t e m w o u l d decide if a mapping was "s t ra ight - fo rward" ; ho wever it would do it, s u r e l y it

w o u l d f r e q u e n t l y make mistakes. Thus it is possible that a system might learn more in t h e

long r u n w i t h an accommodation st rategy that avoided general izat ion. T h e second d i f f i c u l t y

has a l r e a d y b e e n mentioned: the more general a method is, the more diff icult it is to

d e t e r m i n e , in the context of a particular task, w h y it is inadequate. Thus if a method is

g e n e r a l i z e d , it wil l be harder for a system to f igure out what to do if the method b r e a k s

d o w n t h a n if it had not been general ized.

A N A ' s accommodation s t ra tegy is simply to p reserve the results of its assimilation of n e w

k n o w l e d g e . W h e n e v e r it successful ly accomplishes a task (or subtask) b y analogy , it bui lds a

p r o d u c t i o n that associates the descript ion of the new task with the method that it u s e d to

accompl ish that task. It makes no modifications to the productions comprising this method. If

A N A has to o v e r c o m e difficulties in order to accomplish a task (ie, if the p r o d u c t i o n s

c o m p r i s i n g the method are not b y themselves adequate to accomplish the new task) , A N A

bu i lds p r o d u c t i o n s that are special cases of the original productions; these product ions e n a b l e

A N A to avo id the diff icult ies in the future. Since the original v e r y specif ic method is a l w a y s

the method used , if the extended method proves inadequate, ANA has access to t h e

i n f o r m a t i o n that wil l enable it to discover the differences between its cu r ren t task and t h e

task fo r w h i c h the method was intended.*

^Anyone familiar with HACKER [Sussman, 1975] will have noticed that HACKER and ANA have similar aspirations.
Both systems start out with a limited amount of knowledge and try to build on that knowledge in such a way that they
become increasingly better able to accomplish unfamiliar tasks. But they have rather different building strategies. When
HACKER encounters an inadequacy in one of its procedures, it examines the code; when it finds the bug, it rewrites the
procedure. ANA is more of a hacker. When ANA encounters an inadequacy in one of its methods it determines what
behavior is appropriate and associates that behavior with a description of its current context. Each of ANA's f ixes is
pre-eminently a patch.

3. ANA's Task Environment

A N A ' s task is to manage a paint shop. ANA operates a machine that sits in the middle of a

s h o p . T h e o n l y things in the shop other than the machine are a va r ie t y of paintable o b j e c t s

and some o v e r h e a d lines that enable ANA to cart objects around. The shop and the th ings in

it are all abst ract ions of real objects ; they are represented as collections of a t t r i b u t e - v a l u e

p a i r s . T h e shop is a 3 b y 6 matrix; each square in the matrix is a stack wi th t y p e locat ion ,

o n e of 18 positions ((1 1) - (3 6), a label (L U - L36) and a composition (the stack of o b j e c t s

that o c c u p y it). Each of the objects in the shop have a type (eg, chair , box , desk) , a location, a

posi t ion in the locat ion, a color, a weight, and a state (clean or d i r t y) . The shop and its c u r r e n t

c o n t e n t s a re s h o w n in F igure 3 -1 .

LI i

b r o w n box

b r o w n box

orange box

L12

green safe

L13 114

red paint

yellow paint

L15 L16

L21 L22 L23

g r e e n chair

blue chair

L24 L25 L26

water bottle

red desk

red desk

L31 L32 L33

yel low table

brown table

b rown table

L35 red chair

red chair

yellow chair

yellow chair

L36

red box

Figure 3 -1 : ANA's paint shop

A N A has f i v e operat ions that it can perform on the objects in the shop. One of its

o p e r a t o r s , (ftspray, s tarts the machine. Three other operators , s c a r r y , ©push, and @ c a r t ,

e n a b l e it to move ob jec ts from one location to another. ANA's other o p e r a t o r , @scan , as I

m e n t i o n e d , enab les it to see what is in the shop. In keeping wi th the somewhat art i f ic ial

n a t u r e of the s h o p and its contents, there are some artificial constraints on these o p e r a t o r s .

10

W h i c h of the move opera to rs is applicable is determined b y the weight of the o b j e c t to be

m o v e d , s c a r r y can be used only with light objects, (©push only w i th h e a v y o b j e c t s , and

(5>cart o n l y w i t h r e a l l y - h e a v y objects ; S c a r r y cannot be applied to an ob jec t unless that

o b j e c t is the top ob jec t in a stack, and neither (ftpush nor @>car\ can be appl ied unless the

o b j e c t is the o n l y ob ject in a location. If an object is carr ied to a location that a l r e a d y

c o n t a i n s fou r o b j e c t s , it wil l fall onto an adjacent location; if an object is pushed o r c a r t e d t o

a locat ion that a l ready contains one or more objects, it will end up in an adjacent locat ion . In

o r d e r to paint an ob jec t , ANA must move it to location L23 and must put a paint can o n t o p of

t h e machine (in location L24); the operator , (fospray, will modify the color of the o b j e c t in L23

and cause it to be output in location L34. If there is not exact ly one ob ject in L23, <5>spray

d o e s noth ing ; if the re is no sprayable substance on top of the machine, the ob ject in L23 wi l l

b e o u t p u t to L34 unchanged. The move operators all take the " token-name" of the o b j e c t to

b e m o v e d and the " token-name" of the location to which it is to be moved as their a rguments .

T h u s t h e s e o p e r a t o r s ail p resuppose a pr ior (5>scan. It should be noted that in A N A ' s w o r l d

some a t t r ibu tes are mutable and some are not. Weight is the only immutable a t t r ibute ; c o l o r ,

s t a t e , p o s i t i o n , and location are all mutable.

A N A ' s initial task -spec i f ic knowledge consists of six methods. ANA has a method f o r

pa in t ing tab les w h o s e initial location is L32 red . ANA also has a method for c lear ing of f t h e

t o p of desks that are in L32. ANA's other four methods are all methods for t r a n s p o r t i n g

o b j e c t s . One of these methods enables it to move boxes that are in L25; the locat ion to

w h i c h a box is to be moved is not specif ied. A second method enables A N A to c a r r y tab les in

L32 to L23. A th i rd method enables ANA to car ry cabinets in L l l to L16; this method

assumes that the posit ion of the cabinet in the stack is known (and is known to be someth ing

o t h e r than t o p) and so calls the cleartop method as a submethod. The four th method e n a b l e s

A N A to car t cabinets in L31 to L23; this method is tailored for the situation in w h i c h t h e

c a b i n e t to be moved is r e a l l y - h e a v y .

F o u r of the tasks that ANA has been g iven will be used as examples th roughout the r e s t of

t h e p a p e r . T h e four tasks are :

- T a s k O : Paint the ye l low table in L32 red and then move it to L16.

- T a s k l : Paint the blue chair in L21 red and then move it to L35.

- T a s k 2 : Wash the thing in L12.

- T a s k 3 : Paint the box at the bottom of the stack in L l l ye l low.

T a s k O is, fo r A N A , b y far the most s t ra ight - fo rward of the four . T o do this task, A N A must

11

Scarry the table at the top of L32 to L23, then Scarry the paint can at the top of L14 to

L 2 4 , t h e n © s p r a y , then s c a r r y the paint can at the top of L24 to L14, and f inal ly © c a r r y the

t a b l e at the top of L34 to L16. Since ANA has a method for painting tables that are in L32

a n d a method for c a r r y i n g tables from L32 to L23, much of this task can be done w i t h o u t

us ing a n a l o g y ; the subtasks that do require analogy are all easily mapped into ANA 's method

f o r c a r r y i n g tables . T a s k l is from ANA's point of v iew much more complex. W h e n A N A t r i e s

t o Scarry the blue chair in L21 to L23, s c a r r y will fail since the blue chair is not at the t o p

of the stack; so A N A wil l have to clear off the top of the blue chair. When A N A c a r r i e s t h e

p a i n t e d chai r f rom L34 to L25, it will fall off of the stack since the stack a l ready has f o u r

o b j e c t s in it. Task2 creates other problems. When ANA tries to s c a r r y the thing (the s a f e)

in L I 2 to L23, s c a r r y will fail since the safe is heavy ; so ANA will have to select a d i f f e r e n t

o p e r a t o r (©push) . When ANA gets to the point in its method for painting tables w h e r e the

s u b m e t h o d of c a r r y i n g a paint can from L14 to L24 is generated, it must recogn i ze that this

s u b m e t h o d is inappropr ia te and instead car ry the water bottle in L25 to L24. Task3 ra i ses ,

among o t h e r prob lems, the problem of selecting among competing methods. A N A has a

m e t h o d fo r c a r r y i n g cabinets that are not at the top of a stack and has a method fo r ca r t ing

c a b i n e t s that are r e a l l y - h e a v y . In this task, ANA must ca r r y a box that is r e a l l y - h e a v y and at

t h e b o t t o m of L I 1. Neither of the methods is adequate. For reasons that wil l be d i s c u s s e d

b e l o w , A N A uses its method for car ry ing cabinets that are not at the top of the stack; © c a r r y

fai ls s ince the box is r e a l l y - h e a v y ; so ANA has to select a dif ferent opera to r (©cart) . W h e n

A N A t r ies to © c a r r y the ye l low paint can to L24, ©carry will fail since the paint can is not at

t h e t o p of the stack; so A N A will have to clear off the yel low paint can.

In o r d e r to g i v e an idea of what ANA's task-specif ic methods look like, its method f o r

pa in t ing tab les is s h o w n in F igures 3 - 2 , 3 - 3 , and 3 -4 . ANA's paint method cons is ts of s i x

p r o d u c t i o n s (p a i n t l - paint6).*. The conditional part of pa in t l consists of s e v e n cond i t i on

e l e m e n t s . T h e f i rst of these, the element marked "goal", contains two var iables that assoc iate

a set o f act ion constra ints wi th a set of object constraints. The next three condi t ions a re

c o n s t r a i n t s on the act ion: it must be of t ype paint, the effect of the action must be to c h a n g e

t h e s u r f a c e of an ob jec t , and the expected change to the surface is that it wi l l become r e d .

T h e f inal t h r e e condi t ion elements are constraints on the object to be acted o n : it must be of

t y p e tab le , it must o c c u p y a location, and the label of that location must be L32. T h e act ion

p a r t of the p r o d u c t i o n consists of f ive elements that descr ibe a subgoal that must b e

*A literal atom whose name begins with "•" is a variable A variable may match any single data subelement; if a
variable occurs more than once in a production, all occurrences must match equal subelements. The operator, <bind>,
returns a symbol different from the symbols returned on previous calls to <bind>. If <bind> is given a variable name as
its argument, the value returned by <bind> is bound to that variable

12

I F the goal is to paint a table in L32 red , THEN generate the subgoal of f inding an
o b j e c t in L32 that satisfies the constraints on the object to be acted on .

paint 1 ((=act ^ob ject (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) paint)
(e f fect =act (constraint g iven =time-a) =effect surface)
(co lor ^ef fect (constraint g iven =time-a) red)
(t y p e =object (constraint g iven =time-o) table)
(locat ion =object (constraint g iven =time-o) ^location)
(label ^ location (constraint g iven » t ime -o) L32)

— >
((<bind> = n e w - a c t) =object (goal not -achieved (<bind>)))
(t y p e = n e w - a c t (constraint g iven (<bind> =new-t ime)) f ind)
(e f fect = n e w - a c t (constraint g iven =new-t ime) (<bind> = n e w - e f f e c t) mind)
(locat ion = n e w - e f f e c t (constraint g iven =new-t ime) (<bind> = locat ion -e f fec t))
(label H o c a t i o n - e f f e c t (constraint g iven « n e w - t i m e) L32))

I F the goal is to paint a table in L32 red and there is an object in L32 sat i s fy ing
the const ra in ts on the object to be acted on, THEN generate the subgoal o f
c a r r y i n g that ob jec t to L23.

pa in t2 ((^act =object (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) paint)
(e f fect =act (constraint g iven =time-a) =effect surface)
(co lor =effect (constraint g iven =time-a) red)
(t y p e ^ob ject (constraint g iven =time-o) table)
(locat ion =object (constraint g iven =time-o) ^location)
(label l o c a t i o n (constraint g iven =time-o) L32)
(token =object (concept true =) = token l)
(token l o c a t i o n (concept true =) « token2)
(locat ion = t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L32)

— >
((<bind> = n e w - a c t) =object (goal not -achieved (<bind>)))
(t y p e = n e w - a c t (constraint g iven (<bind> =new-t ime)) c a r r y)
(e f fect = n e w - a c t (constraint g iven =new-t ime) (<bind> = n e w - e f f e c t) locat ion)
(locat ion = n e w - e f f e c t (constraint g iven =new-t ime) (<bind> H o c a t i o n - e f f e c t))
(label = locat ion-ef fect (constraint g iven =new-t ime) L23))

Figure 3 - 2 : ANA's paint method

13

pa in t3 ((=act =object (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) paint)
(e f fect =act (constraint g iven =time-a) ^effect surface)
(co lor =effect (constraint g iven =time-a) red)
(t y p e =object (constraint g iven =time-o) table)
(token =object (concept true =) = token l)
(token l o c a t i o n (concept true =) =token2)
(locat ion = t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L23)

— >

((<bind> = n e w - a c t) (<bind> =new-ob ject) (goal not -ach ieved (<bind>)))
(t y p e = n e w - a c t (constraint g iven (<bind> =new-t ime)) c a r r y)
(ef fect = n e w - a c t (constraint given =new-t ime) (<bind> = n e w - e f f e c t) locat ion)
(locat ion =new-e f fec t (constraint g iven =new-t ime) (<bind> = locat ion -e f fec t))
(label = locat ion-ef fect (constraint given =new-t ime) L24)
(t y p e = n e w - o b j e c t (constraint given =new-t ime) pntcan)
(locat ion = n e w - o b j e c t (constraint g iven =new-t ime) (<bind> = n e w - l o c a t i o n))
(label =new- locat ion (constraint given =new-t ime) L14)
(label = n e w - o b j e c t (constraint g iven =new-t ime) red))

p a i n t 4 ((=act =object (goal not -achieved =time)>
(t y p e =act (constraint g iven =time-a) paint)
(e f fect =act (constraint g iven =time-a) =effect surface)
(co lor ^ef fect (constraint g iven =time-a) red)
(t y p e =object (constraint g iven =time-o) table)
(token - o b j e c t (concept true =) = token l)
(locat ion = t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L23)
(t y p e = o t h e r - o b j e c t (constraint g iven =time-oo) pntcan)
(label = o t h e r - o b j e c t (constraint given =time-oo) red)
(token = o t h e r - o b j e c t (concept true =) =token3)
(locat ion =token3 (concept true >time) =token4)
(label =token4 (concept true >time) L24)

— >
(© s p r a y)
((<bind> = n e w - a c t) =object (goal not -achieved (<bind>)))
(t y p e = n e w - a c t (constraint given (<bind> =new-t ime)) find)
(e f fect = n e w - a c t (constraint g iven =new-t ime) (<bind> = n e w - e f f e c t) mind)
(co lor = n e w - e f f e c t (constraint given =new-t ime) red)
(locat ion = n e w - e f f e c t (constraint g iven =new-t ime) (<bind> = locat ion -e f fec t))
(label = locat ion-ef fect (constraint g iven =new-t ime) L34))

F igure 3 - 3 : ANA's paint method, continued

14

pa in t5 ((= a c t =object (goal not -achieved *time))
(t y p e « a c t (constraint g iven *time-a) paint)
(e f fec t =act (constraint g iven =time-a) =effect surface)
(co lor =effect (constraint g iven =time-a) red)
(t y p e =object (constraint g iven =time-o) table)
(token =object (concept true =) = token l)
(locat ion = t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L34)
(co lor = t o k e n l (concept true >time) red)
(t y p e = o t h e r - o b j e c t (constraint g iven =time-oo) pntcan)
(label = o t h e r - o b j e c t (constraint g iven =time-oo) red)
(locat ion =other -ob jec t (constraint g iven =time-oo) ^location)
(token = o t h e r - o b j e c t (concept true =) =token3)
(locat ion =token3 (concept true >time) =token4)
(label =token4 (concept t rue >time) L24)

— >
((<bind> = n e w - a c t) =other -ob ject (goal not -achieved (<bind>)))
(t y p e = n e w - a c t (constraint g iven (<bind> *new-t ime)) c a r r y)
(e f fect = n e w - a c t (constraint g iven =new-t ime) (<bind> = n e w - e f f e c t) locat ion)
(locat ion =new-e f fec t (constraint g iven =new-t ime) (<bind> - l o c a t i o n - e f f e c t))
(label = locat ion-ef fect (constraint g iven =new-t ime) L14)
(label ^ locat ion (constraint g iven =time-oo) L24))

pa in t6 ((=act =object (goal not -achieved =time)) & =w
(t y p e =act (constraint g iven =time-a) paint)
(e f fect =act (constraint g iven =time-a) =effect surface)
(t y p e =object (constraint g iven =time-o) table)
(token =object (concept t rue =) = token l)
(locat ion = t o k e n i (concept true >time) =token2)
(label =token2 (concept true >time) L34)
(color = t o k e n l (concept true >time) red)
(t y p e = o t h e r - o b j e c t (constraint g iven =time-oo) pntcan)
(label = o t h e r - o b j e c t (constraint g iven =time-oo) red)
(token = o t h e r - o b j e c t (concept true =) =token3)
(locat ion « t o k e n 3 (concept true >time) =token4)
(label « t o k e n 4 (concept true >time) L14)

— >
(<delete> « w) (=act =object (goal achieved =time)))

F igure 3 - 4 : ANA's paint method, continued

15

a c h i e v e d in o r d e r for the painting task to be accomplished: the subgoal is to look in the s h o p

f o r an o b j e c t sat is fy ing the object constraints g iven in the conditional part of the p r o d u c t i o n

a n d not ice the label of that location. The second product ion, paint2, has a condit ional p a r t

c o n s i s t i n g of 11 condit ion elements. The first seven are identical to the s e v e n cond i t ion

e l e m e n t s in paint 1. T h e eighth condition element matches a data element that links the

d e s c r i p t i o n of the ob ject to be acted on with the token-name of an ob ject f i t t ing that

d e s c r i p t i o n . T h e ninth matches a data element that links the descr ipt ion of the locat ion of the

o b j e c t to be acted on w i th the token-name of a location fitting that descr ipt ion . T h e f inal t w o

c o n d i t i o n e lements st ipulate values that the two token-names must have. Put another w a y , if

A N A is g i v e n the goal of painting the table in L32 red , and if it has found a table in L32 , t h e n

p a i n t 2 can f i re . T h e result of firing paint2 is that the subgoal of car ry ing the table in L32 to

L 2 3 is g e n e r a t e d . The other four productions comprising ANA's paint method have the same

f o r m as paint 1 and paint2. Paint3 can fire when the table to be painted is k n o w n to b e in

L 2 3 ; the resu l t of f i r ing paint3 is that the subgoal of carry ing the paint can labeled r e d f r o m

L 1 4 to L24 is g e n e r a t e d . Paint4 activates the paint machine and generates the goal o f

c h e c k i n g to make sure that a red object was output. Paint5 generates the subgoa l o f

c a r r y i n g the paint can back to L14. Paint6 can fire when ANA has accomplished its task.

4. Assimilation

T o do the tasks desc r ibed in the previous section, ANA has to be able to assimilate n e w

k n o w l e d g e . Since the few methods that ANA has for getting things done in the shop are not

(f o r the most p a r t) the methods needed to do these tasks, it must f ind a w a y to a p p l y the

k n o w l e d g e that it does have to the unfamiliar tasks. ANA's s t rategy is to f ind a method that

is adequate fo r a re lated task and assume that this method will be adequate for the n e w task.

S ince this assumption will inevitably (and often) lead it to do the w r o n g thing, it must h a v e

w a y s of c o r r e c t i n g its e r r o r f u l actions. ANA's solution is to watch for signs that it is not

accompl ish ing its task. If it sees that it has achieved a result other than the one it i n t e n d e d

t o a c h i e v e , it assumes that the method it is using does not take into account one o r more

c o n s t r a i n t s imposed b y the particular task at hand; in this case it t r ies to determine what the

addi t ional const ra ints are and then tries the task again keeping those constra ints in mind. If

it s e e s that it is unable to achieve a result because of some constraint imposed b y t h e

m e t h o d it is using, it checks wi th its instructor to see if that constraint is n e c e s s a r y ; if the

i n s t r u c t o r indicates that it is not necessary, ANA ignores the constraint and cont inues w i t h

w h a t it is doing. In this sect ion, I will first describe how ANA makes contact w i t h an

a p p r o p r i a t e method and how it maps the task that this method can accomplish into the task it

is g i v e n . T h e n I wi l l descr ibe how ANA recovers when a method turns out to be inadequate

f o r the task that is g i ven .

16

4*1 Contact and Mapping

W h e n A N A is g i v e n the task of painting the yel low table in L32 red (taskO), it r e c o g n i z e s

t h e task as one that it knows how to accomplish. Since it has a method for paint ing tab les in

L 3 2 r e d , it s imply uses that method. When its paint method generates the subgoal of c a r r y i n g

t h e tab le f rom L32 to L23, it uses its method for carry ing tables to accomplish this sub task .

But w h e n the painting method generates the subgoal of car ry ing red paint f rom L14 to L 2 4 ,

A N A is faced w i t h an unfamiliar task. At this point ANA has to make contact w i t h o n e of its

e x i s t i n g methods. A n obv ious candidate, of course, is its method for ca r r y ing tables f r o m L 3 2

t o L 2 3 , but h o w is A N A to know this? It needs some w a y of making contact w i t h the method .

In o r d e r to enable A N A to use one of its methods to accomplish an unfamiliar task, e a c h

m e t h o d has associated wi th it a method description production. These method d e s c r i p t i o n

p r o d u c t i o n s enable A N A to relate unfamiliar tasks to familiar ones.

T h e method descr ip t ion product ion for ANA's paint method is shown in F igure 4 - 1 . T h e

cond i t iona l par t of this product ion differs from the conditional part of the p roduc t ions that

c o m p r i s e the actual method (shown in Figures 3 - 2 , 3 - 3 , and 3 - 4) in four w a y s : (1) T h e init ial

c o n d i t i o n element is marked "goal no -method" rather than "goal n o t - a c h i e v e d " . (2) T h e

c o n d i t i o n e lements spec i fy ing the action t y p e and object t y p e are marked "cons t ra in t

n o t - g i v e n " ra ther than "constraint g iven" . (3) Each of the other constra ints is marked

" c o n s t r a i n t g i v e n " , but has no value specif ied for its attr ibute. (4) The final t w o c o n d i t i o n

e l e m e n t s h a v e nothing cor responding to them in the productions that actually compr ise the

m e t h o d . T h e "goal n o - m e t h o d " marker in the first condition element p r o v i d e s a w a y o f

i n s u r i n g that no method descr ipt ion production will f ire unless ANA has no method f o r t h e

task it is g i v e n . T h e t w o condit ion elements marked "constraint n o t - g i v e n " p r o v i d e A N A w i t h

a w a y of making contact b e t w e e n its existing methods and the task at hand. T h e p u r p o s e o f

t h e o t h e r const ra in ts is simply to test for the availability of information that might have some

b e a r i n g o n h o w the task is done. Of the final two conditions, the negated o n e 1 i nsures that

A N A wi l l not cons ider the same method twice as it examines alternative methods; the o t h e r

c o n d i t i o n element guarantees that the method descript ion product ion will f i re as s o o n as it is

e n a b l e d . T h e action part of the production contains the set of constraints that the paint

m e t h o d is familiar w i th . These constraints are marked "constraint poss ib le" r a t h e r t h a n

" c o n s t r a i n t g i v e n " to indicate their provisional nature. A method descr ip t ion p r o d u c t i o n

s i m p l y p r o p o s e s its method; before ANA uses the method it evaluates the method's a d e q u a c y .

*A " - " in front of a condition element indicates that the production containing the element can be enabled only if there

is no element in working memory that matches it.

17

pa int* ((=act =object (goal no-method =))
(t y p e =act (constraint not -g i ven =) paint)
(e f fect =act (constraint g iven =) =effect surface)
(t y p e =object (constraint not -g i ven =) table)
(locat ion =object (constraint g iven =) « locat ion)
- (ana log (paint table) (concept true =) (=act =object =effect) 2)
(cyc le ! =)

— >

(analog (paint table) (concept true (<bind> =new-t ime)) (=act =object = e f f e c t) 2)
(t y p e =act (constraint possible =new-t ime) paint)
(e f fect =act (constraint possible =new-t ime) =effect sur face)
(co lor =effect (constraint possible =new-t ime) red)
(t y p e =object (constraint possible =new-t ime) table)
(locat ion =object (constraint possible =new-t ime) « locat ion)
(label « locat ion (constraint possible =new-t ime) L32))

F igure 4 - 1 ; A Method Description Production

4.1.1 Method Selection

In o r d e r fo r A N A to be able to make contact between its methods and unfamiliar tasks , it

n e e d s some w a y of determining what actions are related to the action that is spec i f ied b y t h e

task and what ob jec ts are related to the object that is to be acted on. Part of its p r o d u c t i o n

m e m o r y contains such knowledge. The knowledge is represented as a t ree of t y p e s ; e a c h

n o d e of the t r e e is def ined by a set of productions. Each of these product ions has as o n e of

its cond i t i on elements the node's t y p e ; this element is marked "constraint n o t - g i v e n " . One of

t h e p r o d u c t i o n s has as one of its action elements an element marked "constraint n o t - g i v e n "

ind icat ing the s u p e r t y p e of that t y p e ; each of the other productions has as one of its act ion

e l e m e n t s an element marked "constraint no t -g i ven" indicating an instance of that t y p e .

A n o t h e r cond i t ion in each of the productions encodes information about d i rec t ion (up o r

d o w n) so that f rom any node, ANA can either go up to a super t ype or d o w n to an instance .

In i t ia l l y , A N A knows the t y p e relationships of the 8 actions and the 15 things s h o w n in F i g u r e

4 - 2 .

W h e n A N A is g i v e n an unfamiliar task, it generates the goal of searching its semantic net of

ac t ion t y p e s and its semantic net of object types for actions and objects re la ted to t h o s e

g i v e n in the desc r ip t ion of its task. It first asserts the t ype of the st ipulated action and the

t y p e of the ob jec t to be acted on; both assertions are marked "constraint n o t - g i v e n " . If A N A

has p r o d u c t i o n s w i t h condit ion elements matching these two t ypes , then all of the d o w n w a r d

18

Figure 4 - 2 : An action net and an object net

a r c s f ro m the t w o nodes are t rave rsed (alternatingly) in a depth f irst s e a r c h . 1 W h e n all o f t h e

d o w n w a r d nodes have been touched, ANA goes up one level and then t r a v e r s e s all d o w n w a r d

a r c s that it has not y e t t rave rsed . Each time a production f i res, the poss ib i l i ty ex i s ts that

o n e of A N A ' s method descr ipt ion productions has become satisfied. If one does , it f i r e s , and

t h e method it desc r ibes is evaluated; then if the evaluation suggests that cont inu ing t h e

s e a r c h fo r a l te rnat ive methods is warranted, control is re turned to the net and the p r o c e s s of

t r a v e r s i n g the net cont inues. Since the two nets that ANA must exp lo re are so small , t h e

*If ANA does not have a production for one of the types, it asks the instructor for that type's supertype. When
the instructor responds, ANA builds a pair of productions. One of them will assert the supertype whenever ANA is
searching upward and an element marked "constraint not-given" and containing the type .s asserted The other wiH
assert the type whenever ANA is searching downward and an element marked "constraint not-given end containing the
•upertype i u m r M . ANA adds the nodes for "chair" and "cleartop" (see Figure 4-2) in the course of doing the four
tasks.

19

d e p t h f i r s t s e a r c h s t r a t e g y that it employs does not consume a great deal of time. It is

p r o b a b l y the case that for larger (ie, branchier) nets, a more intell igent s e a r c h s t r a t e g y

w o u l d be r e q u i r e d .

If A N A is g i v e n the task of washing the safe in L12 (Task2), its semantic net mechanism

w i l l , a f te r a f e w c y c l e s , enable the method descript ion product ion for painting tables , and that

p r o d u c t i o n wi l l f i re . At that point, ANA will evaluate its method for painting tables. T h e f i r s t

s t e p in this eva luat ion invo lves setting up a mapping between the descr ip t ion of its actual

g o a l and the p s e u d o - g o a l - d e s c r i p t i o n generated by the method descr ipt ion p r o d u c t i o n . A N A

f i r s t f inds all of the attr ibutes in the descript ion of the actual task ("constraint g i v e n " s) f o r

w h i c h t h e r e are cor respond ing attr ibutes ("constraint possible"s) asserted b y the method

d e s c r i p t i o n p r o d u c t i o n for painting tables. For each such pair of constraints , A N A asser ts an

e l e m e n t that indicates that the method's value (hereafter called the " p s e u d o - v a l u e ") is to be

m a p p e d into the st ipulated value. Thus, g iven the task of washing the safe, A N A w o u l d a s s e r t

that the act ion t y p e "paint" should be mapped into the action t y p e "wash" , the d e s c r i p t i o n of

t h e e x p e c t e d ef fect of painting should be mapped into the expected effect of wash ing , the

o b j e c t type* " tab le" should be mapped into the object t ype "safe", and the desc r ip t ion of the

loca t ion of the table, that it is in L32, should be mapped into the descr ipt ion of the locat ion of

t h e s a f e , that it is in L12. If the descript ion of the pseudo-ob ject includes at t r ibutes that a r e

not c o n t a i n e d in the descr ipt ion of the actual object , ANA will look at the actual o b j e c t . F o r

e a c h n e w at t r ibute it f inds, ANA will assert an element that indicates that the p s e u d o - v a l u e is

to be mapped into the perce i ved value. If the descript ion of the p s e u d o - o b j e c t conta ins

a t t r i b u t e s that the actual object does not have, ANA will assert an element that indicates that

the p s e u d o - v a l u e is to be mapped into itself. If the descr ipt ion of the e x p e c t e d e f f e c t

a s s e r t e d b y the method descr ipt ion production includes an attr ibute that is not inc luded in

t h e d e s c r i p t i o n of the expec ted effect of the actual action and vice v e r s a , A N A wil l asser t an

e lement that indicates that the unmapped pseudo-at t r ibute -va lue pair is to be mapped into

t h e u n m a p p e d st ipulated at t r ibute -va lue pair. After having establ ished these mappings, t h e

p s e u d o - v a l u e of each of the attr ibutes asserted by the method descr ipt ion p r o d u c t i o n wi l l

h a v e b e e n mapped into some stipulated (or perceived) value. There may be at t r ibutes in the

actual d e s c r i p t i o n w h o s e st ipulated values are not a part of any of these mappings, but this is

all r i g h t s ince the method that is to be used analogously could not make use of them b e c a u s e

all of the a t t r ibu tes that it is equipped to deal with are asserted b y the method d e s c r i p t i o n

p r o d u c t i o n .

A f t e r these mappings are establ ished, the evaluation of the p r o p o s e d method beg ins in

e a r n e s t . A N A f i rst checks to determine if there is any reason to think that the method wil l

not w o r k f o r the task at hand. Initially, it has no reason to think badly of any method. But as

w e wi l l see in more detail later, when it encounters a problem as it t r ies to use a method , it

20

assoc ia tes w i t h the t y p e of action that it is attempting an indication of the cause of the

p r o b l e m . I f , fo r example, A N A attempts to car ry an object that is bur ied d o w n in the middle

o f some stack, its initial attempt will fail. But ANA will recognize that the cause of the

p r o b l e m is the pos i t ion of the object in the stack, and will associate a p r e - c o n d i t i o n w i t h t h e

a c t i o n t y p e " c a r r y " , ie, that the object to be carr ied must not have anything on top of it . T h e

p r o b l e m s that ar ise can be distinguished on the basis of how likely it is that t h e y can b e

o v e r c o m e . A N A d iv ides problems into two t ypes : (1) problems that arise because of some

mutable a t t r ibu te of an ob jec t , and (2) problems that arise because of an immutable a t t r i b u t e

of an o b j e c t . W h e n A N A associates a pre -condi t ion with an action t y p e , it also notes w h e t h e r

it c a n do anyth ing to sat isfy that pre -condi t ion if it is not satisfied. If , for example , t h e

p r e - c o n d i t i o n is that in o r d e r to c a r r y an object , the object must have nothing on t o p of i t ,

A N A notes that the posit ion of an object in a stack is mutable. If the p r e - c o n d i t i o n is that in

o r d e r to c a r r y an ob jec t , the object must be light, ANA notes that the weight of an o b j e c t is

immutable . If the p r e - c o n d i t i o n is that in order to ca r r y an object , the location in w h i c h the

o b j e c t wi l l be put must contain fewer than four objects, ANA notes that the composi t ion of a

loca t ion is mutable. When ANA's evaluation of a method begins, if it has any p roduc t ions that

c o n t a i n informat ion about the pre-condit ions on the action t y p e of the method be ing

e v a l u a t e d , those product ions will f i re . ANA checks to determine w h e t h e r any of the

p r e - c o n d i t i o n s ' are v io lated. If a pre -condi t ion is violated b y an immutable a t t r ibute of an

o b j e c t , A N A wil l conclude that the method it is considering is unlikely to work . If t h e r e a re

n o immutable v io la to rs , but a pre -condi t ion is violated by mutable att r ibute, A N A wil l conc lude

that the method wil l p robab ly work , but that it may have a bet te r method. If no

p r e - c o n d i t i o n s are v io lated , ANA will conclude that the method will p robab l y w o r k .

A f t e r A N A has evaluated a method, it typical ly returns to its semantic net and g e n e r a t e s

addi t iona l t y p e s w i t h the hope that a better method will turn up. How long it s p e n d s in

s e a r c h i n g f o r o t h e r candidates depends on how good its current best candidate is; it s p e n d s

m o r e time if the c u r r e n t best candidate falls into the "unlikely to w o r k " c a t e g o r y than if it

fal ls into the "wil l p r o b a b l y w o r k " category . When another candidate p r o p o s e s i tsel f , A N A

e v a l u a t e s it and then compares it to the current best prev ious candidate. If one of t h e

c a n d i d a t e s is in the "unl ikely to w o r k " category and the other is not, the unl ikely to w o r k

cand ida te is r e j e c t e d . If both are in the same category , ANA checks to determine w h e t h e r

o n e of the methods is a "special case" of the other ; if the p s e u d o - g o a l - d e s c r i p t i o n a s s e r t e d

b y o n e of the methods contains more constraints than the p s e u d o - g o a l - d e s c r i p t i o n a s s e r t e d

b y ihe o t h e r , the method wi th more constraints is deemed a special case and is p r e f e r r e d . If

n e i t h e r method is a special case of the other , ANA checks to determine if more i d e n t i t y

m a p p i n g s are associated wi th one of the methods than with the other ; A N A assumes that t h e

m o r e similar the p s e u d o - v a l u e s and the stipulated values, the more likely the method is t o

21

w o r k , and so p r e f e r s that method with the largest number of identity mappings. If the t w o

m e t h o d s h a v e the same number of identity mappings, ANA rejects the more recent candidate

o n the assumpt ion that since it is " farther" from the actual task in the semantic net , it is less

l ike l y to w o r k .

T o s e e h o w this evaluat ion process works, consider the case in which A N A is g i v e n the

task of c a r r y i n g the r e a l l y - h e a v y box at the bottom of the stack of boxes in L l l to L23

(T a s k 3) . A N A has four methods that it could consider. For ease of re fe rence , I wi l l r e f e r to

e a c h b y its act ion and object t y p e ; the methods, then, are "car ry table", "move box" , " c a r r y

c a b i n e t " , and "cart cabinet" . As explained above, the method descr ipt ion product ions fo r e a c h

o f t h e s e methods have a di f ferent set of condition elements; the set that each has spec i f i es

t h e set of a t t r ibutes that are of concern to its method. In addition to the at t r ibutes that all

m e t h o d d e s c r i p t i o n product ions have (action t ype , object t ype , and ef fect) , the " c a r r y t a b l e "

m e t h o d is sens i t i ve to the location of the object to be carr ied and to the location to w h i c h it

is to be c a r r i e d . T h e "move box" method is sensitive only to the location of the o b j e c t to be

m o v e d . T h e " c a r r y cabinet" method is sensitive to the location of the object to be c a r r i e d ,

t h e locat ion to w h i c h it is to be carr ied , and the position of the object in the stack. T h e "car t

c a b i n e t " method is sensi t ive to the location of the object to be carted, the location to w h i c h it

is to be c a r t e d , and the weight of the object. If ANA considered all four of these methods

b e f o r e it k n e w of any pre -condi t ions on car ry , move, and cart , the methods wou ld all be put

in the c a t e g o r y of "wil l p robab ly work" . In comparing the methods, ANA would p r e f e r " c a r r y

c a b i n e t " and "cart cabinet" to the other two methods since both are special cases of the

o t h e r t w o . A N A wou ld p re fe r "car ry cabinet" to "cart cabinet" since that method has an

i d e n t i t y mapping (the action t y p e "ca r r y " in the method descript ion is mapped into the act ion

t y p e " c a r r y " in the descr ipt ion of the task). If ANA considered the methods after learn ing

that to c a r r y an ob jec t the object must be light, its evaluation would be somewhat d i f f e r e n t .

T h e " c a r r y tab le " and " c a r r y cabinet" methods would be put in the c a t e g o r y of "unl ikely to

w o r k " . T h e "move b o x " and "cart cabinet" methods would be put in the c a t e g o r y of "wi l l

p r o b a b l y w o r k " . Thus the latter two methods would be g iven p re fe rence . T h e "cart c a b i n e t "

m e t h o d w o u l d be se lected in preference to the "move box" method since it is a special case .

4.1.2 Using a Method Analogically

A f t e r A N A has se lected a method to use, it must somehow change its conceptual w o r l d in a

w a y that makes it possible for it to use the method. The problem is that all of the

p r o d u c t i o n s compris ing each of its methods are sensitive only to those constra ints that a re

m a r k e d "const ra in t g i ven" . Since the evaluation stage resulted only in a set of c o n s t r a i n t s

m a r k e d "const ra int possible" , ANA still cannot do anything. The solut ion is, h o w e v e r ,

s t r a i g h t - f o r w a r d . A N A simply asserts, for each constraint marked "constraint poss ib le " , an

22

e l e m e n t that is identical to the "constraint possible" element except that it is marked

" c o n s t r a i n t g i v e n " . Now in ANA's working memory in place of the single set of c o n s t r a i n t s

g i v e n in the desc r ip t ion of the actual task, there are three sets of const ra ints : (1) t h e

o r i g i n a l set (each marked "constraint given") ; (2) the set generated dur ing the e v a l u a t i o n

s t a g e (each marked "constraint possible" and containing the pseudo -va lues e x p e c t e d b y t h e

m e t h o d , r a t h e r than the st ipulated values); and (3) a set that will match the p roduct ions in the

m e t h o d s e l e c t e d (each marked "constraint g iven" , but containing the same p s e u d o - v a l u e s as

t h e set marked "constraint possible") . As simple as this device is, it is suff ic ient to enab le

A N A to make e f f e c t i v e use of the selected method. Whenever ANA runs into d i f f icu l t ies , it

has all of the information that it needs in order to distinguish be tw een what it is actua l l y

t r y i n g to do ("constraint g iven"s with no corresponding "constraint possib le"s) and what it is

p r e t e n d i n g to do ("constraint given"s with corresponding "constraint poss ib le"s) . A N A is

a l w a y s implic i t ly aware of the dif ference between what it is t ry ing to do (its actual goa l) and

w h a t it is p re tend ing to do (its pseudo-goal) ; so whenever its pretending resul ts in an act ion

that is incons is tent w i th its actual goal, it can use this di f ference to f igure out h o w to g e t

back o n the r ight path .

T h e o n l y unment ioned ingredient necessary to make this work is to p r o v i d e A N A w i t h a

w a y of not ic ing w h e n it is running into difficulties. A number of d i f ferent t y p e s of d i f f icu l t ies

c a n ar i se . One t y p e of di f f iculty is the "unexpected result" diff iculty. As y o u may r e m e m b e r ,

A N A ' s method descr ip t ion productions typical ly include one or more condit ion e lements that

ind icate the e x p e c t e d effect of the method. As ANA prepares to make use of a method it has

s e l e c t e d , it bui lds a product ion that watches for the violation of this expec ta t ion f o r the

p a r t i c u l a r task at hand. The method description production for ANA's "paint tab le" m e t h o d ,

f o r e x a m p l e , indicates that the expected effect is that the color of the table wil l become r e d .

If A N A is g i v e n the task of painting some object ye l low, it wants to be sure that the e f f e c t

ac tua l l y a c h i e v e d is that the table becomes yel low. Thus ANA builds a p roduct ion that k e e p s

its e y e , so to speak, on the object ; the production is specific to the part icular task be ing

a t t e m p t e d , and thus once the goal is achieved, the production can no longer f i re . If a f te r t h e

o b j e c t is pa in ted it is some color other than ye l low, this product ion can f i re . If it f i r e s , the

p e r s o n g i v ing the task is asked for some information that will enable A N A to k e e p the

u n e x p e c t e d resul t f rom occurr ing on subsequent occasions. (What knowledge is r e q u e s t e d

a n d h o w it is used is d iscussed below.) It is sometimes the case, of course , that a goal cannot

b e a c h i e v e d b y a single action. Whenever ANA attempts to use its method fo r c lear ing o f f

t h e t o p of a desk (s ince it expects that the result of moving an object that is o n t o p of t h e

th ing to be c leared off is that the thing to be cleared off will be at the t o p) it bu i lds a

p r o d u c t i o n that looks for this result . However , if it is attempting to clear off an o b j e c t that

has more than one ob ject on top of it, moving just one object will not produce the e x p e c t e d

23

r e s u l t . A N A is sens i t i ve to this possibi l i ty, and so when it builds the product ion , it a r r a n g e s

t h i n g s so that it wil l f i re on ly if there are no productions in the method it is using that might

e n a b l e the e x p e c t e d result to be achieved.

O n c e A N A has built the product ions that watch for unexpected results , it is r e a d y to make

u s e of the method it has selected. ANA replaces the element marked "goal n o - m e t h o d " w i t h

an ident ical element marked "goal notachieved". At this point (p resumably) , one of t h e

p r o d u c t i o n s in the se lected method will f ire. In the rest of this sect ion, we wil l cons ide r t w o

t h i n g s that A N A must do in o rder to maintain the integrity of its mappings. T h e f i rst of t h e s e

has to d o w i t h the elements marked "concept t rue" that are in the condit ion side of some of

A N A ' s p r o d u c t i o n s ; these elements specify the expected values of re levant a t t r ibutes of the

o b j e c t s in the env i ronment . When ANA uses a method analogously, these va lues , like t h e

v a l u e s of the constra ints generated by the method descript ion product ion , are l ikely to b e

d i f f e r e n t f rom the p e r c e i v e d values. Thus ANA must have a w a y of p re tend ing that the

o b j e c t s c u r r e n t l y of interest have these pseudo-values. Secondly, most of A N A ' s methods

p r e s u p p o s e submethods . ANA's "paint table" method, for example, generates the goal o f

c a r r y i n g the table ; ANA's "ca r r y cabinet" method generates the goal of clearing off the t o p o f

t h e c a b i n e t ; and ANA's "c leartop desk" method generates the goal of f inding a desk. T h u s , in

o r d e r f o r A N A to be able to use a method analogously, it must be able to e x t e n d its initial s e t

o f mapp ings across a number of methods.

B e f o r e I s a y anyth ing more about the elements marked "concept t rue" , I had b e t t e r s a y a

f e w th ings about ANA's knowledge of the objects in the paint shop env i ronment . C u r r e n t l y ,

all of A N A ' s knowledge about particular objects comes from looking at those ob jec ts . A N A

has o n l y one method that it can use when it wants to learn (or v e r i f y) something about an

o b j e c t in its env i ronment . This method, whose action t ype is "f ind", is the on ly method that

A N A has that can assert elements marked "concept true". Like the other p roduc t ions that

A N A has fo r opera t ing on the objects in its environment, the conditional part of the " f i n d "

p r o d u c t i o n s contains constraints on the object that is to be looked for and const ra in ts that

ind icate the e x p e c t e d effect of finding the object. Here, however , the e x p e c t e d e f fec t is not

some change in the ob jec t , but a change to ANA (a change in ANA's awareness) . W h e n A N A is

g i v e n the goal of f inding some object , it first checks to determine if the desc r ip t ion of the

o b j e c t to be found constrains the object 's location; if so, it finds (ie, looks at) the s p e c i f i e d

locat ion . T h e n it col lects all of the other constraints on the object , w i th the e x c e p t i o n of a

t y p e cons t ra in t if one is g i ven , and (ftscans for an object satisfying that desc r ip t ion . If an

o b j e c t sa t i s f y ing the descr ipt ion is found, the set of percepts comprising that o b j e c t a re

d e p o s i t e d in w o r k i n g memory. ANA then checks to determine if the t y p e of the o b j e c t

s c a n n e d is cons is tent w i th the t y p e stipulated in the descr ipt ion of the actual ob jec t d e s i r e d .

If the v a l u e of the p e r c e p t whose attr ibute is t ype is the same as the value of the cons t ra in t

24

w h o s e a t t r i b u t e is t y p e , A N A knows that it has found the object it wants ; if not , A N A uses its

semant ic net to determine if the value of the constraint is a s u p e r t y p e of the va lue of t h e

p e r c e p t . M o r e c o n c r e t e l y , if there is a red desk in location L36, and ANA is told to f ind the

r e d th ing in locat ion L36, it will f irst look at (©scan for) location L36; it will then look at the

r e d o b j e c t in that location; and finally, it will check to determine is a desk is an instance of a

th ing . A f t e r A N A has found the desired object , it attends to the e x p e c t e d ef fect a t t r i b u t e s ;

f o r e a c h , it g e n e r a t e s an element marked "concept t rue" that is identical to the e lement

m a r k e d " p e r c e p t t rue" . The " f ind" method differs in a significant w a y f rom the o t h e r methods

that A N A has for operat ing on its environment since the "f ind" product ions are a w a r e of t h e

" c o n s t r a i n t g iven"/"const ra int possible" distinction. If this w e r e not the case, of c o u r s e , w h e n

" f i n d " w a s i n v o k e d , A N A would be unable to distinguish between the actual ob ject d e s i r e d and

t h e p s e u d o - o b j e c t speci f ied b y the method current ly being used. In addition to its p r inc ipa l

f u n c t i o n as a f inder of ob jects , the " f ind" method also remarks any element marked " c o n c e p t

t r u e " as "concept fa lse" w h e n e v e r its value is different from a more r e c e n t l y a s s e r t e d

p e r c e p t (w i t h the same attr ibute and token-name).

K n o w i n g this much about "f ind", we can now return to the quest ion of how A N A i n s u r e s

that p r o d u c t i o n s that include condition elements marked "concept t rue" wil l be sat is f ied w h e n

a m e t h o d is be ing used analogously. ANA has a production whose sole p u r p o s e is to w a t c h

f o r e lements marked "concept t rue" to be asserted. Whenever this happens, if t h e r e is an

e lement in w o r k i n g memory that maps a pseudo-value into a st ipulated va lue and if t h e

e lement just asse r ted has that stipulated value, the product ion f i res ; it asserts an e lement

m a r k e d "concept t r u e " whose value is the pseudo-value. A complementary p r o d u c t i o n

w a t c h e s f o r e lements marked "concept false" to be asserted. Again, if the re is an e lement in

w o r k i n g memory that maps a pseudo-va lue into a stipulated value and if the element j u s t

a s s e r t e d has that st ipulated value, the production f i res; it asserts an element marked " c o n c e p t

f a l s e " w h o s e va lue is the pseudo-va lue . It should be noted at this point that if the " f i n d "

m e t h o d r e a l l y marked as "concept false" all of the elements whose value was d i f fe rent f r o m a

m o r e r e c e n t l y asser ted percept , the work of the first of these product ions w o u l d be f o r

n o u g h t (and the second of these productions would be unnecessary) . What the " f i n d " m e t h o d

ac tua l l y does is mark as "concept false" all of the elements falsified b y some p e r c e p t e x c e p t

t h o s e that have the pseudo -va lue of some map element.

T h e issue of how mappings are to be extended across methods is somewhat more complex

t h a n the issue of how elements marked "concept t rue" are to be included in the mapping .

T h e r e are rea l l y t w o issues corresponding to the two sorts of subgoals that can b e

g e n e r a t e d b y a method. Whenever a subgoal is generated a new (dist inct) d e s c r i p t i o n of the

ac t ion and its e x p e c t e d effect is asserted. But the descr ipt ion of the ob jec t that is to b e

a c t e d o n may or may not be new. The production named paint2 (see F igure 3 - 2) g e n e r a t e s

25

t h e s u b g o a l of c a r r y i n g a table. The table to be carr ied is the one that is to be pa in ted , and

no addi t ional const ra ints on the table are asserted; the expected effect of the c a r r y i n g is that

t h e tab le wi l l e n d up in location L23. Now assume that ANA is g iven the task of paint ing t h e

b o x in locat ion L l l y e l l o w (Task3). Since the "paint table" method will' be used analogical ly ,

A N A , b e f o r e any of the "paint table" productions f i re, will have mapped table into b o x ,

l oca t ion L32 into location L l l , and red into yel low. When the goal of c a r r y i n g the tab le is

g e n e r a t e d , A N A check to see if the mappings can be extended. It has a p r o d u c t i o n w h o s e

p u r p o s e is to w a t c h for any constraint whose value is the pseudo - va lue of some map

e l e m e n t . W h e n e v e r such an element is asserted, this product ion f i res; the resul t is t w o

addi t ional asser t ions . One is identical to the assertion that t r iggered the p roduct ion , e x c e p t it

is marked "constra int possible" ; the other is an assertion, marked "constraint g i v e n " , w h o s e

v a l u e is the s t ipu lated value of the map element. In this case, since none of A N A ' s map

e l e m e n t s conta in L23 as a pseudo -va lue , ANA simply assumes that ca r ry ing the o b j e c t to L23

is the a p p r o p r i a t e thing to do. A more intelligent system would, of course , t r y to f igure ou t

at th is point w h e t h e r there is enough of a difference between painting boxes and paint ing

t a b l e s to s u g g e s t that the box to be painted should be carr ied to some location o t h e r t h a n

L 2 3 . A N A does not do this, but for the simple tasks it has attempted, this has not c a u s e d

p r o b l e m s . T h e case w i th paint 1 is a little different. This product ion, like paint2, does not

i n t r o d u c e a new ob jec t ; it generates the goal of finding the object to be painted. T h e o b j e c t

to b e f o u n d has a l ready been descr ibed (and since, as mentioned above , " f ind" is a w a r e of

t h e "const ra in t g iven"/"constra int possible" distinction, the object found wil l be the b o x in

l oca t ion L l l) . But unless ANA modifies the description of the expected effect of f inding the

o b j e c t , it wi l l be inconsistent wi th the descript ion of the actual object . Thus in this case t h e

init ial mapping is e x t e n d e d to include this new description of an expected ef fect . Us ing the

map e lement w h o s e pseudo -va lue is L32, ANA asserts two label constra ints : one is marked

" c o n s t r a i n t p o s s i b l e " and its value is L32; the other is marked "constraint g i v e n " and its v a l u e
is L l l .

Pa int3 is an example of a product ion that generates a goal wi th a new ob jec t d e s c r i p t i o n

as w e l l as a n e w action descr ipt ion. The action t ype of the goal is "car ry " ; the o b j e c t to be

c a r r i e d is the paint can labeled red in location L14; and the expected effect of the act ion is

that the paint can wil l end up in location L24. Whenever ANA is doing a task b y analogy and

g e n e r a t e s a goal containing a new object descr ipt ion, it tries to f igure out , on the basis of t h e

map e lements it has asser ted together with the little knowledge that it has about paint ing and

s u c h , w h e t h e r it should modify the descript ion of the object . ANA has a p r o d u c t i o n that

w a t c h e s f o r the asser t ion of subgoals containing the descr ipt ion of a new ob jec t . If A N A ' s

task is to paint the orange box in location L l l ye l low (Task3), w h e n paint3 f i r e s , that

p r o d u c t i o n wi l l then f i re and generate the goal of determining w h e t h e r a new o b j e c t

26

d e s c r i p t i o n shou ld be subst i tuted for the one asserted. ANA checks to see if it k n o w s

a n y t h i n g about the p u r p o s e of this new object — in this case, anything about the p u r p o s e of

a pa int can. A s it happens , ANA knows that the purpose of a paint can is to conta in paint . It

a lso k n o w s that the purpose of paint is for painting. Since painting is the s t ipu lated act ion

t y p e f o r the task at hand, ANA assumes that the t ype of the object that it wants to c a r r y is

pa int can . A f t e r deciding that the stipulated object t y p e is in fact appropr ia te , it checks t h e

o t h e r c o n s t r a i n t s on the object . Since it knows that the label on a paint can indicates t h e

c o l o r of the paint inside the can, it checks whether the descr ipt ion of the e x p e c t e d e f f e c t s of

d o i n g the paint ing make any mention of color. Since the expected effect of paint ing the b o x

is that it wi l l become y e l l o w , ANA assumes that what it should c a r r y is a y e l l o w paint c a n

r a t h e r than a r e d paint can. Since ANA's reasoning often involves some q u e s t i o n a b l e

a s s u m p t i o n s , b e f o r e it t r ies to achieve a subgoal containing the descr ipt ion of a n e w o b j e c t , it

asks w h o m e v e r is g iv ing it instructions whether it should assert its subst i tu te o b j e c t

d e s c r i p t i o n o r should assert an object descript ion to be prov ided b y the ins t ructor .

If A N A is g i v e n the task of washing the thing in location L12 (Task2) , it wi l l , w h e n pa in t3

f i r e s , r e a s o n in a similar fashion. Af ter recalling that the purpose of a paint can is to conta in

pa in t and that paint is for painting, it will notice that what it actually wants to do is w a s h . So

it wi l l t r y to f ind an ob ject that has the same relationship to washing as a paint can has to

pa in t ing . It f inds that water is what is used for washing and that water bott les conta in w a t e r .

It assumes that it should subst i tute something of t ype water bottle for the paint can. It looks

a r o u n d the paint shop for a water bottle and when it finds one, assumes that that w a t e r

b o t t l e has all of the appropr ia te attr ibutes and substitutes the perce ived values of the w a t e r

b o t t l e f o r the co r respond ing values in the descript ion of the paint can. T h e n , as b e f o r e , it

c h e c k s w i t h the ins t ructor before asserting this substitute descr ipt ion.

T h e t w o sets of product ions just descr ibed, the set that insures that w h e n e v e r a p p r o p r i a t e

if a c o n c e p t containing a perce ived value is asserted, a concept containing the c o r r e s p o n d i n g

p s e u d o - v a l u e wi l l be asser ted , and the set that insures that descr ipt ions of o b j e c t s and of

e x p e c t e d e f fec ts will be consistent across methods, are sufficient to enable A N A to e n g a g e in

t h e tasks d e s c r i b e d above without becoming confused. Of course, as A N A attempts to use its

methods analogical ly , it f requent ly runs into difficulties since the methods are not p e r f e c t l y

u i t e d to the i r n e w uses. In the next section we will consider how A N A r e s p o n d s to t h e s e
me

s

d i f f i cu l t ies .

27

4.2 Error Recovery

A N A can r u n into three kinds of trouble as it attempts to use its methods to p e r f o r m n e w

tasks . W e have a l ready seen one of them: when ANA is using a method analogous ly and

g e n e r a t e s a subgoa l , it may not be obvious how to extend the mapping. If the s u b g o a l

c o n t a i n s the desc r ip t ion of a new object (as well as the descr ipt ion of a new act ion) , A N A

a t tempts to d i s c o v e r the analogical relationship between that object and the actual task it is

to p e r f o r m . If A N A decides that the object description is inappropr iate , it subst i tu tes (w i t h

t h e i n s t r u c t o r ' s approva l) a di f ferent object descript ion. If the subgoal contains o n l y the

d e s c r i p t i o n of a new action, ANA assumes that the action will have the appropr ia te e f f e c t .

T h e o t h e r t w o kinds of t rouble that ANA can run into are less intimately l inked w i t h a n a l o g y ;

t h e p r o b l e m s can arise whether or not ANA is using a method analogously — t h o u g h t h e y

a r i se more f r e q u e n t l y and in a more pronounced form within an analogical contex t . One of

t h e s e p r o b l e m s is that ANA can use a method that is under-specified. That is, the d e s c r i p t i o n

of the o b j e c t to be acted upon is insufficiently constrained, and so ANA ends up o p e r a t i n g o n

(o r t r y i n g to o p e r a t e on) some object in an inappropriate way . The other t roub le , almost the

complement of the p rev ious one, is that ANA can use a method that is over -spec i f ied . Tha t is,

t h e d e s c r i p t i o n of the expected effects of an action is o v e r l y const ra ined, and so A N A

a c h i e v e s a goa l , but does not know it.

A N A has t w o w a y s of determining that it is using an under -spec i f ied method (and is in

t r o u b l e) . One is to wait until one of its operations on an object in its env i ronment fai ls .

W h e n an o p e r a t o r (eg, s c a r r y , (ftcart) fails, an element marked "action fai led" is d e p o s i t e d in

w o r k i n g memory ; this element identifies the cause of of the failure. If, for example, s c a r r y

fai ls because the object to be carr ied is not the top object in a location, the "act ion f a i l e d "

e l e m e n t wil l indicate that the offending attribute is "posit ion" and that c a r r y wil l w o r k o n l y if

the o b j e c t is at the top of the stack. If s c a r r y fails because the object to be c a r r i e d is

h e a v y , the "act ion fa i led" element will indicate that the offending attr ibute is " w e i g h t " and

that s c a r r y wil l w o r k only if the object is light. ANA has a product ion that watches fo r an

"ac t ion fa i led" element to be deposited in working memory. When such an element is

a s s e r t e d , this p roduct ion f i res and generates the goal of recover ing from the e r r o r . T h e f i r s t

th ing that the e r r o r r e c o v e r y method does is check to determine if the of fending a t t r ibu te is

mutab le o r immutable. A N A knows, for example, that weight is an immutable a t t r ibute and

that pos i t i on and location are mutable. Since ANA responds d i f ferent ly depending on w h e t h e r

the o f f e n d i n g at t r ibute is mutable or immutable, we will consider each case separa te l y .

W h e n A N A is g i v e n the task of painting the blue chair red (T a s k l) , it f i rst f inds the b lue

cha i r and then attempts to c a r r y it. Since the blue chair has another chair on t o p of it ,

28

© c a r r y fai ls , and an element containing the information that ©carry failed because the b lue

cha i r is not at the top of the stack is deposited in working memory. The p roduct ion watch ing

f o r s u c h an element f i res , and the goal of recover ing from this e r r o r is genera ted . W h e n A N A

c h e c k s to determine whether the position attribute is mutable or immutable, it f inds that it is

mutab le . A N A n s w a y of recover ing from er rors caused by mutable at t r ibutes is qu i te

s t r a i g h t - f o r w a r d . It simply builds a production that will f ire w h e n e v e r it cons iders using

a n a l o g o u s l y a method whose action type is car ry . This production asserts that in o r d e r f o r a

c a r r y method to w o r k , the object to be carr ied must be at the top of a stack. Having bui l t

th is p r o d u c t i o n , A N A reconsiders what method to use in order to c a r r y the chair . As w e h a v e

s e e n , w h e n A N A evaluates the appropriateness of a method, the first thing it checks is

w h e t h e r t h e r e is any reason to think that the method will not work . Since the p r o d u c t i o n

that it built wil l f i re as soon as it begins to reconsider what method to use, A N A wil l k n o w

that in o r d e r to use a " c a r r y " method, it will first have achieve a subgoal that wil l put the

cha i r in the r ight posit ion. ANA has some knowledge about how to sat isfy p r e - c o n d i t i o n s . It

k n o w s , for example , that if an object has to be at the top of a stack and is not, that it s h o u l d

g e n e r a t e a c lear top goal. ANA does this; the blue chair becomes the top chair , and A N A is

t h e n able to use its c a r r y method to achieve its goal.

W h e n A N A is g i v e n the task of washing the thing in L12 (Task2), it f irst f inds the thing and

t h e n attempts to c a r r y it. This time ©carry fails because the thing it is s u p p o s e d to c a r r y

(the sa fe) is not light. An "action failed" element is asserted; the product ion watch ing f o r

s u c h an element f i res , generat ing the goal of recover ing from the e r r o r . Since A N A k n o w s

that w e i g h t is immutable, it knows that it cannot fix the problem by modifying the state of the

w o r l d . So it se lects one of its operators that has the same effect as © c a r r y and t r ies it.

A s s u m e that it selects ©push. It builds a production that masks (ie, that is s e l e c t e d in

p r e f e r e n c e to) the product ion whose action side contains ©carry . (I will d iscuss in some

deta i l in the next sect ion how this production gets built.) The function of the p r o d u c t i o n is to

d e t e r m i n e w h e t h e r the object to be carr ied is light, and it accomplishes this s imply b y

scann ing fo r the ob ject . ANA then builds another production whose condit ion side is ident ical

to the cond i t ion side of the product ion just built except that it contains an additional cond i t ion

r , , - « M . * n l that wil l match a percept whose attribute is "weight" and whose value is a n y t h i n g

o t h e r than " l ight" ; the action side of this production contains the operator ©push. If A N A is

t r y i n g to move the thing in L12, the first of the pair of productions built will f i re and this wi l l

r e s u l t in A N A looking at the thing to be moved. Since the weight of the thing is " h e a v y " (ie ,

not " l ight") , the second of the productions will f i re; this time, ANA's attempt to move the safe

is s u c c e s s f u l .

A N A ' s o t h e r w a y of determining that it is using an under -spec i f ied method has a l r e a d y

b e e n d i s c u s s e d . When ANA decides to use a method analogously, before actually beg inn ing to

29

use it, it bui lds a set of product ions to watch for unexpected results . W h e n e v e r A N A

o p e r a t e s o n an ob ject and the result is different from that expected b y the p r o d u c t i o n

w a t c h i n g fo r the resul t of that operat ion, the production can f i re. If it does, A N A f i rs t asks

h o w to undo the unwanted result and then asks for an indication of what went w r o n g . A N A

e x p e c t s to be told that the value of one of the attributes of one of the o b j e c t s in its

e n v i r o n m e n t is w r o n g and expects to be told what the value should be. A N A then t rea ts this

i n f o r m a t i o n in exac t l y the same w a y that it treats the information contained in an e lement

m a r k e d "act ion fai led".

F i g u r e 4 - 3 p r o v i d e s an example of a production that ANA built to watch for an u n e x p e c t e d

r e s u l t . T h e p r o d u c t i o n was built while ANA was doing T a s k l . Part of T a s k l invo lves c a r r y i n g

the cha i r , a f ter it is painted, from L34 to L35. The production shown watches to make s u r e

that a f te r the chair is car r ied , it is in location L35. In this particular case, s ince t h e r e a re

a l r e a d y fou r chai rs in L35, when the chair is added to the top of the stack, the stack t e e t e r s

and the chair ends up in location L34. When the production that watches for this u n e x p e c t e d

r e s u l t f i r e s , the inst ructor is asked how to undo the unexpected result . Since the chair fel l

back to the spot w h e r e it was, and since everyth ing else is unchanged, the i n s t r u c t o r

ind icates that nothing need be done. Then the instructor is asked to indicate what w e n t

w r o n g . All he need say is that the there are too many objects in L35; there have to be

f e w e r than four . A N A then builds a production that contains the information that in o r d e r to

b e able to c a r r y something somewhere, the location that the object is being ca r r i ed to has to

c o n t a i n f e w e r than four objects . Af ter building the production, it reconsiders what method to

use f o r the task. This time around, when it considers car ry ing the chair , it rea l i zes that in

o r d e r to ach ieve its goal it f irst has to achieve the subgoal of moving one of the o b j e c t s in

L35 s o m e w h e r e e lse.

A N A ' s method for determining whether the method it is using is o v e r - s p e c i f i e d is to ask. It

has a p r o d u c t i o n that waits until the goal of finding some object is g e n e r a t e d , and t h e n

w a t c h e s to see if the values of any of the expected effect constraints on that ob jec t d i f f e r

f r o m the va lues of the corresponding percepts. If there is a d iscrepancy , the p r o d u c t i o n

f i r e s . A N A asks the instructor whether the value of the attr ibute has to be the s t ipu la ted

v a l u e . If the ins t ruc tor answers "yes" , then ANA keeps looking until it f inds an ob jec t w i t h

t h e s t i p u l a t e d va lue . If the instructor answers "no", ANA assumes that the method it is us ing

is o v e r - s p e c i f i e d , and asserts an element, marked "concept t rue" , that indicates that the

o b j e c t that it has found has the stipulated value (even though it does not). F igure 4 - 4 s h o w s

t w o of the p roduct ions that are part of ANA's "move box" method. If ANA is g i v e n the task

of mov ing the g r e e n chair , move2 will f ire and generate the subgoal of f inding an e m p t y

l oca t ion (to move the chair to). Notice that ANA's "move box" method expects the label of the

30

p i - 5 2 ((=act =object (goal not -achieved "time))
(t y p e - a c t (constraint g iven =time-a) c a r r y)
(e f fect =act (constraint g iven =time-a) =effect location)
- (e f f e c t =act (constraint possible =time-a) =effect location)
(locat ion =effect (constraint g iven =time-a) l o c a t i o n)
(label l o c a t i o n (constraint g iven =) L35)
(locat ion object (action done =op-time & >time) (chair*2 = t o k e n l) = q u o t e d - o p)
(locat ion chair*2 (concept true >op-time) =token2)
- (l ocat ion chair*2 (concept true >op-t ime) = t o k e n l)

— >
(<wr i te> my attempt to ca r r y chair*2 failed)
(<wr i te> chair*2 has location =token2 rather than * t o k e n l)
(<wr i te> how can i undo the effects of ca r r y ?)
(<read>)
(<wr i te> w h e r e did i go wrong ?)
(c rea te refinement (goal not -achieved (<bind>))

=time (=act =object ^location) ca r r y (<read>) = q u o t e d - o p))

F igure 4 - 3 : A product ion that watches for an unexpected result

31

m o v e 2 ((=act « o b j e c t (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) move)
(e f fect =act (constraint g iven =time-a) «e f fect location)
(t y p e =object (constraint g iven =time-o) box)
(locat ion « o b j e c t (constraint g iven =time-o) « locat ion)
(label « locat ion (constraint g iven =time-o) L25)
(token « o b j e c t (concept true =) « t o k e n l)
(token « locat ion (concept true =) =token2)
(locat ion « t o k e n l (concept true >time) « token2)
(label « t o k e n 2 (concept true >time) L25)

— >

((<bind> = n e w - a c t) (<bind> =new-ob ject) (goal not -ach ieved (<bind>)))
(t y p e « n e w - a c t (constraint g iven (<bind> « n e w - t i m e - a)) f ind)
(ef fect =new-ac t (constraint g iven =new-t ime-a) (<bind> = n e w - e f f e c t) mind)
(composi t ion =new-e f fec t (constraint g iven =new- t ime-a) empty)
(label = n e w - e f f e c t (constraint g iven « n e w - t i m e - a) L33)
(t y p e = n e w - o b j e c t (constraint g iven « n e w - t i m e - a) location)
(composi t ion = n e w - o b j e c t (constraint g iven « n e w - t i m e - a) empty))

m o v e 3 ((« a c t « o b j e c t (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) move)
(e f fect =act (constraint g iven =time-a) «e f fect location)
(t y p e « o b j e c t (constraint g iven =time-o) box)
(locat ion « o b j e c t (constraint g iven « t ime -o) « locat ion)
(label « locat ion (constraint g iven « t ime -o) L25)
(token « o b j e c t (concept true =) « t o k e n l)
(token « locat ion (concept true «) =token2)
(locat ion « t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L25)
(composi t ion « o t h e r - o b j e c t (constraint g iven =time-oo) empty)
(token « o t h e r - o b j e c t (concept true =) =token3)
(composi t ion =token3 (concept true >time) empty)
(label « t o k e n 3 (concept true >time) L33)

— >

(© c a r r y « t o k e n l =token3))

F igure 4 - 4 : T w o of AIMA's "move box" product ions

32

e m p t y locat ion that it f inds to be L33. But suppose that the first empty location that A N A

f inds is L22. Since the stipulated value of the label constraint is L33, whi le the va lue of the

p e r c e p t is L22, ANA's product ion that watches for the possibi l i ty of o v e r - s p e c i f i e d methods

wi l l f i r e . If it is the case that for the current task there is no reason for moving the cha i r to

L 3 3 r a t h e r than to L22, the instructor , when asked, will indicate that the value does not h a v e

to be L33. But move3 will not fire unless there is an element, marked "concept t r u e " in

w o r k i n g memory that indicates that the value of the label of the location that the o b j e c t is to

b e m o v e d to is L33. So ANA pretends that this counter - intu i t ive situation obta ins , and

a s s e r t s a concept indicating that the label of L23 is L33.

5. Accommodation

In the p r e v i o u s sect ion w e saw how ANA can use its mapping and e r r o r r e c o v e r y methods

to do unfamil iar tasks. T h o u g h ANA's performance on the tasks it has t r ied is adequate , the

f i r s t time it does an unfamiliar task it spends a great deal of time selecting methods to u s e ,

e s t a b l i s h i n g and extending mappings, and recover ing from e r r o r s that it falls into. In this

s e c t i o n w e wil l see how ANA makes the transformation of unfamiliar to familiar tasks

p e r m a n e n t . Rough ly speaking, all that ANA does is store w o r k e d - o u t analogies. It assoc iates

e a c h n e w l y familiar goal descr ipt ion with a method that can achieve that goal analogical ly .

A N A does not t r y to general ize ; thus the only goal descriptions that it recogn i zes (ie , d o e s

not h a v e to assimilate) are goal descriptions that it has prev ious ly encountered . T h o u g h th is

l imitat ion is s ignif icant , it is not as severe as it perhaps sounds. In the f i rst p lace, as A N A

e n g a g e s in some task, it typical ly generates a number of subtasks for itself. T h e k n o w l e d g e

that it s t o r e s about how to per form each of these subtasks is accessible in any contex t — ie ,

not jus t in the context of the particular task in which the knowledge was gained. T h u s if A N A

is g i v e n an unfamiliar task, though it will have to use its analogy mechanism in o r d e r to do the

task , it may t u r n out that some of the subtasks that it generates in the course of do ing that

task a re identical to subtasks that it has already learned how to do. W h e n e v e r this h a p p e n s ,

A N A can use the knowledge that it prev ious ly acquired. Secondly, although A N A learns h o w

t o do a speci f ic task, what this means is that it learns what to do g iven a part icu lar set of

c o n s t r a i n t s on the action and the object to be acted on. If ANA is g iven a task that inc ludes

t h o s e c o n s t r a i n t s , but o thers besides, it can use its acquired knowledge. Of course the fact

that t h e r e are additional constraints may mean that ANA's knowledge will be inadequate f o r

t h e task; but if so , A N A can make use of its e r ro r r e c o v e r y methods to f u r t h e r re f ine its

k n o w l e d g e . Th is sect ion has the same structure as Section 4. I will f i rst talk about h o w A N A

p r e s e r v e s contact and mapping knowledge. Then I will talk about how ANA patches methods

that p r o v e inadequate for some new task.

33

5.1 Method Building

In S e c t i o n 4.1, I descr ibed what ANA does when faced with an unfamiliar task: it makes

c o n t a c t (v ia method descr ipt ion productions) with methods that might be used analogica l ly ,

maps the p s e u d o - g o a l - d e s c r i p t i o n of each of these methods into the descr ipt ion of its actual

g o a l , e v a l u a t e s the candidate methods and selects one to t r y , and asserts , for each c o n s t r a i n t ,

t w o p s e u d o - v a l u e containing constraints, one marked "constraint possible" , the o ther marked

" c o n s t r a i n t g i v e n " . A N A is then ready to use the method it has selected. H o w e v e r , if A N A is

to a v o i d hav ing to repeat these steps on subsequent occasions when it is called u p o n to d o

t h e same task, it must s tore the knowledge it has gained in a readi ly accessible fo rm. T h u s ,

j u s t b e f o r e it actual ly attempts an unfamiliar task, ANA builds a product ion that wil l "set the

s t a g e " if it is e v e r again asked to do the task it is about to t r y . In o rder for this p r o d u c t i o n

t o f i r e at the appropr ia te times, it must be sensitive to the set of st ipulated const ra in ts that

c o m p r i s e A N A ' s c u r r e n t goal. Thus, ANA generates a list containing the element in w o r k i n g

m e m o r y that points to the constraints on this goal and each associated element, marked

" c o n s t r a i n t g i v e n " for which there is no corresponding element marked "constraint poss ib le " .

T h e p o i n t e r in each of these elements is replaced b y a var iable, and the list of e lements

b e c o m e s the condit ional part of the production that ANA will build. The action side of the

p r o d u c t i o n must make contact with the method that has been selected for the task;

c o n s e q u e n t l y , A N A generates a list containing each "constraint g iven"/"constra int p o s s i b l e "

pa i r l inked to the cur rent goal , plus each of the map elements associated w i t h t h e s e

c o n s t r a i n t s . A f t e r the pointer in each of these elements is replaced b y a var iab le , the list of

e l e m e n t s becomes the action part of the production that ANA will build.

A t this po in t , A N A could simply build the production, but there is a small p rob lem. S ince it

has not y e t t r i ed to use the method it has selected, it has no idea of whether the method wi l l

w o r k . If A N A w e r e to build the production before t ry ing the method, and the method t u r n e d

o u t not to w o r k for the cur rent task, ANA would have a piece of faulty knowledge . A N A ' s

s o l u t i o n is to bui ld a product ion whose condition side contains just one element — a list that

wi l l match the c u r r e n t goal element when that element is marked "goal achieved" . T h e act ion

s ide bui lds the p roduct ion descr ibed above. Thus if ANA is able to accomplish its task, a

p r o d u c t i o n that makes the task permanently familiar will be built; if ANA fails, the p r o d u c t i o n

is not bui l t . It should be noted that if ANA tries to use a method for a part icular task, and

t h e method tu rns out not to work , some useful knowledge may never the less have b e e n

g a i n e d . If in the course of using an ultimately unsuccessful method, subtasks are t r i e d and

a c c o m p l i s h e d , p roduct ions that map these subtasks into the submethods that succeeded wi l l in

fact be bui l t . T h u s , on subsequent occasions when ANA is called upon to do these subtasks , it

w i l l h a v e the n e c e s s a r y knowledge. The production shown in F igure 5-1 is the p r o d u c t i o n

34

p 2 - 0 6 ((ac t* l object*2 (goal achieved =time)) & =w
— >

(<delete> =w) (act*l object*2 (goal old =time))
(<build>

((=act =object (goal not -achieved =))
(t y p e =act (constraint g iven =time-a) wash)
- (t y p e =act (constraint possible >time-a) paint)
(ef fect =act (constraint g iven =time-a) =effect surface)
(state =effect (constraint g iven =time-a) clean)
(location =object (constraint given =time-o) l o c a t i o n)
(label l o c a t i o n (constraint g iven =time-o) L12)
(t y p e =object (constraint given =time-o) thing)

— >

(t y p e =act (constraint g iven ((<quote> <bind>) =new-t ime)) paint)
(t y p e =act (constraint possible =new-t ime) paint)
(map =act (concept true =object) (t ype paint) (t y p e wash))
(ef fect =act (constraint g iven =new-t ime) =effect surface)
(ef fect =act (constraint possible =new-t ime) =effect sur face)
(location =object (constraint g iven =new-t ime) =location)
(location =object (constraint possible =new-t ime) =location)
(label l o c a t i o n (constraint given =new-t ime) L32)
(label Hocat ion (constraint possible =new-t ime) L32)
(map l o c a t i o n (concept true =object) (label L32) (label L12))
(t y p e =object (constraint g iven =new-t ime) table)
(t y p e ^object (constraint possible =new-t ime) table)
(map =object (concept true =object) (t ype table) (t y p e thing))
(color =effect (constraint g iven =new-tirne) red)
(co lor =effect (constraint possible =new-t ime) red)
(map =effect (concept true ^object) (color red) (state clean)))))

F i g u r e 5 - 1 : A product ion that recognizes the task of washing the thing in L12

that A N A bui lds after it decides to use its "paint table" method to wash the thing in locat ion

L 1 2 (T a s k 2) . T h e single condition element in this production will be satisf ied o n l y once —

w h e n the goal element in working memory whose action link is " a c t * l " and w h o s e o b j e c t l ink

is " o b j e c t * 2 " is marked "goal achieved". The action side actually contains t w o act ions (o n e

m o r e than I said). T h e f i rst action marks the goal element "goal o ld" ; the p u r p o s e of th is

ac t ion is to insure that if several productions are built, all of which match the same goal

e l e m e n t , o n l y the most recent ly built production will f i r e . 1 The other action s imply bui lds a

p r o d u c t i o n that will f i re w h e n e v e r ANA is given the task of washing the thing in L12. T h e

I give an example below of a case in which more than one production matching the same "goal achieved" element gets
built. This happens whenever ANA tries a mothod and runs into a problem — either an operator failure or an unexpected
result — due to a mutable attribute of the object it is acting on.

35

c o n d i t i o n s ide of the product ion to be built will match the constraints g i ven in the actual

d e s c r i p t i o n of the task. The action side asserts all of the elements that must be a s s e r t e d in

o r d e r to make contact w i th the "paint table" method, plus those elements that must be in

w o r k i n g memory in o r d e r for ANA to know that it is using its "paint tab le" method

a n a l o g o u s l y .

A f t e r A N A has used a method (and submethods) analogously to accomplish a task, it has a

n u m b e r of n e w product ions in its production memory that will enable it to accomplish the task

much more eas i ly (quickly) in the future. If ANA is g iven the same task, the p r o d u c t i o n that

c a u s e s the analogous method to be invoked will f i re, and ANA will simply use that method. If

that method genera tes a subgoal , another of the new productions — one that enab les a

s u b m e t h o d to be used analogously — will f i re, and ANA will use the submethod. In many

c a s e s , this scheme w o r k s fine. There are, however , at least two situations in w h i c h it is

i n a d e q u a t e . F i rst of all, as we have seen, ANA in evaluating candidate methods sometimes

d i s c o v e r s that in o r d e r to be able to use a method, it must first achieve some subgoa l that

sa t i s f ies a p r e - c o n d i t i o n of the method. If ANA is to avoid having to red i scover , each time it

is g i v e n a task, that this subgoal must be achieved, it must include in the p roduct ion it bu i lds ,

the k n o w l e d g e that achieving this subgoal is necessary. The second situation in w h i c h the

bas ic scheme is inadequate is the situation in which ANA infers (or is told) that ach iev ing

some subgoa l wil l not have the appropriate effect unless a dif ferent object d e s c r i p t i o n is

s u b s t i t u t e d for the one asserted. In this case, ANA must build a product ion that r e c o g n i z e s

the par t i cu la r contex t in which the substitution is called for. When ANA decides to use a

m e t h o d that it knows has an unsatisfied pre -condi t ion, it generates a subgoal to sa t i s f y the

p r e - c o n d i t i o n b e f o r e it builds the production that associates the method w i th the c u r r e n t

g o a l . If A N A achieves the subgoal , it generates a list containing each "constraint g i v e n " in

w o r k i n g memory that is linked to the subgoal just achieved for which t h e r e is no

c o r r e s p o n d i n g element marked "constraint possible". Then it generates the t w o lists that it

w o u l d o r d i n a r i l y generate — the one containing the condition side of the p roduc t ion to be

bui l t and the o ther containing the action side. Then it inserts the elements in the subgoa l list

at the f r o n t of the list containing the action side. Thus the product ion built , w h e n e v e r it

f i r e s , wi l l f i rst assert the subgoal and will then assert the p s e u d o - g o a l - d e s c r i p t i o n that wi l l

make contact w i t h the method. When ANA is g iven the task of painting the blue chair r e d

(T a s k l) and f inds that its "ca r r y table" method can be used only if it can make the blue cha i r

the t o p chair in the stack, it generates a cleartop goal. Af ter the g reen chair is moved and

t h e b lue chair has become the top object in the stack, ANA generates a list containing all of

t h e e lements marked "constraint t rue" contained in the cleartop goal desc r ip t ion . T h e

p r o d u c t i o n that A N A then builds to make contact with its "car ry table" method is s h o w n in

F i g u r e 5 - 2 . A f t e r the task of car ry ing the blue chair is achieved, this p roduct ion f i res . T h e

36

p l - 2 5 ((act*53 object*2 (goal achieved =time)) & =w
— >

(<delete> =w) (act*53 object*2 (goal old =time))
(<build>

((^act =object (goal not -achieved =))
(t y p e =act (constraint g iven =time-a) c a r r y)
- (t y p e =act (constraint possible >time-a) c a r r y)
(ef fect =act (constraint given =time-a) =effect location)
(location =effect (constraint g iven =tirne-a) = locat ion-ef fect)
(label =locat ion-effect (constraint g iven =time-a) L23)
(location =object (constraint given =time-o) l o c a t i o n)
(label l o c a t i o n (constraint g iven =time-o) L21)
(color =object (constraint given =time-o) blue)
(t y p e =object (constraint given =time-o) chair)

— >
((<quote> (<bind> =new-act)) =object (goal not -ach ieved (<quote> (<bind>))))
(t y p e =new-act (constraint given (<quote> (<bind> = n e w - t i m e - a))) c l e a r t o p)
(ef fect =new-act (constraint given =new- t ime-a)

(<quote> (<bind> =new-ef fect)) position)
(posi t ion =new-ef fec t (constraint g iven =new- t ime-a) (1))
(t y p e =act (constraint g iven ((<quote> <bind>) =new-t ime)) c a r r y)
(t y p e =act (constraint possible =new-t ime) c a r r y)
(map =act (concept true =object) (type c a r r y) (t ype c a r r y))
(ef fect =act (constraint g iven =new-t ime) =effect location)
(effect =act (constraint possible =new-t ime) =effect location)
(location =effect (constraint g iven =new-t ime) = locat ion-ef fect)
(location =effect (constraint possible =new-t ime) = locat ion -ef fect)
(label =location-effect (constraint given =new-t ime) L23)
(label =location~effect (constraint possible =new-t ime) L23)
(map =locat ion-effect (concept true =object) (label L23) (label L23))
(location =object (constraint given =new-t ime) =location)
(location =object (constraint possible =new-t ime) l o c a t i o n)
(label ^location (constraint given =new-t ime) L32)
(label =location (constraint possible =new-t ime) L32)
(map =location (concept true =object) (label L32) (label L21))
(t y p e =object (constraint given =new-t ime) table)
(t y p e =object (constraint possible =new-t ime) table)
(map =object (concept true =object) (t ype table) (t y p e chair))))))

F i g u r e 5 - 2 : A product ion that recognizes the task of car ry ing a chair f rom
L21 to L23 and that knows about the cleartop p re -cond i t ion

37

r e s u l t is a p r o d u c t i o n that f i res whenever it is g iven the task of ca r r y ing a chair f r o m

l o c a t i o n L21 to location L 2 3 . 1 When ANA generates a subgoal that contains the d e s c r i p t i o n of

a n e w o b j e c t , it t r ies to f igure out if it should substitute some other object d e s c r i p t i o n f o r

t h e o n e a s s e r t e d ; if it decides that it should, and the instructor concurs , it asser ts a d i f f e r e n t

o b j e c t d e s c r i p t i o n . But whateve r it decides, it remembers the decision. It builds a p r o d u c t i o n

that wi l l f i re w h e n e v e r that subgoal is generated in the context of the goal it is t r y i n g to

a c h i e v e . I f , for example, ANA is g iven the task of washing the thing is L12 (Task2) , the

s u b g o a l of c a r r y i n g the paint can labeled red from L14 to L24 is genera ted . A f t e r A N A

f i g u r e s out that it should instead car ry the water bottle from L25 to L24, it bui lds the

p r o d u c t i o n s h o w n in F igure 5 -3 . It goes about building this product ion in much the same w a y

that it g o e s about building the productions described above; that is, it collects the r e l e v a n t

c o n s t r a i n t s in work ing memory. The first condition element in the product ion in F i g u r e 5 - 3

matches the goal element that is asserted by the production that watches for the asser t ion of

s u b g o a i s contain ing new object descriptions; this element links the subgoal just g e n e r a t e d to

t h e c u r r e n t goal . T h e other condition elements are the set of st ipulated const ra ints o n the

s u b g o a l and the set of st ipulated constraints on the goal. The action side of the p r o d u c t i o n

a s s e r t s the set of subgoal constraints, marked "constraint g iven" , that are to be s u b s t i t u t e d

f o r the or ig ina l subgoal constraints, replaces each of the original subgoal const ra ints w i t h a

pa i r of cons t ra in ts , one of which is marked "constraint possible" and the o ther "const ra in t

g i v e n " , and asser ts a map element for each constraint.

5.2 Method Patching

In Sec t ion 4.2, I d iscussed ANA's way of dealing with problems that arise w h e n the method

it is us ing is e i ther under - spec i f ied or over -spec i f ied . In some cases, the f ixes d e s c r i b e d in

that s e c t i o n not on ly so lve the immediate problem, but also solve the problem w h e n e v e r it

s u b s e q u e n t l y ar ises. In the other cases, ANA must do some additional w o r k to insure that it

w i l l be able to handle the problem effect ively if it arises again. In discussing ANA's r e s p o n s e

t o p r o b l e m s aris ing f rom under -spec i f ied methods, I distinguished be tween problems that A N A

r e c o g n i z e s because of the failure of some operator and problems that it recogn i zes because

of an u n e x p e c t e d result . Al though this distinction is significant when discussing h o w A N A

k n o w s w h e n it is in t roub le , it is not significant when discussing how ANA f ixes the p r o b l e m s .

T h e r e f o r e I wil l ignore the distinction in this section.

A N A r e s p o n d s in one of two w a y s to a problem that arises because it is using an

The production will fire whether or not the chair to be carried is at the top of the stack in L21. If it is already at
the top of the stack, the cleartop submethod will immediately discover that its goal is achieved and the carry method
will take over.

38

p 2 - 1 6 ((rep lace sub -method (goal not -achieved =time>
(=act ^object) (=new-act =new-ob jec t) =pox) & =w

(t y p e = n e w - a c t (constraint g iven =) = n e w - a c t - t y p e)
(e f fect =new-ac t (constraint g iven =) =new-ef fect = e f f e c t - t y p e)
(label = n e w - o b j e c t (constraint g iven =new- t ime -o) red)
(label l o c a t i o n (constraint given =new- t ime-o) L14)
(t y p e = n e w - o b j e c t (constraint g iven =new- t ime-o) pntcan)
(label =locat ion-effect (constraint given =new- t ime-a) L24)
(locat ion =new-e f fec t (constraint g iven =new- t ime-a) = locat ion -ef fect)
(locat ion = n e w - o b j e c t (constraint g iven =new- t ime -o) =location)
(ef fect =act (constraint g iven =) =effect =)
(state =effect (constraint g iven =time-a) clean)
(t y p e =object (constraint g iven =time-o) thing)
- (= ^ob ject (constraint possible =time-o) -)
- (= =act (constraint possible =time-a) =)

— >
(rep lace sub -method (goal achieved =time)

(=act =object) (=new-act =new-ob jec t) =pox) (<delete> = w)
(t y p e =new-ac t (constraint given =new-t ime-a) = n e w - a c t - t y p e)
(ef fect ^ n e w - a c t (constraint given =new- t ime-a) =new-e f fec t = e f f e c t - t y p e)
(label = n e w - o b j e c t (constraint g iven =new- t ime-o) water)
(<delete> (label =new-ob jec t (constraint g iven = n e w - t i m e - o) red))
(label = n e w - o b j e c t (constraint g iven 0) red)
(label = n e w - o b j e c t (constraint possible 0) red)
(map = n e w - o b j e c t (concept true =new-ob ject) (label red) (label w a t e r))
(label l o c a t i o n (constraint given =new- t ime-o) L25)
(<delete> (label l o c a t i o n (constraint g iven =new- t ime -o) L14))
(label ^location (constraint g iven 0) L14)
(label l o c a t i o n (constraint possible 0) L I 4)
(map ^location (concept true =new-ob ject) (label L14) (label L25))
(t y p e = n e w - o b j e c t (constraint g iven =new- t ime-o) watbot)
(<delete> (t y p e =new-ob jec t (constraint g iven =new- t ime -o) pntcan))
(t y p e = n e w - o b j e c t (constraint given 0) pntcan)
(t y p e = n e w - o b j e c t (constraint possible 0) pntcan)
(map = n e w - o b j e c t (concept true =new-ob ject) (t ype pntcan) (t y p e w a t b o t))
(label =locat ion-effect (constraint g iven 0) L24)
(label =locat ion-effect (constraint possible 0) L24)
(map =locat ion-effect (concept true =new-ob ject) (label L24) (label L24))
(locat ion =new-e f fec t (constraint g iven 0) =locat ion-effect)
(locat ion =new-e f fec t (constraint possible 0) =locat ion-effect)
(map = n e w - e f f e c t (concept true =new-ob ject)

(location =location-effect) (location =locat ion-effect))
(locat ion = n e w - o b j e c t (constraint given 0) ^location)
(locat ion = n e w - o b j e c t (constraint possible 0) l o c a t i o n)
(map = n e w - o b j e c t (concept true =new-ob ject)

(location l o c a t i o n) (location =location)))

F i g u r e 5 - 3 : A product ion that remembers that "water bott le" is to " w a s h " as
"paint can" is to "paint"

39

u n d e r - s p e c i f i e d method. If the problem is due to some feature of the env i ronment that can

b e c h a n g e d (ie , if the problem is due to a mutable attribute of some ob ject) , then A N A s imp ly

bu i lds a p r o d u c t i o n that associates the action type of the method that it is using w i t h a list

c o n t a i n i n g the at t r ibute and the value that the attribute must have in o r d e r for that act ion

t y p e to be a p p r o p r i a t e ; this product ion fires whenever ANA considers using a method w i t h

that act ion t y p e . This fix is sufficient to enable ANA to deal ef fect ive ly w i th the p r o b l e m if it

e v e r a r i ses again. In the future , if ANA considers a method whose action t y p e is assoc iated

w i t h the n e c e s s a r y , but mutable, value of some attr ibute, and if the object that has to h a v e

that v a l u e does not , A N A knows that in order to use the method it is cons ider ing , it must

g e n e r a t e a subgoal to sat isfy this pre -condi t ion.

A N A ' s o t h e r r e s p o n s e to a problem that arises because it is using an u n d e r - s p e c i f i e d

m e t h o d is more complex. If the problem is due to some feature of the env i ronment that

c a n n o t be c h a n g e d (ie , if the problem is due to an immutable attr ibute of some o b j e c t) , t h e n

A N A must f ind a new w a y of dealing with the situation. What this means, in ANA 's s imple

w o r l d , is that A N A must use a different operator to effect whatever change it d e s i r e s . I

d e s c r i b e d b r i e f l y , in Sect ion 4.2, how ANA does this. It builds a product ion w h o s e cond i t ion

s ide is the same as the condit ion side of the production that actually o p e r a t e s o n the

e n v i r o n m e n t ; this p roduct ion generates the subgoal of finding the value of that a t t r ibu te of

the o b j e c t that is re levant to the operator . It builds a second product ion w h o s e cond i t ion

s ide is identical to the f irst except that it includes a condition element that is sat isf ied if the

v a l u e of that a t t r ibute is di f ferent from the value required by the operato r ; the action s ide of

th is p r o d u c t i o n , executes a dif ferent operator . There is, of course, a much simpler w a y f o r

A N A to o v e r c o m e immutable attr ibutes. ANA could build a product ion whose condi t ion s ide

i > * , - . ! r i .c*rj the most recent l y asserted element in working memory and whose act ion s ide

e x e c u t e d the o p e r a t o r it wanted to t r y . But this fix would not help A N A o v e r c o m e the

p r o b l e m if it a rose again at a later time. In order to provide a more permanent so lu t ion , A N A

must inhibit the f i r ing of the product ion that operates on the environment until it has had a

c h a n c e to get the additional information that is necessary in o rder to determine if that

o p e r a t o r is appropr ia te . Since ANA's only means of inhibiting the fir ing of an e n a b l e d

p r o d u c t i o n is to bui ld a product ion that will be selected in p re ference to it dur ing conf l ic t

r e s o l u t i o n , and since the only elements that ANA can be sure will be in work ing memory w h e n

a p r o d u c t i o n is enabled are just those elements that enable it, ANA builds a p r o d u c t i o n w i t h

the same condi t ion side as the product ion that operates on the environment and re l ies o n the

fact that , all o the r things being equal, more recent ly built product ions are p r e f e r r e d in

conf l i c t reso lu t ion to older ones. The reason for making the condit ion side of the o t h e r

p r o d u c t i o n that is built (the product ion that executes a different opera to r) a special case of

t h e o r ig ina l p roduc t ion is that ANA wants the original product ion to f i re unless the

40

i n f o r m a t i o n that is obta ined about the object to be operated on indicates that the o r ig ina l

p r o d u c t i o n ' s o p e r a t o r is inappropr iate .

W h e n A N A is asked to c a r r y the box at the bottom of L l l to L23 (Task3) , it f i rst c lears o f f

the b o x and then attempts to ©carry it. ©carry fails, so ANA tries ©push, ©push fai ls , so

A N A t r i e s ©cart . Since the box at the bottom of L l l is " r e a l l y - h e a v y " , ©cart w o r k s . T h r e e

p r o d u c t i o n s are s h o w n in Figures 5 -4 and 5-5 . The product ion, " ca r r y3 " , is the p r o d u c t i o n in

t h e " c a r r y tab le " method that actually executes ©carry . " p 3 - 3 6 " and " p 3 - 3 7 " are p r o d u c t i o n s

that A N A built w h e n the ©push operator failed. " p 3 - 3 7 " fires if " p 3 - 3 6 " finds that the w e i g h t

of the o b j e c t to be car r ied is something other than "heavy" . In o r d e r to bui ld t h e s e

p r o d u c t i o n s , A N A simply generates a list containing each element in work ing memory , marked

" c o n s t r a i n t g i v e n " , that is linked to the current goal, and for which there is a c o r r e s p o n d i n g

e lement marked "constraint possible". Notice that in this case, ANA wants the c o n s t r a i n t s

w h o s e v a l u e s are pseudo -va lues , since these are the constraints matched b y the cond i t i on

s ide of the p r o d u c t i o n being masked.*

c a r r y 3 ((=act - o b j e c t (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) ca r r y)
(ef fect «ac t (constraint g iven « t ime-a) «e f fect location)
(locat ion «e f fec t (constraint given =time-a) « locat ion -e f fect)
(label « locat ion -e f fec t (constraint g iven =time-a) L23)
(t y p e =object (constraint g iven =time-o) table)
(locat ion « o b j e c t (constraint g iven =time-o) « locat ion)
(label « locat ion (constraint given =time-o) L32)
(token « o b j e c t (concept true =) « t o k e n l)
(token « locat ion (concept true =) =token2)
(locat ion « t o k e n l (concept true >time) =token2)
(label =token2 (concept true >time) L32)
(label « o t h e r - o b j e c t (constraint given =time-oo) L23)
(token « o t h e r - o b j e c t (concept true =) =token3)
(composi t ion « token3 (concept true >time) empty)

— >

(© c a r r y « t o k e n l =token3))

F igure 5 - 4 : One of ANA's "car ry table" product ions

l W h e n ANA is using a method "directly" (ie, not analogously) and finds that it is under-specified, it generates the goal
of doing whatever task it is doing by analogy. Since it may select the method it was using directly as the method to
use analogously, ANA does have a way of patching its original methods.

41

p 3 - 3 6 ((=act =object (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) c a r r y)
(e f fect =--act (constraint g iven =time-a) =effect location)
(locat ion =effect (constraint g iven =time-a) =locat ion-effect)
(label = locat ion-ef fect (constraint given =time-a) L23)
(locat ion =object (constraint g iven =) l o c a t i o n)
(label l o c a t i o n (constraint given =) L32)
(t y p e =object (constraint g iven =) desk)
(pos i t ion =object (constraint g iven =) (3))
(token =object (concept true =) = token l)
(pos i t ion = t o k e n l (concept true =) (1))
(locat ion = t o k e n l (concept true =) =token2)
(token l o c a t i o n (concept true =) =token2)
(label =token2 (concept true =) L21)
(t y p e = o t h e r - o b j e c t (constraint given =time-oo) location)
(label = o t h e r - o b j e c t (constraint given =time-oo) L23)
(token = o t h e r - o b j e c t (concept true =) « token3)
(composi t ion =token3 (concept true =) empty)

— >

((<bind> = n e w - a c t) =object (goal not -achieved (<bind>)))
(t y p e = n e w - a c t (constraint g iven (<bind> =new-t ime)) f ind)
(e f fect = n e w - a c t (constraint g iven =new-t ime) (<bind> = n e w - e f f e c t) mind)
(w e i g h t = n e w - e f f e c t (constraint g iven =new-t ime) r e a l l y - h e a v y))

p 3 - 3 7 ((=act =object (goal not -achieved =time))
(t y p e =act (constraint g iven =time-a) ca r r y)
(e f fect =act (constraint g iven =time-a) =effeet location)
(locat ion ^effect (constraint given =time-a) =locat ion-effect)
(label = locat ion-ef fect (constraint g iven =time-a) L23)
(locat ion =object (constraint g iven =) =location)
(label Hocat ion (constraint g iven =) L32)
(t y p e =object (constraint g iven =) desk)
(pos i t ion =object (constraint g iven =) (3))
(token =object (concept true *) « t o k e n l)
(pos i t ion = t o k e n l (concept true =) (1))
(locat ion = t o k e n l (concept true =) =token2)
(token l o c a t i o n (concept true =) =token2)
(label =token2 (concept true =) L21)
(t y p e - -^other-object (constraint g iven =time-oo) location)
(label = o t h e r - o b j e c t (constraint given =time-oo) L23)
(token = o t h e r - o b j e c t (concept true =) =token3)
(composi t ion =token3 (concept true =) empty)
(we igh t = t o k e n l (concept true =) (@>notany heavy))

— >

((ftcart = t o k e n l =token3))

F igure 5 - 5 : A patch for an under -speci f ied method

42

A N A does one more thing to help insure that it will not fall p r e y to the same p r o b l e m in

t h e f u t u r e . Since A N A does not know in advance that it has an operator that wil l w o r k , it

bu i lds a t h i r d p roduc t ion that associates the action t ype of the method it is using w i t h a list

con ta in ing the at t r ibute and the value that the attribute must have in o r d e r fo r the o r ig ina l

o p e r a t o r to w o r k . W h e n e v e r a method with that action t y p e is cons idered , this p r o d u c t i o n

wi l l f i r e , and A N A will put the method in the category of "unlikely to work" . Of c o u r s e if t h e

a l t e r n a t i v e o p e r a t o r that ANA tries does in fact work, the method belongs in the "wi l l

p r o b a b l y w o r k " c a t e g o r y . T h e r e f o r e ANA builds a fourth product ion that wil l f i re if t h e

c u r r e n t goal is ach ieved ; this product ion builds a production that associates the action t y p e of

the method being used wi th a list containing the attribute and the value that the a t t r i b u t e

must h a v e in o r d e r for the alternate operator to work. If the method w o r k s w h e n t h e

a l t e r n a t e o p e r a t o r is used, the production built by the four th product ion neut ra l i zes the

e f f e c t of the th i rd product ion .

A s w e have s e e n , if ANA is using its "f ind" method and the value of one of the e x p e c t e d

e f f e c t cons t ra in ts d i f fers from the value of the corresponding percept , it asks the i n s t r u c t o r

w h e t h e r it can ignore that expected effect. If the instructor indicates that the e x p e c t e d

e f f e c t can be i g n o r e d , ANA asserts a concept containing the token-name g i ven in the p e r c e p t

and the va lue g i v e n in the expected effect constraint. In o rder to produce a permanent f i x ,

A N A s imply bui lds a product ion that will assert that concept w h e n e v e r it is g i v e n an o b j e c t to

f i n d in the contex t of the current action type . For example, when ANA uses its "move b o x "

m e t h o d (see F igure 4 - 4) it expects that the location it will move things to is L33. T h e

p r o d u c t i o n in F igure 5 - 6 is the production that ANA built when it was moving the g r e e n cha i r

and w a s to ld that it was fine to move the chair to some location other than L33.

6. Conclusions

It s h o u l d be ev ident b y now that ANA has a somewhat cavalier attitude t o w a r d learn ing .

W h e n e v e r it has to learn , it learns (at most) just enough to get by . When it is g i v e n an

unfamil iar task, it t r ies to do the task by analogy; it has a few rather weak rules that enab le

it to se lect a method to use. It maps the description of the goal that the method can a c h i e v e

in to its actual goal ; it does not consider at this point whether the mappings are p laus ib le . It

t h e n at tempts to use the method; it does not construct a plan (since the method s e r v e s as its

p lan) . W h e n the method succeeds in accomplishing a task, ANA builds a p r o d u c t i o n that

e n a b l e s it to subsequent l y recognize that task and to remember the analogy; it does not

c r e a t e a n e w method. When an analogy breaks down, ANA patches the method it is using b y

bu i ld ing a p r o d u c t i o n that will watch for signs of trouble and take steps to avoid it; A N A d o e s

43

p l - 2 1 ((=act =object (goal not -achieved =time))
(t y p e =act (constraint g iven =) find)
(t y p e =object (constraint g iven =) location)
(composi t ion =object (constraint g iven =) empty)
(token =object (concept true =) = token l)
(label = t o k e n l (concept true >time) =value)
- (l abe l = t o k e n l (concept true =) L33)
(=main-act = (goal not -achieved <time))
(t y p e =main-act (constraint g iven =time-main) move)
- (t y p e =rnain-act (constraint possible =time-main) move)

— >

(label = t o k e n l (concept true (<bind>)) L33)
(map =object (concept true =object) (label L33) (label =value))
(<build>

(((=main-act = (goal ((©any achieved old) =))
(label = t o k e n l (concept true =time-c) L33) & =scope

— >

((<quote> <delete>) =scope) (label *tokenl (concept old =t ime-c) L33))))

F igure 5 - 6 : A patch for an over - spec i f ied method

not mod i f y any of the product ions comprising the method.

T h e q u e s t i o n is: Should ANA be doing some of these things that it does not do? Which of

t h e m w o u l d improve its performance and which would merely slow it down? Be fo re t r y i n g to

a n s w e r t h e s e quest ions , I want to br ief ly consider the distr ibution and e f fec t i veness of A N A ' s

k n o w l e d g e . T h e n I will argue that ANA's only critical weakness is its lack of knowledge about

h o w to se lect appropr ia te methods.

A N A ' s k n o w l e d g e can be convenient ly divided into three categor ies : (1) the init ial ,

t a s k - s p e c i f i c knowledge that ANA uses to manage its paint shop; (2) the knowledge A N A has

that e n a b l e s it to use its task-specif ic methods analogically; and (3) the new, t a s k - s p e c i f i c

k n o w l e d g e that A N A acquires that enables it to extend its paint shop management capabi l i t ies .

F i g u r e 6-1 s h o w s the number of productions in each of these categories. A N A s tar ts w i t h 57

p r o d u c t i o n s that enable it to per form a few paint shop tasks. It has 238 p roduct ions that

e n a b l e it to use its task methods analogically. The productions in the "knowledge n e t s "

s u b - c a t e g o r y contain the knowledge of relationships amon^ actions and among ob jec ts . T h e

" s e t t i n g up analogies" s u b - c a t e g o r y is the knowledge ANA needs to select and p r e p a r e to use

a m e t h o d o n an unfamiliar task. The "using analogies" subcategory is the knowledge that

e n a b l e s A N A to maintain the integr i ty of its mappings and to determine their p lausib i l i ty . T h e

p r o d u c t i o n s in the "under - spec i f ied r e c o v e r y " and "over - spec i f ied r e c o v e r y " s u b - c a t e g o r i e s

44

c o n t a i n the knowledge that ANA needs to recover from problems that arise as it uses its

m e t h o d s analogical ly . In the course of doing the four tasks descr ibed above , A N A bui lt 141

p r o d u c t i o n s ; some of these associate a new task with an existing method, some e x t e n d its

k n o w l e d g e nets , and some patch methods that p roved inadequate.

Initial methods
Task methods 36
The " f ind" method 21

Ana logy tools
Knowledge nets 72
Setting up analogies 39
Using analogies 78
Under - spec i f ied r e c o v e r y 40
O v e r - s p e c i f i e d r e c o v e r y 9

New product ions
Method association 49
Net extension 8
Method patching 84

Total 436

F i g u r e 6 - 1 : The distr ibut ion of ANA's knowledge (number of p roduct ions)

F i g u r e 6 - 2 s h o w s the time in cycles (ie, production f ir ings) that ANA spent on each of t h e

f o u r tasks d e s c r i b e d above . For each task there are two columns of numbers : T h e columns

l a b e l e d " R u n l " show how long it takes ANA to perform unfamiliar tasks; the columns labe led

" R u n 2 " s h o w how long it takes ANA to perform the same tasks once they have become

famil iar . A r o u g h measure of the effect iveness of ANA's learning s t ra tegy can be o b t a i n e d b y

c o m p a r i n g the amount of time ANA spends using its initial methods wi th the total time that it

s p e n d s o n a task. If ANA had been prov ided with a set of methods for doing the fou r tasks ,

t h e n (as F i g u r e 6 - 2 shows) it would have taken ANA about 151 cyc les to do TaskO, 225

c y c l e s to do T a s k l , 120 cyc les to do Task2, and 302 cycles to do Task3. Thus it takes A N A

about 3 to 6 times as long to do an unfamiliar task as it would take it to do a familiar task of

c o m p a r a b l e d i f f icu l ty . It takes ANA about 1.3 to 1.8 times as long to do a task that it can do

in v i r t u e of its accommodation capabil ity as it would take it to do the same task w i t h a set of

m e t h o d s d e s i g n e d for the task.

G i v e n A N A ' s per formance on the four tasks, one conclusion that seems w a r r a n t e d is that if

a s y s t e m is p r o v i d e d w i th a set of highly specific methods for performing a f e w tasks, and if

45

TaskO T a s k l Task2 T a s k 3
R u n l Run2 Run l Run2 R u n l Run2 R u n l Run2

Ini t ia l methods
T a s k methods 30 25 56 35 23 19 68 46
T h e " f i n d " method 140 126 273 190 116 101 314 256

A n a l o g y tools
K n o w l e d g e nets 75 0 254 0 125 0 269 0
S e t t i n g up analogies 65 0 236 0 92 0 228 0
Us ing analogies 171 47 497 143 243 65 546 155
U n d e r - s p e c i f i e d r e c o v e r y 0 0 31 0 28 0 123 0
O v e r - s p e c i f i e d r e c o v e r y 0 0 28 7 8 0 52 29

N e w p r o d u c t i o n s
M e t h o d associat ion 3 3 8 7 4 4 9 7
Net e x t e n s i o n 0 0 6 0 0 0 6 0
M e t h o d patching 0 3 9 16 4 7 23 19

T o t a l 484 204 1398 398 643 196 1638 5 1 2

F igure 6 - 2 : ANA's performance on four tasks (number of cyc les)

at least one of these methods is almost adequate for each unfamiliar task w i t h w h i c h the

s y s t e m wi l l be faced, then an assimilation and accommodation s t ra tegy like the one A N A

e m p l o y s enab les the system to learn to perform unfamiliar tasks without requi r ing it to k n o w

much about learning. If the methods are almost adequate, then the t y p e s of p rob lems that

t h e s y s t e m can encounter are quite limited: (1) The method being used can be

u n d e r - s p e c i f i e d ; so the system will have to learn what the additional p r e - c o n d i t i o n s o n the

m e t h o d are . (2) T h e method being used can be over - spec i f ied ; so the sys tem wil l h a v e to

l e a r n w h a t const ra ints to ignore. (3) Subgoals that are generated by the method may not be

a p p r o p r i a t e f o r the unfamiliar task; so the system will have to learn what the ana logous

s u b g o a l s are . T h e mechanisms required to solve all three problems are v e r y simple.

A N A ' s s t r e n g t h , then , is that its learning mechanisms are simple, but e f fec t i ve — at least

f o r s imple tasks. A n d since ANA recovers from method inadequacy b y c reat ing p a t c h e s

loca l l y as par t icu lar problems arise, task complexity, of itself, presents no special d i f f icu l t ies .

If A N A is g i v e n a complex task that can be decomposed into a set of subtasks for w h i c h it has

almost adequate methods, ANA's learning mechanisms will enable it to patch those methods

a p p r o p r i a t e l y . T h e fact that ANA is so dependent on a store of almost adequate methods may

a p p e a r to be a signif icant limitation. But these methods are highly specif ic and thus eas i l y

a c q u i r e d . T h e knowledge embedded in each of ANA's task methods is just that k n o w l e d g e

46

w h i c h w o u l d be acqui red if ANA were to be led, step by step, through a part icular task. T h u s

w i t h some somewhat laborious training, ANA could acquire a store of methods suf f ic ient to

e n a b l e it to p e r f o r m a wide va r ie ty of unfamiliar tasks. ANA does, h o w e v e r , have a s e r i o u s

w e a k n e s s : its knowledge of how to select an appropriate (almost adequate) method is

e x t r e m e l y l imited. If A N A had a large number of methods from which to select , it w o u l d n e e d

m o r e k n o w l e d g e of the interrelationships among actions and among ob jec ts and more

k n o w l e d g e of how to determine the dimensions along which to compare tasks. If A N A had

s u c h k n o w l e d g e , and if it had a large store of methods, its learning s t r a t e g y w o u l d b e

e f f e c t i v e in many n o n - t o y domains.

Acknowledgements

T h e d e v e l o p m e n t of many of the ideas discussed above owes much to the members of a

p r o d u c t i o n s y s t e m g r o u p at Carnegie -Mel lon Univers i ty . The members of this g r o u p , in

add i t ion to mysel f , are C F o r g y , J . Laird, P. Langley, A. Newell , and M. Rychener . I also w a n t

to a c k n o w l e d g e the helpful comments on the first draft of this paper f rom J . B e n t l e y and

D. K o s y .

47

References

A n d e r s o n . J . R., P. J . Kline and C. M. Beasley Jr . Complex learning p rocesses . Techn ica l

R e p o r t . Department of Psychology , Yale Univers i ty , 1978a.

A n d e r s o n , J . R., P. J . Kline and C. M. Beasley J r . A T h e o r y of the acquisit ion of c o g n i t i v e

ski l ls . Technica l Report . Department of Psychology, Yale Un ivers i ty , 1978b.

F o r g y , C. A p roduct ion system monitor for parallel computers. Technical R e p o r t .

Depar tment of Computer Science, Carnegie -Mel lon Univers i ty , 1977.

F o r g y , C. and J . McDermott . OPS, a domain-independent product ion system language. I J C A I ,

5, 1977.

M c D e r m o t t , J . Some s t rengths of production system architectures. Proceedings of N A T O A S I

on St ructural/Process Theor ies of Complex Human Behavior. Si j thoff , 1978.

M c D e r m o t t , J . and C. F o r g y . Production system conflict resolution strategies. In D. Wate rman

and F. H a y e s - R o t h (eds) , Pattern-Directed Inference Systems. Academic Press , 1978.

M o o r e , J . and A. Newel l . How Can Merlin Understand? In L. Gregg (ed) , Knowledge and

Cogni t ion . L a w r e n c e Erlbaum Associates, 1973.

N e w e l l , A. Knowledge representat ion aspects of production systems. I J C A I , 5, 1977.

R y c h e n e r , M. Cont ro l requirements for the design of product ion system a r c h i t e c t u r e s .

Proceed ings of the Symposium on A I and Programming (SIGART/SIGPLAN) , 1977.

S u s s m a n , G. J . A Computer Model of Skill Acquisition. American Elsevier , 1975.

