NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78~156

ANA: AN ASSIMILATING AND ACCOMMODATING
PRODUCTION SYSTEM

John McDermott
December, 1978

Abstract

In order for a system to fearn how to do new tasks, it must be capable of assimilation and
accommodation. The assimilation capability enables a system to relate unfamiliar situations to
situations that it knows about. Through assimilation, an unfamiliar situation is transformed,
for a time, into a familiar situation. The accommodation capability enables a system to make
such transformations permanent. ANA, the system described in this paper, is a production
system that is capable of both assimilation and accommodation. Initially, ANA has a few
methods for accomplishing a variety of simple tasks. When it is given a not too unfamiliar
task, it performs that task by analogy with one of the tasks it has a method for. When it
accomplishes a new task (and typically this happens only after the method has been extended
to handie problems that it was not designed to cope with), it stores the knowledge of how it
did the task. 1f ANA s subsequently faced with the same task, it recognizes the task and
performs it using the knowledge previously gained.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, and
menitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1151.

The views and conclusions conlained in this documenl are those of the auther and should not be interpreted as

represonting the official policies, sither expressed or implied, of the Defense Advanced Research Projects Agency or the
US. Govarnment.

University Libraries
Carnegie Mellon Universj
Pittsburgh PA 15213-389

1. Introduction

Any Al system that hopes to ever amount to much must have two capabilities. First, it
must be capable of assimilation; it must be able to bring to bear whatever knowledge it has
that is relevant to an unfamiiiar task -- even though that knowledge was acquired in a variety
of unrelated contexts. Second, it must be capable of accommodation; It must be able to
augment and modify the knowledge that is has so that unfamiliar tasks become familiar. The
work described in this paper, shows one way in which these two capabilities can, in a modest
way, be realized.

The system described, ANA, has a limited amount of knowledge about how to function in a
simple environment. When presented with an unfamiliar task, it tries to determine whether it
has knowledge relevant to that task. If it finds such knowledge and the knowiledge enables it
to perform the task, then it associates that knowledge with the task. If it encounters
difficulties as it performs the task, it augments its knowledge in a way that enables it to avoid
these difficulties when they subsequently arise. ANA is a production system; its productions
are organized as a set of methods. The particular (and only) assimilation and accommodation
strategy that ANA employs is to use these methods analogically. When given an unfamiliar
task, it maps the description of a task for which it has a method into the description of that
unfamiliar task. Then as it uses ite method, instead of executing the actions prescribed by
the method, it executes the actions dictated by the mapping. Whenever ANA is able to use a
method successfully on an unfamiliar task, it builds a production that associates that method
with the description of the task (thereby making the unfamiliar task familiar). If in the course
of doing a task the analogy breaks down, ANA attempts to patch the method; if it finds a
patch, it builds a production that associates the patch with whatever caused the breakdown.
ANA sometimes encounters difficulties that it cannot figure out how to remedy. When this
occurs, ANA asks the person instructing it how to resolve the problem; it then builds a
production that associates the instructor’s remedy with the difficulty.

One of ANA’s iimitations should be noted from the start. ANA cannot "learn” new methods.
The methods that it uses are all sets of hand-coded productions that form part of the initial
contents of its production memory. The productions that it buiids do in fact augment its
abilities, but they do so by extending the domain of the methods that it already has. ANA

could, of course, start off with a different set of methods or with additional methods, but it
currently has no way of acquiring methods from scratch,

'he body of the paper is divided into four sections. In the next section | describe in
considerable detail the way in which ANA’s knowledge is represented. In the third section, |

describe ANA’s task environment (an automatic paint shop), discuss four of the tasks that ANA
has been given, and display one of ANA’s methods. The fourth section deals with assimilation;
I discuss how ANA makes use of its methods to perform unfamiliar tasks by analogy and
describe the various strategies that ANA uses when an analogy breaks down. The fifth
section deals with accommodation; I describe the various productions that ANA builds in order

to transform unfamiliar tasks and unfamiliar difficulties into familiar (and unproblematic) ones.

2. Some Context

One of my reasons for doing the research described below was to explore the degree of
support that a production system architecture provides for assimilation and accommodation.
Taking the architecture as given, I looked for a way of representing ANA’s knowledge that
would make it easy for ANA to transform unfamiliar tasks into familiar ones. After describing
the representation that I developed, 1 will discuss the extent to which it constrains the choice
of assimilation and accommodation strategies, and 1 will briefly characterize the strategy that
ANA employs.l

2.1 How ANA Represents Its Knowledge

The production system architecture used to implement ANA is called OPS2 [Forgy and
McDermott, 1977; McDermott, 1978; Newell, 1977]. An OPS2 production system consists of a
collection of productions held in production memory and a coliection of data elements held in
working memory. A production is a conditional statement composed of zero or more condition
elements and zero or more action elements. Condition elements are templates; when each can
be matched by an element in working memory, the production containing them is said to be
instantiated. An instantiation is an ordered pair of a production and the elements from
working memory that satisfy the conditions of the production. The production system
interpreter operates within a control framework cailed the recognize-act cycle. In recognition,
it finds the instantiations to be executed, and in action, executes one of them, perfarming
whatever actions occur in the action side of the production. The recognize-act cycle is
repeated until either no production can be instantiated or an action element explicitly stops
the processing. Recognition can be divided into match and conflict resolution. In match, the
interpreter finds the conflict set, the set of all instantiations of productions that are satisfied

1 Anderson’s production system, ACT, which models human cognitive processes, uses rather different assimilation and
sccommodation sirategies [Anderson, Kline, and Beasley, 1978a and 1978b) Comparing ACT’s strategies with ANA's
gives goma hint of the space of strategies that are available to production sysiems. For a general discussion of the
issues thal face anyone designing @ system wilh assimilation and sccommodation capabilities, see Moore and Neweil
[1973]

on the current cycle; OPS2 is implemented in such a way that the time needed to compute the
conflict set is essentially independent of the size of production memory (see Forgy [1977]).
In conflict resociution, the interpreter selects {on the basis of a few simple rules) one
instaniiation to execute (see McDermott and Forgy [1978]). The actions that can be
performed inciude adding elements to and deleting elements from working memory and
building new productions composed of elements in working memory.

In order to provide ANA with the capability of perfarming a variety of tasks, its knowledge
is represented as a set of methods. Each method contains the knowledge that ANA needs in
order to achieve some goal. Since part of this knowledge is the knowledge of subgoals that
have to be achieved, ANA’s knowledge is organized, though only implicitly, as a hierarchy of
methods. The productions that comprise each of ANA’s methods have condition sides with a
quite simple form. This form is perhaps most easily described in terms of the type of data
etlement that each condition can match. A data element contains information about a goal or
about some feature of ANA's environment. In addition, each data element contains a
subelement, which T will refer to as the marker, that specifies, among other things, the type
of the data element [see Rychener, 1977). There are four types of data elements: goals,
constraints, percepts, and concepls.

A data element marked "goal" contains two subelements (in addition to the marker). One of
these subelements is a pointer to the set of constraints on the action {o be performed; the
other is a pointer o the set of constraints on the object to be acted on. A data element
marked "constraint™ contains three subelements (in addition to the marker); constraints are
attribute-name-value triples. A goal element and the two sets of constraints that it points to
are collectively a goal description. When ANA attempts a task, it finds an object that fits the
description stipulated by the object constraints and performs the type of action stipulated by
the constraint containing the type of the action. The other action constraints specify the
expecied effect of performing that type of action on the class of objects described. Figure
2-1 displays a goal description. The stipulated action type is paint. The object to be painted
is a yellow table in a location whose label is L32. The expected effect is a change to the

surface of the object; specifically, the color of the object should be red once the goal is
achieved.

A data element marked "percept” contains information about one of the objects in ANA’s
environment. In ANA’s world, an object is just a bundle of percepts (a set of attribute-value
pairs). ANA "sees" an object whenever a production containing the operator @scan fires.
@scan takes a (partial) description (a set of attribute-value pairs) as its argument and
searches the environment for an object matching that description, If it finds such an object,

it deposits a set of elements, each of which is marked “"percept", in working memory; each of

Goal description: Paint the yellow table in L32 red.

{actx]l object*2 (goal not-achieved 3))

(type act*l (constraint given 4) paint)

{effect act*l (constraint given 4) effectsb surface)
{color effect*S (constraint given 4) red)

(type object*2 (constraint given 4) table)

(color object*2 (constraint given 4) yellow)
(location object*2 (constraint given 4) location*6)
(label locationb {constraint given 4) L32)

Figure 2-1: A goal and a set of constraints

these data elements corresponds to one of the attribute-value pairs of the object found.
Clearly, in order for ANA to be abie to distinguish among objects, these percepts must
somehow be linked. Thus, @scan puts a "token-name", as well as an attribute and a value, in
each percept that it deposits in working r'rwamc)ry.1

A data element marked "concept” can be thought of as a processed percept. When ANA
looks at something, it does so for a reason -- ie, to find out something about the agbject. For
each percept that contains information that it cares about, it asserts an identical eiem'ent
marked "concept™. In addition, it asserts an element, also marked “concept”, that relates the
set of constraints on the object with the object’s token-name. The concept marker has
several uses: (1) It enables ANA to focus its attention on particular features of an object.
(2) ANA can pretend that an object has a value that it in fact does not have by asserting a
concept containing that value. (3) ANA can use concepts to store non-perceptual knowledge
about an object. Figure 2-2 shows a collection of percepts (the attribute-value pairs that
comprise the object that ANA thinks of as tablexl); the figure also displays two concepts.
When ANA is given a task, the description of the object that is to be operated on may, but
need not, uniquely specify an object. In order to do the task, ANA must find an object that
matches the description given. ANA’s productions distinguish between information that is
given that constrains the selection of an object and information about a particular object.
Elements that contain the first sort of information are marked “"constraint”, while elements the

1mscan does not actually generate the loken-name. Every object has a token atiribute, and the value of this attribute
{which can be thought of as ANA's privale name for the object) is used to fio the bundle of percepis together. If
@ecan generaled a token-name ilself each time it was executed then ANA sither would be unabla to recognize two
perceptual bundies as descriptions of the same objeci ai different times or would need s fairly sophisticaled recognition
capability.

contain the second sort of information are marked “"concept”. If ANA were given the task
shown in Figure 2-1, and if it looked for a chair whose color was biue in order to determine
its location, then ANA would assert the concepts shown in Figure 2-2. The concepts would
indicate to ANA that the table that it refers to as table«l is the one to be operated on.

Percept: There is a light weight, yellow table at the top of the stack in L32.

(type table*l (percept true 7) table)
(color tablex! (percept true 7) yellow)
(weight tablex] (percept true 7) light)
(location table*] (percept true 7) L*32)
(position tablex] (percept true 7) (1))

Concept: There is a table in L32 that satisfies the constraints on object*2.

(location tablex1 {concept true 8) L%32)
(token object*2 (concept true 8) tablex])

Figure 2-2: A set of percepts and a concept

As is evident from Figures 2-1 and 2-2, an element’s marker specifies more than just the
type of the element. It contains information about the status of the element, A goal may be

» "achieved”, or may have the status "no-method", A constraint may be "given",
"not-given”, or "possible”™. Concepts and percepts may be either "true" or "false". The

"nat-achieved

marker also contains information indicating the element’s recency,

2.2 ANA’s Assimilation and Accommodation Strategies

OPS2 (ie, the architecture itseif) provides little direct support for assimilation. Assimiiation
involves mapping new knowledge into existing hnowledge. The OPS2 interpreter, however,
has a match algorithm with only the most primitive mapping capabilities. Each atom in a data
element is a constant. Each atom in a condition element is either a constant (or a set of
equivalent constants) or a variabie. In order for a condition element to match a data element
(ie, in order for OPS2 to generate a mapping), corresponding constants must be identical.
Thus OPS2 can only map constants into identical constants or into a semanhcaliy impoverished
variable. In order for a production system to be capable of assimilation, then, it must have
knowiedge that enables it to generate more interesting mappings.

OPS2 does, however, provide some support for accommodation. Once a production system
has mapped new knowledge into existing knowledge and begins to perform some task, there
are two types of difficulties that it can encounter. One type arises when the method that it
is using is under-specified, ie, does not contain sufficient knowledge to enable the new task
to be done in a satisfaciory way. When a system finds that it is using an under-specified
method, it must find a way of dealing with whatever problems it has created. If it is
successful, its accommodation capability should provide it with a way of avoiding those
problems in the future. OPS2 makes this relatively easy to achieve because of its conflict
resolution rules. Each of the rules provides some support, but the principal support comes
from the special-case rule. Given two instantiations, if the data of one is a proper subset of
the data of the other, this rule selects the instantiation containing more elements. Thus the
system can simply build a production that is a special case of the production which, if fired,
would create a problem. The condition side of the new production can contain all of the
condition elements of the faulty production plus one or more additional elements that are
sensitive to the context within which the problem develops. The other type of difficulty
arises when the method that is being used is over-specified, ie, contains expectations specific
to a particular task or class of tasks, but not relevant in the current situation. If there is
nothing in the unfamiliar situation that corresponds to these expectations, then the system
does not know whether the expectations are relevant (and indicate by not being satisfied that
it is in trouble) or irrelevant. Again, once the system finds out which, it wants to remember
so that in future situations where they are not relevant they can simply be ignored. In order
tor OPS2 to provide direct support for this type of accommodation, it would have to provide
a means of modifying existing productions. OPS$2 provides only the most limited support for
this.

Since OPS2 provides almost no direct support for assimilation, in order for a production
system whose knowledge is organized as a collection of methods to assimilate new
knowledge, it must know how to do two things. First, as | have said, it must know how to
make contact between the knowledge given to it in the current task description and a
relevant method. Second, it must know how to use the knowledge contained in the method to
do the unfamiliar task. But these two requirements are somewhat at odds. Given the OPS2
match algorithm, the most likely approach to contact is to make the methods that the system
has as general as possible. In particular, whenever an attribute is relevant but its particular
value is of no concern, the value shouid be a variable. The problem with this approach is
that it makes unfamiliar tasks more difficult to accomplish since little information is around if a
method proves inadequate. If a system is using a method and runs into trouble, presumably
the method is being used in a way not foreseen by its creator. In order for the system to
figure out why the method is inadequate, it needs to know how the current situation differs

from the set of situations for which the method is adequate. But if the method is full of
variables, that information is simply not available. Thus it will be highly dependent on
whomever gave it its task for information about how to get out of the difficulty that it is in.

So that ANA will have some information to help it recover when one of its methods proves
inadequate, each of its methods for operating on its environment is tailored to a specific
situation. ANA has, for example, a method for carrying tables from one specific location in its
environment to another specific location. Since this method is tailored to this one situation, it
can be used effectively both for its intended class of tasks and for other quite different
tasks. Since the class of tasks for which the method is intended is so constrained, it is likely
that the method will be adequate for any task in the class. If the method is used to
accomplish some task for which it was not intended, it will often turn out to be inadequate.
But the knowiedge of the differences between the task it was given and the task that the
method knows how to accomplish will be easy to discover. ANA’s response to an unfamiliar
task is to map it into a task that one of its methods can accomplish, and then use that methog
analogically. In effect, ANA’s strategy is to severely limit the immediate applicability of its
methods so that when it is asked to perform an unfamiliar task, it will know exactly how to
perform a comparable task, and it will know from the mappings all of the differences between
that familiar task and the unfamiliar task. The expected gain is that this knowledge will
enablie it to modify its behavior in precisely the way needed to perform the unfamiliar task.

ANA’s technique for dealing with method inadequacy is simply to watch for things to go
wrong. It has some productions that are sensitive to the most common types of problems {eg,
its inability to apply one of its operators to an object in the environment). Before it tries an
unfamiliar task, it builds additional productions that are sensitive to specific problems that
could arise (eg, its failure to realize some particular expectation). The reason for choosing
this technique is one of efficiency. If a production system has a set of rules that are
sensitive to manifestations of inadequacy, then the system does not need to continuously
attend to the adequacy of its method; it can set up an initial set of mappings, assume that that
set of mappings is adequate, and just cycle until some event occurs that forces it to
recognize that a modified set of mappings is required. The alternative is to build the
production system in such a way that it interrupts itself after each cycle, examines the
consequences of the previous production firing for the task it s trying to accomplish,
modifies its mappings if it sees that that is required, and then continues. The overhead cost
of this alternative technique is very high, and it is not clear that anything would be gained by
using il. ANA interrupts itself enough to keep itseif on the right path most of the time. On
those occasions when it does get off the path, the amount of time that it would take it to

foresee that it was going astray may in fact be greater than the amount of time it takes it to
correct its mistakes,

Though accommodation is simply the process by which the results of assimilation can be
made permanent, the new knowledge can be stored in a variety of ways. After a system has
successfully used a method to perform an unfamiiiar task, it is in a position to make that
method more general. It can try to modify the method in such a way that the method will
now apply to the union of the class of tasks for which it was originally intended and the class
of tasks which the task it just accomplished is an instance of. One possibie approach to
generalizing a method would be to find the constants in the description of the unfamiliar task
that could be straightforwardly mapped into constants in the productions comprising the
method; these constants could be replaced with variables. Then for each production
containing a crilical constant a second production could be built containing the corresponding
constant from the description of the unfamiliar task. The advantages of this use of
accommodation, if it works, are clear. But there are two difficulties, First, it is not clear how
a system would decide if a mapping was "straight-forward"; however it would do it, surely it
would frequently make mistakes. Thus it is possible that a system might learn more in the
jong run with an accommodation strategy that avoided generalization. The second difficulty
has already been menltioned: the more general a method is, the more difficult it is to
determine, in the context of a particular task, why it is inadequate. Thus if a method is
generalized, it will be harder for a system to figure out what to do if the method breaks
down than if it had not been generalized.

ANA's accommodation strategy is simply o preserve the results of its assimilation of new
knowledge. Whenever it successfully accomplishes a task {or subtask) by analogy, it builds a
production that associates the description of the new task with the method that it used to
accomplish that task. It makes no modifications to the productions cornbrising this method. If
ANA has to overcome difficulties in order to accomplish a task (ie, if the productions
comprising the method are not by themselves adequate to accomplish the new task), ANA
builds productions that are special cases of the original productions; these productions enable
ANA to avoid the difficulties in the future. Since the original very specific method is always
the method used, if the extended method proves inadequate, ANA has access io the
information that will enable it 1o discover the differences between its current task and the

task for which the method was ir‘-tended.1

1Anyone familiar with HACKER [Sussman, 1975] will have noliced that HACKER and ANA have similar aspirations.
Both systems start out with a limited amoun! of knowledge and try to build on that knowledge in such a way ihal they
become increasingly beiter able to accomplish unfamiliar tasks. Bul they hava rather different building strategies. When
HACKER encounters an inadequacy in one of its procedures, it examines the code; when it finds the bug, it rewrites the
procedure. ANA is more of a hackor. Whan ANA encounters an inadequacy in one of its methods il determines what
behavior is appropriate and asscciales that behavior with a descriplion of its current context. Each of ANA's fixes is
pre-eminonily a patch.

3. ANA's Task Environment

ANA’s task is to manage a paint shop. ANA operates a machine that sits in the middle of a
shop. The only things in the shop other than the machine are a variety of paintable objects
and some overhead lines that enable ANA to cart objects around. The shop and the things in
it are all abstractions of real objects; they are represented as collections of attribute-value
pairs. The shop is a 3 by 6 matrix; each square in the matrix is a stack with type location,
one of 18 positions ((1 1) - (3 6), a label (L1l - L36) and a composition (the stack of objects
that occupy it). Each of the objects in the shop have a type (eg, chair, box, desk), a location, a
position in the location, a color, a weight, and a state (clean or dirty). The shop and its current
contenls are shown in Figure 3-1.

brown box

hiown box red paint

orange box green safe yellow pamnt

green chair red desk
machine
blue chair water bottle red desk
L31 L3z L33 l L34 L3% {[red chair }|L36 l
veltow tabie red chair
brown table yeltow chair
brown table yellow chair red box

Figure 3-1: ANA's paint shop

ANA has five operations that it can perform on the objects in the shop. One of its
operators, @spray, starts the machine. Three other operators, @carry, @mpush, and @cart,
enable it to move objects from one location to another. ANA’s other operator, @scan, as 1
mentioned, enables it to see what is in the shop. In keeping with the somewhat artificial
nature of the shop and its contents, there are some artificial constraints on these operators.

10

Which of the move operators is applicable is determined by the weight of the object to be
moved. @carry can be used only with light objects, ®push only with heavy objects, and
@cart only with really-heavy objects; @carry cannot be applied to an object unless that
object is the top object in a stack, and neither @push nor @cart can be applied unless the
object is the only object in a location. If an object is carried to a location that already
contains four objects, it will fall onto an adjacent location; if an object is pushed or carted to
a location that already contains one or more objects, it will end up in an adjacent location. In
order to paint an object, ANA must move it to location L23 and must put a paint can on top of
the machine {in location L24); the operator, @spray, will modify the color of the object in L23
and cause it fo be output in location L34. If there is not exactly one object in L23, ®@spray
does nothing; if there is no sprayable substance on top of the machine, the object in L23 wiil
be output to L34 unchanged. The move operators all take the "token-name" of the object to
be moved and the "token-name" of the location to which it is to be moved as their arguments.
Thus these operators all presuppose a prior @scan. It should be noted that in ANA’s world
some attributes are mutable and some are nol. Weight is the only immutable attribute; color,

state, position, and location are all mutable.

ANA’s initial task-specific knowledge consists of six methods. ANA has a method for
painting tables whose initial location is L32 red. ANA also has a method for clearing off the
top of desks that are in L32. ANA’s other four methods are ali methods for transporting
objects. One of these methods enables it to move boxes that are in L25; the location to
which a box is to be moved is not specified. A second method enables ANA to carry tables in
L32 to L23. A third method enables ANA to carry cabinets in L11 to L16; this method
assumes that the position of the cabinet in the stack is known (and is known to be something
other than top) and so calls the cleartop method as a submethod. The fourth method enables
ANA to cart cabinets in L3} to L23; this method is tailored for the situation in which the
cabinet to be moved is really-heavy.

Four of the tasks that ANA has been given will be used as examples throughout the rest of
the paper. The four tasks are:
- Task0: Paint the yellow table in L32 red and then move it to L16.
- Taskl: Paint the blue chair in L2] red and then move it to L35.
- Task2: Wash the thing in L12.
- Task3: Paint the box at the bottom of the stack in L11 yellow,

TaskO is, for ANA, by tar the most straight-forward of the four. To do this task, ANA must

11

@carry the table at the top of 132 to .23, then @carry the paint can at the top of L14 to
L24, then @spray, then Mcarry the paint can at the top of L24 to L14, and finally @carry the
table at the top of L34 to L16. Since ANA has a method for painting tables that are in L32
and a method for carrying tables from L32 to L23, much of this task can be done without
using analogy; the subtasks that do require analogy are all easily mapped into ANA’s method
for carrying tables. Taskl is from ANA's point of view much more complex. When ANA tries
to ®carry the blue chair in L2] to L23, mcarry will fail since the blue chair is not at the top
of the stack; so ANA will have to clear off the top of the blue chair. When ANA carries the
painted chair from L34 to L25, it wiil fall off of the stack since the stack already has four
objects in it. Task2 creates other problems. When ANA tries to @carry the thing (the safe)
in L12 to L23, mcarry will fail since the safe is heavy; so ANA will have to select a different
operator {@push). When ANA gets to the point in its method for painting tables where the
submethod of carrying a paint can from L14 to L24 is generated, it must recognize that this
submethod is inappropriate and instead carry the water bottle in L25 to 124, Task3 raises,
among olher problems, the problem of selecting among competing methods. ANA has a
method for carrying cabinets thal are not at the top of a stack and has a method for carting
cabinets that are really~-heavy. In this task, ANA must carry a box that is really-heavy and at
the bottom of L11. Neither of the methods is adequate. For reasons that will be discussed
below, ANA uses its method for carrying cabinets that are not at the top of the stack; @carry
fails since the box is really-heavy; so ANA has to select a different operator (@cart). When
ANA tries to @carry the yellow paint can to L24, @carry wili fail since the paint can is not at
the top of the stack; so ANA will have to clear off the yellow paint can.

In order to give an idea of what ANA’s task-specific methods look like, its method for
painting tables is shown in Figures 3-2, 3-3, and 3-4. ANA’s paint method consists of six
productions (paintl - paintﬁ).l. The conditional part of paintl consists of seven condition
elements. The first of these, the element marked "goal", contains two variables that associate
a set of action constraints with a set of object constraints. The next three conditions are
constraints on the action: it must be of type paint, the effect of the action must be to change
the surface of an object, and the expected change to the surface is that it will become red.
The final three condition elements are constraints on the object to be acted on: it must be of
type table, it must occupy a location, and the label of that location must be L32. The action
part of the production consists of five elements that describe a subgoal that must be

1A teral atom whose name begins wilh "=" ic a variable. A variable may match any single data subelement; if
variable occurs mora than once in a production, all occurrences must match equal subelements. The operator, <bind:,
returns a symbol different from the symbols returned on previous calis to <bind»>. If <bind> ig given a variable name as
its argument, the vaive returned by <bind> is bound to that variable

12

IF the goal is to paint a table in L32 red, THEN generate the subgoal of finding an
object in L32 that satisfies the constraints on the object to be acted on.

paintl ((=act =object (goal not-achieved =time))}
(type =act {constraint given =time~a) paint)
teffect =act (constraint given =time-a} =effect surface)
(color =effect (constraint given =time-a) red)
(type =object {constraint given =fime-0) table)
{location =object (constraint given =time-o0) =location)
(label =location (constraint given =time-0) L32)
-—>
({(<bind> =new-act) =object (goal not-achieved (<bind>)))
{type =new-act (constraint given (<bind> =new-time)) find)
(effect =new-act {constraint given =new-time) (<bind> =new-effect) mind)
(location =new-effect {constraint given =new-time) {<bind> =location-effect))
(label =location-effect (constraint given =new-time) L32)

IF the goal is to paint a table in L32 red and there is an object in L32 satisfying
the constraints on the object to be acted on, THEN generate the subgoal of
carrying that object to L23.

paint2 ((=act =object (goal not-achieved =time})
(type =act (constraint given =time-a) paint)
(effect =act (constraint given =time-a) =effect surface)
(color =effect (constraint given =time-a) red)
(type =object (constraint given =time-0) table)
(location =object {constraint given =time-0) =|ocation)
{label =location {constraint given =time-0) L32)
(token =object (concept true =) =tokenl)
(token =location (concept true =) =token2)
(location =tokenl (concept true >time) =token2)
(label =token2 (concept true >time} L32)
-—
{{<bind> =new-act) =object (goal not-achieved (<bind>))}
(type =new-act (constraint given (<bind> =new-time)) carry)
(effect =new-act (constraint given =new-~time} {<bind> =new-effect) location)
(location =new-effect (constraint given =new-time) (<bind> =location-effect))
(label =location-effect (constraint given =pew-time) L23))

Figure 3-2: ANA's paint method

13

paint3 { (=act =object (goal not-achieved =time))
(type =act (constraint given =time-a) paint)
{effect =act {constraint given =time-a) =effect surface)
{color =effect (constraint given =time-a) red)
{type =object (constraint given =time-0) table)
{token =object (concept true =) =tokenl)
{token =location {concept true =)} =token?2)
(location =tokenl (concept true >time) =token2)
(label =token2 (concept true >time) L23)
——
({<bind> =new-act) (<bind> =new-object) {goal not-achieved (<bind>}))
{type =new-act (constraint given (<bind> =new-time)) carry)
(effect =new-act (constraint given =new-time) (<bind> =new-effect) location)
(location =new-effect (constraint given =new-time) (<bind> =location-effect))
(label =location-effect {(constraint given =new-time) L24)
(type =new-object (constraint given =new-time) pntcan)
(location =new-object (constraint given =new-time) {<bind> =new-location))
{label =new-location (constraint given =new-time) L14)
(label =new-object (constraint given =new-time) red))

paint4 { (=act =object (goal not-achieved =time))
(type =act {constraint given =time-a) paint)
(effect =act (constraint given =time-a) =effect surface)
(color =effect (constraint given =time-a) red)
{type =object (constraint given =time-0) table)
{token =object {concept true =) =token])
(location =tokenl (concept true >time) =token2)
{label =tokenZ (concept true >time) L23)
{type =other-object (constraint given =time-00) pntcan)
(label =other-object (constraint given =time-00) red)
(token =other-object (concept true =) =token3)
(location =token3 (concept true >time) =tokend)
(label =tokend (concept true >time) L24)

—-_—

(@spray)
{((<bind> =new-act} =object (goal not-achieved (<bind>))}
(type =new-act (constraint given (<bind> =naw-time)) find)
(effect =new-act (constraint given =new-time) (<bind> =new-effect) mind)
(color =new-effect (constraint given =new-time) red)
(location =new-effect (constraint given =new-time) (<bind> =location-effect))
(label =location-effect (constraint given =new-time) L34))

Figure 3-3: ANA’s paint method, continued

14

paintd ((=act =object {goal not-achieved =time))
(type =act (constraint given =time-a) paint)
(effect =act (constraint given =time-a) =effect surface)
{color =effect {constrainl given =time-a) red)
(type =object {constraint given =time-o0) table)
(token =object (concept true =) =tokenl)
(location =tokenl (concept true >time) =token2)
(tabel =token? (concept true >time} L34)
(color =tokenl {concept true >time) red)
(type =other-object (constraint given =time-o0o) pntcan)
(label =other-object {constraint given =time-00) red)
{location =other-object (constraint given =time-o00) =iocation)
(token =other-object (concept true =) =token3)
{location =token3 {(concept true >time) =tokend)
(label =tokend (concept true >time} L24)
L
{{(<bind> =new-act) =other-object (goal not-achieved (<bind>)))
(type =new-act {constraint given (<bind> =new-time)) carry)
(effect =new-act (constraint given =new-time) {<bind> =new-effect) location)
(location =new-effect (constraint given =new-time) (<bind> =location-effect))
(label =location-effect (constraint given =new-time) L14)
(label =location (constraint given =time-00) L24))

paint6 { (=act =object (goal not-achieved =time)) & =w
{type =act (constraint given =time-a) paint)
(effect =act {constraint given =time-a) =effect surface)
(type =object (constraint given =time-o) table)
(token =object (concept true =) =tokenl)
{location =tokenl {(concept true >time) =token2)
{label =token2 {concept true >time) L34)
(color =tokenl (concept true >time) red)
(type =other-object (constraint given =time-00) pntcan)
(1abel =other-object (constraint given =time-00) red)
(token =other-object (concept true =} =token3)
{location =token3 (concept true >time) =tokend)
(iabel =tokend {(concept true >time) Li4)
-

(<deiete> =w) {=act =object (goal achieved =time)})

Figure 3-4: ANA’s paint method, continued

15

achieved in order for the painting task to be accomplished: the subgoal is to look in the shop
for an object satisfying the object constraints given in the conditional part of the production
and nolice the label of that localion. The second production, paint2, has a conditionai part
consisting of 11 condition elements. The first seven are identical to the seven condition
elemenls in paintl. The eighth condition element matches a data element that links the
description of the object to be acted on with the token-name of an object fitting that
description. The ninth matches a data element that links the description of the iocation of the
object to be acted on with the token-name of a location fitting that description. The final two
condition elements stipulate values that the two token-names must have. Put another way, if
ANA is given the goal of painting the table in L32 red, and if it has found a table in L32, then
paint2 can fire. The result of firing paint2 is that the subgoal of carrying the table in L32 to
L23 is generated. The other four productions comprising ANA’s paint method have the same
form as paintl and paint2. Paint3 can fire when the table to be painted is known to be in
L23; the result of firing paint3 is that the subgoal of carrying the paint can labeled red from
L14 to L24 is generated. Paintd activates the paint machine and generates the goal of
checking to make sure that a red object was output. PaintS generates the subgoal of
carrying the paint can back to L14. Paint6 can fire when ANA has accomplished its task.

4. Assimilation

To do the tasks described in the previous section, ANA has to be able ta assimilate new
knowledge. Since the few methods that ANA has for getting things done in the shop are not
{for the most part) the methods needed o do these tasks, it must find a way to apply the
knowledge that it does have to the unfamiliar tasks, ANA’s strategy is to find a method that
is adequate for a related task and assume that this method will be adequate for the new task.
Since this assumption will inevitably (and often) lead it fo do the wrong thing, it must have -
ways of correcting its errorful actions. ANA’s solution is to watch for signs that it is not
accomplishing its task. If it sees thal it has achieved a result other than the one it intended
to achieve, it assumes that the method it is using does not take into account one or more
constraints imposed by the particular task at hand; in this case it tries to determine what the
additional constraints are and then tries the task again keeping those constraints in ming. If
it sees that it is unable to achieve a result because of some constraint imposed by the
method it is using, it checks with its instructor to see if that canstraint is necessary; if the
instructor indicates that it is not necessary, ANA ignores the constraint and continues with
what it is doing. In this section, I will first describe how ANA makes contact with an
appropriate method and how it maps the task that this method can accomplish into the task it
is given. Then I will describe how ANA recovers when a method turns out to be inadequate
for the task that is given.

16

4.1 Contact and Mapping

When ANA is given the task of painting the yellow table in L32 red (task0), it recognizes
the task as one that it knows how to accomplish. Since it has a method for painting tables in
L32 red, it simply uses that method. When its paint method generates the subgoal of carrying
the table from L32 to L23, it uses its method for carrying tables to accomplish this subtask.
But when the painting method generates the subgoal of carrying red paint from L14 to L24,
ANA is faced with an unfamiliar task. At this point ANA has to make contact with one of its
existing methods. An obvious candidate, of course, is its method for carrying tables from L32
to L23, but how is ANA to know this? It needs some way of making contact with the method.
In order to enable ANA to use one of its methods to accomplish an unfamiliar task, each
method has associated with it a method description production. These method description
productions enable ANA to relate unfamiliar tasks to familiar ones.

The method description production for ANA’s paint method is shown in Figure 4-1. The
conditional part of this production differs from the conditional part of the productions that
comprise the actual method (shown in Figures 3-2, 3-3, and 3-4) in four ways: (1) The initial
condition element is marked “goal no-method” rather than "goal not-achieved”. (2) The
condition elements specifying the action type and object type are marked "constraint
not-given" rather than "constraint given". (3) Each of the other constraints is marked
"constraint given”, but has no value specified for its attribute. (4) The final two condition
elements have nothing corresponding to them in the productions that actually comprise the
method. The "goal no-method” marker in the first condition element provides a way of
insuring that no method description production will fire unless ANA has no method for the
task it is given. The two condition elements marked "constraint not-given" provide ANA with
a way of making contact between its existing methods and the task at hand. The purpose of
the other constraints is simply to test for the availability of information that might have some
bearing on how the task is done. Of the final two conditions, the negated onel insures that
ANA will not consider the same method twice as it examines alternative methods; the other
condilion element guarantees that the method description production will fire as soon as it is
enabled. The action part of the production contains the set of constraints that the paint
method is familiar with. These constraints are marked "constraint possible” rather than
"constraint given" to indicate their provisional nature. A method description production
simply proposes its method; before ANA uses the method it evaluates the method’s adequacy.

JaA "." in front of a condition element indicates that \he production containing the element <an be enabled only if there
is no element in working memory that matches it.

17

paint¥ ({=act =object (goal no-method =))
{type =act (constraint not-given =) paint)
(effect =act (constraint given =) =effect surface)
(type =object (constraint not-given =) table)
(tocation =object (constraint given =) =|ocation)
-(analog (paint table) (concept true =) (=act =object =effect) 2)
{cycle ! =)

-

(analog (paint tabie) (concept true (<bind> =new-time)) (=act =0bject =effect) 2)
(type =act (constraint possible =new-time) paint)

(effect =act (constraint possible =new-time) =effect surface)

(color =effect (constraint possible =new-time) red)

(type =object (constraint possible =new-time) table)

(location =object (constraint possibie =new-time) =location)

(label =location (constraint possible =new-time) L32))

Figure 4-1: A Method Description Production

4.1.1 Method Selaction

In order for ANA to be able to make contact between its methods and unfamiliar tasks, it
needs some way of determining what actions are related to the action that is specified by the
task and what objects are related to the object that is fo be acted on. Part of its production
memory contains such knowledge. The knowledge is represented as a tree of types; each
node of the tree is defined by a set of productions. Each of these productions has as one of
its condition elements the node’s type; this element is marked "constraint not-given"™. One of
the productions has as one of its action elements an element marked “constraint not-given"
indicating the supertype of that type; each of the other productions has as one of its action
elements an element marked “constraint not-given" indicating an instance of that type.
Ancther condition in each of the productions encodes information about direction {up or
down) so that'from any node, ANA can either go up to a supertype or down to an instance.

Initially, ANA knows the type relationships of the 8 actions and the |5 things shown in Figure
4-2,

When ANA is given an unfamiliar task, it generates the goal of searching its semantic net of
action types and its semantic net of object types for actions and objects related to those
given in the description of its task. It first asserts the type of the stipulated action and the
type of the object to be acted on; both assertions are marked “constraint not-given". 1f ANA
has productions with condition elements matching these two types, then all of the downward

i8

thing
\
object location
/
furniture container
\
[ehair] table lamp can bottle box
desk pntean watbot safe cabinet
action
\
i spray [eleartop] move
N\ N
paint wash carry push cart

Figure 4-2: An action net and an object net

arcs from the two nodes are traversed {alternatingly) in a depth first search.l When all of the
downward nodes have been touched, ANA goeé up one level and then traverses all downward
arcs that it has not yet traversed. Each time a production fires, the possibility exists that
one of ANA’s method description productions has become satisfied. If one does, it fires, and
the method it describes is evaluated; then if the evaluation suggests that continuing the
search for alternative methods is warranted, control is returned to the net and the process of
traversing the net continues. Since the two nets that ANA must explore are so smali, the

11¢ ANA does not have a production for one of the 1ypes, it asks the instructor for that type's supertype. When
the inatructor responds, ANA builds a pair of preductions. One of them will assert the supertype whenever ANA is
searching upward and an eiement marked “"consiraini noi-given" and containing the type ia asserted. The other will
assorl the type whensvaer ANA is searching downward snd an slement marked "constraint not-given" and containing the
superiype is asseried ANA adds the nodes for "chair" and "cleartop” (see Figure 4-2) in the course of doing the four
tasks.

19

depth first search strategy that it employs does not consume a great deal of time. It is
probably the case that for larger (ie, branchier) nets, a more inteliigent search strategy
would be required.

If ANA is given the task of washing the safe in L12 (Task2), its semantic net mechanism
will, after a few cycles, enable the method description production for painting tables, and that
production will fire, At that point, ANA will evaluate its method for painting tables. The first
step in this evaluation invoives setting up a mapping between the description of its actual
goal and the pseudo-goal-description generated by the method description production. ANA
first finds all of the attributes in the description of the actual task ("constraint given"s) for
which there are corresponding attributes ("constraint possible"s) asserted by the method
description production for painting tables. For each such pair of constraints, ANA asserts an
element that indicates that the method’s value (hereafter called the “pseudo-value") is to be
mapped into the stipulated value. Thus, given the task of washing the safe, ANA would assert
that the action type "paint" should be mapped into the action type "wash", the description of
the expected effect of painting should be mapped into the expected effect of washing, the
object type "table" should be mapped into the object type "safe”, and the description of the
location of the table, that it is in L32, should be mapped into the description of the location of
the safe, that it is in L12. If the description of the pseudo-object includes attributes that are
not contained in the description of the actual object, ANA will look at the actual abject. For
each new attribute it finds, ANA will assert an element that indicates that the pseudo-value is
to be mapped into the perceived value. If the description of the pseudc-object contains
attributes that the actual object does not have, ANA will assert an element that indicates that
the pseudo-value is to be mapped into itself. If the description of the expected effect
asserted by the method description production inciudes an attribute that is not included in
the description of the expected effect of the actuai action and vice versa, ANA will asser! an
element that indicates that the unmapped pseudo-attribute-value pair is to be mapped into
the unmapped stipulated attribute-value pair. After having established these mappings, the
pseudo-value of each of the attributes asserted by the method description production will
have been mapped into some stipulated (or perceived) value. There may be attributes in the
actual description whose stipulated values are not a part of any of these mappings, but this is
all right since the method that is to be used analogously could not make use of them because

all of the attributes that it is equipped to deal with are asserted by the method description
production.

After these mappings are established, the evaluation of the proposed method begins in
earnest. ANA first checks to determine if there is any reason to think that the method will
not work for the task at hand. Initially, it has no reason to think badly of any method. But as
we will see in more detail later, when it encounters a problem as it tries to use a methad, it

20

associates with the type of action that it is attempting an indication of the cause of the
problem. If, for example, ANA attempts to carry an object that is buried down in the middle
of some stack, its initial attempt will fail. But ANA will recognize that the cause of the
problem is the position of the object in the stack, and will associate a pre-condition with the
action type "carry", ie, that the object to be carried must not have anything on top of it. The
problems that arise can be distinguished on the basis of how likely it is that they can be
overcome. ANA divides problems into two types: (1) problems that arise because of some
mutable attribute of an object, and (2} problems that arise because of an immutable attribute
of an object. When ANA associates a pre-condition with an action type, it also notes whether
it can do anything to satisfy that pre-condition if it is not satisfied. If, for example, the
pre-condition is that in order to carry an object, the object must have nothing on top of it,
ANA notes that the position of an object in a stack is mutable. If the pre-condition is that in
order to carry an object, the object must be light, ANA notes that the weight of an object is
imrautable. If the pre-condition is that in order to carry an object, the location in which the
object will be put must contain fewer than four objects, ANA notes that the composition of a
location is mutable. When ANA’s evaluation of a method begins, if it has any productions that
contain information about the pre-conditions on the action type of the method being
evaluated, those productions will fire. ANA checks to determine whether any of the
pre-conditions” are violated. It a pre-condition is violated by an immutable attribute of an
object, ANA will conclude that the method it is considering is unlikely to work. If there are
no immutable violators, but a pre-condition is violated by mutable attribute, ANA will conclude
that the method will probably work, but that it may have a better method. If no
pre-conditions are violated, ANA will conclude that the method will probably work.

After ANA has evaluated a method, it typically returns to its semantic net and generates
additional types with the hope that a better method will turn up. How long it spends in
searching for other candidates depends on how good its current best candidate is; it spends
more time if the current best candidate falls into the "unlikely to work" category than if it
falls into the "will probably work" category. When another candidate proposes itself, ANA
evaluates it and then compares it to the current best previous candidate. If one of the
candidates is in the "unlikely to work" category and the other is not, the unlikely to work
candidate is rejected. If both are in the same category, ANA checks to determine whether
one of the methods is a “special case” of the other; if the pseudo-goai-description asserted
by one of the methods contains more constraints than the pseudo-goai-description asserted
by ihe other, the method with more constraints is deemed a special case and is preferred. If
neither method is a special case of the other, ANA checks o determine if more identity
mappings are associated with one of the methods than with the other; ANA assumes that the

more similar the pseudo-values and the stipulated values, the more likely the method is to

21

work, and so prefers that method with the largest number of identity mappings. If the two
methods have the same number of identity mappings, ANA rejects the more recent candidate
on the assumption that since it is "farther” from the actual task in the semantic net, it is less
likely to work.

To see how this evaluation process works, consider the case in which ANA is given the
task of carrying the really-heavy box at the bottom of the stack of boxes in L11 to L23
(Task3). ANA has four methods that it could consider. For ease of reference, I will refer to
each by its action and object type; the methods, then, are "carry table", "move box", "carry
cabinet”, and "cart cabinet”. As explained above, the method description productions for each
of these methods have a different set of condition elements; the set that each has specifies
the set of attributes that are of concern to its method. In addition to the attributes that all
method description productions have (action type, object type, and effect), the "carry table"
method is sensitive to the iocation of the object to be carried and to the location to which it
is f0 be carried. The "move box” methed is sensitive only to the location of the object to be
moved. The "carry cabinet” method is sensitive to the location of the object to be carried,
the location to which it is to be carried, and the position of the object in the stack. The “"cart
cabinet” method is sensitive to the location of the object to be carted, the location to which it
is to be carted, and the weight of the object. If ANA considered all four of these methods
before it knew of any pre-conditions on carry, move, and cart, the methods would all be put
in the category of "will probably work”. In comparing the methods, ANA would prefer "carry
cabinet" and "cart cabinet" to the other two methods since both are special cases of the
other two. ANA would prefer “"carry cabinet" to "cart cabinet" since that method has an
identity mapping (the action type "carry” in the method description is mapped into the action
type "carry” in the description of the task). If ANA considered the methods after learning
that to carry an object the object must be light, its evaluation would be somewhat different.
The "carry tabie" and "carry cabinel” methods would be put in the category of "unlikely to
work". The "move box" and "cart cabinet” methods would be put in the category of "will
probabily work™ Thus the latter two methods would be given preference. The "cart cabinet”
method would be selected in preference to the "move box" method since it is a special case.

4.1.2 Using a Method Analogically

After ANA has selected a method to use, it must somehow change its conceptual world in a
way that makes it possible for it to use the method. The problem is that all of the
productions comprising each of its methods are sensitive only to those constraints that are
marked “constraint given". Since the evaluation stage resulted only in a set of constraints
marked “consfraint possible”, ANA still cannat do anything. The solution is, however,
straight~-forward. ANA simply asserts, for each constraint marked “constraint possible", an

22

element that is identical to the “constraint possible” element except that it is marked
“constraint given”. Now in ANA’s working memory in place of the single set of constraints
given in the description of the actual task, there are three sets of constraints: {1) the
original set (each marked "constraint given™); (2) the set generated during the evaluation
stage (each marked "constraint possible” and containing the pseudo-values expected by the
method, rather than the stipulated values); and (3) a set that will match the productions in the
method selected (each marked "constraint given®, but containing the same pseudo-values as
the set marked "constraint possible®). As simple as this device is, it is sufficient to enable
ANA to make effective use of the selected method. Whenever ANA runs into difficulties, it
has ali of the information that it needs in order to distinguish between what it is actually
trying to do {"constraint given"s with no corresponding “constraint possible"s) and what it is
pretending to do ("constraint given"s with corresponding “constraint possible"s). ANA is
always implicitly aware of the difference between what it is trying to do (its actual goal) and
what it is pretending to do (its pseudo-goal); so whenever its pretending results in an action
that is inconsistent with its actual goal, it can use this difference to figure out how to get
back on the right path.

The only unmentioned ingredient necessary to make this work is to provide ANA with a
way of noticing when it is running into difficulties. A number of different types of difficulties
can arise. One type of difficulty is the "unexpected result" difficulty. As you may remember,
ANA’s method description productions typically include one or more condition elements that
indicate the expected effect of the method. As ANA prepares to make use of a method it has
selected, it builds a production that watches for the violation of this expectation for the
particular task al hand. The method description production for ANA’s “paint table” method,
for example, indicates that the expected effect is that the color of the table will become red.
If ANA is given the task of painting some object yellow, it wants to be sure that the effect
actually achieved is that the table becomes yellow. Thus ANA builds a production that keeps
its eye, so to speak, on the object; the production is specific to the particular task being
attempted, and thus once the goal is achieved, the production can no longer fire. If after the
object is painted it is some color other than yellow, this production can fire. If it fires, the
person giving the task is asked for some information that will enable ANA to keep the
unexpected result from oceurring on subsequent occasions. (What knowiedge is requested
and how it is used is discussed below.) It is sometimes the case, of course, that a goal cannot
be achieved by a single action. Whenever ANA attempts to use its method for ciearing off
the top of a desk (since it expects that the result of moving an object that is on top of the
thing to be cleared off is that the thing to be cleared off will be at the top) it builds a
production that looks for this result. However, if it is attempting to clear off an object that
has more than one object on top of it, moving just one object wili not produce the expected

23

result. ANA is sensitive to this possibility, and so when it builds the production, it arranges
things so that it will fire only if there are no productions in the method it is using that might
enable the expected result to be achieved.

Once ANA has built the productions that watch for unexpected results, it is ready to make
use of the method it has selected. ANA replaces the element marked "goal no-method” with
an identical element marked "goal notachieved®. At this point (presumably), one of the
productions in the selected method will fire. In the rest of this section, we will consider two
things that ANA must do in order to maintain the integrity of its mappings. The first of these
has to do with the elements marked "concept true" that are in the candition side of some of
ANA’s productions; these elements specify the expected values of reievant attributes of the
objects in the environment. When ANA uses a method analogously, these values, like the
values of the constraints generated by the method description production, are likely to be
different from the perceived values. Thus ANA must have a way of pretending that the
objects currently of interest have these pseudo-values, Secondly, most of ANA's methods
presuppose submethods. ANA’s "paint table" method, for example, generates the goal of
carrying the table; ANA"s "carry cabinet” method generates the goal of clearing off the top of
the cabinet; and ANA’s "cleartop desk” method generates the goal of finding a desk. Thus, in
order for ANA to be able to use a method analogously, it must be able to extend its initial set
of mappings across a number of methods.

Before I say anything more about the elements marked “concept true”, | had better say a
few things about ANA’s knowledge of the objects in the paint shop environment. Currentiy,
all of ANA’s knowledge about particular objects comes from looking at those objects. ANA
has only one method that it can use when it wants to learn (or verify) something about an
object in its environment. This method, whose action type is "find", is the only method that
AFIA has that can assert elements marked “concept true”, Like the other productions that
ANA has for operating on the objects in its environment, the conditional part of the "find"
productions contains constraints on the object that is to be looked for and constraints that
indicate the expected effect of finding the object. Here, however, the expected effect is not
some change in the object, but a change to ANA (a change in ANA’s awareness). When ANA is
given the goal of finding some object, it first checks to determine if the description of the
object to be found constrains the object’s location; if so, it finds (ie, looks at) the specified
location. Then it collects all of the other constraints an the object, with the exception of a
type constraint if one is given, and ®scans for an object satisfying that description. If an
object satisfying the description is found, the set of percepts comprising that object are
deposited in working memory. ANA then checks to determine if the type of the object
scanned is consistent with the type stipulated in the description of the actual object desired.

If the vaiue of the percept whose attribute is type is the same as the value of the constraint

24

whose attribute is type, ANA knows that it has found the object it wants; if not, ANA uses its
semantic net to determine if the value of the constraint is a supertype of the value of the
percept. More concretely, if there is a red desk in location L36, and ANA is told to find the
red thing in location L36, it will first look at {(@scan for) location L36; it will then look at the
red object in that location; and finally, it will check to determine is a desk is an instance of a
thing. After ANA has found the desired object, it attends to the expected effect attributes;
for each, it generates an element marked "concept true” that is identical to the element
marked "percept true". The "find" method differs in a significant way from the other methods
that ANA has for operating on its environment since the “find" productions are aware of the
"constraint given"/"constraint possible” distinction. If this were not the case, of course, when
"tind" was invoked, ANA would be unable to distinguish between the actual object desired and
the pseudo-object specified by the method currently being used. In addition to its principal
function as a finder of objects, the "find® method also remarks any element marked "cancept
true” as "concept faise” whenever its value is different from a more recently asserted

percept (with the same attribute and token-name).

Knowing this much about "find", we can now return to the question of how ANA insures
that productions that include condition elements marked "concept true" will be satisfied when
a method is being used analogously. ANA has a production whose sole purpose is to watch
for elements marked “concept true” to be asserted. Whenever this happens, it there is an
element in working memory that maps a pseudo-value into a stipulated value and if the
element just asserted has that stipulated value, the production fires; it asserts an element
marked "concept true” whose value is the pseudo-value. A complementary production
watches for elements marked "concept false” to be asserted. Again, if there is an element in
working memory that maps a pseudo-vaiue into a stipulated value and if the eiement just
asserted has that stipulated value, the production fires; it asserts an element marked "concept
false" whose value is the pseudo-value. It should be noted at this point that if the "find"
method really marked as "concept false” all of the elements whose value was different from a
more recently asserted percept, the work of the first of these productions would be for
nought (and the second of these productions would be unnecessary). What the "find" method
actually does is mark as "concept faise" all of the elements falsified by some percept except

those that have the pseudo-value of some map element.

The issue of how mappings are to be extended across methods is somewhat more complex
than the issue of how elements marked "concept true" are to be included in the mapping.
There are really two issues corresponding to the two sorts of subgoals that can be
generated by a method. Whenever a subgoal is generated a new (distinct) description of the
action and its expected effect is asserted. But the description of the object that is to be
acted on may or may not be new. The production named paint2 (see Figure 3-2) generates

25

the subgoal of carrying a table. The table to be carried is the one that is to be painted, and
no additional constraints on the table are asserted; the expected effect of the carrying is that
the table will end up in location L23. Now assume that ANA is given the task of painting the
box in location L1] yellow (Task3). Since the "paint table” method will be used analogically,
ANA, before any of the "paint table" productions fire, will have mapped table into box,
tocation L32 into location L11, and red into yellow. When the goal of carrying the table is
generated, ANA check 1o see if the mappings can be exiended. It has a production whose
purpose is to watch for any constraint whose value is the pseudo-value of some map
element. Whenever such an element s asserted, this production fires; the result is two
additional assertions. One is identical to the assertion that triggered the praoduction, except it
is marked "constraint possible®™; the other is an assertion, marked "constraint given®, whose
vaiue is the stipulated value of the map element. In this case, since none of ANA’s map
elements confain L23 as a pseudo-value, ANA simply assumes that carrying the object to L23
is the appropriate thing to do. A more intelligent system would, of course, try to figure out
at this point whether there is enough of a difference between painting boxes and painting
tables to suggest that the box to be painted should be carried to some location other than
L23. ANA does not do this, but for the simple tasks it has altempted, this has not caused
problems. The case with paintl is a littie different. This production, like paint2, does not
introduce a new object; it generates the goai of finding the object to be painted. The object
to be found has already been described (and since, as mentioned above, "find" is aware of
the "constraint given"/"constraint possible” distinction, the object found will be the box in
location L11). But unless ANA modifies the description of the expected effect of finding the
object, it will be inconsistent with the description of the actual object. Thus in this case the
initial mapping is extended to include this new description of an expected effect. Using the
map element whose pseudo-value is L32, ANA asserts two label constraints: one is marked
“constraint possible” and its value is L32; the other is marked "constraint given” and its value
is L11.

Paint3 is an example of a production that generates a goal with a new object description
as well as a new action description. The action type of the goal is "carry"; the object to be
carried is the paint can labeled red in location L14; and the expected effect of the action is
that the paint can will end up in location L24. Whenever ANA is doing a task by analogy and
generates a goal containing a new object description, it tries to figure out, on the basis of the
map elements it has asserted together with the iittle knowledge that it has about painting and
such, whether it should modify the description of the object. ANA has a production that
watches for the assertion of subgoals containing the description of a new object. If ANA’s
task is to paint the orange box in location L1l yellow (Task3), when paint3 fires, that
production will then fire and generate the poal of determining whether a new object

26

description should be substituted for the one asserted. ANA checks to see if it knows
anything about the purpose of this new object —- in this case, anything about the purpose of
a paint can. As it happens, ANA knows that the purpose of a paint can is to contain paint. It
also knows that the purpose of paint is for painting. Since painting is the stipulated action
type for the task at hand, ANA assumes that the type of the object that it wants to carry is
paint can. After deciding that the stipulated object type is in fact appropriate, it checks the
other constraints on the object. Since it knows that the label on a paint can indicates the
color of the paint inside the can, it checks whether the description of the expected effects of
doing the painting make any mention of color. Since the expected effect of painting the box
is that it will become yeillow, ANA assumes that what it should carry is a yellow paint can
rather than a red paint can. Since ANA’s reasoning often involves some questionable
assumptions, before it tries to achieve a subgoal containing the description of a new object, it
asks whomever is giving it instructions whether it should assert its substitute object
description or should assert an object description to be provided by the instructor.

If ANA is given the task of washing the thing in location L12 (Task2), it will, when paint3
fires, reason in a similar fashion. After recalling that the purpose of a paint can is to contain
paint and that paint is for painting, it will notice that what it actually wants to do is wash. So
it will try to find an object that has the same relationship to washing as a paint can has to
painting. 1t finds that water is what is used for washing and that water bottles contain water.
It assumes that it should substitute something of type water bottle for the paint can. It looks
around the paint shop for a water bottle and when it finds one, assumes that that water
bottle has all of the appropriate atiributes and substitutes the perceived values of the water
bottle for the corresponding values in the description of the paint can. Then, as before, it
checks with the instructor before asserting this substitute description.

The two sets of productions just described, the set that insures that whenever appropriate
if a concept containing a perceived value is asserted, a concept containing the corresponding
pseudo-value will be asserted, and the set that insures that descriptions of objects and of
expected effects will be consistent across methods, are sufficient to enable ANA to engage in
the tasks described above without becoming confused. Of course, as ANA attempts to use its
methods analogically, it frequently runs into difficulties since the methods are not perfectly
suvited to their new uses. In the next seclion we will consider how ANA responds to these

difficulties.

27

4.2 Error Recovery

ANA can run into three kinds of trouble as it attempts {o use its methods to perform new
tasks. We have already seen one of them: when ANA is using a method analogously and
generates a subgoal, it may not be obvious how to extend the mapping. If the subgoal
contains the description of a new object (as well as the description of a new action), ANA
attempts to discover the analogical relationship between that object and the actual task it is
to perform. If ANA decides that the object description is inappropriate, it substitutes (with
the instructor’s approval) a different object description. If the subgoal contains only the
description of a new action, ANA assumes that the action will have the appropriate effect.
The other two kinds of trouble that ANA can run into are less intimately linked with analogy;
the problems can arise whether or not ANA is using a method analogously -- though they
arise more frequently and in a more pronounced farm within an analogical context. One of
these problems is that ANA can use a method that is under-specified. That is, the description
of the object to be acted upon is insufficiently constrained, and so ANA ends up operating on
{or trying to operate on) some object in an inappropriate way. The other trouble, almost the
compliement of the previous one, is that ANA can use a method that is over=-specified. That is,
the description of the expected effects of an action is overly constrained, and so ANA
achieves a goal, but does not know it.

ANA has two ways of defermining that it is using an under-specified method (and is in
trouble). One is to wait untii one of ils operations on an object in its environment faiis.
When an operator (eg, mcarry, mcart) fails, an element marked “action failed" is deposited in
working memory; this element identifies the cause of of the failure. If, for example, @carry
fails because the object {0 be carried is not the top object in a location, the "action failed"
element will indicate that the offending attribute is "position" and that carry will work only if
the object is at the top of the stack. If @carry fails because the object to be carried is
heavy, the "action failed” element will indicate that the offending attribute is "weight” and
that mcarry wiil work only if the object is light. ANA has a production that watches for an
"action failed” element to be deposited in working memory. When such an element is
asserted, this production fires and generates the goal of recovering from the error. The first
thing that the error recovery method does is check to determine if the offending attribute is
mutable or immutable. ANA knows, for example, that weight is an immutable attribute and
that position and location are mutable. Since ANA responds differently depending on whether

the offending attribute is mutabie or immutable, we will consider each case separately.

When ANA is given the task of painting the blue chair red {Taskl), it first finds the blue
chair and then attempts to carry it. Since the blue chair has another chair on top of it,

28

@carry fails, and an element containing the information that @carry failed because the blue
chair is not at the top of the stack is deposited in working memory. The production watching
for such an element fires, and the goal of recovering from this error is generated. When ANA
checks to determine whether the position attribute is mutable or immutable, it finds that it is
mutable. ANA's way of recovering from errors caused by mutable attributes is quite
straight-forward. It simply builds a production that will fire whenever it considers using
analogously a method whose action type is carry. This production asserts that in order for a
carry method to work, the object to be carried must be at the top of a stack. Having built
this production, ANA reconsiders what method to use in order to carry the chair. As we have
seen, when ANA evaluates the appropriateness of a method, the first thing it checks is
whether there is any reason to think that the method will not work, Since the production
that it built will fire as soon as it begins to reconsider what method to use, ANA will know
that in order to use a "carry” method, it will first have achieve a subgoal that will put the
chair in the right position. ANA has some knowledge about how to satisfy pre-conditions. It
knows, for example, that if an cbject has to be at the top of a stack and is not, that it shouid
generate a cleartop goal. ANA does this; the blue chair becomes the top chair, and ANA is

then abie to use its carry method to achieve its goal.

When ANA is given the task of washing the thing in L12 (Task2), it first finds the thing and
then aitemptis to carry it. This time ®carry fails because the thing it is supposed to carry
{the safe) is not light. An "action failed” element is asserted; the production watching for
such an element fires, generating the goal of recovering from the error. Since ANA knows
that weight is immutable, it knows that it cannot fix the problem by modifying the state of the
world. So it selects one of ils operators that has the same effect as @carry and tries it.
Assume that it selects @push. It builds a production that masks (ie, that is selected in
preference to) the production whose action side contains mcarry. (I will discuss in some
detail in the next section how this production gets buill.) The function of the production is to
determine whether the object to be carried is light, and it accomplishes this simply by
scanning for the object. ANA then builds another production whose condition side is identical
to the condition side of the production just built except that it contains an additional condition
e ol that will match a percep! whose attribute is "weight” and whose vaiue is anything
other than "light"; the action side of this production contains the operator @push. If ANA is
trying to move the thing in L12, the first of the pair of productions built will fire and this will
result in ANA locking at the thing to be moved. Since the weight of the thing is "heavy" (ie,
not "light™), the second of the productions will fire; this time, ANA’s attempt to move the safe

is successiul.

ANA’s other way of determining that it is using an under-specified method has already
been discussed. When ANA decides to use a method analogousiy, before actuaily beginning to

29

use it, it builds a set of productions to watch for unexpected results. Whenever ANA
operates on an object and the resuit is different from that expected by the production
watching for the result of that operation, the production can fire. 1f it does, ANA first asks
how to undo the unwanted result and then asks for an indication of what went wrong. ANA
expecis to be told that the value of one of the attributes of one of the objects in its
environment is wrong and expecis 1o be told what the value should be. ANA then treats this
information in exactly the same way that it treats the information contained in an element
marked "action failed".

Figure 4-3 provides an example of a production that ANA built to watch for an unexpected
result. The production was buill while ANA was doing Taskl. Part of Taskl involves carrying
the chair, after it is painted, from L34 to L35. The production shown watches to make sure
that after the chair is carried, it is in location L35, In this particular case, since there are
already four chairs in L35, when the chair is added to the top of the stack, the stack teeters
and the chair ends up in location L34. When the production that watches for this unexpected
result fires, the instructor is asked how to undo the unexpected result. Since the chair fell
back to the spof where it was, and since everything else is unchanged, the instructor
indicates that nothing need be done. Then the instructor is asked to indicate what went
wrong. All he need say is that the there are t00 many objects in L35; there have to be
fewer than four. ANA then builds a production that contains the information that in order to
be able to carry something somewhere, the location that the object is being carried to has to
contain fewer than four objects. After building the production, it reconsiders what method to
use for the task. This time around, when it considers carrying the chair, it realizes that in
order to achieve its goal it first has to achieve the subgoal of moving one of the objects in
L35 somewhere else.

ANA’s method for determining whether the method it is using is over-specified is to ask. It
has a production that waits until the goal of finding some object is generated, and then
watches to see if the values of any of the expected effect constraints on that object differ
from the values of the corresponding percepts. If there is a discrepancy, the production
fires. ANA asks the instructor whether the value of the attribute has to be the stipulated
value. If the instructor answers "yes", then ANA keeps looking until it finds an object with
the stipulated value. 1f the instructor answers "no”, ANA assumes that the method it is using
is over-specified, and asserts an element, marked "concept true", that indicates that the
object that it has found has the stipulated value {even though it does not). Figure 4-4 shows
two of the productions that are part of ANA’s "move box" method. If ANA is given the task
of moving the green chair, move2 will fire and generate the subgoal of finding an empty
location (io move the chair to). Notice that ANA’s "move box" method expects the label of the

30

pi-52 ((=act =object (goal not-achieved =time))
{type =act (constraint given =lime-a) carry)
(effect =act (constraint given =time-a) =effect location)
-{effect =act (constraint possible =time-a) =effect location)
(location =effect (constraint given =time-a) =location)
(iabel =location {constraint given =} L35)
(location object {(action done =op-time & >time) (chairs2 =tokenl) =quoted-op)
{location chair*2 (concept true >op-time) =token2}
-(location chair*2 (concept true >op-time) =tokenl)
-
{(<write> my attempt to carry chairs2 failed)
(<write> chairx2 has iocation =token2 rather than =tokenl}
(<wrile> how can i undo the effects of carry)
{<read>)
{(<write> where did | go wrong ?)
(create refinement (goal not-achieved (<bind>))
=time (=act =object =location) carry (<read>) =quoted-op))

Figure 4-3: A production that watches for an unexpected result

3l

move?2 ((=act =object (goal not-achieved =time})
{type =act (constraint given =time-a) move)
(effect =act (constraint given =time-a) =effect location)
{type =object {constraint given =time-0) box)
{location =object {constraint given =time-0} =location)
(tabel =location (constraint given =time-o0) L25)
(token =object (concept true =) =tokenl!)
(token =location (concept true =) =token2)
{location =tokenl (concept true >time) =token2)
(label =token2 {concept true >time) L29)
-
({<bind> =new-act} (<bind> =new-object) (goal not-achieved (<bind>)))
{type =new-act (constraint given (<bind> =new-time-a)) find)
{effect =new-act (constraint given =new-time-a) {(<bind> =new-effect) mind)
(composition =new-effect (constraint given =new-time-a) empty)
{label =new-effect {constraint given =new-time-a) L33)
(type =new=-object (constraint given =new-time-a) iocation)
(composition =new-~object (constraint given =new-time-a) empty))

move3 { {zact =object (goal not-achieved =time))
{type =act (constraint given =stime-a) move)
{effect =act (constraint given =time-a) =effect location)
(type =object (constraint given =time-0) box)
({location =object {constraint given =time-0) =location)
(lahel =location {constraint given =time-o0) L25)
(token =object (concept true =) =tokenl)
{token =location (concept true =) =token2)
{location =tokenl {concept true >time} =token2)
{label =token2 {concept true >time) L25)
(composition =other-object (constraint given =time-00) empty)
(token =cther-object {concept true =) =token3)
{composition =token3 (concept true >time) empty)
(label =token3 {concept true >time) L33)

-—>
{@carry =tokenl =token3))

Figure 4-4: Two of ANA’s "move box" productions

32

empty location that it finds to be L33. But suppose that the first empty location that ANA
finds is L22. Since the stipulated value of the label constraint is L33, while the value of the
percept is L22, ANA’s production that watches for the possibility of over-specified methods
will fire. If it is the case that for the current task there is no reason for moving the chair to
L33 rather than to L22, the instructor, when asked, will indicate that the value does not have
to be L33. But move3 will not fire unless there is an element, marked "concept true” in
working memory that indicates that the value of the label of the location that the object is to
be moved to is L33. So ANA pretends that this counter-intuitive situation obtains, and
asserts a concept indicating that the label of L23 is L33.

5. Accommodation

In the previous section we saw how ANA can use its mapping and error recovery methods
to do unfamiliar tasks, Though ANA's performance on the tasks it has tried is adequate, the
first time it does an unfamiliar task it spends a great deal of time selecting methods to use,
establishing and extending mappings, and recovering from errors that it falis into. In this
section we will see how ANA makes the transformation of unfamiliar to familiar tasks
permanent. Roughly speaking, all that ANA does is store worked-out analogies. It associates
each newly familiar goal description with a method that can achieve that goal analogically.
ANA does not try to generaiize; thus the only goai descriptions that it recognizes (ie, does
not have to assimilate) are goal descriptions that it has previously encountered. Though this
limitation is significant, it is not as severe as it perhaps sounds. In the first place, as ANA
engages in some task, it typically generatés a number of subtasks for itself. The knowledge
that it stores about how to perform each of these subtasks is accessible in any context -- ie,
not just in the context ot the particular task in which the knowledge was gained. Thus if ANA
is given an unfamiliar task, though it will have to use its analogy mechanism in order to do the
task, it may turn out that some of the subtasks that it generates in the course of doing that
task are identical to subtasks that it has already learned how to do. Whenever this happens,
ANA can use the knowledge that it previously acquired. Secondly, although ANA learns how
to do a specific task, what this means is that it learns what to do given a particular set of
constraints on the action and the object to be acted on. If ANA is given a task that inciudes
those constraints, but others besides, it can use its acquired knowledge. Of course the fact
that there are additional constraints may mean that ANA’s knowledge wiil be inadequate for
the task; but if so, ANA can make use of its error recovery methods to further refine its
knowledge. This section has the same structure as Section 4. T will first talk about how ANA
preserves contact and mapping knowledge. Then [will talk about how ANA patches methods

that prove inadeguate for some new task.

33

5.1 Method Building

In Section 4.1, | described what ANA does when faced with an unfamiliar task: it makes
contact (via method description productions) with methods that might be used analogically,
maps the pseudo-goai-description of each of these methods into the description of its actual
goal, evaluates the candidate methods and selects one to try, and asserts, for each constraint,
two pseudo-value containing constraints, one marked "constraint possible”, the other marked
"constraint given"™. ANA is then ready to use the method it has selected. However, if ANA is
to avoid having to repeat these steps on subsequent occasions when it is called upon to do
the same task, it must store the knowledge it has gained in a readily accessible form. Thus,
just before it actually attempts an unfamiliar task, ANA builds a production that will "set the
stape"” if it is ever again asked to do the task it is about to try. In order for this production
to fire at the appropriaie times, it must be sensitive to the set of stipulated constraints that
comprise ANA’s current goal. Thus, ANA generates a list containing the element in working
memory that points to the constraints on this goal and each associated element, marked
"constraint given” for which there is no corresponding element marked "constraint possible™
The pointer in each of these elements is replaced by a variable, and the list of elements
becomes the conditional part of the production that ANA will build. The action side of the
production must make contact with the method that has been selected for the task;
consequently, ANA generates a list containing each "constraint given"/"constraint possible”
pair linked to the current goal, plus each of the map elements associated with these
constraints. After the pointer in each of these elements is replaced by a variable, the list of
elements becomes the action part of the production that ANA will build,

At this point, ANA could simply build the production, but there is a small problem. Since it
has not yet tried to use the method it has selected, it has no idea of whether the method will
work. If ANA were to build the production before trying the method, and the method turned
out not to work for the current task, ANA would have a piece of faulty knowledge. ANA’s
solution is to build a production whose condition side contains just one element -- a list that
will match the current goal element when that element is marked "goal achieved". The action
side builds the production described above. Thus if ANA is able to accomplish its task, a
production that makes the task permanently familiar will be built; if ANA fails, the production
is not built. It should be noted that if ANA tries to use a method for a particular task, and
the method turns out not to work, some useful knowledge may nevertheless have been
gained. If in the course of using an ultimately unsuccessful method, subtasks are tried and
accomplished, productions that map these subtasks into the submethods that succeeded will in
fact be buiit. Thus, on subsequent occasions when ANA is called upon to do these subtasks, it
will have the necessary knowledgs. The production shown in Figure 5-1 is the production

34

p2-06 ({actx] object*2 (goal achieved =time)} & =w
-
(<delete> =w) {act*l object*2 {goal old =time))
{<build>
{ {=act =object (goal not-achieved =))
{type =act (constraint given =time-a) wash)
-{type =act {constraint possible >time-a) paint}
(effect =act (constraint given =time-a) =effect surface)
(state =effect (constraint given =time-a) clean)
(location =object (constraint given =time-0) =location)
(labei =location {constraint given =time-o0) L12)
(type =object {constraint given =time-o0) thing)
-2
{type =act (constraint given ({<quote> <bind>) =new-time)) paint)
(type =act {constraint possible =new-time) paint)
(map =act (concept true =object) (type paint) (type wash))
{effect =act {(constraint given =new-time) =effect surface)
(etfect =act (constraint possible =new-~time) =effect surface)
{location =object {constraint given =new-time) =location)
{location =object {constraint possible =new-time) =Jocation)
(label =location (constraint given =new-time) L32)
(label =location {constraint possible =new-time) L32)
{map =location {concept true =object) {label L32) {label L12))
{type =object (constraint given =new-time) table)
{type =object (constraint possible =new-time) table)
(map =object {(concept true =object) (type table) (type thing))
{color =effect (constraint given =new-time} red)
{color =effect (constraint possible =new-time} red)
{map =effect (concept true =object) (color red} {state clean})})

Figure 5-1: A production that recognizes the task of washing the thing in L12

that ANA builds after it decides to use its "paint tabte" method to wash the thing in location
L12 (Task2). The single condition element in this production will be satisfied only once --
when the goal element in working memory whose action link is "actxl" and whose object link
is "object*2" is marked "goal achieved". The action side actually contains two actions (one
more than | said). The first action marks the goal element "goal old™ the purpose of this
action is to insure that if several productions are built, all of which match the same goal
element, only the mosft recently built production will fire.l The other action simply builds a

production that will fire whenever ANA is given the task of washing the thing in L12. The

lI give an example below of a case in which more than one production matching the same "goal achieved" slement geta
built. This happens whenever ANA tries a mothod and runs into a problem -- either an operator failure or an unexpected
resuit -- due to a mutable attribute of the object it i acting on.

35

condition side of the production to be built will match the constraints given in the actual
description of the task. The action side asserts all of the elements that must be asserted in
order o make contact with the "paint table” method, plus those elements that must be in
working memory in order for ANA to know that it is using its “"paint table” method
analogously.

After ANA has used a method (and submethods) analogously to accomplish a task, it has a
number of new productions in its production memory that will enable it to accomplish the task
much more easily {(quickly) in the future. If ANA is given the same task, the production that
causes the analogous method to be invoked will fire, and ANA will simply use that method. If
that method generates a subgoal, another of the new productions -- one that enables a
submethod to be used analogously -- will fire, and ANA will use the submethod. In many
cases, this scheme works fine. There are, however, at least two situations in which it is
inadequate. First of all, as we have seen, ANA in evaluating candidate methods sometimes
discovers that in order t0 be able to use a method, it must first achieve some subgoal that
satisfies a pre-condition of the method. If ANA is to avoid having to rediscover, each time it
is given a task, that this subgoal must be achieved, it must include in the production it builds,
the knowledge that achieving this subgoal is necessary. The second situation in which the
basic scheme is inadequate is the situation in which ANA infers (or is told) that achieving
some subgoal will not have the appropriate effect unless a different object description is
substituted for the one asserted. In this case, ANA must build a production that recognizes
the particular context in which the substitulion is called for. When ANA decides {o use a
method that it knows has an unsatistied pre-condition, it generates a subgoal to satisfy the
pre-condition before it builds the production that associates the method with the current
goal. If ANA achieves the subgoal, it generates a list containing each "constraint given" in
working memory that is linked !o the subgoal just achieved for which there is no
corresponding element marked "constraint possible”. Then it generates the two lists that it
would ordinarily generate —- the one containing the condition side of the production to be
built and the other containing the action side. Then it inserts the elements in the subgoal list
at the front of the list containing the action side. Thus the production buiit, whenever it
fires, will first assert the subgoal and will then assert the pseudo-goai-description that will
make contact with the method. When ANA is given the task of painting the blue chair red
(Taskl) and finds that its "carry table"” method can be used only if it can make the blue chair
the top chair in the stack, it generates a cleartop goal. After the green chair is maved and
the biue chair has become the top object in the stack, ANA generates a list containing all of
the elements marked "constraint true” contained in the cleartop goal description. The
production that ANA then builds to make contact with its "carry table" method is shown in
Figure 5-2. After the task of carrying the blue chair is achieved, this production fires. The

36

pl-25 ({(act+53 object*2 (goal achieved =time)) & =w
—-_—
{<delete> =w) {act453 objecix2 (goal old =time))
{<build>
{ {(=act =object (goal not-achieved =))
(type =act {constraint given =time-a) carry)
~(type =act {(constraint possible >time-a) carry)
(effect =act (constraint given =time-a) =effect location)
(location =effect {(constraint given =time-a) =location-effect)
(label =location-effect (constraint given =time-a) L23)
{location =object (constraint given =time-o0) =location)
{label =location {constraint given =time-0) L21)
(color =object {constraint given =time-0} blue)
(type =object {constraint given =lime-0} chair}
-
{{<quote> (<bind> =new-act)) =object (goal not-achieved (<guote> (<bind>))))
(type =new-act (constraint given {<quote> {<bind> =new-time-a)}) cleartop)
(effect =new-act (constraint given =new-time-a)
(<quote> (<bind> =new-effect)) position)
{position =new-effect {constraint given =new-time-a) (1))
(type =act (constraint given {(<quote> <bind>) =new-time)}) carry)
(type =act (constraint possible =new-time) carry)
{map =act (concept true =object) {type carry) (type carry))
{effect =act {constraint given =new-time) =effect iocation)
{effect =act (constraint possible =new-time) =eifect location)
{location =effect (constraint given =new-time) =location-effect)
(location =effect (constraint possible =new-time) =iocation-effect)
(label =location-effect (constraint given =new-time) L23}
(label =location-effect {consiraint possible =new-time) L23)
(map =location-effect (concept true =abject) ({label L23) (label L23})
(location =object (constraint given =new-time) =location)
(location =object (constraint possible =new-time) =location)
{(label =location (constraint given =new-time) L32)
(label =location (constraint possible =new-time) L32)
{map =location {(concept true =object) (label L32) (label L21))
{type =object (constraint given =new-time} table)
(type =object {constraini possible =new-time) table)
(map =object (concept true =object) (type table) (type chair)hn

Figure 5-2: A production that recognizes the task of carrying a chair from
L21 to L23 and thal knows about the cleartop pre-condition

37

result is a production that fires whenever it is given the task of carrying a chair from
location L21 to location L23.1 When ANA generates a subgoal that contains the description of
a new object, it tries to figure out if it shouid substitute some other object description for
the one asserted; if it decides that if should, and the instructor concurs, it asserts a different
object description. But whatever it decides, it remembers the decision. 1t builds a production
that will fire whenever that subgoal is generated in the context of the goal it is trying lo
achieve. I, for example, ANA is given the task of washing the thing is L12 (Task2), the
subgoal of carrying the paint can labeled red from L14 to L24 is generated. After ANA
figures out that it should insiead carry the water bottle from L25 to L24, it builds the
production shown in Figure 5-3. It goes about building this production in much the same way
that it poes about building the productions described above; that is, it collects the relevant
constraints in working memory. The first condition element in the production in Figure 5-3
matches the goal element that is asserted by the production that watches for the assertion of
subgoais containing new object descriptions; this element links the subgoal just generated to
the current goal. The other condition elements are the set of stipulated constraints on the
subgoal and the set of stiputated constraints on the goal. The action side of the production
asserts the set of subgoal constraints, marked "constraint given", that are to be substituted
for the original subgoal constraints, replaces each of the original subgoal constraints with a
pair of constraints, one of which is marked "constraint possible" and the other “"constraint

iven”, and asserts a map element for each constraint.
8 ’ P

5.2 Method Patching

In Section 4.2, I discussed ANA’s way of dealing with problems that arise when the method
it is using is either under-specified or over-specified. In some cases, the fixes described in
that section not only solve the immediate problem, but also solve the problem whenever it
subsequently arises. In the other cases, ANA must do some additional work to insure that it
wili be able to handle the problem effectively if it arises again. In discussing ANA’s response
to problems arising from under-specified methods, I distinguished between problems that ANA
recognizes because of the failure of some operator and problems that it recognizes because
of an unexpected result. Aithough this distinction is significant when discussing how ANA

knows when it is in trouble, it is not significant when discussing how ANA fixes the problems.
Therefore 1 will ignore the distinction in this section.

ANA responds in one of two ways to a problem that arises because it is using an

Mhe production will fire whathar or not the chair 1o be carrisd is ai the top of the stack in L21. If it is already at

the top of the stack, the clearfop submeihod wiil immediately discover that ils goal is achieved and the carry method
will take ovaer.

38

p2-16 ((replace sub-method (goal nol-achieved stime)
(=act =object) (=new-act =new-object) =pox) & =w
{type =new-act (constraint given =) =new-act-type)
{effecl =new-acl {constraint given =) =new-effect =effect-type)
(label =new-object {constraint given =new-time-o) red)
(label =location {constraint given =new-time-o0) L14)
(type =new-object (constraint given =new-time-o) pntcan)
{label =location-effect (constraint given =new-time-a) L24)
(iocation =new-effect {consiraint given =new-time-a) =location-effect)
{location =new-object (constraint given =new-time-0) =location)
(effect =act {constraint given =) =effect =)
(state =effect (constraint given =time-a) clean}
(type =object (constraint given =time-o0) thing)
-(= =object (constraint possible =time-o0) =)
-(= =acl (constraint possible =time-a) =)
-
{replace sub-method (goal achieved =time)
{=act =object) (=new-act =new-object) =pox) (<delete> =w)}
{type =new-act (consiraint given =new-time-a) =new-act-type)
(effect =new-act (constraint given =new-time-a) =new-effect =effect-type)
(label =new-object {consiraint given =new-time-o0) water}
{(<delete> (label =new-object (constraint given =new-time-0) red})
(labe! =new-object (constraint given 0) red)
(label =new-object (constraint possible 0) red)
(map =new-object (concept true =new-object) (label red) {label water))
(label =location {constraint given =new-time-o0} L25}
(<dclete> (label =iocation {constraint given =new-time-o0} L14}}
(iabel =location {constraint given 0} L14)
(label =location (constraint possible 0) L14)
(map =location {concept true =new-object) (label L14) (iabel L25))
(type =new-object (constraint given =new-tiree-0) watbot)
(<delete> {type =new-object (constraint given =new-time-o0) pntcan))
{type =new-object {constraint given 0) pntcan)
{type =new-object (constraint possible 0) pntcan)
(map =new-object (concept true =new-object) (type pntcan) (type watbot))
{label =location-effect (constraint given 0) L24)
(label =location-effect {constraint possible 0) L24)
(map =location-effect (concept true =new-object) (labet L24) (label L24)
(localion =new-effect (constraint given Q) =iocation-effect)
(location =new-effect {constraint possibie 0) =location-effect)
{map =new-effect (concept true =new-object)
(location =location-effect} (location =location-effect))
(location =new-object (constraint given 0} =location)
(location =new-object (constraint possible 0) =iocation)
{map =new-object (concept true =new-object)
(location =location) {location =locatian)))

Figure B5-3: A production that remembers that "water bottle" is to "wash” as
"paint can" is to "paint”

39

under-specified method. If the problem is due to some feature of the environment that can
be changed (ie, if the problem is due to a mutable attribute of some object), then ANA simply
builds a production that associates the action type of the method that it is using with a list
containing the attribute and the value that the attribute must have in order for that action
type to be appropriate; this production fires whenever ANA considers using a method with
that action type. This fix is sufficient to enable ANA to deal effectively with the problem if it
ever arises again. In the future, if ANA considers a method whose action type is associated
with the necessary, but mutable, value of some attribute, and if the object that has to have
that value does not, ANA knows that in order to use the method it is considering, it must
generate a subgoal to satisfy this pre-condition.

ANA’s other response to a problem that arises because it is using an under-specified
method is more complex. If the problem is due to some feature of the environment that
cannot be changed (ie, if the problem is due to an immutable attribute of some object), then
ANA must find a new way of dealing with the situation. What this means, in ANA’s simple
world, is that ANA must use a different operator to effect whatever change it desires. 1
described briefly, in Section 4.2, how ANA does this. It builds a production whose condition
side is the same as the condition side of the production that actually operates on the
environment; this production generates the subgoal of finding the value of that attribute of
the object that is relevant to the operator. It builds a second production whose candition
side is identical to the first except that it includes a condition element that is satisfied if the
value of that attribute is different from the value required by the operator; the action side of
this production, executes a different operator. There is, of course, a much simpler way for
ANA to overcome immutable attributes. ANA could build a production whose condition side
waicividl the most recently asserted element in working memory and whose action side
excculed the operator it wanted fo try. But this fix would not help ANA overcome the
problem if it arose again at a later time. In order to provide a more permanent solution, ANA
must inhibit the firing of the produciion that operates on the environment until it has had a
chance to get the additional information that is necessary in order to determine if that
operator is appropriate. Since ANA’s only means of inhibiting the firing of an enabled
production is to build a production that will be selected in preference to it during conflict
resolution, and since the only elements that ANA can be sure will be in working memory when
a production is enabled are just those elements that enable it, ANA builds a production with
the same condition side as the production that operates on the environment and relies on the
fact that, all other things being equal, more recently built productions are preferred in
confiict resolution to older ones. The reason for making the condition side of the other
production that is built (the production that executes a different operator} a special case of
the original production is that ANA wants the original production to fire uniess the

40

information that is obtained about the object to be operated on indicates that the original
production’s operator is inappropriate.

When ANA is asked to carry the box at the bottom of L1l to L23 (Task3), it first clears off
the box and then attempts to ®carry it. ®carry fails, so ANA tries @push. @push fails, so
ANA tries @cart. Since the box at the bottom of L11 is "really-heavy", @cart works. Three
productions are shown in Figures 5-4 and 5-5. The production, “carry3", is the production in
the "carry table” method that actually executes @carry. "p3-36" and "p3-37" are productions
that ANA built when the @push operator failed. "p3-37" fires if "p3-36" finds that the weight
of the objecl to be carried is something other than "heavy". In order to build these
productions, ANA simply generates a list containing each element in working memory, marked
"constraint given”, that is linked to the current goal, and for which there is a corresponding
element marked “constraint possible”. Notice that in this case, ANA wants the constraintis
whose values are pseudo-values, since these are the constraints matched by the condition
side of the production being masked. |

carry3 ((=act =object (goal not-achieved =time)}
{type =act {constraint given =time-a) carry)
{effect =act (constraint given =time-a} =effect location)
{location =effect {constraint given =time-a} =location-effect)
(label =location-effect (constraint given =time-a} L23)
(type =object {constraint given =time-0) table)
(location =object (constraint given =time-0) =location)
(label =location (constraint given =time-0) L32)
(token =object {concept true =) =tokenl)
(token =location {concept true =) =token2)
(location =tokenl (concept true >time) =token2)
({label =token2 (concept true >time) L32)
{label =other-object (constraint given =time-o00) L23)
(token =other-object (concept true =) =token3)
{composition =token3 {concept true >time) empty}

-

{(@carry =tokenl =token3})

Figure 5-4: One of ANA’s "carry table" productions

lwhen ANA is using a method "directly” (ia, not analogously) and finds that it is under-specified, it generates the goal
of doing whatever task it is doing by aralogy. Since it may select the method it was using directly as the method to
use analogously, ANA does have a way of palching its original mathods.

41

p3-36 ((=act =object (goal not-achieved =time))
{type =act {constraint given =time-a) carry)
{effect =act (constraint given =lime-a) =effect location)
(location =effect (constraint given =time-a} =location-effect)
(label =location-effect (constraint given =time-a} L23)
(location =object (constraint given =) =location)
{label =location (constraint given =} 1L32)
{type =object (constraint given =) desk)
(position =object (constraint given =) (3))
(token =object (concept true =) =tokenl)
(position =lokenl (concept true =) (1))
{location =tokenl {concept true =) =token2)
{token =location (concept true =) =token2)
(label =token2 (concept true =) L21)
(type =other-object (constraint given =time-00) location)
(label =other-object (constraint given =time-oo0) L23)
{ioken =other-object {concept true =) =token3)
{composition =token3 (concept true =) empty)

-

{{<bind> =new-act) =object (goal not-achieved (<bind>)))
{type =new-act {constraint given (<bind> =new-time)) find)
{effect =new-act (constraint given =new-time} (<bind> =new-effect) mind)
{(weight =new-effect (constraint given =new-time) really-heavy))

p3-37 ({(=act =object (goal not-achieved =time))
{type =act {constraint given =time-a) carry)
{effect =act (constraint given =time-a) =effect location)
(location =effect {constraint given =time-a) =location-effect)
(iabel =location-effect {constraint given =time-a) L23)
(location =object {constraint given =) =location)
(label =location {constraint given =) L32)
(lype =object {constraint given =) desk)
(position =object {constraint given =} (3))
(token =object (concept true =) =tokenl)
{position =token] (concept true =) (1))
{location =tokenl (concept true =) =token2)
{token =location {concept true =) =token2)
{label =token?2 (concept true =) L2})
(type =other-object {constraint given =time-00) location)
(labe! =other-object {constraint given =time-o0) L23)
(token =other-object (concept true =) =token3)
(composition =token3 (concept true =) empty)
(weight =tokenl (concept true =) (@notany heavy))
-2

(Pcart =lokenl =token3))

Figure 5-5: A patch for an under-specified method

42

ANA does one more thing to help insure that it will not fall prey to the same problem in
the future. Since ANA does not know in advance that it has an operator that will work, it
builds a third production that associates the action type of the method it is using with a list
containing the atiribute and the value that the attribute must have in order for the original
operator to work. Whenever a method with that action type is considered, this production
will fire, and ANA will put the method in the category of "unlikely to work". Of course if the
alternative operator that ANA tries does in fact work, the method belongs in the "will
probabiy work" category. Therefore ANA builds a fourth production that will fire if the
current goal is achieved; this production builds a production that associates the action type of
the method being used with a list containing the attribute and the value that the attribute
must have in order for the alternate operator to work. If the methad works when the
aiternate operator is used, the production built by the fourth production neutralizes the
effect of the third production.

As we have seen, if ANA is using its "find" method and the value of one of the expected
effect constraints differs from the value of the corresponding percept, it asks the instructor
whether it can ignore that expected effect. If the instructor indicates that the expected
effect can be ignored, ANA asserts a concept containing the token-name given in the percept
and the value given in the expected effect constraint. In order to produce a permanent fix,
ANA simply builds a production that will assert that concept whenever it is given an object to
find in the context of the current action type. For example, when ANA uses its "move box"
method (see Figure 4-4) it expects that the location it will move things to is L33. The
production in Figure 5-6 is the production that ANA buiit when it was maving the green chair
and was told that it was fine to move the chair to some location other than L33.

6. Conclusions

It should be evident by now that ANA has a somewhat cavalier attitude toward learning.
Whenever it has to learn, it learns (at most) just enough to get by. When it is given an
unfamiliar task, it tries to do the lask by analogy; it has a few rather weak rules that enable
it to select a method to use. It maps the description of the goal that the method can achieve
into its actual goal; it does not consider at this point whether the mappings are plausible. 1t
then attempts to use the method; it does not construct a plan (since the method serves as its
plan). When the method succeeds in accomplishing a task, ANA builds a production that
enables it to subsequently recognize that task and to remember the analogy; it does not
create a new method. When an analogy breaks down, ANA patches the method it is using by
building a production that will watch for signs of trouble and take steps to avoid it; ANA does

43

pl-21 { (=act =object (goal not-achieved =time))
(type =act {constraint given =) find)
(type =object (constraint given =} location)
(composition =object (constraint given =) empty)
{token =object (concept true =) =takenl)
(label =tokenl (concept true >time) =value)
-{label =tokeni (concept true =) L33}
{(=main-act = (goal not-achieved <time))
(type =main-act (constraint given =time-main) move)

~{type =main-act {constraint possible =time-main) move)
-

(label =token] {concept true (<bind>)) L33)
{map =object (concept true =object) (label L33) (label =value))
{<build>

({(=main-act = (goal {@any achieved oid) =)}

(iabel =tokenl (concept true =time-c} L33} & =scope
-2

{(<quote> <delete>) =scope) (label =tokenl (concept old =time-c) L33))))
Figure 5-6: A patch for an over-specified method

not modify any of the productions comprising the method.

The question is: Should ANA be doing some of these things that it does not do? Which of
them would improve ifs performance and which would mereiy slow it down? Before trying to
answer these questions, I want o briefly consider the distribution and effectiveness of ANA’s
knowledge. Then | will argue that ANA’s only critical weakness is its lack of knowledge about
how o select appropriate methods,

ANA’s knowledge can be conveniently divided into three categories: (1) the initial,
task-specific knowledge that ANA uses to manage its paint shop; (2) the knowledge ANA has
that enables it to use its task-specific methods analogically; and (3) the new, task-specific
knowledge that ANA acquires that enables it to extend its paint shop management capabilities.
Figure 6-1 shows the number of productions in each of these categories. ANA starts with 57
productions that enable it to perform a few paint shop tasks. It has 238 productions that
enable it to use its task methods analogically. The productions in the "knowledge nets”
sub-category contain the knowledge of relationships among actions and among objects. The
"setting up analogies” sub-category is the knowledge ANA needs to select and prepare to use
a method on an unfamiliar task. The "using analogies" subcategory is the knowledge that
enables ANA to maintain the integrity of its mappings and to determine their plausibility. The
productions in the "under-specified recovery” and “"over-specified recovery” sub-categories

44

contain the knowledge that ANA needs to recover from problems that arise as it uses its
methods analogically. In the course of doing the four tasks described above, ANA built 14}
productions; some of these associate a new lask with an existing method, some extend its
knowiedge nets, and some pafch methods that proved inadequate.

Initiai methods

Task methods 36
The "find" method 2l
Analogy tools
Knowledge nets 72
Setting up analogies 39
Using analogies 78
Under-specified recovery 40
Over-specified recovery 9

New productions

Method association 49
Net extension 8
Method patching 84
Total 436

Figure 6-1: The distribution of ANA's knowledge (number of productions)

Figure 6-2 shows the time in cycles (ie, production firings) that ANA spent on each of the
four tasks described above. For each task there are two columns of numbers: The coiumns
labeled "Runl" show how long it takes ANA to perform unfamiliar tasks; the columns labeied
"Run2" show how long it takes ANA 1o perform the same tasks once they have become
familiar. A rough measure of the effectiveness of ANA’s learning strategy can be obtained by
comparing the amount of time ANA spends using its initial methods with the total time that it
spends on a task. If ANA had been provided with a set of methods for.doing the four tasks,
then (as Figure 6-2 shows) it would have taken ANA about 151 cycles to do TaskO, 225
cycles to do Taskl, 120 cycles fo do Task2, and 302 cycles to do Task3. Thus it takes ANA
about 3 to 6 times as long to do an unfamiliar task as it would take it to do a familiar task of
comparable difficulty. It takes ANA about 1.3 to 1.8 times as long to do a task that it can do
in virtue of its accommodation capability as it would take it to do the same task with a set of
methods designed for the task.

Given ANA’s performance on the four tasks, one conclusion that seems warranted is that if
a system is provided with a set of highly specific methods for performing a few tasks, and if

45

TaskD Taskl Task? Task3
Runl Run2 Runl Run2 Runl Run2 Runl Run2

Initial methods

Task methods 30 25 56 35 23 19 68 46
The "find" method 140 126 273 199 ile 101 314 256
Analogy tools
Knowiedge nels 75 0 254 0 i25 0 269 0
Selting up analogies 65 ¢ 236 0 92 0 228 0
Using analogies 171 47 497 143 243 65 546 155
Under-specified recovery 0 0 31 0 28 0 123 0
Over-specified recovery 0 0 28 7 8 0 52 29

New productions

Method association 3 3 8 7 4 4 9 7
Net extension 0 0 6 0 0 0 6 0
Method patching 0 3 9 16 4 7 23 19
Total 484 204 1398 398 643 196 1638 512

Figure 6-2: ANA's performance on four tasks (number of cycles)

at least one of these methods is almost adequate for each unfamiliar task with which the
system will be faced, then an assimilation and accommodation strategy like the one ANA
employs enables the system to learn to perform unfamiliar tasks without requiring it to know
much aboul learning. If the methods are almost adequate, then the types of problems that
the system can encounter are quite limited: (1) The method being used can be
under-specified; so the system will have to learn what the additional pre-conditions on the
method are. (2) The method being used can be over-specified; so the system will have to
learn what constraints to ignore. (3) Subgoals that are generated by the method may not be
appropriate for the unfamiliar task; so the system will have to learn what the analogous

subgoals are. The mechanisms required to solve all three problems are very simple.

ANA’s strength, then, is that its learning mechanisms are simple, but effective -- at least
for simple tasks. And since ANA recovers from method inadequacy by creating patches
locally as particular problems arise, task complexity, of itself, presents no special difficulties.
If ANA is given a complex task that can be decomposed into a set of subtasks for which it has
almost adequate methods, ANA’s learning mechanisms will enable it to patch those methods
appropriately. The fact that ANA is so dependent on a store of almost adequate methods may
appear to be a significant limitation. But these methods are highly specific and thus easily
acquired. The knowledge embedded in each of ANA’s task methods is just that knowledge

46

which would be acquired if AMA were to be led, step by step, through a particular task. Thus
with some somewhat laborious training, ANA could acquire a store of methods sufficient to
enable it to perform a wide variety of unfamiliar tasks. ANA does, however, have a serious
weakness: its knowledge of how to select an appropriate (almost adequate) method is
extremely limited. If ANA had a large number of methods from which to select, it would need
more knowledge of the interrelationships among actions and among objects and more
knowledge of how to determine the dimensions along. which to compare tasks. If ANA had
such knowledge, and if it bad a large store of methods, its learning strategy would be
effective in many non-toy domains.

Acknowledgements

The development of many of the ideas discussed above owes much to the members of a
production system group at Carnegie-Melion University. The members of this group, in
addition to myself, are C. Forgy, J. Laird, P. Langley, A. Newell, and M. Rychener. I also want
to acknowledge the helpful comments on the first draft of this paper from J. Bentley and
D. Kosy.

47

References

Anderson, J. R, P. J. Kline and C. M, Beasley Jr. Complex learning processes. Technical
Report. Department of Psychology, Yale University, 1978a.

Anderson, J. R, P. J. Kline and C. M. Beasley Jr. A Theory of the acquisition of cognitive
skiils, Technical Report. Department of Psychology, Yale University, 1978b.

Forgy, C. A production system monitor for parallel computers. Technical Report.
Department of Computer Science, Carnegie-Mellon University, 1977.

Forgy, C. and J. McDermott. OPS, a domain-independent production system language. IJCAI,
5, 1977.

McDermott, J. Some strengths of production system architectures. Proceedings of NATO ASI
on Structural/Process Theories of Compiex Human Behavior. Sijthoff, 1978,

McDermott, J. and C. Forgy. Production system confiict resolution strategies. In D. Waterman
and F. Hayes-Roth (eds), Patlern-Directed Inference Systems. Academic Press, 1978.

Moore, J. and A. Newell. How Can Merlin Understand? In L. Gregg {ed), Knowledge and
Cognition. Lawrence Erlbaum Associates, 1973,

Newell, A. Knowledge representation aspects of production systems. 1JCAIL, b, 1977.

Rychener, M. Control requirements for the design of production system architectures.
Praceadings of the Symposium on Al and Programming (SIGART/SIGPLAN), 1977.

Sussman, G. J. A Computer Model of Skiil Acquisition. American Elsevier, 1975,

