NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU COMPUTER SCIENCE SYSTEMS
INTRODUCTCRY USERS MANUAL

Editors: Jack Dills
Art Farley
Mary Shaw
Roy Levin
H. T. Kung

September 1972
January 1973
July 1973
August 1975
August 1976
August 1977

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PaA 15213

PREFACE

The following manual is intended to provide a usable introduction to
computing on the CMU PDP-10, To accomplish this, a discussion of general
computing procedures and the PDP-10 monitor is given, followed by descrip-
tions of the available language systems. The manual does not provide full
language descriptions (references are provided to necessary, useful lan-
guage manuals); but through a short iptroduction, sample problems to try,
and an annotated script, the manual hopes to impart to the user an intro-
ductory knowledge of what it is like,and what to expect, when using each
of the discussed language systems on the CMU PDP-10.

Note that timely information can be found for many of the language
systems in a printable text file <language>.DOC on the PDP-10, Informa-
tion on which files are available can be found in DOC.DOC., To get a copy

of a DOC file print S¥S:<language>.DOC.

Wi,

saqt. WU

PREFACE TO THE 1976 EDITION

Major revisions have been done in this 1976 edition. The title of the
manual is changed to "CMU Computer Science Systems Introductory Users
Manual", since the manual now covers all the major systems available in

the Department. Many people helped on this revision. Their names appear

in the sections they wrote.

H. T, Kung
August 1976

TABLE OF CONTENTS

PROCEDURES AND MONITCR

1. Facility.............. F e et e ettt

1.1 Configuration...,........... e
1,2 TLimited Resources.................
Administrative Procedures,....,..............
2.1
2.2
2.3

2.

Usage Numbers............. caeaaan .
Terminals......... e
Trouble Report Forms..............
2.4 DECtapes and Magtapes........ .
3.

3.1 The Terminal Front-End.........

3.2 Telephone Lines........ Ceeee. ..

L, Using CMUA/B/D.urveeesumeneeeenan.

4.1
4.2 Communicating with the Operator, ..
 PLEASE....
SEND...... s eser e

GRIPE.....vevivuunns

LRI A R Y
L Y]

LR R A I

Getting Tapes Mounted,...,...
4.3
4.4
4.5
4.6
4.7
4.8

Line Pringer Usage............0....
File Space Allocation...,.........
Terminal Control..................
Useful Monitor Commands..,...
COMPILE Command Switches,..,......
Useful Utilities......... e ses
PIP....... e
FILCOM....... vt ee e,
LPTI28, ... vvivuenn..

QUOLST.......... e,

L R B I R

SETSRC.......... e e ieea.

4.9 BATCH............ et e teieans

Getting Connected to the System,........... .

LOoBEBINE TM. .. ieeurennecnasocennan.

L I R R N R R TN

Page

+
L]
N RN 2

NN

.
.
.
.
.
.
.
.
.
.
wn

L R N]

LR IR]

L R R I e

L R R R

5
5
5
6
tereaaes b
7
PR - |
B P -
teetirettancnsaaaaa, G
Ce et ettt e, 18

L N R N

L R R R R TR T,

II7T.

Iv.

4,10 The ARPANET .. ivvetcrivsnssassasansvanesssnsssencansonaasll
Overview........... ...;............................27
IMPCOM (Telnet) ivesseneossnssanscaaenasenneesesl8
FTP (File Transfer)........... tecrereeccneriansasealD

5. Special Purpose Research Systems.....ceieecevevonvonssnesnnsnassns 31

THZ LANGUAGE SYSTEMS

5 - PP
8 2 Y X
3 5 . ceessecanaeasab5

P R

L e Chceiseeracanaaans PP -}

MACRO-10....... S - 7
MACSYMADQDGUQ.QQQQQ..’-"-I.-lu!t...inl..ll'll..lll.liil..c.o... ----- -94'

MLIS .. vuvnerevscssaceasenssnsasesnsenassiasnassssns tecrsaneaesernesadb

5 P 11
S T BOL. s iueeerocuransasonassenasssaiantssassinonsssosanancaneancsnnssl0]

THE EDITORS

DOCUMENT FORMATTING. . v.cuuvonvovsosnsoanosensnsasorasssssnanaasanesslld

L P

TR, sttt sttt tteeraeanearesussatosnssesorosonnasnsansnssoaeensasalb2

HORIBL. sttt eiiasnaernoencarasosoasnsnssnsssavasssnssantsasncansnssess B9

C.MMP

C.mmp Algol 68 SyStem.....e.ceeeevescsesasccoasacsoncsoacssnssascnsnesllD

C D TOC 0. it it itnaenecassosassancaarsascarsaansecacetacsascasesassans 182

CMU GRAPHICS TERMINALS........ e i enes et earieteraa e P £ .1

Y¥2TE: The FORTRAN and BASIC language systems are fully described in the

CZCSYSTEM10 Mathematical Languages Handbook. Thus, no discussion

of either is included.

iii

1. PROCEDURES and MONITOR

H. D. Wactlar and €. D. Councill (eds.)
(Revised Aug., 1977)

1. Facility

1.1 Configuration

The Computer Science Department computing facility 1is
presently (Sep 1977) composed of four general purpose time sharing
systems and several stand-alone PDP-11 based research systems. The
general purpose systems are CMUA, CMUB, and CMUD, all Digital
Equipment Corporation PDP-10 systems; CMUA is a large KL10 running a
CMU modified DEC 6.02VM monitor, CHMUB and CMUD ‘are KAl0 processors
both running a CMU modified DEC 5.06B monitor. The CMUB operating
system also contains special code for the artificial intelligence
(Al) devices attached to 1it. C.mmp is a PDP-11 based multiprocessor
system of CMU design and implementation. C.mmp runs an operating
system called HYDRA, again, a product of CMU.research. .

Most general purpose computing takes place on CMUA at present
but some is also done on.CMUD. CMUB is primarily dedicated to
satisfying the stringent real-time requirements of the department's
speech and visjon research projects. C.mmp has sufficiently matured-
to the state of accepting general purpose time sharing users. By
Fall 1977, it should offer a &self contained ALGOL-68 subsystem to

facilitate the user interface and programming tasks. Most of the
systems are linked via the ARPA network to one another (as well a
the entire network) for file and terminal transfer purposes. '

Common terminal access is provided to all the CMU hosts via a
PDP-11 based front-end system. Most terminals are concentrated in
the third floor terminal rooms adjacent to the machine rooms. These
several rooms contain all video terminals and are ' carpeted for
maintenance of quiet working conditions.

1.2 Limited resources

Despite the apparent wealth of physical resources, computer
cycles and on-line storage are very scarce commodities. The facility
is intended to support the research and graduate education goals of
the department's faculty, staff, and students. Use for any other
purpose or transfer of access privileges to any other person is
strictly prohibited. Users should carefully consider what projects
they initiate and how they are implemented. When there are
alternative approaches, take the time to learn them, and select the
one which optimizes the man-machine utility. The facility can be a
rich one only if we all cooperate. '

2. Administrative Procedures

2.1 Usage Numbers

A computer usage application may be obtained from the PDP-10
operator. When completed, it may be returned to the Operations
mailbox in the C. S. main office or to the PDP-10 operator. You will
be notified either by phone or campus mail, probably within a wesk,
as to your project-programmer number (PPN). It will contain eight
alphanumeriec characters. The first four characters are your project
number; this is used for departmental accounting and statistics. The
last four characters are your programmer number; this is made up of
the initials of your first and last names with two digits appendea.
Your programmer number will be the first part of your DECtape labels
and is sufficient to identify you in most cases.

2.2 Terminals

All terminals should be left with the power on, unless they
are broken and awaiting repairs. Almost all terminals have an ONLINE
switch or key; this should be in an online position (light on). Any
terminal problems should be reported with a Trouble Report form,
discussed below.

2.3 Trouble Report Forms

Hardware trouble report forms are located in a holder on the
front wall of the terminal room, Science Hall 3103. These are to be
filled out when you encounter hardware trouble with terminals. Both
copies should be placed in the clear vinyl envelope on the terminal.

2.4 DECtapes and magtapes

DECtapes may be purchased in the CMU bookstore. Members of
the Computer Science Department may borrow DECtapes for their use
without charge by requesting them in writing by sending computer mail
to GRIPE. If a user requires tapes for off-line storage, they should
be requested with mail to GRIPE. "Each DECtape is named with from
five to ten alphanumeric characters. The first four characters will
be your programmer number, with from one to six characters of your
choice appended. MAGtapes will be named with a four digit number
{which has meaning only to Operations) and you may have your man
number appended to the 1label, if you so desire. This i% the name
which vyou will use when requesting that a tape be mounted, e.g.,
JS23-MYN. Computer Science owned tapes may not be removed from the
machine room area.

The department is not responsible for the unreliability .of-
non-departmental tapes. '

3
3. Getting Connected to the System

3.1 The terminal Front-End

Most terminals are connected through the front-end system.
Typing several ctrl-C's when the terminal is connected only to the
front-end and not yet through to a host, will cause it to recognize
your terminal speed and prompt for the host of your choice. Respond -
with the appropriate unique one-character identifier:

- for CMUA

- for CMUB

- for C.mmp

- CMUD

for help message
- for Cm* Host

- Al-Speech

- Al-Vision

- Line Info

- Uptime

ST TOE >
¥

If the host you specify is unavailable, the front-end should so
indicate. Once connected through to a host, you must login or the
host will timeout your connection and throw your terminal back to the
front-end state. ' -

You may return to the front-end to initiate a connection to
another CMU host at any time by transmitting the escape character
(octal «code 37, ctrl-leftarrow or ctri-underscore on most CMU
terminals and hosts). Your jobs remain on the host from which you
escaped and you may reconnect to them at any time. When you logout
from a particular host, your terminal is automatically forced back to

-the front-end whether or not you type the escape-back character.

3.2 Telephone lines

In addition to the hard wired terminals, users may dial into
the various systems over 10, 15 and 20 character per second lines.
Consult LINES.HLP on the PDP-10 systems for the latest list of phone
numbers. At the moment, the list is as follows:

Front-End lines [Variable Baud rate} 621-3526 (10-line rotary)

Type ctrl-C's until the Front-End responds with a host name request.
It determines the baud rate by examination of the bits in the 1C
chars. Answer with the unique one character identifier for the host
that you wish to connect to.

Individual-machine dialup ports. “These do not connect to the
front-end, but go directly into the indicated machine.

110 Baud (Teletype) '
CMUB 621-3525 TTYD

134.5 Baud (Datel, 2741)
CMUD 683-8330 TTY32
683-8331 TTY33
360 Baud (TI700, CRT's, etc.)
CMUD 621-3520 TTY37
621-3521 TTYA4
621-3522 TTY43 .
CMUB 621-3524 TTY5 ‘
683-8333 TTY4 - *

11¢-baud dialups assume TELETYpe as the tekminal type, while 300-baud
dialups assume TI. Use SET TTY <x>, where <xX> is‘ANNARBor,BEEHIVe,
LA36 (DECwriter), et cetera. SET TTY must be typed after logging in.
The operator's outside line is 412-582-7086.

Other useful telephone numbers:

CMU Campus 621-2600
Computer Science Office x141
Computer Science Lounge x144
PDP-10 machine room _ x176
CMUA and C.mmp rm x131
Main terminal rm (3103) x129
A.I. terminal rm x169
' x153

C.S. Engineering lab x170

4. Using CMUA/B/D

4.1 Logging in to the host

The LOGIN command is used to gain access to the system or %o
start a new job. The dialogue is as follows:

.LOGIN <PPN>

Job # <CMU monitor name>
Password:

time . date

{message of the day>

where PPN is your usage number (e.g. C410HB0O). After 'Password:'
type your password, which doesn't echo. If you wish to change your
password, type an altmode instead of a carriage return and the system -
will prompt you for your new password. v

When you are finished using the system and wish to logout, use the
KJOB command (described under Useful Monitor Commands).

4.2 Communicating with the operator

4.2.1 The PLEASE command

PLEASE is a monitor command which puts the issuing terminal,
and eventually, the CTY {console teletype) into a. special
communications mode. This mode may be evoked when 1logged in and in
monitor mode, by typing:

.PLEASE <{text>

You only need to type the word "please" once. If the CTY has a job
on it, or running SYSTAT, or in another PLEASE, the message:

OPERATOR BUSY, PLEASE HANG ON
L
will print on your terminal. VYou. can terminate the PLEASE with a
control-C or wait until the CTY 1is free. When it is free, your
terminal will print:

OPERATOR HAS BEEN NOTIFIED

and then your message, along with indentifying information about you
and several bells, will print on the CTY. Now both terminals are in
"please mode". Any line typed on either terminal, terminated by a
<CR>, will print out on the other terminal and will otherwise be
ignored by the system. Thus a two-way communication is established.

6

If you have more than one line of text to communicate to the
operator, end the first line with three periods (...). When you are
finished with your message and wish to receive the operator’s reply,
end vyour message with the letters GA {go ahead). When you wish to
completely terminate your end of the interaction, end your last
sentence with GA or BYE. This gives the operator the chance to add
one last thing, if he should need to. "Please mode" may be
terminated by an altmode or a control-C on either terminal. However,
it is courteous to wait until the operator altmodes out of the
PLEASE. Both terminals will then be in monitor mode. The most
frequent use of PLEASE is to request the mounting and dismounting of
tapes and disks.

4_.2.2 The SEND command

The SEND command is wused to send a one-line message to
another system user. The target user may be specified by his job
number or by his terminal number. The operator is either CTY or OPR.
Examples:

SEND TTY62: <text>

SEND JOB 17 <{text>

SEND OPR: {text>
SEND leaves the issuing user in monitor mode and the receiving user
at the same place he was before the SEND. The format of the message
on the receiving terminal is:

::;13:40:26 TTY43 (sender name): <{text>

The proper way to converse with the operator is with PLEASE.

4.2.3 GRIPE

CMU does not use the system program provided by DEC, called
GRIPE, for "griping" purposes. Instead, we have an account with the
name GRIPE and when you wish to GRIPE you send mail (using the MAIL
program) to that account. GRIPEing is the word ‘used for almost any
type of user request that doesn't require an immediate response.
"immediate™ means minutes or hours.) The following types of requests
should be mailed to GRIPE: requests for accounts, tapes, disk storage
increases, name changes and the like, as well as questions and
suggestions about system cusps and the operating system. The GRIPE .
mail.box 1is then read later by the Operations staff and ypu will
generally receive an answer to your problem/question by computer
mail, unless you specify otherwise.

4.2.4 Getting tapes mounted

DECtape drives are available only on the CMUB and CMUD. 1t
your account is on the CMUA and you wish to use a DECtape, then use
the cusp called, TOOK. Type HELP. TOOK on -the CMUA for more
information. If you are going t0 use DECtapes on either the CMUB or
CMUD, then follow the instructions below. The first thing to do is

7
to get a unit assigned for your tape.

Type: .ASSIGN DTA (for DECtape) or
ASSIGN MTA (for magtape)

The monitor 'will respond with: '
DTA2 ASSIGNED

or, if no unit is available, it will respoﬁd:
?ASSIGNED TO JOB #

After a unit 1is assigned to you, you will notify the operator to
mount your tape by using the monitor command PLEASE. 1In your request
specify the tape name, tape unit, and .whether the tape should be
enabled for writing. If you do not specify "write enabled" (W/E),
the operator will write lock the tape. Remain in PLEASE mode until
the operator responds to your request. He may say:

NNOOABC MOUNTED ON DTAZ2 ENABLED

or, since the monitor recognizes 6 DECtape units and 3 MAGtape units,
and we have only five DECtape drives and two MAGtape drives, there
may not be a drive free for you even though you have a unit assigned.
If this is the case, the operator will try to get a drive for you as
s00n as possible. The drives are allotted on a
first-come-first-served (FCFS) basis. If you need a drive urgently
or only for a minute, use systat to find out who are using the drives
and contact them with "SEND" to ask them if they need the drive. If
you do not need a drive immediately, the operator will mount your
tape and notify you when a drive is free.

The tape drives are very much in demand, so please bhe
considerate of others. When you finish with a tape, be sure to tell
the operator to dismount it immediately, and deassign the DTA thus
freeing the drive for someone else. You can type:

.DEASSIGN DTAZ

to make the unit available for others, If you are wusing the same
unit number for more than one tape, be sure to reassign the unit
between tapes by again typing:

.ASSIGN DTAZ

and so a fresh copy of the directory will be read into core and you
will not be using the directory from the last tape.
[
If you are logging off, the unit will be returned to the
pool, and . your tape will be dismounted automatically if you have
forgotten to deassign the drive.

4.3 Line Printer Usage

There are three printers in the department, two dual case and
one upper-case. One of the dual case printers is connected to C.mmp,
and the other is connected to the CMUA. The upper case printer is
switched between the CMUB and the CMUD. .

The dual case printer on the CMUA is located near the
entrance from the machine room to the 3rd floor terminal room. The
upper case 1line printer is 1located near the front doors to the
machine room along the aisle.

When you pick up your listing, it may be attached to listings
done before and after it. It is considerate to separate all.the
listings attached to yours and place other people's listings on the
table near the printer. This process is called "bursting®.

Each listing is preceded by a large page with the hame of the
file, your programmer number, and miscellaneous dates and times. The
listing is also followed by a similar page., You can tell them apart
because one says BEGIN at the four corners and one says END. Both
pages will have a decimal number at the extreme edges of the middle
line.- Both pages have the same number; you can use this to find the
limits of a listing you are trying to burst. '

There are boxes beside all printers for old listings and
break pages. The paper gets recycled, and the money is used for
various departmental festivities. Please be neat about putting paper
in the box. -

’ '

4.4 File Space Allocation .

Every account is allocated a quota of a modest amount of
public storage disk space. Users are expected to 1live within this
guota. Should it prove inadequate for pursuing a serious line of
research, reasonable requests for larger quotas will be considered
when submitted via mail to GRIPE with an adequate explanation.

There are three public storage disks on the CMUA: DSKB, DSKC,
and TEMP. On the CMUB there are three: DSKA, DSKC, and TEMP. And on
the CMUD, there are four: DSKA, DSKB, DSKC, and TEMP. DSKA: on both
the CMUB and CMUD is the swapping drum and may be wutilized only for
temporary user files only while the user is logged in. We are always
running out of space on DSKB and DSKC, and often run out of space on
TEMP. About once a week a program is run which deletes everything
from TEMP that you haven't looked at that week. TEMP is intended to
hold intermediate files and other things that have a short lifespan.
It is considered socially unacceptable to try to store things there
permanently and to request restorations of files that have been
deleted by the "disk purger".

4.5 Terminal Control

On the terminal, there 1is a special key marked CTRL called
the Control Key. If this key is held down and a character key is
depressed, the terminal types what is known as a Control Character
rather than the character printed on that key. In this way, more
characters can be used than there are keys on the keyboard. Most of
the control characters do not print on the terminal, but cause
special functions to occur, as described in the following sections.

*

There are several other special keys that are recognized by
the system. The system "sees” all of the characters typed into your
terminal and, most of the time, sends the characters to the program
being executed. The important characters not passed to the program
are also explained in the following sections.

The ALTMODE or ESCAPE key

The ALTMODE key ($), which is labeled ALTMODE, ESCAPE or
PREFIX, is used as a command terminator for several programs and the
monitor. Since ALTMODE is a non-printing character, the terminal
prints ALTMODE as a dollar sign.

Control-C

Control-C (tC) interrupts the program that is currently
running and takes you back to the moniter. The monitor responds to a
control-C by typing a period (.) on your terminal. You may then type
another monitor command. For example, suppose you are running a
program in ALGOL and you now decide that you want to leave ALGOL and
run a program in MACRO. When ALGOL requests input from your terminal
by typing an asterisk {*), type control-C to terminate ALGOL and
return to the monitor. You may now issue a command to initialize
MACRO (R MACRO). 1If the program is not requesting input from your
terminal (i.e. the program is in the middle of execution), when you
type control-C the program is not stopped immediately. In this case,
type control-C twice in a row to stop the execution of the program
and return control to the monitor. If you wish to continue at the
same place that the program was interrupted type the monitor command
CONTINUE. Or if you wish to start the same program over again, type
the monitor command START. ' :

Control-H

Control-H (tH) performs a function similar to RUBOUT but does
not echo the deleted character or type any backslashes.' On video
terminals, the deleted character is erased from the screen and the
cursor positioned in the empty space. Thus, the screen appears as
though the erroneous character had never been typed.

Control-0O

Control-0 (t0) tells the computer to cancel terminal output.
For example, if you issue a command to type out 100 lines of text and

-

10 .
then decide that you do not want the typeout, type control-0 to
eliminate the output. Another command may then be typed as if the
typeout had terminated normally.

Control-Q

Control-Q (tQ) résumes the terminal output halted by the
control-S (tS). :

Control-R

. This command (tR) will cause the system to retype all
characters that are presently in the current line input buffer. This
is very handy when several corrections to a line have been typed and
you are uncertain as to what your input line to the machine really
is. This only works before you have typed a carriage return.
{Implemented on the CMUA only, Sep 1977)

The RETURN key

Pressing this key causes two operations to be performed: (1)
a carriage return and (2) an automatic line-feed. This means that
the ‘typing element returns to the beginning of the line (carriage
return) and that the paper 1is advanced one line (line-feed).
Commands to most programs and the monitor are termlnated by pressing
this key.

The RUBOUT key

The RUBCOUT key permits the correction of +typing errors.
Depressing this key once causes the last character typed to be
deleted. Depressing RUBOUT n times causes the last n characters
typed to be deleted. RUBOUT does not delete characters beyond the
previous carriage return, line-feed or altmode. Nor does RUBOUT
function if the program has already processed the character you wish
to delete. ;

The monitor types the deleted characters, delimited by
backslashes. For example, if you were typing CREATE and got as far
as CRAT, you can correct the error by typing two RUBOUTs and then the
correct letters. The typeout would look like:

CRAT\TA\EATE

Notice that you typed only two RUBOUTs, but \TA\ was printed. This
shows the deleted characters, but in reverse order.

Control-S

Control-8 (t3) halts terminal output in progress. Output is
resumed by typing a formfeed (tL) or a tQ which are not passed to the
user program, or by S which is passed (thus, tStS sends one tS).
The state is also reset by t0 and t(CtC. It is especially useful on
video terminals so that the output does not scroll off the screen

-before it has been read.

11
Control-T

Typing control-T (*T) at, your terminal will give a one line
status of the running job with out interrupting it. It is handy if
you are in the middle of running a 1long program and you want a
"systat® of it, but don't want to log in another job or destroy your
core image. (Implemented on the CMUA only, Sep 1977)

Control-U

, Control-U (tU) is used if you have completely mistyped the
current line and wish to start over again. Once you type a carriage
return (<CR>}, the command is read by the computer, and line-editing,
features can no longer be used on that line. Control-U causes
deletion of the entire line, back to the last carriage return,
line-feed or atlmode. The system responds with a carriage return,
line-feed so that you may start again.

Control-Z2 _
This is an end of file character when the input device is a
terminal (TTY), similar to an end of file mark on a magtape.

Modifying terminal characteristics

When you login to the system the terminal (TTY)
characteristics are defaulted to the appropriate set for that
terminal. 1If you wish to modify them, there is a TTY command which
declares special properties of the terminal line to the scanner or
Front End service. The command format is:

TTY NO word

NO = the argument that determines whether a state is to be set or
cleared. This argument is also optional.

word:= the various words representing states that may be modified by
this command. Some of the words are as follows:

TTY UC - The monitor translates lower-case characters

to upper case as they are received.

TTY LC The translation of lower-case to upper-case
is suppressed,

TTY WIDTH n The carriage width (the point at which a free
carriage return is inserted) is set to n.

TTY NO CRLF The carriage return normally output at the

end of a line exceeding the carriage width
-1s suppressed.

TTY NO BLANK - Eliminates blank lines from the output.
Increases the data density on screens and
thermal paper.

TTY PAGE One full screen's worth of data is output on
to the video terminal and then stopped.

12
Typing any character resumes output with
another "page".

TTY NO BACKSP Disables CTRL-H's delete character function.
CTRL-H gets passed to the program (for APL
on Graphics terminals).

TTY <type> where {type> = INF{BEE|TELE|GRAPHIC}; sets all
of the characteristics to the appropriate set
for the specified terminal type.

TTY RESET Resets all the characteristics back to the
default for this line.

4.6 Useful Monitor Commands

Commonly used monitor commands (unique abbreviations are
acceptable)

ASSIGN {physical device> <{logical name>
allocates an 1/0 device (DECtape, magtape, disk) to
the user's job and optionally assigns a logical name
designated by the user to that device. Example:
LASSIGN DTA DT11
DTA3 assigned

ATTACH <{job number>[project-programmer number]
detaches the current job, if any, and connects the
console to a detached job. The user is prompted for
the appropriate password, as in LOGIN, before the-
ATTACH is completed..

CLOSE {dev:> -)
terminates any I/0 currently in progress on the

. specified device.

COMPIL {list of source file names separated by commas>

‘produces relocatable binary files for the specified
program(s) by calling the appropriate compiler as
determined by the source file name extention (ALG
for ALGOL, MAC for MACRO, F4 for FORTRAN, BLI for
BLISS, SAI for SAIL). Example:

.COMPILE TEST.MAC

CONTINUE starts the program at the saved program counter
(PC) address stored by a halt (+C) command. .
COPY {dev: file name> = {dev: file name>
transfers files from one standard I/0 device to another.

CREATE <file name> _
calls LINED (SOS) to create a new file. Example:
.CREATE TEST.MAC '
DAYTIME types the date followed by the time of day.

DD'T saves the program counter (PC) and starts the program
at the dynamic debugging module optionally loaded

DEASSIGN

DEBUG

DELETE

DETACH

DIRECT

13
with the compiled program.

<logical or physical device name>)>
returns the I/0 device to the system's available pool.
Example:

.DEASSIGN DTA3

{list of file names separated by commas>
performs the compile and lecading functions and in
addition loads DDT which it enters on completion
of loading. Example:

.DEBUG TEST.MAC, TESTZ2.F4

{list of file names or groups separated by commas>
automatically runs PIP to delete the specified files.
Example:

.DELETE TEST.MAC,*.REL

disconnects the terminal from the user's job without
affecting its status. The terminal is now free to
control another job.

{dev: file name>
lists specified directory entries. Some options are:

DIR List name, length, creation.
date, etc. for each file in

: your disk area. '
DIR/Fast Same as above, but lists

) only file names.
DIR DTA3: List all the files on your
DECtape on DTA3:
DIR TEXT7.MAC Print the vital statistics of
. file TEXT7.MAC on your disk area
DIR/since:-3d:4:27 Print info for all files created

since 3 days, 4 hours, 27
minutes ago
DIR/since:Wed Print info for all files created
. since last Wednesday
DIR/before:25-0ct-73 Print info for files created
before 25-0ct-76
DIR/access/since:Wed Print info about files accessed
since last Wednesday

DIRECT outputs files by allocation unless /BLOCKS is
specified.

File names and extentions may be specified with wild
cards (* and ?). The wild cards work as follows:

"?" matches any character or null and "*" matches

any file name or extention.

DIRECT will accept CMU PPNs with "x" and "?" wild .
cards. It will also accept DEC PPNs. Use [xx3] for
a completely wild PPN.

14

DSK <{job number)

types the incremental and total disk usage in 128 word
blocks read and written.

EDIT ' {file name> ')
© calls LINED (SOS) to edit an already existing file.
Example: .

.EDIT TEST.MAC

EXECUTE {list of file names separated by coﬁmas>
performs the compiling and loading functions and
initiates program execution. Example:

.EXECUTE TEST.MAC

GET {file name>
' loads & previously saved core image but does not
begin execution.

HALT stops the job and saves the program counter {PC).
Bypasses control-C trapping.

HELP <name>
prints helpful documentation for variocus commands
and programs.

KJOB {arg>
initiates the logoff sequence. In response to
CONFIRM:, type one of: BDFHIKLPQSUWX
B to perform algorithm to get under guota
D to delete all files :
(asks Are you sure?, type Y or <CR>)
F try fast logout by leaving all files on DSK
H type this text
I to individually determine what to do with all
files after each file name is typed out, type
one of: EKPQS, or H to get more help
to delete all unpreserved flles
to list all files
to preserve all except TMP files
to report if over quota
to save all except TMP files
same as I but automatically preserve f11es that
are already preserved
W to list files when deleted
X to suppress listing deleted files (default)

CcChhe e g

1f a letter is followed by a space and a list of

File Structures, only those listed will be affected

by the command. CONFIRM: will be typed again.

A file is preserved if the access protection is >100.
LABEL DTAn:<{label name>

writes a name logically onto a DECtape. n is the

drive number and the label may be any 6 characters.

. 15
LIST {line printer>=<(file name specifier>/switch
queues files to be printed on the line printer.
Switches include:

(# =1 - 9) print multiple copies
D delete after printing (default for all .LST,
.TMP and .CRF files) .
P . preserve after printing
LOAD {list of file names separated by commas>

performs the compiling and loading functions to
execute the core image of a runnable program.

LOGIN {project-programmer number>
initiates the login sequence.

MAIL {name list>/(switch:arg>/<switch:arg>.,.../<switch:arg§

sends geheral messages to other users for them to read
when they next LOGIN, The basic format is shown above.

{namelist>:= <{mailee> \ <maiiee> + <{namelist>
<mailee> := name \ programmer # \ PPN \ entire account

name := lastname \ firstname lastname \ lastname,
firstname \ name®host name

{switch>:= CC:arg \ DELMAIL \ DISTRIBUTION:arg \ EXPAND‘\
FILE:arg \IDENT:arg \ LINENUMBERS \ NOWRO \
' RETRY \ SAVMAIL \ SUBJECT:arg \ TRANSCRIBE

MAIL also accepts command files using the '@{filel>'
construct.

All mail is appended to.a file called MAIL.BOX on the
object user's disk area, and may be read with RDMAIL
or with any editor (e.g. LINED (SO0S) or TECO).

For more information, see DOC:MAIL.DOC.

L]
MAKE {file name>
calls TECO to create a new file.

MOUNT {disk structure name> .
establishes a user file directory on a dismountable
file structure. Also used for gaining access to TEMP:.

PJOB types host, job number and project-programmer number
of job running on the terminal on which this command
is typed.

PROTECT {dev:><{file specifier>{file protection code>

alters the access protection associated with the
specified files. The access protection is indicated

file:///IDENT

15

by three digits. Each digit represents a particular
tlass of user. The first digit represents the owner
of the file, the second represents user with the same
project number of the owner, and the third represents
all of the other users., Each number in the three
digit code can be onc of the following:

7 No access privileges
6 Execute the file
5 Read and execute the file
4 Append, read, and exgcute the file
3 Update, append, read, and execute the file
i Write, update, append, read and execute the file
1 Rename, write, update, append, read, delete’
and execute the file :
3] Change protection, rename, write, update,

append, read, delete and execute the file
The standard default protecticon is <055>.

R {system program name>
executes the named program residing on the system
area (SYS:). Example:
.R FILCOM

RDMAIL manipulates computer mail.
It provides a powerful set of fac111t1e5 for examlnlng
and manipulating messages, sending mail, and archiving
old mail. The most commonly used commands appear below.
For full details see DOC:{or SYS:)RDMAIL.DGC or type
DOC when in RDMAIL.

Headers (optional <msg-seq>) means type a one line
indication of each of the messages in {msg-seq>
(defaults to all of the new messages).

DELete <{msg-seq> means mark each of the messages as
deleted.

Type <{msg-seq> means type each of the messages on the
terminal.

{line feed> means type the next message.

List <msg-segq> means list each of the messages to a
file. It will prompt for a file name which
defaults to LPT:MAIL.

SEnd <{person> means send a piece of mail to <{person>.
You will be prompted for subject, etc.

+ Answer <{msg-num> means answer a message. Similar to
SEND, but with additional defaults.

Exit means return to monitor mode, deleting messages
so marked.

? means quick summary of command names and spec1a1
functlons

Message numbers range from 1 to the highest numbered
message that exists in the file. A msg-seq is a set of
messages. For example: © 4,6:9,.:15,%

READ

RENAME

RUN

17 _

means messages 4,6,7,8,9,14,15 and 23 assuming that the
"current” message is 14 and the last one in the file

is 23. :

<file name>

calls LINED (SOS) to examine an already existing file
with line number printout turned off.

LINED prompts with a "*"; most commands should end
with a carriage return <cr>.

The most commonly used commands for READ mode are:

H Give HELP. (Note: all modify commands illegal
READ mode)

<LF> A line-feed print the next line.

{ALT> An escape or altmode (%) prints the previous

line.
B Go back to the BEGINNING of the file (does
not print anything). _
B/n Go to the BEGINNING of page n {e.g., B/3).
P. Type the current line.
P/. Type the current page.

P/.+1 Type the next page.
P.:x Type from the current line through the
- end of the page.
P Type the current line and the next 15 lines.
0 Type a WINDOW arocund the current line:
+/- 5 lines.
F(string><{esc> FIND the first occurence {between
the current line and the end of the file) of
{string>. The <CR> is needed.

F FIND, use the <{string> of the last F
) command given.
=, Show the <line-number>/<{page-number>

of the current line.'

+SEE=1 Enable line-number printing.

«SEE=0 Disable line-number printing.

=File Show the name of the file currently
being READ.

E END reading and return to the monitor.

For more information, use the H command or see the
S0S manual.

{dev: new file name> = <{dev: old file name>
runs PIP to change a file name. Example:
.RENAME TEST1.MAC = TEST.MAC
FILES RENAMED: :
TEST.MAC

{file name> .
runs the core image previously loaded and SAVE'd
with that file name. Example:

.RUN TEST.SAV

SAVE

SSAVE

START

SYSTAT

TECO

TIME

ZERO

18

{file name>
copies the core image currently loaded in core onto
the specified file so that it may be RUN at a later
time. Example:

.LOAD TEST.MAC

.SAVE TEST.MAC

Job saved

{file name>

‘same as SAVE, but it saves the core image in a form

to be shared by multiple users when running.
starts the execution of an already loaded core image..

{arg>

provides status information about the system and

about jobs which are running. The complete SYSTAT
printout is much longer than most users want to see;
more frequently, some subset of the SYSTAT printout is
is of interest. SYSTAT may be abbreviated as SY, SYS,
SYST, etc. For a more complete help text, type SYS H.
These are a few of the more frequently performed
operations:

SYS J Job status: print status of all jobs
SYS W WHO: identifies system users by name
SYS <n> status for one job: print SYSTAT
information for job <n>
SYS S Short: print an abbreviated version
of SYS J
SYS F Print summary of available file space
SYS Q Show the line-printer spocl queue.
SYS #<n> status for TTY: print SYSTAT info. for

jobs controlled by TTY line number <n>

SYS. "string" Selective print: edits full SYSTAT,
but prints those lines containing the
specified string.

SYS H Print SYSTAT's internal help text.

SYS W H Print WHO's internal help text.

{file name>
calls TECO to edit and already existing file.

<{job number>

causes typeout of total runtime since the last
TIME command, total runtime since LOGIN, and

and integrated product of runtime and core size.

{dev:>
clears the directory on the device specified.

4.7. COMPILE command switches

The COMPIL, LOAD, EXECUTE and DEBUG commands may be modified

19

by a variety of switches. Each switch is preceded by a slash and is
terminated by a non-alphanumeric character, usually a space or a
comma. An abbreviation may be wused if it uniquely identifies a
particular switch.

These switches may be either temporary or permanent. A
temporary switch is appended to the end of the filename, without an
intervening space, and applies only to that file. Example:

.COMPILE A,B/MACRO,C

(The MACRO assembler applies only to file B.} A permanent switch is
set off from file names by spaces, commas, or any combination of the
two. It applies to all the following files unless modified by a
subsequent switch. Example: ' ‘

.COMPILE /MACRC A,B,C
.COMPILE A /MACRO B,C
.COMPILE A, /MACRO,B,C
.COMPILE A, /MACRO B,C

Compilation listings - Listing files may be generated by
switches. The listings may be of the ordinary or cross reference
type. The operation of the switch produces a disk file with the
extention .LST, queues it, prints it, and then deletes 1it. The
COMPILE switches LIST and NOLIST cause 1listing and nonlisting of
programs and may be used as temporary or permanent switches.
Listings of all three programs are generated by:

.COMPILE /LIST A,B,C

A listing only of program A is generated by:
.COMPILE A/LIST,B,C

Listings of.programs A and C are generated b;:
.COMPILE /LIST A,B/NOLIST,C

The COMPILE switch CREF is like LIST, except that a cross reference’
listing 1is generated (FILE.CRF), processed 1later by the CREF CUSP
which generates the .LST file, queues, prints and deletes it. Unless
the /LIST or /CREF is specified, no listing file will be generated.
Since the LIST, NOLIST and CREF switches are commonly used
the switches L, N and C are defined with the corresponding mednings,
although there are (for instance) other switches beginning with the
letter L. Thus, the following command: :

.COMPILE /L A

produces a listing file A.LST (and A.REL).

Standard Processor - The standard processor " is used to
compile or assemble programs that do not have the extentions .MAC,
.CBL, .F4, or .REL. A variety of switches set the standard
processor. If all source files are kept with the appropriate
extentions, this subject can be disregarded. If the following

20
command:

.COMPILE A

is executed and there 1s a file named A.{that 1is, with a null
extention), the A. will be translated into A.REL by the standard
processor. Similiarly, if the following command:

.COMPILE FILE.NEW

is executed, the extention .NEW although meaningful to the user, does
not specify a language; therefore, the standard processor is used.
The wuser must be able to contrel the setting of the standard
processor, which 1is FORTRAN IV, at the beginning of each command
string.

Forced compilation - Compilation (or assembly) occurs if the
source file is at 1least as recent as the relocatable binary file.
The creation time for files 1is kept to the nearest minute.
Therefore, it is possible for an unnecessary compilation to occur.
If the binary 1is newer than the source, the translation does not
wsually have to be performed.

There are cases, however, where such extra translation may be
desirable (i.e. when a listing of the assembly is desired). To force
such an assembly, the switch /COMPILE is provided, in temporary and
permanent form. For example:

.COMPILE /CREF/COMPILE A,B,C

will <create cross reference listing files A.CRF, B.CRF and C.CRF,
although current .REL files may exist. The binary files will also be
recreated.

4.8, Useful Utilities
4.8.1 PIP - Peripheral Interchange Program
{destination specification>«<{source specification>

PIP is a basic systems program of the PDP-10 which provides
the user with the necessary facilities for handling existing data
files. Actions possible among others, are transferring files from
one standard 1/0 device to another standard 1/0 device, listing and
deleting directories, simple editing, changing protection codes, and .
controlling magnetic tape functions. Note that PIP will not assign
devieces, thus any device assignments must be previously done. All
specifications are in the following form:

¢dev:>{file.ext)>,{file.ext),...{file.ext>[PPN]/<{switch>

PIP will accept wild cards {? and *) for both file names and PPN's.
It will also accept octal numbers; a number sign or hash (#) is used
as a flag to indicate the presence of an octal constant in a file
name or extention. PIP will actept command files in the following
format: FILE.EXT@, where the default extention is .CCL. Below is a

21
summary of PIP switches in alphabetical order.

A line blocking

B binary processing {(mode) .

C suppress trailing spaces, convert multiple
spaces to tabs ‘
delete file i . -

treat (card) columns 73-80 as spaces

list disk directory (file names and ext. only)
ignore 1/0 errors

image binary processing (mode)

image processing (mode)

1list directory

see MTA switches below

delete sequence numbers

same as /S switch, except increment is by 1
FORTRAN ocutput assumed. convert format
control characters for LPT listing

/B/P copy FORTRAN binary

print {this) list of switches and meanings
rename file

resequence, or add seguence numbers to file;
increment is by 10

suppress trailing spaces only

copy block D {(dta)

match parentheses ({>)

convert tabs to multiple spaces

copy specified files

zero out directory

VOZIr~IOMEY

L 30

N> E <

MTA SWITCHES:

Enclose in parentheses ().

M followed by 8 means select 800 B.P.I. density
556

200 _

even parity

advance MTA 1 file
advance MTA 1 record
backspace MTA 1 file
backspace MTA 1 record
rewind MTA

skip to logical EOT
rewind and unload MTA
mark EQF

M T U DD MmN

(M#NA), (M#NB), (M#ND), (M#NP) mean advance or backspace MTA N
files or records.

4.8.2 FILCOM ~ File comparision
{output specifier>=<{input specifier>

FILCOM compares two files in either ASCII mode or binary depending
upon switches or file name extensions. All standard binary

22
extensions are recognized as binary by default. -Switches are listed
below in alphabetical order:

/A compare in ASCII mode
/B allow compare of Blank lines
/C ignore Comments and spacing
/S ignore Spacing _
/H type this Help text :)
/#L Lower limit for partial compare
or number of Lines to be matched
{ # represents an octal number)
/#U Upper limit for partial compare
/Q quick compare only, give error message if files differ
/U compare in ASCII Update mode
/W compare in Word mode but don't expand files
/X expand files before word mode. compare

4.8.3 LPT128 - Full ASCII line printer ocutput

‘ LPT128 prints files which use the entire 128-character ASCII
set. The user has the option of printing special characters with or
without question marks preceding them (SOS input format). If question
marks. are not printed, then the special character equivalent is
printed without the question mark, e.g. "7%" would print as "*", not
The default mode has all the "right" options for printing SOS
files. To select other options, type altmode to the request for a
file. To any question reply either Y, N, carriage return or ?. 7
will give a slightly longer explanation of the question and then ask
it again. ‘If a reply is terminated by an altmode no further
questions will be asked. If no reply is given, i.e., Just a bare’
carriage return, then the value is not changed from its previous
setting. ' _ :

A command file {containing filenames as well as mode setting
commands) may be specified by "@filename". Lines’' from the command
file will be typed as they are read.

LPT128 has a "SPY" option. In setting the modes, you may
select a positive value for the SPY size. LPT128 will then print
only that many lines from each file. Typical use is to specify
wildcards in the command file and see the first few lines of each
file. Note that when operated in SPY mode, LPT128 will not update
the access date of any files examined. '

23
4.8.4 QUOLST - Listing your disk quotas

QUOLST is a program which informs you how much disk space you
have used and how much space you have left. It also lists the amount
which the system has left. To run it, simply type:

.R QUOLST

It has no switches. It gives the user's project-programmer number.
For each structure in your search list, it gives the structure name,
the number of blocks used, and the amount of space left in each of
three categories: : -

{IN) logged in (FCFS) quota

(OUT) logged out quota

{SYS) to all users on the system

4.8.5 MOVE - Moving files easily

The MOVE program allows a user to transfer files from any
disk and/or PPN to any disk and/or PPN {provided that the user has
the proper rights, of course). The files are deleted from the source
structure/PPN after they have been transfered to the destination
structure/PPN. MOVE leaves access and creation dates unchanged on
all files it touches. 1In addition, the program can be used to delete
line numbers from files (but without modifying the creation or access
date of the file -- this is especially useful for shrinking files to
save disk space, but without confusing the file's "age™".)

The program prompts the user for the following information:

FROM PPN: The source PPN. Defaults to the current job's PPN.

FROM STRUCTURE: The source structure (a disk)}. Default is
DSK. You MUST specify a DISK STRUCTURE (e.g., DSKB, but not DTAl).

TO PPN: The destination PPN. Defaults to the source PPN.

TO STRUCTURE: The destination structure. This defaults to
the source structure.

FILES: The file(s) that. are going to be moved. You can
specify a list of files, wusing a "," as separator. The standard "x"
and "7?" conventions are allowed in the filename.ext specifications.
If the switch /D (decide) is given following a file name, that file
and all following files on that line are then prompted and the user
is given a chance to decide if that file is really to be transferred.
(Typing N to the prompt skips that file, anything else transfers it.)

_ NOTE: The source or destination structure can be specified
as DSK, in which case the Search list associated with the LOGIN PPN
is used to access and enter files. You can use DSK as a structure,
specification only if the destination and source PPN's are different
or if the other structure is not. in the search list.

24

4.?.6 SETSRC ~ Modifying your search list

This

program is used to alter the succession of disk areas

and file structures searched when a file is requested. The switches
for SETSRC are listed below:

Abrev.: F.S.=file structure, S.L.=search list

User S.L. Commands:

Create new S.L.
Modify F.S. parameters of current S.L.
Add F.S. to current S.L.

Remove F.S. from current S.L.

/sl str/fs/fs, str/fs/fs, ... ,str/fs/fs /sl
F.S. name (e.g. DSKA:)
or '*' to indicate all F.S. in current S.L.
F.S. switches:
/WRITE Write enable F.S.
/NOWRITE Write lock F.S. (this job only)
/CREATE Allow file creation on F.S. when DSK: specified
/NOCREATE Allow file creation only if F.S. named
JW=/WRITE /R=/NQWRITE /C=/CREATE /N=/NOCREATE
DEFAULT (NO SWITCHES)= /WRITE/CREATE
OPTIONAL S.L. SWITCHES:
/S8YS Add auto. search of SYS: to DSK: specification
/NOSYS Remove
/NEW Add auto. search of [1,5] to SYS: specification
/NONEW Remove ...
/LIB:[PROJ,PROG] Add auto. search of library [proj,prog]
‘ to DSK: specification.
/NOLIB remove . :
Default (no switches) leave DSK: specification as is

T Type S.L.
C list
M list
A list
R list
list=
str=
/fs=
/SL=
SYS=M/SYS

NOSYS=M/NOSYS

etc. for NEW, NONEW, LIB[proj,progl, and NOLIB.

System S.L. Commands:
All commands except TS require user logged in as [1,2].

TS

CS list
MS list
AS list
RS 1list

Type system S.L.

Create new ...

Modify F.S. parameters in ...
Add F.S5. to ..

Remove F.S. from ...

list=

same as for user S.L. except S.L. swithes not allowed.

25

Path Commands:

TP type default path'
CP path Create new default path
SCAN enable scanning
NOSCAN desable

paths= fproj,prog,sfd,...,sfd] /s
proj,prog= UFD name
sfd= subfile directory names
/s= switches:
/SCAN Enable scanning
/NOSCAN Disable
/S=/SCAN /N=/NOSCAN
default (no switches) leaves scanning as is

4.9 The CMU BATCH System

NOTE: The CMU BATCH system is only run, at preseﬁt ¢Sep 1977), on the
CMUA and CMUD. To obtain this BATCH system on the CMUD, you must run
CMUQ from 3YS:; the default BATCH for the CMUD is DEC's ﬁATCON.

BATCH is the CMU mini-batch system. it reads .CTL files which
contain teletype input scripts and writes .L0G files which contain
the full terminal session resulting from executing the commands in
the .CTL file. Place characters into the input file exactly as
desired. For example, in order to get a *C in a file use the SOS 7#
or TECO 3I% constructs. The tC will not be passed to the job until
it requests input from the terminal. The LOGIN and KJOB sequences
are provided by the mini-batch monitor. Do not include them in the
input file! BATCH provides two Jjob streams, with different
scheduling policies. Each stream selects jobs to run from the same
set of requests. One stream (stream 2, by chance) is for short jobs
{runtime not more than three minutes) only, and uses a strict FIFO
discipline. Jobs run in this stream will not be put into low
priority, but will run in ‘the normal HPQ 0. The second stream
{stream 1) wuses a very primitive scheduling algorithm that works
fairly well in our environment. At any given time the jobs queued up
for batch processing fall into two <categories: those whose startup
time has passed (runnable) and those whose startup time has not been

reached {(waiting). The scheduler is concerned only with runnable
Jobs. The scheduling algorithm changes with the time of day.

0200 - 0700 FIFO

0700 - 0200 Shortest job first (wraparound thru midnight)

Additionally, in shortest job first mode, any job that requests more
than 10 minutes of CPU time will not be started if the system is
loaded (an arbitrary threshold meaning more than 34 jobs logged in or
an active swapping ratio greater than 0.9). If the shortest runnable
job requests more than 10 minutes, no job will be started and BATCH
will check the load again in 15 minutes. The system must remain in
an unlocaded state for 30 minutes before a long job will be started.

26
Once a job is started it is run to completion. For instance, a job

that requests 25 minutes of CPU will not be stopped because another

job that requests Z minutes becomes runnable after the first Jjob is
started.

QUEUE is the program used to interface to the CMU mini-batch
system, It is invoked by the QUEUE command or the SUBMIT command.
The QUEUE command without arguments 1is the same as "R QUEUE". The
SUBMIT command without arguments 1is the same as "QUEUE SUBMIT". The
available queue-commands are HELP, SUBMIT, CANCEL, DESCHEDULE,
REMIND, INSPECT, and PRESENT. The SUBMIT command submits a request
for a job to be run. The CANCEL command cancels a previous request.
If the job has started running, it is killed. The DESCHEDULE command
kills the job if it has started running, but it does not delete the
job request. The REMIND command, when fully implemented, will submit
a request for SENDs to be issued to & subset of users at some future
time. The INSPECT command displays the status of the BATCH queue.
The PRESENT command describes the status of the presently running
job(s). If no parameters are given to SUBMIT, REMIND or CANCEL then .
you will be prompted for them. It is possible to avoid the prgmpting
and specify all parameters on a single command 1line. Follow the
monitor command QUEUE by a queue-command and its parameters, or the
monitor command SUBMIT by the parameters for the queue-command
SUBMIT. The monitor will accept some queue-commands from terminals
that are not logged in. Queue-commands have the format:

<qcommand> <{filename> <arguments>

where <qcommand)> is SUBMIT, REMIND, INSPECT, CANCEL, DESCHEDULE, or
PRESENT. SUBMIT, CANCEL and DESCHEDULE require a file name which is
the name of the control file. REMIND requires a target for the
message. INSPECT and PRESENT do not take any arguments. The
{arguments> are specified as <keyword>{parameter> where the
{keyword>s are .

At time ' {hh:mm) when to start execution
@ time (same as AT) :
On date the day to start execution (no internal blanks)
To logfile Defaults to <filename>.LOG

" Running time (h:mm:ss) maximum execution time
Stream {Fast|Slow|1]2} Restrict this BATCH job to run

only in the indicated stream.
PERmitting n Allows n errors

For ppn Defaults to user's ppn . .

Mayrestart BATCH will restart job.if it fails to complete
due to a system crash.

ERrors This word is ignored (see example below)

PAssword If not supplied will be asked fqr

EVery (hh:mm:ss or <n>DAYS or <n>WEEKS or MONTH) how
often to repeat a job or a remind

UNtil day to stop repeats of reminds

UPto time to stop repeats of reminds

Unique abbreviations are accepted. .
. .

The function of ASKOPR is to get disk packs and DECtapes mounted when

» 27

running under the batch monitor. If the operator can satisfy the
user's request then the program will exit normally and the user can
assume that the device needed is available after the running of
ASKOPR., If ASKOPR is notified by the operator that the reqguest
cannot be met, then it (ASKOPR) will issue a RUNUUO to LOGOUT.
Therefore, the user, if is not over quota, can be assured that the
batch monitor will ignore any commands in the .CTL file after the
running of an unsatisfied ASKOPR request. Now the user may mount the
disk pack or read and write from the DECtape.

Examples of what could be in the .CTL file:

1, R ASKOPR ; to the monitor
MOUNT DISK SCRT ;s to ASKOPR
MOUNT SCRT ’ ; to the monitor
TYPE SCRT:FILE.EXT
2. R ASKOQOPR
MOUNT TAPE 2ZG03-12 AS DT12 ENABLED MESSAGE "TAPE IS IN C. ROOM"
DIRE DT12:
3. R ASKOPR

REMOVE TAPE ZG03-12 FROM DT12
DEASSI DT12

Note: Disk packs must be MOUNTed by the user after running ASKOPR,
but tape drives will be assigned and given logical names as specified
in the MOUNT TAPE command. Since, the user cannot find out the
physical device (DTAD, DTAl, ..., DTAS5) that was assigned, all
references to the tape drive will have to be via the logical name.
It is polite for the user to have his DECtapes dismounted when he is
through with them (and safer if they are write enabled). When he is
done with a DECtape drive the user should DEASSIGN that drive by its
logical name.

Unique abbreviations are accepted for all commands. Arguments may
contain no embedded blanks or tabs. The single exception to this is
that the argument to MESSAGE may contain embedded blanks since it is
enclosed in "'s. Its function is to print additional messages to the
operator along with mount or dismount request.

4.10 The ARPANET

4.10.1 Overview

The ARPANET is an operational, computerized, packet switching
DOD digital network which provides a capability for terminals or
geographically separated computers, called Hosts, to communicate with
each other. The Host computers typically differ from one another in
type, speed, word 1length, and operating system. Each terminal or
Host computer is connected into' the network through a local small
computer called an IMP or TIP. The complete network is formed by

28
interconnecting the IMP's through wideband communication lines {50KB)-
supplied by common carriers.

Each IMP and TIP is programmed to receive and forward
messages to the neighboring IMP's or TIP's in the network. - During a
typical Host to Host operation,.a Host passes a message to its IMP;

the message is passed from IMP to IMP through the network until it =

finally arrives at the destination "IMP, which passes it along to the
destination Host. A terminal (teletypewriter or CRT) accesses the
network through a Terminal Interface Processor (TIP) or through a
local host connected to the local IMP, and sends a - message to a
foreign Host or another terminal. The terminal message passes
through the network in the same manner as a Host to Host message.
The elements of the network are the Interface Message Processor
(IMP), Terminal Interface Processors (TIP), interswitch trunks,
access lines, host computers and terminals.

The ARPANET is intended to be used solely for the conduct of,
or in support of, official U.S. Government business.

The use of the ARPANET must not be in violation of
information privacy laws and is not intended to compete with existing
‘commercial services.

4.10.2 IMPCOM (Telnet)

The primary function of INMNPCOM is to provide terminal access
to network hosts, either local (CMU) or remote. The TELNET command
to IMPCOM connects your terminal to a specified host. For a new
connection, the only required specification is the remote host name.
If the remote host is willing, TELNET will then (1) follow the
network Initial Connection Protocol to open & duplex connection to
that host, {2) 1logically disconnect your terminal from your local
job, and (3) connect it as a terminal of the remote host through an
IMP device whose logical name is TELNET. You may then log on, etc.,
just as if you were ‘at the remote site. Typing the local escape
character (initially te or control-shift-0) will cause your terminal
to be disconnected from the remote host and reconnected to your local
job. This does not, however, break your network connection, and you
can reconnect to the remote host by again typing

TELNET host-name

An extensive IMP help facility may be invoked at monitor
level by typing IMP HELP <arg>, where <arg> is an optional argument
whose actual parameters may best be discovered by typing IMP HELP
with no parameters. The same help facility,is also available within
the imp server. Ie, merely type HELP <arg> at any time while in *
mode running IMP. The entire help file may ‘be listed as SYS:
IMPCOM.HLP

29

4.10.3 FTP (File transfer)

File transfer is done by two programs. The first is this
program (FTP) which is run by the user and acts as an interface
between the user and the network. The second is the server end {(the
server) which runs at the foreign site and acts as the interface ’
between the foreign file system and FTP. These two ptltograms
communicate through a software entity called a 'socket'. FTP sends
ASCII messages to the server, which replys with ASCII messages. FTP
will print only the more important messages on the user's terminal.
Once a proper connection is established with the server site, files
may be retrieved from or stored onto it.

There are three levels of FTP commands which are relevant to
most users. These are Network Control, Server Control, and File
Transfer Control. They are usually invoked in that order.

Network Control: .
HOST {mame> | <num> ; IMPCOM nick-name or decimal num

. QUIT . ; in ! mode, quit host;

: ; in * mode, quit FTP program

Server Control: .

USER {username> : hopefully obvious in meaning
PASS {yourpsw> ; for security's sake

ACCT <num> ; for TENEX sites

MAIL {username> - : terminate mail with *tZ

CPATH {username>? + change path to {username>'s UFD

File Transfer Commands: _
STOR {filename> ; push <filename> into remote host
RETR . <«filename> retrieve {filename> from host
LIST LPT: ;<ufd> list directory of <ufd> on LPT:
AUTO {file.ext> process command file (file.ext>
Note: ext must not be blank

»

- W W W W

See DOC:FTP.DOC or use help facilities within FTP for more
information. :

ftp://FTP.DOC

30
ARPANET GEOGRAPHIC MAP, JANUARY 1977

v SATELLITE CIRCUIT
O MP

o TP

A PLURIBUS IMP

{NOTE: THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE IMP NAMES, NOT [NECESSARILY)} HOST NAMES

ARPANET LOGICAL MAP JANUARY 1877

o [for-u] [Por-10)

POP-10 [ror-10
ot

[PLursecs]

e e R o

CDC 7600
MOFFETT LeL UTAH ILLINGIS WRAFR
—{

.

[PEF-107]

[eoe-1]
HAWAIL
CAAMAAN pop-11] [roP-n1
PoP-10| |PoP-10
XEROX
NOVA -DCU-!IG oy
S ANL 4 Yeanag LCOCEE00
. 13 1018 NOva PoE-1
POP- s [Por-10) MAaXC e CHLII00
SUMEX \ TYMSHARE SEC CDCEES0
STANFORD . -) VASIAN T3 » ST
. N
, / _}‘& : 3707195 -
FOR-10 ipon -1 IDEC-HO‘ITI FNWC HARVAR v PoE- 1
" N POP -1 NYU Pre
POP-10 SPS- Al COCE500 Gwg PROP-th e Q
POP-11 oP-19
N £bC3200 = n
PDR-11 SCRL POFP-11 .~ =
UNIVaL 108 P2 gaca BELVOIR RUTGERS Tore) -
=716 oR-11 LBERDEEN
POP-1) v .im-3
Pt vers_ 2071} usc
TorT [3s0/9
NUC {roP-m PDR- 10
PDP-B
NELC POP-11 -
POP-10
370-1%8 RanO
PDP-10 CDC 6500
poP-10! [pePem POP-11
15152 PDP-11
O <
MLP-o00| 15122 AF WL TEXAS GURTER £GLIN PENTAGON

O 1wP A PLURIBUS 1MP
0 TP e~ SATELLITE CIRCUIT

{PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION QBTAINABLE, NO CLAIM CAN BE MADE FOR ITS ACCURACY)

KAMES SHOWN ARE IMP NAMES, NOT INECESSARILY} MOST NaMES

31
5. Special purpose research systems

Some of the research efforts at CMU require stand-alone
computers. Such projects wusually have hardware constraints or
configurations that are unsuitable for the general purpose time
sharing systems. These independent systems often become vehicles for
operating system and architechture experimentation by students and
staff. Three of these machines are described below by people
currently working on them.

Cm*: A Multi-Micro Processor
Don Scelza, Aug. 2, 1978

Cm* is a multi-processor under development at C-MU. The
machine is still very much in the developmental stages hence access
to Cm* is limited fto users doing research in distributed operating
system design and distributed hardware design.

When connecting to Cm* from the Front End you are
communicating with the Cm* Host System. This 1is an external
processor that allows communication between the Cm* machine and the
outside world.

At the present time the Cm* machine has the following
configuration:

Processors: 11 LSI-11's in the Cm* machine
2 LSI-11's acting as Hooks into the Kmaps
3 C-MU built mapping processors (Kmap's)

1 PDP-11/10 Host processor *
Memory: 324K words
Links: _ 2 9600 baud links to the CMU10B

4 9600 baud links to the CMULOD
1 1200 baud link to the CMU Front End via the Host

DECtapes: 4 which are accessed through the Host

Terminals: 4 hardwired to the Host
Any number of virtual Front End connections

32 .
UNIX: Al Speech and AI Vision
Steven Rubin, July 28, 1977

The Computer Science Department has two machines that run the UNIX
timesharing system for a small community of Artificial Intelligence
researchers. The speech machine, which has the most accurate DAC/ADC
devices at C-MU, is used primarily for speech understanding systems
and music generation, The vision machine has a number of
high-bandwidth devices which make it suitable for image understanding
work. -

The +true names of the machines are "SUS" and "IUS"™ {Speech
Understanding System and Image Understanding System) but their Front
End names are "AI Speech" and "Al Vision", respectively.

The machines are configured as follows:

Al Speech Al Vision:
Processors 1 PDP-11/40E 2 PDP-11/40Es
Writable Microstore Yes Yes
Memory 128K words 512K words
Memory control DEC Memory Management C.mmp-style reloc on
4x4 switch
Disks 2 RP02s, 1 RPG6 2 RPO6s
Magtape - 9-track, 800 BPI ‘ 9-track, 800 BPI
DECtapes 2 2
Digital-to-Analog Yes No
Analeog-to-Digital Yes No
On Front End " Yes Yes
On Arpa Net No No
Printer None Gould Printer/Plotter
Displays Graphics Color Video
Links CMUL10B : CMU10D, CMU Front End
Hard-wired terminals 2 2

Since heavy use of the machines tends to grind them to a halt, UNIX
accounts are restricted to those people who can justify their use of
the machines. .

33

ALGOL

T. Teitelbaum, L. Snyder, J. Dills
(Revised Jan, 1973)

Algol 60 is an algebraic programming language developed by an
international committee in 1960. Algol was designed at a time when many
computer installations had their own ad hoc algebraic programming languages.
Algol was intended to be a machine independent standard for the communication
(and execution) of algorithms, Most of the arbitrary restrictions found
in languages such as FORTRAN were eliminated; Algol was the first language
for which a complete and precise syntactic and semantic definition was
attempted, The terminology used in this definition (in the Algol Report)
has come into ;ide use in computer science. Algol is characterized by
dynamic array allocation, recursive procedures, block structure, and a

generalized parameter passing mechanism.

REFERENCES

Manual , , - .

(1] pigital Equipment Corp. DECSYSTEM 10 MATHEMATICAL LANGUAGES HANDBOOK

Definition

[2] Naur, P. (ed.) Revised Report on the Algorithmic Language
ALGOL 60. Comm.ACM 6 (Jan 63).

[3] Knuth, D. E. The remaining trouble spots in ALGOL 60.

: Corm.ACM 10 (Oct 67).

[4] Abrzhams, P. W. . A final solution to the dangling else of
ALGOL 60 and related languages. Comm.ACM 9
(Sept 66).

[5] Knuth, D, E., Merner, J. N. ALGOL 60 Confidential. CACM, Vol. 4, 1961.

"~ Philoscphy

[6] Prerlis, A. J. The synthesis of algorithmic systems.
J.ACM 14 (Jan 1967).

History-Bibliography

{7] Bemer, R. W.

(8] Sammet; Jean

Introductory

[9] Bottenbruch, H.

[10]
[11]
[12]

ﬁigman, B.

Ekman, T. and

Froberg, C.
Di.jkstra’ E. W.

Imp lementation:

(13]

[14]
[15]

Evans,- A.

Randell, B. and
Russell, L. J.

Di jkstra, E. W.

Extensions

[16]
[17]

(18]
(9]
[20]

(213

Wirth, N.

Perlis, A. J. and
Iturriaga, R.

Wirth, N. and
Weber, H.

Wirth, N. and
Hoare, C. A. R.

Dahl, 0. J. and
Nygaard, K.

Hoare, C. A. R.

34

A politico-social history of ALGOL.
Annual Review In Automatic Programming, 5
Pergamon Press, 1969.

Programming Languages: History and Funda-
mentals, Prentice-Hall, 1969.

Structure and use of ALGOL 60. J.ACM 9
(Apr 62).

What everybody should know about ALGOL.
Computer Journal 6 (1963) p. 50.

Introduction to ALGOL programming.
Oxford University Press, (1967).

A Primer of ALGOL 60 Programming, Academic
Press, London, 1962.

An ALGOL 60 Compiler,
Annual Review in Automatic Programming, 4.
Pergamon Press (1964).

ALGOL 60 Implementatiomn.
Academic Press, (1964), 418 pp.

"Making a Translator for ALGOL 60,' Annual
Review of Automatic Programming, Vol. 3.,
MacMillan, 1963, pp. 347-356.

A GCeneralization of ALGOL. Comm.ACM 6 (Sept

An extension to ALGOL for manipulating
formulae. Comm.ACM 7 (Feb 64).

EULER: A generalization of ALGOL and its
formal definition. Comm.ACM 9 (Jan, Feb 66).

A contribution to the development of ALGOL.
Com.ACM 92 (June 66).

SIMULA -.An ALGOL-based simulation language.
Comm.ACM 9 (Sept 66}).

£3).

Record Handling, in F. Genays (Ed.) Program:ing’

Languages, Academic Press, 1968, pp. 291-347.

35

SAMPLE PROBLEMS

1. Continued Fractions

_ 2 _ 1 _ 1
et @ = 351 R = 131 » B = T » etc.
I+ 1 TF1

As i = =, Q » Q =0.61803. . .
Write an ALGOL 60 function procedure Phi (n) that will return the
value Q.+ For example, Phi (2) = 0.6666., Write two versions of

Phi, one recursive and the other iterative.

2. Palindromes

A palindrome is a vector V of values such that V = XY where

X = reversal of Y. E.g., 110011.

Write a Boolean function that determines if a vector is a

palindrome.

Write another which determines if a vector consists of a list of

palindromes; e.g., 110110,

3. Tower of Hanoi

Write an ALGOL program to print the solution sequence to the towers

of Hanoi puzzle. Given,

1 2 “ 3
Move the stack qf disks on pin 1 to pin 2 (possibly using pin 3 as
intermediate storage) so that (1) the disks finally ena up in the
same order as they started (as shown); (2) at no time is a large
disk on top of a smaller-disk; and (3) only one disk at a time is

moved, Your program should allow an arbitrary number of disks.

36

4, Partitions
Write an ALGOL procedure PART(X) which prints the partitions of the
integer X. A partition is defined as a sequence of positive integers

which sum to X. 1If that's too easy, find the unique partitions of X.

5, Pascal's Triangle

Recall that Pascal'’s triangle begins:

Write an ALGOL procedure, PASCAL(N), which prints the Nth row of
Pascal's triangle. It should be possible to compute the result
without a factorial routine and with only a single vector for a

data structure,.

6. Pattérn of Primes
Write a program which fills an N x N array A with the integers
1 through Nz arranged in a spiral.
E.g., when N = 3, then A =

78%9 R
612
543

The pattern of primes in this arrangement (for large N) has been

of some interest (to some people). Try a printout where primes are
%' and non-primes blank.

Can you think of a more efficient storage arrangement for the pattern

of primes when N is large?

37

7. How well do you understand call-by-name and call-by-value?

BEGIN REAL A,B;
REAL PROCEDURE INCV(X);VALUE X;REAL X;
BEGIN X¥+1; INCV.X END;
REAL PROCEDURE INCN(X) ;REAL X;
BEGIN XeX+1; INCN<X END;
REAL PROCEDURE ADDV(Y) ;VALUE Y;REAL Y;

ADDVeY+Y ;
REAL PROCEDURE ADDN(Y) ;REAL Y;
ADDNeY+Y ;
Ac<l: B<ADDV(INCV(A));
COMMENT A IS NOW -—-ee-- , B IS NOW wuu-o- :
Acl; B<ADDV(INCN(A));
COMMENT A IS NOW ------ , B IS NOW -—---- :
Ael; B-ADDN(INCV(A));
COMMENT A IS NOW -c-wv-w , B IS NOW ----- ;
Acl: BADDN(INCN(A));
COMMENT A IS NOW —we--- , B IS NOW ----- ;
END;

8. Exchange

Write a procedure EXCH(A,B) that exchanges A and B, This is not as easy

as it seems. Consider the problems exchanging I and A[I].

Answers for odd number problems follow the Algol Script.

38

Aligol Script
In this script I use the text editor S5S0S
to create and edit files. The S0S commands
which 1 use here are [,0,R,P,E uhich are
insert,delete,replace,print, and end,
respectiveiy. Tao find out more about these
commands, see the S0S part of this document.

.CREATE FIB.ALG

- 08188 BEGIN

8B280 INTEGER PROCEDURE FIBONACCI (N); VALUE N; INTEGER Nj
BB388 BEGIN
88480 IF N<=1

88588 THEN FIBONACCI:=1

PO6RA ELSE FIBONACCI:=FIBONACCI (N-1}+FIBONACCI {N-2);

Bga7a8 END;

BpEAL READ (K} this program calculates Fibonacci
BB98e J:=FIBONACCI (K); numbers by using a recursive procedure.
glees PRINT(J,B); It should be noted that this isn't
p1198 END a very efficient method.

g12ed $ this is an altmode

ik

EXIT

.R ALGOL here the algol compiler is called.

“FIB, TTY:«FIB this line causes the object file to be

named FIB.REL, the listing to be placed
on the teletype, and the source file to
be named FIB.ALG.

DECSYSTEM 18 ALGOL-68, Y. Z2B{14B):
17-JUN-72 B3:80:08

golBad BEGIN

BB280 INTEGER PROCEDURE FIBONACCI (N} ; YALUE N; INTEGER N;
ga388 BEGIN

28408 IF N<=1

88580 THEN FIBONACCI:=1

pgced ELSE FIBONACCI:=FIBONACCI (N-1)+F[BONACCI (N-2);

pR7088 END;

pp3ge READ{K)

TeTeTeveveve +

808 UNDECLARED IDENTIFIER the error messages would
BEg98e J: =F1BONACLCT (K} appear on the TTY even
Sfveseesee T if the file wasn’t listed
988 UNDECLARED IDENTIFIER , there,

p188g PRINT(J,B)

1198 END

?2 ERRORS

#1C control C out of the compiler

39

LEDIT FIB.ALG

=]1158

Baico INTEGER J,K;
*E

EXIT

EX FIB EX is a CCL command which causes
ALGOL: FIB. compiling, loading and execution.
LOADING

LOADER 1K CORE
EXECUTION
18 I enter a2 18
83 program returns 83, the 18th Fibonacci number.

END OF EXECUTION - 2K CORE
EXECUTION TIME: 8.17 SECS.

ELAPSED TIME: 11.88 SECS.

The following procedure is a pseudo random
number generator. More information about
this type of algorithm can be found in
The Art of Computer Programing, Vol 2 by
Qon Knuth.
.CREATE RAND.ALG ‘
0816e INTEGER PROCEDURE RAND(LESS);VALUE LESS; INTEGER LESS;
BR208 COMMENT THIS PROCEDURE RETURNS AN INTEGER BETWEEN B AND LESS-1:
B83048 BEGIN OWN INTEGER SEED,MUL,MO0O;

88488 IF SEED=B In this algol compiler, own variables
88588 THEN BEGIN are initialized to B.
28688 . COMMENT SEED,MULEMOD MUST BE LESS THAN 185384
Ba7p8 TO PREVENT QOVERFLOW. THE FOLLOWING NUMBERS
5152515 ARE 716,5%7,2117 RESPECTIVELY;
80308 SEED<117643;
21088 MUL78125;
g11ea MOD<~131872;
gl1z2ea END;
81388 SEED« (SEED+MULY REM MOD: this line is the generator
81488 RAND« (LESS»SEED) DIV MOD;
81588 END
81688 $
wE
EXIT
This program will read numbers and print a

random number less than the number just read
until a zero is read. The random numbers are
generated by the above procedure
which is called externally.

.CREATE TESTR.ALCG

Belan BEGIN INTEGER 1,R:

88288 EXTERNAL INTEGER PROCEDURE RAND:

£83e8 READ (1)

40
0B4b8 WHILE 148 DO

8p58A BEGIN

geces R:=RAND(1}; NEWLINE causes a carriage return and
BB708 PRINT(R,3)}; a line feed to be placed in the
(51523515 NEWLINE; output buffer. BREAKOUTPUT causes
88388 BREAKOUTPUT; the output buffer to be dumped to the
21888 READ (1) output device, in this case the TTY.
81188 END;

81288 END

g1388 4

wE

EXIT

.EX TESTR,RAND
ALGOL: TESTR
ALGOL: RAND
LOADING

LOADER 1K CORE
EXECUTICN
1e8
26
188
4
124
93
188
2
B

END OF EXECUTION - 2K CORE

EXECUTION TIME: 8.83 SECS.

ELAPSED TIME: 42.78 SECS,
Tﬁe program is altered so that it
Wwill produce a number of random

numbers, all from the same range.
.EDIT TESTR.ALG

R188

BB1BY BEGIN INTEGER L,I1,J,R;
%1258

Baz5a WRITE ("RANGE: ") ; BREAKOUTPUT;
»1325,25

gB325 WR1TE ("NUMBER: ") ; BREAKOUTPUT;

pB3sy READ (L}

BB375 4

*R4BB

pp4aa FOR J:=1 UNTIL L DO

BB42S 8

0308 here 1 delete NEWLINE, note the effect below.
*01888

v

EXIT

41

.EX TESTR,RAND
ALGOL: TESTR

LOADING

LOADER 1K CORE

EXECUTION

RANGE: 108 the program prints RANGE: and NUMBER:
NUMBER: 58 | respond with 188 and 58.

26 4 93 2 84 27 55 3B 3 8 92 27 75 68 21 96 4B 7S
7 9898 83 12 b6 13 B2 95 64 17 58 8 15 6 84 75 87 32
8 74 383 93 61 3B 1 BB 16 35 25 19 &8 2
the program then prints SB random numbers
END OF EXECUTION - 2K CORE less than 188.

EXECUTION TIME: 8.35 SECS.
ELAPSED TIME: 32,18 SECS.

.EDIT TESTR.ALG

+%1368,18

BB368 OUTPUT (4, "DSK") assigns the disk to channe! &
8p378 SELECTOUTPUT (4) selects channe! 4 for output
Ba3886 OPENFILE (4, "RAND.DAT"}: opens a file named RAND.DAT
88398 8

=E

EXIT

.EX TESTR,RAND
ALGOL: TESTR
LOADING

LOADER 1K CORE
EXECUTION
RANGE: 188
NUMBER: 58

END OF EXECUTION - 2K CORE
EXECUTION TIME: 8.22 SECS.
ELAPSED TIME: 11.68 SECS.

. TYP'E RAND.DAT
26 4 33 2 84 27 55 3B 3 8 92 27 75 BB 21 96 4B 75
/7 98 89 12 668 13 B2 95 64 17 58 8 15 6 94 75 87 132
8 74 9893 93 61 35 1 BB 16 35 25 19 83 2
LEDIT TESTR.ALG
D258
0325
=1225,25
Bg2es INPUT (3, "DSK") 5 - Here changes are made so that
BazLg SELECTINPUT(Z); -) the range and number can be read
82275 OPENFILE (3, "RANGE.NUM") ; from a file named RANGE.NUM.

EXIT

+CREATE RANGE.NUM

28188 188
8828d 58
99360 $
-:'(E

EXIT

.R PIP

+RANGE . NUM/N<RANGE . NUM
7 C

LEX TESTR, RRAND

ALGOL: TESTR

LOADING

LOADER 1K CORE
EXECUTION

42

Here | strip the line numbers off the
data file, because algol can't handle
line numbers on data files.

FATAL RUNTIME ERROR AT ADDRESS 848167

MORE HEAP SPACE REQUIRED FOR I1-0 BUFFERS

7ACTION (H FOR HELP)? F

' END OF EXECUTION - 2K CORE
EXECUTION TIME: 8.85% SECS.
ELAPSED TIME: 17.33 SECS.
.R ALGOL

#TESTR, «TESTR/58060

»1C

.EX TESTR,RAND

LOADING

| DADER 1K CORE

EXECUTION

END OF EXECUTION - 2K CORE
EXECUTION TIME: 8.13 SECS.
ELAPSED TIME: 3.13 SECS.

. TYPE RAND.DAT

Heap size must be increased when
2 or more disk files are being
used, because the default size is
too small.

Here the heap size is increased to 6588
biocks which is enough for 2 disk files.

z5 4 93 2 84 27 55 38 3 8 92 27 75 68 21 86 4B 75
7 98 89 12 66 13 62 9 B4 17 S8 8 15 6 94 75 87 32

84 74 93 93 61 35

1 68 16 35 25 13 83 2

43

.CREATE TEST.ALG

8o1Ba BEGIN INTEGER 1,N;STRING 51R;
Bo2eoe STRING PROCEDURE TERM;

8E380 BEGIN STRING T;INTEGER S,1;
gbsBa T:=NEWSTRING (58,7}

BB5606 INSYMBOL (S}

28608 WHILE S<=32 DO INSYMBOL (S}
pa788 T.[1]1:=5;

BB&LYa [i=1:

BB388 WHILE S>32 AND [<58 DO

81088 BEGIN

81193 INSYMBOL (S) 5
81208. Ti=1+1:
Pi3e0 T.[1]:=5;
81468 END;

81508 IF S<=32 THEN l:=I-1;
816848 TERM: =COPY (T, 1};
B1788 DELETE(T);

918892 END;

When using READ to read strings,
it is necessary to put quote marks
around each string that is read.
This program demonstrates a
procedure that Wwill read, without
quotes, a string of characters up
to the next break character.

813908 WRITE ("ENTER: ") ; BREAKDUTPUT; READ (N} 5

82888 FOR I:=1 UNTIL N DO
82188 ' BEGIN
B2289 STR: =TERM;
82308 WRITE (STR) ;
82483 END;

82500 BREAKOUTPUT;

82688 END;

82780 8

wE

EXIT

LEX TEST
ALGOL: TEST
LOADING

LOADER 1K CORE

EXECUTION

ENTER:S

CARNEGIE -MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT
CARNEGIE-MELLONUNIVERSI TYCOMPUTERSCIENCE

END OF EXECUTION - 2K CORE
EXECUTION TIME: B.18 SECS.

ELAPSED TIME: 1 MINS. 35.12 SECS.

44

.CREATE BAT.ALG

po1eB BEGIN

BB208 RECORD CLASS NODES (28] (RECORD NEXT OF NOUDES; INTEGER AB,HITS:
ga3us STRING NAME};

80488 RECORD NOOE, TOP OF NODES;

88588 TAKE (NODE) ;

PoacHl READ (NCOEeNAME) ; This program demonstrates
Bazee READ (NODEeAB} ; ' the use of record classes. _
vBaLe READ (NODEeHITS) ; They are an addition to algol
88388 WHILE NODEeNAME#"" 0O here at CMU. They are useful
81048 BEGIN for constructing complex
81168 NODEeNEXT«TOP; data structures, such as the
81208 TOP<NQDE; linked list of baseball
p1308 TAKE (NODE) ; pltayers in this program.
B140G READ (NOCDEeNAME) ;

B15HB READ (NODEeAB) ;

Bicung READ (NODEeHITS) ;

B1783 END;

818609 NODE«TOP;

81908 WHILE NOT NULL (NOGE) DO

541915 BEGIN

g2168 WRITE (NODEeNAME] ;

gz2608 PRINT { {NODEeHI TS/NODEeAB) , 3,3) ;

82368 NEWL INE;

pz460 NODE~NODEeNEXT;

82548 END; '

@260 END

827808 8

«E

EXIT

LEX BAT

ALGOL: BAT

LOADING Further documentation on record classes

is avaiable in the departmental office.

LOADER 1K CORe
EXECUTION
“COBB" 11423 4131

"RUTH"

8333 2873

"WILLIAMS" 7786 2654

nn a B

WILLIAMS B.344
RUTH B8.342
COBB B.367

END OF EXECUTION - 2K CORE

EXECUTION TIME: 8.17 SECS.

ELAPSED TIME: 45,27 SECS.

End of Algol Script.

AT

Solutions to Sample Problcms

1, REAL PROCEDURE PHIR(N)YIVALUE N3 INTEGER N3
PHIR~1F N=@ 1HEN 1.0 ELSE 1.8/¢1.3+PHIR(N-13)3
REAL PROCEDURE PHII(N)3IVALUE N3 INTEGER N3
BEGIN REAL P3P-0.03
WwHILE (N=N-1) > © DO Pe1.8/(1.8+P)3
PHII«P3END3

3. PROCEDURE HANOI(N;START»OTHER;FINISH);
VALUE N»START,O1RER,FINISH3INTEGER N»START,OTHER,FINISH;

BEGIN IF N=1 THEN BEGIN . ‘ .
WRITE('*MOVE DISC | FROM*™)3PRINT(START,3)3
wRITE(" TO?);PRINT(FINISH;G);NEWLINE;END

ELSE BEGIN S
HANQI(N-I:START,FINISH:OTHER): .
WRITEC"MOVE DISC™);PRINT(N,3)sWRITEC™ FROM™)]
PRINT(START;S);WRITE(" TO“)3PRINT(FINISH,3);NEHLINE:
HANOI(N-I;OTHER;START,FINISH):END:

BREAKOUTPUTZENDS

5. PROCEDURE PASCAL(NY3VALUE N3 INTEGER N3
' BEGIN INTEGER ARRAY PL1:NISINTEGER I.,J3 .
Pl1l:=13
FOR I:=2 UNTIL N DO
'BEGIN P(1J:=0;
. FOR J:=1 STEP -1 UNTIL 2 DO PCJ):=PLJI+PLJ-11]3

END3
FOR I:=) UNTIL N DO PRINT(PLI),A)3
END;
.--7.. l-B 4'8
. 2.3 4'9
1.0 4.9
3'6 5-@

46

A reprint from SOOIV

MEEE‘E November, 1969

and automation Vol. 18, No. 12

APL: A PERSPICUOUS LANGUAGE

Garth H. Foster

Department of Electrical Engineering
Syracuse University

Syracuse, N.Y. 13210

" “In. APL, a great many highly useful functions which are required in
computing have been defined and given a notation consisting of a.

single character.”

The news and promotion copy now beginning to appear
in many computer-related publications proclaiming APL (A
Programming L anguage) to be everything from a successor
to PL/! (Programming Language One} to the most powerful
interactive terminal system available, has no doubt been
widely noticed. Such copy Ras led many 1o wonder what
APL is, and after seeing its notation, many wonder about
its clarity.
This article is not intended to a tutorial on APL, for that
- would take more space than is warranted here, However, let
us discuss some of the aspects of APL which have excited
the academic communities at a number of colleges and
universities and at least one high school system, and which
have triggered a nurmber of implementation efforts in
Canada, France, and the United States, The interested
reader may then investigate further the many features of
APL which cannot all be covered here, To assist in this
direction, a rather complete bibiiography of APL source
material is appended to this article,

Definition

The initials APL! derive from the title of the book "A
Programming Language™ by ¥_E. lverson, published by
John Wiley and Sons in 1962; and it was that publication
which served as the primary vehicle for the publication of
the initial definition of APL. Subseguent deveiopment of
the fanguage by Iverson has been done in collaboration with
A.D. Falkoff at IBM's Thomas J. Watson Research Center,
Yorktown Heights, New York,

The present form of APL is the APL\360 Terminal
System, the implementation of APL on the system 360.
Although there are implemenzations for the IBM 1130 and

"APL should not be confused with “ABL— A language for Associative
Data Handling in PL/1," by George G. Dodd, General Motors Resesech,
1984 Fall Joint Computer Conference.

hf""<_<_=_>_>,-;iEVA—%rBMKﬂf
*;:é{“ [11213I4F5I6-8[9[0j+1xJ space | (27T

1800 computers, when we speak of APL we shall mean
APL\3EQ,

The terminal system was designed by Falkoff and Iver-
son with additional collaboration from L.M. Breed, who..
with R.D. Moore (l.P. Sharp Associates, Toronto) devel
oped the implementation. Programming was by Breed,
Moore, and R.H. Lathwell, with continuing contributions
by L.J. Woadrum (18M, Poughkeepsie), and C.H. Brenner,

~H.A. Driscoll, and S.E. Krueger (SRA, Chicago). Experience
had been gained from an earlier version which was created
for the 18M 7090 by Breed and P.S. Abrams {Stanford U.,
Stanford, Calitarnial.

A computer language which is classified as algebraic is
generally, but not exclusively, used to program problems
requiring reasonably large amounts of arithmetic. Generally
such languages have avaiiable, as formalized arithmetic
operators with a notation, the operations of addition,
subtraction, muitiplication, division, and expanentiation,
and there the list ends. To achieve other arithmetic opera-
tions etther calls to pre-written subroutines must be made
or the user must supply his own,

This is not true ot APL, a great many highly useful
functions which are required in computing have been
defined and given a single character notation (some of these
require 3 keystrokes, striking a key, backspacing and then
striking another key; but usually only a single keystroke is
required.}

The APL Keyboard

Figure 1 shows the APL keyboard. The letters and
pumbers all appear in their usual places on a typewriter,
except that the capital letters are in the lower case positions
(the lower case letiers do not appear). The up-shift posi-
tions on the keyboard are occupied by symbols used to
represent the powerful set of APL operators,

o [on]

EJ

Q

1 *
I P| €

ok TAB‘?lwl-eipI“’I
| e|lw|EJRIT

: v

G

seT)

| OFF |

.Figure 1

Reprinted with permigsion from "Computers and
and published by Berkeley Enterprises, Inc.,

Automation”, November, 1969, copyright 1969 b
815 Washington St., Newtonville, Mass. 02160

Besides +, -, x, +. {the familiar symbols for addition,
subtraction, multiplication, and division located on the two
right-most keys on the tcp row) and the symbol * assigned
to represent exponentiation {the star over the P as in raising
to a power), there are distinct single character notations for
the operations of: negation; signum; reciprocal; logarithms
{to both matural and arbitrary base); combinations and
factorials; base e raised to a power; the residue of a number
modulo any divisor. There are characters which represent
taking: P} times a number; sines, cosines; tangents, hyper-
bolic sines, cosines, and tangents: and the inverse functions
for the six preceding functions. Available 100 are: floor
{truncating a number to the largest integer less than or
equal 1o the number); ceiling {rounding up to the smallest
integer greater than or equal to the number}: and maximum
or minimum of a pair of numbers.

APL also provides the relations which test whether two
numbers are: less than; less than or equal to; greater than or
equal to; greater than; equal; or not equal. The last two
relations are also applicable to characters. These relations
check to see, for example, if a relation is true and produce
1 {representing TRUE) or O (FALSE}; these binary quanti-
ties may be operated upon by the logical functions of: OR;
AND; NOT; NOR; and NAND. All these are also available
as standard functions in APL, and are designated by a single
character graphic, These operations are all summarised in
Figure 2.

Monradic (orm (2 t D;yldac form al»
Definition LI Name DefiLnit10m
or sxanple or wxaaple

'Y BT T Flus o [Plus Ied 2 e 3.2
-8 v~ O-8 Hegative - | Minus 7-3.2 == "1.7
wp == {Br0)-TRew) Signum a | Tamws 293,32 v+ 8.
i s 4N Reciprocal v | Divide 2104 = 0,82%
[I3l 1. Ceiling I | maximus HY == ¥
LTI k) .
i LY I R Floor 4 [Minimam PTR Y
af == (2.71020, .)ef|Exponential | » | Pover 2e) = B
Saf v+ K ++ vak Matural * | Logarithe 44p =+ log B Dase &
. logatithe ARR v+ (WP)1us
171,99 =x 3, tw Magritude | { Ressdue Case Al
asd F-iiateldrid
a0 Fr0|2
Asg AetjDomsrn wrror
10 e) ractoraal HER Y. -TITY) AR =s (ER)iT2A)eRR-
T TN TET Y1 woelffjciant 219 == 18 1) == 20
or tF - Canpai(Pe+1} .
P8 +» Random chaics|Roll r | pmal A Myzed Function
from #
of == Fod 1189, .. |PL timas e fClitcular 34w Table at lefr
aj ou -0 ==1 |mot -
» | And
{+4)o8 4 iom (R E-13
Tiebedde.d jO1 [L-#22])0,) = [Wand
Arcsin § [t] 3ine 3 v | Bor
Arccos & |2 | Cosine b
Aretan # | 3] Tanqent ¥
(T0ekeddes (] A1ebeidn.y + | Lens Aelstions
Arceinh & (5] Siah ® 1 | Mot qrestar Result tn) if the
Arceosh A (8} Cosh A o | Equal talation Malds, o
Arctanh B | 7| Tanh 2 x| Mot lese AL it dows sk
v | Crmagar LY +e
Table of Dyadic o Punctions » | Wot Equal 11} =a @
Figure 2

Order of Operations

Of course when such a host of generalized and powerful
operations are at the disposai of the programemer, there is
immediate concern as to the order or precedence of
operations in an arithmetic expression written without
parentheses.

Traditionally in algebraic languages, exponentiations
were performed before multiplications and divisions, and

47

these were done before additions and subtractions, One of
the reasons {or this choice (of hierarchy of operations) was
thai normal conventions in slgebraic notalion provided that
the expression

5.6y* + By® + 2.84y+ 9.06

could be written as
S.G-Y. .3+8..Y..2+2.84'Y+g-06

without the use of parentheses,

1t aone wanted to make the compiler work more effi-
ciently when programming in the higher order language,
ther. parens (parentheses) were used and the polynomial
was ‘‘'nested”’, 5o that in the above example one coded:

({56°y+8) *y+284) " y+9.06

That is to say, one discarded the built-in precedence order.

Clearly, in APL having al! the functions shown in Figure
2, the establishiment of any hierarchy of operators would be
arbitrary and open to question at best; and more than likely
it would border on the impossible to justify the hierarchy
1n any reasonable way.

Thus in APL there is only one rule for evaluaung all
unparenthesized expressions {or within a pair of parens),
and that rule is. -

Every operator takes as its right-hand argument the
value -af everything to the right of it (up to the
closing parenthesis).

Now such a rule may seem strange and unfamiliar to
someone who is now programming, but it has advantages:

{1} Uniformity—it is applied in the same way for all
standard or primitive functions provided by the
APL system as well as all functions (programs)
written in APL by the user;

(2) Utility—this approach, for example, allows the
nested polynomlal to be written without Daren-
theses as:?

906+Y x2B4+YxB+Y¥x56

it is also possible to write continued fractions without
parentheses and the rule given provides other interesting
and useful results as a by product.

Sum Reduction

Anocther ares in which looping (of computer instruc-
tions] is explicitly required in most programming languages
but not in APL is that of summing the components of a
vector, which we will call for the sake of example, X. The
usual aporoach is to initialize the sum to zero and then use
a running index variable af a 0O or FOR lopp, and then
take the summation by an expression like

SUM = SUM + Z{1).

In APL we use what is called sum reduction. This is the
name for conceptually taking the vector X, inserting plus
signs between each of its components, and then evaluating
the resulting expression; its notation is simply +/X. If we
had wanted to take the product of the elements of a vector
Q, then in APL we write x/Q and this provides the times
reduction.

There sis even more powerful ways to evaluate & polynomisl ex-
prassion in APL, but the avsilability of such methods does not reduce
the efectiveness of the right ta lefr rule just described,

48

The Valua of Powerful Operators

Thus the first area in which APL provides clarity in
programming is by providing a large set of powerful
functions. Now one may ask whether writing Al B in APL
is only marginally more compact than say writing
MAX (A B). However, in APL we are allowed to use AlB to
denote the combinations of taking B things A at a time.
Such an operation in languages other than APL generally

require the user 1o write his awn program, perhaps calling’

upon routines to provide the factorials and if they in turn
are not available, writing that routine also. The claim is that
the presence of the APL operator !in a program provides
much more clarity than the presence of the equivalent
routine in another programming language.

Of course one may argue that factorials and combina-
tions are not needed all that much anyway. In many cases
such a point of view may be correct; however, the fact stitl
remains that the need for, say, the FORTRAN Library of
subroutines indicates a need for arithmetic computations
which are more complex than the operations included in
the language as primitives. What APL has done therefore is
to move in the direction of a library increasing the sophisti-
cation of the language, and at the same time simplifying the
notation for using a much more powerful set of operators.

.

Extending the Scope of Functions

The next step forward which APL has taken is 1o extend
the scope of those functions shown in Figure 2, in the
following way. In most languages extant today, if one
writes A + B, then one commands the computer to add the
number A to the number B. In APL the command still
produces the addition of the single numbers, called scalars,
if that is the nature of the variables A and B. If on the other
hand, A and B are each names for a collection or string of
numbers, called a vector, then the addition takes place on
an element by element basis, with the first element of A
being added to the first element of B, the second to the
second, and so forth. The requirement is that either A or B
may be a scalar while the other is a vector, but if they are
both vectors, then they must have the same number of ele-
ments, that is, they must be of the same size,

1£ A and B are matrices of the same size {having the same
number of rows and columns), then A + B in APL adds, on
an element by elernent basis, matrix A 1o matrix B. To
perform equivalent operations in most computer languages
requires @ DO or a FOR loop when adding vectors, or
nested loops when adding matrices.

Two comments are relevant here. First, the explicit
loops embodied in the DO or FOR loops are reguired by
the language, but they are ancillary 10 communicating the
process 10 be performed, say adding two matrices. Second,
the utility of providing an extension of this nature, where
the system assumes additional responsibility, is borne out,
for example, in the MAT commands of BASIC. APL
extends such ideas and zpplies them uniformly to ali data
structures treated in the language. In fact, from the pro-
grammer’s point of view, one does not care in what
sequence the operations in the loops implied in such an
APL command take place. They could just as well be done
all in parallel; the fact that the computer does not process
the matrix elements in parallel does not matter. The
extension of scope of the notation allows the algorithm to
be thought of as acting on the data in parallet. Thinking
about the computing pracess in this way gives new insight
into the way the programs manipulate or transform the
data.

All}dting Space for Arrays

The philosophy is that the system should perform the
tasks which are required by the computer but not essential
to the algorithm. A useful extension is 1o have the compu-
ter assume the burden of allocation of space for arrayson a
dynarmic basis. This is done in the APL terminal system; for
example, if one creates the vector X having components 2,
S, and 10, then X+ 2 5 10 is the specification or assign-
ment of those constants to be the value of the variable X.
No dimensioning is required. Later if we wish 10 respecify

Nama sign' | Oefinition or erenpla®
Sl1e ed o == n R L]
Az ahapa Ped Reshape 4 to dirensjion 7 3 w01)7 =+
tlef == 112 Qs f == 18
Ravel Y | A em {nfadind o =2 #.3 == 1
Catenats y.r Foa? == 2 18714113 [S § M 4.) & Ad
via] NS s 3 3 1) ==7 % 32
Indexdt ALECR £61 333 2 ¢) ++ 2 2 1
. . 1118 8
Y1T TN E{13) =+ 1t 2 3 & ABCO
TR fli1] == 3 % ¥ ARCOETGRIIRLUE] =~ EFCR
18144
index ¥ Fizrst 5 integars 1t == 1 3 3w
generatark 10 == an empty vebtor
Inden ot (P12 Laast indax of 4 P13 ==2 118
in ¥, ox 1s?r L == 3 5w §
- YL | 1 53 %
Taha rra Take or drop I¥(I] firsc 7 3L == &ML
(¥{I)2Q) or last {(¥{l]s0) &re

(AL}

Orop eixments of coordinate [
Grade uph¥ [id

fha pernutation which
would arder 4 [sscend-
ing ar descending}

T2ep =w § 7
31 8 32 ~+ 0 1 12

Grada dowe™lra

¥ 5 3 7 == 3 1 3 %
T 3

Compreas? ria 101 0/P e 2y 1061 078 == % 7
13
10 1/(1)0 == 1 2 3 & == 0 UK
% 18 11 12
4 JCO
txpandé L4 ¥] 1 0 1\e2 == 186 3 1011 182 ~~ X FOX
. I IXL
pckd 14K
Raverset s X~ NCFL $(LIF = o =+ [FC3
1P H e - 7 3112 ABCO
[13-]
rotare? 494 IGF == T 7 3N e T10P 10 T1er -~ IFok
Litx
- AL
red Coordinate 7 aof 4 2 181 == AFJ
bacomes coordinate cex
Transpose ¥[I) af zresult 1 18F =+ 1 & 11 oNL
A Transmse lsst twe coordinates b - 7 _1a

WY == ;If
Foys —= 119 €

[
Menbership led EaP == 1
L]

Dacods LY 1841 7 T 8 == 3174 2% 8D #8031 7) == 3132
nepde ves Te %0 401372) -~ 1.1 3 £8 8071723 == 2 2
Casl rs V7 r= Nandom desl of ¥ slarents from .7
Botusl
1 Bastrictions on argument ranks are indicated byr § for
scalar, ¥ for vestor, ¥ for matrix, 4 for kny. Zncept as
the first argument of 5.4 or Sii), & scalar may e wewd
instesd of a vecter. A one-alament acray may Ceplaces any
scalar. 7
1 Arreys used . 11 3 arcp
in examples: Fes7337 I =+3% & 1 8 I == EfCH
9 39 11 11 11Xk

3 Punctloa dapends on indax origin.
4 Eiilsion of any index salects all along that ecordinate,

1 The function iw applied along the last coordinatey Ethe
symimls /4, %, and & are eguivalent o /7, 1\, snd 9,
respectively, #xcspt that the function is spplied along the
firat coordinstes I (5] sppeats after any al the sym>als,
the relevant coordinsta is determined by the scalar ¥.

Figura 3

¥ R-AFIZRACE ¥
(1) Rele/V)toV¥
L]

Figurs 4

T A~ZTATS X:5D VAR MEAR -
AerFAD, YAR,SDw{ VARS{+/(T-FEAR-AVERACE T)o2)8 1enlde
9.3

v

11

Figure §

¥-10 be all of those elements currently comprising X
followed by the numbers 1.5 and 20.7, then X + X, 15
20.7 catenates the constant veclor 1.5 20.7 10 X and
respecifies X. The variable X is now a data object with b
elements where X[1] is 2 X[4] is 1.5 and X|5] is 20.7. We
may query the system as 1o the size (number ot compo-
nents) of X by use of the function dencted by the Greek
letter Rho. Thus, pX produces 5. The functions of size and
catenate are summarized together with the rest of the
mixed APL dyadic functions in Figure 3.

We will not here treat further the powerful functions of
data maniputation illustrated there. However, we have now
exposed the reader 1o a sufficient amount ot detail in APL
to understand Figure 4, This shows the listing ot a user-
written function, the name of which is AVERAGE. The
first or header line of AVERAGE deciares the syntax for
that function, that is, it indicates that the expiicit resull
will be called R and the vector of data to be averaged will
be denoted by V. The line numbered [1} is the algorithim,
and it is selt explanatory, even at this point,

Figure 5 shows how AVERAGE is called within the
function STAT to calculate the mean, variance, and stan-
dard deviation of a set of values. Here the variable names of
MEAN, VAR, and 5D refer to the result of the AVERAGE
program and the calculated variance and standard deviation.

We do not illustrate the comparable programs in other
languages; we leave to the reader the task of noting the
coding compression achieved by APL. The APL array
operations abviously provide both brevity and clanity in

An APL

Abrama, P. 5., An Interpreter for *lversen Natstion™. Stanford,
Calif.: Computer Science Department, Stanford University, Tech.
Report CS47, August 17, 1964,
Anscoernbe, F. §., Usa of Ivarsan’s Languags APL far Statistical
Computing. New Haven: Department of Statistics, Yale Univer-
sity, July, 1948, TR-4 (AD &72.557).
Berges, G. A. and F. W. Rust, APL/MSU lnhmn Manual. Boze-
man, Montans: Department of Elecwrical Engineering, Montana
State Univ., September 26, 1968,
Berry, P. €., APL/1130 Primer.
1697-Q).
Berry, P. €., APL\3SD Primer Sfudml Toxt,
1949. (C20-1702-0).
Breed, L. M. and R. H. Lathwell,
360", Interactive Systems for Applied Mathematics,
and londen: Acsdemic Press, 19468, pp. 390399,
Calingaert, P., Intreduction to A Prngu'rﬂming tsngusge. Chica-
go: Science Research Associales, field test edition, October, 19567,
Creveling, Cyrus J. (Ed), Experimental Uts of A Programming
language [APL) at the Goddard Space Flight Centar. Greenbelt,
Maryland: Goddard Space Flight Center, Report No. x-560-68-420,
Novamber, 1968,
Charmonman, 5., 5. Cabay and M. L, Louie-Byne, Uha of APLNISD
in Numaricsl Analysin, fdmonton, Alberta, Canada:
of Computing 3cience, University of Alberts, December, 1967,
Falkoff, A. D. and K, E, Iverson, APIN3&D User's Manual, York-
town Heights, N.Y.: T. J. Watson Research Center, 1BM Corpors-
tion, 1948,
Falkol, A. D. and X_ E, Iverson, “The APL 340 Terminal System”™,
Interactive Systems for Applied Mathematics, New York and
_ london: Academic Press, 1968, pp. 22:37. (Also Research Mote
RC 1922, Cctober 16, 1947, T. J. Watson Research Center.)
Falkoff, A. D, K. E. Iverson and E, H. Sussenguth, A Formal
Description of System/340". IBM Systams Journal, I, No. 3
(19464), pp. 193-262.
Gilman, L. |. and A.). R_.se, API\IED An [ateractive Approach.
1AM Corporetion, 1949,
Hellerman, H., Digital Computer Syitem Priaciples,
MeGraw-Hill, 1967.
Iverson, | E, “A Cormmaon Langusge for Hardware, Software and
Eastern Joint Computer Conference,
121-129 (RC 749}

iBM Corporation, 1968, (C20-

18BM Corporation,

*“The Implementation of APLY
New York

Department

1B

12. -

New York:

Applications™,
1962, pp.

December,

49

4

exprossian, and in that sense the programs may be thought
of as sumewhat self docwnenting.
The syrmbolic nature of APL makes it inultilingual.

Evaluation of APL

In these pages we have only scratched the surface of
APL, The availability of a powertul set of functions having
a generality and a sense of uniformity in definition is
important in providing capability to program complex
algorithms. The extension of operations uniformly to
strings of quantltles ur 1ables of numbers is a step forward
in programming, beuaise a great deal of computing in
science, government, and business may be cast in terms ot
those dala structures. Also it is important 1o relieve the
computer user of the burden of bookkeening and house-
keeping operations in computer programering in higher
tevel fanguages, particularly in an interactive environinent,

Enthusiastic supporters of APL have claimed that rather
then standing for erther A Prograrmming Language or
Another Progratmining Language, the initials APL stands tor
A Permanent Language. APL was first ronceived of as a’
means of commmunication; and it will have impartance in
that regard independent of the avaiiability of APL on a
terminal system. The heart of communicating, describing,
or programming a process is to make clear what is to be
done. In fact 1 might suggest that Ken lverson and his
colleagues meant APL to be a tool so that we all could

program lucidly. 0O
Bibliography
14, iverson, K, E., “The Description of Finite Sequential Processes”,

Infarmation Theory, 4th londen Symposivm, Colin Cherry (£d.).
London: Butterworth's 1941,

17. iverson, K. €, Elamentary Functions: An Algorithmic Treatmant,
Chicaga: Science Research Associates, 1946,

18. lIverson, K, £, Formalism in Programming Llsnguage. Yorkiown
Heights, N.Y.: T.). Watson Research Center, IBM Corporastion,

= July 2, 1963, {(RC-992)L

19. lverson, K. E., A Programming langusge. New York: John Wiley
and Sons, Inc., 1942,

20. Iverson, X, E, A Programming Ltanguage”, Spring Joint Com-
puter Conference, May, 1962, pp. 245351,

21, iverson, K, E, "Recent Applications of & Universal Programming
Language™, New York: IFIP Congress, May 24, 1945, (Also Re-
search Nate NC-511, T. J. Wation Research Center)

22, tverson, K. E., Tha Role of Computers in Teaching. Kingston,
Ont., Cansda: Queen’s University, Queen’s Papers on Pure and
Applied Mathematics, Na. 13, 1948. Alio iisued as The Use of
APL in Taaching, [BM Corporation, 1969, (320-0996-Q).

23, Kolsky, H. G., "Problem Formulation Using APL™. IBM Systems
Journal, 8, 1969, pp. 204.217.

24. Krueger, 5. E. and T. P. McMurchie, A Programming languags,
Chicago: 5cience Research Associates, 1948,

25. Lathwell, R. H., APIN340: Operations Manual IBM Corporation,
1968,

26. Llathwell, R.H, APIN3&D: System Generstion and library Maim
tenance. [BM Corporation, 19468,

27. MacAuley, Thomas, CAL/APL: Compuler Aided Learning/ A Pro-
gramming langusge, Author’'s Manual. Costa Mesa, Calif: Ine
formation Services and Computer Facility, Orange Coast Junior
College.

248, Pakin, Sandrs, APINISOD Referance Manusl. Chicaga: Science Re-

i search Associates, 1948, (Mo, 17-1)

29, Rose, A.)., Teaching the APL\380 Terminsl System. Yorktown
Heights, N.Y.: T. J. Warien Resesrch Cenler, I3M Corporation,
August 28, 1968. (RC 2184)

30. Rose, A.)., Videolaped APL Course. 1BM Corporation, 1987,

I, Simillie, K. W, STATPACK Il: An APL Statisticsl Package, Edmon.
ton, Alberta, Canada: Depariment of Computer Science, University
ol Alberta, Publication No. 17, February 19468,

32, Woodrum, L. J., “lnternal Sorting with Minimal Comparing™,

IBM Syitems Journal, 8, 3(1969) pp. IE9-20;.

http://th.it

50

Selected Bibliography for APL

0] Berry, P.C., APL/360 Primer Student Text, 1BM Corporation, 1969,
{C20-1702-0).
‘ An excellent introduction to the fundamentals of APL.

(2] Falkoff, A.D. and K.E. lIverson, APL/36Q User's Manual.
Yorktown Heights, N.,Y.: T.J. Watson Research Center, |BM
Corporation, 1968. '

f3] Gilman, L.!. and A.J. Rose, APL/360 An Interactive Aporoach.
IBM Corporation, 18869,
A textbook on APL (used in advanced undergraduate
prograrming course at C-MU)., Discusses some extensions to
basic APL/360.

{4 1Iverson, K.E., A Programming lLanguaze. New York: John Wiley and
Sons, lInc., 18962,
‘The original definition.of the notational scheme.
Excellent in its own right, but not directly useful in
learning one of the APL implementations,

[§J Pakin, Sandra, APL/360 Reference Manual. Chicago: Science
Research Associates, 1968. _ :
The definitive work on APL (as of 1968): explains each
operator (with many exarples). tHote: this book is a
reference manual, not a primer.

Documentation for APL/10 system at C-MU can be

found on the file APL.DOC. This file explains
the:: differences between APL/10 and APL/360 and
discusses the extensions implemented in APL/10,
as well as how to get onto the APL/10 system at
C-MU.

% % % ¥ *
* % % % % %

51

APL

Simple Examples and Problems

Write APL expressions to perform the followingz:

1,

2.

3.

Remove all duplicate elements from a vector V, and call the
resulting compressed vector RES,

Determine which vowels ('AEIQU') and how many of each appear
in a given character string C.

Given a vector V, whose components are decimal integers,
determine how many decimal places each component has.

Write APL functions to perform the following:

b4,

. 5 .

Write a function PR! to list the prime numbers that lie
between the Integers R and S, inclusive,

Let X be a vector whose components are arranged In ascending
order., Define a function MERGE which will ‘insert the
components of a vector V so that the resulting vector R is
still in ascending order.

Write a gne-line function to determine if a square matrix M
is symmetric or not and have it print out either '"THE MATRIX
IS SYMMETRIC' or 'THE MATRIX 1S NOT SYMMETRIC'. '

Without using the array catenation extension of the ravel
operator, write a function to:

a, catenate a vector R rowwise to a given matrix M,

b, catenate a vector C columnwise to a glven matrix M.
Do not assume that the lengths of R or C are proner,

52 -

APL

ANSWERS TO SIMPLE EXANPLES AND PROBLEMS

RES«((1A V)=V1V)/V
+/YAEIQUYe . =C
1+L10e]V

VZ+«R PRI S;7T

£1] Z+(RsT)/T+(2=+/0130=(18S)e.|\S)/\S
v

Y X MERGE V
(1] R+RUAR+X,V]
v

v SYM M

{13, '"THE MATRIX IS ';(0eM=QM)/'NOT ', 'SYMMETRIC.'

v

v M PLUSROV R
(1) (1 o+oM)o(MY, R, {((pM)[(2]p0)

[2) a NOTE--NUMERIC INPUT IS ASSUMED SINCE R IS

3l =~ EXTENDED BY 0'G IF TOO SHORT.
v

vV M PLUSCOL C
{11 &(1 o+p¥M)p(,84),C,((pM)[1]p0)

{21 = NOTE--NUMERIC INPUT IS5 ASSUMED SINCE C IS

[3] =~ EXTENDED BY 0'S IF TQO SHORT,
v .

TTY

+AL
.DE
.DU
.FL
.EP
U8
.DL
.LD
.10
.50

+BX
.AB
. EN
.LO

RO
.CE
+NT
DA
.Ul
. OM
LU

.RYU

.DD
.GE
.GO
.LE
. NE
NG
. OR

53

APLSS\APL

TELETYPE SYSTEM MNEMONICS

APL

A2+ UE C %« ! MT 9% O~A—[1] =« 0~ mr—~> 1

IR A+ v

<

ALTERNATE
TTY

@A
@B
@c
@D
@E
@F
@G
@H
@1
@J
@K
QL
@M
@N
@0
@p
@q
@R
@s
@T
QU
Qv
QW
@x
@y
@z

TTY

.CB
.CR
.CS
.DQ
.GD
.GU
.1B
LIQ
.LG
NN
.NR
.0Q
.0U
.PD
.QD
. QQ
.RV
.TR
. XQ
.ZA
.ZB
.ZC

etc.’

[M 7 B T X B -]

APL

1

fRIWE X 2ERAIIHRL ISR H<EH D &

n
.

T~ yew o X > D

Scvy g"f
?\. \-‘e h'f\'_\) F. '\)o\\ c..c.y\

«.R APL
CHARACTER SET..
TTY
APL~-OLS
TTY108) 19:11:16 8/19/71 [65,10]
CLEAR WS
344
12
Xe=344
X
12
Y+=-5
X+Y
7
144E.NG2
1«44
P~1 2 3 4
P2p
1 4 9 16
P#Y
-5 =18 -1i5 -28
@+~ *CATS"
5]
cATS
3+445+2
31
: X3
Y4 :
. (XAYY+4
16
. XAY+ 4
24 .
XY ‘
VALUE ERROR
XY '
?
R — . X~eI5
: X
1 2 3 4 5
81 @
Y*=5-X
Y

A3 2 1 o

54

Gets you into APL
type tty 1f you are at teletype

or APL 1f at datel
You are now in APL
entry 1s automatically indented
response is not
X 1s assigned the value of 3 times 4
value of x tvped out
Yy assigned =5
the sum of x vlus v
exponentlal form. .ng is svecial minus
for constants. It is not an operator
assign the vector 1 2 3 4§ to p
multiply p bwv itself
scalar 1s apllied to all elements
assign q a 4 element character vector

evadluation 1s from richt to left -
with no operator precedence

the varlable xy has not been defined

index generator function

the vector of 0 elements

all scalar functions extend to vectors

X<Y
1 1 2 @ @

0 1
3141592

3%2
15

80 2 1 2
3+141592 1.570796

180 1
Be8414709

2 801 2
0.5403022 -0.4161468

£1l
t21

18
29

{1l
(2]

[11
(21
€31
£al
(31
[61
£71

128

Ze((X*x2)+Y*2)I%. 5

«DL
3 F 4

P-7 '
Q~(P+1YF P-1
8

4#3 F 4

@G B~6 A
B-(A>@)~A<D
eG

G 4

G «NGé
6 X~=-6

.DL H A
P-CA>3)-A<p
&G

H «NG6

P

Y+H «NGé&
ERROR
Y*H -6

DL Z+~FAC N31I
Z~-1

I-0

LisleI+]

GO Q# @I I>N
Z+Z #1 '

« GO L1}

G

FAC 3

FAC 5

%%sult of relational operator is 0 or 1
Pi times 1

3 divided 2

Pi divided by 1 2 - -

sin.l

cos 1 2

Function Definifion |
function header, result plus 2 parameters
function body

close of function
eXecuting function
result

functidn call with exXpressions
value assigned to a

g 1s signum function. HA and B are -
locals. function s monadic,

monadie function call

assignments mav be anywhere in statement

Same as G but no result

value error since funetion call returns
no exvlicit result

FAC 13 factorial function

Ll becomes 3 at entrance into function
L1 is local,

-
e e e et

56

Te@HFAC~3 5
it set to trace lines 3 and 5 of FAC
FACL 3]

FAC(S]

FACL 31

FACLCS]

FACL 31

FACL S

FAC[31
X

Trace of FAC

L OGO D e -

6 }
TeHFAC+P set trace off
N eG G-M GCD N

£13 G-N

21 MeM aM N

£31 «GO 4#M JNE @
- £11G~M

21 LAIN-G

£513 €1.B%X1]

Greatest common divisor

correction of line 1
resume with line 4
display line 1

£11 GeM
£11 {.BX1 ‘

DL G*M GCD N display entire funection
€11 G=M

{21 - M«M.AB N
€3] «GO 4#M.NE 9

C43 NG
«DL, .
) iig ;SG 1 enter new line
S oD 4a close of funection. €g and .dl are the sSame
a
: _-DL GCD reopen definition
22)2] E4é;;M:N Insert new 1line
Tl GeM GCD N plaj unction
€1l G-M

£2] M«M.AB N
£3) +GO 4#M.NE @
Lal N-G
f4+1] MuN
{53 «GO 1
" «DL
[&6] « DL c
i en aa lose function.
8 36
4 8
4

57 .

@G GCD(.BX18G reopen,display, and close function
- .Dt MGﬁM GCD N notice that when function is closed

- 3
[é] AR N the lines are automatically renumbered,
£33 «GO 4#M.NE D
L4l Ne-G
£51 MsN

«DL

«DL GCD
£71 LaH5] delete line 5 of functi
£5) G ; °n

_ «DL Z=ABC X to demonstrate 11

£1] Z-(33#Q+{(R¥5)-6 ne editing

£21 {1.BX 81

edit line 1, print
€13 Z~(33#0+C(R#5)=6 s Print line and space in 8§

) 1 /1 4 ?or'deletévnumber'f) .
. or
£13 Ze (34D +(T#S)-6 enter) and % in proper ;izzz cpace .
(2] «DL . . i
FAC 5 FAC still defined
129
YERASE FAC Erase it
_FAC S) : FAC no longer defined
SYNTAX ERROR
: FAC S
' Vs
YFNS List defined functt 1 '
ARG 0 G . " ction in this workspace
P«2 35 7 - assign p the vector 2 3 5 7
#RP dimension of p
4 .
T~'0H MY"' character vector
. @R T dimension of t
Ps>P : catenation of two
2 3 5 7 2 3 5 7 numeric vectors
T»T catenation of two c¢ch
OH MYOH My charactfer vectors
PsT catenation of numbers with
DOMAIN ERROR not permitted characters
P>T .
*
NeS | -

_ "NOTE: «10°3N3*' IS '"3.10 N Mixed output
NOTE: .I0S IS1 2 3 4 5 :

38,

:fz 3R 2 3 5 7 11 13 create matrix of dimension 2 3

2 3 5
7 11 13

2 48R T reshape t into 2 4 matrix

58RM reshape matrix into vector
2 3 5 7T 11 13

«BX=Pe,M ravel in row major order
3 5 7 11 13
PL3] indexing

2

S }
PL1 3 51 indexing by a vector

2 5 11 : .

PLel13] first 3 elements of p

2 3 5

PC(@RP] last element of P

ME122) element in row 1 column 2 of m

ME13) row 1 of M
2 3 5

MLt 133 21 rows 1 and 1, columns 3 2

5 3
5 3 .
A+~ "ABCDEFGHI JKLMNOPQRSTUVWXYZ '

ALM] A matrix index produces a matrix result

BCE
GKM :
ACMI1 133 21]

EC
EC

Mtis]*ls 3 12 respecifyling the first row of M
o

15 3 12
7 11 13
8«3 1 5 2 4 6
PLal
5 2 11 3 7 13
L9l
S 3 4 1 2 6
PL31
S

YORIGIN @ set origin to 0
WAS 1
PC 3] fourth element of P

PLa 1 2] first 3 elements of P
2 3 5

e15
2 1t 2 3 4

JORIGIN 1
WAS B

oA

b0 b

17
16

hbOA N

Lo

15
.48
22
14
14

g8 8

59

V-?38R9 _ get random 3 element vector whose elements
M«?3 3@R9 are less than 10, and 2 random matrices
N*=3\3\?3 38R 9
v
1
M

1 5
4 g
6 6
N
7 2
6 4
é 4
M+N sum element by element
2 7
18: 12
12 10
M ep N Minimum
! 2
4 4
6 4
M<N comparison(result 0 Hg 1)
1 0
1 0
2 @
+/V sum reduction of v
§/v product reduction
+7011M sum over first co-ordinate of m

11 19
+/(21M sum over 2nd co-ordinate of M

20 18
+/M sum over last co-ordinate of m

290 18
8S/M max over last co-ordinate of M
6

-a

60

M+« #N ' o oralnary'matrix inner product

61 92 4B
160 128 64
182 114 60

M+p <N inner product
i1 2 1
1 t B
1 08
M+e gV +.# inner product with vect
o eaol angument or right
Vv
6 8 1 ‘
veJ.#el5 Outer product (times)

6 12 18 24 30
8 16 24 32 49
1 2 3 4 3

V 8J.<815 : Outer product with 1 2 3 4 5(less than)
g 9 & © ©
@ o0 8 D ©8
2 1 1 1 1
s ;RO va.Je. #M Outer product of rank 3
. g~?1gegs random 10 element vector(l-5)
432 2 52 55 1 4
+/[;393J.=915 Ith element of result is number of
1 3 1 " occurences of the value I in Q
2&1-TR ordinary transpose
8 1? 6
1 4 6
5 8 6
eTR M same as monadle transpose
8 8 6
1 4 6
5 g 6

61

Q
4 3 2 2 5 2 5 5 1 4 _
3 <RV @ , rotate q to left by 3
2 5 2 5 5 1 4 4 a »
.. eNG3.RV @ Rotate Q to right by 3
351 4 4 3 2 2 5 2 5
-3 <RV @ negative of rotate Q@ to left by 3
~2 -5 =2 -5 -5 -} -4 =4 -3 -2 *
@ 1 2.RVLC1IM Rotate columns by different amounts
8 4 6
B8 6 5
6 1 8
NG2.RVL2IM rotation of 311 rows by 2 to right
1 5 8
4 8 B
& 6 6
1 2 3.RV M .Rotation of rows
1 5 8 . ,
8 8 4 '
6 6 6 ‘ '
.. =RV @ Reversal of Q
4 1 5 5 2 5 2 2 3 4
: +RVL 11M : Reversal of M along first co-ordinate
& é 6
8 4 8
g 1 S
« RVM Reversal along last co-ordinate of M
5 1 8
B 4 8
6 6 6
Q>4

u
u

2 2 2 2 1 8 1 1 @2 @
g Compression of Q by logiecal vector U

compression by not U

1 & 1011M

SYNTAX ERROR

o0

it 8 1C13M
£1.BX 93
1t 2 101IM
1.
1 0 1/701IM
s
& 6
CsM>53/5HM
8 6 6 6
V1 3 101
ei3

2 ¢ 3
VAM

(%) 1

e 4

1%} &
V*ABC®

[l

ABC. .

1776

1B 1 7 7 6

8 PB1LT7T6

SYNTAX ERROR

1822

7 6

3805

22

8 PB1 7 7

i

g PB1 77 6
/1
g 8B1 7 7 6

18 10 18 18eN1776

7 6 _
16 19eN1776

24 68 688B1 3 25

24 60 638N380S

25

oo

6

~2eB1 011 9

62

type-in error

editing of immediate line

insert‘/ ’

compression along first co-ordinate of M

all elements of M which exceed 5

expansion of iota 3

expansion along last co-ordinate of M

expanslion of character inserts blanks
base 10 value of 1 7 7 6

typing error

.P should be @
base 8§ value of 1 7 7 6

4 digit base 10 representation of 1776

2 dglt base 10 representation of 1776

mixed base value

base 2 value

63

P .

2 3 5 7 1113

) P 10 7 least index of 7 in p

, P 10 6 6 not in p, result is l+.ro P
P +10 45 6 7 least index '

I A of 4 56 7 '1n p
ReQ-10 .I0@RO
R)

2 4 3 5 1
el Rl

1 2 3 4 5
A= 'ABCDEFGHIJKLMN®
A+A, 'OPQRSTUVUWXYZ®

A .
ABCDEFGHI JKLMNCPORSTUVUWXYZ :
. ABI'CAT® rank of ¢ a t in alphabet
3 1 286)
J+=ael *CAT"®
ACJY ’
CAT .
az?s random cholce of 3 out of 5 with no repeat
2 4 1 :
6?73
RANGE ERROR
623
'_.
X+~278 a random permutation vector
X .
7 1 3 2 8 6 S5 4 :
« GUX - the grade up of X
2 4 3 8 7T 6 1 5
XL+ GU X3 : X in ascending order
1 2 3 4 5 6 171 8 ,
XL .GD X1 X in descending order
8 7 6 5 4 3 2 1
U-A BE 'NOW IS THE TIME' Membership
(+BX~U>/A
2 © ¢ 2 1 @ 26 1 1 8 ©8 68 1 1 1 8¢ 6 @ 1t 1 @& @ 1
e a9
EHIMNOSTW

(BI9)eE3 6 2 9
g 1 1 @ 8 1 B8 9 1

" .DL Z+BIN N

64

CoCrel o ol FGMC‘I‘I‘IW .

Araons i AL
£1] Z~1
2] LA:Z=(Z,0)+0,Z
{31 +GO LA#N.GE RO Z
«DL .
YFNS . List of functions in workspace
ABC BIN ENTERTEXT F G GCD H
MULTDRILL
IVARS List of variables in workspace
A D J LA] N P Q R
T U v X Y '
A* *IFNS string containing two APL statements
YVARS'
‘A
3FNS
YVARS)
B~8E A _ Execution of string. value of first printed
ABC BIN ENTERTEXT F G GCD" H
MULTDRILL Second assigned to B
B B
A D J LA y N P 8 R
T u v X Y |
A~'BIN 3° '
B~8E A Execute string value returned in b
- B print value of function call
i1 3 3 1
' BeaN :BINf get 1lines of function BIN
B
«DLZ+«BIN N
Z*1
LAIZ=(Z,0)+Q>Z
«GOLA#N.GE«ROZ
- DL '
B YERASE BIN erase function
"BIN 3
SYNTAX ERRCR
BIN 3
’ .
8E B execute will redefine function
BIN 3 try it out
1 3 3 1
INVe.DO M get inverse of matrix
M+ FINY result should be identity matrix
1-000C0READ 2.9808232E-8 A0
Lz 1+.200002E09 A0
B0 2.980232E~-8 1-0020060ED
. YOFF_HOLD sign off APL
TTY188) 26:52:85_ 8/19/71
CONNECTED

1240t 48 CPU TIME

2:08:17

65-1_ .

BLISS

C. Geschke, C. Weinstock (Revised 8/75; R. Levin)

INTRODUCTION

BLISS-10 is a langugge specifically designed for writing'sbftware
systems such as compilers and operating systems for the éDP-lO! While much
of the language is relatively "machine independent' and could be implemented
on another machine, the PDP-10 Qas always present in our minds during the
design; and as a resulr, BLISSnlO can be implemented very efficiently on
the 10. This is probably not true for other machines.

We refer to BLISS-10 as an "implementation language." This bhrase
has become quite popular lately, but apparently does not have a uniform
meaning. Hence, it is worthwhile to explain what -we mean by the phrase
and consequently what our objectives were in the language's design. To us.
‘the phrase "implementation language' connotes a higher level language
suitable for writing Eroduction software; a truly successful implementation
language would completely remove the need and/or desire to write in assembly
language. Furthermore, to us, an implementation language need not be machine
independent-~in fact, for reasons of efficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language
for implementing software. One of the most often mentioned is that of
speeding up its production., This will undoubtedly cccur, but it is one of
the less important bemnefits, except.insofar as it permits fewer, and better
programmers to be used. Tar mor; important, we believe, are the benefits of
documentation, clarity, correctness, and modifiability. Thesé were the most
important goals in the désign of BLISS-lb..

Some people, when discussing the subject of implementation languages,

have suggested that one of the existing languages, such as PL/I, or at most

66

a derivative of one, should be used; they arguc that there is already a
proliferation of languages, so why add another. The only rational excuse for
the creation of yet another new language is that existing languages are

unsuitable for the specific applications in mind. In the sense that all

languages are sufficient to model a Turing machine, any of the existing

languages, LISP for exanple, would be adeguate as an implementation language.
However, this does not impiy that eaclh ol these languages would be eq;ally
convenient. Ffor examble, FORTRAN can be used to write list processing
programs, but the lack of recursion coupled with the recuirement that the
programmer code his own primitive list manipulations and stdrage control
makes FORTRAN vastly iunferior to, say, LISP for this type ol programmin”-‘
What, then, are the characteristics ol systems programming which should
be reflected in a language cspecially suited [or the purpose? Ignoring ’
machine dependent features (such as a specilic interrupt siructure) and
recognizing that.gll differences in such programming characteristics are
only one of degree, three features of systems programming stand out:
1. Data structures. In no other typc of programming does the
variety of data structures nor the diversity of optimal
‘representations occur.
2. Control structures. Parallelism and time are intrinsic parts
of the programming system problem,*
3, Frecuently, systems p}ograms cannot presume the existence of

large support routines (for dynamic storage allocationm, for

example).

% Of course, parallelism and time are intrinsic to rcal time programming

as well.

67

These are the principal ;haracteristics which the design of BLISS-10
attempts to address. For example, taking point‘(3), the language was
designed in such a way that no system support is presumed or needed;
even though, for exémple, dynamic storage allocation is érovidgd. Thus,
code generated by the compiler can be executed directly on a ;bare“
machine. Another example, taking point (1), is the data structure defini-
tion facility. BLISS contains no implicit data structures (and hence no
presumed representations for structures), but rather provides a method for

defining a representation by giving the explicit accessing algorithm.

o I/O and Other Packages:

Several packabes of useful subroutines have been developed for BLISS-10.

Here is a list of these packages, with pointers to relevant documentation:

BLILIB:

This is the so-called BLISS library, which contains i/o conversion
routines, file access routines, storage allocation rou&ines, and other
facilities.

Documentation: SYS:BLILIB,DOC

Maintainer: R. Johnsson

F N

68

TIMER:

A package which can be loaded witﬁ your BLISS-10 to prbovide
statistics on the run-time of routines in your BLISS-10 program.
Extremely useful in the design-implementation cycle bf.an efficient
programming system.

Documentations: TIM.DOC

Implementor;: J. Newcomer

POCMAS :
"Poor-Hans-Simulation-Package." An adjoiﬁt to BLiSS-lO of the
same flavor as the union of SIMULA and ALGOL,
Documentations: POOMAS.DOC

Implementors A. Lunde

SIXi2:
A high lével debugging package. Since it knows about the Bliss-10
Tun time enviromment it is useful in interactive Bliss deburring,
Documentation: SiX12.DoC
Implementors: C. Weiﬁst;ck

W. Wulf
T. Lane

REFERENCES

Ry
(2]

(3]

[4]

(5]

Wulf, Russell, Habermann, Geschke, Apperson, Wile, Brender, "ELISS
Reference Manual,'" Computer Science Department Report, CMU, 1970.

Wulf, Russell, Habermann, "BLISS: A Language for Systems Programming,"
DECUS Proceedings, Spring, 1970.

Wile, Geschke, "Efficient Data Accessing in the Programming Language
BLiSS," 3IGPLANConf. on Data Structures in Programming Lanzuages,
SIGPLAH Notices, February, 1971.

Wulf, Geschke, Wile, Apperson, "Reflections on a Systems Programming
Language," SIGPLAN Conf. on Implemcntation Languages, SIGPLAN
Motices, October, 1971.

Wulf, Russeil, ftabermann, "pBLISS: A Lanpuage for Systems 'rogramming,™
C.A.C.M., (to be published).

69 °

Some fairly extensive examples have been prepared as an appendex to

the BLISS-10 Reference Manual.

SIMPLE EXAMPLES
1) ! find index of first space in a line
! image of 80 characters (one per word)

! index = -1 implies none found

index « incr j from d to 79 do

if . line [.j] eql #44 then

exitloop .j;

+2) I find last item of simple list
link « . beginning of linked list;
while .. link neg ¢ do link « ..link;

] link contains address of last item

3) ! add the first N numbers
SuUm « Q;

incr j from 1 to .n do sum + .sumt.j;

4) ! routine to compute factorial

routine factorial (n) =

if .n eql ¢
then 1

else .n* factorial (.n-1);

o g

T T -

N o s wr AR AP e an e wm e ok s G AR AR e e W e b e B W T ML b we mm e e e W R EE T D s e B wm e e g M R L A s eR A e AN MD WD SR S A W e e e A

THE FOLLOWING IS AN EXAMPLE OF A TERMINAL SESSION USING
B.1SS-10. COMMENTS ARE DISTINGUISYED FROM ACTUAL MACHINE
INTERACTION BY BEING ENCLOSED IN ----'ED LINES. SINCE BLISS-10
4AS NO BUILT-IN I/0 FACILITIES, THIS EXAMPLE USES A FILE CALLED
TT10.BLI WHICH CONTAINS SOME 'BARE BONES' TERMINAL SUPPORTs MORE
EXTENSIVE AND CONVENIENT 1/0 FACILITIES CAN BE FOUND IN THE BLISS
LIBRARY (SYS:BLILIB.REL). '

- D e A ek S WD D W S G e e wm m A wh wl o R WA MR PR W AR ED SN W Em A S W ol N WD A EE AN D S MR e b el M W ey e e e G ww e A N D N R N W W W AR A W A W

«TYPE TTIO.BLI
!" PDP~10 1/0 FACILITIES FOR TTY

MACHOP TTCALL = #515) 'UU0 FOR TTY OPERATIONS

MACRO INC = (REGISTER @3 TTCALL(4,Q)5 -.Q@)%,
QUTCCZ)» = (REGISTER Q5 Q-(Z); TTCALL(1,Q))5,
QUTSACZ)Y = TTCALL(3,Z)%,
QUTS(Z) = QUTSA(PLIT ASCIZ Z)&»s
OUTM(C,N> = DECR I FROM (N)-1 TO O DO 0UTC(C)$:

™~ CR = DUTC(#15>, LF = QUTC(#12)53, NULL = QUTC(0)S%, -
CRLF = OUTS('?M?2J2020')5%,
TAB = QUTC(#11)5%;

! GENERAL NUMERIC CONVERSION
! OUTPUTS .NUM IN RADIX .BASE IN A FIELD AT
! ' LEAST «REQD CHARACTERS WIDE

ROUTINE OUTN(NUM,BASE, REQD) =
BEGIN QOWN N-B,RD, T’
ROUTINE XN =

BEGIN LOCAL R;
IF «N EQL O THEN RETURN OUTMC"0"s « RD-+T3;
Re=«N MOD +Bi N=«N/+B} T-T+13 XNC)3
OUTC(-R+"D"

END;

IF .NUM LSS O THEN OUTCC"-'');
B-+BASE; RD-.REQD; T~05 N-ABSC.NUM); XNC)
END; :

! COMMON USES FOR ‘'OUTN'

MACRO OUTD(Z)Y = QUTN(Z,10s51)%,
QUTOC(Z)- = QUTN(Z,8,1)5%,
QUTDR(Z,N) OQUTNC(Z,10:N) 3,
QUTORCZ,N? QUTN(Z,8,N)S3

0

e M M SR D G AR G s R SR mh WD D e A e e SR W O T G S W e W W G MR M M G ED SN A NP WD aB M ME W WS T em M P AR SR 4R Mm W MR R RN R Gy Ak w em e A W M

NOW WE WILL BUILD A PROGRAM TO PRINT AT THE TERMINAL
THE FACTORIALS FROM O TO 12. WE HAVE ALREADY CREATED THE FILE
FACT.BLI USING TECO. ITS5 CONTENTS ARE:

“-“‘-'——--——------—--—--——--——-----D--ﬂ-‘d-—--‘—-“------‘—--—--'-‘--.

+ TYPE FACT.BLI

MODULE FACT(STACX) =

BEGIN
REQUIRE TTIO.BLIS IGET DECLARATIONS FROM TTI!O.BLI

ROUTINE FACTORIAL(N) = .
IF «N EQL O THEN 1 ELSE «N*FACTORIAL(C.N=1);

! MAIN PROGRAM

CRLF; TAB; OUTSC'N'); TAB; OUTSC'N!'); CRLF; CRLF;
INCR. I FROM O TO 12 DO
BEGIN
TAB; _
OUTDC.1);
TAB;
OUTD(FACTORIALC«1))3
CRLF;
END

END

ELUDOM

AR G W R P TR WS AR SR A R ML e m R YR WD s o Em R SR SR Ak e i T e WE R WE W WA S W em A W D M M wr we mm e e mw A P e —— e o A -
- - -

NOW WE ARE READY TO COMPILE THE PROGRAM. BLISS-10 ACCEPTS
THE STANDARD DEC COMMAND STRING ALONG WITH A LARGE NUMBER OF
OPTIONAL (AND DEFAULTED) SWITCHES WHICH ARE DESCRIBED IN THE MANUAL.
IN THIS EXAMPLE WE ARE NOT GOING TO USE ANY OF THE CCL COMMANDS

ALTHOUGH THE CMU MONITOR DOES RECOGNIZE THE «BLI EXTENSION AND
WILL HANDLE BLISS-10 FILES.

THE COMMAND STRING WILL PRODUCE A FILE NAMED FACT.REL.

- e M e e R R R A M N R R S YR R mp wm e M MR M M A M AP MmN mm e s mE s A WS R e mw mk mE o T A R L WS AN am WA R WA M A e B e e e e e S

72

+R BLISS
*FACT,«FACT

MODULE LENGTH: 131+16

- [BLSNED NO ERRORS DETECTED)

*:C

- .o - D R WP S R S W ek MR L MR D R N R P P WP Wy ma R ES S e W e w wk m W W MR S MR SR 4D D WA M e e A e e SR N R S
-- - -

- s e e R e A e b e b MR N WP M M G S SR L R SR MR R MR A R e e e mm ok mh dr MR R R AR AR SR TR M S AP D AR R A M SR SR SR AR W e ue e Ae e am

. +LOAD FACT
LOADING

LOADER 1+1K CORE

EXIT

+« START
™~

z

O[O = e

24

120

720

5040
40320
362880
3623800
39916800
479001600

e e b O NIV W N O <

Ne—0

-- - - A Wn v e w - - - - - - . - - - - - R = ww wm b am ww em
- m A mp em s e Em S e -
- - - - - - -
- e - -

73

LISP

Crispin Perdue
Mike Rychener
Don Waterman

The following guote from the introduction to Weissman’s Primer [5] will serve to
introduce the language:)

"LISP is an unusual language in that it is both a formal mathematical language, and
(with extensions) a convenient programming language. As a formal mathematical
language, it is founded upon a particular part of mathematical logic known as recursive
function theory. As a programming language, LISP is concerned primarily with the
compuler processing of symbolic data rather than numeric data.

"From childhood we are exposed to numbers and to ways of processing numerical
data, such as basic arithmetic and solutions to aigebraic equations. This exposure is
based uvpon a well-established and rigorously formalized science of dealing with
numbers. We are also exposed to symbolic data -- such as names, labels, and words --
and to ways of processing such data when we sort, alphabetize, file, or give and take
directions. Yet the processing of symbolic data is not a well-established science. In
learning an algebraic programming language, such as FORTRAN or ALGOL, we call upen
our experience with numbers to help us understand the structure and meaning {(syntax
and semantics) of the language.

“In learning a symbolic programming language such as LISP, however, we cannot
cail upon our experience, because the formalism of symbolic data processing is not part
of this experience. Thus, we have the added task of learning a basic set of formal skills
for representing and manipulating symbolic data before we can study the syntax and
semantics of the LISP 1.5 programming language.

"LISP is designed to allow symbolic expressions of arbitrary complexity to be
evaluated by a computer. To achieve a thorough understanding of the meaning,
structure, construction, and evaluation of symbolic expressions, is to learn how to
program in LISP.")

The current version of LISP at CMU is an accretion onto Stanford LISP 1.6, in
several layers. Stanford 1.6 itself is a slightly more usable version of LISE than the 1.5
version described by Weissman [5] The differences are easily grasped, so that little
unlearning is needed to go from a textbook LISP to a running computer implementation.
The Primer is essential far the beginner, since the reference manual [3] is organized for
reference rather than for assimilating essential language features. LISP 1.6 was
improved considerably by the UCI LISP team [1]. Particularly heipful to the user are
the powerful debugging and editing facilities, modelled after Inter-Lisp. The UCI LISP
version has a number of new basic LISP functions also. The most useful parts of this’
augmented system are introduced tutorially in [2]. Finally, there is the LISPX [4]

74

extension to LISP, which conlains useful mput-output functions, machine-specific
functions (for the local CMU environment), and other power and convenience features.

LISP at CMU is self-documenting. That is, a user can access portions of the
reference manual on-line, by using the HELP function. There is aiso an index available
through the HELP function, which can point the user towards other HELP messages.
HIGHLY SELECTED REFERENCES
[1] Bobrow, R, R. Burton, and D. Lewis, UCI LISP Manual. U. of Calif. at Irvine, 1973.

[2] Perdue, Crispin, User’s Introduction to UCI LISP. CMU CSD Tech. Report, 1974,
[3]) Quam, Lynn, Stanford LiSP 1.6 Manual. Stanford Al Memo, 1969.

[4] Stickel, Mark, LISPX. Internal document, CMU, 1976.

[5] Weissman, Clark, LISP 1.5 Primer. Dickenson Publishing Co., 1967.

LISP SCRIPT

What follows is an absolutely minimal demonstration of the use of UCI LISP and
some important features, especially input/output using files. Comments here are like
those in actual LISP source files: they begin with ~ (<control Z>, or SOS ?4) and go to
the end of the line. |

R LISP
Type (help help) if you need it.

<1>(core) ~ How {o increase your storage allocations.

~ LISP prompts with <number>,
15872 ~ Find out how much you have, in words.
<2>{core 22000} ~ Increase the size to 22K; invokes allocation.
ALLOC Y OR Ny Y ~ DO NOT PUT CRLF OR ANYTHING ELSE AFTER "v"
FULL WORD SP. = ~ For no change, type a blank. NO CRLF!
BIN. PROG. SP. = ~ BAgain no change.
REG. PDL. = 1000 ~ Terminate with a blank. DO NOT HIT RETURN!
SPEC. PDL. = 1000 ~ Remainder of the exira is assigned to FREE SPACE.

FREE STG EXHAUSTED
FULL WORD SPACE EXHAUSTED
9255 FREE STG, 1241 FULL WORDS AVAILABLE
"~ Now conversation begins with LISP itself.

75

<3>(recordfile (lispin.rec)) ~ Send all termir al interactions to a file.

RECCORD FILE DSK: (LISPIN . REC) OPENED 02-AUG-77 17: 20 49

NIL
<4>10 o ~ The value of a number is itself.
10
<5>(quote {a b c)) ~ fvaluating a quoted expression removes
~ the QUOTE, but does not evaluate the
(ABC) ~ expression -- returns it unevaluated.
<6>{car {quote (a b ¢))) ~ The basic CAR operation.
~ Note that LISP makes everything upper case.
fay
<7>{cdr {quote {a b ¢] ~ The square bracket closes all parentheses.
(B ~ The CDR.
<8>(cons "a (b ¢)) ~ The READ routine recognizes the "single
~ quote” as an "abbreviation” for QUOTE:
(ABC)
<9>{print a) ~ READ puts in the QUOTE’s before EVAL cets to took
~ at the SEXPRESSION at ali.
{QUOTE A) .
<10>{{lambda {x) (times x x)) 12) ~ LAMBDA expressions a la Weissman.
~ Notice the different format here.
144

<11>((lambda (x y) (plus (times x x) (times y y))) 3 4)

25 ~ A LAMBDA expression of two variables.
<12>(de square (x) (times x x] ~ The LISP function DE has the
~ side-effect of defining the function.
SQUARE ~ Ht returns the atom naming the function.
<13>{(pp square) ~ PP (alias GRINDEF) is for pretty-printing
~ function definitions.
(DEFPROP SQUARE ~ This is the DEFPROP format.
(LAMBDA ((X) (TIMES X X))
EXPR) ~ A function read in using this format will
NIL ~ become defined, or perhaps redefined.

<1l4>{square 32)

1024 ~ It works,
<15>(de substitute {(what for in)

>(cond ({equal for in) what)

>((atom in) in)

>(t {(cons (substitute (car in)X{substitute (cdr in]

SUBSTITUTE

. 76

<16>(pp substitule) ~ Prinl if out pretty,

(DEFPROP SUBSTITUTE
(LAMBDA(WHAT FOR IN)
(COND ((EQUAL FOR IN) WHAT)
((ATOM IN) IN)
(T (CONS (SUBSTITUTE (CAR IN)) (SUBSTITUTE (COR IN))))))
EXPR) '

MNIL
<17>(substitute 'x 'a (a b ¢)) ~ Substitute X for A in (A B C).

TOO FEW ARGUMENTS SUPPLIED - APPLY

(SUBSTITUTE BROKEN) _ ~ LISP is unhappy with my function.

what ~ I can ook at all the current values of thlngs
~ The BREAK package prompts with ":".

X

thky 3 ~ 1 can also do a "backtrace” of all the expressions

~ whose evaluation is still in progress. The number,

~ e.g. 3, limits how far back the backtrace will go.
(SUBSTITUTE {(CAR IN)) ~ Most recently entered expression prints first,
(CONS \=\ (SUBSTITUTE (CDR IN)})) ~ \#\ means "the previously printed expression”.
(COND ({(EQUAL FOR IN) WHATXT \#\)) ~ We see what calied what.

WHAT = X ~ Variable bindings are shown an en'try
FOR = A ~ 1o a function. '
IN=(ABC) .

(SUBSTITUTE (QUOTE X) (QUOTE A) (QUOTE (A B)]

:T ~ Get "out of the break”.

<18>(editf substitute) ~ Edit the funclion.

EDIT

#pp ~ PP is also an editar cammand.

(LAMBDA(WHAT FOR IN)
(COND ((EQUAL FOR IN) WHAT)

((ATOM IN) IN)

(T (CONS (SUBSTITUTE (CAR IN)XSUBSTITUTE (COR IN)))))

=f substitute ~ Find the first expression beginning "SUBSTITUTE".

(SUBSTITUTE (CAR IN)

#(insert what for before car) ~ Do an insertion.
(SUBSTITUTE WHAT FOR (CAR IN)) .
#f substitute ~ Find the next "SUBSTITUTE"

77

(SUBSTITUTE (CDR INY)
#+(INSERT WHAT FOR BEFORE (CDR IN)) ~ Insert azain.

(SUBSTITUTE WHAT FOR (CDR IN))
#0 p -~ 0 means "go up one level of parentheses.
~ P uses "&" ("etc.") for deeply nested lists.
(CONS (SUBSTITUTE WHAT FOR &) SUBSTITUTE WHAT FOR &)
4T pp . ~ T {uparrow) means go back to the top,
~ the whole expression being edited.
(LAMBDA (WHAT FOR IN)
(COND ((EQUAL FOR IN) WHAT)
((ATOM IN} IN)
(T
(CONS (SUBSTITUTE WHAT FOR (CAR IN))
(SUBSTITUTE WHAT FOR (CDR INM))

20k ' ~ Exit the editor by saying OK.
SUBSTITUTE ' ~ The editor returns a value.
<19>(substitute 'x "a (a b ¢)) ~ Try again.

(X B C) ~ OK.

<20>(setqg list *((a b) (d a b) (a b c¢)d (a b))

(AB)IDABY(ABCY(D(A B
<2i>(substitute *(x) (a b) list) ~ A more elaborate test.

(XY (D X)(ABC) (DN ~ Correct, but LOOK CLOSELY.
<22>(selq allfns *(substitute square)) ~ Get ready to save the definitions.

(SUBSTITUTE SQUARE)

<23>{help sort) ~ In general, the list of functions
_ ~ is much longer and needs io be sorted.
- - - - (SORT BASIC) - - - - ~ This is the on-line help facility.

(SORT DATA COMPAREFN) [SUBR]

SORT destructively sorts the list CATA using COMPAREFN as
a binary comparison function. (COMPAREFN X Y) should
return something non-NIL if X can precede Y in sorted

order, NIL if Y must precede X. If COMPAREFN is NIL,
LEXORDER will be used; if COMPAREFN is T, LEXORDERCAR will
be used. Pointers to the head of DATA will nof zenerally
continue to do so after a SORT. The value returned is a
pointer to the new head of the list.

- -~ ~ - (SORT SEE) - - - -
WANT TO SEE THE MESSAGE? >y

78

LEXCRDER LEXORDERCAR

MNIL
<28>{setq allfns (sort allfns ’lexorder)) ~ Here, lexarder is used as

~ the comparison, to aiphabetize.
(SQUARE SUBSTITUTE) ‘

<Z25>{dskout (allfns.)sp) allfns) ~ ALLFNS.LSP is the file name.
~ (DSKOUT (ALLFNS.LSP} (SQUARE SUBSTITUTE))
NIL ~ would not work. DSKQUT requires that you use an

~ atom whose value is a list of functions. Value
~ of NIL returned by DSKOUT is OK.

<27>(recordfile) ~ Close the file recording terminal interactions.
RECORD FILE DSK: (LISPIN . REC) CLOSED 02-AUG-77 17:31:24

1C ~ Exit to monitor,

JY ALLFNS.LSP ~ Now to type the file, for proof.
(DEFPROP ALLFNS ~ Notice the DEFPROP format, just like PP.
(ALLFNS SQUARE SUBSTITUTE)

VALUE)}

(DEFPROP SQUARE
(LAMBDA (X) (TIMES X X))
EXPR)

(DEFPROP SUBSTITUTE
(LAMBDA(WHAT FCR IN)
(COND ((EQUAL FOR IN) WHAT)
((ATOM IN) IN)
(T (CONS (SUBSTITUTE WHAT FOR (CAR IN)) (SUBSTITUTE WHAT FOR (GDR IN)Y)))

EXPR)
R LISP ~ Now to run LISP again.
Type (belp help) if you need it. :
<1>{dskin (allfns.lsp) ~ DSKIN will read the file fram disk.
~ NOTE: far a file with no extension
ALLFNS ~ say, e.g. (DSKIN ALLFNS).
SQUARE
SUBSTITUTE ~ Names of things defined are printed out.
FILES-LOADED ~ Just a message.

<z2>{square 111)

12521
<3@>(substitute "a b (a b ¢))

(A AC)
<q>TC ~ Arnazing.

79

NUTSHELL INTRODUCTION TO UCI LISP
The Editor

When editing something, ie., a list structure, in UCI LISP, one imagines it as
consisling of expressions and subexpressions. A subexpression is simply a legitimate
expression which happens to be part of another expression. In the list structure (A (B
C) (D (E F)), some of the subexpressions dre A, (B C), and (E F). A list is composed of
elements, sometimes called top-level subexpressions. The elements of the example list
above are precisely A, (B C),’and (D (E F)). Of course the list elements themselves may
have elements. | '

The attention of the editor is always centered on some subexpression of the
structure being edited, possibly that structure itself. The expression on which the
attention is focussed is known as the current expression. The elements of the current
expression can be thought of as being numbered. If the current expression is (A (B C)
(D (& F))), Ais number 1, (B C) is number 2, and (D (E F)) is number 3. The attention of
the editor can be moved to an element of the current expression by typing fhe
appropriate number to the editor. The attention of the editor can be moved to the
expression which contains the current expression as an element by typing 0. It is
possible to shift the editor’s attention back up to the entire expression being edited by
the command 1 (uparrow).

These numbers serve as commands to the editor.’ The current expression can be
printed by the commands P and PP. P prints only the eiements of the current
expression and their elements. If an element of an element of the current expression is
npot an atom, il prints as mereiy "&". By default, the editor prints the current
expression with P after executing each line of commands. Suppose the current
expression is (A (8 C) (D (E F))) and we are conversing with the editor. .

#pP
(A (BC)(DE&)n
#3
(D(E F))
The last element of the current expression can also be referred to as -1, the

second to last as -2, etc..

It is also possible to move the attention of the editer to any'subexpression of the

80

current expression, not necessarily an ELEMENT, by using the F command with the name
of the first element of the list. Actually, this only works if the first element of the list
(subexpression) is an atom. If we are editing the list in the previous example:

uF D ~ Ther find command.

(D(EFD
#0

(A (BCY(D&)
uwF E

(EF)

The F command does not limit itself to the current expression unless the current
expression is the enfire structure being ediled. The F command searches forward
through the entire structure being edited, and it searches in the order in which the
expression appears when printed out, somewhat as though it were SOS or TECO. Tt
begins, however, with the current expression, and only continues through the entire
expression being edited if it does not find anything appropriate in the current
expression. The search only looks at that part of the total expression which is to the
right of the current expression. The F command always moves forward; that is, it never
leaves the current expression the same. If the current expression is (A (B C} (D (B E)),
editing might look like this:

uf D

{(D(BEN
#F B

(B E)
The same expression could be found by:
uf B

(B C)
#F B

(B B)

At this point we can begin to 'expiain the commands thal actually change the list
structure, e.g. your function definition. Take the INSERT command as an exampie.

81

(INSERT el . . . em <command> §)
where <command> := BEFORE or AFTER

The el . . . em indicates a sequence of expressions to be used, in this case
inserted as is info the list structure. The § indicates that what the user types in that
part of the command is used as a "location specification”. A location specification is
very much like a sequence of F commands and numeric commands typed to the editar to
change its focus of attention. In general, it is not necessary to type F <this> F <that>,
efc., but oniy <this> <that> unless this or thal is a number and therefore liable to be
interpreted as a numeric command. The INSERT command as weil as the others
described here return the editor’s aitention to its original location after the operation is
performed. For exampies, ook again at the INSERT cormmands in the script.

It is easy to imagine a current expression like (A 8 D) into which we wish to insert
a C. It is perfectly legal to say {INSERT C AFTER B), even though B is not the CAR of a
list. The only difference is that in this case the expression found is B itself, just as
would be expected. CAUTION: The editor has many more commands than are mentioned
here. If something in a location specification is also a command, the editor will use it as
a command in the location specification unless it is preceded by “F". This is usually no
problem.

The commands INSERT, DELETE, EXTRACT, EMBED, MOVE, and CHANGE form a useful
set. Here follow statements of the syntax of the rest of these commands, illustrated by
exampies. We will take the initial current expression to be (BIM BAM (ZAM (GLUP)
DING)) in each example unless otherwise noled.

Using INSERT, (INSERT HOWDY AFTER DING) would result in (BIM BAM (ZAM (GLUP)
DING HOWDY)). The same effect could be achieved by (INSERT HOWDY AFTER ZAM 2).

(CHANGE § TOel . . . em)

The CHANGE command causes the thing found by the location specification to be
replaced by el to em. (CHANGE 3 TO (CRUNCH OOF) UGH) would result in (BIM BAM
(CRUNCH O0F) UGH).

(DELETE %)

The DELETE command causes the expression found to be deleted. (DELETE DING) or
(DELETE 2 3) would result in (BIM BAM (ZAM (GLUPY)).

(EXTRACT §1 FROM §2)

The extract command causes an expression to be replaced by one of its
subexpressions. (EXTRACT GLUP FROM ZAM) would resuit in {(BIM BAM (GLUP)).

(EMBED S INel. . . em)"

82

The EMBED command is slightly different from the others. The location
specificalion operales in the usual way, and copies of the expression specified are made
to be subexpressions of el to em. There is a special, but simple syntax for indicating
where the editor is to put the copies of the expression found. Wherever the atom "s"
appears in el {o em, the expression found will appear in the result. el to em end up
occupying the same position that the located expression occupied before the command.
(EMBED BAM IN (#)) would result in (BIM (BAM) (ZAM (GLUP) DING)). (EMBED BAM IN
(HELLO =)WHAT (IS THIS #))) would result in (BIM (HELLO BAMYWHAT (IS THIS BAM))
(ZAM (GLUP) DING)). : '

(MOVE §1 TO "before or after” §2)

The MOVE command contains 2 iocation specifications. 81 is performed and then,
without losing its grip on the expression found, the editor moves its attention back to -
the initial current expression, does $2, and inserts the expression found by §1 at that
point, removing it from its original position.

THRU

Sometimes it is useful to be able to deal with segments of a list, i.e. a sequence of
clements rather than just one element. Consider the plausible example where the user
has crealed (APPEND CAR A B) and obviously (APPEND (CAR A) B} was intended. It
woukd be nice to do an EMBED command, but how is it to be done? The solution is to say
(EMBED (CAR THRU A) IN (), resulting in (APPEND (CAR A) B). The generai format is
(81 THRU S?). $2 is somewhat special, because it fails unless it finds an expression
which is a clement of the same list as the expression found by 81. Indeed it starts {and
ends) its search with the list that the expression found by 81 is an element of. For
examptle if the initial current expression is (A (B EXG B £ J)), we could say {(MOVE (B B
THRU E) TO BEFORE G), and we would get (A (B E) B E (G J)). {MOVE B (B THRU E} TO
BEFORE G) weuld have the same effect, and so would (MOVE G (2 THRU 3) TO BEFORE
G), which is a liftle more natural perhaps.

UNDO
One of the most remarkable features of the editor is that all of the commands, like

INSERT, that actually make changes, can be UNDONE! To undo a command, say to the
editor, UNDO <command>, for example,

#UNDO INSERT

and the most recent command of that type will be undone for you. Even the UNDO
coramand can be undone by saying,

=#UNDO UNDO

] know it’s amazing, but it works just fine, and the moral to the story is TRY THE
EDITOR. You just can’t do yourself no harm (hardly). Honest.

http://to.be

83

DEBUGGING LISP

A word or two now on debugging. Backiracing has been demonstrated in the
script. It is also possible to do tracing of function calls. When a function is being
traced, ils name is printed as it is entered, and the values of ils parameters are
displayed. When it is through, its name is printed again with the value it has returned.
All of this is done in a graphically pleasing fashion.,

To cause a function to be traced, say to LISP, (TRACE <function name>). To stop
LISP from ftracing it any rore, say (UNTRACE <function name>). To stop LISP from
tracing all thirty seven of the funcltions you have been tracing, say (UNTRACE).
<function name> should NOT be QuUOTE d.

Another useful function, something like TRACE, is BREAK, perhaps an unlikely name
for a nice feature. When a function is BROKEN, execution stops and you converse with
LISP in much the same fashion as if there had been an error, as in the script. Most
important, you can do all of the same kinds of poking around at things. If you BREAK a
function on purpose, though, you can cause execution to CONTINUE by saying OK. For
example, ‘ '

:OK

- From time to time you may gét LISP into an infinite loop. To stop it type <conirol
C>. Then fo the monitor type REE<return> and finally either 1B {(<ctri 8>) to stop
execution in the middie or TZ (<ctri 7>} to forget the whole thing without losing LISP.
Far example,

TC
.REE
1z

<5>

SAMPLE PROBLENMS
Write LISP functions for the following:
1. Determine whelher an atom is in a list.

eg. {memberbabe¢))=T
{member *x (a b ¢)) = NIL

84

{member "a (b {a b) ¢} = NikL

2. Produce a tale (list of dotied pairs) given two lists, one of the
references, and the other of the values.
e.g. {(pair (one two three) (1 2 3)) = ({one . 1) {two . 2} (three . 3N
(pair *(plane sub) (B47 Thresher)) = {{(plane . B47) (sub . Thresher))

3. Append ore list onto another.
e.g. (append {abc)(def)l=(abcdef)
(append *({(a b) ¢ (d (e)) *((a})) = ({a b} ¢ (d {e}} (a)}

4. Deleie an element from a list.
e.g. (delete’y "(x y 2)) = (x 2)
(delete "x (u v) x y)) = {u V) y)

5. Reverse a list. (Hint: use append.}
e.g. (reverse (abc))=(cba)
(reverse (a (b c) d)) =(d (b ¢) a)

6. Produce a list of all the atoms which are in either of two lists.
e.g. {union {uv w)(wxy)={uvwxy)
(unionabc)becd)=(abcd
{union {ab ey abch={abcg)

7. Produce a list of all the atoms in common to two lists.
eg. (intersection {a b c)’(bcd))=1(bc)
(intersection (ab¢)(abc)) =(abc)
(intersection {a b ¢} (d e f)) = NIL

8. Find the last element on a list.
ez. {last(abc))=c¢

(Jast ({a b) (I} = {c)

9. Reverse all levels of a list.
e.g. (superreverse (ab{cd)) ={dc)ba)
{superreverse ((u v) ({x z) y) = {{y (z x)) (v u))

10. Determine whether a given alomic symbol is some part of an S-expression.
e.g. (part’a’a)=T
(part’a{x .y .a)) =1
(part ’a (u v {w . x)z) = NIL

85

L

G. Robertson

L+ is a system for constructing softuare systems, which has
been developed at CMU by A. Neweil, D. McCracken, and G. Robertson.
There are tuo up-to-date versions of the system; one on the PDOP1B
called Lx(]}, and one on C.mmp called LxC. (D). The system has gone
through many iterations on several machines: L«(l) is the tenth
system to be designed for the PDP18 and the seventh to become a
running system, and LwC.{D) is the fourth running system on C.mmp.
There have also been four running versions on stand-alone POP11’ s,
the most current version being Lwl11(H). A running system on 368 TSS
also exists, Lw368. Also, versions exist for the Xerox ALTO and the
Intel 8B88.

The design rationale for L is discussed in the articte, "The
Kernel Approach to Building Softuare Systems," which appears in the
1378 Computer Science Research Revieu. This guide makes brief -
references to the principles set forth in that article. Evidence for
the ease of programming with Lw is discussed in the article "On Doing

Software Experiments”, which appears in the 1973 Computer Science
Research Revieu. - '

L is intended to be a complete system for running and
constructing software systems. Completeness implies that one should,
be able to perform, and to construct systems for performing, the
fallowing: .

A) Processing of arbitrary data types, €.g., suymbolic structures,
lists, numbers, arrays, bit strings, tables, text

B) Editing

C} Compiling and assembling

0} Language interpreting

E) Debugging ,)

F) Operating system functions, e.g., resource allocation,

space and time accounting, exotic control {(paralliel

and supervisory control) '

G} Communication betueen user and system, e.g., external

Ianguages. dynamic syntax, displays ‘

Lee is a kerne! system. It starts with a small kernel of code
and data and is grown from wWithin the system. Thus, L& does not

perform all the functions above wWwhen it exists ocnly .as a kernel, It
does have nmeans to construct sustems for them ali. Also, it does
have facilities for most of these functions in the version of the
system that most users will use.)

. L+« 1is designed for the professional programmer. It assumes
someone sophisticated in systems programming who wants to build up
his own system and who will modify any presented system to his oun

8

.)
regquirements and prejudices. Thus, L is intended to be transparent.
All mechanisms in the total system are open for understanding and
modification. No mechanisms are under the floor.

One of the design goals of the Lw system was that it should
be entirely se!lf-documenting on-line to the machine, but this goal
was not fully realized. There s a master source file (M-file} for
Lw(]) on the [A11BLIBRB] disk area which may be used as documentation.
1t contains all the code for the basic system, including the kernel,
bootstrap, editor, debugging tools, macro assembler, compiler, and
per formance monitoring tools. Also on {A118L188), you will find an
introduction and guide to the M-file (LS1.00C) and several index
files: INDEX.LS! has pointers to all source files, FINDEX.LSI is an
index into the M-file by facility with a one-line description for
each named ‘symbol in the system, and AINDEX.LS] is an alphabetic
index into the M-file. Also, SCPTXT.LSI is a script which
demonstrates hou to do some simple things in L. 1t also suggests
some exercises for the novice and provides help when the exercises
prove to be too difficult,

Getting into Lw(l} is very simple. In monitor mode, type the
following:

.R LSTA

HELP -
The response of the HELP function should be sufficient to get you
started in the system. '

The documentation for LsC. (D) is all on the [A118LCB8] disk

area. There is currently no M-file for this version of L. The file
LSCOOT.00C contains much useful information about the differences
between Lw(l) and Ls«C. (D), hou to use L=C.(D), and where to find
further information. There are index files for the following:

INDEX.LSC has pointers to all source files, FINDEX.LSC is a facility
index into those source files with one-line descriptions, and
AINDEX.LSC is an alphabetic index into those source files. This
system is nearly compatible with Lex{l}, so there is currently no
script for L=C.{D). To get into L«C.(D}, you should follow the
suggestions in LSCDOT.COC (Al18LCBe].

All Lx systems are nearly program compatible; a program written for
one will only reguire minor modification to run on any other.

87
MACRO-10

C. D. Councill) & D. Bajzek

MACRO-10 is the symbolic assembly language ' for the PDP-10
machine instruction set. It is characteristic of most machine
languages in that it is most useful in utilizing the facilities of a
PDP-10 (TOPS~10 operating system). ,

The PDP-10 Assembly Language Handbook (3rd ed.) is a complete
reference guide for the MACRO-10 assembler since no special CMU
features have been added to this language. Sections 1 and 2 contain
a complete description of the PDP-10 instruction set and the MACRO-10
assembler. Section 3 contains detailed information on communication
with the DEC (Digital Equipment Corporation) subset of our monitor.
Chapter 4 of this section describes all of the Input/Output
operators. In particular, this chapter describes the use of
directory devices, disk and DECtape, which are most commonly used
since they provide random access storage. Also included are diagrams
and explanations of data structures and programming examples.

Unfortunately, DEC no longer publishes this gem of
literature. However, CMU does possess some copies which are
available for long or short term loan to department members. If you
are interested in going in depth with this particular phase of the
PDP-10 and wish to borrow a copy, please see or send mail to
Operations. DEC now publishes a separate MACRO-10 manual which may
be purchased at the PITT Bookstore. This manual doesn't contain many
of the more complicated items that the Assembly Language Handbogk
did, but it provides a reasonable enough language manual. There is
also a book written by Myron Edward White called, "Meet MACRO-10: An
Introduction”. This is also sold at the PITT Bookstore and provides
a very good primer for the beginning MACRO- hacker. Sadly, CMU, at
present, doesn't have much helpful introductory on-line documentation
for MACRO-10. '

Below are a few concepts (operators) which are essential to
creating or updating a file on disk or DECtape with a MACRO-10
program: : A

OPEN

INIT The OPEN and INIT programmed operators initialize a file by
specifying a device (or data channel), 1logical device name,
initial file status, and the location of the input and output
buffer headeﬁs. : :

INBUF
OUTBUF can be used to establish buffer data storage areas,

LOOKUP selects a file for input on the specified channel.

ENTER

RENAME

IN :
INPUT

ouT
OUTPUT

CLOSE

g8
selects a file for output. to a specified channel.

is used to:
a) alter the filename, filename extension, and the protection
or

b) delete a file associated with a specified channel on a
directory device. '

transmits data from the file selected on the specified
channel to the user's core area.

transmits the data from the user's core area to the file
selectedon the specified channel.

terminates data transmission on the specified channel.

RELEASE releases the data channel.

Below is a MACRO-10 program which will figure - out the date

from the value of the date that is stored in the operating system and
will print it out om your TTY:

DATE:

TITLE DATE
AC=5 ' ;INITIALIZES AC TO FIVE
SETZ AC ; CLEARS (AC) '
CALLI AC, 14 :PUTS THE MACHINE'S IDEA OF THE DATE INTO AC
IDIVI AC, 564 s INTEGER DIVIDE (AC) BY 564
;(AC+1) IS THE REMAINDER .
ADDI AC,3654 ;ADD 3654 TO (AC)
MOVEM AC,YEAR :NOW {YEAR) IS THE YEAR IN OCTAL
MOVE AC,AC+] :NOW (AC) CONTAINS THE REMAINDER
IDIVI AC,37 ; INTEGER DIVIDE (AC) BY 37
:AGAIN (AC+1) IS THE REMAINDER
ADDI AC,1 ;ADD 1 TO (AC)
ADDI AC+1,1 ;ADD 1 TO (AC+1)
MOVEM AC,MONTH :NOW (MONTH) IS THE MONTH IN OCTAL
MOVEM AC+1, DAY sNOW (DAY) IS THE DAY IN OCTAL
SETZ AC ;CLEARS (AC)
MOVE AC,MONTH sMOVES VALUE OF "MONTH" INTO AC
JSR OUTNUM :GO TO SUBROUTINE "OUTNUM"
OUTCHR HYPHEN ;PRINT A "-"
MOVE AC, DAY ;MOVES VALUE OF “DAY" INTO AC
JSR OUTNUM :
OUTCHR HYPHEN
MOVE AC,YEAR :MOVES VALUE OF "YEAR" INTO AC
JSR OUTNUM
EXIT
YEAR: 0 +INITIALIZES THE VALUES OF THE VARIABLES

MONTH: 0 ;TO THE SPECIFIED VALUE

NEXT1:

NEXTZ2:

NEXT3:

DAY : 0

FLAG: 0

HYPHEN: 55

OUTNUM: ©

IDIVI AC,<DEC 1000>
JUMPE AC,NEXT]

ADJ . FLAG

ADDI AC, 60

OUTCHR AC

MOVE AC,AC+]
AC,<DEC 100>

IDIVI

SKIPN FLAG -
JUMPE AC,NEXTZ
ADDI AC, 60
OUTCHR AC

MOVE AC,AC+1

IDIVI AC,<DEC 10>
SKIPN FLAG
JUMPE AC,NEXT3
ADDI AC, 60
OUTCHR AC

ADDI AC+1,60

OUTCHR AC+1

JRST @OUTNUM

END DATE

The following MACRO-10

89

; INTEGER DIVIDE
; IF AC=0, GO TO
;ADD ONE TO (FL
;ADD 60 TO (AC)
s PRINT (AC)

;MOVE (AC+1) IN
; INTEGER DIVIDE

;SKIP NEXT INST.
 IF (AC)=0, GO
;ADD 60 TO (AC)
; PRINT (AC)
;MOVE (AC+1) IN
; INTEGER DIVIDE

;ADD 60 TO (AC+

;RETURN TO CALL
;IS STORED IN ©

-

program is a

S {(AC) BY DECIMAL 1000.
"NEXT1"
AG) AND DON'T JuMP

TO (AC)

(AC) BY DECIMAL 100.

IF FLAG NOT EQUAL TO 0
TO "NEXT2"

TO AC
(AC) BY DECIMAL 10.

;s IF (AC)=0, GO TO "NEXT3"

1)

ING PLACE WHOSE ADDRESS
UTNUM

bit more illustrative.

It deals with the more complicated matter of reading in a file from a

disk and producing error messages should all not
program merely reads a
all other characters, from

string of one-digit o
an ASCII file called DATA.FIL.

go smoothly. The
ctal numbers, ignoring
It then

sums these digits and prlnts out their octal sum on the TTY:

TITLE ADDER

;GIVE ACCUMULATORS SYMBOLIC NAMES

; DEFINE

A=1,
Al=2
DIGIT=3
SUM=4
COUNT=5
PNT=5

1/0 CHANNEL
INCHN=1

;NOW BEGIN

START:

INIT INCHN, 1

SIXBIT /DSK/

XWD 0,1BUF

; INITIALIZE INP
;ASCIT LINE MOD
;LOGICAL DEVICE
sNEED TO GIVE NAME OF INPUT

UT CHANNEL 1IN
E
NAME IS DSK

90

:BUFFER HEADER ONLY, SINCE WE
:ONLY WISH TO INPUT FROM THIS
; DEVICE

JRST NOTAVL GO TO ERROR ROUTINE IF DEVICE
;1S NOT AVAILABLE

INBUF INCHN, 1 :SMALL AMOUNT OF DATA, WE ONLY
'NEED 1 BUFFER IN RING

LOOKUP INCHN, INNAME :LOOKUP FILE WHICH IS DESCRIBED
<IN INNAME '

JRST NOTFND

:PREPARE TO START SUMMING

;ERROR IF FILE NOT FOUND

SETZM SuM sINITIALIZE SUM TO ZERO
LOOP1: JSR GETCHR ;GETCHR RETURNS WITH ASCII
sCHARACTER IN DIGIT
CAIG DIGIT,67 ;MAKE SURE ASCII CHAR IS REALLY
CAIGE DIGIT,60 -AN OCTAL DIGIT
JRST LOOP1 :IF IT'S NOT, IGNORE IT AND GO
' :GET ANOTHER CHARACTER
SUBI DIGIT, 60 ;GET ACTUAL VALUE OF ASCII OCTAL
:DIGIT
ADDM DIGIT, SUM <ADD DIGIT TO SUM
JRST LOOP1 :GO GET NEXT DIGIT
INEOF: ;WHEN THE END OF FILE IS REACHED ON THE INPUT FILE

s THE GETCHR SUBROUTINE WILL TRANSFER CONTROL TO HERE

:NOW THE VALUE IN SUM MUST BE CONVERTED TO AN ASCII STRING
:OF OCTAL DIGITS TO BE INPUT TO THE TTY:

MOVE PNT,OUTPNT :LOAD PNT WITH A BYTE POINTER
s INTO THE AREA THE RESULT IS TO
1S TO BE STORED INTO
MOVSI COUNT,-14 :MAXINUM OF 12 DIGIT RESULT
. (ASSUMING NO OVERFLOW).
MOVE Al, SUM - THE OCTAL DIGITS CAN BE OBTAINED
. :BY SIMPLY SHIFTING THE SUM 3 BITS
;AT A TIME INTO REGISTER 4.
LOOP2: SETZM A s INITIALIZE 4 TO BE ZERO
LSHC A3 -MOVE LEFT 3 BITS OF Al INTO A
CAMN PNT, OUTPNT :1F POINTER HAS CHANGED, SKIP
-OVER TEST FOR LEADING ZERO
JUMPE A,LEND2 :IF THERE IS A LEADING ZERO, JUST
' s INCREMENT COUNTER BUT DON'T OUTPUT
ADDI A,60 -MAKE INTO ASCII CHARACTER
1DPB A,PNT .PUT CHAR INTO TTY OUTPUT BUFFER
LEND2: AOBJN COUNT,LOOPZ2 :IF THERE ARE MORE DIGITS LEFT,
-GO GET THEM TOO
MOVEI A,O
1DPB A,PNT . STORE AN ASCII NULL AT END OF STRING
CUTSTR OUTHMSG +THE SPECIAL PROGRAMMED OPERATOR
:OUTPUTS AN ASCII STRING TO A TTY
. (STRING IS TERMINATED BY A NULL)
EXITT: CALL [SIXBIT /EXIT/] ;SPECIAL FUNCTION TO GRACEFULLY

s TERMINATE THE EXECUTION OF A PROGRAM

91

; THE FOLLOWING SUBROUTINE IS USED TO INPUT ONE ASCII CHARACTER

GETCHR: I ;RETURN THE ADDRESS STORED HERE

GETNXT: SOSLE ~ 1BUF-2 ; DECREMENT - THE BYTE COUNT
JRST GETOK ;NON-ZERO RESULT MEANS MORE CHARS
;LEFT IN BUFFER
IN INCHN, ;GET NEXT BUFFER FROM MONITOR
JRST GETOK ;RETURN WHEN BUFFER IS FULL

STATZ INCHN, 740000 ;IN DOES A SKIP RETURN IF THERE WAS

;AN ERROR ON INPUT. : 7
;MUST BE TESTED TO DETERMINE WHAT KIND

THE STATUS BITS

JRST INERR :OF ERROR, NOT END-OF-FILE, GO PROCESS
' ; THE ERROR .
JRST INEOF END-OF-FILE, RETURN TO NEXT PHASE
;OF PROGRAM
GETOK: ILDB DIGIT, IBUF+1 ;GET CHARACTER FROM BUFFER

JUMPN DIGIT, BGETCHR ; IF NOT NULL CHAR,

RETURN TO CALLING

;PLACE WHOSE ADDRESS IS STORED IN

;GETCHR

JRST GETNXT ; IGNORE NULL AND GET NEXT CHARACTER

;NEXT COME SOME ERROR ROUTINES WHICH TYPE OUT ERROR MESSAGES TO

;EXPLAIN ERRORS RECEIVED BY THE PROGRAM

INERR: OUTSTR INPMSG ;OUTPUT MESSAGE AND

JRST EXITT ;EXIT FROM PROGRAM

INPMSG: ASCIZ /ERROR WHILE READING INPUT FILE/

¥ - m mm AR A S ek e e e T W R M e e e A e e e

NOTAVL: OUTSTR AVLMSG
JRST EXITT

AVLMSG: ASCIZ /DEVICE NOT AVAILABLE/

NOTFND: OUTSTR FILMSG
JRST EXITT

FILMSG: ASCI1Z /FILE WAS NOT FOUND/

;NOW TO DEFINE SOME CONSTANTS AND DATA

IBUF: BLOCK 3 ; THIS IS THE' INPUT BUFFER HEADER
INNAME: SIXBIT /DATA/ ;NAME OF DATA FILE

SIXBIT /FIL/ ;EXTENTION OF DATA FILE

0 ;1IF THIS IS LEFT "0" THE OWNER

;OF THE FILE IS ASSUMED TO BE THE
;USER RUNNING THE PROGRAM. THIS
;NUMBER CAN BE OBTAINED BY RUNNING

;THE “"PPN" CUSP

OUTPNT: POINT 7 ,0UTWRD ;POINTER TO OQUTWRD WHERE THE ASCII

92
;REPRESENTATION OF THE SUM OF THE
;DIGITS IS TO BE STORED

OUTMSG: ASCII /***THE SUM OF THE DIGITS IS /

OUTWRD: BLOCK 4

END START

Now follows an example of a terminal session in which a data

file for the ADDER.MAC

example program is created, the program

{assumed to exist in a text filk on dsk) is assembled, loaded and

executed.

.LOG C410XX00

;your PPN should be tyﬁed after LOG

JOB 19 CMU1OA 8.3/DEC 6.02VM TTY15

Password:

1508 11-Aug-77 Thur
Mon 1435...New BLIS11 on SYS:.

...SYS:NEWS(8-9)

;type your password here; it will
;jnot be echoed
;the system greet message is here

;To run the ADDER program, which we assume is in an ASCII text file’
;on disk from a previous session, the data file to be used must
;Tirst be created. Here we use the CREATE command which invoke LINED. .

.CREATE DATA.FIL

00100 12'3,4,,5,67 8,9,E

00200 b
*E
DATS.FIL
EXIT

.EXECUTE ADDER.MAC
MACRO: ADDER

LOADING

LOADER 1K CORE
EXECUTION
FILE WAS NOT FOUND

.RENAME DATA.FIL=DATS.FIL
FILES RENAMED:
DATS.FIL 05

.EXECUTE
LCADING

iNow that the data file has been created
;we can execute the ADDER program

;We can assemble, lcad and execute ADDER
;+in three separate steps, or we can simply
;use the EXECUTE command to do all three
;This statement indicates that the MACRO-10
;assembler is now assembling the text file
;The loader is now loading the relocatable
s+ {.REL) file produced by the assembler

;Begin execution of the program

:This message is coming from the ADDER
sprogram. It says that there is no file
;called DATA.FIL. If we look back, we
:see that there is a spelling error in
;the CREATE command.

;we can correct this error by using the
;RENAME command to change the name of
;data file.

;try executing ADDER again
;Since the relocatable file already exists,
;the assembly step has been skipped

) 93
LOADER 1K CORE

EXECUTION

x**xTHE SUM OF THE DIGITS IS 35 ;if we look back to the data file, the sum

EXIT ;0f the digits should be 34 (we ignore
;the 8,9, and E). But notice, there is
;an octal non-zerc digit in the line
;number - the line number was included
;as part of the data string!

.R PIP ;we can use PIP to remove the line

*DSK:DATA.FIL/N«DSK:DATA.FIL ;humbers from the file .
*x1(C ;the /N simply causes the file to be
. ;written without the line numbers
.EXECUTE sAgain execute the program

LOADING

LOADER 1K CORE

EXECUTION

x**THE SUM OF THE DIGITS IS 35 ;the sum is now correct!

EXIT
;To get off the system, use the
;KJOB command K/F, but remember that

.DELETE DATA.REL ;¥ou should delete your .REL file as

FILES DELETED:) ;it can easily be reconstructed at a

DATA.REL 05 ;later date and shouldn't take up disk
;space at the moment.

.K/F

JOB 19, USER [C410XX00] LOGGED OFF TTY15 1545 11-AUG-77
SAVED ALL FILES (160 BLOCKS)

94

An Introduction to ITS and MACSYMA
Mark A. Sapsford
August 5, 1977

MACSYMA is probably the best known of the curreént symbalic manipulation systems. It
is available to anyone who has access to the ARPANET, and can be of great ass:stance
to anyone domg symbolic algebraic calculations. MACSYMA runs on a KL-10 system at
MIT. ITS (the "Incompatible Timesharing System™) is the ‘operating system under which
MACSYMA runs, and is in fact the OS for all of the MIT machmes

Documentation for the use of MACSYMA consists primarily of two.manuals. The first is
the MACSYMA Primer, and the other is the MACSYMA Reference Manual. There should
be copies of both manuals in the terminal room. It is rather difficult to get private
copies of the manuals, but if you really think you will need them the Best idea is to
talk to your adviser about acquiring them. To use MACSYMA, log on at CMU and issue
the monl'for command: .

" .in_mc/a:2000 :
You will then be connected to MIT-MC, and get their introductory message. If you do
not already have an account there you should now create one. This is done simply by
typing:
' :login <user-name>
<user-name> should be a name not currently in use. To check whether a name is in
use, type:

:whois <user-name>
If it tells you who <user-name> is, try ancther one, Having found a free name and
having logged in, you should run the INQUIR program to tell the system who you are.
Depending on the current policy at MIT, you may already have been forced into INQUIR
when you logged in, but if not type:

dinguir
~Just answer the guestions as mdacated Note that your “affiliation" will probably be "T"
{for Tourist).

Some useful things to know about ITS. The "top-level” is an extended DDT, which often

seems a little strange but can be gotten use to. Most commands are of the form:
<command-name®> <optional-arguments>

Useful commands are:

? prints a list of the : commands with short descriptions
find finds a file

info a general information utility

listf lists a directory

print " prints a file on your terminal

whom lists who is on, and what they are doing

The file syntax has the form: <directory>;<filename> <extemsion> Note that the
separators are " and " " . There is a special extension, ">", which specifies the latest
copy of the file. A directory of special interest is .INFO. (yes, the periods are part of

the directory name). It has many useful pieces of documentation in it.

Perha‘ps the most useful thing that you can do at monitor level is to establish a "com
link" between you and another user. When you are in a com link, anything that is typed
on one terminal also appears on the other. To open a com link, you want to type:

95

Tec <user-name>
Note that "Te" is a control character, and since T« normally breaks am ARPANET
connection, you actually type:

Tglec <user-name>
The Tq {control q) quotes the T« Also, the space before <user-name> is necessary.
To break the com link, you actually type:

TaTen
A couple of other useful control characters are Tz and Tg. If you are caught in
something you want to get out of, try one or the other and they should eventually get
you back to some place you recognize.

Now MACSYMA. You run MACSYMA by typing:
:macsym : :

It will initialize itself, and then print (C1) indicating that it is waiting for input. All input
prompts are of the form (C<number>), and all output labels are of the form
{D<number>). Occasionally the answer has sub-expressions, and their labels are
(E<number>). Input format is that of algebraic expressions ‘as accepted by most
programming languages. An input line is ended by either "" or “$", hence input can run
over more than one line. If 8§ is the terminator, the output is supressed. The last
output expression can be referred to by "7", hence the following is possible: :

(C1l) alpha : beta + gamma;

(D) GAMMA + BETA

(C2) 7 * 2 | ‘ ‘

(D2) 2 (GAMMA + BETA) *
Some very useful functions are DESCRIBE(<name>) and EXAMPLE(<name>). These wili

print a description and examples for <name>, respectively.

Some special constants are defined by MACSYMA. They are:

71 * The square root of -1 s
7Pl Pi) ,
7E e

An eclectic list of useful functions (courtesy of Steve Saunders):
EViexpr,argl,.,argn)

EXPAND(expr) ' RATEXPAND(expr)
XTHRWexpr) PARTFRAC(expr,var)
MULTTHRU(expr) FACTOR(expr) '
RATSIMP(expr) RADCAN(expr) :
DIFF(expr,var,degree) INTEGRATE(expr,var)
PART{expr,n1,n2,.) - SUBSTFPART(a,expr,nl,..)
SUBST(subexprnew,subexprold,expr) RATSUBST(a,b,c)
COEFF{expr,var,power) RATCOEFF(expr,var,power)
REALROOTS{poly,bound) ALLROCTS(poly)
SOLVE(eqgn,var) ENTERMATRIX{rows,cols)
LIMIT(expr,var limitpoint,direction) PLOT(expr,var,low,high)
IDENT(size) DETERMINANT(matrix)
COL{matrix,num) ROW{matrix,num)

SUM(expr,index,low,high) PRODUCT{expr,index,low,high)

96

MLISP
Mike Rychenrer

The following is from the MLISP Manual by D. C. Smith (Stanford AIM-135,
October, 1970}

"Most programming languages are designed with the idea that the syntax should
be struclured to produce efficient code for the computer. Foartran and Algol are
outstanding examples. Yel, it is apparent that HUMANS spend more time with any
given program than the COMPUTER. Therefore, it has been our intention to construct a
language which is as transparently clear and understandable to a HUMAN BEING as
possible. Considerable effort has been spent {o make the syntax concise and
unchluttered. It reduces the number of parentheses required by LISP, introduces a
more mnemonic and natural notation, clarifies the flow of control and permits
comments. Some "meta-expressions” are added to improve the list-processing power
of LISP. Strings and string manipulation features, particularly useful for input/output,
.are included. In addition, a substantial amount of redundancy has been built into the
language, permitting the programmer to choose the most natural way of writing
routines from a variety of possibilities.

"LISP is a list-processing and symbol-manipulation language created at MiT by |
John McCarthy and his students (McCarthy, 1965). The outstanding features of LISP
are: (1) the simplest and most elegant syntax of any language in existence, (2) high-
level symbol manipulation capabilities, (3) an efficient set of list-processing primitives,
and {4) an easily-usable power of recursion. Furthermore, LISP automatically handles
all internal storage management, freeing the user to concentrate on problem solving.
This is the single most important improvement over the other major list-processing
language, IPL-V. LISP has found applications in many important artificial intelligence
investigations, including symbolic mathmatics, natural-language handling, theorem:
proving and logic.

"Unfortunately, there are several important weaknesses in LISP. Anyone who has
attempted to understand a LISP program wriiten by another programmer (or even by
himself a month earlier) quickly becomes aware of several difficulties:

A. The flow of control is very difficult to follow. In fact, it is about as difficult to
follow as machine language or Fortran. This makes understanding the purpose of
routines (i.e. what do they do?) difficult. Since comments are not usually

. permitied, the programmer is unable to provide written assistance.

B. An inordinate amount of time must be spent bzlancing parentheses, whether in
writing a LiSP program or trying to understand one. It is frequently difficult to
determine where one expression ends and another begins. Formatting utility
routines ("pretty-print™) help; but every LISP programmer knows the dubious
pleasure of laboriously matching left and right parentheses in a function, when all
he knows is that one is missing somewhere!! ‘ .

C. The notation of LISP {prefix notation for functions, parentheses around all

97

functions and argumenls, etc.), while uniform from a logician’s point of view, is far
from the most natural or mnemonic for a language., This clumsy notation also
makes it difficuit to understand LISP programs., Since MLISP programs are
franslated into LISP s-expressions, all of the elegance of LISP is preserved at the
translated level; but the unpleasant aspects at the surface level are eliminated.

D. There are important omissions in the list-processing capabilities of LISP. These
are somewhat remedied by the MLISP "meta-expressions”, expressions which
have no direct LISP correspondence but instead are translated into sequences of
LISP insiructions. The MLISP mels-expressions are the FOR expression, WHILE
expression, UNTIL expression, index expression, assignment expression, and
vector operations. The particular deficiency each of these attempts to overcome
is discussed in the subsection of SECTION 3 describing the meta-expression in
detail. :

"MLISP was written at Stanford University by Horace Enea for the IBM 360/67
. (Enea, 1968). The present author has implemented MLISP on the PDP-10 time-shared
computer. He has rewritien the translator, expanded and simplified the syntax, and
improved the run-time routines. All of the changes and additions are intended either
to make the language more readable and understandable or to make it more powerful.

"MLISP programs are first translated into LISP programs, and then these are
passed to the LISP inferpreter or compiler. As its name implies, MLISP is a "meta-
LISP" language; MLISP programs may be viewed as a superstructure over the
underlying LISP processor. All of the underiving LISP functions are available to MLISP
programs, in addition to several powerful MLISP run-time routines. The purpose of
having such a superstruclure is to improve the readability and writeability of LISP,
long (in)amous for its obscurity. Since LISP is one of the most elegant and powerful
symbol-manipulation languages (but not one of the most readable), it seems
appropriate to try to facilitate the use of it.”

CMU MLISP

For the user of MLISP, some knowledge of LISP is essential, especially to
understand the general programming-ianguage features of the system (e.g. dynamic
scopes of variables and list processing concepts). For this manual, no script is given,
retying on the introduction to LISP to give the general flavor of the system. Some
examples of MLISP expressicns are given below. The overwhelming advantage of
MLISP is the ease of coding and understanding programs. A disadvantage is that in the
actual implerentation, one must deal with LISP when debugging and running a program.
But the knowledge of LISP syntax reed only be a "reading” knowledge - the LISP
editor helps alleviate many of the difficulties of LISP syntax (especially parenthesis
counting). The mapping of MLISP code io LISP is sufficiently straightforward that
dealing with two representations of a program is not troublesome.

Typically an MLISP user creates a program using SOS or scme other text editor,
runs MLISP to translate the program to LISP, and then runs and debugs in LISP (MLISP
itself is a LISP prograrm residing in a LISP core image along with the editor and debug -
packages). Corrections made in the LISP core image during debugging must later be

98

made to the SOS version also, which is probably the only deficit in time spent. This
exira editing time is easily offset by the faster coding time and the likelihood of fewer
syntax errors in code. MLISP is so efficient that liftle time difference can be noticed in
reading in an MLISP file versus reading in the LISP equivalent. MLISP also prcwdes
syntax checking and error messages, while LISP does so only rarely.

There is a file on the system, MLiSP.DOC, which describes quirks and manual
updates for the local version of MLISP. There is a program, MEXPR, for converting
LISP to MLISP. There s a function in MLISP, MTRANS, which allows the user to evoke
the MLISP iranslator to convert expressions read in under program control. There is
also MEVAL, a top-level READ-MTRANS-EVAL-PRINT. loop so that interaction with
MLISP can take place in MLISP expressions rather than in LISP.)

MLISP QUICK REFERENCE
This short document is intended to:
a. Give some examples of the advantages of MLISP syntax over LISP;

b. Provide a quick reference to users of MLISP who have some expoéure to the MLISP
manual; it will not be sufficient in itself to introduce MLISP except to the wvery
experienced LISP user who is also willing to guess and experiment.

LiSP -> MLISP:

(APPEND AB) -> A @B
(COND (C1 Ell E12 £13)
(C2 E21 E22 E23 E24)
(CN EN1))
-
IF C1 THEN E11 ALSO E12 ALSO E13
ELSE IF C2 THEN E21 ALSO E22 ALSO E23 ALSO E24
ELSE IF CN THEN ENI;

(DE FCN (X) EXPRES) -> EXPR FCN(X); EXPRES;

{DF FCN (X) EXPRES) -> FEXPR FCN(X); EXPRES; 7 SIMILARLY FOR LEXPR MACRO 7%
(LAMBDA (V1 V2 VK) EXPRES) . -> LAMBDA(V1,V2,VK); EXPRES

((LAMBDA (X Y Z) EXPRES) 1 2 3) -> LAMBDA(X,Y,Z); EXPRES; (1, 2, 3)

(PROG (V1 V2 VNYEI E2 E3)} -> BEGIN NEW V1,V2,VN; E1; £2; E3 END

(LISTABC) > <A B, C>
(OP1 ARG1l) -> OP1 ARGI

-> OPI(ARGI)
{OP2 ARGl ARGZ) -> ARGl OPZ ARGZ

-> QP2(ARGI, ARG2)

{OPN ARG] ARG2 ARGN) -> OPN(ARGL, ARG2, ARGN)
(QUOTE(ABC)) -> YABC)
(SETQ X E1) ~> X < El
[= %

* -> 7z

99

~ Comment
-> 7 Comment 7

Precedence Examples: MLISP -> LISP

A CONS B CONS NCONS C -> (CONS A (CONS B (NCONS C)))
A CONS B @ C CONS D -> (CONS A (APPEND B (CONS C D))
CARL + B -> (PLUS (CAR L) B)
CAR A « L -> (CAR (SETQ A L))
A+B+C=D/EORAEQC AND B LESSP D

-> (OR (EQUAL (PLUS A (TIMES B C)) (QUOTIENT D E))

(AND (EQUAL A C) (LESSP B D))

A+RBCONSC /D -> (CONS (PLUS A B) (QUOTIENT C D))
XelL@M -> (SETQ X (APPEND L M))
X SETL @ M -> (APPEND (SET X L) M)
NOT A =0 -> (EQUAL (NOT A) 0)
NOT (A = 0) -> (NOT (EQUAL A 0))
RETURN CAR L.CONS X -> (CONS (RETURN (CAR L)) X)
RETURN(CAR L CONS X} -> (RETURN (CONS (CAR L) X))
RETURN A « B -> (RETURN (SETQ A B))
C«AEQB -> (SETQC (EQ A BY
(B« C)EQD -> (EQ(SETQ BC) D).
A+BeC+D -> (PLUS A (SETQ B (PLUS C D))

Examples of commonly-used looping statements:

FOR NEW X IN L DO BODY; 7 loop on top-level elements of list L 2

FOR NEW X ON L BO BODY ; 7 loop on cdr’s of list L %

FOR NEW X « 1 TO'10 BY 2 DO BODY;

FORNEW Y « 1 TO 11 DO BODY UNTIL CONDITION

FOR NEW X IN L COLLECT BODY; % APPENDs together values of body, each iteration 7
FOR NEW 1 IN L; FUNC BODY; % applies FUNC to body each time, cumulatively 7

FOR NEW X INL FOR NEW Y « 1 TO 9 DO BODY; 7 ranges in paralle! 7

DO BODY UNTIL CONDITION;

WHILE CONDITION DO BODY;

100

PASCAL

Andy Hisgen

Pascal is an Algol-like language. Its main extensions relative to Algol 60 lie in
its data structuring facilities. Pascal is a typed language. All variables have a data
type, which essentially defines the possible values which may be assumed by that
variable. There are four standard basic types: boolean, integer, real, and char. The
user may define new types in several ways: by enumeration (that is, by listing the
possible symbolic values), by specifing a subrange of another scalar type, and by
defining a structured type or a pointer to a structured type. A structured type is
defined by describing the types of the components and the structuring method: array,
set, record, or file. '

References (some of these may be borrowed from Andy Hisgen)
[1] N. Wirth
The Programming Language Pascal
Acta Informatica Vol. 1, pp.35-63, 1971.
[2] K. Jensen, N. Wirth
Pascal - User Manual and Report
Lecture Notes in Computer Science Vol. 18
Springer Verlag Berlin, Heidelburg, New York 1874,
{Several copies are in Engineering and Science library).
[3]1 N Wirth
Systematic Programming
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[4] N. Wirth .
An Assessment of the Programming Language Pascal.
Proceedings of the International Conference on Reliable Software,
April 21-23, 1975, pp.23-30.
[5] C.AR. Hoare and N. Wirth _
An Axiomatic Definition of the Programming Language Pascal.
Acta Informatica Vol. 2, pp.335-355, 1973.
[6] C.AR. Hoare
"Notes on Data Structuring”, in Structured Programming, by
0.-J. Dahl, EW. Dijkstra, and C.A.R. Hoare, Academic Press,
London and New York, 1972.
(7] AN. Habermann
Critical Comments on the Programming Language Pascal.
Acta Informatica Vol. 3, pp.47-58, 1973,
[8] DOC:PASCAL.DOC , an online file on the PDP-10A. Includes information
~ on the PDP-10 implementation of Pascal.

101

AN EXAMPLE

lExplanatory comments are preceded by a "1"

e have a file TOY.PAS which contains a Pascal progranm.
e TYPE it on the terminal,

. TYPE TOVY.PAS
(xthis is a Pascal comment, between left paren asterisk and
asterisk right parens) :
{xtoy examplex)
tupe
ToyKind = {Ball,Top,Boat,Dol|,Blocks,Game,
Model,Book, UtherTog)
(= TogKlnd is an "enumeration tgpe . It provides us .
some symbolic constantsy)

Bentham = {Alot,Some,Allittle,None):;

PriceRange = B..1888;:

(«PriceRange is a "subrange type". 1t is a subrange
of the integers.wx) :

PToy = *Toy; :
{+:The * weans "pointer to". Thus, the type PToy is
. a pointer to Toy.w)

Toy = record
Kind : ToyKind;
Cost : PriceRange;
Enjoyed : Bentham;
Broken, Lost : boolean;
NextToy : PToy
end; {%Toy record declarations)

ToyBox = PToy; {xa toybox is represanted as
: a list of toysw)

var
MyToyBox : ToyBox;

procedure AddToTogBox['AddTog:PTog; var B:ToyBox };

begin

AddToyt.NextToy = B; (wthe 1 does a dereference of the pointer to
toy yielding a toy.w)

B := AddToy

end; (»AddToToyBoxw)

function MakeToylK: TogKind C:PriceRange): Ptog,

var P:Ptoy;

begin

new{P}: {v:allocates a new record of type toy and makes P
point at it.w)

with Pt do begin

102

Kind := K; LCost := C;

Enjoyed := None; Broken := false; Lost := false;
NextToy := nilj
end;

MakeToy = P
end: («MakeToys)

function ToyAssets{ B:ToyBox):PriceRange;
var P:TouyBox; :
S:PriceRange;
begin
S
P
while P<>nil do begin
S := S + Pt.Cost;
P := Pr.NextToy;
end;
ToyAssets := 5;
end; (w«toyassetss)

1= B
:= B:

pbrocedure xmas;

begin

AddToToyBox{ MakeToy{Boat,333), MyToyBox);
AddToTouBox (MakeToy(Top, 433}, MyToyBox);
end; {xmasw)

begin {(smain programsy)

MyuToyBox 3= nilys

xmas:

uritetn{tty, "After Xmas toy assets are :
end.

, ToyAssets(MyToyBox)};

e run the pascal compiler.

.R PASCAL) ‘
Enter command: RELfile,LSTfile<PAScal file 1It prompts us.
wT0Y IResponding with just the name of the program uwill

lgenerate a .REL file and omit the listing file.

PASCAL VERSION OF 14-Jul-77
File: TOY . PAS

NO ERROR DETECTED
Highseg: 1K
Lowseg : 1K
Runtime: g: B.266

EXIT

103

LEX TOY IWe 1ink and execute the program by using
! the monitor EXECUTE command.

LINK: Loading

[LNKXCT TOY Execution]

After Xmas toy assets are : 8398

EXIT

104
SAIL

INTRODUCTION

SAIL is a high-level programming language for the PDP-10
computer. It includes an extended ALGOL 60 compiler and a companion
set of execution-time routines. In addition to ALGOL, the language .
features: (1) flexible linking to hand-coded machine language
algorithms, (2) complete access to the PDP-10 I/0 facilities, (3) a
complete system of compile-time arithemtic and logic as well a s a
flexible macro system, (4) user modifiable error handling, (5)
backtracking, and (6) interrupt facilities. "Furthermore, a subset of
the SAIL language, called LEAP, provides facilities for (1) sets and
lists, (2) an associative data structure, (3) independent processes,
and (4) procedure variables. The LEAP subset of SAIL is an extension
of the LEAP language, which was designed by J. Feldman and P. Rovner,
and implemented on Lincoln Laboratory's TX-2 (see [Feldman and
Rovner]). The extensions to LEAP are partially described in "Recent
Developments in Sail" (see [Feldman]).

SAIL was developed at the Stanford Artificial Intelligence
Laboratory and is currently running on at least a dozen PDP-10
installations. At CMU, it is used extensively by the speech, vision,
and graphics efforts, among others.

The SAIL compiler can be invoked in the same ways as FORTRAN
or MACRO. The Default extension for SAIL SOURCE PROGRAMS is .SAI.

The COMPILE, EXECUTE, LOAD, or DEBUG commands may be used.
For example:

.EXECUTE PRGRAM.SAI - :
.DEBUG PRGRAM {where the extension is the default for
' SAIL, .SAI)
-EXECUTE PROG1, SUB1, SUB2 ({where SUBL and SUBZ are separately
compiled procedures)

For details on tbese commands, see the PDP-10 Command Manual.

IfT you use DEBUG, EXECUTE, LOAD, etc., they will do the above
things correctly automatically upon seeing the .SAI extension, ‘

b

105
REFERENCES

[1] SAIL User Manual, CMU version of June, 1973, available from
. Computer Science Department. This manual describes the SAIL
language and the execution-time routines for the typical SAIL
user: a non-novice programmer with some knowledge of ALGOL.

it lies somewhere between being a tutorial and a reference
manual.

[2] Most recent CMU manual update, available from Computer Science
' Department.

[3] Erman, L., SAIL Pocket Guide (Sailing Chart), available from Computer
Science Department. One section of this qould be entitled:
"How to Start Using SAIL if you already Know Algol."

[4] Feldman, J. and F. Rovner, "An Algol-Based Associative Language,"
CACM, 12(8), August, 1969, pp. 439-446G.

[5] Feldman, J. A., Low, J. R., Swinehart, D. C., and Taylor, R. H.,

Recent Developments in Sail. AFIPS Fall Joint Conference,
1972, 1193-1201.

[6] Two video tapes (T148, T149): ™"Introduction to SAIL for Those
who Know Algol."

EXERCISES

1. Write a SAIL program to merge two SOS files, according to
sequence numbers.

2. You are given an M x N matrix of numbers where M and N can
be very large. The values of the entries are 0 - 15. In order to
conserve DISK space, it is desirable to pack: the data (each number can
be represented in 4 bits) nine entries to a PDP-10 word before writing
the matrix onto a DISK file. Write a SAIL program which does this |
packing, writes out the file, reads it in, and "unpacks" it.

(1]

106

SOME STMPLE PROGRAMMING EXAMPLES

BEGIN "FACTORIAL" _

COMMENT THIS PROGRAM READS NUMBERS FROM THE TELETYPE AND
TYPES BACK THEIR FACTORIALS;

REQUIRE "BAYSAI,SAI[A710SA00]" SOURCE!FILE;

COMMENT THIS IS5 A CONVENIENT PACKAGE;

INTEGER PROCEDURE FACT{INTEGER N);

BEGIN "FACT"

INTEGER I;

I-1; . INITIAL VALUE FNF THE LOOP;

FOR N—N STEP -1 UNTIL 1 DO

I<I*N; . NOTE THAT FOR N=0, I WILL BE 1;
RETURN(I); '

END '"FACT";

INTEGER X;

WHILE TRUE DO
BEGIN "INFINITE LOOP"
! WHEN FINISHED WITH THE PROGRAM, TYPE C TQO BREAK OUT;
OUTSTR (CRLF&'NUMBER, PLEASE:™); ’
X~CVD(INCHWL); . READ THE NUMBER;
OUTSTR(IF X<0 THEN ""NOW REALLY" ELSE CVS (FACT(X))});
END INFINITE LOOP";

END "FACTORIAL';

107 .

SITBOL

J. Dills, S. Schlesinger, M. Shaw

SITBOL is a PDP-10 dialect of SNOBOL4, the string-processing language
developed by Bell Laboratories. It is a full SNOBOLA4, but substantially
faster than the version supplied by DEC and better tailored to.the PDP-10
environment,

The language has operations for joining and separating strings, testing
their contents, and making replacements within them. Strings can be broken
down and reassembled differently. The lénguage also provides the ability
to describe a set of character patterns and search a given string to match
a substring-to a pattern. Because SNOBOL4 is mainly character oriented,
the numerical capabilities with both integers and reals exist, but are limit-
ed. Arrays and tables are available,

Execution of SNOBOL4 is interpretive. This allows easy tracing of
variable values, and the ability to redefine functions during execution.

The language can be extended b& using data type definition facilities and
defining operations on these through function definition (i.e., lists,
complex numbers).

The basic reference for SITBOL is the SNOBOL4 text [1]. The changes

to I/O and the additional features are descriﬂed in SITBOL.DOGC [2].

REFERENCES

[1] Griswold, R. E., J. F. Poage, and I. P, Polonsky, The SNOBOL4 Programming
Language, Prentice Hall, 1971.

[2] SYS:SITBOL.DOC, a printable text file on the PDP-10.

“108 -

RUNNING SITBOL PROGRAMS
Enter the SITBOL system by typing 'R.SITBOL' while in command mode.
When it responds with '*', you may type command strings. The command string

takes the form

*QUTPUT-FILE, LISTING-FILE = INPUT-FILES

(blanks surrounding delimiters are optional) where OUTPUT-FILE = the file
which receives strings assigned to the variable output. If the OUTPUT FILE
ig absent, TTY: is assumed. If the extension is absent (but the name present),
LST is assumed,

LISTING-FILE = the file containing the source listing and statisties.

If absent, no listing is generated. 1If only the extensiom is absent, ,LST
is assumed.

INPUT-FILES = a sequence of input files separated by commas (a null file
implies TTY:, 1Z is the end-of-file) containing source and input data. A
reference to input will begin reading from the line following the end label,
No end-of-file indication is given at file boundaries.

For bells and whistles, see SITBOL.DOC [2].

Beware! Keywords and other alphabetics which are part of the language

must be in upper case. This includes the F and S that appear in gotos.

SITBOL 1/0 NOTES

SITBOL is simpler than SNOBOL4 I/0 as described in Griswold (1]. To
perform input and output from a SITBOL program, variables are associated with
devices or file names, If a variable is associated in an-Qutput relation
with a device or file, then each time the variable is assigned a value, 2
copy of the value is written to the device or file. Similarly each time an
input variéble is used, & new value is read from the associated device or

file to become the value of the variable.

109

Input and output associations have the form

INPUT (<name> ,<stream>,<format>)
OUTPUT (<name>,<file>,<format>)
where
<name> is @ string containing a variable name
<file> is a string containing a file specification in the usual
format with normal defaults:
<device>:<name>.<ext> [<PPN>] <priv>
Note that QMU PPNs do not work and you will usually ignore <priv>,
<stredam> is a string containing a series of file specifications separated
by commas
<format$ is null for normal line-by-line I/O. See SITBOL,DOC for other
options.,

Thus the commands

INPUT('SOURCE', 'DATA,.RAN',)

OUTPUT('SINK','RESULT.NEW',)

make SOQURCE an input variable (new value from file DATA,.RAN for each fetch)
and SINK an output variable (sends line of output to file RESULT.NEW for
each store).

The variables INPUT, OUTPUT, and TTY are predefined with associations

to the obvious things (TITY for both input and output).

110

SAMPLE PROBLEMS

Write SNOBOL programs to do the following:

1. Réad and print cards, removing all blanks before printing.

2. Read cards and print those beginning with '/!.

3. Read cards and print those not containing '*'.

4. Reverse the order of characters in a string.

5., Count all the vowels in the input text.

6. Read left-justified text; print it centered on the line.

7. Alphabetize the characters of a string.

8. Count the occurrences of pronouns in English text.

9., Read é deck. TFor each card, if a vowel appears in the first five
columns, print the card as it was read. If not, and if '§' or '*'
appears between columns 60 and 70, reverse the card, prefix two
slashes, and print the result.

10. Read numbers in free form (e.g., separated by commas). Every
time you have read ten numbers, print them in colummar format.
Assume that no number is more than tenm characters long.
~11. Devise a simple cipher (e.g., letter substitution).A Write programs
to éncode and decode messages using this cipher.. Generalize to
w accept a description of the cipher as an input. How complex can you

make the cipher?

SITBOL Script

This program reads sirings from a

file nemed REV.DAT, reverses them,

and prints the original and revgrsed
. -strings in the default output file.

« CREATE REV.SNO

00100 DEFINE('REEVERSE(X)A) !(FEUEND;)
00200 REVERESE X LEN(1) « A = "° Efﬁ;g;gir)
00300 RPEVERSE = A REVEESE s (P SE
00400 REVEND .

00500 INFUT(' SOURCE®*» "FEV.LAT") LFCEND)

0 RULOOP ©©ATA = TRIM(SOURCE))
gg?%O OUTPUT = DATA * BEVEFSED IS ° REVERSE(DATA) : (PULOOP)
c0800 END
*E
REV.SNO
EXIT
L] . \

- CREATE FEV.DAT Create the input file

. 00100 ABCDEFGHIJKL
60200 1234567890

’ L~
00300 $:
*E ' '
REVCAT
CEXIT)
F SITROL Short form of cormaend line defaults QUTPUT
o he terminal
* EEV , to the ©
G100 . DEFINE('EEVERSE(X)A) ${PEVEND
J -
, ' S0S line numbers appear with error messages

if they are i 3
**+¥*UNMATCHED QUOTE++##s oL UREY &re in the source file)

? ERRCR 4.2 IN STMT 100 AT LEVEL O
DETECTED EBY rOMPILER

cre) 7 Control-C to leave SITBOL

«EDIT REV.SNO
REV . SNO

*E100 ,
00100 DEFINCAD\E(*EEVERSE(X)A") , t CFEVEND)
*P100 -

00100 DEFINE(C*REVERSE(X)A") $ CFEVEND)

*E

R EV.«5ND

EXIT

»

‘Correct the error found earlier

«F SITEOL
*FEV
ABCDEFGHIJKL KEVEFSED IS LKJIHGEEDCEA

1234567890 REVERSED IS 0987654321
%

Correct exscution

7 Full form of command line creates 13T i1
*REV,REV-REV and chenges OUTPUT default to the LST ril
*rceo which can then be typed or orinted.

. 112

« TY REV.LST
SITBOL (VERSION 4A = JUNE, 19740 :
STEVENS INSTITUTE OF TECHNOLOGY =~ HOBOKENs N« Je

L3

00100 DEFINE{ 'REVERSE(X)A') 1 CREVEND)

00200 EEVERSE X LENCIY « & = *° ' tF(PETUFN)
00300 REVERSE = A REVERSE - 1 {FPEVERSE)
00400 REVEND '

00500 INPUTC¢* SOURCE's 'PEV.DAT")

00600 RVLOOP DATA = TRIM(SOUECE)> ™ $FCEND)

00700 OUTPUT = DATA ' REVERSED 15 ' EEVERSE(DATA) t{PVLCOP)
00800 END : ‘
ABCDEFGHIJKL REVERSED IS LKJIHGFELCEA

1 234567890 REVERSED IS 0987654321

NORMAL TERMINATION AT LEVEL O IN STMT 600

SITBOL STATISTICS SUMMARY
200 MS. COMPILATION TIME
134 MS. EXECUTION TIME
o481 MICROSECOND AVE. PER STMT EXECUTED
54 STMTS EXECUTED. 3 FAILED
" 1 GARBAGE COLLECTIONS
2 READS
2 WRITES
11K RIGH SEGMENT
4K MAX LOW-SEG
4K CURRENT LOWw SEGMENT COMPRISING?
2059 WOPDS FLOATING
1116 WORDS GEOWING -
549 WORDS FOR STACKS:
' 82 NAME-LIST STACKs, MAXIMUM WAS 4
137 PATTERN MATCHING STACKs MAXIMUM WAS 7
330 SYSTEM STACK, MAXIMUM WAS 29
37 WORD VARIABLE TABLE

113
DOCUMENT FORMATTING ' : David Lamb and Brian Reid

1. Introduction

This chapter briefly describes the set of programs you can use to produce various
sorts of documents, such as technical reports. A number of the facilities invelved, such
as the XGP, are described elsewhere.

A few document formatting terms are needed for you to understand the rest of this
chapter. Filling is the process of taking input lines of random lengths, splitting the
input into words, which are streams of text delimited by blanks and line terminatars
and other word breaks, and fitting as many such words onto an output line as will fit
properly. For example, if we take the input text

This is a group of lines
of random length to
illustrate filling and justification.

and use it to fill 40-character output lines, we get

This is a group of lines of random
length to illustrate filling and
justification.

Justification is the process of inserting extra spaces in a line so that the right margins,
as well as the left margins, are aligned. When the previous example is filled and then
justified, it becomes '

This is a group of 1lines of random
length to itlustrate filling and
justification. ‘

In addition to being filled and justified, lines may be centered:

This is a group of lirnes
of random iength to
tllustrate filling and justification.

or flushed right:

This is a group of lines
of random length to
itlustrate filling and justification.

.
There are several ways to accomplish this and related tasks; the following sections

describe some of them briefly.

114

1.1. Files and Documents

~In formatting written text, the ultimate goal is to bring it tc the eyes of the reader.
It may be printed on paper, displayed on a CRT, filmed on microfiche for later use in a
fiche reader, or whatever. The production of a document is the conversion of a source
file on the computer into one of those forms.

For display on a CRT, a source file may be typed directly. One frequently finds,
however, that the file is more readable if its lines are nicely filled and the paragraphs
uniformly indented. The SOS editor may be used to manually reformat a file for this
purpose. lf the file is long, or is to be frequently changed, or contains many special
effects, it is probably worthwhile to use one of the document formatting programs to
translate a source file into a formatted output file. Using one of these programs, the
source file is "compiled” into an output file, which is then suitable for display on a CRT.

For paper output, either the line printer or the XGP is used. Files for the line
printer differ from files for display on the CRT only in that they have page-eject codes
in them periodically. The XGP, the Xerox Graphics Printer (on which this chapter and
most others in this report were printed), is used for most paper document production
at CMU. The XGP may be used with variable-width character sets, requiring special-
format output files to be produced. XOFF and PUB are document compilers that
produce XGO files from document source files; these XGO files can then be printed on
the XGP to produce paper output. The XGP may also be used as a simulated line
printer to print source files, using fixed-width character sets, but the output is not as
satisfactory as that produced with variable~-width character sets.

1.2. Simple Formatting with SOS

The SOS editor can do simple formaiting tasks. Its formatting is controlled by three
variables, called LMAR, RMAR, and PMAR. LMAR and RMAR control the left and right
margins; all of the final text will be betweesn the columns indicated by these two
nhumbers. PMAR specifies how far the first line of a paragraph is to be indented.

JF<range> will fill all the lines in the indicated range. The first line in the range, and
every line which follows a blank line, is considered to be the start of a new paragraph,
The command JU<range> will fill and justify all of the lines in the indicated range. The
variable JMAX limits the number of extra blanks that can be inserted to try to justify a
line. JC will center, and JR will flush right. :

1.3. XOFF

For somewhat more complicated formatting, there is a program called XOFF. It takes
an input file which contains commands to XOFF imbedded in the text, and produces a
formatted output file. The file SYS:XOFF.DOC describes XOFF.

115

XOFF currently is not maintained or supported by anyone at CMU. 1t is out of date,
and doesn’t really interface correctly with the XGP sysiem. Volunteer maintainers wiil
be accepted gladly.

1.4. PUB

4

The most commonly-used document formatting program is PUB. Like XOFF, it takes
an input file with commands imbedded in the text and produces a formatted output file. "
The PUB command language resembles block-structured programming languages such
as ALGOL and SAIL. 1t contains condifionals, BEGIN-END groupings, repetition, and
string and integer variables and expressions. It also provides a facility for user-
defined macros and procedures. :

* e

PUB distinguishes between command lines and text lines. A command line has a dot
(.) as the first character of the line. The remainder of the line is assumed to contain
PUB commands.

A PUB source file should have extension ".PUB". You can invoke PUB by saying one
of the following:
.

COMPILE file.PUB
. COMPILE file.PUB(X)

The first form will produce a file with extension ".DOC", suitable for listing on the
printer. The second will produce a file with extension "XGO", suitable for listing with
the XGP.

PUB is badly documented; there may be a very old manual somewhere in the
terminal room. Dont believe everything that you read in it. The file
FEB76.DOC[A700PUQQ] contains all of the on-line documentation, including command
summaries. The file BUGSIN.PUB[A700PUOO] describes most of the known PUB bugs.
There are many bugs in PUB, and most of them will never be fixed. The program is so
convoluted, and has been rebuilt and modified and hacked to such a degree that it is
just not worth while to invest any effort in fixing them. Most of them can be
circumvented. .

1.5. The SONGBOOK Macros

As noted previously, PUB is poorly documented and very difficult to learn. The next
chapter describes a set of macros which simplify the process of using PUB to produce
papers and technical reports. The macros also provide a starting place for learning
PUB. If you are curious as to how a particular effect is achieved, you can examine the
macro that does it. They are called the Songbock macros because they were originally
created for the Hydra Songbook, an introductory guide to Hydra. Why this
introductory guide is called the Songbook is one of those questions whose answer is
clouded in legend and will probably never be known. This chapler was produced with
these macros; the source file is SONGBK.PUB[A700PUCQ]

116

Typicatly, a PUB file using these macros would took tike

.sourceltl (SONGBK);

.every heading{, lpagel),);

.setfont (TXFONTA,A); setfont{(TXFONTB,B);
.begin "title page"

.center

My Document

H. Q. Bovik

August &5, 1977

.end "title page";

.precontents;

This is an unnumbered preface, which precedes the
table of contents.

. endprecontents;
.sourcefilelifirst.chpl);
.sourcefifel(llast.chpl);

Most of this will be explained in the next chapter. The first line causes PUB to read in
the definitions of the SONGBOOK macros. The main body of your text can consist of
lines of any length; the text will all be filled and justified. You indicate the start of a
new paragraph by typing a blank line. The two SOURCEFILE statements (see
2.5.2) illustrate the common practice of keeping each major division, such as a
chapter, in a separate file. '

. A reasonable subset of the. effects described below can be achieved without
including any PUB commands at all. If none of your lines start with a dot (), if you
insert a blank line in front of every paragraph, and if you never use the at-sign (@)
character in your text, then you will get neally indented, filled, and justified gutput.
To get just the text responses destribed in 2.2, you need only have

.sourcell (ATSIGN};

as the first line of the file.

. . [

117

2. The SONGBOOK Macros

2.1. Special Characters

A number of characfers have special meaning to PUB; you must often be careful of
them when creating your text file. The rest of this section assumes you are using the
SQOS editor for this task, and know 3 little about its escape conventions.

The character o (alpha, or ?" in SOS) causes the next character to be treated as
ordinary text. It thus quotes the following character, disabling any special effects it
might normally cause. To get one of the characters described below to appear in your
text, you should quote it with e

The character \ (back slash) is used as a tab character inside examples (see
2.5.4), tables (see 255), and itemized lists (see 2.5.3) Elsewhere
it is an ordinary character. Tab stops can be set with the TABS command, which takes
a list of column numbers as an argument. By default, there is always a tab stop in the
fast column of the page. '

The character # (hash mark) is converted to a space in the output file. It is used to
insert spaces without ending a "word", so that PUB will not insert any extra spaces at
that point, and will not break the "word” across lines. '

The characters { and } can be used {o invoke PUB commands in the middle of a text
line. Everything between the braces is passed to the PUB command scanner, which

evaluates them. The most common use of this is to evaluate some PUB expression
which should be inserted in the text. For example,

This is page {pagel
causes the contents of the PUB variable PAGE (the current page number) to be
inserted in the sentence.
2.2. Text Responses

A text response is a sequence of characters imbedded in the middle of text lines; the
sequence is usually used to achieve certain special effects, This section describes text
responses for a set of common funclions.

2.2.1 Special Effecls

The source files define text responses used td perform special purpose functions. A
text line of the form :

textleulTEXT) text?

118

will produce an underlined version of the enclosed text, namely

text1TEXTtextZ

»
On any one line the XGP can use up o two character sets, or fonts; they are called
the A and the B fonts. The response

.

@i [TEXT]

switches to the B character set to print the enclosed text. The "i" stands for "italic"; a
typical use for the response is to switch to an italic character set Because of timing
problems in the XGP, you must have loaded the B character set at least one full output
line before you use the new character set. There is also a @b{ ...] response, intended
to switch to a boldface character set. Since the XGP can only handle two character
sets at a time, both @b and @i at the moment do exactly the same thing, namely
switching to the B character set.

The text response @+[text] accomplishes superscripting of the bracketed text.
The text response @-[text] accomplishes subscripting of the bracketed text.

2.2.2 Footnotles

The text response

efoot< This is
a footnote >

makes a footnote out of the text between the "<" and the ">". The A and B fonts in
the footnote are controlied by the variables FOOTFONTA and FOOTFONTB. The above
example produces the footnote at the bottom of the page Because of an obscure
and essentially unfixable bug in PUB, you may not use both A and B footnote fonts in a
document that requires more than one footnote per page. If you require more than
one footnote per page, then either change your writing style or set FOOTFONTB to
"CLEAR".

2.3. Sectlioning

These macros create section, subsection, (ete.) titles and make entries in the table of
contents. Al of them are of the form

name(title, tag)

1 This is a footnole

119

NAME is the name of the macro. TITLE is a character string which provides the title
for the section. TAG is optional; it can be used to associate a label with the division in
question. The label can be used with the YON macro to provide cross-references. If a
tag is provided it must end with a colon; e.g.

.chap(1The Rutabagal,ruta:)

produces a chapter titled "The Rutabaga”, which can be referenced elsevhere as {yon
ruta}. The curly braces cause PUB to go into command mode to evaluate the macro. In
this document the section on itemized lists is labelled LISTS; the text "(see {yon lists})"
produces "(see 2.5.3)"

The ‘MAJORPART macro begins a new major part, that is, a division labelled "PART"
in the Songbook. Each major part begins on a new page. The part number and title
are printed on the terminal when PUB begins to process the part. CHAP begins a-
chapter, Chapters are numbered s'equentia”y from 1, and are not renumbered within
each new major part. The first chapter of a major part begins on the same page as
the part title; all other chapters begin on a new page. The chapter number and title
are printed on the terminal when PUB begins to process the chapter. UNNUMBERED
begins a divisidn at the same level as a chapter, which has no associated number. It'is
intended for such things as a preface, forward, pralogue, epilogue, or biblicgraphy.
SEC begins a section. Sections are numbered sequentially within chapters. SUBSEC
begins a subsection. Subsections are numbered sequentially within sections. PARA
begins a labelled paragraph. Paragraphs are numbered sequentially within
subsections. The macro SUBSUBSEC is exactly equivalent to PARA. The first line of
the paragraph begins on the same line as the title; for all of the other sectioning
macros, the title and the first line of the section are separated by al'least one blank
line. APPENDIX begins an appendix. Appendices behave like chapters, except that
~ their indices print as upper case alphabetics rather than Arabic numbers.

For each of these macros there is a corresponding one formed by prepending
"eval!” to the front of the macro name; this form of the macro takes an expression as
an argument, rather than a string. Thus if the PUB variable GORP contains the string
"XXXX" then CHAP(GORP) produces a chapter titled GORP, while EVAL!ICHAP(GORP)
produces a chapter titled XXXX. '

2.4. Character Sels

2.4.1 Changing Fonis

The macro

.setfont (FONT,CHARSET)

is used to change the A or the B character set. CHARSET is the single letter A or B,
either upper or lower case. FONT is a character font name, such as NGR25, or a

120

Songbook character set variable, such as EXFONTA. The Songbook character sets are
summarized in the following table, giving the Songbook name, the corresponding actual
character set, and a brief description of its purpose.

TXFONTA NGR25 main text font

TXFONTB NGIZ2B secondary text font

EXFONTA FIX25 Main ("A") fon! for examples

EXFONTB FIX25 Secondary {"B") font for examples

HOFONT NGIZ25 Paragraph titles in text.

HIFONT NGBZ25 Subsection titles in the text; section title numbers in the
table of contents

H2FONT NGB30 Section titles in the text; chapter titles in table of contents

H3FONT NGRA0 Chapter titles in the text

HAFONT BDR40 Part titles in text and table of contents.

FOOTFONTANGR20 main footnote font

FOOTFONTBNGR20 secondary footnote font

If you have a font you are using in several places, it is a good idea to assign the
font to a variable, and use the variable name in SETFONT requests. This is exactly
what was done with all of the Songbook fonts mentioned above. For example,

MYFONT « NGR48;

.setfont (MYFONT,B)

Because of timing problems in the XGP, a character set must be loaded at least one
full output text line before it is used. Thus you must place your SETFONT requests a
reasonable distance before you use the character set, and you cannot use more than
fwo character sets on a line. Also, changing the A character set can cause problems;
ask for help before you try.

2.4.2 Defining New Fonis

The macro

.DEFINE 'FONT (NAME,FILE, ID!NO,HEIGHT ,WIDTH,BFILE)

can be used to tell PUB about non-standard character sets you may wish to use.
NAME is an identifier that you can later use in the SETFONT macro to refer to the
character set..FILE is the name of the file containing the character set. 1DINO is. a
number that the XGP system and PUB will use to refer to the character set; it must be
greater than 32 and less than 2 14 HEIGHT and WIDTH are the height and average
width of the character set in terms of XGP raster points; you can find these numbers
by examining the character set file with BILOS. Typically, the last two characters of
the name of the character set file give the height of the character set. For example,
NGR25 is 2% raster points high.

121

The XGP is usually attached to the PDP-10/B, while most people using PUB are on
the PDP-10/A. Both PUB and the XGP must read the tiles describing character sets. If
the file containing the character set on the /B is in a different place than on the [A,
the parameter BFILE should be the name of the file on the /B. If both are in the same
place, BFILE may be omitted.

2.5. Miscellaneous Macros

2.5.1 Page Headings

PUB can be told to place headings and footings on évery page. The macros which
cause this to happen are all of the form

.NAME (LEFT, CENTER, RIGHT)

The first argument is left-flushed, the second is centered, and the third is right-
flushed, at the top of every page. If the arguments are enclosed in curly braces {},
they will be interpreted as PUB expressions and will be evaluated each time they are
produced. Thus the EVERY HEADING given in the skeleton in section 1.5 causes the
page number to be inserted in the centre of the top of every page. EVERY HEADING
and EVERY FOOTING cause the same pattern fo be placed on each page. If you desire
odd-numbered pages to have different headings than even-numbered pages, you can
use ODD HEADING and EVEN HEADING.

2.5.2 Including Other Files

There are three ways to have PUB read in other files as part of your document.

. SOURCEFILE (filename [ppnl);
. SOURCE! (£ lename [ppnl) ;
.SOURCE!IL({filename);

(where the PPN is optional). The first is intended for most text files; any macros or
unusual effects set up in the text file will not atfect the file in which the SOURCEFILE
macro occurs. SOURCE! and SOURCE!L are intended for including files with macro
definitions; they allow effects defined in the files to affect the remainder of the text.
SOURCE! expects a full filename and PPN, though the PPN may be omitted if the file is

on your own area. SOURCE!L expects to find its file on the standard library area,
A70CQPUCOO,

122 .

2.5.3 Itemized Lists

Occasionally you will have a section of {ext which enumerates a set of steps, or lists

a set of properties. ITEMIZE takes four optional parameters. The macros ITEMIZE and
ENDITEMIZE bracket a section of text in which

1. The first line of each paragraph is indented from the current ‘left margin
by the contents of the fourth parameter, or the variable INDENT!HEADER if
the fourth parameter is omitted. INDENT!HEADER is initially set to 2,

. The body of each paragraph is indenied from the left margin by the
» contents of the second parameter, or the variable INDENTILEFT if the
parameter is omitted. INDENTHEFT is initialized to 4.

3. A tab stop is set so that a tab at the start of the first line of a paragraph
will align the first line with the rest of the paragraph.

4, The right margin is narrowed by the contents of the third parameter, or
the wvariable INDENT!RIGHT. This causes paragraphs in the list to look
thinner than surrounding paragraphs. INDENT!RIGHT is initialized to zero.

Each paragraph in an itemization, including the one just after the ITEMIZE macro,
must be preceded by a blank line.

The first parameter to ITEMIZE specifies how the paragraphs in the itemization are
to be labelled. If the parameter is present, a counter is set up which is incremented at
each paragraph break, and printed at the start of the first line of the paragraph. A

"1" in the pattern specifies that the counter is to be printed as an Arabic number; "i",
"I", "a", and "A" specify lower and upper case Roman numerals and alphabetics. Extra
characters such as parentheses and dots may be included. The above list was

produced with the pattern "1.". If the pattern is omitted, then no counting is done.

(a) Note that ITEMIZEs can be nested within each other giving an effect
something like this.

Note that the inner paragraphs are narrowed even further
than the outer ones.

This process can continue until the lines get too narrow to
hold a single word, at which point PUB will complain.
(b) When you END!TEMIZE the inner paragraph, everythmg gets restored

"properiy for the outer one.

This example had an ITEMIZE with no pattern nested inside one with the pattern “(a)".
The variables INDENTIRIGHT and INDENTILEFT were both set ta 5 for these examples.

123

2.5.4 Examples

Two macros, EXAMPLE and ENDEXAMPLE, can be used to bracket sections of text .
which give programming examples. EXAMPLE goes into NOFILL mode (where lines are
neither filled nor justified), indents the text, and sets the A and B fonts to whatever is
specified by the variables EXFONTA and EXFONTB. EXAMPLE takes one parameter, the.
number of characters to indent. If this parameter is omitted, the example is indented
by the contents of the variable INDENT!LEFT. It also sets GROUP mode, which means
that all of the text of the example will appear on one page. Tabs are set every five
spaces; the character "\" (back slash) can be used to space to the next tab stop.
ENDEXAMPLE restores things to their previous slate.

If you have a large example, it might not fit properly on a single page. There may
be several points in the example at which page breaks can occur without disturbing
the flow of the exampie. To let PUB know where you will allow page breaks to
happen, you can insert the macro

.hinge

al appropriate points. : ‘

255 Tables

The macros TABLE and ENDTABLE can be used to bracket {ables. TABLE {akes thres
numbers as arguments, giving the starting positions for each of three columns in the
table. 1t is assumed that the first three columns will be short enocugh to fit in the
available space; the final column may extend.across several lines, and subsequent lines
will be properly aligned. Each new entry in the table should be separated from the
previous one by a blank line. The TABLE macro also goes into GROUP mode, so that
the table will appear all on a page if possible.

L3

The tab character, "\" (back slash), should be used to separate columns in the table.
The font table in section 2.4.1 was done with TABLE and ENDTABLE. °*

256 Figures

These macros provide ways of including XGP image mode files, such as those
produced by SPACS, in your document. The intent of these macros is to allow you to
define all the properties of the image files in one place {which might be a separate
file) and specify the location of the figure at some other time.

The two calls involved are:

.define!figure (tag, size, file)

124

This macro defines the figure, telling PUB how big it is and where find it. TAG is a
unigue symbol defining the figure. I{ will become a label that you can use to reference
the figure. SIZE is the number of lines required for the figure. SPXIMG will give you
this number. Three lines are added for the title. FILE is the name of the image file.
Extension ".IMG" is assumed.

The second macro determines where the figure will be placed. The call

.putifigureltag, title)

causes the figure to be placed at the point of the call. H-there is not enough room for
the figure, it will be placed at the top of the next page. TAG is the name used in the
DEFINENIGURE macro. TITLE is the text to be associated with the figure The text
should appear within vertical bars, ||. The figure can be referenced elsewhere in the
document using the TAG you specified and the YON macro. The string {YON TAG}
imbedded in your text wiil be replaced by the number of the figure.

For arbitrary floating figures, you can use the macro HEREFIG. HEREFIG takes two
arguments, a count of the number of lines in the resulting figure, and something which,
when evaluated in command mode, will produce the desired figure. This parameter is
usually the name of a macro, but could be any PUB commands. For example, '

.herefig(B, lgroup skip B1)
.will float a six-line blank figure.

Whether or not the figure macros will be defined is conirolled by the variable
WANTFIGS. If WANTFIGS is set to TRUE before the macros are toaded, then the figure -
macros will be defined. Omitting the macros causes the compilation {0 be faster and
take less core. '

25.7 Indexing and the Table of Conlenis

If you use the sectioning or indexing macros described above, PUB will prepare a
table of contents and an index when it reaches the end of your source file. Entries in
the table of contents are made by the sectioning macros (see 2.3). The table of
contents will be placed wherever you have said "insert CONTENTS", or at the end of
the file if you neglected to say so.

The macros IX and EVAL!UX are used to make entries in the index. IX takes an
unevaluated string argument; EVALNX evaluates its argument. The macro PRINTINDGEX
causes the index to be placed at the point of invocation; a PRINTINDEX is automatically
done at the end of the input file. Normaily an index is always produced if you have
any occurrences of the IX macro. You can suppress the index by setting the v?riab!e
WANTINDEX to FALSE. :

125 ¢

2.6. Debugging

The songbook macros have a limited facility for helping you debug large documents
with many files, cross-references, and the like. If you add the "U" option to your call
to PUB, as COMPILE file.PUB(XU), then USERDEBUG mode will be set. This will cause
various debugging information to be included in the output file.

126

1. Introduction

Files and Documents
Simple Formatting with SOS
XOFF ‘
PUB

The SONGBOOK Macros

2. The SONGBOOK Macros -

ot ek et b
nrWN—

2.1. Special Characters

2.2. Text Responses

2.2.1. Special Effects

2.2.2, Footnotes

2.3. Sectionjng

2.4. Character Sets

2.4.1. Changing Fonts

2.4.2. Defining New Fonts

2.5. Miscellaneous Macros

2.5.1. Page Headings

2.5.2. Including Other Files

2.5.3. Itemized lists

2.5.4. Examples

25.5. Tables

256. Figures :
5 5.7. Indexing and the Table of Contents
26. Debugging

127

SOS Primer
Joseph M. Newcomer

Introduction

This document is merely intended as an introduction to the SOS editar.
For further explanations and a more complete set of commands, consult the
SOS manual. '

SOS is a Teletype-oriented text editor written by Bill Weiher and
Stephen Savitzky of the Stanford Artificial Intelligence Laboratory. It has
been maintained and improved locally by numerous people; anyone interested
in joining this amorphous group should contact Richard Johnsson, Lee Erman,
or Joe Newcomer. Since the current status of the editor changes from time
to time, no single document can capture ils state adequately. The SOS
manual is the basic reference manual for the editor. This manual is an
example-oriented primer. The list of changes from the reference manual can
be found in the file SYS:505.DOC.

In addition to the common editing capabilities of inserting, deleting, and
shifting of lines of text, SOS includes string search and substitute commands,
an intra-line edit capability, text-justifying features, and a few other
assorted bells and whistles.

SOS does not edit a file "in place”, as some editors do. Changes are
made on a temporary copy of the file, and ordinarily are made permanent
only upon completion of the edit. However, you may request at any time
that all changes up to that point be made permanent. This is an especially
recommended praclice for beginners, as it insures all changes made in-the
file since the EDIT command or the last save request against loss due to
system failure or user inexperience.

SOS is oriented towards full-duplex devices, such as the Teletype, the
ARDS display, the Infoton and Beehive displays, and other such devices.
Before attempting to use it from a half-duplex device such as an IBM 2741
terminal or a Datel terminal, you shouid become thoroughly familiar with
using it from the teletype or similar full-duplex device. You must then
familiarize yourself with the conventions for using half-duplex devices on the
PDP-10 as implemented here at C-MU. - In general, it is not worthwhile for
the novice to learn how to use SOS from half-duplex devices, since the effort
involved in using them does not really make up for the 50%.faster typeout
{(compared to a Teletype).

The HELP facility

When in worry and/or doubt, this command saves a lot of screaming, -
shouting, and other expressions of confusion. The HELP command - (H) will
provide you with a quick summary of editor commands. - Since the HELP
command is self-explanatory (just type H followed by a carriage return) the

128

exploration and discovery of just what this command provides is left as an
exercise for the reader.

SOS State diagram

front language procersors

to language processors Meniter B
' /s
—-——— p
< EQIT y)
CREATE 7

E| taeap 7

All others, e.g.
BC,OFH :
SLMNOP anythirg

range sxhaustad

C<locy « <file>

ACDJIKTY -
LPQ.S
<sp>,TH,TU

———---———-———n-ﬂ“_—n-———-—-—————

1
: ?Quota or storage exhausied DETACH
! 1c a
! Any
I ATTACH
- _ : '*Eh CONT .!C.
|
]
|
1
|
1

N e B B

—
-~

...——...--——-.——-.-——-——-—-——-n—_.__.——-

129

Basic commands

The basic operation in a file-oriented system is the creation of a file. To
invoke the editor and request it {o create a file, give the CREATE command
when the console is in monitor mode i.e,, the computer has typed a period.

In all examples, the computer output is underscored.
Example 1 Creating a file:

.CREATE BLAT.BOC

00100 THIS IS AN EXAMPLE OF HOW TO CREETE

00200 A FILE USING THE EDITOR. :
030 IN ORDER TO GET OUT OF NUMBERING MODE TYPE
040 AN ALTMODE (ESCAPE(CHARACTER, WHICH ECHOES
050 AS A DOLLAR SIGN.

Q60 $

o
Q

o
o

o
o

c
<

| W

When the asterisk is typed, you may enter any editor commands you
want., The E command (End) terminates the edit, saves the file, and returns
to the monitor.

Example 2 Terminating an edit:

BLAT.DOC
EXIT

The file now exists and you may access it in any of the normal modes in
which files are accessed. For example, you may type it:

Example 3 Typing a file:

.TYPE BLAT.DOC

00100 THIS_IS AN EXAMPLE OF HOW T0 CREETE

00200 A FILE USING THE EDITOR.

-00300 IN ORDER TO GET_OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE(CHARACTER, WHICH ECHOES
00500 AS A DOLLAR SIGN.

130

If upon examining the typeout, you find there are some errors {as in the
typeout above) you may invoke the editor with the EDIT command to make
the corrections. The set of commands for simple editing is:

1 - Insert

Delete

Replace

D

R

P - Print
0 - windOw
L

List .

The Replace command is used to replace lines of the file.- In its simplest
form it is the single letter R followed by the line number to be replaced.
The editor then types the line number out and new text may be typed in.
This new line replaces the previous contents of the line.

The Delete command is used to delete lines from the file. In its simplest
form it is the single letter D followed by the line number of the line to be
deleted. The editor deletes the line and returns control with the asterisk.
There is normally no other typeout. To delete a group of contiguous lines, a
range may be specified; see "Specifying Ranges”, below. '

The lnsert command is used to insert new lines in a file. Its basic format
is the letter I followed by the line number of the line to be inserted.

Example 4 Simple editing
EDIT BLAT.DOC

BLAT.DOC

*R100

00100 THIS 1S AN EXAMPLE OF HOW TO CREATE

£D400 ' '
*1400

00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
X

Note that the Replace command has the same effect as a Delete command
followed by an Insert command. In order to use Insert to replace a line, the
line must first be deleted. The Insert command by itself does not replace
the line specified if it already exists, as in some editing systems, but instead
creates a new line whose number is equal to the line given plus the line
increment {normally 100). The Insert command will always insert a new line
in a file, never replace an old one. If the line following the specified line has
a line number less than or equal to the computed insertion line number, then
the insertion is given a number which is halfway between the line specified
and the next line, :

131

Example 5 Interpolated insertion

£1200

00250 SINCE THE INCREMENT IS 100, THIS LINE 1S HALFWAY
x1250

00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.

*

In order to see what your file now locks like, you can use the Print
command to print it on the terminal. The Print command is the letter P
followed by the line number of the line to be printed. The letter P by itself
will print the current line and 15 following lines. To specify a range of lines,
a colon may be used to indicate a beginning and ending line number
specification; see "Specifying Ranges”, below, for more details on this.

Example & Printing part of a file

*P100:500
00100 THIS 1S AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR. -

00250 SINCE THE INCREMENT 1S 100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS,

00300 IN ORDER TO_GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
00500 AS A DOLLAR SIGN. _

The O (window) command is just like the P command except that it prints
a few lines before and after the specified line; its syntax is

*0<line>,<count>

-

The result will be to print <line>-<count>:<line>+<count> as the range;
the default if <count> is omitted is 5. This is very useful when you want to
look around the line you are currently editing.

In addition to the P command, two keys on the terminal will also cause
printing. A linefeed (in this text, 4), will print the next line, and an altmode
(escape, shown as a "8") will print the previous line.

Example 7 Linefeed and Altmode commands

*P300

00300 IN ORDER TO GET QUT OF NUMBERING MODE, TYPE
xl

+00400 AN AL TMODE (ESCAPE) CHARACTER, WHICH ECHOES

500300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
*

132

v If there is too much information to conveniently type on the terminal, the
L (List) command may be used to output the lines on the printer. Its format
is precisely the same as the P command, except that if just "L" is specified
the entire file is listed. Note that the file may not come out immediately on
the printer, as print files are queued waiting for the printer to become -
available. Consequently, your file may not be printed for some time after
the L command completes. You may continue editing the file, however, since
the information is copied into a temporary buffer and held until printed. The
file name on the listing printed will be "LINED.LPT". You should not then be
looking for a listing with the file name printed on the fronti. ‘

Examgle 8 Listing a file
L

| #)

This has printed the entire file on the line printer.

Specifying Ranges

Whenever you wish to specity more than a single line, you may specify a
range. This is done by using a colon to separate the two line numbers
{where the second must be higher than the first). Thus 100:600 specifies
lines 100 to 600. Most commands accept a range of lines to be operated
uvpon, and this is one way of giving that range. However, in some cases it is
easier or more appropriate to specify a quantity of lines (5 lines, 17 lines,
etc.) regardiess of the line number of the last line. This is indicated by using
an exclamation point (1) to specify the range: 10013 is line 100 and the
following two lines (so "100!1" is the same as "100").

Example 9 The exclamation point

xP10014

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR.

00250 SINCE THE INCREMENT 15 100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.
xD25012 '
xP100!4

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR,

00300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
*

133

Intermediate commands .

The intermediate editing cc;mmands are:
C - Copy

T - Transfer

N - Number

W - save World

M - Mark page

G - Go

The Copy command copies lines from one place in the file to another.
The first location specified is the "destination" line number. The second
location (which may be a range) is the "source" location. The editor will
choose an increment which will allow all the specified lines to be copied to
the destination without overflowing; this increment is printed out in the
message "INCl=nnnnn". If the editor cannot compute an increment such that
all lines will fit, then an error message will be typed and apprc:priatefaction
will be taken by the editor {(see the SOS manual, page 13-14).

* The Copy command can also copy from another. file, so that portions of
program files can be extracted to form a new file. Again for details, consult
the SOS manual (page 13-14).

The Transfer command is much the same as the Copy command, except
that the lines which are copied into the specified destination in the file are
then deleted from the source location.

Example 10 Copy & Transfer commands

CREATE COPY.DOC
00100 THIS IS
00200 A SHORT
00300 FILE
00400 8
+C100,300
INC1=00050
+P100:300

00100 THIS IS
00150 FILE
00200 A SHORT
00300 FILE
*7300,100

134

00200 A SHORT

00300 FILE
Q400 THIS IS
*

The Number command is used to renumber files, This is usually done
after a number of insertions have been made and no more room exists
between line numbers for further insertions. The simplest form of the
Number command is simply the letter N, which renumbers the entire file with
an increment of 100. For more information on the Number command, see the
SOS manual, page 8-9.

Example 11 The Number command

 *P100:400
00150 FILE
00200 A SHORT
00300 FILE
00350 THIS IS
*N '
*P100:99999
00100 FILE
00200 A SHORT
00300 FILE

00400 THIS IS

The W command is particularly useful to the beginner. The W command
makes permanent all changes made in the file up to the time it is given
Changes made in a file are temporary until either a W or an £ command is
given. There are two reasons you should do a W command often: 1) The
system could crash, and all editing done would be lost when it came back up,
or 2) you might attempt using some new command (say, "substitute”, a
somewhat tricky one), and confuse your file to the point where you cannot
“recover the text you started with. In either case, the loss will be back to
the last "EDIT” command to the monitor, or the last W command to the editor.
By giving permanence to those changes whose accuracy you are certain of,
you will avoid loamg time in re-creation of those changes, or perhaps the
entire f|Ee

SAVE and ISAVE

The one disadvantage of the "W" command is that you must remember to
issue it at appropriate times ("You only need to do a W once, but which
once" is a traditional saying around the department). The ideal point is
immediately before the next crash. 1t is not at all unusual to lose 50 or 60
lines of text if the system crashes at the wrong moment. To prevent this
sort of catastrophe, you can as $OS to do a "W" command automatically for
you at specified intervals. This is done by use of the SAVE and ISAVE
parameters. '

When SAVE is set to some number k, after ev‘ery k commands which
change the file a "W" is automatically performed When ISAVE is'set to some
number p, after every p lines of insertion a "W" is automatially performed.

135

The SAVE and ISAVE parameters are set with the SOS "Set" command
(left arrow) which is discussed in a later section. At this point it is sufficient
to know that the commands are "«SAVE=number” and "«ISAVE=number™".

Example 11.1 The ISAVE parameter

00505 SOME
00510 TEXT
00515 INSERTED

00520 HERE
00525 §
*

If the system were to crash at the end of the example, lines 505, 510,
. and 515 would be in the file; only line 520 would be lost.

Pages

Files can be divided into logical subunits termed “"pages™. A page in the
SOS editor is merely a collection of lines. It may be less than one physical
printer page, or it may be several physical printer pages. When we need to
make a distinction, we will call the SOS pages "logical pages" and the printer
pages "physical pages”. We will use the term “"page” ordinarily to mean a
logical page. To indicate the separation into logical pages, a "page mark” is
inserted into the file by the Mark page command. The Mark page command
places a page mark immediately before the line number specified. Each page
is numbered separately, and hence you may have several line 100’s in a file.
In order to specify what page you are on, use the slash (/) in the line
number specification, with the page number following the slash. Line 100 on
page 1| is then designated as "100/1". To minimize the amount of typing
required, the editor remembers what the current page is, and subsequent
commands need only specify the line number on the current page.

136

Example 12 Muitipage file

*P100:400

00100 FILE -

00200 A SHORT

00300 FILE

00400 THIS 1S

*M300

x*P100/1:400

Q0100 FILE

00200 A_SHORT

*P100/2:400 ‘ .
00300 FILE ‘
00400 THIS IS

xN.

*P100/1:400/2

00160 FILE

00200 A SHORT

PAGE 2

00100 FILE

00200 THIS IS -

*

When listed on the line printer with an L command, each page has the
page number printed in the upper left, The form of this page number is the
logical page number followed by a hyphen followed by the physical page
number (recall that logical pages can be longer than physical pages). The
physical page number is reset for each logical page, so that the numbers
proceed as "1-1, 1-2, .. , I-n, 2-1, 2-2,..". When using a listing as a guide
to editing, remember that the first number is the page number that SOS uses,
e.g. when correcting page 4-15 specify "/4" for the page number.

There are two other special characters which you can use to designate
lines in the file. The period (.) is used to designate either the current line or
the current page, depending on where it is used. If it is used in the line
position, it is the current line; if in the page position it is the current page.
If page 2 is the current page, and line 100 is the current line, then "./2" is
"100/2", "./1" is "100/1", "200/." is "200/2" and of course “.[." is the current
line, 100/2. The asterisk is always the last line on the page indicated. If
the current line is 100/2 in the file of example 12, then "#" is "200/2" and
"x/17 is "200/1". If the line number is omitted but a page number is given,
it means the entire page, e.g, "P/2" is the same as "P0/2:#/2". For more
details on specifying ranges, see the S0S manual, page 3-4.

Example 13 Period and asterisk designators
P100/1:=

00100 FILE)
c0200 A _SHORT

137

00300 NEW LINE
00400 8§

00100 FILE
00200 THIS IS
00300 NEW LINE
*Px/1:x/2

00200 A SHORT

PAGE 2

00100 FILE
00200 THIS IS
00300 NEW LINE
sP/1:/2

00100 FIL
00200 A _SHORT

PAGE 2

00100 FILE
00200 THIS IS
00300 NEW LINE
xP,

00300 NEW LINE
xP100/1

00100 FILE

00150 INSERTION
00175 ANOTHER

00175 ANOTHER
00200 A_SHORT

00100 FILE
00150 INSERTION
00175 ANOTHER
00200 A SHORT

The Go command is equivalent {o the End command in that it terminates the
edit; however, it also causes the last COMPILE, EXECUTE, LOAD, or DEBUG

monitor command to be re-executed. This is a great convenience when
debugging programs.

138

Example 14 The Go command
{CREATE TEST.ALG

*E
TEST.ALG .

EXIT

.COM TEST

ALGOL: TEST

200 INCORRECT STATEMENT
REL FILE DELETED ‘
300 UNDECLARED IDENTCTC

.ED

*P200

£0200 INTEGRE I, J, K;
*R.

00200 INTEGER I, J, K;
xG

TEST.ALG

139

Advanced commands

The aannced editing commands ara:
A - Alter

J - Join

IL - Insert Last

S - Substitute
~F - Find

B - Beginning

Alter commana

The Alter command is one of the most useful features of the SOS editor.
It allows editing individual lines much as the normal edit commands are used
to edit files. You can alter a single letter in a ling, i.e., change it, delete it, or
even invert its case. The full capabilities of the Alter command are
explained in the SOS manual, page 9 ff; some examples will be given here.

Edit commands in intraline edit mode are not echoed by the teletype.
We will indicate this in examples by showing the edit commands in lower
case. One exceptlion to this will be the altmode character, which will still be
a dollar sign. Remember that in intraline edit mode it will not echo. The
following notation will be used: "_." will be a space, "B" will be a rubout, "}"
will be a carriage return, TU will be control-U (the control key and U key
held simultaneously give TU). .

The set of intraline edit commands is:

— - Accept the character under the pointer

TH - Backspaces the pointer

- Backspaces the pointer

C - Change the character under the pointer

D - Delete the character pointed to

I - Insert new characters (terminated by altmode)

J - Terminate intraline edit

Q - Quit intraline edit without making changes

140

TU - Start over
- Skip
- Kiil
- Replace
- Print remaininé {ine and continue edit

- Print remaining line and resume edit

- eXtend line
- Munch (Simulate K followed by 1)

S

K

R

L

P

V - Invert alphabetic characters
X

M

T - Transpose current and next charact(?rs
A

- Add charécters {a special kind of Insert)

i - Skip to next "column”

If a character is typed which is not a valid intraline edit command; a bell
(TG) is echoed. For explanations of most of these commands, see the SOS
manual, pp 15-17. With this as a guide, you may follow the examples below.
In these examples, a) is a non-echoed carriage return; a 8 is a non-echoed
rubout, and a o is a non-echoed space. '

Example 15 Intraline skip and insert

%P/ 1

00100 FILE
00150 INSERTION
00175 ANOTHER
00200 A SHORT

xA150

00150 selNSixx§JERTION
*P.

00150 INS%*%ERTION

*

Example 16 Intraline delete and kill

*P150

00150 INS#xxERTION

*A.

00150 ssINd\\SJI\\++xERTION
%P,

00150 INsx*ERTION

141

A,

0150 s*INkr*+EJ\\RTION
xP.

00150 INRTION

*

You may precede a command with a number which causes it to be
repeated, e.g. "2sa” is equivalent to "sa” followed by another "sa”

Example 17 Intraline skip and change

x[150 .

00175 THIS IS A (SMAPLE(LINE

xA,

00175 2s(THIS IS A (SMAPLEc))_LINE
xP,

00175 THIS IS A (SMAPLE) LINE

*

Example 18 Intraline accept and rubout

xP175

00175 THIS IS A (SMAPLE) LINE

*A,

00175 3ssTHIS IS A (2.SM=\\M2c\\AMJPLE) LINE
%P,

00175 THIS IS A (SAMPLE) LINE
*

. Special features not documented in the SOS manual

The features described in this section are not especially important for
beginners, but they are not documented except in the.SOS updates. Since
users should be aware of them, they are described briefly here, '

The character TH, control-H, which is equivalent to the "home" key on
Infoton terminals, is equivalent to the rubout key. On terminals which
physically can backspace, or on video terminals, this allows more readable-
editing than use of the rubout key.. Try it and see.

The V (for inVert) intraline edit command is used when one wishes to
change the case of the alphabetic text on the line. The V command without
a preceding number {(or 0) inverts the case of all alphabetic text starting
‘with the character under the pointer and continuing untit the first
non-alphabetic character is found. If the character under the pointer is
non-alphabetic, then the V command is ignored. If a number is given, then
only that many letters starting with the current pointer are inverted, e.g., 1V
shifts the case of only one character (handy for cap:tahzmg words) It is
awkward to give an example here, since we are using lower case letters in
the examples to indicate non—echoed characters. The function should be
obvious, however, and easily verified by experiment.

142

The eXtend command goes to the end of the line and enters Insert mode;
this makes it convenient when it is necessary to add text to the end of one
or more lines.

The Munch command {so named by Lee Erman and/or Rich Johnsson) can
accep! a numeric argument preceding it and a single character following it.
The command nMx is equivalent to nKx], i.e, it kiills the requisite number of
characters then enters insert mode.

The T command transposes the current character and next character,
thus correcting in one keystroke one of the most common typographical
errors. A number preceding the T command is ignored.)

The A command is useful when inserting a fixed number of characters;
typically one character. Thus the sequence "Ax" is equivalent to the
sequence "Ix$", saving both a keystroke and the necessity of remembering to
type the allmode. If a number precedes the A command, that many
characters are added before an implicit altmode is performed: e.g.
"AAabedx" adds the characters "abcd” to the line, then treats the "x" as an
intraline edit command (and thus moves to the end of the line and goes into -
insert mode).

One of the most common errors made in using the Alter command is
failure to type the altmode terminating an Insert within the line. This has
the effect of terminating the line being edited and beginning a new line.
Although a sometimes desired effect, such as in indenting Algol program files,
it is more often just an error. Should you type a) after an insertion, and
get a new line number instead of the rest of the line, just type the altmode
and) again. You now have two lines where you had one before, and the
Join command can undo this. To use the Join command, type J followed by
the original line number. ‘

Example 19 The Join command

£P175

00175 THIS IS A (SAMPLE) LINE

%A, ’

00175 s)THIS IS A (SAMPLE.) OF Al
00137 8) LINE .

xP17512

00175 THIS IS A (SAMPLE} OF A
00187 LINE :

*J175

xP175

00175 THIS IS A (SAMPLE) OF A LINE

*

The inverse problem exists when you are in normal Insert mode. Typing
an altmode kills the current line and terminates the insertion. The usual case
is when a large number of alteralions have been made you have developed

143

the habit of typing 8) to terminate a line. The result is that the line just
typed has been lost. To correct this, the Insert Last command exists.
Immediately upon returning to command mode type I, and the last line will
be retrieved, put in place, and Insert mode will be resumed (we will not |
digress into discussing what can be done safely before the line is lost to IL;
do it immediately and you will be sure to get the line back). :

Example 19.1 The Insert Last command

*1300

00300 Text

00400 A terribly (4xRT2)}/(3+(22X1+X2)) complicated line$
*]JL

00400 A terribly (4#RT2)/(3+(2%£X14X2)) complicated line
Q0500 8 ' no

1%

find command

The Find command may be used to locate known strings in a file when
their line numbers are not known, or fo check a file for occurrences of
strings. The basic format of the Find command is the letter F, followed by a
string to be searched for, followed by a altmode, followed by a range
specification. Again, more details may be found in the $0S manual, pp
23-25. When a string is located, the line containing it is typed out and
search is suspended. To resume the search with the same string, only an F
followed by an altmode is required. :

Example 20 The Find command

£DIT SOME.BLI
xFLOCALS/1
*

(There were no occurrences of "LOCAL" on page 1)

xF§/2

00150 LOCAL A, B, G

xF

00300 LOCAL AARGH BLAT[5}
*F8.+1:/99

PAGE 6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS

If you give further Find commands without specifying a range, no mocre
strings will be found, since the current line position is the end of the file.
To reset the file position, you could either specify the first line of the file as
the lower bound of search, e.g, "Fstring$100/1:/999", which is clumsy, or,

144

more simply, you could use the Beginning command to reposition the file.
The B command may be given a line number as an argument, in which case it
will go to that position in the file, e.g., "B/." goes to the head of the current
page, and "Bx/.-1" goes to the last line of the previous page.

If you are not interested in stopping al each line where the 'string is .
found, you can give a parameter to the Find command which tells how many
occurrences to print and bypass before stopping. To find all occurrences in
a file, use some large number such as 999 or 99998,

Example 21 The Begin and Find commands

Assume the file is in the state it was left in at the end of example 20.

00300 LOCAL AARGH BLAT[5T;

00400 MEASURES LOCALIZED PHENOMENA SUCH AS

Substitute command

" The Substitute command is similar to the Find command, in the sense that
a string is searched for; in addition, a second string is substituted for the one
found. The format of the Substitute command is the letter S followed by the
string to be searched for, followed by an altmode, followed by a string to
replace it, followed by another alimode, followed by a range. For more
details, see the SOS manual, pp 25-27. '

Example 22 The Substitute command
Assume the file is in the state it was left in at the end of example B1.

*B
xSLOCALSOWNS

00150 OWN A, B, G
00300 QWN AARGH BLAT[5);

00400 MEASURES QOWNIZED PHENOMENA SUCH AS

145

As you see, the string substitution also replaced the occurrence of
"LOCAL" in line 400/6. This is one of the most common errors made with the
Substitute command. In this example the Substitute command or the Alter
command may be used to correct the problem; in another example it may be
neither simple or even possible to undo a bad substitution. For this reason,
we recommend giving a W command before doing a Substitute. If the
Substitute command then destroys part of the file, abort the edit without
making the changes permanent by typing 1C (control-C}, and typing EDIT
again. Since you are editing the same file, the file name need not be given,

Example 23 Aborting an edit

Assume the file is in the condition it was in at the end of ekample 22. .
*TC
EDIT

TEMPORARY EDIT FILE ALREADY EXISTS! DELETE? (Y OR N)
<Y

xP400/6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*P150/2 :
00150 LOCAL A, B, G;

4

The message about the temporary edit file may not be typed if the
editor was left in a state where the temporary file did not exist.

146

Miscellany

In addition to the commands discussed here, there are several others of
marginal interest. One of the most useful of these-is the "=" command, which
types out information contained in the editor. lIts format is "=" followed by
the name of the internal parameter to be displayed. The command is
discussed more fully on pp 20-21 of the SOS manual. The most useful
parameters to display are the current line (.), the number of pages in the file
(BIG), the current FIND and SUBSTITUTE strings (STRING) and the current
line increment {INC),

Along with the "=" command there is the complementary “set™ command
which is a left arrow («). This is used to change the values of the internal
parameters. This is discussed on pp 19-20 of the manual. The most useful
parameters to set are the SAVE and ISAVE parameters discussed previously;
the next most useful is probably the line increment (INC).

Example 24 The = and « commands

.EDIT HUGE.BLI

HUGE.BLI]

+=BIG

62

+P100/41 :
00100 INCR 1 FROM 1 TO .N DO

F==, -

100/41

00125 BEGIN Aeb; Xe.¥<3,2>;
00150 §

00130 BLAT(); THUD(.Q)
00135 END; -
00140 § , .

Removing line numbers

In some cases it is necessary fo remove the line numbers which SOS
places in the file. To do this, you may either have SOS remove the line
numbers itself, by specifying the ",N" switch to the End command, or use PIP
with the "/N" switch, as shown in the examples below. Note: SOS can edit
files without line numbers; during the edit it adds line numbers for reference
purposes and then strips them off upon completion. Thus a file without line
numbers will continue without line numbers. The user can force line
numbers onto a file by editing it and setling DSKNUMS=1; when the edit is
complete the line numbers which have been added are retained in the file.

147

Example 25 Removing line numbers
%E.N

BLAT.DOC
EXIT

c:r, by using PIP,
R PIP

/X /Ne«BLAT.DOC
*TC

Example 25.1 Editing a file without line numbers

.edit NOLINES.FIL
NOLINE.FIL{N

*

<editing>

*e
NOLINE.FIL(N)

“TY NOLINES.FIL : .
_ This file has ' :
no line numbers

-edit NOLINES.FIL
NOLINE.FIL(N)
*DSKNUMS=1

xe
NOLINE.FIL

“TY NOLINES.FIL
00100 This file has
00200 no line numbers

Using terminals with both upper and lower case

Some terminals are available with both upper case and lower case
letters, notably the ARDS display, the Infoton video terminals, and the
Western Union 300 terminals. The PDP-10 monitor, however, always
translates lower case input into upper case unless instructed otherwise.
SOS will, whenever possible, determine that the terminal has lower case
letters (see the monitor TTY command). If the TTY mode is not carrectly set,
you can set it by the sequence of commands illustrated below.

148

Example 26 Using a2 terminal with lower case

JTY LC

.edit garble.doc
£em37

#¥p100

00100 This document describes the GARBLE system of
x

Note that when using the WU300 terminals, the "all caps” switch must be
turned off, or the terminal will convert lower case letlers to upper case
letters before transmitting. The TI700 terminals have an "upper case” shift
lock in the upper left corner which performs the equivalent function,

When in intraline edit mode, a "skip" or "kill" command will interpret its
argument in the exact case it was typed in. Thus in the last example, a skip
to "r" from the beginning of the line will stop in "describes”, while a skip to
"R" will go (from the beginning of the line) directly to the R in "GARBLE".

Using terminals with only upper case

Most terminals available are Teletype model 33 terminals, which have
only upper case letters. Occasionally it is necessary to create or edit a file
containing both upper case and lower case letters on one of these terminals.
SOS allows the case of the input character to be shifted by preceding it with
a question mark (?). In normal mode, for example, "A" represents "A", and
"JA" represents "a". By changing the mode, "A" will represent "a" and "7A"
will represent "A". This is shown in the example below. Note that to get a
question mark, two question marks must be typed, ie., the typein "??"
produces the single character "% ,

E’xamQA le 27 Lower case from al’teletype

.EDIT GARBLE.DOC 7
*P100

00100 T7H?I?S ?D?Q?CPUPM?PE?N?T ?D?E?S?C?R?I?B?E?S ?T?HIE GARBLE
C?STYIS?T?E?M 707

*<LOWER

xP100 ‘

00100 7?THIS DOCUMENT DESCRIBES THE ?G7ATR?B7L7E SYSTEM QF
*

One of the typical problems one encounters when using SOS from a
teletype is failure to set mode LOWER, and thus having all the text typed in
the opposite case. Because of the frequency of this occurrence, Rich Neely
added the V command. The intraline V command (for inVert case) has
already been described. Here we will describe the V command as a
command. :

There- are actually three V commands: .

149

VU - Change all aiphabetics to upper case
VL - Change all alphabetics to lower case
VV - Invert the case of all alphabetics
Example 28 The V commands
00100 This is some

00200 UPPER CASE and
00300 LOWER CASE text

00200 upper case fext

00300 lower case TEXT

150

Trouble (and how to get out of it)

This section describes typical problems and how to get out of them with
a minimum of pain and data loss, whenever possible,

Problem: ?QUOTA OR STORAGE EXHAUSTED O}\J str

Cause: There is no more room on the disk structure named for either the
temporary edit file or the completed copy of the file {depending upon
what you were doing).

Solution: (1) Type "CONT" repeatedly until you can sucessfully gain control
and End from the editor. Otherwise your edit will be lost. Do not type
any other command {(exceptions are noted in the PDP-10 user’s manual)
as this will probably destroy your core image.- Especially do not do a
"SYSTAT" of any type.

(2) Type the following sequence to delete files you know to be junk, and
resume the edit: ' -

DET _

FROM JOB n userid

.LOG userid

login sequence ...

DEL *REL,*LST, etc. ; delete files you do not want
ATT n ; reattach to edit job

FROM JOB m userid

.CONT

When you sucessfully complete your edit (immediately; do not wait) be
sure to re-attach to job m and kill it (K/F). ' '

(3) If you are not actually editing, but are only examining pieces of a
file, specify the /R switch (meaning "readonly™) to the EDIT command,
e.g., EDIT file/R. No temporary file will be created, and hence no disk
space required. Any commands which would change the file are
considered illegal.

(4) Yell and scream. This is often the most effective method because
someone in the terminal room will begin to feel guilty and go delete some
useless files, thus giving you enough space to continue on.

Problem: Accidental typing of TC

Solution: Type "CONT". Almost any- other command will destroy your core

image (for exceptions, see the PDP-10 user’s manual).

Problem: Sudden return to monitor from intraline edit

151

Cause: You have accidently typed TC in intraline edit mode. 1t is not echoed,
so there is no direct evidence that this is what happened.

Solution: Handle the same as any accidental typing of TC, by typing "CONT™,
You should then type a carriage return (<cr>) to return to the editor
command mode. This minimizes confusion about where you are in the _
line. :

Problem: Carriage return in ALTER mode keeps giving new line numbers
instead of terminating the ALTER.

Solution: Type an altmode followed by a carriage return. You have been in

intraline insert mode. Use the Join command (J) to glue together the

broken line {(see example 19). : . -

Problem: *QUT OF QRDER%

Cause: A line number is out of sequence, ie. lower than its predecessor.
+ This may be caused in several ways:

(1) A Copy or Transfer command for which an increment of 1 was
insufficient, e.g., copying 7 lines to the space between lines 200 and 205.

(2) A Justify command (which renumbers the lines) which created more
lines than originally existed {you should set INC=3 or some other small
value before justifying lines to avoid this problem).

(3) Accidental or deliberate removal of a page mark ("D/n" removes the
page mark for page n).

Solution: Renumber either the entire file (N command) or the offending page
(N,/m for page m). If a page mark was accidentty deleted, you can now
go back and put it in, and renumber the newly-created page.

Problem: Typed an altmode on a line in normal Insert mode.

Solution: Use the IL command to retrieve the tost line. See example 19.1.

Problem: Lower case letters print with question marks (instead of printing In

lower case).

Soiution: Set mode M37 («M37).

Problem: +LINE TOO LONGx*

Cause: A line longer than 177 characters was found while reading the file.
(Note: question-mark characters which print as two characters still
require only one on the line).

152

Solution: R SOSBIG, a special version of SOS with extra-long buffers.
Otherwise this version is the same as S05. SOSBIG cannot be called
with the EDIT command.

Problem: System crash.

Solution: Cry. Then resolve to set SAVE and ISAVE the next time! Note: It
is occasionally possible to recover some or all of the ediling lost. Look
for a file nnnSOS.TMP (where nnn was you last job number, e.g. job 4
creates a file 004S0S.TMP). Then do the following:

.REN HOPE.TMP=nnnS0OS.TMP
.R FILCOM
*TTY:«HOPE. TMP,input.fil

i.e., you compare the contents of HOPE.TMP with the contents of the file
you were editing. If HOPE.TMP seems to be more complete, then
continue to put changes in it, instead of the original file. NOTE: do not
delete the opriginal file until you are absolutely certain that HOPE.TMP is
correct! The reason that the RENAME command is used is that some
people use SOS to look at their temp file instead of using FILCOM. If
they happen to have the same job number it is obvious that this method
fails.

153

Patterns in Find and Substitute

This section may be ignored by most beginners. It is included in this
primer because a good explanation (with examples) does not appear
anywhere else. There are more details in the SO5 manual, pp. 22ff,

Certain special characters may be included in the search string for Find
and Substitute commands. Rather than being interpreted as characters, they
are interpreted as requests to match a class of characters which they
designate. These characters are (as described in the $0S manual, and
repeated here for convenience): '

Char Escape Function

| 7 - Will match any "separator”, i.e., anything not a2 number, a
letter, or the symbol period, percent, and dollar sign (., %, and $8).

Y ?/ Matches any character.

- 7% Not the next character, i.e., inverts the match. Thus A-BC
matches all strings of the form AxC, for “x" any character except
B. - will match any Iletter (not-separator). The special

sequence -Y matches either the beginning or the ending of a line.

o 7 Means "any number of" the next character {from O to
"infinity™). ' :
2 7 Quotes the next character (this is what you use to search

for one of the above characters, e.g., to find a vertical bar you
must say "F=|", not "F|" (which finds the first separator).

We will now consider an example. In all examples, we will not print the
line numbers, but you may safely assume they are present. You may have
done an EDIT /N, for example. In all cases, the "formal" pattern will be
given, followed by the escape-character equivalent in parentheses. Only the
graphic display processors (GDPs) have the full SOS character set available
at the keyboard. On all other devices you will have to use the escape
conventions. In the first example, we have a file of names and addresses.
We wish to locate all people who are listed with only initials for their first
names, for example, so we can change this to their full first name. Our input
file is:

154

J. Smith
5075 W. Ave. v
Gorp, Pa, 16111

H. Q. Bovik ' ‘ IR
4150 ScH Hall
. Pittsburgh, Pa,, 15213

Alan J. P. M. Shaft
4150 ScH Hall
Pittsburgh, Pa., 15213 .

We already know that the sequence -| (27)) will match any letter, so we try
the command "F-|.$,999" ("F?7|.$,999") with the following results:

J. Smith.

5075 W. Ave.

Gorp, Pa, 16111

H. Q. Bovik
Pittsburgh, Pa,, 15213
Alan J. P. M. Shaft
Pittsburgh, Pa,, 15213

Obviously our search string was too general. [t matched any séquence of a
letter followed by a period. Upon examining the file, we find that all first
initials start at the beginning of a line, so we use the special
beginning-of-line sequence =Y (?7?/) to help us in the search. For the
command "F-Y-L" ("F?7?/?7).") (literally, "the beginning of the line, followed by
a single not-separator, followed by a peried"), we get:

J. Smith
H. Q. Bovik -

The patlterns may become arbitrarily complex. If they become too
complex for SOS to handle, it will complain; this does not usually occur.

Now that we know we can find a certain piece of data, let us change it.
This example is contrived in the sense that it probably does not make any
sense for a real file, but it is pedagogically simple. We wish to replace the
first initial of a name by the string "+xxINITIAL##x". For this we can use a
Substitute command. The first argument to the Substitute command is the
"old string"; actually, it is used to Find the old string. The second argument
is the "replacement siring”, in this case "+xxINITIAL*2#",

£8 -

*5-V~| Sx=s5INITIAL £x48 (S?72/77].8+x+INITIAL2#2$)
%k]N]TIALx#x Smith

+xxINITIAL*xxx Q. Bovik

+*

155

This may be useful in flagging all the initials in some obvious way so that
they can be seen on a printout. However, il does destroy the actuat initial.
In order to preserve it, we can use the “partially specified string"” indicator
in the “replacement string™ portion. The specification dnd (?#n?%) indicates
that the nth partially specified string in the "old string" portion of the
command be used for the indicated portion of the replacement string. Thus
the command "S|.$313MIDOTIE" (S|.87x17sMDOTHY) will replace all occurrences
of a separator followed by a period by the same separator (310 [?£17¢] is
the string which matched the |) followed by the string "MDOTIM™. QOur only
anomaly, which this example was specifically contrived to point out, is that
the partially specified string -Y (?77/) must be counted. Thus the actual
initial can be specified in the replacement string as 320 (?#2%+) . Thus we
get '

*B
T xS-Y-| S INITIAL#2£"320"8
(S772/77).$x++INITIAL+2£"?£27+"8)
*xxINITIAL+££"]" Smith
*x+INITIAL*xx"H" Q. Bovik

156

LIST OF EXAMPLES
(See index for page numbers)

Example Description
Creating a file
Terminating an edit
Typing a file
Simple editing
Interpolated insertion
Printing part of a file
Linefeed and altmode commands
Listing a file
The exclamation point
Copy and Transfer commands

" The Number command
The SAVE and ISAVE parameters
Multipage file
Period and asterisk designators
The Go command
Intraline skip and insert
Intraline delete and Kkill
Intraline skip and change
Intraline accept and rubout
The Join command
The IL command
The Find command

—
OQWENOT LWN-

bt i
U

N = bk bt b b b b s
QUWINAUDWN:
[o —

21 The Begin and Find commands

22 The Substitute command

23 Aborting an edit

24 The = and « commands

25 Removing line numbers

25.1 Editing a file without line numbers
26 ' Using a terminal with lower case
27 Lower case from a leletype

28 The V commands

{{), command

(1), example

(1), line feed

(=), pattern match char.

(c0), pattern match char.

{3), pattern (for Substitute)
(¥), pattern match char.

(82) (backspace pointer), example
(gm) (rubout, Backspace pointer)
(o) (accept character), example
{..) {accept character), intraline
(1) (carriage return), example
{1) {(carriage return), intraline
(=), pattern match char.

{1, example

("), far specifying ranges

(3y Altmode

(8) Altmode, accidental

(8), command

(8}, example

(%), example

(%), Last line on page

(.), example

(.), Current line/page

(.), example

(/), example

{/), Page specifier

(:), example

(:), for specifying ranges

(=), command

(=), example

(?7), pattern match char.

{7), pattern match char.

{?), escape character

{7), example ,
{7+), pattern (for Substitute)
{?/), pattern match char. '
(?7), pattern match char.

{?:), pattern match char.

{]), pattern match char.

{TC) Control-C

(<), command

(<), example

N switch, to E command

/N switch, to PIP
/R switch (to EDIT command)

; (column skip), intraline

157

INDEX

131
131

131

153

153

155

153

141

139

141

139 .

140, 141

139

153

132, 142

132

129, 131

143, 151

131

129, 131, 133, 137
136, 137, 144
136

140

136, 146 '
137, 140, 141, 142, 143, 144, 146
136, 137, 140

135

131, 133, 134

132

146

146

153

153

148

148

155

153

153

153

153

145

146

135, 146, 148

146, 147

146, 147
150

140

A (Add), intraline

A {Alter), command
A {Alter), example
Aborting an edit
Advanced commands
ALTER mode, errors
Altmode

Altmode, accidental
Altmode, example
Asterisk, example
Asterisk, line specifier

B (Beginning), command
B {Beginning), example
Basic commands

C (Change), example
C (Change), intraiine
C (Copy), command
C (Copy), example
TC, accidental

1C, deliberate

Colon

Colon, example
Commands, advanced
Commands, basic
Commands, intermediate
CREATE

D (Delete characler), example
D (Delete character), intraline

D (Delete}, command
D (Delete), example
DSKNUMS parameter

E {(End), command

E (End), example
EDIT command

Error LINE TOO LONG

Error QUOTA EXHAUSTED

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example 11.1
Example 12

—oONNOU D WN —

158

140, 142
139
140, 141
145

139
142, 151
131

143, 151
129, 131, 133, 137
136, 137
136

139, 143
144
129

141
139 .
133
133
150
145
132
131, 133, 134
139
129
133

‘129, 138

140
138
130
130, 132
146, 147

129
129, 138, 147
130, 138, 145, 150
151 .

150

129

129 -

129

130

131

131

131

132

132

133

124

135

135

Example 13
Example 14
Example 15
Example 16
Example 17
Example 18
Example 19
~ Example 19.1
Example 20
Example 21
Example 22
Example 23
Example 24
Example 25
Example 25.1
Example 26
Example 27
Example 28
Examples, list of
Exclamation point
Exclamation point, example

F {Find), command
F (Find), example
Find, patterns in

G {Go), command
G (Go), example .

H (HELP) command
TH, intraline

I (Insert character), example
I (Insert characters), intraline
I {Insert), command

© I (INSERT), command

I (Insert), example

IL (Insert Last), command

IL (Insert Last), example
«INC, example

=INC, example

Index

Intermediate commands
Interpolated insertion
ISAVE parameter

J {Join}, command
J {(Join), example

K (Kill), example
K (Kill}, intraline

L {List), command
L {(List), example

159

136
138
140
140
141
141
142
143
143
144
144
145
146
147
147
148
148
149
156
132
132, 142

139, 143
143, 144
183

133

138

127
139, 141

140
139

130

130

130, 131, 146
139

143

146

146

157

133

131

134, 135

139, 142
142

140
140

130
132

L {print Ling, continue), intraline

Line feed

Line feed, command
Line feed, example
Line numbers, removing
LINE TOO LONG error
List of examples
Logical pages

Lower case terminals
LOWER command

M (Mark page), command
M (Mark page), example
M (Munch), intraline

. eM37 command
Miscellany

N (Number), command

N (Number)}, example

,N switch, to E command
/N switch, to PIP

O (windOw), command

P (Print line, resume), intraline
P (Print), command

P (Print), example

Page marks

Pages

Pages, logical

Partially specified string
Patterns, Find & Substitute
Period, example

Period, line specifier
Period, page specifier

PIP

Q (Quit edit), intraline
QUOTA EXHAUSTED error

R (Replace), command

R (Replace), example

R (Replace), intraline

/R switch (to EDIT command)
Ranges, specifying
Removing line numbers

S (Skip), example

S (Skip), intraline

S (Substitute), command
S (Substitute), example
SAVE parameter

Set command

S0S.DOC

160

140
131
131
131
146, 147
151
156
135, 136
147, 148
148

133, 135
136
140
148, 151
146

133, 134
134, 136, 151
146, 147
146, 147

130

140

130

131, 132, 136
135
135, 136
135, 136
155

153

137

136

136
146, 147

139
150

130
130, 138
140
150
132
146, 147

140, 141
140
139, 144
144, 154
134
146
127

SOSBIG program

Space (accept character)
Specifying ranges
STORAGE EXHAUSTED error
Substitute, patterns in

T (Transfer), command

T {Transfer), example

T (Transpose), intraline
Terminals with lower case
Terminals with upper case
TTY {monitor command)
TTY LC command

TU (Restart edit), intraline
Upper case terminals

V {inVert character), intraline
V {Invert), command

V (Invert), example

W (save World), command

X {(eXlend line), intraline

TC, accidental

1C, deliberate

TH, intraline

TU (Restart edit}, intraline

«M37 command

161

152
139
132
150
153

133
133
140, 142
147
148
147
148

140
148

140

149

149

133, 134, 145
140

150 .
145

139, 141
140 .

148, 151

162
TECO

C. D. Councill with script by T. Teitelbaum

TECO 1is the "text editor and corrector" provided by Digital
Equipment Corporation (DEC) for creating and editing files recorded
in ASCII characters on any standard device. It 1is an interesting
anomoly since it can serve as a simple editor, but can also be used
as a programming language. It can perform simple editing functions
as well as sophisticated search, match and substitute operatiens, and
operate upon arbitrary length character strings under control of
commands which are themselves character strings (and can exploit this
recursiveness). VWhen one knows how to use it, TECDO can be extremely
versitile. It is not, however, everyman's editor,

At present, TECO on the PDP-10 has no maintainer; TECO, since
it is the major editor, on C.mmp is maintained by Eric Woudenberg.
On the PDP-10, there is very little on-1line documentation for TECO. -
In fact, the only document, at present, consists of a 1list of the
changes made to TECO by past CMU maintainers of the program. DEC
publishes both a TECO reference manual and an introductory manual
which are available at the PITT Bookstore if you truly wish to learn
this editor/language. : :

Below is a script written by a past TECO enthusiast which
shows some of the uses and methods of TECO.

SCRIPT TECO

TECO is a text editor. The text being edited is stored
as a single character string in the TECO buffer. This buffer
is always just as long as the string it contains. The ‘
boundaries of the buffer cells are numberd starting to the

Z left of the first character with zero. The index of the
boundary to the right of the last character is known as "Z2".
Thus, the buffer containing the string "ABCD" may be pictured

as:
lA] B} C]| D]
0 1 2 3 4 = Z
M,N A subfield of the buffer is desgnated by the integer pair,
“M,N", where MKN. Thus, in the example above, the subfield
"]1,3" currently contains the string "BC". We may refer to

H the whole buffer by "h" which is really just an abbreviation
for "0,Z". : .

163

{CR> Text in TECO has no line numbers, unlike S0S or LINED.
The RETURN key of the terminal is treated like any other
symbol, with the exception that it is input to the buffer
as the two characters "carriage-return® and "line-feed™.
Thus, the line: ’

ABCD<{CR>
will appear in the buffer as:

P A L T

Associated with the buffer is a cursor which can be moved
to point to places of insertion, deletion and so forth.
The current boundary position of the cursor is known as ".".

x : TECO signals that it is waiting for commands by typing a "*“.
Arbitrarily many commands may be strung together in a command
53 string which is terminated by two altmodes (ESC on some

terminals). Note that the altmode echos as a "3". On
receiving the 3 TECO will interpret the command string
from left to right, then will return to the user for more
by typing a "*",

Let us now use TECO to create a file called SCRIPT.TEC.
Remarks added after or during the session will appear
intermittently and will be indented.

We will entér from PDP-10 monitor mode with the command
"MAKE". This is used when & new file is being constructed.

.MAKE SCRIPT.TEC

*2=53 What is the value of "2"?
2
* =% . Where is the curser?
0 .
* . =Z=33% ‘ Where is the cursor and where is
0 the end of the buffer?
Q
* . =%$7=3% An altmode (%) between commands is
0 optional to improve clarity.
0
*HTES Type the whole buffer. 1It's empty.
*JTABCD ' : Insert the line "ABCD" and
SHT$3 type the whole buffer. The text of
ABCD the insertion stops at the first altmode ($).
* _=Z=3% ' Where is the cursor and the end of
the buffer?)
6 Cursor is after the last insertion. .
6 : Buffer is 6 long (remember two for {CR>{LF>).
*TEFGH Insert some more lines. Insertion is
TJKL always made at the point of the cursor.
MNOP

53

*HTS$$
ABCD
EFGH
1JKL
MNOP

xJ_ =83$

0
xCC.=$$
2
x-2C.=3%
0

*6D3%
x_-5%

0
x7J-6DHTSS
EFGH
TJKL

*0, 6KHTSS
1JKL
*HK$$

* JONE
TWO

THEE

35
*-2T$S
TWO

THEE
X-LTSS$
THEE
XCCTSS
EE

*IR$S
*OLT$S
THREE
*LIFOR
FIVE

8%

*x JSFOSTES
R .

1*JUSOLTSS
FOUR
*ISIX
SEVEN
EIGHT
55
*HT3S
ONE
TWO
THREE
SIX
SEVEN
EIGHT
FOUR
FIVE

164
Type the whole buffer.

Move the cursor to the beginnihg of
the buffer.
Advance the cursor two.

Move the cursor back two.

Delete six characters to the right of
the cursor and left adjust string
in the buffer.

Jump the cursor to the end of the
buffer, characters to the left and
type the whole buffer. :

Kill the subfield between 0 and 6.
Note that 0,6D won't work.

Kill the whole buffer. '

We insert some lines so that we can
exhibit the 1ine oriented commands.

Type the previous two lines.

Move the cursor back a line and
type one line. .
Move the cursor forward two characters
and type the rest of the line.
Insert the correction.
Return the cursor to the beginning
of the line and type the line.
Advance the cursor a line and
continue inserting.

Jump to 0 and search until "FO". Note
that the cursor is placed after the
pattern is found.

Insert the correction and type the line.

Continue text insertions.
Type the whole buffer.

We fargot to move the cursor before this
insertion and so it was misplaced.

*JSSIXBOL.=35
17
*3LTHD
FOUR
x17, .XA3S
 *17, K53
*ZJGADS
*HTHS
ONE

. TWO
THREE
FOUR
FIVE

SIX
SEVEN
EIGHT
*-ZK$5
*¥2J-2T$3
FIVE

SIX
*EXD3
EXIT

.TECO SCRIPT.TEC

*1000<A>ES

*HTSS
ONE
TWO

THREE
FOUR

FIVE

SIX

*J5¢S |
$-2D1 $>83
*HT$$

ONE TWO THREE FOUR FIVE SIX

*JC(S $;-DI
585
*HT33
ONE
TWO
THREE
FOUR
. FIVE
SIX

165
Use search to place the cursor at

line "SIX". Type the cursor position.
Place the cursor three lines down.

Save from 17 to . in register A.
Delete same subfield in buffer.

Jump the cursor to the end and get
(insert) register A. Type the whole
buffer. Ahh, that's better.

Delete the previous two lines.
Assure that the cursor is at the end
and type the previous two lines.

Exit. This will write out the buffer
to the opened file "SCRIPT.TEC".
and return us to PDP-10 monitor mode.

Editing existing files is done with a TECO

command which fetches the first few
characters.

A backup file (e.g. SCRIPT.BAK) is
alsoc made.

The remainder of the buffer is filled
using the APPEND command. Values
greater than 1000 may be needed for
large files.

Make sure your buffer is full by typing
it or the last few lines of it.

Here 'specific' iteration is used to
change the first 5 occurrences of
carriage return/line feeds (<CR><LF>)
to blanks.

The commands in the brackets are
repeated as many times as is SPEC.

'Arbitrary' iteration (indicated by the
absence of a number and the presence of
a ;) iterates until there is no
match, then the brackets are exited.

*J5¢S
$-DI
$>53
*HT$S
ONE
TWO
THREE
FOUR
FIVE
SIX
*J<S0$; 0LTSL>SS
ONE
TWO
FOUR
*HTS
ONE
TWO
THREE
FOUR
FIVE
SIX
XQUASJCS

166

Type the whole buffer.

A frequent use of iteration is to
"print all occurrences". -

Type the whole buffer again.

Interpretation of this command string
is left as an exercise to the reader.

$;-2C3.-QAUBSQC-QB"LQBUC'H.+2UASL>S0UASISQC+1UCELS
$;-2C.-QAUBSQA+QC+2UASGLEQC-QBCI $>LOHTSS

ONE
TWO
THREE
FOUR
FIVE
SIX
*EXBD

EXIT

Finally, a return to monitor mode.

==

TRUBOUY
(sp)

167

C ~-MU PDP-10 TECO QUICK REFERENCE GUIBE

—-~Halp Shaest Convantiong---

meann conirol character n,

means uparrow then character n.
means not equal to.

rubout or delete charactar.
EPACE.

ESC or ALT depsnding on tarminal.

——<Inittalization and File Selection~=--

dav: filnam.ext{ppn] File specificatlions

ERfilespec3 Seiact tile for input
nEN Poeition magnatic tape
Edfilespecs Zero directory and

EHtI lespecs
EB1ilespecs

MAKE filespecs
TECO filespecs

[o+]

I? N~
= |

m+n
mn

m%n
m/n
mé&n
mén

10

nPH

nP

m, nP

EF
1tZ or 12

EX
EG

galect {i1le for output.
Selact file for output.
Select file for Iinput
and output, with backup
file protaction.

Sanme as EHtilespacs.
Same ag ER{ilespecs YS.

=«=Input~--

Input one pags i buifer empiy,
Input one page and append to currant
butfer contents.

~--Butfar Positiong~~~

Betore first character; 0.

Current pointsr position

Number of characters in the buifar.
m+ist thru nth characters in butfaer.
Entire butffer; B,2.

---Argument Operatorg---

Add.

Rdd.

Subtract.

Hultipty.

Integer divide.

Logical AND.

Legical OR.

Periorm enclosed operations first.
Rccapt number in octa) radix.

—-~Output and Exit---

Output ihe current pags and append a
form fead characlar to it n times.
Output the currani pags, claar tha
buifer and read in tha next pages.

Do this n times.

Output tha m+lst thru nth characters,
don’t add form feed or changa butfer,
Close the output file.

Close output file, exit to monitor.
Exit 10 monitor.

Output remainder of the {ile, close
the output file, exit 1o menitor.
Same as EX except execuie the last
compile class command issuad.

nJ

nC
nR
nl

nQ
-nl
nk
m,nk
Htxts

Ttxts
nls
al/txt/

n\

v
W
tt

nT
m,nT
n=
N=e

1E7T

gET
8EU
1EY
-1EU
-1E8
nES (n>8)

BES
TAtx 1R
H oor
10

8EQ
nEQ {ndd)
1EH
2EH
3EH
9EH

-~-Pointer Positioning---

Juwp pointer to position batwean nth
and nselth charactars.

fidvance pointer n positions,.

Hove pointar back n pesitions, a-nC.
Move pointer n iines,

--=Palation-=-=

Delete n characters foflowing pointer.
Delete n characlers preceding pointer.
Delete from pointer thru n Jines.

felate m+ist thru nth characters.

Delats from . to start of txt in buffer.

——-Ingertion---

Insart “txt" into buffer.

Insart an ASCII n (decimall,

Insart "txt" delimited by character
follewing I into butfer.

Insert the ASCI] representation of the
decimal Integar n.

Traneiate to lower case.

Translate to upper cass.

Hhen used in text arguments this means
translate spacial characters &8,{,\,],T,«
to "lower case" ranga. :
Accept next charactar as tax?.

Used in taxt arguments te cause afl
control characters except TR, 17, and $
to be taken ag text. Nulled by second 1T,

~waType Out---

Type newt n lines of the bufier.

Type tha m+ls! thru nth characters.
Type tha dacimal integer n.

Type the octal Integer n.

Change typsoutl nade 5o no substitutions
ara made for non-priniing characters.
Restore typsout mode to norwal.

Flag lower case charactars on typeout.
Flag uppar case characters on typaout.
No case flagging on typsout.

Set automatic typeout afier ssarches.
Set autanatic tupeout after searches
and include a character 1o indicate

the position of the pointer.

Set to no autonatic typeout after searches.
Type the text enclosed by 1R,

Type a form feed.

Inhitit typeout,

. P

Restore the E0 value to standard.

Set the EQ value to n.

Type only code part of error messages.
Type error code plus ane {ins,

Type all three parts of error.
Equivalent te 2EH.

168

C-MU PDP-10 TECO QUICK REFERENCE GUIDE

-w=Sparch---
nStxt$ Search {or the nth pecurrence
of "txt", do not go bsyond the page end.
nFSt1xt3txt$ Do an nStxt3$ then repliaca found string with
second string, don’t go beyond the pags end.
Same as nStxt$ except pages Will
be output and input till "txt™ is tfound.
NnFNtxt3txtE Same as nFStx13tx13 except that an

Ntxt$ type search is done.

nNtx1S

neixtS Same as nNtx13$ except pages ars not output,
but thrown away. (be carstuil)

inStxt$ Like nS5txt$ except return -1 1{ successtul
or B if failure instead of an srror nessage.
Can also be used with FS,N,FN, and ~.

enS/txt/ Lika nStxt$ except that "txt"™ to be

searchad for is delimited by character that
foilows §. May be used With FS,N,FN, and »,
81X or BtX Raset search node to accept either casae.
niX or ntX Sat search moda to "exact®™ moda.
n # 8)

T Translate to lower casa.

TH Tranclate to uppsr casa.

1 Sa~~ ~c whan usad kith Inzart

™ T fiz--» -axt character as text.

T Same as when used with Insaert.

™ Used insida search arguments to indicata

accapt either case for follonwing charactasrs.
Nulled by second Th.

™ Used in a search string, match any charactar
at this position in the found Etring.

15 Match seperator character at this position.

TNa Accept any characier excapt the arbiirary
charactar a at this position.

Ta Taka the next characler in the search string
literally, even if it's a contirol characiar.

TER Accept any alphabatic characisr as a match.

TEV Accept any lower case alphabetic character
&s a match.)

TEH Accept any upper case alphabatic character
as a match.

TED Recapt any digit as a match.

TEL Rccept any and-of-ling charactar as a match.

1TES fccapt a string of spaces or tabs as match.

tE<nnn> fccept the ASCII character whose octal value

is nnn as a match.
TEla,b,c...] RAccept any one of the characters in
brackgts as a match.

---0-Registar---
nUi Store the integer n in G-register i.
Qi Equal to the value stored in Q-register 1.
i Increnent O-reg i by 1 and equal this value.
nXi Store in Q-reg i, text from the pointer to

the nth line.

m,nXi Store m+lst thru nth characters in Q-reg i.
Gi Place the text in Q-reg i info ihe buffar.
Mi Execute text in O-reg i as a command siring.
Li Push contents of Q-rag i onto the (Q-mtack.
1i Pop contenis of Q-stack into G-reg i.

xi (As first command in a string.) Save tha

preceding command siring in Q-reg i.

—wulteration and Flow Control---

ne> Do tha enclosed command string n tlmes.
ny If n>=B }ump out of ths current itferation.
} Juwp cut of the current iteration it
the last search tailed.
1tag! Define a position In the comamand string
with the nams "tag®.
Otags Jump to the position defined by ltagl.

n"Ecands’ If n=@, execute comnmands betwsen E and '}
otherwise skip to the *,

n"Ncands® [f n#8, execute enclosad commands.

n"Lennds’ 11 n<B, exscute enclosed commands.

n"Gennds® 14 n>B, execute encicsed commande.

n=1"Leands’If n<=8, execute enclosed commands.

n+l"Geande’ I1 n>=8, executs enclosad commands.

n"Ceands’ If n is the RSCII] value {decimal) of a
symbol character, executa ’cmnds’.

n"Ocnnds’ If n is & digit, execute ’cmnds’.

n"Acands’ If n is aiphabetic, executs ’'cmnde®.

n"Veands* If is lower case alpha, execute *cmnds’.

n"Hoxndg’ If is upper case alpha, exscute ’cwmnds’.

n"Tcands’ It n is true, sxecuta ’cands’,

n"Fcands® 14 is false, executs 'cmnds’.

n"Scands® If is successful, exscuts ’cwmnds’.

n"Ucande’ If n is unsuccessful, execute *cmnds’,

33233333

~--Special Numeric Values---

18 ASCI1 (decimal) of character atter pointer.
1E or TE form feed flag, =8 if no form tfeed
was read on last input, othernise -1.

tN or tH End of file flag, =-1 if end of input file
sean opn last input, othernise 8.

1F or tF Dscimal valuas of conscle data sHitches.

1H Time ot day in B80th’s of a sacand.

niH n=1 DEC date. n=2 then -1 |4 in PROFILE.

ET Typeout mode Exitch =8 norm, -1 othernise.

X ar TX Search moda tlag =-1 exact, 8=sithar cass.

EU Valua of EU flag. =1 Flag upper casa chars,
8 flag lowsr casa chars, -1 don’t flag.

EO Value of E0 flag =1 for v2la, 2 for v228v23.

EH Value of the EH flag, =1 code only, Z code

pius ona lina, 3 all of error massage.
T1x or Tix £qual to the ASCI] value (decimal) of the
character x following Tl.
\ Equal to the decimal value of the digit
string foiloning tha buffer pointar.

1T or 1T Stop command execution and then take on
the RSCII value (decimal) ot tha charactar
typed in by ths usar.
~—-Aidg-=~
/ Aftar error to type out detaiied message.
#i Used at ths beginning of a command string,
this causes the entire command string
to be moved into O-registar 1.
? After an error, types tha bad command.
? Enter trace moda. R second ? command takes
TECO out of trace moda.
TRUBOUT Erase tha last char typsd in command string.
1616 Erass the entire comnmand string.
it Erase everything back 1o the fast linefeed.

16 (sp) Retype current |lne of comwmand string.

169

XCRIBL---A Hardcopy Scan Line Graphics System for Document Generation?

R. Reddy, W. Broadley, L. Erman, R. Johnsson, J. Newcomer, G Robertson and.
J Wright :

* In eertain areas of computer science research, conventional line printers and
graphics terminals have proven to be inadequate output devices. Typical problems
such as a display of digitized (speech or visual) data require either displaying a very
large number of (flicker-free) vectors or simulating gray scale output.. The need for a
hardcopy computer output device capable of producing arbitrary type fonts, graphics,
and gray scale images has been obvious. The XCRIBL system, developed at Carnegie-
Mellon University (CMU), using a Xerox Graphic Printer (XGP) driven by a minicomputer
represents an inexpensive solution to the problem. Careful design of data structures -
and interface permits the minicomputer to generate each scan line for the XGP as
needed without having to resort to brute force solutions. Although the XGP was
designed over ten years ago, it had not found wide acceptance as a computer output
device because of the excessive processing time and memory requirements of scan-
line generation. ' '

The XGP is a facsimile copying machine originally designed for transmission of
‘documents over high bandwidth telephone lines. It has adjustable resolution; the one
described here is operated at 192 points per inch which is equivalent to an image of
‘approximately 3.5 million bils for an 8%x1} page. Because of its high resclution each
page can contain information equivalent to two pages of conventional computer listing.
The XGP printer is a synchronous device, requiring a complele raster line every 5 -
milliseconds. In order to make the project economically reasonable, a.decision was
_made to use a low-cost minicomputer, a Digital Equipment Corporation PDP-11, with a
28k (16 bit) memory. The limited computing power of the machine influenced many
design decisions, such as the inclusion of “modes™ of operation of the interface.

The usual Xerox process consists of reflecting light from a printed page onto a
selenium drum. The change in electrical charge on the drum caused by the light is
used to transfer the "toner” to paper, where a high temperature “fuser” makes the
image permanent. Instead of reflected light, the XGP uses the image generated on 2
cathode-ray tube, one scan line at a time. The image on the CRT is produced by
.facsimile transmission or, in this case, under computer control. The image is
transferred to unsensitized 8%x1l inch continuous roll paper at a speed of 1
inch/second; the paper may be cut to size automatically under computer control.

_ The PDP-11/XGP system operales as a peripheral device o the main computer, a
PDP-10. The character set descriptions for various type fonls may be stored on a

tThis research was supported in part by Xerox Corporation and in part by the
Advanced Research Projects Agency of the Department of Defense uncer contract no.
F44620-70-C-0107 and monitored by the Air Force Office of Scientific Research. We
would like to lhank Bill Gunning, Dave Damouth, and louis Mailoux of Xerox
Carporation for their help and assistance, '

170

small head-per-track disk connected to the PDP-11, or kept on the PDP-10. Text and
graphic information are transmitted as needed from the PDP-10 across a high-speed
data link (160,000 bits/sec). In addition to textual and graphic information, the data
from the PDP-10 may also contain special purpose control information such as
changes of type fonts, variations in margins, and special formatling requests such as
line justification.

An interesting feature of the system is that every aspect of the output device now
becomes a variable when compared with conventional line printers. The character
sets, size, all margins, interline spacing, and page size are ail variable, and can be
changed dynamically during the cutput of a document. .

Representation of Information

Characters are represented internally as a rectangular bit matrix. Each row of the
matrix requires an integral multiple of 8 bits (the byte size of the PDP-11), althcugh
not all the bits of the last byte may be used. Characters may be any \mdth from O to
255 bits wide and (theoretically) up to 2"-1 bits high.

Veclors are represented in a conventional scad line format. This formatl is
necessarily different from the ordinary representation of vectors, since for most
graphics terminals the entire screen is randomly accessible. In video terminals and
hard-copy scan line devices the data must be presented in the order that the scan -
lines are generated. A software solution to the problem of vector intersection with
scan lines was chosen in order to retain the capability for flexible formatting of the
~ output. Vectors are processed in real time, and the available computing power limits
the number of vectors which can ¢ross any scan line.

Gray scale representation is achieved by dividing the page into 1/25 inch squares
(an area of .0016 square inches) in which an appropriate number of bits is set to
black {o represent darkness. This is achieved at present by using a rectangular spiral
representation of increasing darkness. Generation of gray scale images thus turns
out to be a special case of textual output in which a special gray scale type font is
used. .

The generation of a scan line which contains both textual and graphic information
is not a problem for the PDP-11 if the text and graphics is non-overlapping. If the
latter is not the case, then one has to resort to an off-line solution of generating the
bit image on the PDP-10 or restricting the character set to only fixed-width
characters. This is a restriction in the present system but may not be permanent.

IMPLEMENTATION

In this section we prévide a description of the overall implementaion of the
system. More detailed descriptions of the various aspects of the system may be found

in[1l

171

The Interfac'e

The purpose of the interface between the PDP-11 and the XGP is to accept a
coded scan line from the PDP-11 memory and decode it into a video signal, every 5
milliseconds. A scan line is a bil vector of about 1550 points, in which each point is
either on (black) or off (white). There is no gray scale available at this level. The
interface has facilities for handling three different modes of data and means for
switching between modes, as well as providing control and interrupt functions. The

LI Y

modes available are "character mode”, "vector mode", and "image mode".

in the character mode, the first byte sent to the interface represents the number
of valid bits {and consquently, the number of following bytes) which contain the data.
When the width count is given as zero, then the next byte represents a mode change
(to either vector mode or image mode) or a stop code, indicating completion of the
data. .

In the vector mode, each pair of bytes represents a run-coding of {part of) the
data. The first byte of the pair represents the number of white points and the second
byte represents the number of black points. When two successive bytes are zero,
the interface revertis to characier mode.

In image mode, every bit is treated as video information until an error condition
occurs, typically "overscan”, at which point an inlerrupt is caused for restart of the
next scan line. Because of the high data rate required, this is the only mode which
cannot operate in real time from the PDP-10; for this mode, the scan line images are
first sent to the PDP-11, where they are accumulated on the disk before being
transferred to the XGP. '

- The support system

There are two components to the support system; cne resides in the POP-11; the
other operates as a user program in the time-shared PDP-10. The purpose of the
PDP-11 support system is to generate the scan line data needed by the XGP. The
support system also services interrupts from the PDP-10/PDP-11 link, examines the
incoming data for contro! information, and selects type fonts from the disk as nesded.
All of this is done subject to the real-time constraints of the XGP.

The part of the support system which resides in the PDP-10 provides the users
with the facilities of sending text, vectors, and character sels across the link. It also
provides for conversion of vectors from convenlional format {o scan line format.

The Character Set Design System

BILOS is a system for the creation and modification of character sets and has many
facilities that are common to other interactive editing systems. Rather than
manipulating lines of text, BILOS manipulates the rectangular bit matrices which define
characters. Any bit of a character matrix may be set or reset by moving a cursor to
the appropriate point on a grid and issuing a command.

172

In addition to these manipulations, the system has facilities for copying,
substituting, translating, rotating, stretching, shrinking and reflecting characters. The
system currently runs on a storage screen display terminal connected to the PCP-10.

Document Generation Languages

The XGP provides a powerful and flexible tool for the production of printed
documents. Since there is a very low cost associated with producing a copy of a
document, the user is free to experiment with type fonts, typographic style, physical
arrangement of the text and illustrations, etc., until the desired document is produced.
The flexibility of type fonts allows mathematical or technical notation to be used
treely, without the necessity of typing or drawing the symbols on the final document. '
Furthermore, the output is "camera-ready"---a distinct advantage in light of rising
publication costs.

Two languages for text breparation exist on the PDP-10 at CMU -- XOFF and PUB.
Both have been modified to interface with the XGP and are documented in manuals
available from the Computer Science Department. :

INTRODUCTION TO LOOK

LOOK is a PDP-10 program which transmits information from the 10 to the POP-11
controlling the XGP. Complete documentation of look is available on file
LOOK.DOC[A730GR02]. Below is the sequence of commands used to print this
document on the XGP. User input is underlined, comments in lower case.

R LOOK

HIOUTA NGR25.KST file name for the a partition character set
*10UTB NGRUZ25 KST | file name for the b partition
¥e«NL=ED set the number of lines per page to B5
£XCRIBLXGO "name of the file to be printed

*1C

173

Using the XGP - '
Philip Karlton,9-Aug-76

The Xerox Graphic Printer (XGP) is the local name for the marraige of a Long-
Distance Xerography (LDX) device with a PDP-11/45 with support software. The PDP-
11 is a dedicated processor; and, even though it is capable of being a POP-11, it is
rarely used to do anything but drive the XGP, The XGP can move paper and make
black marks on that paper upon the request of the PDP-11. From now on, we will
refer to the whole thing as XGP. :

The basic paradigm for getting something printed on the XGP is to run a
program called LOOK on the PDP-10/B. LOOK does the handshaking with the XGP to
ship files and commands accross to it. If the files you wish to print are on the PDP-
10/A, then run the program BOOK and give it the list of file names you need. BOOK
will ship all the files to the /B over the ARPA net and will run LOOK for you. your

terminal will then be logically on the /B and you are free to give LOOK the commands

you wish. (It is possible to get the /A to talk directty'to the XGP by switching the
patch panel near the PDP-11 console. This is highly discouraged. If the /B is down go
ahead and consider doing it. The link from the /A to the XGP is about one hundred
times slower than the one from the /B.) .

LOOK is now ready to accept commands. The simplest command is just a file
name (default extension XGO). Once you finally get fo talkk to the XGP, LOOK will
inform you of the progress of the shipment of your file. Your. file at this point is
stored on the fixed head disk of the XGP. The printing now starts and your pages will
be curled indiscriminantly into a cardboard box in front of the XGP.

There are a large number of state variables -and commands available in LOOK.
See the XCRIBL documentation for all the gory details. PUB and XOFF (which is no
longer supported but is much faster} are capable of producmg XGO files that take
advantage of many of the esoteric features of the XGP S

Some of the simpler commands:
«AKSET=<characler set> or <number> _
«BKSET=<character set> or <number> :
IOUTAKSET <file name> -
ISHIP <file name>/<number>

Explanations follow. A large number of character fonts are available on the
system. Most of them exist on [A730KS00]. Copies of some of these are kept on the
XGP disk. The XGP System supports {unfortunately only) two character sets (A and B)
in core simultaneocusly. The default AKSET is NGR25 and the default BKSET is empty.
<file name> above refers to a file containg a character set defmltlon {Character sets
can be edited using BILOS.)

OUTAKSET replaces the A character set with one defined in the file. SHIP puts
the character sel on the disk under the access tag <number>. Nothing will be
transfered by the SHIP command if a character set <number> exists on the disk.
Storing fonts on the disk is handy if you plan lo be switching back and forth between

174

character sets without the need to transfer the character set each time. Superfluous
transfers will not be done; pick some <number> in the range 200 to 15000 that some
one else will not pick, o '

@SYS:PROGRM is not really one single command. ' Itr'causles LOCK to execute the
comands in the file SYS:PROGRM.XMD. The result is that the state is appropriate for
listing source code of programs. -

In order for the XGP 1o print your file it must be shipped first. There are many
dragons in the way of getting your file safely out onto hard copy. First, you must get
the link to the XGP. If someone else is using it, you will have to wait until she is done.
LOOK will inform you that it is waiting on getting the link. Once you have the link, you
must wait for the currently printing file to finish being printed. LOOK says nothing to
you while it is doing this. Unfortunately, this is the same thing it says if the XGP is not
running. If you cannot figure out what the state is, ask! Let ‘me repeat that: ASK!
After you have watched the magic process several times, you will become the expert
and will be able to pass on the proper incantations. It is possible to reload the XGP
System by either typing L on the console TTY if the PDP-11 is siill running or by
restarting the PDP-11 at location 173000. Errors such as "no response from high-
speed link"” do occur and they should not frighten you or make you feel that you have
broken something. Ask someone around you what to do. .If she can’t help you, then
both of you go and ask yet another person. Eventually you will find an answer.

175

1. C.mmp Algol 68 System

1.1. Qverview

The initial Algol 68 system on C.mmp accepts a PAGE, UNIVERSAL of PAGEs, or
SUPER FILE as input, compiles this source text and invokes the run-time system which
executes the program. Eventually this compile-and-go system will give way to a
compile-link-and-go system which supports separate compilation and program fibraries.

1.2. Using the System

The Policy Module O/Hydra/C.mmp system has much in common with the "Turing
Tarpit" where everything is possible and nothing is easy. The terminal user interface,
called the Command Interpreter (CI), allows each user Yo tailor the interface to conform
to the particular user’s deep-seated beliefs and light-hearted whims: concerning
terminal interfacing. Some important features which support this flexibility are the
macro and procedure (called COMMAND obiject) definition facilities of the command
language, a general directed-graph directory structure, automatic invocation of a user
profile (a designated COMMAND) at login time, and, in general, the ability to do.
anything in any of hundreds of ways. —

In order to spare Algol users some of the pain normally encountered when
setting out to use Hydra, a set of COMMANDs and macros, as well as a simple profile
have been deveioped. The following subsection describes how to get stapted on
C.mmp using these aids, The next subsection is aimed at the experienced Hydra user
and describes, in Hydra-ese, the primitives available to anyone operating in
I-roli-my-own mode. :

1.2.1 How to Do It {for beginning Hydra users)
Obtaining an account. If you do not have an account on Hydra, a request for one should
be made to the operations staff. This normally means asking Carolyn Councill or the
PDP-10 operator to get an account for you. -

Logging in. After giving the front-end the command to connect your terminal to C.mmp,
one of four things may happen. One, you may be told the host is down. Try again
later. Two, the prompt character "@" may be typed. Good. You are communicating
with_the Job Monitor (JMON) and may proceed. Three, nothing happens. To ge! some
attention, press the BREAK key (Control-K). You should receive an innocuocus message

followed by the prompt. Four, something else happens. You are on your own.

Assuming you have made it to the prompt, type: CL. Some chatter will appear on your
terminal and eventually it will get back to a new prompt, ™". Now you are
communicating with the CI; type: LOG(). The login dialogue will be self-explanatory. If
your user directory contains a COMMAND in an entry with the name Profile, this
COMMAND is invoked as the final step of the login process.

176

Creating a profile. PMO is nearly unusable without an appropriate user profile. If you
do not have a profile, create one by typing the following supplication:
&sysdirectory.Public.Algol68.CMDs.GetProfile(). The resulting profile contains macros
which help implemen! the commands described in the remainder of this sectian.

Preparing source input using S0S. A version of the SOS editor exists under PMO. The
PDP-10 S0OS Manual serves as the user manual for the PMO editar. However, only a
subset of PDP-10 SCS is available. In particular, the Copy, Transfer, Find, Substitute
and Justify commands are not implemented. -

A new file may be created and edited using SOS by typing: Create{). You will be
prompted for a file name. Your reply should be a name of one to ten letters and/or
digits. {(Other characters may be used, but some are rather dangerous.) SOS starts in
insert mode.

An old file may be edited using SOS by typing: Edit{). Your reply to the prompt for a
file should be the name given when you created the file or a null reply (i.e. carriage
return) in which case the file most recently edited or compiled will be used.

SOS may be used to examine a file in read-only mode by typing: Read().

Additiona! information about PMO SOS may be found in the file SOSC.DOC[A110LC00]
on the PDP-10A. This information is of little use to a beginner. Problems with and
complaints about the PMO editor should be sent via MAIL to A110LCO0 on the PDP-10,

Preparing source input using TECO. A version of the TECO editor exists under PMO. It
is roughly a subset cf its namesake on the PDP-10. A new file may be created and
edited using TECO by typing: Make(). The prompt for a file name should be answered °
with a name consisting of one to ten letters andfor digits. An old file may be edited
by typing: Teco{). You will be prompted for a file name. A null response causes the
last file edited or compiled to be used. '

Specifying files and file names. If you have created any programs using SOS or TECO,
your directory now has an entry called Algol. This is itself a directory, and there is an’
entry in it for every program you create. When you use one of the standard
commands, such as "Edit" or "Tece"”, and it prompts you for a file name, it looks up that
file name in your Algol directory. If you want to deal with a file that isn’t in your
Algol directory, you can do that, too; the only requirement is that you specify
completely, using the conventions of the CI, how to access the file. For instance, if
your user directory has an entry called Test, and Test is a directory with an entry
called Prog which is your program, then when "Edit" or "Teco" or whatever prompts
you for a file name, you should type: Test.Prog. If your program isn’t even on a
directory, but is in a "Capability variable” called &prog, then you should type: &prog.

You can bypass ihe-prompt by passing the proper indication of your program directly
to the command, as a parameter. For instance, you might type:

Edit{Algol.prog)
! Equivalent {o:
! Edit()

177

L3

! Source file: prog
Edit(Test.prog)

! Equivalent to:

! Edit()

! Source file: test.prog
Edit{(&prog)

! Equivalent to:

! Edit()

! Source file: &prog

Notice that these commands "remember” what the last file you edited, ran, etc. was.
That is, if you respond to the prompt by not typing anything but carriage return, it is
as if you typed the name of the last file you edited or ran. The commands do this by
maintaining a "Capability variable” called ¤tfile. At any given time, this variable
is set to the file currently in use, or the last file that was in use. Ordinarily you don’t
need to know this, but for the curious, that’s how it’s done.

Every directory entry (indeed every object in the Hydra system) has a type. Files
created by SOS are of type SUPER FILE; files created by Make{) are of type
UNIVERSAL. You'll notice that the type of each file is printed out when you get a
directory listing (see below) of all your files. SUPER FILE cannot be edited with TECO,
and UNIVERSALs cannot be edited with SOS, in case you were wondering.

Compiling and executing a program. First, type: Alg68(). The following prompt will be
typed:

Source Input:

The response should be {he name of the file to be compiled and executed. The dialog
continues with the prompt

Listing Device:

This is the first of several "option prompts” which are part of the standard dialog. For
each option prompt, there is a set of possible replies, and if you forget any of these,
you can have the system type out the whole set, by replying with "?". Any reply may
be abbreviated to only its first few characters, enough to distinguish it from all other
replies in the set. A reply must be followed by a carriage return.

Currently there is only one possible reply to the ’Listing Device® option prompt. This‘
is "TTY", indicating that a compilation listing is to be typed at the user’s terminal. A
nuli reply (i.e. a bare carriage return) indicates that the listing is to be suppressed. 'In
the future, more replies (e.g. "LPT™) will be available.

Next, there is another option prompt:

Compiler Option:

This prompt is repeated after each reply, until the user types a null reply (carriage

178

return). A list of the available replies may be found in Section 1.2.3. After the
null reply to this prompt, the compilation begins.

When the compilation is complete, a message stating the program’s code and data sizes
(in number of words) is typed on the terminal. If no compilation errors occurred, the
run-time system is called. First, however, there is another option prompt:

Runtime Option:

Like the previous option prompt, this one is repeated after each reply, until the user
types a null reply. A list of the available replies may be found in Section 1.2.4.
One of the replies is special: *'STANDOUT’. This brings on the *Standout Option’ option
prompt, by which means the user specifies what is to be the nature of the
standoutchannel, the channel on which the standard output file is opened. The
available replies are: ¢ '

LIST It is a file of the LPT subfile type, which is listed as soon as it is
closed. ' '
TYPE It is the same as Consoutchannel, the channrel for output to the user’s
_ terminal. _ '
SAVE It is a file of the SOS subfile type. More about this .iater; this is the
defauit,
DELETE Not implemented yet.

The run-time system then greets the user with some reassuring message and
commences program execution. After the program finishes, another reassuring
message appears at the terminal indicating that exscution is complete. If the user has
earlier specified the *SAVE® Standout option (or has not specified an option--this is the
default), the accumulated output from the program using standoutchannel is now
available as a file of the S0S subfile type, and the system gives the °Final Standout
Option’ option prompt. You may specify that the file be typed on your terminal, listed
on the line printer, saved in your userdirectory under the name ’Standout’, or thrown
away (it is biodegradable).

If you run a program more than once without editing it, you can sharten the
compilation-execution sequence considerably, by avoiding more than one compilation.
To do this, first type: Com68(). You should do this whenever you have done some
editing and are ready to try out the program again. This runs the Compiler, which
produces an Object Program from your program. If you have a subdirectory called
Object on your userdireciory, the Object Program will be put there; otherwise it will
be put on your userdirectory. To actually run this program, type: Run6&8().

Terminating Algo! 68. If your program gets into an infinite loop, or some other mishap
befalls it, press the BREAK key (Control-K). Ordinarily, this will cause the program to
be interrupted and forcibly stopped. You can also interrupt the compiler this way, if
you want to,

Listing a file. Type: List{). You will be prompted for a file name, and for a print name,
which is the name that gets printed on the banner page of the listing.

179

Typing a directory. To see your user directory, type: Di(). To see some other
directory, such as Algoi, type: Di{Algol).

Deleting a file. If your program is called "prog", type: del(algol.prog).

Logging out. First, type KJOB to the Cl. After it calms down, you should be talking to
" JMON again. (You may have to type another carriage return to get the "@" prompt.}
Right now, it is necessary to type KJOB to JMON as well. (In the future, that won’t be
necessary.) That wasn’t so bad, now was it? :

1.2.2 How to Do It (for battered Hydra users)

For more detailed information on how to use the facilities described in the
preceding section, the advanced Hydra user can explore the contents of the .
Public.Algol68 directory; in particular, Public.Algol68.CMDs which contains the various
COMMAND objects, '

1.2.3 Compilation Switches

Some of the compilation optlions listed below are not of interest to users; these
are marked with an asterisk. Of the others, currently all are available as
pragmat-items as well. For instance, if your program contains the pragmat

3 lower

the remainder of the program (at least up to the next pragmat) will be assumed to use
the "lower"” stropping convention.

DEBUG= Enable compiler debugging mode of operation.

GHOST= ‘ Mumbo jumbo.

LISTING Produce compiler source listing output.

LOWER Use lower stropping convention.

NAKE D= Hocus pocus filiocus. ' !
NODEBUGH Disable compiler debugging mode of operation.
NOGHOST=* Disable mumbo jumbo..

NOLISTING Suppress compiler source listing output.

NONAKED=* Disable hocus pocus filiocus, :
NOWARNINGS Do not output warning messages. ¢
POINT ' Use point stropping convention:

RES Use reserved word stropping convention.

UPPER Use upper stropping convention.

WARNINGS Qutput warning messages.

http://Public.Algol68.CMDs

180

1.2.4 Execution Switches

DEBUG Enable run-time system debugging mode of operation. This is
of some limited usefulness to users. The user is prompted for
a set of Flags’, that is, 3 number; this number is treated as if it
had been passed as the second argument to a call on Systrace
(see documentation elsewhere) in the program.

PROCESSES The user’s program is to be run on more than one process.
The user is prompted for a number of processes, which may
be from 1 to 16. Note that this is not a number of physical
PDP-11 processors, but of HYDORA processes; and that at any
time the user’s program may make use of fewer processes
than the specified number, or it may be written as if it could
make use of more; in either case it should still run and produce
correct results.

SPEEDUP Consult the implementors before using this switch.

STANDOUT See the explanation in Section 1.2.2.

}.2.5 Error Reportling

A compilation error is indicated by the printing of a vague message, the line
containing the error, and a line containing a position indicator beneath the first
character of the most recently seen input lexeme at the time of the error. A position
indicator is simply a digit printed in the appropriate position. If more than one error
occurs in a given line, the error messages, first to last, are associated with the position
indicators, left to right, respecting the following rule. if many errors occur at the same
position, the digit printed indicates the number of errors which cccurred there.

Syntax errors will normally cause some portion of the input to be ignored. For
the most part, any ignored characters are printed on the listing with equal sighs
beneath them.

No semantic processing of the program is done after the first compilation error
occurs. Naturally, the run-time system is not called if an erroris found. '

There are also abnormal situations which are not quite as severe as errors.
These cause a warning message to be prinied in the same format as an error message
except the fact that it is a warning is noted. Warnings do not cause semantic
processing to stop.

Run-time errors are normally indicated by the printing of an accurate statement
of what the problem is. This is accompanied by an indication of the source program
line which was being executed when the error occurred. :

181

REFERENCES

1 Algol 68 User Manual, HYDA68.XGO[L150AL72) /A

2 Revised Report of the Algorithmic Language Algol 68, SIGPLAN Notices,
May, 1977

3 Pagen, Frank, A Practical Guide to Algol 68, John Wiley & Somns,
London, 1976 (Available in CMU Bookstore)

4 Tanenbaum, Andrew, "A Tutorial on Algol 68", Computer Surveys, June,
1976

few valuable writings on C.mmp/Hydra that exist:

1. Proceedihgs of the 5th Symposium on Operéiing Syslams Principles;
Austin, Texas, November 1975, Section VIil has three papers that
form the best introduction to C.mmp and the Hydra Kernel.

2. The Hydra Songbook. This vigilante users® tool was first initiated by
Brian Reid and has developed with the contributions of Hydra’s many
users. A new edition will be out during Autumn 1976. The previous
edition is now about six months old and many of the specifics in it
are wrong. It is especially valuable to the Bliss-oriented user; others
will find the documenlation of the Command Language the songbook’s
most valuable part.

3. Hydra User’s Manual. This manual supplies the detailed reference for
the Hydra Kernel. Joe Newcomer will have a new edition out during
Sepfember 1976, A very valuable toal.

4. Cmmp Algol Reference. Describes the Algol68 implementation
available on C.mmp. This document should be used with the informal
introduction to the Algol68 sublanguage. '

182

1. TECO

A version of TECO, a subset of the PDP-10 program, exists to run under Hydra.
It can edit a virtually unlimited amount of core (over 100 pages). It edits a universal
object with pages in it.

There are commands objects in &SYSDIRECTORY.UTILITIES which can
interactively invoke TECQO.

"TEQ)
for pages or
EDITCHMD()
for commands objects,]
To create a new universal and put text into it, use the following sequence of
commands:

CAPA &name

$MAKEUNI VERSAL{&name)

8&SYSDIRECTORY, PROCEDURES, TECD{&ttyport,&name)
You may now edit happily away. ’

1.1. Hydra-teco commands

The command language of this teco is very similar to that of Teco on the PDP-10
however only a subset of the features exist. In this light only a quick description will
be given of the commands which are identical. ‘

Further information may be found by consulting:
1) PDP-10 USERS HANDBCOK

2} CMU Introduction to the PDP-10
3) CMU PEP-10 Teco quick reference guide

These commands are identical on the C.mmp and the PDP-10:

B 0, buifer origin.
-z character count of the buffer, buffer end.

H B,Z

nC skip n characters.

183

nD delete n charactérs.
E exit. .
. nFSashbs find "a" and substitute "b" {n finds, 1 substitqte).
Ia$ insert text "a” into the buffer..
nl$ insert ascii n into the buffer.
nJ jump to the n’th character in the buffer.
nk kill n lines.
m,n'K kill characters between Euffer position m and n.
nl ' skip n lines. . ¢
nR skip n characters backwards.
nSa$ search .for the n’th occurence of "a” ‘
nT type n lines.
mnT type characters between buffer position m and n.

; leave iteration if preceding S or FS fails.

n<> do commands enclosed in <> n times (forever if no n).

ne== type the value of n in octal. |

n= typ;se the value of n in decimal.

n+m the value of n + m.

n-m the value of n - m.

T ~ quote the following character, in this way <ESC> and 1C can
inserted and searched for.

like the pdp-10 TECO TO meaning take the fc.:vllowir}g number
as octal.

In addition the S and FS commands will take a negative argument causing them
to search backwards., A backwards S (-S) will leave the buffer pointer at the

beginning of the string it finds. If a search fails the buffer pointer is left where it
was, as in SOS. '

184

1.2. Q-registers

Teco has q-registers which behave almost identically to those in PDP-10 teco.
Internally there are actually two sizes of qg-registers but these are completely
transparent to the user. This was done in the interest of speed.

There are 36 g-reg’s: the letters A-Z and digits 0-9.

The commands available for g-registers are:

nUm store the integer n into g-reg m
Qm equal to the integer stored in q-reg m

nXm or i,j)Xm store the next n lines into g-reg m or store characters
between buffer positions i and j into q-reg m

Gm put the text in g-reg m into the text buffer at the current
' pointer position.

Mn execute the text in g-reg M as a teco command string. For
now the user must be careful not to execute an °” command
with a siring longer than 8192 characters. The insert
command has not yet been modified to take longer strings.

*m as the first command in a command siring. Store the last
. » command string in g-reg m. this is a loss recovery technique.

1.3. extended features
There are some commands in C.mmp Teco which do not exist on the PDP—‘10,
these are as follows: :

1P, type out a map of your text pages at the screen top after
every $§ _

P type out the page map and turn off page map typeout.

T™W must be used to "fool" the command interpreter into allowing

this pdp-10 construct:

FSa8$
FSaTW8 must be done instead.

185

Note that this is only necessary in an iteration.
Three SOS-like commands exist:

<TA> as the first character in 2 command string is equivalent {o the
teco command string *-LT° or go to the previous line and print
it.

<LF> as the first character is equivalent to 'LT’ or go to the next
line and print i,

<CR> as the first character is equivalent to *OLT' or go to the
beginning of this line and print lt

1.4. impiementation detaiis

The command input buffer is 4000 characters long. Teco will warn you when
you are less than 150 characters from the end. If you do not heed this warning by
typing 88 (executing the command) execution will begin automatically after reading the
3999th character. Then any characters that were ignored as a result of getting input
line at a time will be printed.

On exit, teco writes the byte count of the buffer size into the first two words of
the data-part of the universal object it edited, least significant word first. Note that’
teco does not use these numbers itself but places them there for the benefit of other
programs.

If TKTK (or cliprocess(&pros,-1)} is typed it will have various effects depending
upon what teco is currently doing. The possible actions are:

a) During typeout: return to command mode.
b) At the beginning of any command execulion: return to command mode. -
c} Anywhere else: no action is taken.

The inner search loop in teco can search for a character it will never match at
approx. .2 seconds per page. This includes time spent shuffling pages.

186

Introduction to the CMU Graphics Terminals
Sam Harbison & Steven Rubin, 11-August-77

The Computer Science Department has a number of graphics terminals designed
and buiit by our engineering tab. Their full name is "Graphics Display Processcr”, or
GDP. The terminals can be recognized by their large CRT screens and green
keyboards.

The graphics terminals can be used as regufar terminals to the PDP-10s, as well
as for more sophisticated graphics applications. Genera! information about the
structure cf the GDP is given here to help you orient yourself. Programming details
are given in other documents listed at the end of this introduction.

Each graphics terminal is attached to a FDP-11 which interfaces to the PDP-10.
This PDP-11 runs a small operating system known as the “"graphics monitor”, which can
also run special user programs thal use the graphics cpability of the terminal. Be
aware that not all graphics terminals are equivalent. Some have more powerful PDP-
11s with more memory, drawing tablets, or other special equipment. ’

Under normal circumstances, ali characters typed at the terminal are received by
the graphics menitor which sends them unchanged to the PDP-10, where they are
interpreted the same as characters from any terminal. Likewise, text from the PDP-10
is passed directly to the GDP display by the graphics monitor. The point here is that
the terminal will be completely inoperative when the graphics monitor is not running.
When the monitor stops, it can be restarted from the PDP-11 console switches. -

The graphics monitor, in addition to passing characters between the terminal and
the PDP-10, has several useful utilities available to the terminal user, including an
intra-line editor which interfaces to SOS. The use of these facilities is discussed later.

The GDP’s PDP-11 can also execute user programs. This feature allows real-time
programs which drive the graphics processor to execute locally so as to not tie up the
PDP~10. User programs may be created, compiled, and linked on the PDP-10, and then
loaded into the PDP-11 and started by PDP-10 monitor commands or under PDP-10
program control. User programs executing on the GDP's PDP-11 may communicate
with the terminal’s keyboard/display, with the graphics monitor, and with the PDP-10.

By convention, certain characters {(called "meta-characters”) typed on the terminal
keyboard are assumed to be destined for PDP-11 software (the monitor o} a user
program) and are not passed to the PDP-10. The use of these characters is discussed
later.

Many pecple have written interesling programs for the graphics terminals. Some
of the more useful ones include:

SPACS - a program which allows the user to interactively compose complex
pictures via the drawing tablet. The finished pictures can be stored on
the PDP-10 and printed on the XGP.

BILQOS - a program which allows the user to build character sets fo[' the XGP.

- 187

+ ’) t '
SPACEWAR; STAR-TREK, PETAL, LIFE - some of the demonstration/game
programs written for the GDP, See GDP.DEM[A630GS00] for a list of the

many demonstration programs available. .

Using the GDP2

The following information is excerpted from the Graphics Monitor Manual, written
by Steven Rubin and Donn Bihary. This document is available in the document rcom if
you want more information on the GDP. See also the reference list at the end of this
section:

Use as a Terminal

The GDP can be used to communicate with the PDP-10 much like any other
display terminal. The user should keep in mind, however, severa! differences:

1) The keyboard is attached to the PDP-11, and only if the PDP-11 monitor Is
working can communication to the PDP-10 be established.

2) The GDP has a Graphics keyboard, which has more keys than a norma! keyboard,
and is thus used slightly differently.

3) The presence of programs on the PDP-11 makes it useful to designate certain
keyboard characters (the Meta characters) to be read by the PDP-11 software
and not passed on to the PDP-10.

4) The processing power of the PDP-11 makes possible certain features (e.g. the
intra-line editor) not possible with "non-inteliigent" terminals.

These differences are examined on the folfowing pages.

System Start-up

If the PDP-11 monitor is inoperative, it may be reloaded via the PDP-11 console
switches. Starting the. PDP-11 at address 173000 will load the monitor and a
character set from the PDP-10. Note that this type of restart, called a bootstrap
restart, will abort any running program on the PDP-10 and start another to reload the
PDP-11. Minor system crashes can sometimes be fixed by a soft restart at address
1004, or a hard restart at address 1000. If DDT (the debugging package) has been
loaded, it can be restarted at address 1002 (if DDT is not present, this address will do
@ hard restart). These do not affect the PDP-10. Al of the above restarts can be
done from the keyboard provided that the PDP-11 is running (see the subsection on
Meta Characters). '

188

The Graphics Kevboard

’

The Graphics keyboard has two types of keys: four special keys marked Shift,
Top, Control, and Meta, and the fifty-eight other keys (called encoded keys). The
special keys operate like the Shift key on an ordinary teletype; when depressed they
cause no immediate action, but they change the interpretation of any encoded keys
struck while they are depressed.

The special keys usually have the following interpretations: Shift is used only to
get upper-case alphabetic characters. (The Shift Lock switch can be used to generate
all upper case letters.) The Top key is used to get the upper symbol which appears on
the encoded keys. (NOTE: The Shift key does this on most other terminals, but on this
keyboard Shift applies only to alphabetic characters) The Meta key indicates that the
character is to be interpreted by the PDP-11 software and not passed to the PDP-10,
The Control key is used like Control on teletypes, ie, it indicates a spec;al con’rro!
funclion to be performed, not necessarily a printing character.

Throughout this manual, the term Meta Character will be used to dencte the
character generated by striking an encoded key while the Meta key is depressed.
- Individual characters in this group are denoted Meta-A, Meta-B, etc. Likewise we have -
Meta-Control characters when both Meta and Control are depressed. (In this case,
Meta is dominant, i.e. the character is interpreted by the PDP-11.) And, of course, we
can talk about Top characters, Control characters and Shift characters., All of these
are keys that can be held down while striking an encoded key. Top-Shift characters
are just Top eharacters - the shift is ignored. Top and Shift are usually igeored.if
Meta is depressed, although the PDP-11 programs can {and sometimes do) find out if -
they were depressed.

A few of the encoded keys are by their very nature Control characters, and it is
not necessary to depress Control to use them as such. The keys, w;th their Control
character equivalents, are given below.

Key - Equivalent Function
BREAK Control-5 Stop output

» CLEAR Control=Q Reslart output
FORM Control-L Form feed
VT Control-K Vertical tab
RETURN Control-M Carriage return
LINE Control-J Line feed
CALL Control-C Interrupt program
TAB Conirol-] Tabulation

Meta Characiers

As mentioned, Meta characters and Meta-Control characters are not sent to the
PDP-10. They are used to specify parameters or request action by POP-11 software.
Because it may be necessary to use Meta characters to communicate with several

189

different parts of the monitor as well as various user programs, a convention has been
adopted on the use of Meta and Meta-Control characters to avoid confusion.

Mata-Control characters are used to put the keyboard in various modes. Each
mode is generally associated with one feature of the [onitor or user program. (For
instance, a mode to conirol the scrotler, @ mode to controt the intra-line editor, etc.)
Each mode has associated with it a group of Mela characters which causes certain
actions., (For exampie, Mela-S can be used lo set the size of the scroller text when -
the keyboard is in scroller mode.)

Changing the keyboard mode with Meta-Control characters associates specific
actions lto various Meta characters. The same Meta character may have different
effects depending on what Meta-Control mode is currently in effect. User programs
may establish their own Meta-Control characters (with associated Meta characters).
Note that there are special Meta characters that never change in meaning. They are:

Meta-BREAK Call DDT, If there is no DDT loaded, this has no
effect. ‘ '
Meta-\ , Soft restart. This is useful for stopping runaway

programs since it returns control to the monitor
yet does not harm the user program or the

display.

Meta-CALL Hard restart. The monitor destroys everything
except itself. Useful if your program is hopelessly
tangled.

Meta-% Bootstrap restart. The PDP-10 is called in to -

reload the monitor (this takes about 30 seconds).
Necessary if your program wiped out both itself
and the monitor.

Meta-Z ‘ Clears the keyboard number {see next subsection)
Meta-DASH Indicates negative keybhoard number '
Meta-0, .., Meta-9 Entering keyboard numbers to the Meta-routines

At start-up time, all Meta characters are set to have no action (except for the

special Meta characlers) and the following system Meta-Control characters are
available: : '

Meta~Control-§ Scroller control
Meta-Control-K Keyboard control
: Meta-Control-E - Intra-line editor
Meta-Control-G Graphics control (not described here) -
Meta-Control-1 Input/output controt (not described here)

The Meta characters associated with these modes are presented later,

190

Keyboard Numbers

We mentioned before that Meta characters could be used to set parameters in the
system. It is thus necessary to have some way to specify numerical values for the
parameters. TECO and SOS users know that often numbers can be associated with
one-letter commands by typing that number just before the command. A similiar
general feature is available in the GDP system.

Typing a series of Meta digits prior to a Meta character will cause the number to
be passed to the Meta routine that processes the character. Some Meta routines
interpret the number as octal, others as decimal.

There are two other Meta characters used with the keyboard numbers: Meta-Z
clears the keyboard numbers (useful when you make a mistake while entering the
numbers), and Meta-DASH causes the following number to be negated.

For example, suppose you want to set the number of characters on a line to 50.
You read in this manual that Meta-C in Scroiler mode {set by Meta-Control-5) sets the
number of characters on a line and that it uses a decimal value. Thus you type Meta-
Control-S, Meta-5, Meta-0, and Meta-C. The Meta-Controi-S puts you in scroller mode,
Meta-5, Meta-0 sets the keyboard number to 50 (or 40 if read in octal but the octal
value will be rgnored) and Meta-C causes the number of characters to be changed.

Scroller Meta Char acte?s

Normally, when using a GDP as a terminal, a user types commands to the PDP-10
‘and the PDP-10 executes them. This dialog is distinguished as a series of text lines on
the screen. The text is scrolled by the graphics momtor in the same way as a normal
terminal: the top line disappears forever when a new lihe is needed at the bottom and
there is no room. The monitor does, however, support multiple scrollers which can be
selectively displayed for multiple conversations and extended screen capacity.

This set of commands (entered with a Meta-Control-S) control the scroller.
Commands that require a parameter use the decimal keyboard number unless
otherwise indicated. If multiple scrollers are desired, the number of alternate scrollers
should precede the Meta-Controi-S. Thus, to create 19 additional scrollers (for a total
of 20 scrollers) type Meta-Control-1-9-S. You may create up to 99 additional
scrollers. It is not advisabie to change the number of additional scrollers without doing
a hard restart (Meta-CALL) but you may type Meta-Control-S with no parameter at
any time and it will net change the number of scrollers.

The first three Meta commands below affect the selection and control of the
scrollers. Note that at all times there is a "current” scroller for which the remamder of
the Meta commands apply and on which all PDP-10 conversation appears '

Meta-P Page se!, Set the current scroller to the keyboard number. Stop
displaying the previous scroller and start displaying the current scroller,

Meta-G

Meta-0

Meta-A
Meta-1

Meta-X
Meta-Y
Meta-L

Meta-C

Meta-U

Meta—;!

Meta-$

Meta-N

191

The keyboard number must be from O to the maximum number of
scrollers defined by the Meta-Control-S.

Gel page, Set the current scroller to the keyboard number and display
this scroller. The previous scroller is not turned off so many of them
may be displayed with this command.

Off, Stop displaying the scroller determined by the keyboard number.
This does not affect the current scroller.

Scale, Set scale to octal keyboard number. This may range from O
(quarter scale) to 17 octal (35 times normal). The normal scale is 10
Octal See Appendix C for other scale values. ¢ '

. L
Intensity, Set intensity to octal keyboard number. The intensity may
range from O {(which you can’ see} te 17 ocial {(which is ’(he normal
intensity).

X posmon Set X-position of upper ~left margin of the scrolled characters
(initial value -475).

Y position, Set Y-position of upper-left margin of the scrolled characters

(initial value 475).

Lines, Set number of lines that can be dlsp!ayed in the scroller (|n|t|alfy
586).

Characters, Set number of characters per line (initially 98).

Units, Set number of tab units per line (initially 98). Note that this
parameler helps control the number of characters per scroller line. The
characters parameter is simply the number of characters that may
appear on a line. The units parameter determines the number of -
possible localions that a tab may start from. For the standard fixed
width characters set, the number of units equals the number of
characters., When using variable width character sets, characters may
end anywhere on a line and considerably more tab characters are
needed to line up the lab stops. '

Jump, Sets the number of exirz lines to jump when the scrolier fills and
must be rolied up (initially 0).

Scale, Set the scale parameter as in Meta-A, but also set the Lines,
Characters, and Units parameters to values appropriate for the new scale.
This command is the easy way to change the size of scrolled text.

"Normal, Reset all of the above parameters to their default values. For

the standard fixed width character set, Scale is set to 10 (octal) Intensity
is set to 17 (full on) X position is set to -475. Y position is set to 475.

Meta-FORM
Meta-CLEAR

Meta-R

192

Lines is set to 56. Characters is set to 98, Umts is set to 98. Jump is
set to 0.

Clear all scrolled lines except the current line.

Like Met_a-FORM, except that the current line is also cleared.

.Retrieve, Retrieve the nth line currently being dlsp!ayed in the scroller,

go to EDIT mode, and insert the text up to the carrrage return in the
current line, If the first character of the retrieved line is a period, an
asterisk or an SOS line number, those characters are not copied. If n<0,
retrieve the nth line before the current line. If n=0 then a Control-U is
sant to the PDP-10 and the current line is retrieved in edit. mode. .

(Useful if you discover the line you are typing is in error.) o

Keyboard Meta Charactlers

These commands control the keyboard functions. They are initialized with a
Meta-Controi-K. :

Meta-L

Meta-N

Meta-C

- Meta-W

Meta-P

Meta-K

Meta-0O

Local, Place the terminal in local rr{ode for non-Meta characters only. No
characters are sent to the PDP-10.

Normal, Reset action for non-Meta characters to ndr::nal ‘mode. Useful
when exiting Local mode. Meta-N causes all non-Meta characters to be
sent to the POP-10. .

Clear,” Clear all the Meta characters of their actions. This is useful

because each Meta-Control mode adds to the active Meta characters.
Conflicting characters afe replaced but old Meta characters with no
equivatent in the new mode remain active. ’

Space War, Turn on Space War mode. In this mode, the keyboard
interrupts twice for each key stroke, once when the key is depressed
and once when it is released.

L] N '

Peace, Turn-off Space-War mode (defaujt).

Keyboard lock, The keyboard number will be OR’ed with all future
keyboard input. Appendix A shows the bit pattern received for a key
stroke. With the proper value to OR in, this routine can cause future
characters to be treated as though some of.the spec:al keys were
depressed when the character was typed.

Escape, If the keyboard number is zero, turn off escape character .
sending. lf non-zero (the default state) then send escape characters to
the PDP-10 with each control character.

193

Intra-Line Editor

Normally, all non-Meta characters enlered through the keyboard are sent
immediately to the PDP-10. When the intra-line editor is enabled (with a Meta~
Controi-E), the line being typed is kept in a PDOP-11 buffer so that editing may be done
on that line before it is sent. Al the conclusion of editing, the entire line Is sent to the
PDP-10 and another line may be enlered.

The editor commands are modeled after the SOS intra-line edit commands, but
provide easier editing in conjunction with the graphics system:

1} When editing is terminated (e.g. by typing a carriage return), the line is sent
exacltly as it then appears on the screen, so there can be no confusion as to the
result of the editing.

2) The availability of Meta characters permits a clear distinction between text and

editor commands.

. :

The editor is turned on by typing Meta-Control-E. Text is then entered normally.
The editor will maintain two cursors: the first cursor delimits text which has been sent
to the PDP-10 from text that is being held in a PDP-11 buffer. The second cursor (the
position-cursor) moves about in the PDP-11 buffer. Any text that is typed is entered
in the buffer at the position-cursor location. Each text character typed causes the
position-cursor to move one place to the right. At any time while entering text, the
user may use the editing commands below to make corrections to what has been
typed. When the line is complete, a break character (usually a carriage return) is
typed, causing the line to be sent to the PDP-10 followed by the break character
itself,

NOTE: The "break” characters are a subset of the control characters. Break
characters cause transmission of the edit line followed by the character itself.
Non-break control characters are sent immediately to the PDP-10 without
affecting the edit line, : -

All editor commands except backspace (BS key) are single Meta characters. Some
commands make use of the keyboard number, denoted below as n. “Text,” when used
below, refers to non-Meta, non-Control characters, i.e. ‘what is usually to be entered
into the line,

Meta-Space Move right, Move cursor n characters to the right. ¢’
Meta-BS Move left, Move cursor n characters to the left.

Meta-TAB Move far right, Move cursor to the right end of the line.

Meta-RETURN Move far left, Move cursor to the left end of the line.

Meta-1 Insert, Insert all foliowing text characters at the - present cursor p05|hon

Characters to the right of the cursor are pushed right to remain ahead

Meta-D

BS

RETURN

Meta-S

Meta-K

Meta-E
Meta-Q

Meta-B

Meta-U

Meta-)
Meta-(

Meta-LINE

. 194

'
of the inserted text. This command is . turned off by the next editor °

command. (NOTE: You are normally in ‘Sver-write mode. Except after a.
Meta-1 command, all entered text is entered at the cursor position,
replacing any characters there previously.)
Delete right, Delete n characters right of the cursor. Text on the right
side of the deleted characters is moved left. .

Delete left, Deletes n characters 1eft of the pomhon cursor. Text to the

. right of the cursor is moved to the feft. Do not confuse this command |

with Meta-BS.

Done, This is not really an editor command, but a break character. It will
cause the entire line being edited (regardless of the position cursor
location) to be sent to the PDP-10, followed by a RETURN character. A
new line may then be entered and edited. Note that transmission occurs
from the position of the left cursor. This is usually the beginning of the
line, but not always (e.g. see the Meta-B command below).

Skip, This command causes the cursor to skip to the nth occurrence of
the next character that you type. After the Meta-S, type one non- -Meta
character and the cursor will jump to the proper position. -

Kill, This is the same as Meta-S except that all characters from the
current cursor position up to the new cursor position are deleted.

Exit, Turn off the editor.
Quit, Delete the buffer and sends a line-feed
Burst, This command sends ail characters up to the current cursor

position back to the PDP-10. These characters are deleted from the
buffer. :

Deliete everything, Delete all characters. Position cursor at left end of

buffer.
Delete all right, Delete all charaders to the right of the cursor.
Delele all left, Delete all characters to the left of the cursor.

Refrieve, This command retrieves the last edited line and puts it in the
buffer for further editing. .

References

Manuals about related systems:

195

GDP2.XGO[AB30GS00}/B Hardware documentation #
GLSTER.XGO[A630GS00}/B Display package ¢
GPLXGO[AB40SHO1]/A Convenient display package
SYS:LINK11.D0C To link programs
SYS:DDT11.00C To debug programs
MONLOD.XGO[A630GS00])/B Systems support
TABLET.XGO[A630GS00] Tablet support
SILOS.XGO[A630KS00]/B Character set editor
GDP.DEM{AB30GS00] Demonstration pointers
BSG.DOC[A630GS00] | © SAIL-like runtime routines
Software aids:

SX.P11[A630GS00] Macro-11 Trap defines

. SX.B11[{A630GS00] BLISS-11 Trap defines
SX.SAI{A630GS00] SAIL Trap defines
SX.BLI[A630GS00] BLISS-10 Trap defines
GRADEF.P11[A630GS00) Macro-11 Graphics defines
GRADEF.B11[A630GS00] BLISS-11 Graphics defines
GRADEF.SAI[A630GS00) SAIL Graphics defines

GRADEF.BLI[A630GS00] BLISS-10 Graphics defines

4 .

+ Available in document room as "GDP Programmers Guide”
. .

