NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

775

0

THE RYDRAR USLERS MANYAL

Depart

ment of Comnputer Science

Carnegie-Mellon University

August 16, 1977

1 Edited by Andrew Reiner & Joseph M. Newcomer

This work was supported b
under contract No. F44620-73-
Scientific Research,

¥ the Definse Advanced Research Frojects Agency
~0074 and monitored by the Air Force Office of

Prefuace

This manual is a descendent of the]lvdra Songbook, which was conceived,
written, and disseminated by Brian Reid to fill the void left by the lack of user
documentation for Hydra. Like the Songhook, this document is intended to
contain those things that are of general interest to the user community.

The Iser's Manual is published in two parts. The first contains those
chapters that are of interest to general users, such as the introductory matertal
and the chapters on the Command Language. The second contains reference
material on the various subsystems. Most users will find the first part sufficient
for their needs.

We would like to thank the many people who contributed material to this
manual. Without their efforts and cooperation, the User's Manual could not have
contained the amount and variety of material that it does, Also, we would like to
thank Dan Klein, who provided comments on an earlier draft of this document. -

Andy Reiner
Joe Newcomer
August 1877

0CT 25 7;‘

Contents B |

Part I: Introduction to Hydra

1. The C.mmp User Community Forum ' 1-1
1.1, Feedback ‘ 1-1
1.2, Schedule of Availability 1-1
1.3. The system news ¢ 11
1.4, The System Area 1-1

2. Introduction

0
s

Z.1. Protection in Operating systems
. Hydra Objects ’
.1. Object type

.2. Operations on objects
.2.1. Kernel Calls

.2.2. Typecalls
.2.3.
.3.

Subsystems
Capability Paths
. For More Information

a1

NNNN[}JNNNN
O Db DN -

NONDONN NN
AFSESEE SR SRCEY

3. C.mmp: the Hardware 3-1
4. Major Subsystems 4-1
5. The Hydra User Environment 5-1
5.1. Logging On/Off 5-1
5.2, Introduction to the Command Language 5-1
5.3. Basic Command Language Structure 5-2
5.4, Using the Terminal 5-2
5.5. Variables 5-3
5.5.1. WORD variables 5-3
5.5.2. WORDVEC variables 5-3
5.5.3. Simple Examples 5-4
5.5.4. CAPA variables 5-5
5.6. Invocations 5-5
5.6.1. Kernel calls 5-5
5.6.2. Procedures (predefined and user defined) 5-6

HUNT LigRany
CARNECFEM[LLG.‘.‘ UHiVERSITY

ii

Contents

.3. General Procedures
.4, Commands
.4.1. &PABMS and &CDOPARM

. Catalogues
. Predefined Catalogues

.1. &USERDIRECTORY

2. &SYSDIRECTORY
. Using the Catalogue Subsystem
Profiles
. Input and Output
. Pointers to more information

RO RN RN N Y RO
Humpmmmmﬂmmm
N»—An—-s;..

-0

6. Terminals and C.mmp

6.1. Connecting a terminal to C.mmp
6.1.1, Front end terminals

6.1.2. The teletypes in the machine room
6.1.3. Connecting from the Graphics
6.1.4. Other kinds of terminals

.1.5, Terminal Keyboard Characters

Z. The Hydra Terminal Multiplexor
2.1, Connection Objects

.2.2. Terminal ports

2.3, Coming attractions

20000

. Programming for Hydra

Assembler
BLISS-11
L!
Algol-68

NNNN N
ol ol A

8. Introduction to Algol 68

Preparing source input using SOS
Preparing source input using TECO
Specifying files and file names
Compiling and executing a program
. Terminating Algol 68

1 Compilation Switches

.2. Execution Switches

.3. Error Reporting

. Temporary Restrictions

.1. Things You Care About

@o®E0mm® %D %o
mmwmmmpppy

Contents

8.6.2. Things You Do Not Care About
8.7. For more information

Part II: Utilities

9. SOSon C.mmp

9.1, C.mmp SOS Editor

9.1.1, DIFFERENCES

9.2. Utility Command Objects and Procedures
PUB.SOS.EDIT(&file)
PUB.SOS.READ & Tfile)
PURB.SOS.EDIT()
PUB.SGS.STATUS()

&file = PURB.SOS. FTPSOS()

&file = PUB.SOS.DTASOS()

&file = PUB.SOS.UTOSOS(&univ)
&univ = PUB.SOS.SOSTOU(&file)
PUB.S0S.508DTA(&file)

0 PUB.SOS.SOSFTP(&file)

. C.mmp SOS Subfile System

File Creation

File Copy

. File Query

File Edit

File Open

File Close

Operations on an open SOS File

. Random Comments

“w@NP?PPP?

0OEOOEOOLEOVOOVOVVOY
NonRwNe

PROOOROOLNNNNNDDD NN

10. TECO

10.1, Hydra-teco commands
10.2, Q-registers

10.3, extended features
10.4. implementation details

11. Obinfo: Object information

11.1, Features
11.2, Accessing OBINFO

iv

Conterts

12. PSIGNAL

13. SiX12: The BLISS debugger

13.1. What is SI1X127? '
13.2. Operating Environment

13.2.1. Restrictions on the User Program
13.3. Interacting with SIX12

13.4. Command expression operands

13.4.1. INTEGER operands

13.4.2. STRING operands

13.4.3. SYMBOL operands

13.4.4. VECTOR operands

13.5. Command-expression operators

13.5.1, Arithmetic operators

13.5.2. Relational operators

13.5.3. Boolean gperators

13.5.4. Address manipulation operators
13.5.5. Examine and Deposit operators
13.5.6. Call Stack examination operators
13.56.7. Print and option control

13.5.8. Breakpoint control operators
13.5.9. Tracing control operators
13.5.10. Execution control operators

13.5.11. Miscellaneous operators
13.5.12. Operator Precedences

13.6. Routine calls from SIX12

13.7. Miscellaneous notes

13.7.1. Output of routine parameters by CALLS and TRACE mode
13.7.2, The GLOTOG cell

13.7.3. Predefined names

13.7.4, S1X12 and trap PCs

13.7.5. Nonrecursive syntax analyzer
13.8. SIX 12 operational information
13.8.1. Linking SIX12 into your program

14. MakeProcedure

15. Dectape Utilities on C.mmp

15.1, Macros
15.2. PDP10 DECtape support
15.2.1. DT11: PDP11 DECtape Utility Program

13-1

13-1
13-1
13-2
13-3
13-4
13-4
13-4
13-4
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-8
13-8
13-9
13-9
13-10
13-11
13-11
13-12
13-12
13-12
13-12
13-12
13-13
13-13
13-13
13-14

14-1

15-1

156-1
15-1
15-2

Contents

16. The Hydra Spooler

16.1, Introduction

16.2. Basic Concepts

16.2.1. Structure of a Lpt SubFile
16.2.2. Scenario of Use

16.3. Detailed Use via the File System

16.3.1. Create

16.3.2. Open

16.3.3. Details of Transput
16.3.4. Close

16.3.5. Copy

16.3.6. Query

16.3.7. Edit

17. Hydra FTP

17.1. Available Commands
17.2. PageFTP

Part III: Subsystems

18. Conventions for Typecall specifications

19. The Hydra Catalogue Subsystem

19.1, Introduction

19.1.1, Basic Concepts

19.1.1.1. Structure of a Catalogue
19.1.2. Auxiliary Rights

19.1.3. Names, Paths, and Targets
19.1.4. Details of the Name Parameter
19.2. Catalogue Operations

19.2.1. Compatibility Procedures

Z20. The Command Interpreter

20.1. Command Language Subsystem
20.2. Command Language

20.2.1, Lexical Structure

20.3. Command Syntax and Semantics
Z20.3.1. Program

16-1

16-1
16-1
16-1
16-2
16-2
16-2
16-2.
16-3
16-3
16-3
16-3
16-3

17-1

17-1
17-1

19-1

19-1
19-1
19-1
19-2
19-2
19-2
18-3
19-8

20-1

20-1
20-2
20-2
20-5
20-5

vi

Contents

20.3.11. Invocations
20.3.12, Multiple assignments
20.4. Command Language Functions
20.5. Predeciared variables
20.5.1, Directories

20.5.2. 1/0 control

20.5.3. Interaction control
20.5.4. Miscellany

20.6. Conmimands

20.7. Known Bugs

20.8. BNF summary

21. The Hydra File System

21.1. Introduction

21.2. Basic Concepts

21.2,1, Data Structure of a Super File

21.2.2, Scenario of Use

21.3. Basic Calls: Create, Open, (Transput,) Close
21.3.1, Create

21.3.2. Open
21.3.3. Conventions of Transput

21.3.4. Close

21.4. Advanced Calls: Copy, Query, Compare, Edit
21.4.1, Copy

21.4.2. Query

21.4.3. Compare

21.4.4, Edit

22. Job Subsystem

22,1, Information facilities

22.2. System access control facilities
22.3. Error Reporting Facilities
22.4. Resource control facilities
22.5. Subjob creation facilities

20.3.2. Statement

20,3.3. Variables

20.,3.4. Simple Expression

20.3.5. Block and Compound

20.3.6. Assignment

Z20,3.7. Iteration .

20.,3.8. Conditional

20.3.9. 1/0

20.3.10, OVE - Object Valued Expreﬁsmns (Capabihties)

20-6

20-6

20-8

20-9

20-9
20-10
20-11
20-11
20-12
20-14
20-156
20-16
20-19
20-19
20-19
20-19
20-20
20-21
20-22
20-23

21-1

21-1
21l-1
21-1
21-2
21-2
21-3
21-4
21-6
21-8
21-9
21-9
21-10
21-10
21-11

22-1

22-1
22-3
2a-4
22-5
22-7

Contents . vii

22.6. Job System Rights ' 22-7
22.7. Signals 22-7
23. Policy Module 1 : 23-1
23.1. Auxiliary Rights 23-5
23.2. Signal Values 23-6
24. Device Allocation Subsystem : . 24-1
24.1. System 1/0 Devices 24-1
24.2. I0Device Objects 24-2
24.3. I0Device Procedures 24-3
24.4. DEVCON Objects 24-6
24.5. Devcon Procedures 24-7
24.6. How DAS is to be Used 24-9
24.7. User Access to DAS 24-10
24.8., DISPLAY/STATUS Formats 24-11
24.8.1. DISPLAY(I0Device) 24-11
24.8.2. STATUS(IODevice) 24-11
24.8.3. GETDC(I0Device) 24-12
24.8.4. DISPLAY(DevCon) 24-12
24.8.5. STATUS(DevCon) 24-12
24.9. Auxiliary rights 24-13
24.10. Associated Kernel Rights 24-13
24.11. DAS Procedure Signals 24-13

Part IV: Appendices and index

i

Appendix I: Typecall summary o 1-1

INDEX Index-1

1-1

Part I: Introduction to Hydra

1.« The C.mmp User Community Forum

There is a bulletin board hanging in the C.mmp room whose Purpose is to
hold graffiti and bulletins from Hydra users to each other. If you feel the urge to
use the PDP-10's to air your gripes, any mail sent to HY97 [N810HY97] will be
posted on the gripe board if relevant. .

1.1. Feedback

This document will be updated periodically, using information gleaned from
(a) experience, (b) complaints, (c) the Hydra bulletin board, and (d) the Hydra
People. A copy of it will always be qn file in the C.mmp room, and some
mechanism for its distribution will be set up, -

1.2. Schedule of Availability

The C.mmp schedule can be found on the bulletin boards in the terminal
Toom and the C.mmp room. This information is also in the file
SCHED.DOC[N81 1HY97].

) Signup sheets and an explanation of the signup system are posted in the
C.mmp room.

1.3. The system news

There are two files on the Hydra ‘'user" area (on the PDP-10).
NEWS.DOC[N&IOHYB?] and SYSNEW.DOC[NSIOHYQ?]. NEWS contains one-line
blurbs about changes to the system or support programs. SYSNEW.DGC goes into
much gorier detail and may point to more extensive documentation.

1.4. The System Area

Most software development for Hydra takes place on the PDP-10. The Hydra
Eroup attempts to make as much data as possible available on the Hydra user-
Systems area, account number [N811HY97]. Significant here are two files,
DOC.DOC|N81 1HYS87], the root of the documentation file tree, and
REQ.DOC[NBI 1HY97], which documents atl BLISS/11 “require” files. The people
responsible for Hydra documentation, under the watchful eye of Joe Newcomer,
usually maintain a properly current list in DOC.DOC of any documentation which
Seems to make sense,

Introduction - 2a=-1

2. Introduction

This chapter is intended to provide a new user of the C.mmp hardware and
the Hydra operating system with enough information to be able to perform useful
work within a short amount of time. The main emphasis will be upon how to use
the system rather than the why's or wherefors. It is assumed that the reader has
experience with other computer systems and need only be instructed in the
different structure of Hydra/C.mmp. Unfortunately, Hydra is a system that is
gquite different from standard systems$so tasks which may be simple on other
systems may appear difficult or awkward to perform on Hydra. Conversly, tasks
which are "impossible" on other systems may be trivial (or at least possible) on
Hydra.

Hydra has embodied in it several ideas and concepts which are not seen in
most "standard” operating systems. First, and perhaps most importantly, C.mmp is
a multiprocessor. Hydra allows the user to exploit this architecture (by
supporting multiprocessing), or to ignore it (by providing a general purpose time-
sharing system). Secondly, there is the notion of policy/mechanism separation in
Hydra. You will (if you haven't already) hear people referring to the Kernel, The
Kernel is the part of the Hydra system that manages the (physical and virtual)
resources of the machine, Indeed, the kernel has sometimes been described as an
"extension” of the PDP-11 ! instruction set. However, the key word here is
manages. The kernel merely maintains the common pool of resources, such as
memory {(both primary and secondary} and processors. The kernel makes no
attempt to implement a policy under which these resources are disributed to
users. Those processes that do provide policy decisions are implemented at the user
level. This provides great flexibility in design of user facilities. (Theoretically,
every user on the system can be living on a different operating system). Finally,
Hydra utilizes a Capability-based protecticn system. Because an understanding of
this protection system is fundamental prerequisite to using Hydra, the following
sections describe capability- based systems and capabilities.

Z.1. Protection in Operating systems

Protection in a computer system can conceptually be viewed by considering
two classes of entities and the allowed interactions between them. The classes of
entities are: ¢ °

> The active elements in the system, such as 'users' or processes
> FPassive or 'acted upon' elements, such as files or I/0 devices.

One can VIEW the allowed interactions as being defined by a 2- dimensional
matrix- one dimension being the active ele ments, the other the passive ones, with
entry (i,J) containing the operations that active element I is permitted to perform

The processors used in the C.mmp hardware are FDP-11s

2

2-2 Introduction

upon the passive element j, Note that each element (i,j) may contain zero or more
operations. For example, an active element (a user) may be permitted to rerform
operation X (read) on some passive element (a file).

Due to the sparseness and uniformity of the allowed actions and the
potentially large size, it is impractical to store actual protection information as a
matrix. Instead the information is stored with the elements in one of the
dimensions. In an Authority based protection system the information is stored
with the passive elements (e.g., files). Each passive element has associated with it
an access list, which is a list of names of active elements and their allowed access
modes. This takes full advantage of the sparseness of the matrix and is in part the
way TSS/360 and Multics handle protection, Typically, however, additional
facilities are used to handle the uniformity. If active elements are divided into a
few large groups (such as project groupings or an ‘everyone' group) then access
may be permittied to groups of active elements. The TOPS-10 monitor on the Dec
PDP-10 uses this method exclusively, dividing the user community into 3 classes
of groupings: a user, a user's project and everyone else, restricting access to files
according to which classification the relationship between the accessing user and
the owner of the file falls into. ‘

In a Capability based protection system the access information is associated
with the active elements, Each active element has a list of capabilities which
define the passive elements it can manipulate, A single capability contains:

> an indication of the passive element it represents (the name or address of the

passive element) :
> a list of rights describing the how the possessor of the capability may

manipulate the object.

Here lies a fundamental difference hetween capability and authority based
systems. In TOPS-10, say, when you create a file, it is assumed a priorj that you
have ownership of the file. In Hydra, nobody "owns" any object, just capabilities
to objects. However, a user can assume functional ownership of an object if he
posesses the sole capability to it. '

As might be expected, users cannot be allowed to directly make or modify
capabilities. Instead, only indirect manipulation through the operating system
can be permitted. There must also be restrictions upon how new capabilities may
be created (and what rights they have) and how names are to be added to access

lists,

2.2. Hydra Objects
The Hydra kernel implements a generalized capability based -protection

system. Everything in the system- prograims, files, memory, etc. is represented be
entities called Objects. An object consists of two parts:

2.1

Introdurtion ' 2-3

> A linearly ordered list of capabilities, called the C-list, indicating which
other objects in the system this object (or its manipulator) may access.

> A data-part, which contains arbitrary data.
Either the C-list or data-part may be ompty,

2.2.1 Object type

Every Hydra object has a type attribute. This notion of type is analagous
with that of data type found in programming languages such as Alphard, CLU, and
Simula. Object types in Hydra fall into two major classes - User defined types, and
Kernel types. . ' .

Kernel types are those that are defined within the kernel. They tend to
embody the basic "building blocks” of the system. Examples of kernel types:

PAGE The PAGE object is the basi: unit of storage in Hydra (both incore
and on secondary storage). Its C-list is empty, and its data-part
(which is not accessable to users) contains information about the
location of a FPDP-11 page of memory.

PROCEDURE A PROCEDURE object is somewhat analogous to a binary load module
file in a conventional system. It contains capabilities for the PAGE
object(s) that contain the actual binary program to be run and other
information. Like a load madule file, it itself is not dynamically
executed, but instead contains the necessary data to be loaded into
memory at run time. This delinition of a PROCEDURE object is not
strictly accurate, but the analogy holds.

LNS An LNS (Local Name Space) is the object that is dynamically excuted
atrun time. An LNS is incarnated from a PROCEDURE object and, like
most Hydra objects, may have capabilities for other objects in its C-
list. In the case of an LNS incarnated from the Algol 68 PROCEDURE,
one of these objects might be the source file and another might be
the object file. Again, the analogy here is more important than the
(very loose) definition of an LNS

User defined types are objéct types that are defined outside of the kernel.
Examples of user defined types are: : :

SuperFile A superfile provides the same Kkinds of services that are
provided by a file in & standard system.

Catalogue Catalogue objects perform the same function that a'directory
provides on a FDP-10, with a major exception. The PDP-10
directory system can only store files, while a Hydra a
Catalogue has the ability to provide access to an object of any
type once it is given a capability for that object.

2.2

2-4 Introduction

2.2.2 Operations on objects
2.2.2.1 Kerne} Calis

' The Kernel provides a set of operations that one might perform on objects,
called Kernel calls. Kernel calls tend to be operations that apply to all objects,
regardless of type. Examples:

(Assume that capability X references an object)
$Clength{X) Returns length of object's C-list
$#Dlength(X) Returns size of object's data-part

2.2.2.2 Typecalls

Every user defined object type has associated with it a set of procedures that
can be performed on objects of that type. These procedures are known as
Typecalls. It is only through these typecalls that a user can manipulate the
internal representation of user-defined objects.

2.2.2.3 Subsystems

A user-defined type and the typecalls on that type define a Hydra Subsystem.
One of the major purposes of a subsystem is to provide user functions that access
the internal representation of objects without actually letting the user d1re»t1y
..ccess this representation. Consider the fo]lowmg

It would be unwise to allow users to be able manipulate the internal
representation of, say, a SuperFile whenever they wanted to edit one. Therefore,
the SuperFile subsystiem is constructed so that it has the sole power to create new
SuperFiles. Upon request, the SuperFile subsystem will create a SuperFile, and
return a capability for it- without the rights necessary to alter it internally.
Subsystems, however, have rights amplification abilities. Upon being passed the
users capability for an object {(in this casc a SuperFile), the SuperFile subsystem
can create an identical capability, but with the additional rights necessary to
perform the requested task. In this particular case, when the user wants to edit
his SuperFile, he passes his capability for it to the SuperFile subsystem, along
with an Edit request, and the subsystem tdkes care of internally manipulating the
SuperFile,

This concept of rights amplification is fundamental to the construction of a
protected subsystem in Hydra. The details are discussed in the Hydra Kernel
Reference Manual,

c2.2.2

Introduction 2-5

2.2.3 Capability Paths

As mentioned above, Hydra objects may contain capabilities that point to
other objects in the System. These objects, in turn, may have capabilities for other
objects, and so on. Let us define &CAPA to be a capability for an object X, We may

C-list. Likewise, &CAPA.1.4 is the fourth capability in the object referenced by
the first capability in the object referenced by &CAPA. It is left as an exercise to
the reader to recite the hame of &CAPA.1,.4.2 in one breath or less. In this last
example, the capability you finally come up with is the target; &CAPA.1.4 is

You should be aware that &CAFA, &CAPA.1, &CAPA.1.4, ... are all
capabilities that reference objects. It sometimes gets confusing when dealing with
capability paths to keep track of objects and capabilities,

2.3. For More Information

This has only been a brief, informal discussion of the C.mmp/Hydra system.
For more information, iry these sources:

2.2.3

C.mmp: the [Hardware ‘ < 3-1

3. . C.mmp: the Hardware

A quick summary of the hardware
Processors:

DEC PDP-11 family with slight CMU alterations

Maximum of 16 processors

Different models can be used concurrently (e.g. 11/20 and 11/40).
Currently operational:

¥ % N %

> 5 PDP 11/20 processors;
> 11 PDP 11/40 processors, all with CMU-developed writable micro-
store.

Relocation Units:

CMU designed and built

Interfaces Unibus to crossbar switch's processor ports
Relocates processor and 1/0 addresses

Provides address and data parity generation and validation

LR B R

Crossbar Switch:

* CMU designed and built

* Switches 16 processor ports to 16 memory ports on a single-word request
basis.

* Allows up to 16 simultaneous memory accesses and arbitrates request
conflicts.

* Provides manual control of all 256 crosspoints, permitting arbitrary
system partitioning.

Memory:

* 16 CMU-designed and built ports, each housing up to 1 Mword.
* Currently operational: (1.16 Mwords total) |

> 12 ports of AMPEX 1865 core storage, 648 Kwords total; (250 nsec
access, 650 nsec cycle, with overlap)

> 5 ports of EM&M MOS memory, 640 Kwords total; (400 nsec access,
400 nsec cycle)

Interprocessor Control:

* CMU designed and built

* Provides interprocessor interruption at 3 priority levels.

*x Allows each processor to start, continue, and stop an arbitrary subset of
the 16 processors.

HUNT Linnany
CARNEGIE-MELLGY 1y

IRIVERSITY

3-2 C.mmp: the Hardware
Time Base:

* CMU designed and built
* Provides global time source with resolution to 4 usec. .

I?eripherals:

* Standard PDP-11 devices are plug-to-plug compatible,
* Currently operational:

5 Mwords swapping storage

60 Mwords disk storage (moving head)

6 DECtape drives

High-speed links to PDP 10 and front-end terminal handler
Interface to ARPA network

Line printer

Miscellaneous small peripherals

VVVVVV YV

* Awaiting software development:.

> 300 Mwords disk storage (RP06/3330-like moving head)
> Magnetic tape drive ;

4.

Major Subsystems 4-1
Major Subsystems

This is a short description of the major user subsystems on Hydra.

> A Catalogue Subsystem, which holds, manipulates, and prints catalogue

objects,

A Process Subsystermn, which is the interface between users and the
scheduler (PM1)}. Provides such functions as process-create, process-kill,
process-siart, etc,

A Device Allocation Subsystem, which interfaces the user with the 1/0
hardware available. Provides a certain amount of resource manipulation and
control. A large amount of developmental work is pending on the I/0
Subsystem.,

A Command Interpreter Subsysiem, which decodes and interprets
commands typed by the user at the terminal. The command language is a
remarkably powerful Algol-like language, which has recursion and macro-
definition capabilities. There is also a facility for creating and storing
Command Objects, which means your command sequences can be stored away
for another day. '

A Job Subsystem, which controls access to the system and allocation and
accounting, and which interfaces to the user through a Job Monitor (JMON).

A Utility subsystem, whose major components for the moment are a version
of SIX12 for debugging BLISS programs, and various time, date, and core-
image-creation things.

A Device Allocation Subsystem, which provides for dynamic assignment of
physical devices (DECtapes, Line Printer, etc.) among several users.

A set of File subsystems, which provide users with higher-level file
constructs, e.g., lines, records, random-access 1/0, etc. and provide a uniform
interface to a number of interesting file types (e.g., SOS and Undifferentiated
Byte Stream (UBS)).

The Hydra User Environment + 5.1

5. The Hydra User Environment

5.1. Logging On/Off
To log on:

1) Give the front end the "C" command to connect to C.mmp
2)You will now recieve one of the following responses:

> The message "Welcome to C.mmp/Hydra" followed by some other
messages, and eventually the JMON prompt "@",
' > The message "Reconnected to C.mmp/Hydra. Hit <{return> to get the
prompt "@",

3)If you received the prompt ">" instead of "@" in the above step, then you are
already at the Command Language. If not, then type "CL" to get there,

4) Now type "LOG()". It will prompt for necessary information. If this is your
first login, answer the request for the password with a carriage return, and
you will be asked to supply one.

To log off:

1)Type "KJOB" to the Command Languag~ prompt ">"
2)After receiving the "@" prompt again, type "K"

5.2. Introduction to the Command Language

The Hydra Command Language is the vehicle of communication between
Hydra and a user at a terminal. Common practice in documenting interactive
systems is to itemize the 'available commands' rather than talk about a language,
However, thinking of it as a language allows us to assume a consistent syntax,
document the syntax, then moveon to a discussion of how the Commands behave.

This document is intended as a command language primer for people
generally familiar with the structure of the Hydra environment (i.e. objects and
capabilities). It should be sufficient to enable a novice to sit down at a terminail
connected to Hydra and do something interesting if not useful. In conjunction
with other documents, you may even be atle to do something useful,

5-2 "The Hydra User Environment

6.3. Basic Command Language Structure

The basic form of the language is that of a general, expression-oriented,
block structured programming language. The syntax resembles that of BLISS in a
general way, with features added or altered to allow access to specific Hydra
features, such as the Catalogue subsystem and the facilities of Policy Module 1
The language follows the BLISS philosophy insofar as every "statement" is an -
expressmn which can return a value. We will use the terms "expression" and

"statement” somewhat interchangeably in discussions of the command language; it
should be understood that the "statement”, as a non-value-returning entity as in
Algol-60, FPL/1, etc. does not exist. All "statements” return values, and as we shall
see, some return multiple values., Although all the facilities described below are
rart of the command language subsystemn, we will occasionally just say that
"Hydra" does this or that. It doesn't really matter at this stage. Likewise, we may
occasionally mention the "command interpreter” or CI, which is the program
which actually parses and executes command language expressions.

5.4. Using the Terminal

The command interpreter indicates that it is waiting for input by typing a
_">" character on the terminal. The user is then invited to type in a command
-language expression (statement), which will be evaluated (executed)., Every
expression evaluates to an integer, which is printed on the terminal prior to the
next prompt (">") or to a capability in which case "capa" is printed prior to the
prompt.

Several expressions may be put on the same line by separating them with
semicolons, A carriage return typed at the terminal is treated as a semicolon for
convenience. To avoid extra long lines, if a carriage return is immediately
preceded by a "t", both the "+" and the carriage return are ignored. Then the
statement may be continued on the next line, The above does not apply inside of
quoted strings. Strings may contain any character except the string terminator.
In stored programs, the conventions regarding carriage returns and "+ are
somewhat different. We will discuss those conventions when. we get to stored

Programs.

The normal terminal control characters (control-H (rubout) control-U, etc)
are available to correct input as it is typed. '

The remainder of this document essentially just discusses the variocus kinds
of expressions you may type, and what you can expect to happen when you do.
Except for a few special examples, all output typed by the command interpreter is
underlined. '

5.3

The Hydra User Environment ' 5-3

5.5. Variables

Like any good programming language, the Command Language has entities
called variables which can be used in a straightforward manner. All variable -
names begin with an "&” character (to distinguish them from Catalogue names, -
described in section 5.8) which may be followed by any number of
characters (upper and lower case characters are treated as the same characters). As
of version 1.25 of the CL (expected to be released during the summer of 1977) the
first 127 characters are significant. In previous versions, only the first 10
characters are significant. ‘

There are three types of variables in the Command Language: '

> WORD variables are just 16-bit integer variables. -
> WORDVEC variables are one-dimensional integer vectors or string variables.
> CAPA variables hold Hydra capabilities.

5.5.1 WORD variables

As mentioned above, WORD variables are 16-bit integer variables. Their
usefulness will be demonstrated in subsequent examples. :

5.5.2 WORDVEC variables

WORDVEC variables do double duty as both integer vectors and string
variables, The statement .

>WORDVEC &A S5, &B 6

declares &A to he a vector of five integer variables or ten characters, denoted &A1,
&A.2, ..., &A.5, and declares &B to be a str1ing of twelve characters or six integer
variables, The following example illustrates the use of WORDVEC variables. -
Note that string accesses use "substring” notation; the pair [a, b] following a ~
WORDVEC wvariable signifies the string starting at the ath character and b
characters long. :

&A2 + b 7 Assigns 6 to the second word of the vactor. 7
>&B[2,3]«"ABC" 7 Assigns "ABC" to the second through fourth
BC characters of the string. 7

2 .

(o2l

I

>

5.5

5-4 The Hydra User Environment

5.5.3 Simple Examples

Here is an example of a terminal session, which will demonstrate some
command language expressions.

{ >7%The percen! sign delineates comments
Q_If carriage relurns is entered before second delimiter,
C:the command interpreter prompts with “C:"7 .
22+2%4 % The regular arilhmetic expressions are
available 7 :
10>
>WORD &I,&) 7. This declares iwo simple integer variables 7
0> .
&1 « 6 7 Simple assignmenis are possible, 7
6>&Je&l+7 7 as are more complicated ones. 7
13>
STYPE "&J=",&J,"tM?J"

7 You can lype things out, but remembar to
to0 (7M?J) 42 type the CRLF,

&J=13
0> , 7 The type statement itself has value 0
7 .
>TYPE "&J="&J}"
S_.' 7 You can put the CRLF in the siring

itself, in which case the command
|nterpreier prompts with "S:" for more
of the string.7

&J=13

0>

dwhile &I Iss &J do {TYPE "A"; &I-&I+1)
7. Heration and compound expressions;
return value is that of last execution of
the compound expression. 7

AAAAAAA]3Z) .
%lf &1 eqi 13 then | else 0 7 Conditional expressions?,

>
>&1 eql &J 7% In relational expressions, 1=true,
- . O=false 7,
1>

< Control-X, for any character X, is written ?X. See sectlon 5.10.

The Hydra User Environment 6~-5

5.5.4 CAPA variables

CAPA wvariables may hold capabilities. Capabilities are obtained by '

retrieving them from Catalogues or by. invoking typecalls or procedures which
return capabilities. The Command Languege also provides facilities for accessing

capabilities via paths in objects. If CAPA variable &C contains a capability for an_

object, then the expression &C.2 represents the second capability in the C-list of
the object., Expressions of this type are called object walks, and may appear on
either side of an assignment operator. Object walks may go to any depth (i.e.
&C.1.1.2.5), and may involve arbitrary Command Language expressions, such as
&C.8J.3 or &C.(3*&J), where &J is assumed to be a WORD variable.

Section 5.6.1 has an example showing the use of CAPA variables.

A CAPA variable may be thought of as an LNS slot in the comanahd
interpreter LNS. The implications of this will be understood in the context of
executing Kernel calls (K-calls) from the command language.

5.6. Invocations '

The Command Language provides facilities for invoking several different

kinds of functions:
1.Hydra Kernel Calls (K-calls).
2. Predefined Typecalls,
3.General Hydra procedures.

4.Command Language programs ("Commands").

5.6.1 Kernel calls

Kernel calls, or K-calls, are invoked by the standard names defined in the
Hydra Reference Manual and the BLISS-11 require files. The kernel calls look the
same as they do in the reference manual. Since paths are evaluated before the
kernel call is executed, certain kernel calls such as $INTERCHANGE do not have
the desired effect. For example, $INTERCH ANGE(A.1,B.1) does not interchange the
first capabilities in the C-lists of A and B. Instead, A.1 and B.1 are evaluated and
the resulting capabilites are interchanged, =ffectively a no-op.

The Command Language form of Kernel K-call arguments is related to the
form described 1n the Reference Manual as follows:

5.5.4

\

5-6 The Hydra User Environment

> Where the K-call requires a capability specified by a simple index or a path,
use a CAPA variable, an object walk. or a Catalogue walk in the Command
Language invocation.

> Where an integer value (other than an address) is required, use a Command
Language expression which evaluates to an integer.

> Where an address of a block of data is called for, use a WORDVEC variable
without an access specification. Be sure that the WORDVEC is long enough
for the kernel call or you may get a fatal error.

Kernel calls return numeric values (called signals when they are negative) as
described in the Reference Manual. They never return capabilities explicitly, but
they may have side effects which cause capabilities to be stored in slots specified
in the argument list. The following example may clear things up a bit.

0>CAPA &B % Declares a capability variable 7 '
O>8MAKEUNIVERSAL(&LB) 7 Kernel call - creates a universal object and
refurns a capability for it in &B 7
0>SCLENGTH(&B) 7 Relurns langth of C-list of Univ cbject, 7.
7 Which turns out to be 0, naturally enough. 7
—53 3« &B 7. We store & capability (&B) into the third slot
in the C-list of the Univ obj. Circularity! Z
Capa> 7 Indicates the result was a capability ¥,
SC'ELEL NGTH{&B) -
3> 7. The length is now three. 7 '

5.6.2 Procedures (predefined and user defined)

All parameters to Hydra Procedures (which include typecalls) must be
capabilities, and thus are supplied in the Command Language in the same way as
capability arguments to Kernel calls, i.e. use capability variables, object walks,
and Catalogue walks. $5TACKDATA(ay;a,....,3;) is a Command Language function
which upon appearing in the argument list of a Procedure invocation, takes its
arguments (integer or string expressions), puts them in a data object, and passes a
capability for that data object to the procedure. The use of $STACKDATA is
illustrated below,.

One difference between Hydra procedure invocations and Kernel calls is that
a procedure may return a capability in addition to the normal numeric value
returned by everything. This is the reason for a slightly different syntactic
structure in the Command Language which is used to store the capability returned
from a procedure. As an example, consider the predefined procedure $MAKECMD.
It takes no parameters and returns a capalility for a Commands object. A sdmple
invocation goes like this:

5.6.1

The Hydra User Environment . 5-7

>CAPA &CMD
0>&CMD=§MAKECMD()

20>

In this example, note that an equals sign was used for the assignment instead of a
left-arrow. This is to demand the assigninent of the returned capability rather
than the returned integer value, which was #0. To help in handling the two .-
return values (integer and capability), the Command Language has predeclared a
WORD variable &RETVAL, to which is assigned the returned value of every
procedure invocation. Thus the above statcments could be followed by

SWORD &RET
0>&RET « &RETVAL

if this value was needed.

The equals-sign is in fact more complex than has been indicated, but the
advanced features will not be described here., They may be found in Chapter
20 in all their gory detail,

—_ ,—-g'
The concept of subsystem in Hydra is defined as W

> A set of objects with a given TYPE
> A set of explicitly defined operations, called TYPECALLS, on objects of the
given type

So, each type subsystem provides a sct of typecalls to manipulate the objects
of that type. Currently, the command language predefines the typecalls for the
JOB, CONNECTION, CATALOGUE, and PM subsystems. The predefined typecalls are. —.
similar to the Bliss macros for those subsystems except for those that return
capabilities. In those cases, omit the return slot from the list of arguments of the
call. The return value will be the value of the procedure, For jnstance, the Job
subsystem has a typecall $LOGIN, to connect a Catalogue to a job ¥ The form listed
in Chapter 22 is:

$LOGIN(RETSLOT, &JOBPROCESS, &TTYPORT)
where RETSLOT is a capability for the returned Catalogue and the other two
parameters are predefined Command Language variables (see section 20.5).
In the Commmand Language, use the following form:

RETSLOT = $LOGIN(&JOEFROCESS, & TTYPORT)

For additional information on Typecalls, see the chapter on the specific
subsystem. :

3 The LOG() command utllizes this typecall. The object "LOG" itself s a Commands object - see

section §5.6.4.
5.6.2

5-8 The Hydra User Environment

5.6.3 General Procedures

< General user-defined procedures may also be invoked from the Command
Language. In this class of procedures are included not only any procedures the
user might create herself, but most of the system utility programs such as editors,
compilers, etc., The only difference betweoen these invocations and invocations
of predefined typecalls is that general procedures do not have their names
predefined in the command interpreter's symbol table, so capabilities for the
procedures must be stored in Catalogues or capability variables. As an example,
consider the procedure OBINFO, which is used to gain information about an object.
The following command will invoke the obinfo procedure.

>&SYSDIRECTORY.PUBLIC.HARBISON.OBINFO(OBJECT, &TTYPORT)

There will be more examples later. Procedures at the end of object and
Catalogue walks may be invoked, e.g. "&A.2.4()".

5.6.4 Commands

./' A Commands is an object holding one or more command language statements,

L, which can be invoked by users just as if i1 were a procedure. As such, it is useful
for those tasks too difficult or long to do directly at a terminal, but too simple to
require a Hydra procedure. Often, Commands are used to insulate the user from
unpleasant features of the command language. Most procedures have one or more

- Commands associated with them to allow such things as default parameters,

. Like procedures, capabilities for Commands are stored in Catalogues or CAPA

\ wvariables. They are invoked in the same way, and will take integers, strings, or

"\ capabilities as parameters,

Commands objects, like most user-defined Hydra objects, have a number of
typecalls associated with them to provide useful operations upon objects of type
COMMANDS. The most useful ones are listed below, For a full list, see section

20.6.

(Assume &Ret and &Cmd have been declared as CAPA variables, and &CMD
references a Cciminands object.)

&Ret = $Makecmd() creates a new Commands object, and returns a
capability for it to &Ret. '

&Ret = $Copycmd(&CMD)creates a copy of the object referenced by &CMD, and
returns a capatility for it to &Ret.

$Editcmd(&CMD) . edits the text in the object referenced by &CMD with
the C.mmp teco editor. Commands objects can also be

edited with SOS.

5.6.3

The Hydra User Environment 5-9

$Listcmd(&CMD) Lists the object referenced by &CMD on the line
printer located in the C.mmp room,

éPrintcmd(&CMD) prints the object referenced by &CMD on the terminal.

5.6.4.1 &PARMS and &CDOPARM

There are two special variables associated with each Commands objectrupon
invocation.

&FARMS points to an object of type UNIVERSAL that contains, in its C-list
slots, the parameters that were passed to the Commands object in the invocation.
For example, if-&GORPFis a capability a Commands object, then upon the invocation

&GORP(Capa1,Capa2)
&PARMS. 1 would contain Capal and &PARMS.2 would contain CapaZ.

Note that Commands objects take no explicitly defined number of
parameters.

Sometimes it is useful to have a list of capabilities available to a Commands
object without having to pass each explicitly as a parameter. Each Commands
object may have "implicit" parameters stored in its C-list, and made available at
run time through the &CDOPARM variable. These are equivelent to the concept
called "inherited capabilities” described for Hydra procedures. The following
example shows how to manipulate this list: :

capa &U

$Makeuniversal{&U)

>&U. 1+ &Capal

Capa>&U.2+«&Capa2 Z?Ji;:re the required capabilities in the C-list of
&U7

Capa>8Wrieclist{&GORP,&U) 7.Copies the capabilities from the
‘C-iist of &U to the C-list of &GORP7,

80>&U=§Readclist (& GORP) ZReturns a Universal conlaining the

contenis of &GORP's C-list 7

Qv v

The following is an example of a Commands which invokes the TECO
pProcedure,

5.6.4

The Hydra User Environment

Begin 7.The Commands is enclosed by a
block to release temporary
variables on block exit?,

CAPA &1PG; _ 7Daclare a cape variable to hold

. the page
“object. The name is intended fo be
unusual
to avoid conflict with user defined
names. 7

7&PARMS is a universal object
holdin

capabﬁiiies for the paramelers of
the Commands. -

$CLENGTH(&PARMS) is the number

If $SCLENGTH(&PARMS) LSS 1 then

of
parameters. 7
(Type 'Page:'s 7ZIf no parameters were passed,
‘prompt
the user for the object. 7
&1PG « INTERPRET() 7.Ge! a capability for a page from

the terminal.Z

7ZNote that (}'s instead of BEGIN
END were used to enclose this
block. Since ()'s do not affect the
symbol {able, they are more

efficient. 7
) else &IPG « &PARMS.1; 'E;I; a parameler was passed, usa
it.7
&CDOPARM.1 TECO(&TTYPORT,&1PG)
7.&CDOPARM

contains a capability for the
inherited capabilities for this
Commands object.
In this case, the first capability in
the C-list
of the Commands is a Catalogue
which
conlains a capability for the TECO
rocedure.
he level of indireclion was
provided to simglify the task of
replacing the TECO procedure with
a new one.?
End 7ZEnd of command objecl. Since no
*." foliowed the invocation of
TECOQ, the value of the command
object is the value of the
invocation.?

5.6.4

The Hydra User Enviroﬁment 5-11

65.7. Macros

Macros are available to allow the user to do something to make the terminal \".
environment more attractive. The macro definition facility allows any identifier, |
variable, or control character to be defined as a macro. The definition looks like /

MACRO name = stringwithouldollarsign §
or
MACRO name{parmlist) = stringwithoutdolfarsign §

If a line starting with "MACRO" does not terminate with "$", the command
language prompts on the next line with "M:" for more of the macro text.

Consider the following examples:

2macro univ(X) = $Makeuniversal())§

O>capa &W

Oouniv(&W) 7&W now containg a capability for a2 new
UniversalZ

O>macro fillslot(A,B,C) = univ(A); AC « B¢

O>capa &2)

O>filislot{&Z,W,5) ZA new universal is created, and &W is
put in ils fifth C~list siot?,

OCapa> ZlNolice how each expression in the macro

returned a value?

5.8. Catalogues

The Catalogue subsystem provides the facility for long-term storage of \“\
capabilities for objects, where long-term jneans beyond a single terminal session.
In this sense, it serves a purpose similar to that of the file system on the PDP-10, /
Note that all of a user's context is lost in the case of a system crash, so it is
valuable to store anything which represents a fair amount of work in its creation

in the Catalogue system, even if it already exists in a CAPA variable.

This section only gives an introtuctory discussion of the Catalogue
subsystem. For a complete description, see Chapter 19.
5.8.1 Predefined Catalogues

There are a number of Catalogues available to the user upon logging into the

system. Capabiljties for these Catalogues are automatically placed in predefined
CAPA variables4.

- 5.7
4

These are not the only predefined variables in th» Cammand Language. For more, see sectlon 20.5

5-12 The Hydra User Environment

5.8.1.1 &USERDIRECTORY

_, Every user has a private Catalogue, accessable through the CAPA variai)le
& USERDIRECTORY. O Like all Catalogurs, it maps print names into stored
capabilities. To list your Catalogue, use the predefined typecall $CATALIST:

>SCATALIST(&USERDIRECTORY,&TTYPORT)

. The parameter "&TTYPORT" is a predefined CAPA variable that contains a

- capability for the Hydra PORT object connected to.your terminal. You will find

that your Catalogue contains (among other things, perhaps) a Commands object

-~ called PROFILE. This Commands object is invoked automatically after you have

i logged in, providing you with a number of useful macro definitions, among other
'_things. See section 5.9 for more on Profijes.

Because several names are used frequently, the following macros havé been
put in the standard profile '

USER = &USERDIRECTORY
SYS = &SYSDIRECTORY
UT = &SYSDIRECTORY.UTILITIES

PUB =&SYSDIRECTORY.PUBLIC

The latter three will be discussed in the next section.

. Because capabilities residing in &USERDIRECTORY are so frequently used, it
is the default Catalogue. That is, if an ohject walk does nt begin with a CAPA
variable or a Catalogue, & USERDIRECTORY will be used. Example:

& CAPA « &USERDIRECTORY.TEST

is equivelent to

&CAPA « TEST

5 At one time the functions of the Catalcgue subsystem were performed by the Directory subsystem,
therefore the name &USERDIRECTORY instead of ¢ USERCATALOGUE.
58.1

The Hydra User Environment 5-13

5.8.1.2 &SYSDIRECTORY ‘

&SYSDIRECTORY contains a capability for the system Catalogue, This
Catalogue contains other Catalogues, command objects, procedures, and templates
that are of interest to the general user community.

There are two useful Catalogues, called UTILITIES and PUBLIC, that reside on
& SYSDIRECTORY and are of interest to most users.

UTILITIES contains procedures and Commands objects of general interest,
such as the MAIL subsystem.

To list UTILITIES, type
2$CATALIST(&SYSDIRECTORY.UTILITIES,&TTYPORT)

To invoke a Commands object or procedure that resides on a Catalogue other
than the &USERDIRECTORY Catalogue, specify the object walk, If the object takes
no parameters, you must still specify an empty parameter list (i.e., suffix it with
n()n)

To invoke the MAIL Commands object, for instance, type
2&SYSDIRECTORY.UTILITIES.MAIL()

The PUBLIC Catalogue provides a merans for users to make selected objects
accessable by other users. It contains a Cornmands object called MAKEPUBLIC, and
a Catalogue for each user who has created one. To get a public Catalogue, invoke
the following Commands object: - '

&SYSDIRECTORY.PUBLIC.MAKEPUBLIC()

Like everybody else, you can access things in your public Catéloghe through the
PUBLIC Catalogue. However, you also have access to it through a new capability
&U’SERDIRECTORY.MYPUBLIC, created by the above Commands object.

USER.MYPUBLIC and PUB.DOLMAT? both point to the same Catalogue
(provided that your name is Dolmatz), but USER.MYPUBLIC posseses more rights it.

If you want to insert a capability into your public Catalogue, you must perform an
assignment using USER.MYPURBLIC: .

2USER.MYPUBLIC « GRUNT

The above assignment stored a capability for the object pointed to by

5.8.1

5-14 The Hydra User Environment

& USERDIRECTORY.GRUNT (Remember - if an object walk specification doesn't
begin at a Catalogue, &USERDIRECTORY is used as default) into the users public
gatalogue. The assignment &SYSDIRECTORY.PUBLIC.DOLMATZ « GRUNT will fail

Everything that is put in the PUBLIC Catalogue is protected against deletion
through any object walk going through &SYSDIRECTORY.PUBLIC. You must,
however, protect against modification. This can be accomplished by using the
rights restriction facility in the Command Language. To restrict rights, append
the capability being assigned with an octal expression indicating which rights are
to be restricted. For most purposes, it will be sufficient to restrict $MODIFYRTS
(octal #20000).A good discussion of kernel rights can be found in The Hydra
Kernel Reference Manual. An example of rights restriction follows:

>&USERDIRECTORY MYPUBLIC« &PUBOBJ[,#20000]

This restricts the kernel right $MONIFYRTS in the capability passed to the
Catalogue. For additional information atout the rights-restriction facility, see
section 20.3.10. One time when ynu should not attempt to restrict
FMODIFYRTS is when the object to be assigned is of type CATALOGUE (i.e., a
Catalogue) or DIRECTORY. If SMODIFYRTS is restricted on a capability pointing ot
an object of either of these types, it will be impossible to list the contents of the
Catalogue (or directory). Anyway, every capability in it will be implicitly
protected from deletion because every object walk will go through
&SYSDIRECTORY.PUBLIC.

5.8.2 Using the Catalogue Subsystem

Catalogues in Hydra have a directed graph structure, and can contain
capabilities for an object of any hydra type (including other Catalogues)
_Therefore, it is possible to structure your user Catalogue to suit your needs. For
instance, your top-level user Catalogue may contain an entry for a Catalogue
named ALGOIL, in which all your ALGOLB% programs and other related objects are
kept,

Be aware that a capability for a particular object can be stored under more
than one name in the same Catalogue (perhaps with different rights for each
name'), On the subject of names, bear in 1nind that the name given to an object (
called the erint name) is of use OQONLY for specifying that capability in the
Catalogue,

6 If it doesn't fall, congratulations! You've found a new bug.

7 The global name of an object (a unigue 64-bit bit pattern) Is asslgned to each object upon creation.
More on global names can be found In The Hydra Kernel Reference Manuat
5.

&)
[

The Hydra User Environment 15

5.9. Profiles

As you may have noticed by now, doing things in Hydra requires quite a bit

of typing. For example, to run the Algol68 compiler, one must make the following
procedure invocation:

z&SYSDIRECTORY.PUBLlC.ALGOL68.CMDS.ALGOLGS()
The way to avoid all this typing, of course, is to declare a macro
2MACRO ALGGS = &SYSDIBECTORY.PUBLIC.ALGOLS8.CMDS.ALGOL68$

and then type

+

>ALGGE()

There is a special Commands object in your userdirectory called a profile. Every \
new account receives this profile when it is created. It is invoked every time you |
log on, and defines macros for a number of useful procedures,

To see what is in your profile, use the macro (defined in the profile) "print":

2PRINT (PROFILE) Z5ince PROFILE is on &USERDIRECTORY, there
is
no reason to specify this Catalogue in the object
walk?

The word "HELP" has been defined as a macro. Type it and see what happens.

The size of the standard profile has been kept to a minimum. It is expected
that subprofiles will be made available to special classes of users with particular
needs (i.e., Bliss users, Algol68 users). ‘

5.10. Input and Output

The command language provides a few 1/0 primitives for use mainly in
command objects. The TYPE statement was demonstrated earlier in this primer,
TYPE will output strings and integers, but not capabilities. An attempt to print a
capability will result in "Capa" being printed. It is important to note that the
TYPE statement does not provide the so-called "service" of putting in a free
carriage-return linefeed. The user must type one out explicitly if one is desired.

5.9

5-16 The Hydra User Environment

To do this, a string containing the carriagn-return linefeed must be supplied, and
one way is with a macro (what? you skipped the section on macros? Go back and
read it now!)

MACRO CRLF="7M?J"$

The question-mark before a character is the "control-escape" character, and causes
the command interpreter scanner to make the next character its control-shift
equivalent. Thus "?M?7J" turns into control-M-control-J, which if you didn't
already know you will soon memorize as bring carriage return and linefeed.

The input primitives are ACCEPT and INTERPRET. The ACCEPT expression,
written "ACCEPT()", gets input from the terminal, returning a string of all
characters up to, but not including, the carriage return-line feed which

_terminates the line. (There is an option which includes the "break" character{s)

from the input line.) The value of the expression (the string) may be assigned to a

string (WORDVEC) variable.

>WORDVEC &S5.5

0>&5[1,10] « ACCEPT()

Hello. ! We typed this line

Hello.> ! This 15 the return value, typed by the CI. .
! Note that no CRLF is inciuded.

>TYPE &S[!,10}

Hello.O> ! The Cl typed this line
! The O is the return value
! of the TYPE expression.

To cause inclusion of the carriage return linefeed, use ACCEPT(0). The default
case, i.e., ACCEPT(), is the same as ACCEPT(1).

INTERPRET is more complicated than ACCEPT. It accepts an input line, and

. then feeds the line to the command interpreter, which executes it as if it were an

AL

expression (which it had better be). The return value is whatever the expression
evaluates to, which may be an integer, a capability, or a string. You should note

‘that the typed expression is executed in the context in effect at the location of the

call to INTERPRET, not in the context of the "outer" levels of the command
interpreter. This is important if you execute INTERPRET from within a command
object which has defined local variables, e.g.

5.10

The Hydra User Environment ' 5-17

WORD &1

>&1 + 99
>BEGIN

B:WORD &I,&J; 7. The "B:" tells you that you are in a block 7%

B:TYPE "Weli?? * 7 The 7? maans ?ywill be put in the string. 7

B:&1 « 37

B:&J « INTERPRET()

B:TYPE &J,"

'g"‘h

‘..DlOIV

7The "S:" tells you that you are in a string. 7

B:END

Well? &1 % The block is executed here; we type input to
INTERPRET 7

37 7. This is what is {yped by the TYPE statement 7

0 e

>TYPE &1,"7M7J)"
3>

el

|

This dynamic binding of names should be familiar to users of systems such as LISP
or APL.)

5.11. Pointers to more information

This primer is neither complete nor strictly accurate. More printed
information may be found in the command language manual, which includes a
complete syntax and list of features. It can be found in Chapter 20and on
CMDINT.DOC|N810HY97]. Also available from time to time are updates on the
Command Language. They are found on CL??.DOC[N810HY97) as they are
available. The 77? refers to the version number of the command language.
Unfortunately, even these documents leave something to be desired, and the only
really satisfactory way of learning the command language is to use it and watch
others do the same.

Good luck.,

5,10

Terminals and C.mmp - 6-1

6. Terminals and C.mmp

6.1. Connecting a terminal to C.mmp

6.1.1 Front end terminals

Normally, user connections to C.mmp are made via the Front End. The Front
End multiplexes terminals to several of the deparmental computers: the PDP-10's
(the A system, the B system, or the D system), computer nodules (sic), the Al
research systems, or to C.mmp (the C system). Most CMU computer users should
be familiar with the Front End system by now, but a quick review wouldn't hurt.

The Front End is a PDP-11/40, physically located in the machine room
behind the line printer, to which most of the terminals in the building are
connected by means of direct cables, Some dialup ports (and soon all but Datel
dialup ports) connect to the Front End. When a terminal is first connected to the
Front End, or when its system is first brought up, the Front End must determine
the speed of the terminal. One must therefore type a known character, namely tC,
several times, while the Front End tries to interpret it at various speeds. When it
finds a speed at which the incoming character looks like a tC, it prints a signon
message and asks you to select a Host (H for help). To connect to C.mmp, type 'C'.

When Hydra receives a connection from the Front End, it generates a 'virtuatl
terminal' and crosspatches you to it. All characters received by the Front End are
transmitted directly to C.mmp. When a Front-End escape character (++~, control
backarrow) is received by Hydra, it breaks the connection to the Front End. If you
break a C.mmp connection and then re-establish it, you will get reconnected to
your own job. ‘

The link from the Front End to C.minp is a 4800-baud ASLI (Asynchronous
Line Interface) which connects via processor 'C'.

6.1.2 The teletypes in the machine room

Almost no one uses the 'I‘eletypetrn terminals in the C.mmp room; after all,
who wants a 110 baud upper-case-only noisy terminal which probably doesn't
work all that well anyway, when nice 1200 baud video terminals are available?
Therefore, one needs no information about how to mangle the patch panel to
convince a Teletype to talk to C.mmp; anyone who is so desperate as to require
C.mmp when the Front End is down is already a hacker and knows. Therefore, the
material formerly in this section has been deleted.

6-2 Terminals and C..nmp

6.1.3 Connecting from the Graphics

There is one CMU "Graphics Wonder'!™ terminal that is electrically
connected to C.mmp. In order to get it and C.mmp talking to each other you have
to do some handwaving. First, it i1s necessary to understand a little bit about the
graphics keyboard. This bizarre kKeyboard is called a ‘Stanford Keyboard', and was
perpetrated on the public by the university of the same name.

The Stanford keyboard has (in addition to keys in all the wrong places), a
number of "shift" keys. The key labelled "SHIFT" shifts lower case letters to
upper case letters. The locking key marked "upper case" is the shift-lock for this
key. In order to obtain the special character that is printed on the top of each key,
you must use the "TOP" shift key. The "CONTROL" shift key does exactly what a
control key always does. However, to talk to the graphics monitor, you use the
"META" key, or both the "META" key and the "CONTROL" key together. These will
be denoted, respectively, as {(M>C or {MC>C, where C is some character. These
characters are interpreted directly by the graphics monitor and not transmitted to
the host computer,

. . .

First it is necessary to have the graphics operational. If typed characters do
not echo on the graphics, it means that (1) the PDP-10 is down; wait for it to come
back or (2) the graphics monitor is down; reload it. {M>CALL sometimes works if
the graphics monitor is not too badly screwed up; if nothing happens, push the
little red button on top of the Keyboard. This reboots the graphics monitor from
the PDP-10. It is not necessary that you have a job logged in on the PDP-10.

Now, if you have just walked up to the graphics, or if you have rebooted it,
vou must reload a program which enables communication to C.mmp. To do this,
you type the command on the PDP-10:

+

INI @CT{N810HY37}]

During the initialization nothing much appears to happen; this is because the
program is being loaded into the graphics monitor, which doesn't display much.
After it is loaded, it will connect to C.nmp, and assuming Hydra is running
{what? You didn't check that first?) you may now proceed to use the graphics as
any other C.inmp terminal.

To return to the PDP-10, type (MC>R <{M>T; to switch the connection back
to C.mmp, type <MC>R {M>C.

6.1.4 Other kinds of terminals

Hydra understands certain physical characteristics of terminals (no, not that
they are blue or white or have funny keyboards...) such as how to move the
cursor left, how to clear a video terminal screen, etc, Mostly, these characteristics
are "wired in" to the Kernel, which has clever little tables in its device support

6.1.3

Terminals and C.mmp 6-3

routines. Someday, the user may be able to specify this, but right now there is so
little need for such a feature that Kernel tables are compiled right in. The devices
which the Kernel currently understands are:

Model 33 Teletripet™

Texas Instruments "silent 700" series
Superbee Il

Minibee IV

Infoton

Datamedia 2000

DEC LA36 DECwriter

Normally, the Front End informs Hydra which type of terminal is connected;

however, its information may be incorrect, so the user has the option of
respecifying this information after logging in.

6.1.5 Terminal Keyboard Characters

Certain characters typed at the keyboard have particular effects upon the

system. Most of these are what one expects if one is familiar with our PDP-10s,
but a brief review is included here for those who are not, or who don't remember
all of the functions:

x

Control-H or Delete: erases the previous character; if the terminal can
backspace, the cursor will be moved left; for video terminals the previous
character will also be erased.

Control-U: cancels the current line (equivalent to a series of control-H .
characters). On video terminals an attormpt is made to erase the entire line.
Control-1: Tab, moves the cursor to the next tab stop. Tab stops are set every 8
positions. If the device cannot actually tab, a number of spaces are printed to
move to the next tab stop. _

Control-K: Just like typing the "break" key.

Control-L: On video terminals, clears the screen, On hardcopy terminals, just
prints a few blank lines {three, we think).

Control-0O: clears output, Current ontput is flushed and future output is
rejected. This mode is reset by typing another control-O or by sending a READ
request down to the terminal.

Control-S: temporarily suspends output, Qutput stops almost instantly, and is
continued by typing:

Control-Q: resumes output suspended by control-S.

Control-R: this is supposed to retype the line, but right now it does nothing.
Try it; perhaps retype will be implemented by the time you read this.
Control-T: Gives the status of the Kernel, Terminal Multiplexor, or user job.
During Kernel initialization it will print out what the Kernel is doing; if it
prints Cold Start Pass 1 or Frigid Start Pass 1 or Frigid Start Pass 2 you have
time to go up to the 8th floor vendins machines and get some (alleged) food.
A Cold Start or Frigid Start will require on the order of 20 minutes, Network
users can't'get these reassuring messages because the Network software is not
running during these periods, so the connection will probably time out. Once
the terminal multiplexor is up, it intercepts the control-T and will print out
1ts version number or give some other useful status information. Note that

6.1.4

6-4 Terminals and C.mmp

control-T forces the Terminal Multiplexor to check the Job Monitor it has
created to talk to you; if the Job Mouitor is dead a new one will be created.
When in doubt, try control-T. Eventually, control-T will be reported to the
Job monitor which will tell you something about the job; this is not yet in
but we think we know how to do it, so try it,

* Control-underscore (or control-backarrow, depending upon what your
terminal Keytop shows for this code). Temporarily suspends the front-end or
Network link and returns the terminal to the front end or local host. A
reconnection to C.mmp will give the user the same Jjob in more-or-less
exaclly the same state as before the break (typeahead is not guaranteed to be
preserved).

* Control-caret (or control-uparrow, on older terminals). Permanently breaks
the front-end connection. The Job Monitor and all the subjobs are deleted.
Reconnecting to C.mmp will give a completely new terminal connection
including a new Job Monitor. Nons of the status of the old connection
remains, and therefore a new terminal type must be re-established. Usually
the Front End will do this correctly, providing it knows the correct terminal

type.

6.2. The Hydra Terminal Multiple:zor

The Hydra Terminal multiplexor subsystem is the part of Hydra that controls
your terminal, Very low-level control, such as processing of rubouts, echoing of
characters, worrying about which characters are breaks, etc., is handled by the
kernel for reasons of efficiency. The Terminal Multiplexor is the next higher
level of control. It takes charge of connecting your terminal to various processes,
buffering, and connecting you to the command interpreter (which is in fact just
another process). ;

In order to properly understand the nature of the Terminal Multiplexor and
what it can do for you, you must first know something about Hydra Ports and
Hydra Connection Objects. Ports are very well documented in the Kernel Manual,
but there is no particular written documentation about connection objects. We
shall attempt te fill that void until such time as official documentation becomes
available.

6.2.1 Connection Objects

Data is transported around the innards of Hydra via ports. These ports are
connected to each other by means of port connections. Ports are a very general
mechanism, which may be used for I/0, mmessages, semaphores, etc. A particular
use of ports which is of primary concern to the beginning C.mmp user is that of
terminal ports.

In Hydra, every real device looks like a Port, i.e., disks, tapes, DECtapes,
terminals, etc. However, in the case of terminals, no user ever actually obtai_ns a
capability for a device or connects directly to a terminal. Instead, an intermediary

6.1.5

Terminals and C.mmp - 6-5

Known as the Terminal Multiplexor sits Letween the device and the user, and
users connect to the Terminal Multiplexor port. The Terminal Multiplexor
handles all of the message traffic to the device, and provides a great deal of power
which would not be available if the device were connected directly to the user's
process. Since a user can have many processes, the terminal Multiplexor allows
the user to talk to whichever one is of interest at the moment.

Output to'a terminal is from the user's Port to the terminal "device" (which
is really simulated by the Multiplexor). When a process sends a message over a
port, the SEND operation will fail unless the appropriate ocutput channel of that
port is connected to something. If the user's terminal is connected to process A,
and process B sends a message over its terminal port, that Mmessage must go
somewhere. One of the functions of the Terminal Multiplexor is to provide that
"somewhere" at the receiving end of terminal ports which do not currently have
terminals attached to them. The Terminal Multiplexor provides a function (the
TALK function) which is used to specify which port's output is actually
transmitted to the terminal.

"The connections between ports and the Terminal Multiplexor are

represented by Connection Objects. If you "make" a connection; i.e. if you connect
a port to the Terminal Multiplexor, then as a byproduct of doing so, you have
created a Connection Object which represents that connection. The routing of
Terminal traffic around the Terminal Multiplexor is specified not in terms of the
ports, but in terms of the connection objects representing the connection of those
ports to the Terminal Multipiexor.

6.2.2 Terminal ports

In your program, input and output to the terminal are Programmed as input
and output requests to a port. The creaticn of the port and its connection to the
Terminal Multiplexor are normally performed automatically by the programming
system runtime support: in BLISS, the HYDUSR runtime initialization creates and
connects a port; in L*, it is part of the system initialization. Only those BLISS
programmers who choose not to use HYDUSR, and assembly language
Programmers, need worry about terminal connections.

6.2.3 Coming attractions

If you have more than one process active in your "task force", it is useful to
be able to connect your terminal to each or any of them. These connections may be
made directly from the terminal to the process in question, .or may be made
through a chain of ports and connection objects, In either case, hitting the
command break (tK) character causes the Terminal Multiplexor to break the
connection closest to the terminal and reconnect the terminal to the command
interpreter. If there is a chain of ports linked beyond this first level, that chain
will not be broken but will not be accessible either. At the command interpreter,
a $TALK(<connection object>) may be executed to reconnect the terminal to some
other procedure.

6.2.1

6-6 Terminals and C.mmp

Connections also have some properties of the device associated with them.
For example, if you are talking on a given connection and change the device
status, such as turning off echo, then that condition will be remembered for that
ggnngg_ngm When "break" returns You to a previous connection, the state of the
terminal for that connection will be reset 5o echo may be turned back on (if it was
turned on in that connection) and whenever you return to the connection in
which echo was turned off, the echo will be turned off. This is all accomplished
by reading the device status out from the Kernel just before a connection is
broken, and writing it back just as a connection is re-established. The first time a -
connection is established, the device status is read out, so a new c¢onnection
"inherits" the characteristics set in its creating process,

There are plans and promises to beef up the Terminal Multiplexor. Some of
the features that are planned are the sorts of things that you might find yourself
saying "It sure would be nice if we had _ ". Even though the User's Manual
is not supposed to be a dream catalog, the future plans for the Terminal
Multiplexor are included here just to show you what you are missing.

2> A LISTEN function, that will allow the Terminal Multiplexor to listen to
many processes at once. You may see printed at the Terminal any output from
any of the ports to which you LISTEN. Obviously, the keyboard can only be
connected to send data to one of them; the TALK function will still control

' this, LISTEN is currently available to L* users; it is unplemented in the L*
kernel rather than the Terminal Multiplexor.

> A KILL function, to get rid of connection objects when they are no longer
needed. Connection objects all vanish when the system is restarted, so until
such time as system restarts become rare, nobody is going to worry too much
about KIiLL.

> A TALKBREAK function. This will behave exactly like a TALK, save for the
way it behaves when you hit break (tK) at the terminal. If a connection
chain is made with a series of TALK calls, then a break request will break the
one closest to the terminal. If a conlection chain is made with d series of
TALKBREAK calls, then a break request will break the one farthest from it

6.2.3

Programming for Hydra 7-1
7. Programming for Hydra

At the moment there are four ways you can write a program for C.mmp to
run under Hydra; i.e., there are four different "programming systems” available,
Of these four, two are primarily batch systems (BLISS-11 and Algol-68), one is
primarily a conversational system (L*), and the third (assembler) is pretty much
like everybody's assemblers everywhere.

7.1. Assembler

You may program C.mmp in PDP11 assembly language. This is not a good
way to learn about Hydra, because all of the K-calls were set up so that they coulad
be called conveniently from BLISS-11; as a result, some of the calls lock a little
clumsy and are obscure at best. George Robertson has put together a collection of
assembler macros which provide the bindings and definitions and calls of Kernel
facilities. He reports that with some exceptions such as PATH and WALKn, the
assembler macro calls are quite reasonable, and he offers an L* kernel coded with
them to prove it. (Those daring souls among you can find this file as
KMACS.M11{N810HY97]. See also the .REQUIRE directive in MACN11). The
Assembler runs on the PDP-10. There is no assembler running under Hydra.

7.2. BLISS-11

C.mmp may be programmed in BLISS-11., BLISS-11 is an "implementation
language" which was developed at CMU. The compiler runs on the PDP10, and
produces an output file suitable for proccssing by the PDP11 assembler. Hydra
itself is coded entirely in BLISS-11, so the compiler has obviously been worked
over and checked out to a certain extent,

7.3. L*

C.mmp may be programmed in L*. The L* kernel handles most of the
nuisance details of running a program, such as setting up port connections and
talking to the PDP10 link, etc. The Hearsay-II system for C.mmp is being
implemented in L*, and the SOS text editor already operational there is
implemented in L*. A handler and data recorder for the Audio Spectrum Analyzer
(a piece of Speech hardware) was implemented in L* on C.mmp and is currently in
production,

For more information on L*, see LSCDOT.DOCA110LC0O0]/A

7.4. Algol-68

One of the newest features of Hydra is an Algol68 implemenltation designed
by .Peter Hibbard, Paul Knueven, and Bruce Leverett. Several attributes of the
language make it suitable for the C.mmp/Hydra environment:

7

7-2 Programming for Hydra

1, It is one of the very few high-level languages to support
multiprocessing control structnres, e.g. par begin ... end and
semaphores. Applications written in Algol on C.mmp will
therefore be able to use all the processing power of C. without

. explicit interaction with the Kernel or Policy Modules.

2, The crucial ideas of TYPE and PROCEDURE in Hydra are closely
paralleled by the mode and op(crator) concepts in Algol68. Thus
Hydra users will find Algol68 natural and vice versa.

3. Finally, the C.mmp implementation is well suited for
minicomputers. It resulted from an implementation designed by
Feter Hibbard for an English minicomputer. Thus, although
Algol68 is considered difficult to implement in America, the
implementation on C.mmp is remarkably mature.

It is intended that Algol-68 will be the primary user system. Unlike BLISS-
11 and Assembler, Algol-68 does not require the use of the PDP-10 to produce an
operational program. Programs are created, compiled, linked, etc. on
C.mmp/Hydra.

7.4

Introduction to Algol 68 8-1

8. Introduction to Algol 68

The C.mmp Algol 68 system accepts a PAGE, UNIVERSAL of PAGEs, or
SuperFile as input, compiles this source text and invokes the run-time system
which executes the program. Eventually this compile-and-go system will give
way to a compile-link-and-go system which supports-separate compilation and
Program libraries, :

8.1. Preparing source input using SOS

A version of the SOS editor exists on Hydra. The PDP-10 SOS Manual serves
as the user manual for the SOS editor. However, only a subset of PDP-10 SOS is
available. In particular, the Copy, Transfer, Find, Substitute and Justify
commands are not implemented. e *

A new file may be created and edited using SOS by typing: Create(). You will
be prompted for a file name. Your reply should be a name of one to ten letters
and/or digits. (Other characters may be used, but some are rather dangerous.) SOS
starts in insert mode. ,

An old file may be edited using SOS by typing: Edit(). Your reply to the
prompt for a file should be the name given when you created the file or a null
reply (i.e. carriage return) in which case the file most recently edited or compiled
will be used.

S0S may be used to examine a file in read-only mode by typing: Read().

Additional information about S0S may be found - in Chapter 9,
Problems with and complaints about the editor should be sent via MAIL to
A11QLCOO on the PDP-10,

8.2. Preparing source input using TECO

A version of the TECO editor exists on Hydra. It is roughly a subset of its
namesake on the PDP-10, A new file may be created and edited using TECO by
typing: Make(). The prompt for a file name should be answered with a name
consisting of one to ten letters and/or digits. An old file may be edited by typing:
Teco(). You will be prompted for a file name. A null response causes the last file
edited or compiled to be used. :

8.3. Specifying files and file names

If you have created any programs using SOS or TECO, your catalogue now has
an entry called Algol. This is itself a catalogue and there is an entry in it for every
program you create. When you use one of the standard commands, such as "Edit"
or "Teco”, and it prompts you for a file name, it looks up that file name in your
Algol Catalogue. If you want to deal with a file that isn't in your Algol catalogue

8

8-2 : Introduction to Algol 68

you can do that, too; the only requirement is that you specify completely, using
the conventions of the CI, how to acce:ss the file, For instance, if your user
catalogue has an entry called Test, and Test is a catalogue with an entry called
Prog which is your program, then when "Ldit" or "Teco" or whatever prompts you
for a file name, you should type: Test.Frog. If your program isn't even on a
catalogue but is in a "Capability variable" called &prog, then you should type:
& prog.

You can bypass the prompt by passing the proper indication of your program
directly to the command, as a parameter. For instance, you might type:

Edit(Algol.prog)

! Equivalent to:

'Edit()

! Source file: prog
Edit(Test.prog)

! Equivalent to:

TEdit()

t Source file: test.prog
Edit(&prog)

! Equivalent to:

tEdit()

! Source file: &prog

Notice that these commands "remember" what the last file you edited, ran,
etc. was. That is, if you respond to th~ prompt by not typing anything but
carriage returmn, it is as if you typed the name of the last file you edited or ran.
The commands do this by maintaining a "Capability variable" called ¤tfile,
At any given time, this variable is set to the file currently in use, or the last file
that was in use. Ordinarily you don't neced to know this, but for the curious,
that's how it's done.

Every catalogue entry (indeed every object in the Hydra system) has a type.
Files created by SOS are of type SUPER FILE; files created by Make() are of type
UNIVERSAL. You'll notice that the type of each file is printed out when you get a
catalogue listing (see below) of all your files. SUPER FILE cannot be edited with
TECO, and UNIVERSALSs cannot be edited with SOS, in case you were wondering.

8.4. Compiling and executing a program
First, type: Alg68(). The following prompt will be typed:
Source Input:

The response should be the name of the file to be compiled and executed. The

dialog continues with the prompt
.]

Listing Device:

Introduction to Algol 68 8-3

This is the first of several "option prompts” which are part of the standard dialog,
For each option prompt, there is a set of possible replies, and if you forget any of
these, you can have the system type out the whole set, by replying with "?". Any
reply may be abbreviated to only its first few characters, enough to distinguish it
from all other replies in the set. A reply must be followed by a carriage return.

Currently there is only one possible reply to the 'Listing Device' option
prompt, This is "TTY", indicating that a compilation listing is to be typed at the
user's terminal. A null reply (i.e. a bare carriage return) indicates that the listing
is to be suppressed. In the future, more replies (e.g. "LPT") will be available.

Next, there is another option prompt:
Compiler Option:

This prompt is repeated after each reply, until the user types a null reply (carriage
return}). A list of the available replies may be found in Section 8.5.1. After
the null reply to this pPrompt, the compilation begins.

When the compilation is complete, a message stating the program's code and
data sizes (in number of words) is typed on the terminal. If no compilation errors
occurred, the run-time system is called. First, however, there is another option
prompt: :

Runtime Option:

L.ike the previous option prompt, this one is repeated after each reply, until the
user types a null reply. A list of the available replies may be found by typing ".
One of the replies is special: 'STANDOUT'. This brings on the 'Standout Option'
option prompt, by which means the user specifies what is to be the nature of the
standoutchannel, the channel on which the standard output file is opened. The
available replies are: :

LIST It is a file of the LPT subfile type, which is listed as soon as it is
closed,

TYPE It is the same as Consoutchannel, the channel for output to the
user's terminal. :

SAVE It is a file of the SOS subfile type. More about this later; this is the
default. ' .

DELETE Not implemented yet.

The run-time system then greets the user with some reassuring message and
tommences program execution. After the program finishes, another reassuring
message appears at the terminal indicating that execution is complete, If the user
has earlier specified the 'SAVE' Standout option (or has not specified an option--
this is the default), the accumulated output from the program using
standoutchannel is now available as a file of the SOS subfile type, and the system
gives the 'Final Standout Option’ option prompt, You may specify that the file be
typed on your terminal, listed on the line printer, saved in your userdirectory
under the name 'Standout’, or thrown away (it is biodegradable). .

8.9

8-4 Introduction to Algol 68

If you run a program more than once without editing it, you can shorten the
compilation-execution sequence considerably, by avoiding more than one
compilation. To do this, first type: Com68(). You should do this whenevet you
have done some editing and are ready to try out the program again. This runs the
Compiler, which produces an Object Program from your program. If you have a
subcatalogue called Object on your userdirectory, the Object Program will be put
there; otherwise it will be put on your userdirectory. To actually run this
program, type: Bun68() '

8.5. Terminating Algol 68

If your program gets into an infinite loop, or some other mishap befalls it,
press the BREAK key {Control-K), and then type Control-C. Ordinarily, this will
cause the program to be interrupted and forcibly stopped. You can also interrupt
the compiler this way, if you want to. :

8.5.1 Compilation Switches

Some of the compilation options listed below are not of interest to users;
these are marked with an asterisk. Of the others, currently all are available as
pragmat-items as well. For instance, if your program contains the pragmat

10:: lower ::

the remainder of the program (at least up to the next pragmat) will be assumed to
use the "lower" stropping convention.

DEBUG* Enable compiler debugging mode of operation.
GHOST* Mumbo jumbo,

LISTING Froduce compiler source listing output.
LOWER Use lower stropping convention.

NAKED* Hocus pocus filiocus,

NODEBUG* Disable compiler debugging mode of operation.
NOGHOST* Disable mumbo jumbo.

NOLISTING Suppress compiler source listing output.
NONAKED* Disable hocus pocus filiocus.

NOWARNINGS Do not output warning messages.

POINT Use point stropping convention,

RES Use reserved word stiopping convention,
UFPPER Use upper stropping conventian,

WARNINGS Output warning messages.

8.5.2 Execution Switches
DEBUG Enable run-time system debugging mode of operation. This
is of some limited uscfulness to users. The user is prompted
for a set of 'Flags', that is, a number; this number is treated as

8.4

Introduction to Algol 68 8-5

if it had been passed as the second argument to a call on
Systrace (see documentation elsewhere) in the program.

PROCESSES The user's program is to be run on more than one process.
The user is prompted for a number of processes, which may
be from 1 to 16. Nole that this is not a number of physical
PDP-11 processors, but of HYDRA processes; and that at any
time the user's program may make use of fewer processes
than the specified number, or it may be written as if it could
make use of more; in either case it should still run and
produce correct results. !

SPEEDUP Consult the implementors before using this switch.

STANDOUT See the explanation in the Algol 68 user's manual.

8.5.3 Error Reporting

A compilation error is indicated by the printing of a vague message, the line
containing the error, and a line containing a position indicator beneath the first
character of the most recently seen input lexeme at the time of the error. A
position indicator is simply a digit printed in the appropriate position. If more
than one error occurs in a given line, the error messages, first to last, are
associated with the position indicators, Jeft to right, respecting’ the following
rule, If many errors occur at the same position, the digit printed indicates the
number of errors which occurred there,

Syntax errors will normally cause some portion of the input to be ignored,
For the most part, any ignored characters are printed on the listing with eqgual
signs beneath them. '

No semantic processing of the program is done after the first compilation
error occurs. Naturally, the run-time systom is not called if an error is found.

There are also abnormal situations which are not quite as severe as errors.
These cause a warning message 10 be printed in the same format as an error
message except the fact that it is a warning is noted. Warnings do 'not ¢ause
semantic processing to stop. '

Run-time errors are normally indicated by the printing of an accurate

statement of what the problem is. This is accompanied by an indication of the
source program line which was being executed when the error occurred.

8.6. Temporary Restrictions
8.6.1 Things You Care About

- Soft balancing of identity-relations is not implemented.

- Transput of structured, long int and long real values is not
implemented,
8.5.2

B8-6 Introduction to Algol 68

- Some operators are not implemented . In particular no operators
which involve any of the mod=s @B[long int], @B[long real], or
@B[long comp)] are implemented,

- Some standard and particular prelude 1identifiers are not
implemented

- Program code size is restricted to 4096 words. This should be able
to accomodate 200 to 300 source lines of program.

8.6.2 Things You Do Not Care About

- Full and correct mode equivalence check is not implemented. Do
not be worried about this. The mode equivalence algorithm is
almost totally correct. An appropriate prize will be awarded to the.
first user discovering two equivalent modes which are not
recognized as such.

- Determination of necessary environ based on use of applied-mode-
indicant as actual-declarer is not implemented completely.

8.7. For more information

Some of the restrictions mentioned should be disappearing in the latter part
of 1977. For up to date information, see HYDA68.XGO {L150AL72]

B.6.1

LY.

Part 1l: Utilities

9. SOS on C.mmp

The C.mmp S0OS subsystem is composed of two parts: the SOS subfile system,
and the S0OS editor, The first part of this chapter describes the S0S editor, The
second part describes the SOS subfile system with the assumption that the reader
has read the C.mmp File System documentation.

9.1. C.mump SOS Editor

A subset of SOS is now available on C.mmmp. The SOS manual for the PDP10
version of SOS can be used as a manual for this version also. This document lists
the differences between the two systems, Some of the differences will be removed
in the near future, and others may remain for some time. If you encounter any
differences not reported here, please report them by sending mail to [A110LCOOC].

9.1.1 DIFFERENCES

Differences are listed in the order that they will be removed:

1) No transliteration on input and cutput.

2) Line numbers are only 15 bits (i.e.,, max line = 32767, or 327 lines with
INC=100).

3) Copy, Transfer, Find, and Substitute are not yet implemented.
4) Associative line numbers are not yet implemented.

6) Line mode justification is not yet iinplemented (and may not be for some
time.) (Alter mode justify is implemented.)

6) File name references not implemented:

=FILE
«FILE=filename
Cnnn+filename
Wiilename
Efilename

11

9-2 SOSon C.mmp

9.2. Utility Command Objects and Procedures

A number of command objects have heen supplied that will aid in the use of
S0OS files. If you have any suggestions for additional command object utilities,
please send your suggestions to [A110LCOQ].

In the Commands object calls below, it is assumed that the Command
Language macro

PUB=&SYSDIRECTORY.PUBLIC

has Vbeen defined. (For more information about the Command Language, see
Chapter 20.

. L]

9.2.1 PUB.SOS.EDIT(&file)

enter the SOS editor with arbitrary file &file. If &file is not an SOS file, it is
converted to an SOS file before entering the editor, then converted back after
leaving the editor, ‘

9.2.2 PUB.SOS.READ{&file)

enter SOS editor in read-only mode with file &file.

9.2.3 PURB.SOS.EDIT()

- will prompt for file name (File=). Your response can be exactly as for SOS on
the PDP10. That is, filename/N filename/]} filename/N/R or filename$ where $ is
an altmode. For the last case, a new file is created and the filename supplied is
used only as the file print name; the created file is returned after exiting from the
editor. For this case, the call should be: &file = PUB.SOS.EDIT() in order to retain
the capability for the new file. Note that filename in the other cases is actually
the catalogue entry name in the user's catalogue,

9.2.4 PUB.SOS.STATUS()
prints some status information about the SOS monitor. If it indicates that the
monitor has stopped, please get in touch with George Robertson. The normal state

is Port Wait unless someone is actually doing transput, in which case the state
will be Running.

9.2

S0S on C.mmp 9-3

9.2.5 &file = PUB.SOS.FTPSOS()

will transfer a file from CMU-10A across the ARPA-net (assuming the NCP is
running). It prompts for a file name, which must be fully specified. E.g.,
temp:file.ext[a1101c00] Note: line numbers are not transfered, so you must make
sure that they have been stripped from Your PDP10 file.

9.2.6 &file = PUB,SOS.DTASOS()

will transfer a file from dectape (DT11 format). It will prompt for processor
number, unit number, and file name. The file name must be six characters
(padded with spaces if necessary) followed by dot (.) followed by three characters.
The file should have been placed on the dectape with DT11 using the /A switch
(ascii). The file should not have PDP10 line numbers in it.

8.2.7 &file = PUB.SOS.UTOSOS(&univ)

will produce an SOS file from a universal object (&univ) of pages.

9.2.8 &univ = PUB.SOS,SOSTOU(&file)

will produce a universal object of pages from an SOS file.

9.2.9 PUB.SOS.SOSDTA(&file)

will put an SOS file onto a DT11 dectape.

9.2.10 PUB.SOS.SOSFTP(&file)

(Not Yet Implemented) will transfer an SOS file to CMU-10A.

9.3. C.mmp SOS Subfile System

The SOS subfile system provides support for creating, copying, querying,
editing, reading, and writing line numbrred text files. The line numbers are
"sticky", and remain with the file until they are altered by editing the file. The
most common file read and file write operations are implemented so that the user
need not be aware of the line numbers; making it possible for homogeneous 1/0
between files with different subfile representations. Each of the allowable
operations will be illustrated below using command interpreter expressions
where possible. '

For more details, see one of the following BLISS require files:
9.2.5

9-4 SOSon C.mmp

FILES.REQ{N810HLOO] - for operation codes, reply types, query codes, and
message formats,

FILEUS.REQ[N810GA10] - for typecall indices, file system signals, and file
system auxiliary rights,

SOS.REQ[A110LCOO0] - for SOS signals and error codes.

9.3.1 File Creation

There are two ways to create a new S0OS file. The first is the file system
create typecall:
O>capa &file
0>&file = typecall{pubdb.sos.sosfile, 2, pub.sos.sosfile)
Y where pub = &sysdirectory.public%

The second is through the SOS editor:
O>capa &file
0>&file = pub.sos.edit()

File=znewfile$

{series of SOS commands>
o

where $ = altmode. Note that the file name used (newfile) is used only for
the print name of the generated file (retrievable through a query operation) - the
file is returned as a capability,

9.3.2 File Copy

File copy works as described in the file system documentation,

9.3.3 File Query

In addition to the information sdpp] ied by the file system, the SOS subfile
system will supply the number of Hydra-page objects needed to represent a file.

9.3.4 File Edit

The file system Edit Typecall will get you into the SOS editor (for an SOS
file). It requires a data object with editor options encoded. If the user uses the
standard command objects {described below) he need not be concerned with the
format of this data object. The format is:

word O, bit O - /N (no line numbers printed)

word O, bit 1 - /R (read-only)

word O, bit 2 - $ (new file - enter insert mode at 100/1)
9.3

SO0S on C.mmp 9-5

word O, bit 3 - /KEY (key supplied - position file and print line)
words 1 ton - asciz key if /KEY option (line and page))

The call an the editor for file &file and data (options) object &data is:
O>typecall(&file, 10, &data, &file, &ttycon)

9.3.5 File Open

The S0S subfile system currently supports IdxOpenRead, IdepenWrite,
IdxOpenSpool, and IdxOpenNew. Update and Append modes are not currently

implemented.

9.3.6 File Close

Works as described in the file system documentation.

9.3.7 Operations on an open SOS File

Only message format 1 (pre-allocated key and record positions) is supported.
The following operations are supported:

FileRead

FileWrite

sequential read. Will fill your supplied text buffer with as
many lines as will fit. It will not split a line across requests,
so if the next available line will not fit in the text buffer,
you will get an error reply. An SOS-page mark will be
translated into a form-feed character. End of file is indicated
by a special reply type, and the text buffer wiil be empty for
that message,

sequential write. Will take your supplied text buffer (with
arbitrary number of lines and possibly a partial line at the
end) and produce sos lines with generated line numbers
(increment 100). Null characters are ignored. Bare line
feeds are translated into carriage-return-line-feeds. Form-
feed will produce an SOS-page mark. A partial line at the end
of a text buffer is held onto until the next write request or
until a flush or close operation,

FileRewind position to start of file.

FileToEnd position past end of file. Not yet implemented.

FileFlush

update data structures on secondary store. Will cause partial
line during filewrite series to be moved into the file as a
complete line,

9.34

9-6 S0Son C.mmp

FileReadGivingKey sequential read returning key. Not yet
implemented. Will read exactly one line into your text
buffer and return the line number and page number in an
asciz key.

FileWriteGivingKey sequential write returning key. Not yet
implemented. Will write exactly one line into the file and
return the asciz key generated by the write,

FileSeek position file to specified asciz key. Not yet implefnented.
Will position to line and page number if they exist,
otherwise, one past where they would be,

FileSeekRead seek followed by read. Not yet implemented.
FileSeekWrite seek followed by write, Not yet implemented,

FileInputClear release any held messages,

9.4, Random Comments

There are a few other features that are currently not supported but should
come along shortly. '

There is no easy way to do the equivalent of +C followed by CONTINUE or
REENTER during an editing session. At some point in the future, tC and tK will be
trapped in order to provide this function. .

If the system crashes during an edit, there is no way to retrieve the
temporary file that was being used. Please send comments and suggestions to
[A110LCOO].

9.3.7

TECO 10-1

10. TECO

A version of TECO, a subset of the PDP-10 Program, exists to run under
Hydra. It can edit a virtually unlimited amount of core {over 100 pages). It edits
a universal object with pages in it.

There are commands objects in &SYSDIRECTORY.UTILITIES which can
interactively invoke TECO.

TE()

for pages or

EDITCMD()

for commands objects.

To create a new universal and put text into it, use the following sequence of
commands: '

CAPA &name

SMAKEUNIVERSAL{&name)

&SYSDIRECTORY.PROCEDURES.TECO(&Hyport,&name)
You may now edit happily away.

10.1. Hydra-teco commands
The command language of this teco is very similar to that of Teco on the
PDP-~10 however only a subset of the features exist. In this light only a quick
description will be given of the commands which are identical.
Further information may be found by consulting:
1) PDP-10 USERS HANDBOOK

2) CMU Introduction to the PDP-10
3) CMU PDP-10 Teco quick reference guide

These commands are identical on the C.mmp and the PDP-10:

B O, buffer origin.

character count of the buffer, buffer end.

H B,Z

nC skip n characters.
nD delete n characters,
E exit,

10

10-2 TECO

nFSsab find "a" and substitute "b" (n finds, 1 substitute).

Ia$ insert text "a" into the buffer.
. nl$ insert ascii n into the buffer.
nJ Jjump to the n'th character in the buffer. |
nK kill n lines.
m,nK kill characters between buffer position m and n.
nL skip n lines.
nR skip n characters backwards.
nSa% search for the n'th occurence of “a".
nT type n lines.
m,nT type characters between buffer position m and n.

leave iteration if preceding S or FS fails.

n<> do commands encles~d in <> n times (forever if no n).

n==s type the value of n in octal.

n= type the value of n in decimal.

n+m the value of n + m.

n-m the valueof n - m.

tR guote the following character, in this way <ESC> and t+C can

inserted and searche:d for.

like the pdp-10 TECO tO meaning take the following
number as octal,

In addition the S and FS commands will take a negative argument causing
them to search backwards. A backwards S (-S) will leave the buffer pointer at the
beginning of the string it finds. If a search fails the buffer pointer is left where it

was, as in SOS.

10.1

TECO 10-3

10.2. Q-registers

Teco has g-registers which behave almost identically to those in PDP-10
teco. Internally there are actually two sizes of g-registers but these are
completely transparent to the user. This was done in the interest of speed.

There are 36 q-reg's: the letters A-Z and digits 0-9.

The commands available for g-registers are:

nUm store the integer n inlo ¢g-reg m
Om equal to the integer stored in g-reg m .

nXm or i,jXm store the next n lines into g-reg m or store characters
between buffer positions i and jinto g-reg m

Gm put the text in g-reg m into the text buffer at t}lle current
pointer position. ‘

Mn execute the text in (-reg M as a teco command string. For
now the user must b careful not to execute an 'I' command

with a string longer than 8192 characters. The insert
command has not yet been modified to take longer strings.

*m as the first command in a command strinmg. Store the last
command string in q-reg m. this is a loss recovery technique.

10.3. extended features

There are some commands in C.mmp Teco which do not exist on the PDP- 10,
these are as follows: :

1P type out a map of your text Pages at the screen top after
every $$

P type out the page may and turn off Page map typeout,

tWwW must be used to "fool" the command interpreter into allowing

this pdp-10 construct:

FSa%$$
FSa$+W$8 must be done instead.

10,2

10-4 ‘ TECO

Note that this is only necessary in an iteration.

Three SOS-like commands exist:

14> as the first character in a command string is equivalent to
the teco command string '-LT' or go to the previous line and
print it,

{LF> as the first character is equivalent to 'LT' or go to the next

line and print it.

<CR> as the first character is equivalent to 'OLT' or go to the
beginning of this line and print it,

10.4. implementation details

The command input buffer is 4000 characters long. Teco will warn you
when you are less than 150 characters from the end. If you do not heed this
warning by typing $$ (executing the command) execution will begin
automatically after reading the 3999th character. Then any characters that were
ignored as a result of getting input line at a time will be printed.

On exit, teco writes the byte count of the buffer size into the first two
words of the data-part of the universal ohject it edited, least significant word
first. Note that teco does not use these numbers itself but places them there for
the benefit of other programs.

If +KtK (or ctlprocess(&pros,-1)) is typed it will have various effects
depending upon what teco is currently doing. The possible actions are:

a) During typeout: return to command mode.

b) At the beginning of any command execution: return to command mode.
¢) Anywhere else: no action is taken,

The inner search loop in teco can search for a character it will never match
at approx. .2 seconds per page. This includes time spent shuffling pages.

10.3

Obinfo: Object information , 11-1
11. Obinfo: Object information

OBINFO is a Hydra Procedure which Permits interactive inspection of
Capabilities (rights, flags, etc.) and object; (C-list and data-part). It is possible to
travel down "paths" through C-lists and Catalogues, looking at capabilities and
objects along the way. Special object-type-dependent facilities are provided, for
instance the ability to look at the contents of PAGE objects.

OBINFO never modifies the objects it looks at,

11.1. Features

OBINFO prints out kernel rights by name; auxiliary rights are printed by
name for those object types known to OBINFO and as a binary bit mask for the
others. Typing "RIGHTS ALL" will get you a complete list of the kernel and
auxiliary rights for the object being looked at.

OBINFO allows the inspection of an object's data part (rights permitting). .
Typing "DATA" causes OBINFO to enter a submode in which commands of the form
"i'j" (and "n:m") will display the j words beginning with word i (or the words n to
m) in a variety of formats. The formats can be changed. Typing a blank line
terminates the submode.

OBINFO has a submode allowing inspection of PAGE objects. Enter the
submode by typing "PAGE", and commands of the form "i'j" and "n:m" are accepted,
where the numbers are byte offsets and counts,

OBINFO can walk paths through the C-lists of objects, including Catalogues.
Typing "DOWN 3" will let you look at the object whose capability is in C-list slot
3 of the current object. If the current object is a Catalogue, typing "DOWN FOO"
will let you inspect the object stored as entry "FOO" in the directory. This descent
may be continued indefinately. To ascend back up the path, type "UP". To find
out where you are, type "STACK",

OBINFO returns the capability it is currently looking at when it is exited.

To get a complete list of commands, type "HELP" to OBINFO. Experiment!

11.2. Accessing OBINFO

A capability for the OBINFO procedure may be found in
&SYSDIRECTORY.PUBLIC.HARBISON. It takes two arguments: the first is a port
connected to a terminal with "&TTYPORT conventions", the second is a capability
of any type to be inspected.

Examples:
From the Hydra Command Interpreter:

11

11-2 Obinfo: Object information

CAFPA &0B &OB+~&SYSDIRECTORY.PUBLIC.HARBISON,OBINFO &OB(&TTYPORT, x)
where x is a capability for the object to he inspected.

From a user procedure:

(Assuming a capability for the OBINFO procedure is in LNS slot o, a capability
for a terminal port is in slot p, and the object to be inspected in in slot 1.)
$CALL(0,0,p,i) '

Of special interest is using OBINFO to debug procedures. In this situation, a
call of the form

$CALL(0,0,p,$LNS())

is most helpful,

g

11.2

PSIGNAL 12-1
12. PSIGNAL

PSIGNAL is a set of Hydra objects that will attempt to generate English text
versions of octal Hydra signal values, It exists as a Hydra procedure, which lives
in &SYSDIRECTORY.PUBLIC.Everhart as KSigName, and a Commands abject, which
lives both in that PUBLIC directory, and in &SYSDIRECTORY.UTILITIES. The
Commands object is merely a commanad-language interface to the procedure object,

As stated, the Commands object serves as an interface between the CL and the
KSigName procedure, Jt may be invoked with between zero and two parameters:
if no parameters are passed, it will prompt with "Signal value: " and do an
INTERPRET(). If one parameter is passed, it is used as the signal value to be passed
as the parameter to KSigName, and the second parameter ($SIGDATA) is defaulted
to zero., If two parameters are used, the first is used as the signal value, and the
second as the $SIGDATA parameter. In all cases, the Commands object PSIGNAL
will OR in #100000 with the signal valune. Note-that the KSigName procedure
itself does not do this,

The recommended method for using the PSIGNAL system is to generate a
macro, probably called PSIG, which is

macro PSIG = &SYSDIRECTORY.UTILITIES.PSIGNAL ¥;

In this fashion, PSIG is a capability, PSIG() will prompt for a signal value,
PSIG(#1234) will decipher #101234 as a Hydra signal wvalue, and
PSIG(#1234,#2345) will do pretty much the same thing (at this point).]

KSigName is periodically updated to provide the lastest interpretations of
Hydra Kernel and user library signal values, '

12

Hydra FTP 17-1

17. Hydra FTP

17.1. Available Commands

The Catalogue &SysDirectory.Public. NCP contains a number of wuseful
Commands objects which perform various file transfer functions between C.mmp
and other ARPANET hosts. They all prompt the terminal for the necessary
information; none take parameters. '

&SysDirectory.Public.NCP.NetCmd Retreives an ASCII file from a remote host
and stores it in a Commands aobject.

&SysDirectory.Public.NCP.NetPutCmd Sends the contents of a Commands object to
an ASCII file at a remote host.

&SysDirectory.Public.NCP.NetSOSFile Retreives an ASCII file from a remote host
and stores it in a SOS SuperFile,

&:SysDirectory.Public.NCP,NetPutFile Sends an ASCII SuperFile to a remote host,

&SysDirectory.Public.NCP.NetProc Creates a PROCEDURE object from a ".PAG
format" file at a remote host.

&SysDirectory.Public.NCP.NetStore Sends a "UNIVERSAL of PAGEs" to a remote
host, .

problem, because the default pProtection for files is 5 in the third digit.- However,
when sending data TO a CMU PDP-10, the file should be created in advance with a
Protection code whose third digit allows writing by [NQOOAROO]. Typically
<111> is appropriate. The Protection <0N0> is funny, and should not be used
without understanding all the implications thereof. If the data being sent is
sensitive, it may be protected by pre-creating an empty file with protection <111>

17.2. PageFTP
The procedure at the heart of the above Commands objects is
&SysDirectory.Public.NCP.Pagel-‘TP
which is called from the Command Language as follows:

word &Code;
17

17-2 Hydra FTFP

UnivRcvd, &Code = PageFTP(UnivToSend,
$StackDat.«(Host, Format, FileName),
' TTYPort, Job)
where:

UnivRcvd If a "RETRieve" operation iz performed, then this is the returned
capability for a "UNIVERSAL of PAGEs" which contains an array of
bytes tn successive pages in its C-list. The data-part contains a 32 bit
byte count (low order word first) for the data received. UnivRcvd is
returned null if a "STORe" or "MLFL" operation is performed.

8 Code is the integer value of the procedure call. If the transfer succeeds, it
is decimal 200. If the transfer fails, this code is a (possibly
ambiguous) description of the cause of the failure. The Commands
object call &SysDirectory.Public. NCP. TypeFTPError(&Code) may be
used to get a semi-intelligible interpretation of the code. :

UnivToSendThis optional parameter should be present only if one desires to send
data to another host. It must be omitted otherwise. UnivToSend is
assumed to be a UNIVERSAL of PAGEs, similar in format to UnivRcvd.
If the byte count is missing, a semi-reasonable assumption will be
make on the basis of $CLength(UnivToSend).

Host is the ARFPANET host numb<r from (or to) which data should be
transferred. The Commands object
&SysDirectory.Public. NCP.GetHost may be used to obtain this value
from the terminal. Typical values are 78 for CMUA, 14 for CMUB,
and 142 for CMUD.

Format indicates the format of the data to be transferred. This is composed
of several bit-flags:

Format<0,1>is off for ASCII and on for IMAGE mode. IMAGE mode is
actually a special mode for retreiving .PAG, .OBJ, or
similar files which are stored on a PDP-10 as two PDP-
11 words per PDP-10 word, right justified in each
halfword. The transfer is done in 36-bit image mode,
with PageFTP removing (or adding) the four padding
bits in each PDP-10 word. '

Format<1,1>if on, indicates that "MLFL" should be used instead of
“STOR" for the transfer. This mode is reserved for use by
implementors of mail systems and may change without
notice. Anyone who attempts to use this (without
contacting Rick Gumpertz first) will be considered a
willing victim of whatever nasty behavior happens.

Format<2,1>if on, suppresses typeout on TTYPort.

17.2

FileName

TTYPort

Job

Hydra FTP 17-3

is the name of file at the remote host. FileName should contain no
NUL (zero) characters as they will be interpreted as the end of the
FileName, For CMU PDP-10s it may be any ASCII string acceptable to
PIP, such as "ALL:FOO.BAR[(410XX00]<123>". If no PPN is given
for a CMU PDP-10, then [NSCOOAROO] will be assumed by that host,

must be a port which, like & TTYPort in the Commanad Language, has
channel 1 connected for terminal output and channel O connected for
terminal input. This port will be used to indicate the Progress of the
file transfer along with any error messages received from the other
host. If Format<2,1> is on, however, then the only references made
to TTYPort will be those made by Six 12, '

is a Job object from which a subjob may be created. This subjob will
be wused to register those resources (such as the ARPANET
connections) which must be released if the user logs out before
PageFTP completes. &JobProcess in the Command Language is such a
Job. ‘

Refer any comments or questions to Gumpertz@CMUA

18-1

Part 1II: Subsystems

18. Conventions for Typecall specifications

The typecalls in this manual are specified using the same format that is used
for kernel calls in the Hydra Kernel Reference Manual, The typecall specifications
consist of several parts:

> The typecall name and formal parameter list. These are described in terms of
Bliss macros. In some cases the typecalls have been predefined in the
Command Language (see section 5.6.2). When a predefined typecall which
returns a capability is called from the Command Language, the formal
parameter for the returned capability is not used. Instead, the returned
capability is the the value of the call. So a call of $Jobname, for instance,
would look like

&Dlndex = $Jobname (Job)

instead of

$Jobname (&DIndex, Job)

> The 'parameters' section. Each parameter is listed, along with the following
information:

> A 'path index' or 'simple index' specification. A path index can be a
capability path or a Catalogue walk, and a 'simple index' must be an LNS
C-list slot, if the call is made from a procedure.

> An (optional) indication of what type of object the capability shouid be
referencing.

> The minimum rights the capability should possess.

The names 'SPath' and 'SIndex' are sometimes used to indicate ‘source'
_capabilities; likewise, 'DPath' and 'Dindex’ are used to specify destination
capabilities,

> The 'Effect’ section describes the effect of the typecall if no signal occurs.
> The ‘'Signals’ section describes specialized signal information for the’
particular t_ypecall. All chaplers contain a list of signals for the object type

described.

-J11

18-2 Conventions for Typecall specifications

> 'Result' is the value returned by the typecall assuming no signal occurred. In

the case of a Command Language call, this value is returned in the predefined
variable &Retval (see sections 20,5 and 5.6.2).

18

The Hydra Catalogue Subsystem 19-1

19. The Hydra Catalogue Subsystem

19.1. Introduction

The Catalogue system implements the abstraction of symbolic access to
capabilities. Historically, it is a replacement for Bill Corwin's Directory system;
many of the Catalogue system's features are merely borrowed from successful
Directory system features, while others directly address its more annoying
failings. The basic idea is to implement a graph-structured set of nodes. Each
node, called a catalogue, is a collection of Entries, each mapping a symbolic name
to a capability. The graph-structure arises whenever these entries address other
catalogues, Catalogue system operations, implemented as Hydra procedures, serve
to manipulate these catalogues and entries. Criticism of the system should be sent
to ALMES@CMUA. Several symbols peculiar to the Catalogue system can be found
on CATALOGUE.REQ[N810GA10] on CMUA. ‘ ,

19.1.1 Basic Concepts
19.1.1.1 Structure of a Catalogue .

A catalogue appears to the user as a set of entries. Each entry has four fields:

1.The Name, one to ten alphanumeric characters. Within the context.of a
particular catalogue, the name uniquely specifies an entry. '

2. The Value, either an object capability or template. The principal function of
the system is the mapping of name to entry to value,

3. The Protect boolean which, if true, insures that the entry will not be deleted
from the catalogue. It may be thought of as representing $DELETERTS for the
value, except that it may be set truc or false. It thus provides a function
similar to level "2" protection on TOPS-10, ’

4.The Environment boolean. For Hydra technical reasons, any value capability
must have $ENVRTS. If the environment boolean is false, any Lookup
through the entry will restrict $ENVETS in the copy of value returned.

In order to speed the mapping from name to entry, the entries are ordered
alphabetically by ASCII representation of the name. That is all the user-visible
data structure. Although it borders on being an implementation detail, we do have
A semaphore object per catalogue to lock the object during modifying operations.
The data are arranged, however, so that the semaphore is never needed during a
Lookup operation; consequently a Lookup need never block.

19

19-2 The Hydra Catalogue Subsystem

19.1.2 Auxiliary Rights

A detailed specification of the meanings of Catalogue Auxiliary Rights is
Ziven later as the operations are specified. A summary is presented here, however,
to introduce their names and an informal description of meaning:

CataLookupRts #0001 Controls Lookup and steps in a path
CataEnterRts #002 Controls Enter

CataDeleteRts #004 Controls Delete and over-write during Enter
CatalListRts #010 Controls Catalogue List

CataRenameRts #0020 Controls Rename

CataProtectRts #040 Controls Protect

CataCopyRts #100 Controls Copy

CataDestroyRts #200 Controls Dostroy

19.1.3 Names, Paths, and Targets

As mentioned earlier, the catalogue system allows a graph structure to be
constructed and, for each node in this graph(i.e., catalogue), defines a mapping
from name to value capability. These two properties naturally combine to produce
the notion of a path name, rather similar to a Hydra path index (cf. Hydra
Reference Manual, Section 2.1.2). Thus, the path name
&sysdirectory.public.almes.catalogue is a four level path similar to the
$Path(3,4,2,1). Adapting Kernel trrminology, we will speak of
&sysdirectory.public.almes.catalogue as the target, of the catalogue
&sydirectory.public.almes as the pretarget, and of &sysdirectory and
&sysdirectory.public as steps.

In another important adaptation of Kernel notions, each of the modifying
operations of the catalogue system require $MODIFYRTS and CataLookupRts (cf.
use of $MODIFYRTS and $GETCAPARTS in the Hydra Reference Manual, Section
2.15.1.2). Further, they require $MODIFYRTS and some operation-specific
auxiliary right on the pretarget. Finally, when we speak of an entry being empty,
we mean that no entry exists with the name in question, not that some entry
exists with a Null template for its value,

19.1.4 Details of the Name Parameter

Most of the catalogue operations take, as a parameter, a Data object
containing a path name. There are a few details'of such a parameter that are
needed for practical reasons. First, the Data object must be no more than fifty-
five words long; note that this limits the lcngth of a path name to between ten and
fifty-five levels, depending on the length of the various entry names used. The
Data object must contain the path name as a series of entry names (of one to ten
alphanumerics) separated by periods. If this path name doesn't fill the Data object,
then a null character (zero) should follow the path name; any characters
following this null are ignored. Finally, we insist that any name parameter be
passed with $GETDATARTS.

i9.1.2

The Hydra Catalogue Subsystem 19-3

19.2. Catalogue Operations

In the following specifications, the symbol CataRep will mean any template
or object capability of type Catalogue; NamePar will mean any Data object
capability meeting the requirements of 19.1.4 above. If the name parameter is
syntactically improper, the signal CataErrName is given. If the rights for the
catalogue or catalogue entries along the steps or pretarget are insufficient, the
signal CataErrRights is given. Other signals are gperation-specific and are dealt
with individually.

$MakeCatalogue (NewCata, CataRep)
Parameters:
NewCata- Simple index, empty.

CataRep - Path index; a Catalogue object reference or template.

Effect:

- NewCata is the capability for a newly created empty catalogue,
returned with all auxiliary rights, $ENVRTS, $MODIFYRTS, and (unless
called confined) $UNCFRTS.

' 0

$CopyCatalogue (NewCata, OldCata)
Parameters:
Newcata- Simple index, empty.

Oldcata - Path index; Catalogue object reference, $ENVRTS,
$UNCFRTS, $MODIFYRTS, CataCopyRts.
Effect:

NewCata is the capability for a newly created catalogue,
containing all the entries of OldCata, returned with all auxiliary rights,
$ENVRTS, $MODIFYRTS, and $UNCFRTS.

OldCata is a capability for the catalogue to be copied. Note that this
operation circumvents the revocability of entries whose Environment
boolean is false; CataCopyRts should therefore be guarded rather
Jealously. :

19.1.4

18-4 The Hydra Catalosue Subsystem

8$CataDestroy (Cata)

Parameters:; '
Cata - Path index; Catalogue object reference, $MODIFYRTS,
CataDestroyRts,
Effect:

Cata won't work any more.
Result: '
0

$CataObjinfo (Val, Cata)

Parameters;
i
Val - Simple index, empty.
Cata - Path index; Catalogue object reference, CataListRts,
Effect;

Val is the capability for a newly created Page, which contains
information about Cata, The fir:it thirty-two words of the Page contain
(1) an $0bjinfo block of sixteer words describing the current 'version'
of Cata and (2) a word containing the number of entries in Cata, say n.
Following that are n blocks of thirty-two words each; the ith such
block contains: (1) an $0bjinfo block of sixteen words describing the
value of the entry and (2) a bleck of eight words containing the Ascii
name of the entry and (3) a word containing the protect boolean in the
low-order bit. Val lacks $MODIFYRTS.

Result;
0

§Catal ookup { Val, Cata, NamePar)
FParameters:

Val - Simple index, empty.

19.72

The Hydra Catalosue Subsystem - 19-8

Cata ~ Path index; Catalogue object reference, $ENVRTS,
CataLookupRts,

NamePar- Path index; Data object reference, $GETDATARTS.
Effect:

Val is a copy of the value capability of the entry specified by
Cata/NamePar. If the Environment boolean of any entry in the path is
false, then Val will lack $ENVRTS.

Cata is a capability for a catalogue. Each Sstep or pretarget on the
path specified by Cata/NamePar jnust have $ENVRTS and CataLookupRts,
The target entry must be defined.

o0

$Cataknter (Cata, NamePar, Source, Options)
Parameters;

Cata - Path index; Catalogue object reference, $ENVRTS,
$UNCFRTS, $MODIFYHRTS.

NamePar~- Path index; Data object reference, $GETDATARTS.
Source - Path index; object reference or template, $SENVRTS

Options - Path index; optional Data object reference,
$GETDATARTS.
Effect;

Options is an optional parameter; if present, it must be a Data
capability with $GETDATARTS. If its first word is present and' non-
negative, it becomes the Envircnment boolean (default is true). If its
second word is present and non-negative, it becomes the Protect boolean
(default is falge).

‘Cata is a capability for a catlalogue. Each step catalogue must have
$ENVRTS, $UNCFRTS, and $1MODIFYRTS and CataLookupRts. The
pretarget must have $ENVRTS, $UNCFRTS, and $MODIFYRTS and
CataEnterRts. If the target is not empty, then the Pretarget must have
CataDeleteRts (otherwise, CataErrDelete is signalled) and the entry must
have its Protect boolean false (otherwise, CataErrProtect is signalled).

Source will become the value of the new target entry.

Result;
0

19.2

19-6 The Hydra Catalogue Subsystem
$CataRename (Cata, NamePar, NewPar)
Parameters:

Cata - Path index; Catalogue object reference, $SENVRTS,
$UNCFRTS, $MODIFYRTS.

NamePar- Path index; Data objert reference, $GETDATARTS.

NewPar - Path index; Data object reference, $GETDATARTS.
Effect:

Cata is a capability for a catalogue. Each step catalogue must have
$ENVRTS, $UNCFRTS, and $IMODIFYRTS and CataLookupRts., The
pretarget catalogue must have SENVRTS, $UNCFRTS, and $MODIFYRTS
and CataRenameRts. The target nust be defined.

NewPar must be a valid NamePar with a single level name. An
entry with this name must not already exist in the pretarget, The name
of the target entry is changed to be that in NewPar,

Result: 5

$CataDelete (Cata, NamePar)
Parameters;

Cata - Path index; Catalogue object reference, $SENVRTS,
$UNCFRTS, $MODIFYRTS.

‘ NamePar- Path index; Catalogue object reference, $GETDATARTS.
Effect:
Cata is a capability for a catalogue. Each step catalogue must have
$ENVRTS, $UNCFRTS, and $MODIFYRTS and CatalocokupRts. The
pretarget catalogue must have SENVRTS, $UNCFRTS, and $MODIFYRTS
and CataDeleteRts. The target must be defined and have a false Protect
boolean (otherwise CataErrProtect is signalled). The target entry .is

removed from the pretarget. ,

' 0

The Hydra Catalosfue Subsystem 19-7

8CataProtect (Cata, NamePar) :

8CataUnprotect { Cata, NamePar)

Parameters:
Cata - Path index; Catalogue ohjectr reference, $ENVRTS.
$UNCFRTS, $MODIFYRTS.
' NamePar- Path index; Data object reference, $GETDATARTS.
Effect:

Cata is a capability for a caltalogue. Each step catalogue must have
$ENVRTS, $UNCFRTS, and $MODIFYRTS and CataLookupRts. The
pretarget catalogue must have SENVRTS, $UNCFRTS, and $MODIFYRTS
and CataProtectRts. The target must be defined.

If $CataProtect is called, the Protect boolean of the target entry
will become true; if $CatalUnprotect is called, it becomes false.
Result;
0

$Catalist (Cata, TTYPort }

Parameters;
TTYPort - Path index; Port object reference, all auxiliary rights,
$MODIFYRTS :
Cata - Path index; Catalogue object reference, CataListRts

Effect;

TTYPort is assumed to be connected to a teletype; things like
&TTYPort are apt to work. To this port will be sent for each entry in
Cata:

> the entry name

> astar if it's a template

> an 'at'sign if its protect boolcan is true
> the print name of its Type

18.2

19-8 ' The Hydra Catalosfue Subsystem
? its kernel and auxiliary rights

> the date and time of object creation

Finally, a count of the number of entries is given.,
Besult;
0

8DirToCata (NewCata, OldDir)
Parameters;
NewCata- Simple index, empty.

0ldDir - Path index; Directory object reference,
$ENVRTS,$UNCFRTS, and $MODIFYRTS.
Effect: .

NewcCata is the capability for a newly created catalogue, returned
with all auxiliary rights, and with $ENVRTS, $UNCFRTS, and
$MODIFYRTS. It is initialized with the contents of OldDir. Any entries
of 0ldDir that had name characters that are illegal in the catalogue
Syslem Wlll simply be left out,

0

19.2.1 Compatibility Procedures

There are procedures in the Catalogue Type object that accept calls in the
calhng sequence for DirGet, DirPut, DirDelete, and DirRename, munge with the
Name Parameter in block notatlon and do recursive calls in the calling sequence
of $CataLookup, §CataEnter, $CataDelete and $CataRename. Thus, if you have a
catalogue and want to use it with a program that thinks it's a Directory and has
the sense to use $Typecall's, then it will work,

Similarly, there are procedures in th. Directory Type object that do the dual
operation. Thus, if you still have a Directory and want to use it with a program
that thinks it's a catalogue, then that will work too.

These two sets of procedures will not be supported indefinately.

The Command Interpreter 20-1

20. The Command Interpreter

20.1. Command Language Subsystem

The Policy System 1 command language subsystem provides the interface
between the system and a user at a terminal, in the form of an interactive
language. The command language allows access to and control over the user's
environment as provided by C.mmp, HYDEA and Policy system 1. This includes a
mechanism for the invocation of Hydra procedures including all of the Policy
System 1 procedures. It also has facilities to execute stored files of commands and
to access the catalogue subsystem. Readers who have not used the command
language recently should read the Command Language Introduction, CLINTR.DOC
(or CLINTR.XGO) [N810HY97].

Users are hereby notified that this document represents a changing system,
and therefore may be regarded with some suspicion. A list of known bugs can be
found in CLBUGS.DOC[N810HY97], but we as yet have no way of generating a list
of unknown bugs. With the co-operation of users and implementors we will be
able to keep this document up-to-date, and put incremental changes or bug reports
in the NEWS and SYSNEW files.

20

20-2 The Command Interpreter

20.2. Command Language

The following two sections give an informal description of the command
language. Section 20.8 contains the complete syntax description in the
form of BNF rules. Some of the primitives, such as identifier, numeric, etc. are
(or should be) so well known that their formal definitions are left as exercises for
the reader. Informal descriptions are given below.

20.2.1 Lexical Structure

This section describes the results of the lexical analysis and macro expansion
section of the command interpreter, describing what the "atoms"” of the language
are and what they mean. Atom refers to the smallest unit that the command
interpreter understands.

The atoms are much the same as in any programming language: numeric
quantities, variables, strings, and delimiters. In addition, there are the usual
lexical niceties including comments, macro calls and line continuation. These
constructs are' similar to those of BLISS/11 and are defined as follows:

NUMERIC: a sequence of characters that can be converted into a
binary number. There are two kinds of numeric
guantities: decirnal and radix. Decimal numbers are the
default and consist of a sequence of ASCII numeric
characters terminated by a non-numeric character,
Radix quantities are indicated by a sharp sign ('#')
followed by a sequence of characters valid in the
current radix. Radix numbers are terminated by any
character that is not in the current radix set. The radix
used to convert the input sequence is determined by a
command language variable (see section 20.5)
and may be sct under program control. The full
flexibility of radix control for input and output can be
determined from studying section 20.,5.2.

NAME: a sequence of rharacters starting with an alphabetic
and containing alphanumerics. Upper and lower case
alphabetics are treated as the same characters, except in
strings; thus an identifier with only upper case
alphabetics is the same as one with the same
alphabetics in all lower case or mixed upper and lower
case alphabetics.

VARIABLE: - a name preceded by a ‘&' character.
STRING: a sequence of characters contained within a pair of

20.2

COMMENT:

DELIMITER:

CONTINUATION:

MACRO CALL:

The Command Interpreter _] 2_0-3

quoting characters, either single quotes or double
quotes (', ', or "). Strings may contain any ASCII
character. The quoting character may be entered into
the string by having two sequential occurrences of it,
The double occurrence is converted into one character
that is placed in the string, A question mark ("?")
causes the character immediately following it to have
its 7th bit cleared. Lower case letters also have their
6th bit cleared. This usually is used to convert upper
case characters to the control characters. Thus "?A" {s
control-A, "2J" is control-J (line feed) and "?M" is
control-M (carriage return). "??" is just "?". An
exclamation mark (") causes the 6th Bbit of the
following character to be set, which causes the upper
case characters to be converted into their lower case
equivalents,

a sequence of characters which are ignored by the
command interpreter. A comment is enclosed either by
a "!" and a line fced or by two occurrences of "%". The
text of a comment is not examined except to find the
occurrence of the terminating character. Thus an
exclamation point may occur within a "%" type
comment without affecting it. A conment must occur
at a lexically valid point in the input string, that is, an
occurrence of a commenting symbol will cause the
termination of a lexical construct such as a name or a
number,

any character that isn't alphanumeric, %, !, blank or
contained within quoting characters. ‘

If an "+" followed immediately by a carriage return
(CR) or linefeed (LF) is received from the terminal
during statement input, the "+" and the line terminator
(CR or LF) are ignored. Scanning continues with the
next atom. The effect of the characters is to cause
termination of an atom and to suppress the instance of
the carriage return delimiter. This action does not
apply inside strings or comments. Similar effects inside
of stored programs may be obtained when &NOCRLF, a
command language control variable, has the appropriate
value. See section 20.5 for more details on
&NOQCRLF,

a name which has been "declared" as a macro, followed
by its parameters (if any} enclosed in brackets (either
"0", "[]J" or "¢>"). The macro name and parameters are
replaced by the macro body on an atom by atom basis.
All macros encountered during the scanning of the
bparameters are expanded as they are encountered. A

20.2.1

The Command Interpreter
macro without parameters does not have brackets

associated with it., Section 20.3.3 on declarations
gives a complete description of macro declarations.

20.2.1

The Command Interpreter 20-5

20.3. Command Syntax and Semantics

This section describes the syntax and semantics of the command language.
Examples are included which suggest the power and flexibility of the language.

20.3.1 Program

The command language is intended tn be used interactively from a terminal.
A user types a "program" to the command interpreter which is executed. A
Program consists of a set of statements in the language. In addition, programs may
be stored away as "Commands " and executed as if they were procedures. See
section 20.6 for a description of how to create Commands.

program :: = siatement | Program sep statement

sep ::= carriagereturnlinefeed | ;

When a line terminator is typed, the input line is analyzed and all complete
statements are executed. Each statement i executed as soon as it has been parsed,
and before any other statements are parsed. Multiple statements are allowed on a
line, separated by semicolons., A statement entered from the terminal may be
continued across a carriage return boundary by means of the continuation
construct. Note that something of the form:

if Booleanexpression then
DOTHIS()
else

DOTHAT()

will not work, since the carriage return is a separator; the program must be typed
in as: .

if Booleanexpression then t
DOTHIS() 1
else ©
DOTHAT() ,
or typed in on a single line. To alleviate this problem, carriage returns are not
treated as statement separators in stored programs. See also the discussion of
&NOCRLYT in section 20.5.

20.3

20-6 ' The Command Interpreter

20.3,.2 Statement

The statement is the smallest expression that is 1ndependently executed by
the command interpreter,
statement ::= conditional | declaration | macrodeclaration | 1{teration
coppound | 1/0 | string | simpleexpression | assignment
' massignment | empty ‘

Each statement is independently parsed and executed before any following
statements are parsed. If an error occurs, either in parsing or in execution of a
statement, all statements up to the statement causing the error have been executed
and no statements after the erroneous cnes will be executed. The erroneous
statement may have been partially executed and thus some side effects may have
occurred, If the sequence "S1; S2; S3" were typed to the command interpreter
then S1 would be executed and on its successful completion S2 and then S3 would
be -executed. If "(S1; S2; S3)" were typed to the command interpreter then S1, S2
and 53 would all be parsed before S1 was executed. In the second case, if S1 were
to invoke Commands which defined macros, the macros would not be defined for
scanning S2 and S3.

20.3.3 Variables

Declarations allow access to and allecation of the resources of the command
interpreter. Resources include core storage, which can be used in the form of"
variables or macros and LNS slots which can be used to store capabilities. The
form of the name of a variable is defined by the lexical construct variable, The
purpose of the & is to distinguish a variable from a catalogue name {which is
described in section 20.3.10). The scope of a declaration is to the end of the
current block. For a discussion of static and dynamic blocks, see section

20.3.5.

declaration ::= CAPA cloamelist | WORD clnamelist
| WORDVEC cloapestzelist
clnamelist ::= clname | clnamelist , clname
clnamesizelist ::= clnamesize | ¢lnimesizelist , clnamesize

clnamesize ::= clname specifler

clpame ::= &identifier
specifier ::= . p3 | [stringspecs]

macrodeclaration ::1= MACRO macrcdefinition

20.3.2

The Command Interpreter 20-7

macrodefinition ::= macroname = macrobody
| macrodefinition , macroname - macrobody

macroname ;:= macrold | macroid (formalparms)
macrold ::= ideatifier | cIname | controlcharacter
formalparms ::= ideptifier | formalparas , ideptifier

mactobody ::= stringwithoutdollarsian $

Variables introduced by the CAPA declaration hold capabilities, WORD
variables hold a simple PDP-11 word (i.e 16 bits) and WORDVEC variable is either
a linear vector of words or a byte string, being “specifier" words long . Capabilities
and simple word variables are accessed by using the variable name (i.e. the
construct "clname”). Words in a vector are accessed by specifying the desired
word using the qualified name notation. Strings and substrings are specified by
enclosing the offset and length of the string within brackets, where the offset is
the number of bytes from the first byte to (and including) the byte desired and the
length is number of bytes desired in the substring. It is possible to use strings
from word vectors as names of entries in catalogues.

There is no claim for elegance made about this implementation of strings; it
was expedient, and someday it may be improved so that real variables of type
STRING will exist.

The macro definition facility allows any identifier, variable or control
character (except carriage return and line feed) to be defined as a macro, giving
the user some ability to tailor the systeémn to his needs. Control characters are
included so that common commands can be made into simple, single character
macros which can be executed with a minimum of typing.

There are several predefined variables which the command language uses to
interface to the user. These are listed in section 20.5.

Examples

[}

CAPA &A&B 7. declare two capability variables?

WORD &C Zdeclare a simple word variable?,

WORDVEC &STR.36, &5TR2{30] 7 declare a veclor of 36 words and
a string of 30 characlers 7

&STR2[5,6] 7 refers to the string composed of
the fifth thru tenth bytes 7,

&STR.2 7 refers to the second word of the
vector 7

MACRO MAK(A,B)=A=§CREATEPMPROS(B): 8STARTPMPRQS{A)}
7. macro "MAK" creates and starts
a process 7,
MACROQ CRLF=TYPE '?M?J'$ 7 lyre carria;e return line fead on
er .

the minal
MAK{&PROS,&PROC); CRLF; CRLF
20.3.3

The Command Interpreter

7. croate process and start it, then
ype two carriage return-linefeeds

20.3.4 Simple Expression

simplexpression ::= p10 | sizplexpression XOR pl0 | simplexpression EQV p10
pi0 ::= p9 | p10 OR p9

p9 ::= p8 | p9 AND ps

p?7 | NOT p8

p8 ::

p6 | p6 rel pé

p7 ::

rel ::= EQL | NEQ | LSS | LEQ | GTR | GEQ | EQLU | NEQU | LSSU
| LEQU | GTRU | GEQU

p5 | p6 + p5 | P6 - pS
p5 ::= pd | pS » pd | pS / pd | p5 MOD p4

o
o
.

it

pd ::=pl | pd 1 pl
p3 ::= unsigned | + p3 | - p3

unsigned ::= p2 | oumeric | compound | block | string | invocation | ove

| statement
p2 ::= clpame | clname specifier
specifier ::= . p3 | [stringspecs]
stringspecs ::= firstchar | firstchar , |, striogsize | firstchar , stringsize
firstchar ::= simplexpression

stringslize ::= simplexpression

A simplexpression is an arithmetic expression. All operations are upon 16 bit

binary quantities and result in a 16 bit quantity. The precedence of the operations
is implicit in the BNF above. A variable in a simple expression must evaluate to a
simple numeric quantity.

+

Example

&A+24 - ! WORD variable &A plus 24
20.3.3

The Command Interpreter 20-9

&C.&A MOD 12 'i’.z&Ath word in WORDVEC &C mod
A

&A GTR &C5 7 1 if &A contains a larger value
than the 5th word of &C, 0
otherwise 7

When specifying a part of a substring, the specifiers refer to bytes (not
words) in a WORDVEC variable. The general form of the specifier is
[firstchar , stringsize). For convenience one of the arguments may be omitted.
The defaults are:

Written Meaning

[first] [first,1]

[first,] [firstrest.of .string]
f,length] [t.length]

where rest.of.string will use the words remaining between the given byte
position and the end of the WORDVEC holding the string,.

20.3.5 Block and Compound

bleck ::= BEGIN program END

compound ::= (program)

A block or compound is an arbitrary number of statements separated by
semicolons or carriage returns and bracketed by BEGIN - END or (-), respectively.,
The compound is used syntactically to allow the grouping of statements. A
compound statement does not determine the scope of variable declarations.

A declaration context level is implicitly defined by a matching BEGIN END
pair. A context may also explicitly be entered and exited by the command
language functions BLKBEGIN and BLKEND. These functions provide for a
dynamic block structure which can nest within the static block structure, The
main purpose of BLKBEGIN and BLKEND is to define a local context in which
future commands typed in at the terminal will be executed, The BLKEND will
undeclare any variables declared in the “inner block"; these have usually been
declared by direct typein by the user. Note that for each BLKBEGIN function
executed a matching BLKEND function must be executed.

20.3.6 Assignment

The command language allows extensive access to capabilities and numeric
quantities, including the catalogue structure. This includes the ability to
manipulate capabilities in a manner similar to that of simple numeric quantities.
The ovel construct below is defined later but indicates an access to the catalogue
subsystem or to objects.

20.3.4

2010 The Command Interpreter

assignment ::= name « statemept

name ::= ovel | p2

The evaluation of an assignment involves evaluation of the right hand side
and then, if possible, the storing of the result into the left hand side. Type
checking and some type conversion are performed.

Examples

&A21 ' ! give &A the value 21
&C.12« &A/J5 % &C3

20.3.7 Iteration

Since commands may be executed from sources other than the terminal, the
command language has expressions which allow control over program execution.

iteration ::= WHILE simplexpression PO statement

The value of the simple expression is computed and if its value is "true", the
statement is executed and the iteration statement is reevaluated. If the simple
expression is "false”, the iteration evaluation is complete. The value is considered
"true" if its low-order bit is 1, and "false" if its low-order bit is 0. This is
consistent with the BLISS interpretation of Booleans. The canonical values of
relations are "1" for true and "0" for false. The Boolean operators AND, OR, NOT,
et¢. are bitwise operations on unsigned 16-bit values. Users of languages in
which any nonzero value is considered "true" are urged to keep this definition in
mind. The value of the iteration is that of the last evaluation of the statement or
-1 if the statement is never evaluated,

Example

WORD &A; WORDVEC &C.100
A0
While (&A«&A+1) leg 100 do &C.&A+O

20.3.6

The Command Interpreter 20-11

20.3.8 Conditional

conditional ::= JF siwplexpression THEN statewent elsepart

elsepart ::= ELSE statement | empty

The simple expression is evaluated and if it has a value of "true", the
statement following the THEN is executsd, otherwise the elsepart (if any) is
executed. The definitions of "true" and "false" are given in section 20.3.7. Since
the THEN and the ELSE parts are statemcnts, it is possible to have conditional
declarations. Since macros are defined during input scanning, conditional
definition of macros by this method is not possible. Commands defining macros
may be in a conditional statement. The macros will not be defined during the
current input scan. When using conditional declarations, one must be careful to
avoid errors. This facility is intended to be used from Commands. For more
information about Commands see section 20.6.

Conditionals may be nested to any dupth desired, as the BNF indicates. It is _
not necessary to include an ELSE for each THEN. The "dangling else" ambiguity is
resolved by matching each ELSE with the most recent unmatched THEN.

20.3.9 I/0

1/0 ::= TYPE outputlist | ACCEPT() | INTERPRET()
outputlist ::= output | outputlist , output

output ::= string | simplexpression

* The three types of 1/0 statements allow a CI program to communicate with
the user at the terminal. The TYPE statem~nt prints on the terminal and allows as
parameters anything that evaluates to either a string or a numeric quantity. A
string is printed as it appears (including any control characters) and a numeric
quantity is printed as a signed decimal. Note that unlike some systems, the TYPE
statement does not output a free <crlf>, v hich gives the user greater flexibility
than in those systems which provide such a "service". A note of caution'is in
order, however. If a user forgets to put a <crif> at the end of a line, the usual case
is that the value of the statement is print>d out upon return to the top level. In
most cases this is a zero, and since it is concatenated to the current line the value
printed appears to be too large. Consider the example:

O>TYPE "HI"
Hioy

which is fairly obvious; the "0>" is the result of the last statement plus the ">"

prompt character. However, a common (and easily made) error occurs in the case
of:

20.3.8

20-12 The Command Interpreter

O>&RETVAL-]23
23>TYPE &RETVAL
1230

where the actual value was "123" followed by the "0" for the result of the
statement. Be careful' Note: The printing of the result can be suppressed by use of
the & PRINTVALUE variable; for details see section 20.5.3.

The ACCEPT function gets input from the terminal up to and including the
next carriage return, line feed pair. The input is converted into a string. This
string is the value of the statement. ACCEFT may take one optional argument. If
the argument evaluates to 0, then the breik character (typically carriage return-
linefeed) is included in the string. If the argument evaluates to 1, or is omitted,
the break character is removed.

The INTERPRET function allows the user to enter a single CI statement from
the terminal. This statement is immediately parsed (including macro processing)
and executed in the context of the INTERFRET function before control is returned
to the command containing the INTERPRET command. The INTERPRET function in
effect performs a recursive call upon the command interpreter. The value of the
INTERFPRET function is that of the statement it evaluates.

20.3.10 OVE - Object Valued Expressions (Capabilities)

The major power and utility of the command interpreter is its ability to deal
with Hydra style objects. The command linguage contains commands for accesses
into or out of the catalogue structure ¢r other Hydra objects. The catalogue
procedures not implemented syntactically are easily available by name. For
information on the current system catalogues, see SYSDIR.DOC[N810HY97].

The following sections describe the valid syntactic forms. Dynamic type and
rights checking are employed to validate thie semantics of each execution instance,

ove ::= ovel | ovel rtsrestrict | invocation [constructor
ovel ::= ovel . p3 | dirid | ovel . dirid | cepavariable

dirid :: - identifier | string

rtsrestrict ::= [Ttispecs]

rtspecs ::= auxrts | auxrts ,] ,kernelrts | auxrts , kernelrts
kernelrts ::= simplexpression

auxTts ::= simplexpression

An Object Valued Expression (ove) is a command language statement that has
a Hydra object as its result. This object can be assigned to other objects (or

capability variables) or can itself be assignrd into.
20.3.9

The Command Interpreter . 20-13

The simplest form of an ove is an object or catalogue "path", which consists
of a qualified name path, e.g. 'A.B.C' or '%A.1.2.3'. Names can be used only for
lookups in catdlogues and numbers only for object paths. To lookup numbers in
catalogues, put them in quotes. :

Note that each qualifier may be an expression. Names represent themselves,
thus the path A.B.C is identical to the path @'A'.'B'.'C'. The @ is necessary to inform
the command interpreter that ‘A’ is a catalogue name, not a string. If the variable
&A holds the capability for a catalogue, then the path &A B.C uses the catalogue
selected by &A as the root of the catalogue path. If &A is a WORDVEC, and contains
the string 'GORP' in bytes 1 through 4, then the path &A[1,4].B.C is equivalent to
the path 'GORP'.B.C or GORP.B.C. The use of self-quoting names is valuable, but
leads to problems when "reserved” command interpreter symbols are used; if a
user’ wishes to have a qualifier called EVAL (which is a reserved command
interpreter function) the path cannot be specified as MUMBLE.EVAL.GORP since
the command interpreter will attempt to evaluate EVAL and issue some error about
insufficient parameters; the path must be specified as MUMEBLE.'EVAL'.GORP.

The actual value of an ovel may be either a capability or a one word
numeric guantity. The evaluation of an ovel up to the last qualifier must result
in a capability. However the last qualifier, if numeric, specifies either a
capability, with a positive value, or a word from the data part, with a negative
value. 0 is always invalid.

Example

Note that each level of qualification can be an expression, €. If we designate
the last expression as ¢k, then the expression X.Y, 1.(k has the evaluation:

€k > 0 - refers to the object referenced by the ¢, th capability in
the object reached by the path 'X.Y.1'.

€k €O -refers to the -(« k)th word of the data part of the object
reached by the path 'X.Y.1".

(x = 0 - generates an error,

All ovel's start from either an capability variable or from the default
catalogue reference. The default catalogu> may be set by the user and initially is
the user's top level catalogue, as returned by $LOGIN. It is stored in the predefined
CL variable &USERDIRECTORY.

The risrestrict construct permits the restriction of the "rights" of a
capability. The rights of a capability indicate which kernel functions and type-
dependent operations may be performed upaon that capability and the object it
represents. For a detailed explanation of yights see the Hydra Reference Manual,
Unfortunately at the moment, August 15, 1977, the symbals which define the
rights are not available within the command interpreter, Users who wish to use
the rights-restriction construct must first determine the absolute octal values

20.3.10

20-14 '~ The Command Interpreter

necessary. Pat McGehearty has thoughtfully provided a command object called
RIGHTS, which when executed defines the values of the Kernel rights, It
currently resides at &SYSDIRECTORY.PUBLIC.PM10.RIGHTS. To determine the
values of the rights fields for Kernel objects, see section RTS.REQ[N811HY97].

20.3.11 Invocations

One of the most important functions in the Hydra environment is the Hydra '
Procedure Call, The Hydra Call allows the access rights of an object to be changed
so that secure operations may be performed upon the objects. The CI allows a Call
by means of an invocation - which has the syntactic form of an Algol procedure
call and is similar to the procedure call from a BLISS program. :

invocation ::= ovel { actualparelist) | procname (actualparmlist)

actualparmlist ::= empty | actualparm | actualparmiist , actualparm
. actualparm ::= block | cowpound | ovel | simplexpression
procname ::= cifuncticonname | kernelfunctionnﬁme | subsystemprocedurename

The cifunctionname names one of the special command interpreter
functions defined in section 20.4,

The ovel must evaluate to-a Hydra procedure object or a command object.
The parameters to the invocation are evaluated to their simplest form, capabilities,
numeric quantities or strings. The parameters for a Hydra procedure call are all
made into capabilities, i.e. a numeric or a string quantity is made into a data object
in order to be passed, Several numeric or string quantities may be concatenated
into one data object by using the special command interpreter’ function
$STACKDATA which transforms its arguments into one data ocbject. $STACKDATA
is a relatively new function. It is intended to replace CALLDATA (See next
paragraph). $STACKDATA does not reverse the order of its arguments. Currently,
$STACKDATA only will work as a parameter to an invocation. At some future
time, this restriction may be removed. B

CALLDATA has a non-obvious perversity which makes.its use complex
insofar as the subsystem designer is conc:rned. CALLDATA reverses the order of
its arguments. Thus CALLDATA (1,2,3) creates a data object whose first word is 3,
whose second word is 2, and whose third word is 1. Warning to users: if a
document says to pass arguments as CALLI'ATA(1,2,3) then do so! Don't think that
you have to reverse them. The poor guy who wrote the subsystem already had to
worry about that, and he expects a data object with arguments in the order
(3,2,1). However, if you plan to call a prccedure from a BLISS program, you have
to reverse them from the CALLDATA convention.

If the invocation object is of type Commands, a recursive call upon the
command interpreter is performed and the object is used as the input source for
one or more statements. Those parameters which are not capabilities are
converted into data objects. If a string with an odd number of characters is passed

20.3.10

The Command Interpreter 20-156

as a parameter, a zero byte is added to fill out the word. Two variables of type
CAPA are declared: &CDOPARM and &PARMS. Their scope is the command object
statement. If the invoking object is of typ: Commands then &CDOPARM contains a
capability for an object with the C-List of the Commands. &PARMS is a universal
object which holds the parameters in its C-List. To get data from the data objects
in &PARMS, see the section on Multiple Assignments, 20.3.12.

An invocation can also call command language or Hydra kernel functions.
The command language functions are defined in section 20.4 and the
kernel functions are defined in the Hydra Reference Manual. Parameters to these
invocations are evaluated into strings, numeric quantities or capabilities and
passed without further transformation. A special feature of wordvecs allows
addresses to be passed to kernel calls. If a variable of type wordvec without any
specifier is used in a Kernel call, then the wordvec is copied in its entirety to the
stack page and the address of the wordvec in the stack pPage is used in the kernel
call. After the kernel call, the wordvec is copied back to its normal location.

Examples

Wordvec &A5;
$GETDATA(&A,TEST,3,5)

The above example will get the 3rd thru 7th word of the data part of TEST and put
it into &A. For data parts larger than 2 words, the method is more efficient than
the TEST.-n construct. A maximum of 512 words are available for this purpose at
any given time. Caution: since the CL currently does not check parameters for
validity, the unsuspecting user can easily hang his/her CL by an incorrect Kernel
call. The result of an invocation may be a numeric quantity, a capability, multiple
capabilities, or a numeric quantity and multiple capabilities. Kernel and CI
functions have a return value which is function-dependent, usually just a
numeric quantity. A procedure call returns a numeric quantity and. (possibly)
several capabilities. This -is treated similarly to an object §see Multiple
Assignments, 20.3.12) except that a reference can not be assigned to an
capability variable, A command object has an explicit numeric value and may
return values in global variables as well. -

20.3.12 Mnultiple assignments

In the Hydra environment it is useful {o extend the notion of assignment of
capabilities from the one to one mapping normally thought of as assignment to the
assignment of the constituent parts of an object. This type of assignment would
in one operation, assign capabilities from the capability list and data from the data
part to variables and the catalogue structure.

+

massignment ;= namelist = ove

nagelist ::= name | namelist , name

20.3.11

20-16 The Command Interpreter

The semantic intent of this assignment is to assign, in left to right order, the
components of the ove to the named quantities on the left of the '='. Successive
words or blocks of words in the data part are assigned to the WORD or WORDVEC
variables and successive capabilities from the capability list of the ove are
assigned to the capability variables or ovel's. If the assignments require more
capabilities or data than is available, null words (0) are used for data and null
capabilities are used for the excessive capahilities.

In practice, most users are horribly confused about the difference between =
and «. A good rule of thumb is that one should USE "=" WHEN ASSIGNING THE
RESULT OF A INVOCATION and USE "+" WHEN ASSIGNING THE RESULT OF A
DIRECTORY LOOKUP OR SIMPLE VALUE ASSIGNMENT., '

If the ove was a simple object then a multiple assignment could be simulated
by a series of simple assignments, However if the ove were an invocation
returning several capabilities then the operations could not be simulated by such a
sequence,

Examples

CAPA &A &B;

WORD &W1, &W2;

WORDVEC &V.3

&A&W] &V XY ,&B,&W2:=G(IRP
7 this is the same as the simple
assignments 7.

&A+«GORP.]

&W 1 «GORP.-]

&V.1+GORP.-2

&V.2¢GORP.-3

&V.3«GORP.-4

X.Y«GORP.2

&B+GORP.3

&W2+GORP.-5

20.4. Command Language Functions

The Command Language provides several functions and wvariables which
serve a variety of purposes.

CALLDATA(P{, ... Pp)

Evaluates each parameter pj, which must evaluate to a
simple 16-bit value ot a string. These are then used to create
a data object containing the parameters in the order pg,,...,P1-
Please note this reversal if you are writing a procedure
which expects a data object. A string of m characters will
occupy (m+1)/2 words in the data object. If m is odd, the
empty byte will be a zero.

$STACKDATA(pD ..., Pp)
’ 20.3.12

The Command Interpreter 20-17
Same as CALLDATA, except it does not reverse its parameters,

UNDECLARE(pi, vees Py
Removes the most recent declaration of the specified
parameters from the symbol table and returns their storage to
the free space list. Its return value ts the number of
declarations successfully removed.

INTERPRET()
Gets a statement from &TTYPORT and executes it. The value
is whatever value is returned by the statement evaluated.
Normally, this function is used inside of command objects.

ACCEPT()
Accepts a line of input from &TTYPORT and returns it as a
string. If no parameter is specified, or its parameter is 1,
then the break character is removed from the string. If the
parameter is O, the break character is included in the string.

EVAL(str)

Evaluates the string-valued parameter as a command
interpreter statement.

DECLARATION(str)

If the string-valued parameter is the name of a declared
variable, then the value of this function is an integer greater
than 0. If the name has not yet been declared, the value is O,
The values are not given here because they might change; if
you wish to check tho type of a declaration, declare a dummy
variable of a known type, and see if DECLARATION of your
dummy variable is the same as DECLARATION of the variable
yYou are concerned with.

$VERSION()
Returns the current version as a string.

ERRMESS(val) .
If the value of the parameter is an integer which is a valid
€rror message code, the text of the error message is printed.
This is useful if full error message printout was suppressed
by use of &LISTERROR, see section 20.5.3.

HUH()
Print the last error message in extended form. This also is
useful if full error message printout was suppressed by use
of &LISTERROR, see scction 20.5.3.

BLKBEGIN()
Declare a dynamic context within the current static context;
see section 20.3.5.

BLEKEND()

20.1

20-18

The Command Interpreter

Leave a dynamic context declared by BLKBEGIN; see section
20.3.5,

PRCAPA(ove)
Prints appropriate information about the capability obtained
from evaluating the ove, as determined from the Kernel
WHAT call (see the Hydra Reference Manuall.

PRSYM/(clname)
Prints some internal information about the variable given as
a parameter (no guoting is done, so macros are expanded---
you can't PRSYM a macro name directly). To PRSYM a macro
name, use a gquoted string with the name in upper case
letters. Mostly of value to command interpreter debuggers,
but users may find it handy.

GETMEM(address)
If the expression given as the parameter evaluates to an
integer in the range (decimal) 64 to 128, the value of
GETMEM is the contents of that location in the stack page If
the address is odd, an error message will be given.

PUTMEM{address,value)
If the expression given as the first parameter evaluates to an
integer in the range (decimal) 64 to 128, then that location
in the stack page is set fo the value obtained from evaluating
the second parameter. If the address is odd, an error message
will be issued.

DELETE(ove)
If ove is a local capability, it will be deleted and the capa
released. If it is a path, the last element of the path will be
deleted. Note that the kernel function $DELETE(ove) does
not have the expected effect. In this case, the ove is evaluted
by the command language and the resulting local capa is
deleted, effectively a no-op.

TYPECALL(object,parms)
Will do a $TYPECALL according to the type of object, passing
parms as parameters,

BASECALL(index,parms)

Will do a $BASECALL of the specifled index, passmg parms as
parameters.

20.41

The Command Interpreter 20-19

20.5. Predeclared variables

20.5.1 Directories

&SYSDIRECTORY
Variable which contains a capability for the system
catalogue,

& USERDIRECTORY
Variable which contains a capability for the user's catalogue,
If a catalogue path name does not start with a capability for a
catalogue, &USERDIRECTORY is used, e.g., the path 'A.B' is
identical to the path 'XUSERDIRECTORY.A.B".

20.5.2 1/0O control

&TTYPORT
Variable which contains a capability for the initial port
which is connected to the terminal,

&TTYCON
Variable which contains a capability for the connection to
&TTYPORT.

&RADIX
The radix used for converting numbers without a # symbol
on input (initially ten).

SRADIXIN
Current input radix for # type numbers (initially eight).

&RADIXOUT
Current output radix (initially ten). This radix is used for
all output conversions of numbers.

20.5.3 Interaction control

&LISTERROR
If set to "true", full error messages will print. If set to
"false", only the error message code itself will print. See the
ERRMESS function in section 20.4. Its initial value is "true".
20.5

20-20 The Command Interpreter

&PSIGNAL . .
If set to "true", a Hydra signal will print a meaningful
description as well as the error number. If set to "false”, only
the number will be printed. Itsinitial value is "true".

&PRINTVALUE . _
If set to "true", the value of the last statement executed will
print out before the user is prompted for the next input line.
If "false" this typeoul will be suppressed, and the value must
be explicitly printed by the user if required. Its initial value
is "true'. :

&PRTSTACK
If "true", various state information about the interpreter
stack is printed when an error occurs. If “false" the printout
is suppressed, This is primarily for use by people debugging
the interpreter, so its initial value is "false",

&NOCRLF

Controls the effects of carriage return linefeed {CRLF)} and ¢
inside of stored programs. If &NOCRLF is 1 then CRLF is not a
statement terminator inside of stored programs. Also, t is not
a continuation symbol. This feature allows reasonable
indentation and spacing inside of stored programs. If
&NOCRLF is 2 then CIALF is not a statement terminator inside
of stored programs bt ¢ acts as a continuation symbol. This
feature was provided to allow a transition between the old
way and the new way. If &NOCRLF is O then CRLF acts as a
statement terminator and t acts as a continuation symbol,
This is the old way. The default for &NOCRLF is 1. System
commands assume that &NOCRLF is 1,

&REDECLARE

Controls the action taken when a new variable is redefined
at the same block lev.l as an existing variable with the same
name, If it is O then delete the old definition at this level,
print warning. If it is 1 then delete the old definition and
continue (no warning). If it is 2 then stack the old
definiton, and continue. If it is 3 ask &TTYPORT whether 1
or 2 is appropriate. The default is O,

20.5.4 Miscellany

&RETVAL :
Value of the last invocation of a procedure or kernel
function, or catalogue lookup,

&RETCAPA
of capabilities retuwrned in the last call,
20,5.3

The Command Interpreter . 20-21

& CDOPARM
When a stored program is invoked, the variable &CDOPARM

contains a capability for the stored pProgram.,

&PARMS
When a stored program is invoked, the vartable &PARMS isa
universal object containing the actual parameters of ‘the-
- invocation. See section 20.3.11.
& COPYCPS

Contains a safe CPS slot for page copying, ete.

20.6. Commands
* Commands are a protected type in Hydra maintained by the command

language. They provide a means for users to create and save stored programs in
the command language. There exist predefined type calls to create and modify
Commands.

$Makecmd() will create and return a new Commands object.

$Copycmd(Cmd) will create a copy of Cmd and return it,

$Editcmd(Cmd) will edit a Cind with the C.mmp teco editor.

$Listcmd(Cmd) will list Cmd on the line printer.

$Printcmd(Cmd) will print a Cmd on the terfninal.

$Readtext(cmd) will return a universal with one Page in its clist which
contains the text of the cmd. ' .

$Writetext(cmd,unv) writes the text of the cmd from the page in the first
slot of the clist of unv. .

, $Readclist(cmd) returns a universal containing the capabilities that would
be available in an invocation of Cmd.,

$Writeclist{(Cmd,Unv) makes the capabilities in Unv the ones that are
available in an invocation of Cmd (as &CDCPARM).

See also the earlier section on invocations for more information about
Commands.

20.5.4

20-22 The Command Interpreter

20.7. Known Bugs

Since the command interpreter forms the users' prime interface to Hydra, it
has been worked over pretty thoroughly and most bugs have been removed,
However, some creep in with new release; and others go away. (Fortunately it is
nowhere near "critical mass", the phcnomenon where removing one bug
introduces 1+¢ bugs). Since bugs change faster than this document, the list of
known bugs will be kept in CLBUGS.DOC[N810HY97].

20.7

The Command Interpreter

20.8. BNF summnary

Section Definition

20.3.11 sctualparm ::e block | compound | ovel | simplexpression
20.3.11 actualparmlist ::= empty | actualparm | ectualparmlist ,. actualparm
20.3.6 assigoment ::- name « statement l

20.3.10 auxrts ::= simplexpression

20.3.5 block ::= BEGIN program END

20.3.3 clpame ::= &identifier

20.3.3 €lnapelist ::= clname | clnemlist , clpame

20.3.3 clnamesize ::= clname specifier

20.3.3 cinamesizelist :::= clnamesize | clnamesizelist , clnamesize
20.3.5 . compound ::= (program)

20.3.8 . conditional ::= IF simplexpression THEN statement elsepart
20.3.3 declaration ::s CAPA cloamelist | WORD clnamelist

| WORDVEC clnamesizelist
20.3.10 dirid ::=- identifier | string

20.3.8 elsepart ::= ELSE statement | empty

20.3.4 firstchar ::= simplexpressiop

20.3.3 formalparams ::= identifier | formalparms , identifier
20.3.9 1/0 ::= TYPE outputlist | ACCEPT{() | INTERPRET()

20.3.11 invocation ::= ovel (actualparmlist) | procname (actualparmlist)
20.3.7 fteration ::= WHILE simplexpression DO statement

20.3.10 kernelrts ::= simplexpression

- 20.3.3 macrobody ::= striogwithoutdcllarsign $

20.3.3 wmacrodeclaration ::= MACRQ macrodefinition
20.8

20-23

20-24

20.3.3

20.3.3
20.3.3
20.3.12
20.3.6
20.3.12
20.3.9
20.3.9
20.3.10
20.3.10
20.3.4
20.3.4
20.3.4
20.3.4
20.3.4
20.3.4
20.3.4
20.3.4
20.3.4
£20.3.11
20.3.1
20.3.4

20.3.10
20.3.10
20.3.1

massign

namelis

ove ii=

ovel ::

The Command Interpreter

macrodefinition ::= macroname - macrobody
| macrodefinition , macroname = macrobody

macroid ::= identifier | clogue | controlcharacter
macroname ::= pacrold | macroid { formalparmes)
ment ::= namelist = ove
name ::= ovel | p2

t ::= name | namelist , name
output ::= string | simpiexprcsslon

outputlist ::= output | outputlist , output

ovel | ovel rtsrestrict | 1nvocation | comstructor

= ovel . p3 | dirtd | ovel . dirid | capevariable

p10 ::= p9 | p10 OR p9

p2 ::= ciname | clname specifier

p3 ::= unsigned | + p3 | - p3

pd ::= p3 | pd t pl

pS ::= p4d | pS » p4 | pS / p4 | p5 MOD pd
p6 ::= pS | p6 + pS | p6 - PS5

p7 ::= p6 | p6 rel pé

p8 ::= p7 | NOT p8

p% ::= p8 | p9 AND p8

procname ::= cifunctionname | kernelfunctionname [subsystemprocedurename

rtspecs

Tisrest

program :: =

rel ::= EQL | NEQ | LSS | LEQ | GTR | GEQ | EQLU | NEQU
| LSSU | LEQU | GTRU | GEQU

statement | program sep statepent

::= Auxrts | auxrts , | ,kernelrts | auxrts , kernelrts
rict ::= [ttspecs]
sep ::= carrisgereturolinefeed | 3

20.8

20.3.4

20.3.3
20.3.4
20.3.2

20.3.4
20.3.4

20.3.4

The Command Interpreter 20-25

simplexpression ::= p10 | simplexpression XOR p10
| stmplexpression EQV pio

specifier ::= . p3 | [stringspecs]

specifier ::= . p3 | [stringspecs]

statement ::= conditional | declaration | macrodeclaration | 1teration
compound | 1/0 | string | simpleexpression | assignment
massignment | empty

stringsize ::= simplexpressicn

stringspecs ::= firstchar | firstchar , | » stringsize |
firstchar , stringsize

uasigned ::= p2 | numeric | compound } block | striag | invocation | ove
| statement ’

20.83

Typecall summary

Appendix I..Typecall summary

This appendix summarizes the Typecalls and their parameters and
quick reference both to the calls and to their descriptions in the manual.

$CataDelete (Cata, NamePar)

$CataDestroy (Cata)

$CataEnter (Cata, NamePar, Source, Options)
$CataList (Cata, TTYPort)

$CataLookup (Val, Cata, NamePar)

$CataObjinfo (Val, Cata)

$CataProtect (Cata, NamePar)
$CataRename (Cata, NamePar, NewPar)
$CataUnprotect (Cata, NamePar)
$CloseFile (NewFile, OpenFile, Abort }

$CompareFile (F1, F2)

$Controlpmprocess (Pros, Data)

$CopyCatalogue (NewCata, OldCata)

¥CopyFile (NewFile, OldFile, OPrName, Job)
$DASCONNECT (DIndex, JOB, PORT, 10De vice, DATA)

$DASDisconnect (Dindex, DEVCON)
$DASGetDC (DIndex, 10Device)
$DASIODDisplay (DIndex, I0Device)
$DASIODStatus (DIndex, I0Device)
$DASMerge (DIndex, I0Device1, I0Device2)

$DASPConnect (Dindex, JOB, PORT, DEVCON, DATA)
$DASSConnect (Dindex, JOB, PORT, DEVCON, DATA)
$DASSelect { DIndex, I0Device, DATA)

$DASXCONNECT (DIndex, JOB, PORT, 10hevice, DATA)

$Datapmprocess (Pros)

$Desynchpmprocess (Pros, Data)
$DirToCata (NewCata, OldDir)
$DISPLAY (DEVCON)

$EditFile (File, Port, Job, Options)
$Getpm (DIndex, Job, Data)

$Joberror (Job, Data)
$Jobid (Job)

$Jobident (DIndex, Job)
$Jobinsert (Job, SPath)
$Jobname (DIndex, Job)

$Jobremove (Job, SPath, Data)
$Jobseterrport (Job, Port)
$Jobsjcreate (Dindex, Job,Data)

v

1-1

provides a

19-6
19-4
19-5
19-7
19-4

19-4
19-7
19-6
19-7
21-8

21-11
£23-3
19-3
21-9
24-3

24-8
24-5
24-4
24-5
24-5

24-7
24-7
24-6
24-4
23-5

23-3
189-8
24-8
21-11
22-4

22-4
22-1
22-1
22-5
22-2

22-6
22-4
22-7

I-2 Typecall summary

$Join (DIndex, Job, Port) 22-3
$Killpmprocess (Pros) 23-~2
$Login (DIndex, Job, Port) ., - 22-3
$Logout (Port, Data, Job) 22-6
$MakeCatalogue (NewCata, CataRep) 19-3
$MakeFile (NewFile, O1dFile, Job, OPrName) 21-3
$Makepmprocess (DIndex, PMtempl, Pros, Job, arguments) 23-1
$Makeport (Job, Data) 22-5
$ObjinfoFile (NewData, File, Field) 21-10
FOpenFilexxx (NewOpen, Super, Port, (hannel OPrName, Job) 21-4
$Startpmprocess { Pros)) T 23-2
$STATUS (DEVCON) ‘ 24-9
$Statuspmprocess (Pros) _—_ 23-3
$Stoppmprocess (Pros) 23-2

$Timepmprocess (Pros) 23~-4

Index

INDEX

'13-7

!, command fnterpreter comment 20-3

!, command interpreter escape 20-3

#, command interpreter 20-2 .

§ (Altmode), SIX12 delimiter 13-9, 13-11

%, command interpreter 20-7

%, command interpreter comment 20-3

%, SIX12 suffix 13-5

an, process locals 13-11

&, command Interpreter 5-3, 20-2, 20-6

&CDOFARM, command interpreter parameter
20-14, 20-20

&CDOPARM, Command Language variable 5-9

©CPS, command interpreter variable 20-21

&LISTERROR, command interpreter varlable
20-19

&NOCRLF, command Interpreter variable 20-20

&FPARMS, command interpreter parameter 20-14,
20-21

&PARMS, Command Language vartable 5-9

&PRINTVALUE, command interpreter variable
20-20

&PRTSTACK, command intlerpreter varlable
20-20

&PSIGNAL, command interpreter variable 20-19

&RADIX, command interpreter vartable 20-19

&RADIXIN, command interpreter variable 20-19

&RADIXOUT, command interpreter variable
20-19

&REDECLARE, command interprefer variable
20-20

&RETCAPA, command interpreter varlable 20-20

&RETVAL, command {nterpreter variable 5-7,
20-20

&SYSDIRECTORY 5-13

&SYSDIRECTORY, command interpreter variable
20-19

&TTYCON, command interpreter varlable 20-19

&TTYPORT, command interpreter varlable 20-19

&USERDIRECTORY, command interpreter variable

20-13, 20-19

command interpreter 20-2

(’), command Interpreter 20-9

(, command Interpreter 20-3

* 13-6

* operator, command interpreter 20-8

+ 13-6

+ cperator, command interpreter 20-8

y sSeparator 13-11

- 13-6

- operator, command interpreter 20-8

. 13-7

N CSECT and S1X12 13-13

.REQUIRE directive, MACN11 7~}

.5 CSECT and 51X12 13-13

/13-7

/ operator, command tnterpreter 20-8

;s Separator 13-11

= operator, command interpreter 20-15

?, command interpreter escape 20-3

?-escape, in command interpreter 5-16

@, in catalegue path 20-13

{. command Interpreter 20-3

t operalor, command interpreter 20-8

t, command interpreter continuation 20-3, 20-5,
20-20

~13-7

«, command interpreter 20-9, 20-18

', command Interpreter 20-2

$CataDelele, typecall 19-6
$CataDestroy, typecall 19-4
FCataEnter, typecall 19-5
$Catalist, typecall 19-7
$CataLookup, typecall 19-4
$CataUbjinfo, typecall 18-4
$CataFrotect, typecall 19-7
%CataRename, typecall 19-6
$CataUnprotect, typecail 19-7
$CloseFile, typecall 21-8
$CompareFile, typecall 21-11
$Controlpmprocess, typecall 23-3
$CopyCalalogue, typecall 19-3
$CopyFile, typecall 21-9
$DASCONNECT, typecall 24-3
$DASDisconnect, typecall 24-8
$DASGetDC, typecall 24-5
$DASIODDisplay, typecall 24-4
$DASIODStatus, typecall 24-5
$DASMerge, typecall 24-5
$DASPConnect, typecall 24-7
$DASSConnect, typecall 24-7
$DASSelect, typecall 24-6
$DASY.CONNECT, typecall 24-4
$Datapmprocess, typecall 23-5
$Desynchpmprocess, typecall 23-3
$DirToCata, typecall 19-8
$DISPLAY, typecall 24-8
$EditFile, typecal] 21-11
$Getpm, typecall 22-2
$Joberror, typecall 22-4
$Jobid, typecall 22-1
$Jobident, typecall 22-1
$Jobinsert, typecall 22-5
$Jobname, typecall 22-2
$Jobremove, typecall 22-6
$Jobseterrport, typecall 22-4
$Jobsjcreate, typecall 22-7
$Join, typecall 22-3
$Killpmprocess, typecall 23-2
$Login, typecall 22-3

$Logout, typecall 22-6
$MakeCatalogue, typecall 19-3
$MakeFile, typecall 21-3
$Makepmprocess, typecall 23-1
$Makeport, typecall 22-5
$0biinfoFiie, typecall 21-10°
$OpenFilexxx, typecall 21-4
$Startpmprocess, typecall 23-2
$STATUS, typecall 24-9
$Statuspmprocess, typecall 23-3
$Stoppmprocess, typecall 23-2
$TImepmprocess, typecall 23-4

Index-1

Index-2

", prompt 5-2

$Copycmd, typecall 5-8

$Edltcmd, typecall 5-9

$Listemd, typecall 6-9

$Makecmd, typecall 5-8

$Printemd, typecall 5-9

$STACKDATA, command interpreter function
20-14, 20-16

$VERSION, command interpreter function 20-17

, prompt 5-1
@, prompt 5-1

ABREAK 13-8

ACCEPT statement 5-16

ACCEPT, command Interpreter function 20-11,
20-12, 20-17

Address manipulation operators {n SI¥X12 13-7

Altmode, SIX12 delimiter 13-9, 13-11

Amblguous name 13-5

Ampersand, command interpreter 5-3, 20-6

AND 13-7

AND operator, command Interpreter 20-8

Arithmetic operators In SIX12 13-6

At-sign, in catalogue path 20-13

Auxiliary Rights, Catalogue subsystem 19-2

B: prompt 5-16

BASE 13-8

BASECALL, command Interpreter function 20-18

BEGIN, command interpreter 20-9

BLKBEGIN, command interpreter function 20-9,
20-17

BLKEND, command interpreter function 20-9,
20-17

Block, command {nterpreter 20-6, 20-9

Boclean operators in S51X12 13-7

BREAK 13-9

Breakpoint contrel, SIX12 13-9

Buttion, Little red 6-2

C: prompt 5-4

CALL 13-8

Call stack examlnation, SIX12 13-8

CALLDATA, command interpreter function 20-14,
20-16

CALLDATA, perversity 20-14, 20-16

CALLS 13-8

CAPA declaration, command interpreter 5-3, 5-5,
20-6

Capability - based protectlien system 2-2

Catalogue PUBLIC 5-13

Catalogue UTILITIES 5-13

Catalogue walk, specifying 5-11

CDOPARM, command interpreter parameter
20-14, 20-20

Close, spooler command 16-3

CLRTRACE 13-10

Index

Comma 13-11}

Command Interpreter, Primer 5-1

Command Object invocation 20-14

Cemmand objects, copying to tape 15-3

Commands 5-5, 5-8

Commands invocation 5-8

Commands, creatlng 5-8

Comment, command interpreter 20-3

Compound, command interpreter 20-9

Conditional s;%te;nient. command interpreter

Contlnuatlonzchaaracter. command Interpreter

0-

CONTROL and SIX12 13-13

Control characters, command interpreter 20-3,
20-7

CONTROL key, graphlics 6-2

Copy, spooler command 16-3

COFPYCPS, command {ntepreter variable 20-21

Creatle, spooler command 16-2

CRLF 5-16

CSECT .N, and 5IX12 13-13

CSECT .5, and SIX12 13-13

CTLPC 13-13

CTLPROCESS, example 13-13

CT[N81OHYS7} 6-2

DABREAK 13-9

Dangling else 20-11 '

Data part, from command interpreter 20-13

DBREAK 13-9

DEASM 13-7

DECLARATION, command Interpreter function
20-17

DEFLINK 13-8

DELETE, command Interpreter function 20-18

Delimiter character, command interpreter 20-3

DIBREAK 13-9

Direclory path, specifying 20-12

DKBREAK 13-9

DKTRACE 13-10

DO, command Interpreter 20-10

DOC.DOC[N811HYS7) 1-1

Dollar slgn, command interpreter 20-7

DGPAQUE 13-10

DOPAQUE AFTER 13-10

DOPAQUE FROM 13-10

DTRACE 13-10

DTRACE AFTER 13-10

DTRACE FROM 13-10

Edltor, SOS 9-1

Edlter, TECO 10-1

ELSE, command Interpreter 20-11

END, command interpreter 20-9

EQL 13-6

EOL operator, command interpreter 20-8

EQLU operator, command interpreter 20-8

EQV operator, command {nterpreter 20-8
ERRMESS, command Interpreter functlon 20-17

ERRPC 13-13

EVAL, command interpreter function 20-17
Examine and Deposit, SIX12 operations 13-7
Exclamation point 13-7

Execution contreol, SiX12 13-10

False value, command interpreter 20-10
Front end 6-1

GEQ 13-6

GEQ operator, command Interpreter 20-8
GEQU operator, command interpreter 20-8
GETMEM, command interpreter function 20-18
GLOTOG, in S1X12 13-12

GO 13-10

GOCLR 13-10

GOTRACE 13-10

Graphics 6-2

Graphics monitor 6-2

Graphics, reboot 6-2

GTR 13-6

GTR operator, command interpreter 20-8
GTRU operater, command Interpreter 20-8

Hardware error and S1X12 13-13

HELP, macaro 5-15

HUH, command interpreter function 20-17
HYDABB.XGO, [L150AL72] 8-6

Hydra objects 2-2

JBREAK 13-9

IF, command interpreter 20-11

INIT612 13-2

Inpuy, in command interpreter 5-15, 20-11

INTERPRET statement 5-16

INTERPRET, command interpreter function
20-11, 20-12, 20-17

Invocations, command Interpreter 5-5

lteration statement, command Interpreter 20-10

JMON 5-1

K-calls, from command interpreter 5-5
KBREAK 13-9

Kernel calls 2-4

Kernel calls, from the command interpreter 5-5
KMACS M11[NB10HYS7] 7-1

KTRACE 13-10

LCB 13-13

LED 13-86

LED operator, command interpreter 20-8
LEOU operator, command interpreter 20-8
Linking SI1X12 13-14

LISTERRCR, command Interpreter variable 20-19
Listing a Catalogue 5-12

Little red button 6-2

Logging off 5-1

Logeing on 5-1

LSCDOT.DOC, {A110LCOO] 7-1

Index

.55 13-6
LSS operator, command {nterpreter 20-8
LSSU operator, command interpreter 20-8

M: prompt 5-11

MACRO 13-11 :
MACRO declaration, command interpreter 20-6
Macros, command Interpreter 6-11, 20-3
MAKECMD 5-6

META key, graphics 6-2

META-C, graphics control 6-2

META-CALL, graphlcs contrel 6-2
META-CONTROL R, graphics control 6-2
META-T, graphlcs control 6-2

Miscellanecus SIX 12 operaters 13-11

MOD operator, command interpreter 20-8

N, CSECT and SIX12 13-13

NB811HY97 1-1

Name table, SIX12 13-13

Name, command Interpreter 20-2

NEO 13-6

NEQ operator, command interpreter 20-8
HNEQU operator, command Interpreter 20-8
NEWS.DOC[NB810HY97] 1-1

NOCRLF, command interpreter variable 20-20
NODEBUG switch, BLISS example 13-2
NOT 13-7

NOT operator, command interpreter 20-8
Numerlec values in CL 20-2

Object type 2-3

Object walks, command interpreter §-4
Objects, Hydra 2-2

OCTALP 13-8

OFAQUE 13-10

OPAQUE AFTER 13-10

OPAQUE FROM 13-10

Open, spocler command 16-2

Operator Precedences, SIX12 13-11

OR 13-7

OR operator, command interpreter 20-8
Output. from command interpreter 5-148, 20-11

Parameter list, to command object 20-14

Parameter list, to procedure call 20-14

FARMS, command interpreter parameter 20-14,
20-21

FPath walk, command Interpreter 20-13

Fath, catalogue 20-12

Perversity, CALLDATA 20-14, 20-18

PRALL 13-7

PRCAFA, command interpreter function 20-18

FPredefined Type calls, from command interpreter
5-5

Primer, Command Interpreter 5-1

Print control, §1X12 13-8

PRINTVALUE, command {nterpreter variable
20-20

Procedure call, from command interpreter 20-14

Index-3

Index-4

Frocedure calls, from command interpreter 5-5,
5-8

FProfile, Command Language 5-12, 5-15

Protectlon system, capabllity-based 2-1

Protectlon systems 2-1

PRS 13-11

PRSYM, command interpreter function 20-18

PRTSTACK; command Interpreter variable 20-20

PRU 13-11

PSIGNAL, command interpreter variable 20-19

PSTRING 13-8

FPUBLIC Catalogue 5-13

PUTMEM, command interpreter function 20-18

QUAL 13-8
Quéestion mark, in command Interpreter 5-16

Radix, command interpreter 20-2

RADIX, command Interpreter variable 20-18

RADIXIN, command interpreter variable 20-18

RADIXOUT, command Interpreter variable 20-19

Reboot, graphics 6-2

Red, button, lttle 6-2

REDECLARE, command interpreter variable 20-20

Relational operators In S1X12 13-6

RELOC 13-7

REQ.DOC[N811HYS7] 1-1

REQUIRE directive, MACN11 7-1

RETG12 13-3

RETCAFPA, command interpreler variable 20-20

RETURN 13-11

RETVAL, command interpreter variable 5-7,
20-20

Righits restriction In command intlerpreter 20-12

Rights restriction, command Interpreter 20-8

RIGHTS, command object 20-14

Rn symbel in S1X12 13-12

Routine calls 13-12

RRn symbol in SIX12 13-12

5, CSECT and SIX12 13-13

S: prompt 5-16

Semticolon 13-11

SETTRACE 13-10

Signals, Kernel 5-6

SI1X 12 operational information 13-13
51X12, Linking 13-14

S1¥ 12, Miscellaneous operators 13-11
SIX]ZN[[NSIOHY'EI? 13-14
S1X125{N810HYS7] 13-14
S1%12[NB810HYS7] 13-14

SIXCMD 13-3

SIXPAG 13-2

S08S, editor 9-1

SP symbol In SIX12 13-12

Stack page usage 20-18

Store operatlor, command interpreter 20-9
STRING varjable, nonexlstent 20-7
Siring, command interpreter 20-2
Subsystems 2-4

Index

Symbol table, S|X12 13~13

Symbols, In SIX12 13-4

SYSDIRECTORY £-13 .

SYSDIRECTORY, command {nterpreter variable
20-19

SYSNEW.DOC[N810HY97] 1-1

TECQ, editor 10-1

Terminal Multiplexor 6-4

THEN, command interpreter 20-11

TOP key, graphics 6-2

TRACE 13-9

TRACE AFTER 13-9

TRACE FROM 13-10

Traclng control, S1X12 13-9

Trap PCs and SIX12 13-13

True value, command interpreter 20-10
TTYCON, command interpreter variable 20-19
TTYFPORT, command |{nterpreler variable 20-19
TYPE statement 5-16

TYPE statment, command interpreter 20-11
Type, object 2-3

TYFPECALL, command Interpreter function 20-18
Typecalls 2-4

UNDECLARE, command interpreter function
20-17

Unintelliglble kludge, command Interpreter
20-16

USERDIRECTORY, command Interpreter variable
20-13, 20-19

UTILITIES Catalogue 5-13

VAL 13-7

Variable, command interpreter 20-2
Variables, syntax of 5-3

Vector operands in SIX12 13-6

WHILE statement, command interpreter 20-10

WORD declaration, command Interpreter 5-3,
20-6

WORDVEC declaration, command interpreter 5-3,
20-6

XOR operator, command interpreter 20-8

(A1 10Lc00}, LSCDOT.DOC] 7-1
L150AL72], HYDAGBB.XGO 8-6
N810OHY97]CT 6-2

NB1OHYS7] KMACS. M11 7-1
N&10HYI7] NEWS.DOC 1-1
N810HY97] SIX12%x.CMD 13-14
N810HY97 | SYSNEW.DOC 1-1
N&11HY97] DOC.DOC 1-1
N811HYY7] KERKAL.REQ 13-9
N811HYS7] REQ.DOC 1-1

T T T T

