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ABSTRACT 

This thesis studies the performance of an integrated voice and data 

communication network. Different characteristics from other communication networks 

and a different set of key parameters for its performance are addressed. The 

relationship of and the trade-off between the key parameters are also discussed. 

Voice communication requires slow but continuous information exchange while 

data communication requires burst type of information exchange, A new integrated 

switch is designed to support both type of communications; line switch for voice and 

packet switch for data. Class I traffic, voice or video, is modeled as an M/M/n queue 

and Class II traffic, data or bulk, is modeled as an M/M/Y queue. A wild distribution of 

Class I I queue length is discovered and a significant trade-off between communication 

and ccmputer facilities is implied. The study shows that the queue length grows ve ry 

rapidly when the Class I/Class II job size ratio increases. A small integrated switch 

with relatively small job size ratio is studied in details. However large switches with 

realistcal job size ratio are only approximated and detail quantitative results for such 

system require further study. 

The longer the queue is, the larger the memory will be required to store the 

data packets. However though the integrated switch has a very long queue, the 

number of buffer for the switch to operate efficiently is rather limited as shown by 

the network queueing model. In order to increase the memory utilization and to lower 

the system cost, several memory management and buffer assignment schemes are 

discussed. An unconventional secondary storage for switching processor is modeled 

and the advantages and disadvantages are thoroughly discussed. 
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A special delay of integrated switch is introduced by its frame structure. In 

order to minimize the through network delay, the design problem of how to share the 

communication link capacities between voice and data and how to assign the frame 

skew on each link are discussed. Because of discrete delay incremented by the frame 

period, the frame skew assignment problem is investigated as a mixed integer linear 

program. A speeding algorithm using k-tree concept is developed to speed up the 

ordinary branch and bound algorithm. However the speeding algorithm does not show 

much improvement in computation time and is thus limited useful. A heuristic algorithm 

is then developed to find a local optimal assignment in relatively short computation 

time. 
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CHAPTER 1 Introduction 

1.1. Computer Communication 

The computer communication field is some 20 years old now, having originated 

with military command and control system in which widely dispersed radar inputs and 

outputs to weapon sites had to be controlled rapidly and in real time by a central 

facility. That central facility could only be a digital computer because of the speed and 

data volume involved. Today, data-processing systems having a communications 

network as an integral "central nervous system" are a growing part of our daily lives. 

These data processing systems are evolving at a bewildering speed and in a variety of 

directions. Their evolution is made possible by new hardware and software 

developments, new user needs, and new transmission systems tailored to computer 

communication. 

During much of the 1960s, the growth of computer networks was hampered by 

the lack of communication facilities well suited for data transmission. Because the 

existing telecommunication networks designed and operated by commerical carriers had 

evolved in a manner conducive to voice communications, they could not readily provide 

the switching functions needed for the overall cost effective utilization of transmission 

facilities for interactive data communications. As a result, we witnessed an emergence 

of special networks such as DATRAN, ARPANET, and others dedicated to data users. 

Today separate packet switching networks are used widely for data communications. 

Although there appear to be valid justifications for the above trend, the practice 

of separating voice and data traffic should be continually examined. The search for 
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switching approaches that would allow more versatility with respect to answering all 

communication needs should be encouraged. In this thesis we will take a look at a 

single communication network which provides both data and voice traffic services 

through the use of a switching approach that operates somewhere between a full 

circuit-switched and a full packet-switched concept. 

As shown in figure 1.1.1, a computer communication network usually consists of 

terminals, local loops, switching centers ( S O , and high speed trunks, which form the 

backbone communication system. A terminal may be a teletype, a telephone or a 

computer. A message generated by a terminal is transmitted by local loops to a 

switching center. From the switching center, the message is carried by a high speed 

trunk, in exactly inverse order, to the destination terminal. 

T E R M I N A L 

FIGURE 1 . 1 . 1 COMPUTER COMMUNICATION NETWORK 

There are basically two kinds of switching techniques, line-switching and 

message-switching. The dial telephone system is a typical line-switched system, while 
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the telegraph system is a message-switched system. Brief descriptions of a line-

switched network, a message-switched network, and the new integrated switched 

network, a mixture of line and message switching, follow. 

1.1.1. Line-Switched Network 

In a line-switched system, information from a sending terminal is not transferred 

to a receiving station until the network has set up a connection. As figure 1.1.2 

shows, a terminal starting a call submits a "send request" to the exchange, where 

further dialing information is started. The nodal control processor generates an 

inquiry signaling message. This inquiry message precedes, link by link, to the 

receiver's exchange. There, a response message which reflects the status of the 

receiver desired is prepared. The response proceeds, again, link by link. 

S E N O 

R E Q U E S T 

C L E A R 

D O W N 

DISCONNECT 
MESSAGE 

DISCONNECT 
MESSAGE 

F I G U R E 1 . 1 . 2 LINE-SWITCHED NETWORK 

There are two possible ways to set up the path. The first is the forward path 

set -up, in which the inquiry message causes the nodal processors to connect the links 
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of the path from the sender to the receiver exchange, without the knowledge of the 

receiver status. The second is the backward path set-up which is initiated by the 

response message when the receiver is available. 

In both instances, when the path is completed, a "start-to-send" message is sent 

to the sender by the sender's switching center. Release of a path is initiated by a 

"clear-down " command. During these two control signals, the path is reserved for this 

connection, and the switching processor, which is not affected by presence or absence 

of information flowing on the path, will not intervene. 

In line-switched networks, signaling messages may be exchanged between nodes 

in two ways: via a special, common signaling channel exclusively dedicated to the 

transfer of network signaling messages, or over the same channel which also conveys 

the customer message (individual or separate signaling channel system). The latter 

automatically implies the forward path set-up from the sender to the receiver. 

In principle, path establishment in a line-switched network is a s tore -and-

forward process. Customer message transfers are always preceded and ended by a 

store-and-forward signaling phase. 

1.1.2. Message-Switched Network 

In a message-switched system, messages are temporarily stored in the nodes. 

Message transfer involves three steps: from the sender to his switching center, 

between switching centers, and from the destination switching center to the receiver. 

Figure 1.1.3 shows the typical signaling procedure. Customer messages are routed to 

the destination node with the help of address information contained in a header tagged 

to the message. It is assumed that the receipt of a message is signaled by an 



acknowledgement message. Two kinds of network signaling messages can thus be 

distinguished: headers and pure signaling messages, such as acknowledgements. 

SEND 
REQUEST 

START 
TO SEND 

•ACKNOW
LEDGEMENT 

ACKNOW
LEDGEMENT 

FIGURE 1.1.3 MESSAGE-SWITCHED NETWORK 

Figure 1.1.4 shows the transfer delay of a line-switched network and a 

message-switched network. When the transmission time of customer messages over 

the path is long compared to the connect and disconnect time, line-switching is 

preferable. Line-switching has comparatively little overhead, because it does not need 

the large buffer space required for message-switching. On the other hand, when the 

size of the messages decreases, the overhead of line-switching increases, making 

message-switching preferable, since the total signaling of path connection for l ine -

switching has more overhead than a node by node, store-and-forward message 

transmission. As long as the buffer space for message-switching is not too large, 

message-switching is more cost effective. 
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-FIGURE 1.1.4 TIMING CONFIGURATION 

There is a variation of the message switching technique called packet-switching. 

Packet-switching function and control properties are the same as those of message 

switching, but there is an upper limitation on the size of packets. 

A message that is too large for a packet is broken into several packets, each 

with its own destination and sending information. The disadvantage of packet-

switching is that it involves more overhead than ordinary message-switching, instead 

of one overhead message header per a message, there are several packet header 

containing similar addressing information. The advantages of packet-switching are 

smaller buffer size requirement and more flexible flow control. ARPANET and AUTODIN 

are two of the many large resource sharing networks using packet-switching 

technique. 
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1.1.3. Integrated Switched Network 

The trends of future requirements for digital communication systems indicate an 

increasing diversity of traffic characteristics such as: 

(i). wide disparities between traffic rates, ranging from low-rate TTY terminals, 

requiring hundreds of bits/sec, to wideband video and graphics terminals, requiring 

hundreds of kilobits/sec. 

(ii). wide disparities in transaction sizes, starting with interactive messages of 

several hundreds of bits and continuing up to bulk data transfers of millions of bits. 

(iii). varying delivery times to accomodate voice and video, which requires 

continuous, near real-time response; interactive data terminals, which require response 

time in the order of seconds; and bulk data, which can be queued for hours. 

From the description of the traffic requirements, it is clear that no single 

switching technique can give satisfactory response to all requests. A line-switched 

network will have tremendous overhead, or waste, on a communication facility designed 

for interactive data requisition. A simple calculation by James Martin [Mart 72] shows 

that only 0.12 of the total communication facility is used when a teletype is connected 

to a computer through a telephone line. Telephone systems use line switching, while 

the data generated by a teletype is a sequence of bursts, which is ideal for message-

or packet- switching. On the other hand, neither message- nor packet- switching can 

handle voice communications or wideband video signals with the response time needed 

to maintain the integrity of the information. Because they posses sufficient 

redundancy, voice or video signals are not sensitive to the error rate of channels. 

Timing, however, is very critical, often in the order of tens of milliseconds of total path 

delay, and it is very difficult for a message-switched network, with its error detection 

and acknowledgement mechanisms, to meet such demands. 



In order to use communication facilities more efficiently, it is nature to suggest 

the merging of different switching techniques into one network. Recently, several 

efforts [Forg 75, Covi 75] have been made to define digital communications schemes in 

which the network capacity is shared between a line-switched and a message-switched 

system. Such schemes allow the most efficient and appropriate switching technique to 

be chosen for each service request. Almost all these schemes need more processing 

power than that provided by the conventional network switching. However, as 

processor and memory costs continue to decline faster than transmission costs, an 

integrated switch becomes feasible and cost effective. 
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1.2. SENET Configuration 

SENET (Slotted Envetope NETwork) is a proposed scheme for an integrated 

switching network. The idea is suggested by Coviello and Vena [Covi 75], and its 

implementation is discussed in [Barb 76] in more detail. SENET is a Time Division 

Multiplex (TDM) scheme in which time slices of fixed size, a frame period, are 

partitioned and allocated to the transmission of digitized voice and data packets. The 

voice component of a frame is further divided into slots allocated to ongoing line 

switching communications. Slots reserved along a path on the network establish a 

virtual line-switch path between the end subscribers. 

This scheme can handle three different types of traffic. 

Class I. Characterized by long transactions requiring continuous real time 

response (voice, video, facsimile). The transmission rate may vary from thousands of 

bit/sec (voice) to hundreds of thousands bits/sec (video). 

Class I I . Characterized by short discrete transactions requiring near real time 

response (interactive data, with data requisition being the typical example). The 

response should occur within seconds. 

Class III. Characterized by long transactions requiring neither continuous nor 

immediate response (bulk data). 

1.2.1. Frame 

The detail of a frame is shown in figure 1.2.1. Starting at the 12 o'clock 

position, a certain number of bits are reserved for CCIS (Common Channel Interswitch 

Signaling). Following this region is a Class I region containing the real time traffic. The 
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end of the Class 1 region is indicated at 5 o'clock. Class II and Class III regions 

containing the interactive and bulk traffic respectively occupy the rest of the frame. 

All the interactive data or bulk data are transmitted inside the Class II region in 

disjoint packets. (For most of the thesis, we shall make no distinctions between Class II 

and Class III traffic. Unless we explicitly indicate otherwise, we will use the term Class 

II to indicate both interactive data and bulk data transmitted by packet switching.) Real 

time traffic, on the other hand, is transmitted inside the Class I region in fixed slots, 

with one slot allocated for each logical channel currently in use. 

The scheme does not assume the existence of a master network clock. Each link 

transfers frames at a constant rate, but the links are not necessarily synchronized 

among themselves. Frame timing for each link is discussed in Chapter 4. In addition, 

the network does not require a homogeneous link of the same speed. For a given 

frame period, say 10 milliseconds, the number of bits contained in the frame depends 

on the speed of the link. Thus, for a Tl carrier, a 10-millisecond frame contains 15,440 

bits, while for slower carrier, a 10-millisecond frame is smaller. 

1.2.2. Service Requirements 

Each of the three types of traffic requires different type of service. Class I is 

either accepted or rejected, with short connection delays and without error control. It 

represents a loss system in which there is a small probability of a connection being 

refused if no logical channel can be established between subscribers. Class I traffic 

requires low delay and a constant throughput in order to maintain the intelligibility of 

the message. Class II traffic is always accepted, but it may incur a system delay with 

short cross-network delay and reasonable response time. This traffic is characterized 
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by bursts of information followed by "waiting" periods, requiring high degree of 

reliability. Class III traffic is always accepted with longer cross-network delay than the 

previous class. Class II traffic also requires a high degree of reliability. 

The real time requirements of Class I traffic dictate that it be processed in a 

special fashion by the integrated switch. Since voice or video signals carry a 

significant amount of redundancy, a moderate error rate can be tolerated in most 

applications. Elimination or reduction of the need for error control enables Class I 

traffic to be transmitted in a straightforward manner. The establishment of a logical 

path between two subscribers is reflected, on each switch along the path, by the 

updating of Class I Routing Tables internal to the integrated switches. These tables 

indicate, for each slot in the Class I region of an input frame, both the output frame 

(output channel) and the slot position reserved for the logical path. 

Entries in the Routing Table are reserved according to the connecting request in 

the line switched system. The inquiry control messages proceeds, link by link, to the 

receiver. These messages also cerry information about the data rate, slot size, and 

priority of the logical channel. The reservation of the slots along the communication 

path guarantees a fixed bandwidth for this type of traffic. The common characteristics 

of this type of traffic are : (i) long holding^ time, which is defined as the duration 

between the commands of connection and disconnection and is in the order of minutes, 

(ii) relatively less bits/frame compared to the size of one Class II packet which is 

always transmitted within one frame. Typically Class I slots require a few hundred of 

bits/frame, while Class II packets require in the order of thousand bits/frame. 

The communication facility is divided into frames, but the transmission and the 

receiving of Class II traffic are packet oriented. The control functions, error checking, 
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buffer assignment, and acknowledgement generating are independently processed for 

each packet. The processor (or processors) assigns packet buffers to each incoming 

packet and copies the packets into the buffers, after an input frame has been 

completely written in the input frame buffer. In packet switching, at least one goad 

copy of the data packet must exist in the ccmmunication system. For every correctly 

received packet, an acknowledgement is echoed back to Jhe sender, so that the copy 

of the packet still at the sender can be released. The same philosophy applies to the 

integrated switch: A buffer will be released only if the packet is sent out to the next 

node and a positive acknowledgement of the packet is echoed back. The frame buffer 

is ready to accept a new input frame after copying the data packets into buffers and 

copying the voice slots directly into the corresponding output frame. In the meantime, 

various tasks such as error checking, routing, and controlling are processed on a per 

packet basis. 
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1.3. Previous Work 

A considerable amount of research has been done during the last decade in the 

field of computer-communication networks. This research covers areas such as 

modeling, analysis, design, data evaluation, and measurement for the whole network 

and also for the communication processors. 

A separate data-communication device for computers is considered after the 

development of large multi-access systems when the data traffic became crowded. 

Initially, the access terminals were few and close and the communication costs were 

not an important factor. The system needs a multiplexer and a demultiplexer to get 

efficient data access and good response time. The behavior of a local communication 

network is discussed by Chu [Chu69, Chu72} 

The sharing on large data bases results in many terminals relatively far away 

and the communication costs gradually became dominant. There are two general 

models of a centralized computer-communication systems: the star network [Dol69] and 

the loop network [Pio72]. The data or requests to and from the terminals are no 

longer sent without any identification. The information is packed into packets or slots. 

The multi-drop line system [Cha72b] and ring switched data transmission system 

[Gra71, Hay71] are two typical examples. There is a header for each packet which 

contains sender and destination addresses and sometimes other control information. 

For the more sophisticated switching functions, semi-independent or totally 

independent front-end processors are used rather than the hard wired multiplexers. 

Chang [Cha72a] presents a typical design and evaluation of such communication 

processors. 
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In order to achieve resource sharing in a larger scope [Rob70], instead of the 

communication between computer and terminals, the need of communication between 

computers arises. The problem of packet routing arises in such communication systems 

along with other control functions and procotols. A totally independent communication 

backbone system is implemented by communication processors. The ARPANET IMP 

[Hea70] is an example of an independent switching processor. Modeling the IMP as a 

queue server is quite successful for the analysis of the whole network. Both infinite 

queueing space and finite queueing space have been analyzed [Kle74a, Kle74b, Mei71]. 

As the cost of the processing power and memory decline more rapidly than that of the 

communication facility, the integration of the voice communication system becomes 

feasible and cost effective. The ideas of such exposition are discussed by Forgie and 

Coviello [For75, Cov75]. The implementation of an integrated switch has been tried on 

a multi-processor system [CMU75, Bar76] and in an associate processing system 

[Wal74]. 

The two different natures of voice and data make the analysis of an integrated 

switch very difficult. Kummerle [Kum744] used an approximation technique to describe 

the behavior of integrated switch. Later Bhat and Fischer [Bha75, Fis75] modeled the 

system as a pre-emptive multi-channel system. The number of simultaneous equations 

to be solved in the algorithm grows in the order Of s(s+l)/2, where s is the number of 

channels. In Chapter 2, we model the system another way, and the number of 

simultaneous equations grows only in the order of s. A diffusion approximation 

technique is used in the same chapter. This technique has been used in many 

complicated queueing networks, [Fel66, Kob74a, Kob74b, Gav6S]. The power of 

diffusion approximation for the time-dependent system is especially described by 

Gaver [Gav68]. 
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The buffer behavior was discussed by Chu[Chu69, Chu72] in the early stage of 

multiplexer type communication processor systems. Later studies on packet-switching 

have dealt with the problem of packet size, buffer assignment, and the procotol of 

packet flow [Whi70, Rud72, Chu73, Clo73, Ros75]. Queueing network analyses were 

also undertaken. Gordon and Newell [Gor67] discovered the product form steady state 

distribution of a closed queueing network with exponential servers. Later Baskett et al 

[Bas75] extended this product form to more complicated networks: open , closed, or 

mixed, with different classes of customers. The service time may also have a more 

generalized distribution under some service disciplines, e.g. service time of rational 

Laplace Transform for processor sharing servers. The algorithm to calculate the 

product form solution is derived by Buzen [Buz73]. For more general service 

distribution, Chandy et al. [Cha75a, Cha75b, Her75] developed an approximation 

algorithm using Norton's theorem in electrical circuit theory. The analysis of closed, 

finite queueing networks with time lags was introduced by Posner[Pos68]. 

The problem of the network design was first studied by Kleinrock [Kle72]. The 

optimal capacity assignment problem was analytically solved for the linear link cost 

case. The criterion used was the total average waiting time. Meister et al. [Mei71] 

solved the problem with a different criterion: minimization of the total average of kth 

order of the waiting time. Using dynamic programming techniques, Frank et al. [Fra71] 

solved the discrete capacity assignment for a centralized S/F (Store and Forward) 

network. An exact, but very cumbersome, LP solution to the deterministic routing 

problem is proposed by Frank et al. [Fra72]. The same problem was solved more 

efficiently by Cantor et al. [Can72], who used decomposition techniques. The difficult 

problem of simultaneous routing and capacities assignment was approached, with 

mathematical programming techniques, by Gerla [Ger73]. 
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1.4. Synopsis of Thesis 

This thesis emphasizes the special SENET implementation of the integrated 

switch. An important characteristic of the integrated switch is that the voice holding 

time is much longer than the data packet service time. Because of this property , the 

waiting length of data packets will vary greatly under different loading of voice calls. 

This phenomenon is discussed in Chapter 2 in detail. Another important characteristics 

of the SENET implementation of integrated switch is the frame structure. Some 

influences of the frame structure on the buffer management are discussed in Chapter 

3. The skew assignments due to the SENET frame structure are studied in Chapter 4. 

Characteristics such as protocol, flow control, and dynamic routing are not discussed in 

this study. 

In Chapter 2, the buffer space, or the memory of the switching node, is assumed 

to be ve ry large or infinite. The congestion of data packets, related to the slow 

change of voice traffic, is studied. First, some of the queueing models dealing with two 

kinds of job streams are discussed and compared with the integrated switch. Then the 

integrated switch is modeled and solved as a M/M/Y queue. Some difficulties in the 

algorithm are discussed, and an approximation algorithm is suggested. The integrated 

switch can also be interpreted as sequences of time-dependent processes. The 

diffusion process is used to approximate the switch. Finally, the results of different 

algorithms are compared. 

The performance study of the switching processor, described in Chapter 2, 

suggests that the infinite memory space may not be a good assumption. In Chapter 3, 

some buffer management schemes are suggested and tested for the finite memory 
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space assumption. Three memory management schemes are discussed: division of 

memory into maximum size buffers, division of memory into different fixed size buffers, 

and dynamic allocation of memory space into buffers. Then a model of packets flowing 

in the network is studied, and the behavior of the buffers allocated to packets is 

investigated. Because of the congestion behavior of data packets, secondary storage 

is modeled into the integrated switch, and the effect of the secondary storage is 

studied in Section 3.4. In the last section of Chapter 3, a comparison of the above 

buffer managements for the integrated switch is discussed. 

Because of the frame structure of the SENET implementation of the integrated 

switch, two special network design problems arise: capacity and skew assignment. 

Neither of the problems can be solved analytically, so some mathematical programming 

techniques are discussed. The capacity assignment problem is solved by a Coordinate 

Descent algorithm and multi-dimensional Newton's method. The skew assignment 

problem is formulated as a M1LP (Mixed Integer Linear Program). Using graph theory, 

a heuristic program is developed. The heuristic program can find a local minimum but 

not a global one. The details of formulation and algorithm are discussed in Chapter 4, 

and results of each algorithm are compared. 

The interpretation of the models and results is discussed in Chapter 5. Some 

suggestions for further studies and discussion of open problems are also included in 

this chapter. 
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CHAPTER 2 Performance Analysis of an Integrated Switch Processor 

2.1. Introduction 

In this chapter, the performance of the switching processor of an integrated 

data/voice communication network will be analyzed. Voice is transmitted by a virtual 

l ine-switch mechanism, and data is transmitted by packet-switching. There are many 

difference between data traffic and voice traffic. Voice traffic does not require error 

checking, acknowledgement, and dynamic routing. However, it has very strict real-time 

requirements. For data traffic, the processing requirements are almost exactly the 

opposite. The difference emphasized here is the service time requirement. For voice, 

there is a relatively long holding time. The average holding time of a public telephone 

system, for example, is in the order of three minutes. For data packets, the service 

time depends on the service ability of the system and is, in general, in the order of 

milliseconds. Although data traffic sometimes includes bulk messages which have 

millions of bits and require minutes of service time, those message are broken into 

packets, and each packet is processed independently. Transmitting packets of a large 

message is similar to transmitting packets for many small messages. Thus, our analysis 

of a system with two kind of streams must include consideration of the service time 

requirements of each kind of stream. 

Besides having different service time requirements, voice (Class I) and data 

(Class II) traffic also have different service disciplines and different criteria for grades 

of service. (We will use Class I and Class II traffic instead of voice and data, for 

facsimile traffic has characteristics similar to voice and is treated as voice traffic.) If a 
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Class I job request arrives and cannot be serviced immediately, it is blocked and 

disappears without being serviced. For Class I jobs, the grade of service is 

determined by the blocking probability. Class II jobs can always be queued and wait 

for service if the service is not immediately available. Hence the grade of service for 

Class I I jobs is determined by the mean waiting time for jobs. 

The system becomes very complicated when the above service disciplines are 

considered. Kummerle [Kum74] was the first to give an approximation algorithm for 

estimating the average number of Class II packets in the system. Fisher and Harris 

[Fis75] did an analysis which assumed that the number of Class I jobs in the system is 

independent of each other from frame to frame. Later Bhat and Fisher [Bha75] used 

another approach which assumed that the two classes of jobs compete with each other 

for s channels. In their analysis, no channel is reserved only for Class I jobs. 

In Section 2 of this chapter, we will present several queueing models and try to 

interpret the performance of those simple models as well as their similarity to the 

integrated switch. It is our goal here to establish some intuitive understanding of the 

integrated switch performance. In Section 3, an algorithm is given to solve the 

performance model of the integrated switch. In Section 4, the computation difficulty is 

discussed, and a simple example of error analysis is given. A simple conditional mean 

approximation algorithm is also suggested in this Section. In Section 5, the diffusion 

approximation for a finite time, overloaded system is developed. In Section 6, all the 

results of different algorithms are compared. 
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2.2. Models 

Several queueing models applicable to analyzing a communication processor are 

discussed in this section. First some notation is introduced. Let: 

\ - input rate of jobs, [jobs/second] 

¿1 « service rate. is the mean service request per job. 

c * channel capacity or the service ability of the switch. 

T * average waiting time. 

p « traffic intensity - X / c j j . 

A subscript implies the class of job, e.g., X j is the input rate of Class I jobs, and 

c 2 is the channel capacity for Class II jobs. 

Kendall's notation A/B/m/n Is used for the following queueing models. For the 

first two parameters, "M" refers to the Markovian character of Poissonian arrivals and 

exponential service; "GI" refers to generalized independent interarrival time or service 

time. The third parameter, m, stands for the number of servers, and the fourth 

parameter, n, stands for the number of storage spaces in the queue. For the third and 

fourth parameters, any "XyyT* implies that the number of servers or queueing spaces 

is a random variable. For example an M/M/l/1 queue is a queue with input of Poisson 

process, service time of Exponential distribution, one server and one waiting space. 

Here the input rates of jobs for both classes are assumed to be a Poisson 

process, and the service time is exponentially distributed. 

2.2.1. Integrated Switch Model 
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DESTINATION 

FIRGÛRE 2.2.1 M/M/Y QUEUEING MODEL 

The whole service capacity of the switch is c, and each Class I job in the system 

wjll take some c v service capacity out of the switch. If there are i Class I jobs in the 

system, the capacity to service Class II job is (c- i*c v )=c 2 , where c v is the channel 

capacity needed to serve one Class I job. Let n be the maximum number of Class I 

jobs the switch will handle. Class I jobs cannot be queued, so n must be equal to or 

less than c/c y . We will call this model thé M/M/Y model for Class II jobs. Y(t) stands 

for a random process which represents the channel capacity of the system for Class II 

jobs at time t. We do not assume Y(t) is an independent sequence from frame to frame 

as was assumed by Fisher[Fis75]. Actually the auto-correlation coefficient between 

Y ( r ) and Y(t+r) is l -OO^r ) , where 0(x) is defined such that the limit of 0(x)/x remains 

bounded as x approaches zero. When XJT is small, i.e., the average number of new 

voice calls per frame is small, Y(t) and Y(t+r) are highly correlated, and the 

independence assumption will not be valid. 

This model will be solved in the next section. Following are several queueing 

models dealing with two kinds of job streams. Each of the models has been solved by 

different researchers. We will give the model and the results of each analysis. These 

models will give a broad view of performance of queueing models with two kinds of 

job streams. 
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2.2.2. Models 

(^Segregated Line-Switched System 

DESTINATION 

um- serve»-/ DESTINATION 

FIRGURE 2.2.2 SEGREGATED LINE-SWITCHED SYSTEM 

There are two separate systems. One system consists of up to n lines allocating 

via a line-switching device, the other line involves message-switching and is modeled 

as an M/M/l queue. The grade of service (GOS) for Class I jobs is the blocking 

probability of an M/M/n/n queue. 

Let Pj be the probability of i jobs in the line-switched system. A simple Markov 

chain model can be built: 

• «*l»i.pi = *i p i - l 2 2 1 

G0S<1) - probability of a blocked job 

- probability that there are n jobs in the line-switch system. 

(X/ M ) n /n! 

.4(X/,«)Vi ! 
2.2.2 

The average waiting time for Class II jobs is 
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G0S(2) « average waiting time of Class II jobs 

« l/(c 2 /i 2 -\ 2 ) 2.2.3 

The above formula holds for C 2 J J 2 > X 2 . This condition is also necessary and 

sufficient for the above system to be stable and to have a finite average waiting time. 

Compared with the integrated switch, this system has exactly the same grade of 

service for Class I jobs and a lower grade of service for Class II jobs, as will be made 

clear later. 

For all the following models, both Class I and Class II jobs may be queued for 

service, so the criterion for grade of service for both job classes is the average 

waiting time. 

(ii)Seeregated Message-Switched System 
i 

DESTINATION 

Ci 

^ DESTINATION 

FIRGURE 2.2.3 SEGREGATED MESSAGE-SWITCHED SYSTEM 

In this case, both Class I and Class II service are simple M/M/CJ queueing 

system. Therefore, T p T 2 , the average waiting time for Class I jobs and Class II jobs 

are: 
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T i : 2.2.4 

T 2 « - 2.2.5 

where X ^ C j j i j and X 2 <c 2 *i 2 . C j + c 2 » c is the total channel capacity. Define the 

average total waiting time T as: 

Xj X 2 

T = — T , + — T n 2.2.6 
X 1 X 2 

where X-Xj+Xj is the total input rate of jobs. The channel capacities c 3 and c 2 

are assigned such that T is minimal. Using Lagrangian multiplier optimization technique, 

the optimum channel capacity assignment is as follows [Ver74]: 

Ifi 2.2.7 

Cz- — \I—//X 2.2.8 

where fi , B- )/(c- XJL - % 2.2.9 

This is the so called square-root channel capacity assignment[Ver74, Kle72], and 

X MJCJ-X, X M 2 C 2 ~ * 2 

(iii)FIFO System 

2.2.10 
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DESTINATION 

FIRGURE 2.2.4 FIFO SYSTEM 

This system has only one channel with capacity c. The jobs come in and are 

serv iced according to the FIFO (First In First Out) service discipline, regardless of their 

classes. The average waiting time is calculated by the formula of the M/G/l queueing 

system [Ver74]: 

1 e2\nc + X//ic 
T * — + 

2.2.11 
JIC 2(jic-X) 

2.2.12 

where X = Xj + X 2 

« total input rate of the system, 

» the average service rate of jobs, the inverse of the mean service time. 

<r2 = [2V<>*12> +2X 2/(Xn 2
2) - <V x"l + ^ 2 / ^ 2 ) 2 3 / c 2 2- 2- 1. 3 

- the variance of the service time for the mixed stream. 

(ivìPreemotive Priority System 

DESTINATION 

FIRGURE 2.2.5 PREEMPTIVE PRIORITY SYSTEM 

The Class I jobs have preemptive priority over Class II jobs. This system is 
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analyzed and solved by Avi-Itzhak and Naor [Avi6i ] . Because of the preemptive 

property , the service of Class I jobs is independent of the existence of Class II jobs. 

So from the formula of M/M/l queue we will get: 

1 
T , = 2.2.14 

j i jC -X , 

The Class I I jobs may be interrupted between service. The average waiting time 

is as follows: 

1/M2C + Xj/riijcOijC-Xj)] 
T . 

2 1 - X I / ( M , C ) - x2/(^2c) 

(v)Non-preemptive Priority System 

2.2.15 

DESTINATION 

FIGURE 2.2.6 NON-PREEMPTIVE PRIORITY SYSTEM 

The Class I jobs have priority over Class II jobs in the waiting line. This system 

is analyzed and solved by Cobham[Cob56]: 

1 X JAM J C ) 2 • x2/(^2c)2 

T , -

*i,c, 1 - X J / ^ J C ) 

1 X , / < W l c ) 2 + X , / U , c ) 2 

*i2c {l-X 1/{,i 1c)}{l-X 1/(„ 1c)-X 2/(M2c)} 

2.2.16 

2.2.17 

2.2.3. Comparison 

The numerical results are plotted in Figures 2.2.7 and 2.2.8 There are two major 

points we would like to mention. 
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(I)The effect of long jobs. The average waiting time, T, is plotted in Figure 2.2.7, 

versus the service request of Class II jobs. The average service request of Class I 

jobs is assumed to be one unit in that figure. Class I jobs have priority over Class II 

jobs for priority systems. The average waiting time, T, increases very rapidly for the 

FIFO system and non-preemptive priority system with respect to the ratio *ii/ji2. The 

reason is that in these systems if a long Class II job is serviced, a long queue will be 

built up. There is a similar situation in the integrated switch model. If the service 

capacity for Class II jobs, c 2 *c - i c v , is less than X2//i2 and this situation lasts for a long 

period, a long queue will be built up. Thus, in the integrated switch model if \ 2 >(c -

icv)*/i2 for some i, the average waiting time will increase rapidly with respect to the 

ratio ji2/*J], even if X.j/c/ij, X2/c/i2 are kept constant. 

(II)The effect of preemptive and non-preemptive priority. Figure 2.2.7 shows 

the total waiting time of jobs versus the length of low priority job service requests. 

Figure 2.2.8 shows the total waiting time of jobs with respect to the size of high 

priority job service requests. In Figure 2.2.8 the average service request of Class II 

jobs is assumed to be one unit, while the Class I jobs still have the priority. The 

figure shows that when the longer jobs have priority, there is little difference 

between non-preemptive priority and preemptive priority. The interrupted jobs are 

the smaller ones, which have little influence on the system behavior. The integrated 

switch model implies the preemptive priority of Class I jobs over Class II jobs. This is 

not true for the real SENET implementation which uses the non-preemptive priority 

scheme. However, the service requests of Class I jobs are several orders of 

magnitude higher than those of Class II jobs in the SENET implementation. From Figure 

2.2.8, it is clear that we will expect little difference in performance between the real 
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SENET switch and its model. Of course in the integrated switch model, the Class I jobs 

will not be queued, and they will not block all of the channel capacity c. However, 

when the integrated switch is in overloaded state i, where the service capacity for 

Class I I , ( c - i c v ) , is less than the Class II job input rate, X 2 , a temporary queue with 

input rate less than its service rate will last a long period. This is the reason for the 

long queue in Figures 2.2.7 and 2.2.8 and will be the reason for the long queue of the 

integrated switch. 
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FIGURE 2.2.8 WAITING TIME WHEN LONG JOB HAS PRIORITY 
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2.3. Integrated Switch Model • 

In this section, an algorithm is suggested to solve the integrated switch model. 

By the memoryless property of the Poisson input processes and the independent 

exponentially distributed service requests, the model can be described as a Markov 

chain with state (i,j), where i is the number of Class I jobs and j is the number of Class 

I I jobs in the system. The transition rate of the probability flowing out of the state 

(i,j) is [X| j +X2+dj|i2] and the transition rate of the probabilities flowing into the 

state (i,j) are X j p ( i+Dj i j , X 2 , dj*i2 from states ( i - l , j ) , ( i+ l j ) , ( i j - l ) , (i,j+D, respectively, 

for 0<i<n and j>0. Where dj «c - i*c v is the channel capacity for Class II jobs when 

there are i Class I jobs in the switch. The non-boundary probability transition flow 

diagram is as follows: 

FIGURE 2.3.1 TRANSITION FLOW DIAGRAM 

In the steady state, the probability transition rate flowing out of a state should 

be equal to the probability transition rate flowing into the state. The steady state 

distribution, P y , will satisfy the following balance equations: 
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Œ X l P i- l , j + (' + 1 > " l P i + l,j +
 X 2 P i , j - l + di"2 Pi,j+l 

for 0<i<n, j>0. 

For boundary states, some of the terms of equation (2.3.1) will vanish. 

Ol + ifi! + M p i , j •- x i p i - l , j + ( I+DHiPj+i j + d i " 2 P i , j + l 

for 0<i<n, and j=0. 

[X. + \ 2 + d j M 2 ] P i ( j - («+D*iiP i + i , j + * 2
p i , j - i + d i^2 P i , j+ l 

for ¡-=0, j>0. 

['Ml + X
2

 + di" 23 P i , j - X l P i - l , j + X 2 P i , j - l + W i j + l 

for i«=n and j>0. 

[X, + X 2 ] P,j - < i+l ) j i .Pj + l f j + d ^ 2 P g + 1 

for ¡ «0 and j=0. 

[ i , i , + X 2 ] P y - X , P j _ y + D ^ 2 P | f j + 1 

for i « n and j «0 . 

2.3.1. Class I Jobs 

Summing over equations (2.3.1) and (2.3.2) yields 

[Xj • I M L + X 2 • DJ|i 2] Pj » X j P j . ! + ( I * L ) M P I + i + X 2 P i + d i ^ 2 P i 

or 

[X, + In,] P, - X j P j . ! + ( l + l ) u , P | + 1 

0 0 

where P: - 2^ P: 
1 j=0 !»J 

M P O - " I P I 

and 

" " I P
N - X I P

N - L I = N 

Substituting the above boundary conditions into equation (2.3.7) yields 

FOR 0<I<N 

i-0 
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\,Pj - ( i+Dn.Pj+l forO<i<n 2.3.8 
n 

Together with the condition that Pj's are probability functions, i.e., ^ 0
p \ " l > p i 

can be solved as: 

• P, - P 0 • M 1-/<H 

and 

Gjt the grade of service for Class I, will be: 

Gj = blocking probability for Class I jobs. 

- a new Class I job comes in and finds the system at states (n,j). 

« probability that system has n Class I jobs. 

Pn 

« X^/Cnfo,") / [ . § 0 Xj/Cj ! 2.3.9 

This equation is known as Erlang B loss formula [Sys60]. The grade of service 

for Class I jobs is the same as the grade of service for an M/M/n/n queueing system 

for line-switching. The Class I jobs have inherent preemptive priority over Class I I 

jobs, so the system state of the integrated switch for Class I jobs is the same as in a 

system without any Class II jobs. Figures 2.3.2 and 2.3.3 show the numerical behavior 

of equation (2.3.9). The channel utilization factor u is defined as 

u » E i p ; 2.3.10 
i=0 n «. 

2.3.2. Class I I Jobs 

For Class II jobs, the variation of the queue length is much more complicated. 

Define: 
oo oo 

ns<z> - E zJPj j / C Pj : 2.3.11 
i j=0 ' » j^O ' » 

* generating function of Prob[ Number of Class II jobs | i Class I jobs] 

3* 





1.0 I I I I I 1 I I — 1 

36 



» conditional generating function for Class II jobs with i Class I jobs. 

Multiplying equation (2.3.1) by and summing over all j , we have: 

[\ x + ijij + \ 2 + dj,i2] n\(z) • Pj 

=>v- 1TT|_1Cz>F*i_1 -̂ <ï̂ -l >/ 1̂rr§ 1̂<^>F>ĵ 1 ^X2zrtj<z>f^i-*-cJ|Ai2/z- r r i < z > R ï — 1 ""̂ "̂ î̂ o 

Substituting equation (2.3.8) into the above equation yields : 

[ X 1 + i | i 1 + X 2 ( l - z ) 4 d j f i 2 ( l - l / z ) ] n j ( z ) - i ^ in j .^z ) - Xjitj+ite) 

« d i M 2 ( l - I ) P i > 0 / P ( . 2.3.12 

for 0<i<n. 

Similar methods yield: 

[ X ^ X ^ l - z h d ^ d - l / z ^ z ) - X j i t i^ fe) » d i M 2 ( l ~ ) P i , o / P r 2 ' 3 ' 1 3 

for i «0 , 

[ i M ^ X j d - z H d j M ^ l - l / z ^ ^ z ) - •n 1n i . 1(z> - d ,| i 2 ( l~)R i | 0 /Pi 2.3.14 

for i « n . 

To simplify the equations, define 

U j ( z ) * coefficient of itj(z) of equation (2.3.12) 

- Xj + I'Mi • X 2
( 1 " z ) + d i l a 2 < 1 "J ) 0 s i < n 2.3.15 

and 

u n ( z ) - nil] + X 2 ( l - z ) + d n | i 2 ( l~ ) 

Similarly 

bj « coefficient of the right hand side of equation (2.3.12) 

» di«2 p i , o 7 P i 2 - 3 ' 1 6 

Equation (2.3.13) and (2.3.14) can be rewritten in the matrix form as: 

A(z) n(z) « b 2.3.17 

where n(z) and b are column vectors with ith element TTJ(Z) and bj, respectively. 

n ( z ) - [ n 0 ( z ) n j (z ) T t n ( z ) ] T 
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b = [ b 0 b , b n ] T 

of dimension (n+1), where T stands for the transpose of a vector. 

A(z) is a square matrix as follows: 

A(z) 

u 0(z) -X, 

-^1 u,(z) -Xj O 
-j ;i j u t(z) -Xj 

- n j i i u n ( z ) 

We will solve the njfe), or Prob[ j | i], from equation (2.3.17). First b is solved 

from the following two properties of rij(z): 

(i) n j ( l ) - 1, for all i, because n-.(z) is a generating function of a probability 

distribution. From equation (2.3.11) 
o o 

(ii> n;(z) are finite in the region 0<z<l for all i. 

o o o o 

j - 0 

= 1 for 0 < z < l 

f(z) 
This implies that if ITJ(Z) can be expressed as n j ( z ) - j ^ y , then for all Z j such 

that Z j in (0,1) and g ( z j ) « 0 f ( z j )=0 . 

From the two conditions above, b can be determined. The algorithm is given 

below. First define a matrix R ( z ) with (i,j) element r j j ( z ) such that: 
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r , j ( 2 ) - ( - l ) i + i . a * ( z ) . 

where a*.(z) is the cofactor of ajj(z), the (j,i)th element of matrix A(z). 

By the theory of matrices [Wyl60], 

jS, HjW • -Jkfe> - jS, ( - D i + j a ; ( Z ) a j k ( Z ) 

is the determinant of A(z) with ith column substituted by the kth column. If i^k, then 

this determinant has two identical columns, i and k, and the value of the determinant is 

zero . If i -k, the value is the determinant of matrix A(z). We have: 
n 

/5) r ,

' i
( z >

'
 a

i
k < z ) *

 5 } k , A ( z ) l f o r a

"
i , K 2 , 3 , 1 8 

Following a similar argument, it can be proven that: 
n 

j?o
 a

' i
( z )

'
 r

i
k ( z ) "*

i K | A ( z ) l f o r a

"
i , K 2 , 3 , 1 9 

where 5^ is the Kronecker delta, such that 

0 № 

1 i»k 

Hence 

A~Ut) «
 R ( z ) 

A ( z ) \m\ 

where |A(z)| is the determinant of matrix A(z). So equation (2.3.17) becomes 

In other words, n(z), expressed in another form, is of a generating function. 

A l l zeros of the denominator in the region (0,1) must also be zeros of the numerator. 

Theorem U |A(z)|=determinant of A(z) has exactly n different single roots in (0,1), and 

z « l is also a root. 

This theorem can be proven by using methods similar to those of [Mil68]. The 

basic argument follows: |A(1)|=0 is trivial, for the row summation of A is zero. 
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Define gj(z) as the principal minor of order i of A(z). Then |A(z)| is equal to g n ( z ) , 

a polynomial of degree (2n+2). 

I u 0 (z ) -X , 0 0 0 0 | 
| - j i r U j ( z ) - \ x 0 0 0 | 

g j ( z ) - I 0 0 | 
1 0 0 . . . . Uj . j (z) -X j | 0 : • 

0 0 o • • • "'Mi u i < 2 ) 

for i>l . 2.3.21 
Clearly, 

g f (z) - u i ( z ) g i - 1 ( z ) - i X . ^ g ^ z ) 

with g 0 ( z )=u 0 ( z ) , and g . j t e M . 

By UJ(0H-OD , Uj(oo)-+-oo, and U j f D - X j + i ^ O . It is easy to see that the signs of 

gj(0) and gi(oo) are ( - l ) i + l , and gj(l}>0 for all i<n. 

From the above property, it is clear that there is one real root z / 0 * of g 0 ( z ) in 

(0,1), and one root in (l,oo), because g0(0)<0, g0(oo)<0, and g 0 ( l )>0. Substituting 

z / 0 * into equation (2.3.21) yields 

g ^ z ^ J - U j t z ^ ^ z ^ - X ^ , 

* - X . j i j O 

and 

g , ( 0 ) < 0 , g j ( l ) > 0 . 

So there is one real root of gj(z) in each of the regions (0tz^°h and ( z ^ l ) , 

and there are two roots in the region (l,cx>). By the same technique, counting 

the number of sign changes in the sequence g|(z), one can determine the number 

of zeros of gj(z) in (0,1). If z ^ ' ) is the jth root of gj(z), then the consecutive 

g j + l ( Z j ^ ) will have different signs. Thus zfl+l\ roots of gj+i(z), will be in 

( Z j . j ^ ^ z ^ ) interval for j=0,l,..,i. The proof can be continued by the above 

interval partition procedure iteratively from i=l to n. The number of roots of 



gj(z) in (0,1) will be equal to (i+1) for ail i<n. When i«n, one is also a root, the 

interval ( z n „ j ^ n ^ , l ) does not have a root, and the total number of roots for |A(z)| 

in (0,1) is n. The same procedure is also carried out numerically to find all the 

roots. # 

T h e o r e m 2: R(Zj) h a s r a n k o n e f o r a l l Zj o f a r o o t |A(z)| i n (0,1]. 

Suppose that rj is t h e j t h row of matrix R(z) and that a k is the kth column of 

A(z). Then from equations (2.3.18) and (2.3.19), 

F . . i k 8 - K |A(z)| for all i,k. 2.3.22 

Now for 0<z<l and |A(z)|«0, we will have 

F j • a k - 0 for all i,k. 2.3.23 

|A(z)| only has a single root in (0,1), because there are n independent a k out of 

(n+1) column of A(z). For any row vector x of dimension (n+1), if there exist n 

independent row vector a k such that x -a k *0, then x has only one degree of 

freedom. For any y such that y*a k »0 for l<k<n, it is implied that y ^ x , for a 

scalar ou This is equivalent to saying that in a space of dimension (n+1) with n 

independent linear constraints, the solution will always be on a straight line, i.e., 

y=o/x. n 

Because R(z) has a rank equal one for all 0<Zj<l and |A(Zj)f«0, any row of R(z) 

can be chosen as r(Zj) and satisfies the following equations: 

r(Zj) • b - 0 for 0<Zj<1, i -1 ,2 , . . . n 2.3.24 

and 

r ( l ) . b « - i | A ( z ) | 2 s l 2.3.25 

Now that we have (n+1) unknown and (n+1) independent equations, bj can be 

solved. 
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The element of r ( Z J ) is the determinant of an n dimension submatrix of A(ZJ). 

Since R(zj) has rank of one, any row of R(z) can be used. If the zeroth row is chosen, 

the result is: 

I u j + l ( z ) - X t 0 0 

| -0+2)^ u i + 2 { z ) -\{ 0 
r j W - X j i - I • • ' ' ' " • • • 0 

J | 0 0 • • • u n - 1 ( z ) - \ x 

| 0 0 • • • -n*#i, u n ( z ) 

Basically all rj(z) follow the three term iteration: 

u : + 1 ( z ) 0+2)11! 
r j (z) = - L — r j + 1 ( z ) - — r j + 2 ( z ) 2.3.26 

Because there is one degree of freedom for all z^O, we can set any rj(z)—1 and 

calculate the rest of rj(z). 

R ( l ) has a very special property: Not only is every row linearly dependent on 

each other, but every row is exactly the same. Thus for any row, the jth element of 

the row vector is as follows: 

r j d ) « <n! P l
n ) • X f J / ( j ! 2.3.27 

because U j d ^ X j + j j i j , and the summation of all row, except one, is zero. 

In order to calculate equation (2.3.25), we must first calculate ^|A(z )| . The 

derivative of a determinant is the summation of determinants, each with a derivative on 

one row of the original matrix. So 

^|A(z )| ~ . £ | A j V z ) | 2.3.28 

where Aj'(z) has elements that are the same as those of A(z), except for the ith row, 

which is the derivative of the ith row of A(z). 
By a straightforward manipulation, it can be proved that: 

|Aj'(z)| 2 = 1 » (n! ,i,n) • X/ / ( i ! ,0 • U j ' d ) 2.3.29 

where UJ (z ) is the derivative of UJ(z) with respect to z. 
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H N 

^ | A ( z ) | 2 3 B l - . E ( n ! * I ! N ) • X / / ( i ! M I 1 ) • < - X 2 + d i M 2 ) 2 . 3 . 3 0 

S u b s t i t u t i n g t h e r j d ) i n t o t h e a b o v e e q u a t i o n , w e h a v e : n n 

2 . 3 . 3 1 

r * j ( l ) i s p r o p o r t i o n a l t o P j , t h e p r o b a b i l i t y o f t h e s y s t e m h a v i n g j C l a s s I j o b s . 

L e t r j ( 1 > b e n o r m a l i z e d a n d b e e q u a l t o P j . T h e r e i s a p h y s i c a l i n t e r p r e t a t i o n o f t h e 

a b o v e e q u a t i o n . b j / ( d j / I 2 ) « P j o / ^ j ' ^ o l j ' s p r o b a b i l i t y t h a t n o C l a s s I I j o b i s i n t h e 

s w i t c h w h e n t h e r e a r e j C l a s s I j o b s i n t h e s y s t e m . T h e l e f t h a n d s i d e o f t h e e q u a t i o n , 

w h i c h i s t h e s u m m a t i o n o f t h e p r o b a b i l i t y t h a t t h e c h a n n e l h a s n o C l a s s I I j o b s 

m u l t i p l i e d b y t h e s e r v i c e a b i l i t y a v a i l a b l e , i s e q u a l t o t h e w h o l e w a s t e d c h a n n e l 

c a p a c i t y . T h e s e c o n d t e r m o f t h e r i g h t - h a n d s i d e o f e q u a t i o n ( 2 . 3 . 3 1 ) i s t h e t o t a l 

s e r v i c e a b i l i t y f o r C l a s s I I j o b s . T h u s t h e r i g h t h a n d s i d e , w h i c h i s t h e s e r v i c e a b i l i l t y 

a v a i l a b l e m i n u s t h e s e r v i c e r e q u e s t s , i s a l s o t h e t o t a l w a s t e d c h a n n e l c a p a c i t y . 

B y t h e n h o m o g e n e o u s e q u a t i o n s o f ( 2 . 3 . 2 4 ) a n d t h e a b o v e n o n - h o m o g e n e o u s 

e q u a t i o n ( 2 . 3 . 3 1 ) , b j c a n b e s o l v e d u n i q u e l y . A l l o t h e r s y s t e m p a r a m e t e r s c a n b e 

d e r i v e d f r o m b j . W e n e x t g i v e a n e x a m p l e o f h o w t o c a l c u l a t e i i j ( l ) , t h e a v e r a g e 

q u e u e l e n g t h w h e n t h e r e a r e i C l a s s I j o b s i n t h e s w i t c h . 

I f w e d i f f e r e n t i a t e e q u a t i o n ( 2 . 3 . 1 7 ) , A ( z ) n ( z M l ~ ) b , w i t h r e s p e c t t o z , w e g e t : 

A * ( z ) n ( z ) + A ( z ) n ' ( z ) - b / z 2 2 . 3 . 3 2 

or 

A ( l ) n ' d ) - b - A d ) - 1 

w h e r e 1 i s a v e c t o r w i t h a l l t h e e l e m e n t s c o n t a i n i n g o n e . T h e i t h r o w o f t h e v e c t o r 

e q u a t i o n i s : 

X ^ J i j ' d ) - n i + 1 d ) ] + I M I T N / d ) - n h l ' ( l ) ] = b j + X 2 - d j f i 2 2 . 3 . 3 3 

f o r 0 < i < n . 

* l [ n 0 d ) - n{ ( 1 ) ] = b 0 + X 2 - d 0 / I 2 
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and 

HMi[n n (1) - n n - 1 (1)] - b n +\ 2 - d n j i 2 

With bj's known, there are (n+1) variables, n ( l ) , but the (n+1) equations above 

are not linearly independent, for the determinant |A(1)| is zero. An extra equation is 

needed to solve the n ( l ) . Multiplying both side of equation (2.3.32) by A~*(z), » 

w e get 

n ' ( z ) - r ^ y | [ b / z 2 - A ' ( z ) n ( z ) ] 2.3.34 

If we let z approach 1 and use the L'Hospital's Rule to calculate the resulting 

limit, we get: 

n ' ( l ) - {R'(z)[b/z 2 - A(z)n(z) ] 

+ R(z)[ -2b/z 3 - A"(z)n<z) - AW<z)]} / [^|A(z)|] z = 1 

- { R U ) [ b - A'(l)n<l)] + R(l ) [ -2b - A"(l)n(l) - A'( l )n'( l )3}/ai 2.3.35 

d n 

where a , - gj|A<2)|2-1 - r j ( l ) ( - \ 2 +dj f . 2 ) , 

A ( l ) and A (1) are diagonal matrices with elements ( -X 2 +djj i 2 ) and ( -2dj j j 2 ) , 

respectively. Because all rows of R(l ) are the same, n j ( l ) can be written in the 

following form: 

V n M ^ o R j / u t f b j - x ^ d j ^ ] 

+ : § 0 r j ( l ) [ -2bj - 2dj , i 2 - ( - X 2 + djuatoj'd)]} / a, 2.3.36 

Because only one equation is needed from the above to solve n ( l ) , let i equal 

zero. Then: 
n 

E v .n/dVI/a, 2 - 3 - 3 7 

where 

n 0"(l> = * 0 + [ a 2 - j C Q ^ " ( D l / a , 

4>o - j5) R o j ( 1 ) t b j + x 2 " à ^ I a i 

Yj - r j ( l ) [ - \ 2 + dfZ] = n! M j
n • \ik-\2 * dju2> / (j ! n,') 
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If I I 

•i - ]S> Ti " j ? o r i ( 1 ) t " X 2 + d J " 2 3 

" " ! " l " ]5) X»j * ("*2 + di"2> / ( i !  

a 2 " j ? 0 ' ' j ( l ) [ - 2 b j + 2d jM 2] 

where R Q j (1) of equation (2.3.36) is given by the derivative of equation (2.3.26). 

R 0 n ( z ) = X j n implies R 0 ( n ' ( l ) = 0. 

R o,n- i< z > - x i n _ 1 un< z> i m P , i e s Ro,n-i'<1> " x i n _ 1 u n ' ( 1 ) 

and by equation (2.3.26): 

Uj+1(z> (j+2)jij 
r j (z) = — _ r j + 1 ( z ) - — r j + 2 ( z ) 

1 M 

u ^ i (z) u ; j . i ( z ) (i+2)m 
R 0 J (z) - R 0 j + 1 ( 2 ) - _ _ R o j + 1 ' ( z ) . _ _ 1 _ R 0 J + 2 ( Z ) 

and 

-X0+d,no (i+2)jii 

% "> - - V 1 ^ r J * i ( 1 ) - ~ 4 — ~ R o , j + i ' ( 1 ) - r - 1 - ri+2(1> 2 ' 3 ' 3 8 

1 1 1 

With equations (2.3.36) and (2.3.37), R jU ) can be solved by the (n+1) linearly 

independent simultaneous equations. Numerical results are shown in the Tables 2.1, 

2.2 and 2.3 and are plotted as curves of exact solution in Figures 2.6.1, 2.6.2, and 2.6.3 

of Section 2.6. r t j ( l ) increases rapidly with respect to i, the number of Class I jobs in 

the switch. n j ( l ) is also a function of /i2/jij, the ratio of Class I service requests to 

that of Class II jobs, n-.( l) increases very rapidly with respect to n2l**v e v e n 

fixed traffic intensity of Class I jobs and Class II jobs, i.e., Xj/jj. and X2//i2 remain 

unchanged. The difficulty in calculating numeric results from the above algorithm will 

be discussed in Section 2.4, and the numerical results will be discussed in Section 2.6. 
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2.3.3. Multi -Server Model 

If the number of servers is more than one, and a job can only be serviced by at 

most one server simultaneously, then some modifications have to be made for the 

above algorithm. Let us use the following notation: 

• p » number of servers in the switch. 

c D « channel capacity, or service ability of each server, 

then c « p * C p . 

dj(j) - channel capacity for Class II jobs when the system is in state (i,j) 

- min{(c- ic v ) , j c p } 

For all j > ( c - i c v ) / c p , dj(j) equals <c-ic v), the channel capacity left for Class I I 

jobs when the system has i Class I jobs. By a straightforward manipulation, an 

expression similar to equation (2.3.17) can be written: 
A(z)n(z) = ( l - | )b<z ) ' 2.3.39 

Instead of being constant, b(z) is now a function of z with jth element bj(z): 

2.3.40 

where / S = C p / c v , and 

b(z) « [b 0<z) b.<z) b2<z) b n ( z ) ] T 

Following exactly the same procedure, we derive n homogeneous equations 

similar to equations (2.3.24). 

r(zj) • b ( Z j ) =* 0 for 0<Zj<1, i=l,2,3,. . . ,n. 

for all roots Z j of |A(z)| in the range (0,1), and one non-homogeneous equation similar 

to equation (2.3.25): 

r ( l > - b ( l ) » ^ | A ( z ) | Z s s l 

All of Pjj, such that 0<j<(c-ic v)/c p , are unknown variables in b(z), and the 
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number of variables exceeds the number of equations. Now some of the equations of 

(2.3.1) which are not used in finding equation (2.3.39) can be used as supplementary 

equations. These equations are: 

[X , + i„, + X 2 ] P j > 0 - XjPj .^o • <i+l>ji,Pj+1,o + d,p2PM 2.3.41 

for all (c-icv)/cp>l. And 

[X , + + X 2 + diM2]P|j 

- *lPi-i,j + <i+l>"lPi+i,j + X2Pi,H + djM2Pi,j+1 2.3.42 

for all 1 < j+1 < (c- ic v )/Cp. 

For each Pjj, j>0, in b(z), there will be a corresponding equation in either of 

equation (2.3.41) or equation (2.3.42), so the total number of equations will always 

equal the number of unknowns. For a special case, c v«*c p , the problem is the same as 

[Bha75], and the number of simultaneous equations becomes p(p+l)/2. All Pjj, with 

0 < j < (c - ic y )/Cp, can then be solved by these equations. With all P j j , 0<j<(c - ic v )/c p , 

b(z ) can be calculated from equation (2.3.40). Following the procedure of the u n i -

server example of the last section, all system parameters can then be derived. 

Next comes the example to solve nj (1) for the general multi-server case. 

The corresponding equation (2.3.32) becomes: 

A'(z)n<z) + A(z)n'(z) = b(z)/z 2 + <l~)b'<z> 2.3.43 

or 

AUJnCn-Mn-AUH 

These are the same n equations (2.3.33) as those for the uni-server case. The 

extra non-homogeneous equation is derived in a manner similar to that of the un i -

server case. 

n'(z) * | ^ [ b < z ) / z 2 + U - ^ M z ) - A*(z)n<z)] 2.3.44 

Let z approach to one and use the L'Hospital's Rule to calculate the limit. 
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n'(l)-l/[g z-|A(z)| z. 1>{R'(z)[b(z)/2 2+(l-jb'(z)-A'(z)n(z)3 

+R(z> [ -2b(z )/z 3 +2b , ( z )/z 2 -A" (z )n(z ) -A , ( z )n ' {z ) ] } z „ 1 2,3.45 

Choose the first row, i=0, as the extra equation needed to solve n ( l ) of 

equation (2.3.43). The same form of equation (2.3.37) is derived: 

with minor modification of a 2 , where £ 0 , y. and a! have the same definition. 

a 2 - r j ( l ) [ - 2 b j ( l ) + 2bj (1) + 2djM23 

2.3.46 

with 
*o " j5) Roj'<l>Ebj(l) + X 2 - d j#i2] / a 4 

y\ -• r j ( D [ - X 2 + dj , i 2 ] - n! p , n • <-X2 + d j M 2 ) / (j ! *, ' ) 

a i = j?o Y i " j5> r i ( 1 > [ A 2 + di" 2 ] 

= n! j E . X , i • <-X2 • d j M 2 ) / (j ! M l i ) 

R 0 j (1) are exactly the same as the uni-server case. 

With equations (2.3.45) and (2.3.46), n\\l) can be solved by the (n+1) simultaneous 

equations. Numerical results are shown in Table 2.1 and plotted in Figure 2.6.1 of 

Section 2.6. In both the uni-server and the multi-server systems, we can see little 

little variation in r i j U ) in over loaded states. This is a similar situation with that of 

average queue length of an M/M/p queue and of an M/M/l queue with the same traffic 

intensity varies much less in heavy traffic than in the light traffic. 

The conditional average queue length, Ttjd), increases rapidly with respect to i 

for both uni-server and multi-server. The rate of increase depends on the ratio of job 

requests, n2/**v F o r ,ar&e /̂mji nj (1) in overloaded states may be several orders of 
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magnitude higher than r t j ( l ) in underloaded states. Although the probability that the 

system will be in the overloaded states is small, the long queue length built up in these 

states contributes much to the total average waiting length. The long queue length in 

overloaded states atso causes many other problems, such as the problem of buffer 

space for Class II jobs, flow control problems, and congestion problems. 

In underloaded states differences between multi-server and uni-server will not 

affect the overall performance of the integrated switch as much as they will in 

overloaded states. For the above arguments, a multi-server integrated switch has 

approximately the same performance as a uni-server switch with the same total 

service ability. 
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2.4. Error Analysis and Conditional Mean Approximation 

As it is mentioned in Section 2.1 ( X p /ij) and (X 2 , /i2) differ from each other by 

several orders, of magnitude. To deal with numbers which are combinations of ve ry 

large numbers and very small numbers, a relatively long computer word size should be 

used to retain the information. For example, if a«100, and b*0.01, then a+b=»100.01 

needs five digits of precision, and (a+b) 2 -a 2 -2*ab = 10002.0001-10000-2 « 0.0001 

needs as many as nine digits of precision to get the right result. A much greater need 

for precision arises in the algorithm of Section 2.3, in which there is high order 

multiplication of the form (a+b). Thus in solving the integrated switch model, the 

rounding error does restrict the maximum dimension which can be solved by a specific 

computer word size. 

2.4.1. Error Analysis 

Let us first review the whole algorithm. There are four steps: Find the roots of 

|A(z)|; calculate rj(Zj) which is the cofactor of a^0<Zj); invert the matrix R(Zj) to solve b,-; 

finally, calculate the required parameters from bj s. The first step is basically 

calculating the determinant of a band matrix, or calculating a three-term recurrence 

formula. Define Aj the ith principle minor of matrix A, that is: 

I a n a 1 2 0 • • - 0 | 
| a 2 1 a 2 2 a 2 3 • • • 0 | 

Aj - | 0 a 3 2 a 3 3 • • • a ; _ u | 
| 0 0 • • • a H _ , a n | 

or 

A, - a n A M - a H _ , • aj_,j A j_ 2 

where A j - a H , and A 0 - 1. 

i>2 2.4.1 
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In general the three-term recurrence formula is not numerically stable. The 

above equation can be simplified to equation (2.3.26) as follows: 

u:(z) (j+l)Ml 
r ( 2 ) » _ J _ r ( 2 ) . r ( 2 ) 2.3.26 

where Uj(z) - X1 + + X2(l-z) + (c-j*c v)ji2(l-l/z). 

To study the numerical stability of the above equation, let us suppose that there 

is a rounding error , dr j , of rj(z), then the rounding error of r j . j will be 

d r j - l * [ u j < z ) A i l ' drj + tuj'(z)/\j] • r j ( z ) dz 2.4.2 

In general, Uj(z) and Uj (z) will not be zero for zj a root of |A(z)|*0, and the 

er ror of drj , dzj will be exaggerated by factors UJ(ZJ)/XJ and Uj (Zj), respectively. For 

a problem with X 2 /\ j »10^ , for each recurrence, the rounding error will increase by 

the same order, or 10 bits of precision will be lost. A PDP-10 double precision word 

has 72 bits, and it can only solve a problem in the order of X2/X.=10^ and n*7. 

The above is a very rough error analysis. Consider the example: 

Let Xj - 1, ,ij - 1, c - 1.2, c v - 1, X2 » 5000, M 2 - 10000. 

Then 

u 0 ( z ) - X} + X2(l-z) + c , i 2 ( l - l/z) - -5000z • 17001 - 12000/z, 

u,(z) « »x + X2(l-z) + <C-C V ) J I 2 (1 -1/Z ) - -5000z + 7001 -2000/z. 

|A(z)| - u 0 (z ) • U j ( z ) - \xnx 

- 10 7 *[2.5z 2 - 12.001z + 18.9024 - 11.8014/z.+ 2.4/z 2] 

» 1 0 7 * U - l / z ) [2.5z 2 - 9.501z + 9.4014 - 2.4/z] 

It is easy to see that only one root, zv of |A(z)| is in (0,1). The corresponding 

equation is as follow: 

ul(zl>b0 + Xl bl " 0 

with z « l 
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U t U f r o . X j b . - n ^ 1 ^ - 4 0 0 0 

This implies 

b 0 - 4000 / [ l - u , ( z , ) ] and b, = -b 0u,<Zj) 

Now we have: 

T o " M i [ " X 2 + c , i 2 ] = 7000 

Y l - - \ 2 + < c - c v ) > i 2 - -3000 

aj - 7 0 + 7 l - 4 0 0 0 

a 2 - [ - 2 b 0 + 2cn2 ~ 2bj + 2 (C-C V )<J 2 ] = 2*104 

R 0 i ' ( l> - 0, and R 0 0 ' ( l ) = U j U ) = -3000. 

* 0 - -3000[b 0 + \ 2 - c , i 2 ] /a , = l | [ b 0 - 7000] 

The two equation of n 0 ( l ) and n , (1) are 

• ito 'U) - n /U) - b 0 - 7000 

l l n 0 ' ( l ) - 3n,'(1) - 20 - 3 [ b 0 - 7000] 

They can be solved as: 

n 0 ' ( l ) - 2 . 5 - | ( b 0 - 7000) 

it , '<l) - 2.5 - j(b0 - 7000) 2.4.4 

With the above formula, n 0 ( l ) and nl (1) are solved without any rounding error . 
» 

If there is a rounding error of z , , then the rounding error of n 0 ( l ) will be: 

d n 0 ' ( l ) = - | d b 0 

- - 3 0 0 0 . / [ l - u j ( z , ) ] 2 • duj(z j ) 

- -3000 / [ l - u , ( z , ) ] 2 • Ut'(zi) dz , 

2.4.3 

-3000*7506.45 d z , 

where z ,=0.399866733, u , (z , )= -6*10- 5 and u,'(z,)=7506.45 

~ 2.25*106 dz , 2 A 5 
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A rounding error of dzj is exaggerated by a factor of 2 million, i.e., 20 bits of 

precision are lost to n 0 ( l ) . 

The above example also shows that the numerical instability comes from the 

problem rather than the algorithm. Whatever the algorithm is, the final representative 

must be the same as equation (2.4.5). Hence, we should use as many bits of precision 

as are available to calculate the algorithm. Because of the difficulty of calculating the 

exact solution, a simple conditional mean approximation is suggested in Section 2.4.2, 

and a more complex diffusion approximation is derived in Section 2.5. The 

approximation will have less precision, but it can be useful when the calculation of the 

exact solution is not feasible. 

2.4.2. Conditional Mean Approximation 

Here we give a simple approximation algorithm for a uni-server integrated 

switch, rtj(z) is defined as equation (2.3.11), the generating function of the number of 

Class I I jobs in the switch, given that there are i Class I jobs in the switch. Jij(l), 

which is. the average number of Class II jobs in the switch, given that there are i Class 

I jobs in the switch, is called the conditional mean. In the following approximation, only 

the parameters H j d ) are estimated. Let us state the basic system equation (2.3.12) as 

follows: 

[X j+ i l i j+Xgd-zhdj f igd- l/zJ ln j tz ) - i j j j n ^ t e ) - X , n i + 1 ( z ) 

- d ^ 2 ( l - I ) P i f 0 / P r 2.3.12 

Differentiating the above equation with respect to z and letting z equal 1, we 

will get 

( - X 2
+ d M 4 2 ) n i { 1 ) + < x i + i M i ) n j d H u j i t j . ! d ) - X i n i + 1

. ( l ) » d j p 2 P j > 0 / P j 2.4.6 
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TTj ( l ) equals 1, because ITJ(Z) is a generating function of a distribution. The 

above equation can be simplified as: 

. - (X j+ i f i l to j , ( l )+ i* i in j . 1
, ( l )+X 1 n j + , ' (D—VdjUgd -P j^/P j ) 2.4.7 

» 

In Section 2.3, we tried to solve P^Q/PJ and n j ( l ) . However, in this 

approximation we only estimate the relationship between them. In an ordinary M/M/l 

queue, the average queue length w = p / ( l - p ) « ( l - P 0 ) / P 0 , or in another form 
P 0 = l / ( l+w) 2.4.8 

Assuming that this relation is a good approximation for the integrated switch, or 

we will get the following equation: 

- ( X , +w, )nj'(1 )+i/i i nj_ j'(1 )+X, n, +,'{1 )=-\ 2 +dj, i 2 [ 1 -1 /{1 +n j'( 1))] 2.4.9 

f 

for i=0, 1, 2, *,. •, n. There are (n+1) equations and (n+1) variables, n j ( l ) can be 

solved. Since, these (n+1) equations are nonlinear, an iterative method is used to solve 

them. Let be the mth iterative value of r t j ( l ) ; equation (2.4.9) can be rewritten 

as: 

- [ X ^ i ^ + d j ^ / U + g ^ - - X 2 2.4.10 

With a reasonable initial guess of gj[(0)], we can solve the (n+1) simultaneous 

equations and get g^ 1* and so on, i.e., g^2*, •, gj[(m)]. This iterative method 

converges quite rapidly. Figures 2.6.1 and 2.6.2 compare the approximation results 
and the exact solution. 

This approximation shows rapid increasing of itj (1) with respect to |i2/fii a s w e ^ 

as rapid increasing of i, as in the Kummerle's approximation, but it is much smoother 

and closer to the exact solution. The Bhat's algorithm and approximation are based on 

the multi-server system. As shown in Figure 2.6.4 of Section 2.6, the solution of 
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Bhafs algorithm matches other methods, but its approximation fails to show the 

increasing of the mean waiting length with respect to /i2/ni. Unfortunately, \l2I\xx in 

the order of thousands is the practical situation and the most important case, and the 

approximation differs many orders of magnitude from the exact solution. 
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2.5. diffusion Approximation 

If the service ability for Class II job is always greater than the input rate, 

C 2 ' L 2 ^ c " " ' * c v ^ 2 > ^ 2 ' ^ e n ^ e s y s * e m w ¡ " almost always have a short waiting line. If, on 

the other hand, there is. some i such that (c-teCy)^*^* ^ e n THERE W*" BE some periods 

during which there will be a long queue. During time periods when input rate is 

greater than the service rate, a queue will be built up. The way the queue grows is a 

time-dependent queueing problem. It is well-known that a heavily loaded queueing 

system can be approximated by diffusion process [Gav68] for both asymptotic and 

time-dependent cases. First we will show that the solution of the queueing system in 

Section 2.3 is equivalent to the solution of a set of a time-dependent M/M/l queueing 

system, then we will use diffusion process to approximate the overloaded states. 

2.5.1. Time-Dependent System 

Let an M/M/l queueing system with Poisson input rate X and exponentially 

distributed service time of mean 1/JI start at time zero with initial condition h, where h 

is a row vector with ith element, h¡, the probability that there are i customers in the 

system. Suppose that the queue is finite and that JZ h ¡ « l . Distribution of the number 

of customers in the system at time t, p(t), satisfies the Kolmogorov forward 

equations[Kar66], 

p i t ) « pit) A 2.5.1 

p(0) = h. 

where p(t) is a row vector with j th element, the probability that there are j customers 

in the system at time t, and A is the infinitesimal generator of the system with element 

a .pO except for i - l< j< i+ l : 
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a i , i + i • x » 

a i , i - - < a i , i - l + a i , i + l > 

~ ao,o " a o , i ™ > u 

-X 

0 

0 

X 0 0 
-(fi+X) X 

2 " - ( 2 A f X ) X 

0 3 P - (3 *X) X 
o 

iji +X) X 

\ 

p(t) can be solved as: 

p(t) = h e A t 

2.5.2 

If the period t ends randomly with exponential distribution of mean 1/s, then the 

distribution of number of customers in the system when the period ends is: 

P*(s) - j * ~ p(t) s e " s t dt - S J * " h e A t e " s t dt 

2.5.3 

=s h [ s i - A ] - 1 

= h [ I - A / s ] - 1 

where I is the unit matrix. 

Because of the extremely long holding time of Class I jobs in integrated switch, 

the service of Class II jobs can be modeled as one M/M/l queue followed by another 

with different service rate. The service rate for Class II jobs is dj=(c- ic v ) , which 

depends on i, the number of Class I jobs. We will model the integrated switch during 
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the period in which the number of Class I jobs remains the same as a simple M/M/l 

queue. Those periods are of finite length, and the final distribution is expressed in 

terms of the initial distribution. Supposing that during period \ there are i Class 1 jobs 

in the switch, we define h(i) as the initial distribution and g(i) as the final distribution. 

Both g(i) and h(i) are probability vectors with the jth element being the probability 

that the system has j Class II jobs. Either a new Class I job coming in or one of the i 

Class I jobs finishing its service request will cause the end of period i, so the duration 

of period i will be exponentially distributed with parameter (Xj+ijij). Replacing s by 

(Xj+i/i!) and g(i) by p*(s), we can write equation (2.5.3) as follows: 

g(i> = ( X ^ t n , ) h(i) [(Xj+iMj)! - AO) ] ' 1 2.5.4 

where A(i) is the infinitesimal generator of Class II jobs with i Class I jobs in the 

integrated switch. 
\ 

A(i> 

" X 2 X2 

d , ji 2 *"W j 1« 2 "^2 ) ^ 2 

djM 2 - ( ^ 2 ^ 2 ) X 2 

o 
djM 2 - (d jM 2 " ^ 2 ^ ^ 2 

where dj=(c- i*c v ) . Equation (2.5.4) can also be written as: 

h(i) - g(i) [ I - A ( i ) / ( X 1 + i M l ) ] 2.5.5 

The beginning of one period is the end of another period of course. Thus h(i) 

must be equal to either g ( i - l ) or g(i+l) , the end of a period (i-1) or a period (i+1). The 

transition rate from period (i-1) .where there are ( i - l ) Class I jobs, is K The transition 

rate from period (i+1), where there are (i+1) Class I jobs, is ( i+l) j i 2 - I f we multiply 
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these transition rates by their steady state probabilities, Pj_j and P j + , respectively, 

we get the following ratio of absolute transition rate: 

\ i P j . i ( i + D w i P ^ i 
' h(i) R ( i - l ) + LIU 2.5.6 

x i p i - i * < l * 1 > * , i P i + i " M p i - i + < i + 1 W P i + i 

where Pj is the steady state probability that the system has i Class I jobs. Then 

' "1 M 
h ( i > - — g ( i - l > + g ( i+ l ) 2.5.7 

Substituting equation ( 2 . 5 . 7 ) in equation (2 .5 .4 ) yields 

g(i) [ I - A f l V f l n i + X j ) ] - [ i f i , g ( i - l ) * Xj gd^Dl/dnj+Xj) 2 ,5 .8 

The jth element of the above row vector is 

g j ( i ) - [gj - i<i)X 2
 + c 2 ( i ^ l ) , i 2 g j + J ( i ) - ( X 2 + c 2 ( i ) / K 2 ) g j ( i ) ] / (Xj+iji,) 

- ( iH lg j ( i - l ) + X ^ j d + l ) ) / ( i m + X j ) 2 .5 .9 

or 

[Xj + iiij + X 2 + c 2 ( i ) j i 2 ] g j ( i ) 

- X ^ j O + l ) + i j i ,g j ( i - l ) + X 2 gj„j ( i ) + c 2 ( i ) j i 2 g J + 1 ( i ) 2 . 5 . 1 0 

where c 2 ( i ) « c - i*c v. 

This is exactly the same balance equation set (2 .3 .1 ) of Section 2 .3 , with Pjj/Pj 

as gj(i). T h u s t h e Integrated switch model is exactly a s e t of time-dependent simple 

queueing systems. Notice that gj(i) is the distribution of Class II jobs when the system 

leaves period i, while PJJ/PJ, defined in Section 2.3, is the steady state distribution of 

Class II jobs when the system is in i Class I state. The reason that they are the same 

can be explained by the "Waiting Time Paradox". This paradox arises from random 

sampling of Poisson process: 

( t j , t 2 , tg, , t m ) are the times when the events of the Poisson process 

happen, and s is a random sample point. Suppose that s falls in (tjjptj). 
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The paradox is: 

The length of periods (s - t j . j ) and (tj-s) are of the same exponential 

distribution as ( t j - t j_ j ) for all j ^ i . 

The paradox says that the distribution of ( s - t j _ a n d (tj-s) is exactly the same 

as the normal interarrival time of this Poisson process rather than half of it. The 

reason is that the random sampling itself can be treated as another event of this 

Poisson process. This is exactly the same as the relationship between the integrated 

switch model and the time-dependent model. The steady state distribution Pjj/Pj >s 

sampled randomly between two transitions, and the sample point itself is an event of 

the Poisson process which determines when the next next Class I transition will 

happen. 

2.5.2. Simple Diffusion Model 

First we will analyze a simple diffusion approximation model for an M/M/l 

waiting system. Consider a single servicing facility at which customers arrive in a 

Poisson fashion with rate X. The service times S, are independent random variables 

with exponential distribution of mean Let W(t) represent the (virtual) waiting time 

at t, i.e., the time a customer arriving at t waits in queue. Then W(t), considered as a 

function of time, is a spatially homogeneous random process, modified by a reflecting 

barrier at W«0. An actual W(t)~path is a random sawtooth, exhibiting vertical jumps of 
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service-time magnitude at the instants of customers arrival and, otherwise, diminishing 

deterministically at slope -1 until the barrier at zero is reached. 

If the traffic intensity parameter p«X/p is close to unity, then it is clear that W(t) 

is seldom near the barrier and is typically large with respect to changes in W(t) likely 

to occur in small time intervals. Thus it becomes plausible to replace W(t), t>0, with an 

approximating continuous, diffusion process. For mathematical details concerning such 

a model see Kingman [Kin64] and Gaver [Gav68]. 

To approximate the distribution of W(t), compute the infinitesimal mean (drift), b, 

and variance, a , from 

bh - E[W(t+h) - W(t) | W(t) ] « {XE[S] - l.}h + 0(h) « ( p - l ) h +0(h) 2.5.11 

and 

ah - Var[W(t+h) -W(t) | W(t)] « XE[S 2]h • 0(h) » (2X/,i2)h + 0(h) 2.5.12 

and then solve the forward differential (Fokker-Planck) equation for the distribution 

function F(x,t; w) 

r>F _ d'F a d2F 

dF X d2F 
ax \r dx . 
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èF p2 è 2 F - < p - l ) - _ + _ - _ _ . 2.5.13 

subject to the initial condition 
1* x>w 

F(x,0$ w) ~ { 
0 x<w 

and the boundary condition 

F(x,t; w) » 0 (x<0, t>0)' 

{W^t ) , t^O} denotes the diffusion process whose transition probabilities are 

specified by the above equations. Heavy traffic theory suggests that if the parameter 

1 - p - b 

2p 2/X a 
2.5.14 

is positive and small, we can expect the distribution function F of Wcj(t), which is the 

solution of equation (2.5.13), to provide a good approximation to the exact distribution 

of W(t). If equation (2.5.14) is positive, the limiting distribution of W(t) as t-+oo exists. 

If equation (2.5.14) is negative or zero no such limit exists, but we are interested in 

approximating the distribution of W(t) for finite t and will consider the solution of our 

diffusion equations for this purpose. 

An explicit solution to the diffusion problem defined by equation (2.5.13) is given 

by Chandrasikhar[Cha43]. However, for our purpose only the transform solution to 

the diffusion problem is needed, and we record it here: 

K*,s;w>~ f ! ° e~ s t f ° ° E'T* dF(x,t; w)dt 2.5.15 
•*0 ¿0 

Assume convergence for at least s, £>0. Straightforward manipulation of equation 

(2.5.13) yields 

[-s + ( l -p)£ + p 2 * 2 A 3 7(fcs; w) « c, + £c2 - 2.5.16 

where operator ^ is replaced by s and ^ is replaced by £. By including the 

particular integral to the right-hand side, we can rewrite the equation as: 

6 2 



7<fc,s; w ) - [ — ] 2.5.17 
<p 2 /X)* 2 +( l -p>{ -s 

where and C 2 depend only upon s, and 

№ ) ~ f °° dF(x,0; w) 2.5.18 
J 0 

the transformation of F w (x> represents the distribution function of the initial condition 

w. 

The denominator has the two real zeros 

>»/2] ¡-1.2 2.5.19 

2 p 2 X ( l - p ) 2 

t 

The signs of £¡,¡«1,2 depend upon the traffic intensity p«X/fi ; if p < l ( > l ) then 

b<0(>0), and { 2
> 0 ^ i > 0 ) - We are only interested in p>l case, so we define 

, 1 . « E » t l . ( | . ! ^ _ j l / 2 j 2.5.20 
2 , ' M l - , ) * 

We can cancel the pole by putting in 

C i + c 2 t i - MiO 2 3 2 1 

The condition that s7(0,s; w)*l has provided the information that C j » l , so equation 

(2.5.17) becomes: 

f(C,s; w) » : - - 2.5.22 
P 2 ( H i X H 2 ) 

Several simple interpretations of and comments on these results now follow. 

Remark 1 Time-dependent waiting time behavior is reflected in behavior of the 

mean waiting time: E[W(t) | W(0)»w]. The time transformation of E[W(t) | W(0)=w], or 

E[W(t) | N ( 0 H ] , has been studied, both numerically and asymptotically, in 

Gaver[Gav66], The mean and variance of the transformation of the diffusion process 
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are obtained by differentiating equation (2.5.22) at £=0; the result may be expressed 

as: 

J ™ s e " s t E[W d ( t ) I W d (0) with distribution *(w)] dt 

P 2 ( H i > < H 2 ) < W ( H 2 ) 

- V ( 0 ) + ( p - l ) / s + f f 1 * ^ ) 

- w + ( p - l ) / s + { , " V « i > 2.5.23 

where 

w « (0) « mean value of the initial condition 

*<°> - So d F w { x > 8 8 1-

M ^ - W P 2 and * , + $ 2 - - X ( p - l ) / p 2 . 

The mean value of an exponentially distributed observation will be a combination 

of three terms, the initial value, a linear increase( or decrease, depending on the vaJue 

p; here we only consider p>l) deterministic term and a dispersion term. The third 

term: 

t r W - f a t r 1 e ^ i x dFw(x> 

is bounded by < p 2 / [ M p - D ] for p>l. If the mean observation time is relatively 

long, E[r]-*oo, or s->0, then the second term will dominate, and will be approximate to 

< p - l ) / s . 

Remark 2 Let the expected observation time be E[rJ+oo, or equivalently s->0. 

Then 
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X ( p - l ) 4 s p 2 , / , . , „ 
- — — [ 1 + (1 + - ) 1 / z i - 1 . 2 

' 2 p 2 " X ( l - p ) 2 

M p - 1 L . „ 2 s p 2 

[ i ± d + — : — ) ] 1 - 1 , 2 

2 p 2 X ( l - p ) 2 

Then 

* i - X ( p - l ) / p 2 + s / ( p - l ) 2 . 5 . 2 5 

t 2 ~ - S / ( P - D 2 - 5 - 2 6 

a n d 

J00 s e _ s t Prob[W d ( t ) -0 | W d<0)»w] dt 

- lim s£ 7(£,s; w) 

- ( V P 2 ) * « i > 

- s t p - i r V * ! * for p > l 

- 0(s) for p > l and s->0 2.5.27 

Thus the probability that the system will hit the boundary, W d ( t ) «0 , decreases in 

the order of s. When s is small and p > l , the diffusion approximation will differ from 

the real process only in the order of 0(s). 

Remark 3 For p < l , the above approximation becomes very sensitive to the third, 

dispersion, term of equation (2.5.23). Because it is very hard to estimate the exact 

distribution of the number of customers when the number of Class I job changes, we 

use Gaver's[Gav66] approximation formula for a time-dependent M / M / l queueing 

system instead of the technique of diffusion approximation. The formula is: 

s e " s t E[N{t) | N(O) - i ] dt 

- i + tfp-lXl-x') • [ l + j i ( p - l ) ( l - x ) s ] • x'X/fs+XU-x)) 2.5.28 

where 
x = 2/{ l + (s+X)/p + [<1. + <s+X)/p>2 - 4X/P]1/2} 
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From E[W(t ) ] - E[r\Kt)]//i, we can get 

E [ W(t) | W(0)-w ] - E [ W(t) | N(0)=wM ] - (1/*) E [ N{t) | N<0)«w,i ] 2.5.29 

2.5.3. Diffusion Approximation for the Integrated Switch 

There is more than one simple diffusion process for the integrated switch model. 

Actually the system is modeled as one simple diffusion process followed by another. 

Suppose that the simple diffusion process i has the following parameters and that the 

notations in the parenthesis used in section 2.5.2 will be replaced by the right-hand 

terms of the following formulas. 

input rate (\) » X 2 

service rate (JI) m ( c - i c v ) j i 2 " bj 

traffic intensity (p) » X 2 / [ ( c - i c v V 2 ] » ijj 

mean observation time for an exponentially distributed sampling (s) 

= \ { + i j l j « Sj 

Definitions of hj and gj similar to those in section 2.5.1 are used: 

hj « average waiting time of Class II jobs in the system when the system 

has i Class I jobs. 

gj - average waiting of Class II jobs in the system when the system does 

not have i Class I jobs. 

Only the time-dependent processes with t)j>l are modeled by the diffusion 

process. Thus: 

positive pole of 7(£,s; w) ( f j ) 

[1 + ( l + _ J )l/2] 2.5.30 

2t,j 2 X2<l»t|j>2 
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For ijj>l and s-+0, the third term of equation (2.5.23) is not very sensitive to the 

result, as we stated before. Thus instead of estimating the distribution of every initial 

condition of the diffusion process, we assumed the initial condition w. Substituting 

these values into equation (2.5.23), we have: 

g j - h j + ^ j - D / s j + e x p t - ^ h i ] / ^ 2.5.31 

For i>j<l, a more complicated version of equation (2.5.28) is used. The initial 

condition is assumed to be hj rather than a random variable with some unknown 

distribution. We can calculate gj in terms of hj. 

gj-hj+djdyj-lKl-Xj^^) 

HUdjUplKl-XjJSjlxj^^VtSj+X^l-Xj)) 2.3.32 

Now we have (n+1) equations with 2(n+l) unknowns, hj and gj for ¡«0,1,2, . , n. 

As in equation (2.5.7), we can get another set of equations: 

djhj « rjtgj.jdj^) + ( l - r i > ( g i + 1 d i + 1 ) 2.5.33 

where djhj or djgj is the average number of Class II jobs rather than the average 

waiting time. And 

rj - i j i , / (i n • \{) 2.5.34 

is the probability that the transience to i Class I job is due to a new incoming Class I 

job. The detailed derivation is the same as equation (2.5.7). 

There are (n+1) equations for equation (2.5.33). With the (n+1) equations of 

(2.5.33) and the (n+1) equations of (2.5.31), gj and hj can be solved numerically. From 

the derivation, we will expect a better approximation if the rat io ' j^/f i *s large or $j is 

small. In such situations, the overloaded states will last longer, and the estimation of 

the final value will be more insensitive to the initial condition. 
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Even when the ratios \j//J L F X 2 / J I 2
 a r e c o n s * a n t > the average number of Class II 

packets increases rapidly as the ratio ji2//i] increases. This behavior shows the 

similarity of the integrated switch discussed in Section 2.3, 2.4 and 2.5 and the simple 

models discussed in Section 2.2 and Figures 2.2.7 and 2.2.8. Similar behavior is also 

discovered by Bhat [Bha75]. Unfortunately, however, their approximation algorithm 

lost an important characteristics of the system, i.e., as shown in Figure 2.6.4 the 

algorithm of Bhat is not sensitive to changes in the ratio of J J 2 / P I -

Table 2.1 shows the average number of Class II packets in the system when 

there are i Class I jobs. For different p, the number of servers, n-, (1) differ very little 

from each other in overloaded states, in which dj<X2. Because of this characteristics, 

the CM (conditional mean) approximation algorithm based on the urii-server system 

becomes a good approximation for multi-server system. Another very important 

characteristic is that the conditional mean number of packets varies greatly for 

different i. Even with a small total average waiting length, the probability of overflow, 

which is defined as the condition in which the number of packets in the system 

exceeds available buffer space, will be quite high. 

Tables 2.2 and 2.3 provide the comparison of the results of our integrated 

switch model to that of Kummerle's and Fischer's, respectively. In Kummerle's 

approximation, the service scheme is the same , but the service time of packets is 

constant rather than exponentially distributed. Kummerle's approximation uses two 

different formulas to calculate the mean number of Class II jobs in the system for 

overloaded states, X 2 > ( c - i c v ) / i 2 , and for underloaded states, X 2 < ( C - » C V ) J J 2 . The curve 
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looks a little irregular at i=7 and i«8, where X 2 =(c-ic v )*i 2 . Both Kummerle's and the CM 

approximation and the exact solution show a sharp increase of the conditional mean in 

overloaded states. In Table 2.2 we also notice that the average queue length 

increases with respect to /i2//ij, although Xj/jij and X 2 / ; i 2 remain constant. Fischer and 

Harris [Fis75] fail to show this characteristic. In a later report [Bha75], they provide a 

new model which has this characteristic, but, in that model, they only tend to give only 

the total mean waiting time. As we stated before, total mean waiting time is not 

enough to describe the whole system. The report of Bhat and Fischer [Bha75] covers 

the special condition of our analysis where c«p and j ^ " * * 

Figures 2.6.1, 2.6.2, and 2.6.3 show the numerical results of Tables 2.1 and 2.2. 

Figure 2.6.4 shows the results of Table 2.3. 
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Table 2.1 Comparison of exact solution and approximation 

c -15; n-10; \ ,/ , i , -5 .0 ; \2/cji2=7/15; M ) / , i 2 »100; 

p - 1, 3, 5. 

n j ' d ) Pi P - l p=3 p=5 CM Apprc 

i - 0 .0068315 0.8881841 1.5899381 2.4360016 .876 
i= 1 .0341575 1.0399755 1.7091119 2.5267855 1.002 
i= 2 .0853938 1.2894188 1.9175224 2.6971034 1.170 
i - 3 .1423231 1.7669488 2.3417091 3.0699985 1.405 

.1779038 2.7981681 3.3011327 4.0220692 1.762 

¡ - 5 .1779038 5.1520923 5.5606589 6.2629728 2.399 
i - 6 .1482532 10.4236670 10.7955900 11.3819070 4.188 
i= 7 .1058951 21.0693230 21.4009170 21.9430840 11.637 
i = 8 .0661845 38.8442910 39.1415930 39.6471080 29.404 
i= 9 .0367691 61.7339510 62.0130820 62.4995080 53.226 
i=10 .0183846 81.8106690 82.0841770 82.5715340 73.894 

Total mean 11.93888501 12.38936477 13.05113306 8.195 
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NUMBER OF CLASS I JOBS 

FIGURE 2.6.1 CONDITIONAL QUEUE LENGTH OP INTEGRATED SWITCH 
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Table 2.2 Comparsion of Kummerle's approximation 

c=15, p -1; Xj/i i i -5.0; X 2/cfi 2»7/15; 

Kummerle's Appr. Exact Calcul. CM Approx. Diff. Approx. 

10 100 10 100 10 100 10 100 

0 .93 .93 .92 .88 .89 .87 .84 .87 
1 1.07 1.07 1.10 1.04 1.02 1.00 .94 .99 
2 1.25 1.25 1.36 1.29 1.2Ó- 1.17 1.07 1.15 
3 1.50 1.50' 1.77 1.77 1.47 1.40 1.27 1.38 
4 1.88 1.88 2.41 2.80 1.91 1.76 1.69 1.71 
5 2.50 2.50 3.40 5.15 2.70 2.40 3.03 2.28 
6 3.75 3.75 4.84 10.42 4.07 4.19 6.80 4.41 
7 7.50 7.50 6.81 21.07 6.18 11.64 14.52 13.18 
8 8.50 8.50 9.25 38.84 8.89 29.40 27.28 38.45 
9 11.70 27.77 11.89 61.73 11.81 53.22 29.50 60.67 

10 18.04 73.33 14.03 81.81 14.14 73.89 31.50 80.67 
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FIGURE 2.6.2 COMPARISON OF DIFFERENT APPROXIMATION 
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Table 2.3 Comparsion of Bhafs model 

for 2 channels, pi«0.5, р 2
в 0 - 5 » И^Г1^\ 

Bhafs Model Cond. Mean Approx. 

P B E [ Q 2 ] P B 
E , [ Q 2 ] 

.0005 .2461 .5333 .5001 .1429 .3335 

.005 .2461 .5336 .5005 .1429 .3352 

.05 .2462 .5368 .504 .1429 .3517 

.5 .248 .5618 .5505 .1429 .4867 
1 .25 .5833 .5833 .1429 .6026 

5 .2574 .6945 .6605 .1429 1.205 
25 .2629 1.046 .6965 .1429 3.071 
100 .2646 2.212 .705 .1429 8.585 
500 .2651 8.34 .71 .1429 35.835 
1000 .2652 15.994 .71 .1429 69.552 
5000 .2652 77.219 .705 .1429 338.839 
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CHAPTER 3 Memory Management for Data Buffers 

3.1. Introduction 

In Chapter 2, the waiting time for data packets was calculated. In ordinary 

M/M/c or M/G/c queueing systems when the waiting space is several times larger than 

the average queue length, the infinite queueing space assumption turns out to be good 

a approximation. But, in the case of the integrated switch, the variation of queue 

length is v e r y large when the number of background Class I jobs varies. The queue 

length of Class II jobs will increase almost linearly with respect to time in some period, 

and the conditional mean queue length may be much longer than total mean queue 

length. In the under-loaded states, infinite queueing space might well be a good 

approximation, while in over-loaded states this assumption becomes questionable. 

When the number of packets requesting the service of the switch is greater than the 

number of packet buffers in the switch, incoming packets will suffer extra delay: They 

will experience a retransmission time because no empty buffer in the switch as well as 

the watting time for all the packets before it to be processed. In packet-switching, an 

incoming packet without a buffer is not acknowledged, so this packet will be sent 

again. Packets requesting service of an over-loaded switch have to suffer this extra 

delay of re-transmission. In this chapter, finite memory space is assumed, and the 

mechanism and the performance of memory managements as a means of decreasing or 

eliminating packet delay are discussed. 

There is a finite memory space M. When a packet comes in, it is assigned a 

buffer if one is free. There are many approaches to assigning the buffer from the 
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MEMORY, and there may be a secondary storage for packets during the period of o v e r 

loaded states. Before the details of memory management are discussed, one 

assumption is made: The holding time for Class I job is so long that the transient of 

changing the number of Class I jobs is relatively short; in fact, it is negligible in terms 

of the whole system behavior. Thus the switch is assumed to be in one steady state 

followed by another with different service ability for Class II data packets. 

An incoming packet is either allocated a buffer or blocked. If a buffer is 

assigned to a packet, that buffer is called occupied; otherwise it is free. An occupied 

buffer is freed after its assigned packet is processed, transmitted to the next node, 

and given a positive acknowledgement. This whole period is called the life-time of the 

buffer. If a packet can not be allocated a buffer, the switch behaves as if it has never 

received that packet. No acknowledgement is sent back to the sender, and by the high 

level control protocol, this packet will be sent by the sender again after a watting 

period. Although this data packet is not lost, it does suffer an extra delay. Because of 

the above properties, the performance criterion used in this chapter is the probability 

of packets being blocked. Another criterion, memory utilization or buffer utilization, is 

also used in some sections. 

Let us review the parameters of the integrated switch. It is a communication 

system for voice and data. It has very strict real time constraints. Because the 

system sent out a frame every frame period, say of 10 milliseconds, any memory 

management which needs more than a frame period to complete is not acceptable. 

Only simple memory management schemes can be used. Secondary storage, say a disk, 

will generally have access time in the order of tens of milliseconds, so a direct use of 

disk for input and output will be inadequate. On the other hand, if the disk is not 
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directly used in I/O but used, instead, in storage of the excess data packets, than it 

may well be effective. The access time for secondary storage may be less than the 

extra delay suffered by the blocked packets. According to the SENET implementataion, 

no processes can be overlapped when the input trunk line is writing into the input 

frame buffer or when the output trunk line is sending out information from the output 

frame buffer. Thus the extra delay for blocked packets, which is at least a two-frame 

period, will be in the order ot; 30 to 50 milliseconds. Apparently, with good use of 

secondary storage, fewer retransmissions will occur and the Class II data packets can 

have a smoother flow and a shorter delay. 

In the second section, several buffer management methods for primary memories 

are tried. Independent exponentially distributed random variables for the life time of 

buffers are assumed. The effectiveness of these managements methods are compared. 

In the third section, a network model is built for buffered packets flowing in the 

communication network. Closed queueing network model of exponential server are 

solved by using the algorithm of Buzen[Buze 73]. In section four, secondary storage is 

modeled. A forward and backward algorithm is developed to analyze the effect of the 

secondary storage. 
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3.2. Node Model 

A finite MEMORY of size M is assumed in the integrated switch. When a packet of 

size r comes in, how should it be assigned a buffer? Because of the real time 

requirements of the system, only several simple memory managements are relevant to 

our attempt to answer this question. These include division of memory into maximum 

size buffers, division of memory into several different fixed size buffers and dynamic 

allcoation of first-fit memory are discussed. We will let D indicate the upper bound of 

packet size; N«M/D, the number of buffers if all buffers are maximum size. First we 

will discuss the system with N buffers of size D. In this system, an incoming packet, 

regardless of its size, is assigned a buffer until all the buffers are occupied. Then a 

system with Nj buffers of size M.,, N 2 buffers of size M 2 , and N^ buffers of 

size M^ is discussed, where M l < M 2
< • < • < • <M^=D. There are two disciplines, static 

and dynamic, for buffer assignment when a small packet comes in while all 

corresponding size buffers are occupied. We can either assign a larger buffer to the 

packet or just block it. Finally, we explore a relatively complicated first-fit dynamic 

memory allocation scheme. The input stream of data packets is assumed to be Poisson 

and the buffer life-times are independent exponentially distributed random variables, 

regardless of their size. 9 

3.2.1. Maximum Size Buffers 

All the buffers are of size D, the maximum size a packet can be. A buffer in the 

memory is either free or occupied: 

o 
o 
c 

free with rate 
Mi 

~o~ 
o 
o 

N-i 

O C C U P I E D B U F F E R S I N P U T W I T H R A T E F R E E B U F F E R S 
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If a packet comes into a node and can not be allocated a free buffer, the packet 

is blocked. The probability of this happening depends on the total number of buffers, 

N, and the life time of buffers. With assumption of Poisson input and exponentially 

distributed buffer life time, a simple Markov Chain can be built to model the buffer 

behavior. 

Let the state of the system be the number of occupied buffers. Xj is the rate of 

incoming packets, and Mj is the rate of freeing occupied buffers. The result of this 

model will be used later, so a general Xj and JIJ are assumed. Both Xj and JIJ can 

depend on i in some complicated form. Let Pj be the steady state probability that 

system is at state i. The set of balance equations is: 

(Xj+JIJ) Pj - X H P J M l + , I I < M P i + , for i-1,2, ., .,N-1 

x N - l P N - l * **N P N 

The above equations can be simplified as 

x i P i " î+1 p i + ! f o r i t t °»^2 , ., ., N - l 
N 

Because Pj is a probability, i.e., 22 Pj « 1, Pj can be solved as: 
i-1 ,s*° 

P i " P o ' } I O < X J ^ J + i > 3 2 2 

and N i-1 

P o " C L + S J I 0
 ( V ^ L ) ] 3 - 2 - 3 

This model looks quite simple but the result is quite general. CompJicated 

queueing models in the next section can be solved in the above form only if ^ depends 

on i in a complicated way. 

Non-pr ior i tv System 

If we assume p; « i /4, then 

8 1 



P n - (X/|i)n/n ! • P 0 3.2.4 

where n 
p o - t . E

f t <Vn>7i T 1 

1=0 

The Erlang 2 formula, E2(n,X,ji), is the P n with input rate X, service rate /i of a 

M/M/n/n queueing system. Then from simple arithmetical manipulation we can get: 

E2<n+l,X,,i> - [1 + (n+1 ),i/X / E2(n,X,,i) 3" 1 3.2.5 

The buffer utilization factor R is defined as: 
n 

R - C i p , 
j - 1 n J 

- X/(nn) [ l -E 2 (n,X,u>] 3.2.6 

Notice that R is the utilization factor of buffers not the real utilization of the 

memory. The real memory utilization factor will only be half of R if the packet size is 

uniformly distributed between 0 and maximum size D. 

Reserve Priority System 

A simple reserve priority system is considered here. Suppose that there is a 

probabi l i ty OT that an incoming packet has higher priority, and that the life time of 

buffers assigned to a high priority packet is the same as that of other buffers. When 

the number of buffers occupied is more than N l f a packet will be allocated a buffer 

only if it has high priority. No preemptive of buffer is allowed. For low pr ior i ty 

packets the system has only Nj buffers, but for high priority packets the system has N 

buffers . Equation 3.2.2 can be used with the following definition of Xj and jij ' 

X 0<\<Ni 

X; = { 3.2.7 
odX Nj<i<N 
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If Pj is the probability that the system is in state i, then the blocking probability 

for high priority packets is P N , and the blocking probability for low priority packets is 
N 

22 p. Figure 3.2.1 shows the effect of this priority assignment. Under a heavily 
i~Nl 1 

loaded situation, X/J I w 80, N«30, a little extra buffer reserved for higher priority 

packets will decrease the blocking probability greatly, from 0.63 to 0.04 with N,=28. 

3.2.2. Different Fixed Size Buffers 

Instead of dividing the whole memory into buffers of maximum size, the memory 

is divided into fixed size buffers of more than one size. When a data packet comes in, 

an attempt is made to allocate a buffer of corresponding size to that packet. If all the 

buffers of corresponding size are occupied, there will be two disciplines, the packet 

will either be blocked or assigned a larger buffer. We call the first discipline, static 

assignment; the second, dynamic assignment. 

Static Assignment 

There is a corresponding set of buffers which can be assigned to every packet. 

Suppose there are d different buffer sizes, each of size Mj, i » l , 2 , . , . , K, and M 1 < M 2
< •< 

k 

•<M^. There are Nj buffers of size Mj. p j M j • Nj < M. Any packet of size in the range 

(Mj_j , Mj] is treated as a packet of size Mj and is assigned to a buffer of size Mj. 

Because of the simple discipline for buffer allocation, the blocking probability for 

packets of size Mj is independent of the allocation of buffers to packets of other sizes. 

Let Xj be the Poisson input rate of packets of size Mj. With the assumption that the 

life time of a buffer is independent of its size, Bj, the blocking probability of packets of 

size Mj, is of Erlang 2 formula: 

Bj = E 2{Nj, Xj, /i> 3.2.8 
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The total blocking probability becomes: 
k k 3.2.9 

k 
where X is the total input rate and X • E X¡. 

Then Rj, the buffer utilization factor for size M j ( becomes: 

R, - X j [ l - E2(N i (\i,M)] / <N}H) 3.Z.10 

The numerator is the effective number of buffers allocated per unit time, and 

the denominator is the effective number of buffers available per unit time. The total 

buffer utilization factor, R, is: 

From the above definition, an optimum assignment of M¡ , X¡ and N{ to minimize B 

will in general differ from that required to maximize R. Instead of creating a larger 

buffer, more small buffers will be created. Although this may decrease the total 

blocking probability, it also decreases the total buffer utilization. In addition, 

minimizing the total blocking probability may favor small packets. In some situations 

the optimum assignment of N¡ will give a blocking probability of 1 to large packets. 

Before a better criterion can be found, the blocking probability and buffer utilization 

factor will be used for evalution. Almost all buffer management schemes favor packets 

of small size over packets of large size. Figures 3.2.2 and 3.2.3 show the optimum 

assignment of N, and N 2 for both minimizing B and maximizing R respectively. Two 

size buffers are considered, one of size M , and one of size M 2 = D , the maximum size of 

a packet. A uniform distribution of packet size is assumed, i.e. X J « X M J / D , and X 2 = X - X j , 

where X is the total input rate qi packets. The number in the bracket of the figure is 

the corresponding number of Nj and N 2 for the optimization assignment. Figure 3.2,4 

k 
j i>] / (Mn) 3.2.11 
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and 3.2.5 show the blocking probabilities and utilization factor when we have Mj equal 

to D/2. Comparing the three figures, we see that the choice of the size of Mj is not 

v e r y critical as long as an optimum combination of Nj and N 2 can be found. But for 

fixed M j , the choice of N.. and N 2 is rather critical. For a lightly loaded system, the 

optimization assignment of Nj and N 2 are the same for both minimizing B and 

maximizing R. 

Dynamic Assignment 

Now we consider the system that allows large buffers to be assigned to small 

packets if no small buffers are available. The definitions of M¡, N¡ and X¡ used in static 

assignment are also used here. A small packet is blocked only if all the buffers are 

occupied. A large packet is blocked if no large buffer is available. Apparently, the 

system is heavily biased in favor of packets of small size. There are many reasons for 

using such system. For example, as we shall see later, in addition to being relatively 

simple, rt gives better throughput, a lower total blocking probability, and a higher 

buffer utilization factor. As we will see later, in some situations this buffer 

management scheme is better than the static assignment scheme. 

A two-dimensional Markov Chain is built for a system with two buffer sizes, 

large and small. The state space of the Markov Chain is S=»{(i,j) | i,j £0}, where i,j 

indicates the number of small and large buffers occupied, respectively. Notice that the 

state is not defined by the number of packets of relative size, because some small 

packets may occupy large buffers. No reassignment of buffers will be made if some 

small buffer is freed after a small packet has already been assigned a large buffer. 

Figure 3.2.6 shows the probability transition flow of the Markov chain. The horizontal 
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transition rates, i.e., transition between (i,j) and (i,j+l), are X 2 and except for 

the last row, where i -N , and the large buffer will be assigned to the small packets too. 

F I G U R E 3.2.6 S T A T I C S P A C E O F D Y N A M I C A S S I G N M E N T O F B U F F E R S 

The balance equations are 

[ X , + \ 2 + < H + J V ] P y - M p i - l , j + X 2 p i , j - l + ( i + 1 ) " P i + i , J + ( i + 1 ) " p i , h i 

for 0<i<Nj, 0<j<N 2 3.2.12 

for i -0 , j - 0 , t h e first and second term of the right hand side vanish, 
respectively. 

[ X 1 + X 2 - H M T) P I ( 0 - XiPj . , ,0 + 0 + D " P i + i , o + " p i , o Q < j < N j 

and 

[ X 1 + X 2 + j m T 1 P 0 ( J - x 2 P 0 ) j _ , . »Plti • <J+1)i.POH F O R 0 < J < N Z 

for j = N 2 , the- last term vanishes, 

[ X j + O - N ^ f ) P i ) f v , 2 - X j P j . , ^ + x 2 P i , N 2 - l + < i + 1 > " P i + i , N 2 

Note that for- i - N j , the transition flow is different. There is no small buffer 
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available, so any new small packets will be assigned a large buffer until all larger 

buffers are also occupied. The transition rate from (Nj,j) to (Nj.j+1) is (Xj+X 2 ) , instead 

of X 2 . And the balance equation becomes: 

[ X l + X 2 * ( N 1 + i ) | i P N i j - X j P N r l j • (X. A 2 ) P N j > j M + ( j + l ) n P N l i j + ! 

forO<j<N 2 3.2.13 

And for j*0 and j « N 2 , the balance equations become: 

( N 1 + N 2 ) M P N j ) N 2 - x , p N r , § N 2 + (X,+X 2 ) P N | i N r , 

The above set of equations can be solved by the constraint that P y are 

probabilities, i.e., 23 p.. - L A straight-forward Gauss-Seidel algorithm [Ral69] is used 

to solve the system, and some results are shown in figure 3.2.7 and 3.2.8. The 

blocking probability for small packets, Bv is equal to the probability P|\| N a n c * -the 

blocking probability for large packets is equal to summation of over all i. 

The Gauss-Seidel algorithm needs a space of (Nj + DXtNg+t), and its convergent 

rate depends also on Nj and N 2 . For N p N 2 less than 100, the algorithm will converge 

to an error of less than 10^"^ in less than several minutes of CPU time on a PDP-10. 

But for large N j , N 2 or of system with k different size buffer, there will be some 

difficulty in calculating the exact probability distribution. Two approximation formula 

are suggested below. 

Let us model the system as seen from the perspective of the large buffers. 

During one period the stream of requests is Poisson input of rate Xj+X 2 , while during 

the other period the request stream has an input rate of only X 2 . Figure 3.2.9 depicts 
* 

its input rate of the queueing system. 
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\ \ \ \ s 
\ \ \ \ \ \ 

F I G U R E 3.2.9 I N P U T R A T E O F T H E Q U E U E 

During the period indicated by shaded area, the request rate for large buffers 

increases to (Xj+X 2 ) ; otherwise the rate remains X 2 . The shaded area depicts the busy 

period for the M/M/Nj/N^ queueing system of small buffers. In general this period will 

not be exponentially distributed, which implies that the system has quite complicated 

input states. We know, however, that the ratio of the shaded period to the whole 

period is x « E 2 ( N j p X l f j i ) , the busy probability for the M / M / N J / N J queueing system of 

small buffers; If we keep this ratio x constant, but shrink or expand the duration of the 

shaded period and the non-shaded period, two approximation formulas are derived: 

( P I ) Keep the ratio x constant and let the duration of the average shaded period go to 

zero. The system becomes an M / M / N 2 / N 2 queueing system with the same 

service rate but an input rate of (X 2+Xj-x). Thus the blocking probability for 

large packets becomes E 2 ( N 2 , X 2 + X J - X , / J ) . 

( P 2 ) Keep the ratio x constant and let the duration of the shaded period go to infinity. 

The system will have a negligible transience from one M / M / N 2 / N 2 queueing 

system of input rate X 2 to another M / M / N 2 / N 2 queueing system of input rate 

<Xj+X 2) and back and forth. The blocking probability for large buffers is the 

average of these two : X E 2 ( N 2 , X I + X 2 , / I ) + (1-x) E 2 ( N 2 , X 2 , J I ) . 
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Figures 3.2.7 and 3.2.8 show the blocking probability for both small packets and 

large packets and the two approximation formulas. When the system is lightly loaded, 

the values of the above two formulas will be quite far away from each other, as shown 

in Figure 3.2.8, and the exact value will lie somewhere between the extremes. But for 

a moderately loaded system, i.e., X»40, the values of the approximation formula are 

quite close, and both are good approximations of the exact solution, as Figure 3.2.7 

shows. 

Comparing Figure 3.2.8 with Figures 3.2.2, 3.2.3 and 3.2.4, for lightly loaded 

systems, we find that the dynamic assignment system becomes the superior scheme. In 

the moderately loaded system, however, Figures 3.2.7 and 3.2.5 show the value of the 

dynamic assignment is questionable. For a lightly loaded system, X * 20, the optimum 

assignment of N j , N 2 for static assignment will get a blocking probability of 0.00187 

for both large and small packets. For dynamic assignment, Nj=14 and N 2 «23 will give 

a blocking probability about three times better for packets of both sizes. For a 

moderately loaded system, X « 40, the dynamic assignment is strongly biased in favor 

of small packets. Large packets will always suffer a high blocking probability. For 

dynamic assignment, B 2 , blocking probability for large packets, can never be lower 

than 0.21. For the static assignment, the blocking probability can be B 1 « B 2
B 0 . 1 6 for 

both small and large packets. Thus if the system needs a relatively balance blocking 

probability or has an upper limit blocking probability for all packets, then dynamic 

assignment may not be proper under some loading condition. 

3.2.3. Dynamic Memory Allocation 

There are many similarities between buffer management in communication 
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systems and memory management in multi-programming computer system. All buffer 

management schemes discussed here are very simple, because of the strict real time 

requirement in the communication environment. Now we will consider a more 

complicated memory management commonly used in the large computer system: 

dynamic memory management. There are many well-known algorithms, such as f irst - f i t , 

best - f i t , buddy, etc.[Knu68]. Each has its own characteristics and fits best into a 

specific environment. For the communication system in which simplicity and reliability, 

are the most important requirements, a first-fit algorithm is tried and simulated for the 

buffer management of the communication system. 

The first-fit algorithm used here is very similar to that mentioned in Volumne 1 

of Knuth[Knu68} The whole memory is divided into blocks dynamically. A block is a set 

of contiguous MEMORY locations which are either free or belong to the same packet. 

There are two types of blocks, free or occupied, and every block is linked to another 

to form a set of ring buffers. There are four fields for each block: block size or 

starting address of next block, starting address of the next same type block, starting 

address of last block, and starting address of the last same type block. 

free block occupied block 

size 
pointer to next free block 
pointer to last block 
pointer to last free block 
buffer 

pointer to next block 
pointer to next occupied block 
pointer to last block 
pointer to last occupied block 
buffer 

All the buffers, free or occupied, are linked together. Another pointer, AROV, 

points to the currently free block, and from this place the next incoming packet will 

begin to search for the first large enough free block on the free buffer ring. Because 
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of the ring structure, two flags, FEMP and BEMP, are needed to point out whether 

there is any free block or occupied block in the system. FEMP«1 if there is no free 

block, and BEMP=1 if there is no occupied or bounded block. 

The detailed algoirthm can be found in [Knu68], Only the blocking probabilities 

are compared here to other buffer managements techniques. The simulation results, 

Figure 3.2.10, shows the blocking probability for packets of different sizes. This 

scheme also favors smaller size packets over larger ones. This complicated memory 

management scheme offers a lower total blocking probability than all other schemes 

w e have discussed, but it is also the most complex one. 
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3.3. Network Model 

In the last section some buffer management techniques were tested. The life 

time of buffers is assumed to have an Exponential distribution with mean j i j « i j i . This 

assumption will be justified, and the conditions under which the assumption holds wilt 

be also discussed in this section. First we will explain the model as follows: 

M4 

<5H 

<5H 
>» k-2 

<-

M2 

<0H 
M k-3 

<
 p l 

o o 
p 
K r 

A closed queueing network is used to model the buffer behavior of the current 

integrated switch. The number of customers in the queueing network is the total 

number of buffers, occupied or free, in the integrated switch. Customers in service 

center S|< are the free buffers of the switch; all other customers are buffered data 

packets. Customers in service center Sx are packets which have been assigned 

buffers and are awaiting the processing in the current integrated switch. Those 

buffered packets are then transmitted, with probability p p through transmission line 

S2> to the next integrated switch, S 3 , with probability p r , through S«-2> e * c -

After the customers undergo the necessary processing in the next switch, S 3 , the 
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corresponding positive acknowledgements are sent back, through S^, to the current 

switch. When the current switch receives an acknowledgement, the buffer of the 

packet begin acknowledged is released and a new free buffer is created in S « . When 

the number of customers in S « is also zero, i.e., there is no free buffer in the current 

switch, the output rate of S « is zero. This implies that all new incoming packets will be 

blocked because there are no free buffers, so it looks as if there are no new incoming 

packets. The service discipline for all service centers is FIFO (First In First Out). 

There may be one or more servers in a service center, and each service center may 

have different service distribution. 

First the exponential servers are assumed, then a network mixing two kinds of 

customers is modeled and simplified. Later in the section, the service centers, S 2 and 

S 4 are modeled as delay lines rather than ordinary queues. 

3.3.1. Exponential Queueing Network 

Suppose there is a total of M customers in the closed queueing network and K 

service centers, S l f S 2 i •» •> S « with C p c 2 , •, c « servers, respectively. One customer 

can not be serviced by more than one server, and has no preference for any server, 

since all servers in the same service center are identical. The service time at service 

center Sj is an exponentially distributed random variable with mean l//i j , i* l , 2, K. 

All the customers are identical too, and the state of the system is the number of 

customers in the service centers. The steady state of this kind of exponential 

queueing network was solved by Gordon and Newell [Gor67]. The probability that the 

system is in a specific state has the product form. Let nj be the number of customers 

at service center Sj. Let the state of the system be ( n l t n 2 , •, •, n K ) . Then the 

equilibrium probability that the system is at state ( n l f n 2 , •, •, n K ) is 
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' 1 K n-

P E n ^ - . - . n K l - g j j j j ITj (Xj) » / AjCnj) 3.3.1 

K 
where ,«C n: - M and 

I B I 1 

K 
MjXj - .^MiXjPj j J - 1,2,3, •, •, K. 

where p j j is the probability that a customer will proceed to the jth service center 

after completing a service request at the ith service center, and 1/jij is the average 

serv ice request at service center Sj. G<M) is the normalization constant so that the 

summation of P[nj,n 2 /,- ,n^] over all feasible states is one, where the feasible states 
K 

are defined such that /O nj » M and n>0 for all i=l ,2,v,K. That is i~i 
K 

w 

K 

here S(M,K) - {(nlfn2, n« ) | 3C nj * M and nj>0 for all i}, and Aj(nj) is defined 
i—1 

recurs ively as follows: 

Aj(0)-1 

A j ( j > - j A j ( j - l ) if j<Cj 

Aj(j) - c, A,(j -1) if j>Cj 3.3.3 

where C j is the number of servers at service center Sj. 
An algorithm was derived by Buzen [Buz73] to solve the above problem. A 

temporal variable, g(m,K), is defined as: 
K n-

•g<mfk>- = n (X,) ' /A j tn j ) 3.3.4 
ncS(m,k> i - l ' 1 1 

Note that G(M) - g{M,K), and in fact g(m,K) = G(m) for m=0,l,2,v M. From the 

above equation: 

g(m,l) - X j m / A{(m) for m=0, l ,2, v ,M 3.3.5 

and g ( 0 , k ) - l for k « 0 , l , 2 , v , K 

with the recursive formula of g(m,k): 
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m 

g(m,K) » E [<X k)i / A k(j>] • g(m-j,k-l) 3.3.6 

g(m,k) can be calculated. Only 2(M+1) memory space are needed to store g(m,k- l ) and 

to calculate g<m,k) for m«"0,l,2,3,v M. 

The marginal probability, P«(j), is calculated 

P«(j> * j customers at service station S«. 

•W>IS№-*ffiP 3 . 3 . 7 
Define throughput T«<m) as the rate of which customers pass through service 

center S « when there are m customers in the queueing network and the service time 

at service center S% is reduced to zero. Then T^(m) becomes: 

T K (m) » X K • g ( m - l , K - l ) / g(m.K-l) 3.3,8 

By Theorem 1 of [Cha75], the effect on the queueing network with regard to service 

center Sft is equivalent to the following load-dependent queueing network. 

3-4 
i jobs 

T^<i) is the load dependent input rate of a single queue. 

i jobs 

1 0 3 



where T K (0)=0. The probability that a service center S K has i customers is: 

i-1 

where 

p K ( i ) - P k ( 0 ) • n Q [ T K ( M - j > / MK<i>] 

M i-1 1 

P K ( 0 ) - [1 + E H 0 { T K < M - j ) / M K ( J ) j r 1 

3.3.9 

which are exact in the same form of equation (3.2.2) and (3.2.3). 

From the above derivation, we know that T « ( j ) works as an interface between 

service center S « and the rest of the network. If service center S « is the free buffer 

queue, then [ 1 / T « ( D ] is the average life time of an occupied buffer, and the 

assumption of last section can be simplified as 

T « ( i ) - i • T ^ l ) 3.3.10 

Now we consider the more complicated network in which the integrated switch 

S 3 has other work to do besides processing the packets coming from integrated switch 

S|. Here there are streams of jobs flowing into switch S 3 , requesting service, and 

leaving the queueing network. The queueing network becomes: 

There are two kinds of customers. One kind includes the buffers of the current 

integrated switch and the corresponding packets; the other kind includes those 
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requesting service to switch S 3 other than the packets sent from switch Sv S 2 and $ 4 

are assumed to be the trunk lines between integrated switch Sj and S3. S « is the free 

buffer queue of the current integrated switch Sj . Let us represent the network as the 

left network of the following figure, and prove that the two networks are identical as 

far as the first kind of customers is concerned. 

K 3 > K 5 H K 5 > 

Let i j , i 2 , ¡3 be the number of customers of first kind in service centers S x > S 2 , 

S 3 , respectively. Let j 2 be the number of customers of second kind in service center 

S 2 - The service requests for both kinds of customers are the same exponentially 

distributed random variables. The service discipline for both kinds of customers is the 

same FIFO. Then, by the technique of independent balance equation developed by 

Baskett et al. [Bas73], the equilibrium state probabilities are of product form: 

P[»ii ¡2» j 3 » Jz3 - D h jO, ) h 2 ( i 2 , j 2 ) h 3 ( i 3 ) 3.3.11 

where ( i 1 +i 2 +i 3 ) «M , the total number of customers of the first kind in the queueing 

network. And 

ht<§> - <!/#•>> 

1 : 1 : 
3.3.12 h 2 ( i j> - (i+j>! -jiy < l / , ) ! - jiy 

h 3 ( i ) - ( l / X ) ' 
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where D is the normalization factor such that the summation of P [ i l f i 2 , i 3 , j 23 o v e r a " 

feasible states is one. 
oo 

D - [ = ? n P [ i i . i * ' » - J 2 3 r l 3.3.13 
, 1 +| 2+|g=M J 2 » 0 

The marginal distribution of h 2 ( i 2 ) is 
oo 

By the identity formula[Fel66], 

oo £ 2+l>4 yJ - C ( , + J ) yi » < l - y ) i + 1 3.3.15 
j « 0 J ' 1 * j - 0 **j 

so 

-i-1 h 2 ( i ) - < l - * / * ) - • - 1 • (!/>•)' 

- < l / « ' • (1 -y/vrl 

where $ « p - 7 , so 

P P i . » 3 3 8 8 D ' < 1 /M ) ' 1 ( l / » ) ' 2 < 1 A > ' 3 3.3.16 

where D* * D - d T h e above formula just presents the system state probability 

of the queueing network at the right side. 

Thus the external streams of requests to an exponential server of the closed 

queueing network will make the service rate decrease by the same amount. Then the 

pure closed queueing network can be solved. 

3.3.2. Queueing Network with Time Lag 

SENET is a special implementation for an integrated switch. The most important 

character is the frame format. According to the implementation at Carnegie-Mellon 
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University [Bar76], the switch will have frame buffers. There is a finite delay for the 

packing of a frame, transmitting it, and unpacking it. The delay is at least two frame 

periods, no matter how much processing power is available. Also there is the Ume 

required for transmitting a packet from one switch to another. Transmission line, S 2 , 

S4., •, • of the queueing network are actually more like a delay line. The queueing 

NETWORK IS REDRAWN AS FOLLOWS: 

4v 

" K - 2 

Service centers S j , S 3 , S|<_2 a r e defined as integrated switches. After a 

service request is completed, a customer, which is a buffered packet, is put into the 

output frame of the switch. After some delay, the packet will appear in the input 

frame of the next switch. The delay is defined as the period extending from the 

moment the packet is copied into the output frame to the moment the packet is copied 

from the input frame of the next switch. If the largest share of a buffer's life time is 

spent waiting for service at integrated switches, then the input rate of service center 

Sj< will be limited by the service rate of the integrated switch. On the other hand, if 

the delay is much longer than the waiting time and service time in the integrated 

switches, then T|^(i) will be proportional to i. 
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The delay line can be modeled as an M/G/oo queue. The customer encounters no 

waiting time; service time is the delay. Closed finite queueing networks with this kind 

of delay was studied by Posner and Bernholtz[Pos68]. The derivation is very involved, 

but the result is quite simple and powerful. The result has the same product form as 

the exponential queueing network, but the delay may not be exponentially distributed. 

Only the average delay enters the formula. 

P [ n l f n 2 , •, v ,n K ] = D hj faj ) h 2 (n 2 ) • • • h K (n k ) 3.3.17 

If jth station is a delay line of average delay Tj, then 

hj(nj) - ( T j ) n i / nj! 3.3.18 

Define pj as the probability that a packet will go to the corresponding i switch 

when it finishes the processing of the current integrated switch. The equation can be 

more simplified. 

h d ( n d ) « T n d / n d ! 3.3.19 

where n d is the total number of customers in delay lines rather than in the integrated 

switch, and 

is the average total delay. The state probability of n; customers in ith integrated 

switch becomes 

P[nj, for all i such that Sj<{switch}] 

- D [ I T S h,(n,)] h d ( n d ) 3.3.20 

where E n: + n j « M, total number of customers in the network. S is the set of 
icS ' a 

service centers of the queueing network which are referred to the integrated switch 

of the real communication system. 
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3.3.3. Numerical Results 

Figure 3.3.1 shows the throughput with respect to i. Here the delay line model 

of the last section is used. The delay time is set to be 15 milliseconds. The curves 

show the processing capability for the switching processors. When the switching 

processor can process four packets during each 10 millisecond frame period, the 

throughput is almost linear. If the switching processor can only process one packet 

for each frame period, the throughput reaches a maximum value very rapidly. The 

throughput is now limited by the switching processor and most of the buffers are 

queued in the system and waiting for processing rather than being transmitted in the 

communication links. 

T(i) increases almost linearly with respect to i when i is small; it rapidly 

approaches to a limit value when i is large. T(i) can be approximated by the following 

formula. 

T(i) = minimum of (ib, r ) 3.3.21 

where 1/b is the summation of average service time for a packet through the network. 

There is a physical interpretation for this. When i is small, the packets are 

widely scattered in the queueing network. The chance that a packet has to wait for 

another packet is ve ry small, so the throughput of the network increases linearly with 

respect to i. When i becomes large, the throughput is bounded by the processing 

capability of the network, so the increase in the number of packets will not increase 

the throughput. We will divide the curves into two regions: the customer-bounded 

region, i<r/b, and the processing-bounded region, i>r/b, respectively. 

The model we discussed in the last section is assumed in the customer bounded 

region. In that region, the switch has enough processing power to process all the 
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incoming packets. The blocking of packets is due to the insufficient buffer spaces. If 

the integrated switch is in the processing-bounded region, the number of buffers is 

not v e r y critical. In an ordinary packet switching network, if the system is in the 

processing-bounded region, the network is congested. For integrated switch, this 

condition is called the over-loaded state, i.e., \>(c-ic y ) . In the next section we will 

discuss the use of a secondary storage in the processing-bounded region. 
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FIGURE 3 - 3 . 1 THROUGHPUT OF NETWORK QUEUEING MODEL 

t 
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3.4. Secondary Storage Model 

In general, a communication processor will have a disk or a secondary storage 

device if the processor has to manage a file system as well as perform its switching 

function. For a pure switching processor, however, the speed of a disk is too slow to 

meet the needs of a real time environment, so a disk is seldom used. For an ordinary 

packet-switching network, like ARPANET, a disk is not necessary. Because the 

expected waiting length of packets at the switch is much less than the buffer space of 

the switch, congestion will not occur frequently. Although the function of the 

integrated switch is similar to that of an ordinary packet-switching network, we feel 

that for the specific environment, a secondary storage device might be helpful. For 

the integrated switch, the waiting time has a very large variance, and the expected 

frequency of congestion is rather high. A congestion of an integrated switch occurs 

when it enters the overloaded states, i.e., when the input rate is higher than the 

processing capacity for the Class II packets. This will happen whenever i, the number 

of Class I customers, is above a certain level such that ( c - i s c y ) ^ * ^ - Once congestion 

occurs, not only will packets passing the congested switch be slowed down, but all the 

adjacent switches will be affected. All the packets destined for the congested switch 

cannot be sent out at regular rate, and the adjacent switches will have less buffer 

space and processing power to process other packets. When the cause of the 

congestion disappears, some time is required to release the congestion of the network, 

because the expected frequency of the integrated switch being in the overloaded 

states is rather high, a secondary storage device is suggested for the integrated 

switch. Such a device will prevent the adjacent switches from being affected by 
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congestion and speed up the recovery process after congestion. When the integrated 

switch is in the overloaded state, it can pump the excess packets into the secondary 

storage device rather than block them. Although the packets will still suffer extra 

delay, time to transfer to the disk and back, an overloaded switch will not affect its 

neighbors by blocking the packets transmitted to it. 

Whether to block a packet and let it be transmitted again or to accept it and put 

it into disk is unclear. For both cases, the packet will suffer extra delay. A four-frame 

period is usually required to make sure a packet is blocked and to transmit it again. 

The transfer time to and from a disk is of the same order of magnitude, so once the 

situation happens, it is going to suffer about the same amount of delay. There are 

merits to blocking a packet rather than putting it on the disk, however. This is 

especially true when the dynamic routing algorithm is used to determine the fastest 

route for a packet. It is hard to determine the response time if the next switch gives 

a quick positive acknowledgement but puts the packet in disk for a long period. On the 

other hand, the use of a disk will relieve the congestion once it occurs. 

3.4.1. Modeling 

A model similar to a water container is used to model the secondary storage 

device. The buffer space is modeled as the water container with input rate X and 

output (service) rate p. If the container is full, no more water can come in; if the 

container is empty, no water will flow out. Unlike an ordinary container with one input 

pipe and one output pipe, this container is connected to an infinite reservoir through 

two extra pipes at water levels Nj and N 2 . When the water level is below Nj , another 

water stream of rate oc will flow into the container. When the water level is above N 2 , 
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a water stream of rate will be pumped out of the container. The purpose of these 

two extra pipes is to decrease the probability of the container being full and to 

increase the usage and the throughput of the container. 

to and from an infinite 
^ reservoir 

Returning to the integrated switch, we can let the water container stand for the 

buffer space and let the infinite reservoir stand for the disk, the secondary storage. /3 

and OC will represent the transfer rates to and from the disk. The secondary storage 

is used only to store the excessive data packets, and a full parallel processing of the 

switching processor and the disk controller is assumed. Whenever the number of 

packets exceeds the limit N 2 , the disk will be enabled to transfer a block of data onto 

the disk. When the number of packets in main memory is below N j , the reverse 

process occurs, i.e., a block of data is brought back into the main memory. A block of 

data moving to and from the disk may contain one or more data packets. This model 

reflects the nature of a communication procssor. Unlike most I/O queueing models of 

large multi-programming computer, the data (packets) are not designated to any 

specific users. Like the water in our analogy, which makes no distinction between 

users, this model does not require that the user's space and the packets be monitored. 

Every process is assumed to be memoryless, i.e., Poisson input process, 
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exponentially distributed service time and block transfer rates. A Markov chain model 

is built as follows: 

The state of the system is the number of packets or the number of occupied buffers in 

the system, where X is input rate of packets, the average service time, 1/c*, the 

average time to read a block of data from the disk, 1//?, the average time to write a 

block of data on the disk, K, the number of data packets in a block, and N, the number 

of buffers in the primary memory of the switch. 

In the above model, a block transfer from the disk will be requested as long as 

the number of occupied buffers is less than Nj . The transfer request will be granted 

only if there are still less than Nj occupied buffers at the time the block is completed 

Similarly, a block transfer to disk request will be granted only if there are still more 

than N 2 occupied buffers after the transfer is completed. This scheme can be put into 

the real system ve ry easily, because the transfer to and from the disk is actually a 

copy process followed by a deletion process. Now we define : 

Pj « probability that system is in state i 

- probability there are i occupied buffers. 

To simplify notation, we use the following: 

0 i<0 or i>N. 

0<i<N 
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fUj 0<i<N 

n6 

0 otherwise 
3.4.1 

0<i<N. 

O otherwise 

N2<i<N 

0 otherwise 

a n d Pj - 0 f o r i<0 a n d i>N. 

Then the balance equation becomes 

(X, + j i , • * j + /J,) Pj - X j . jP , . , + M j + l P j + l + ^ . k P j . k 4 / ? j + k P i + K 

for all 0<i<N 3.4.2 

Pj can be solved with the normalization constraint, 23 Pj*l . A special technique 

is developed to solve this problem without inverting the (N+1)X(N+1) matrix. We will 

call this technique forward and backward algorithm. This algorithm can also be used to 

solve a much more complicated problem, as will demonstrate in the next section. 

3.4.2. Forward and Backward Algorithm 

The algorithm is similar to the recursive technique developed by Herzog et 

al.[Her75], The recursive technique introduces the substitution 

p i , j - k ci,i v 

for some boundary states and, from some boundary conditions and the balance 

equations, C. . are calculated. The algorithm has a serious drawback: When the 

transitions becomes complicated, as they do here, no single set of boundaries can be 

found to solve the whole system. Here we suggest that two sets of boundary states 

be chosen instead of one. From the balance equations, the boundary states will meet 
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somewhere in the state space. By matching those probabilities, we will obtain the key 

to solve the whole system. 

The basic transitions to and from state i are: 

At most six of the eight transitions to and from state i will be nonzero. 

* i ' <*i+k " <*i+k • fi\ " 0 

If the boundary chosen is P 0, then all the transitions from states i-1, i, and i-k 

are known and can be used to calculate state (i+1), The process will stop at i when 

/*i+k ' s nonzero. The same thing occurs if the boundary is chosen as PJSJ and the 

recursive process stops at i when c£j_k^O. So, instead of one boundary state, there 

are two, P 0 and Pjyj. This is the philosphy of the forward and backward algorithm. 

Let 

P j - a j P o + bjPN 3.4.3 

then we will have 

( X j + / i j * <*| + fi$ a { P 0 + ( X j + o t j + bj P N 

" < x i - i a i - i + f i+ i a i + i + ' c *Mi a i -k + ^i+kai+k> p o 

• < x i - i b i - i + * i + i b i + i + * i - k b i - k + ^i+Kbi+k> P N 

Set the coefficient of P 0 on both side of the equation equal, and we will have: 

( X j + M i + c * j + flfl a , - X M a M + + o d h k a j . k + /V+k a i+k 

( X ; ^ + c d j + fl.t) bj = X j . j b i . , + j i k I b i + l + <*i-Kbi-k + /*i+kbi+k 

3.4.4 
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with the boundary conditions that a 0 « l , b 0~0, a ^ O , bf.j-1. 

The forward process is 

X i + I - n , + l [ ( X ^ H J ^ + ^ ^ X , - X ^ X , . , - odj . K X, . k - / ? j + k X , + k ] 3.4.5 

and the backward process is 

x i - l Œ t ( V ^ i + W - .uj+i xi+i - o 6 j . k X j . k - /8 i + k X , 4 k ] /X j . 1 3.4.6 

The algorithm calls for using the forward process to calaulate Xj from i=0, 1, 2 , 

• , • , as far as possible until / 3 j + k is nonzero. The backward process is also used to 

calculate Xj from j « N , N - l , N-2, • , • , . Where Xj is either aj or bj. The two processes 

will meet, and we will have two different sets of aj and bj representing the same Pj, or 

we will have 

Pj - a j p o + b j P N 

= a' :P n + b.P, 3.4.7 

3.4.8 

Then we get P 0 « (b j -b j )Pjg/(aj -aj) and 

Pj - [(bj-bjVtej'-ajJ'-aj + b , F N 

and 
N 

P N - t f 0 { (bj -b/jAaj ' -aj ) • aj + b j } ] " 1 3.4.9 

There is one situation in which the above algorithm does not give a solution is 

the one in which the following states exist in the system: 

i.e., N 2 -Nj<K. In this situation, a block transfer coming from the disk will automatically 

generate a block transfer request back to the disk. The data structure of the 

algorithm are two array A[0:N] and B[0:N]. 
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Algorithm 3.1 

119 

[0](initial) Read in values of oc, ft, X, N1, N2, N, K. Set A[ l>B[ l>smal l for 

1-1,2,- , - ,N, where small - - 1 0 . 0 " 1 0 . 11=0, I2 -N, and A[0]=B[N]=1, 

A [ N ] - B [ 0 > 0 

[ l ] ( forward process) If U+K2N2 and A[Il+K>small Ihcn go to [3]; otherwise 

X *- right hand side of equation (3.4.5) replace Xj by A[IJ. 

Y «- same as above equation except for B[ ] rather than A[]. 

[2] if 11-12 then goto [5}, otherwise A[ I1>X, B[I i ]« -Y and goto [1]. 

[3](backward process) If I2-K>N1 and B[I2-K]=smal! then goto [1]; otherwise set 

X «- right hand side of equation (3.4.6) replace Xj by A[I]. 

Y <̂  same as above equation except for B[ ] rather than A[ ]. 

Set I2H2-1 ; 

[4] If 11-12 then goto [5]; otherwise A[12]<-X, B[12]<-Y, goto [3] 

[5](calculate the ratio PO and PN) se<- (B[11]-Y)/(X-A[I1]) 

[6] Set 
N 

P[N] - { = (^Af l j+Bt l ] ) } " 1 

1=0 

[7] P[I] *-(R*A[I]+B[I])*P[N] for I « 0 , l , 2 , v , N - l . 

Let us review this algorithm in relation to the problem. First we will go to 

forward process and calculate I I «0,1,2,3, • • until I1«N2-K. Then we will switch to the 

backward process. The backward process will calculate I2=N,N-1,- • , until for some 

value, either I I«12 or ALPHA[I]>0. The latter case implies that I2<N1+K; then we go 

back to the forward process. Because the A [ l l ] and B [ l l ] , which are A[N2-K] and 

B[N2-K] , are already calculated at backward process, the forward process can go on 



until I I »12 . After I I »12, we can use equation (3.4.8) to calculate the ratio of the two 

boundaries, PO and PN. Then from the normalization constraint, the exact value of the 

boundary states can be calculated. 

3.4.3. Numerical Results 

The secondary storage device is suggested mainly for use with the integrated 

switch often in overloaded states. So, unlike in Section 3.2, where jjj=ijj is assumed, 

the service rate of occupied buffers, or the rate at which the occupied buffers are 

released, is assumed to be: 

where c is the number of virtual servers of the system without the free buffer queue, 

or equal to r/b of equation (3.3.21). c is also the breaking point of dotted lines of 

Figure 3.3.1. From this definition, c may not be an integer and may not be equal to 

any number of physical servers of the system, CJI is the maximum throughput the 

queueing network can handle. So, if the number of occupied buffers is less than c, 

some of the processing power is wasted. Where the utilization factor of the network 

is defined as: 

the system is fully utilized if the number of occupied buffers is greater than c. 

Here JJ is the b of equation (3.3.21), i.e., 1/ji is the average total service time 

required for a buffer to pass through the network. Suppose a switch will wait 2/p 

time to determine that a packet is blocked and to retransmit it. As we discussed 

before, 2//i will be of the same order of magnitude as the transfer time of the disk. 

3 . 4 . 1 0 

N min(i,c) 
c 

3.4 .11 
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So, O£«/?«J I/2 is assumed in most of the numerical results, i.e., the extra delay required 

to retransmit the blocked packet is the same as that required to put the packet onto a 

disk. 

Blocking probability and the utilization factor are the two criteria used here. 

Figure 3.4.1 shows a typical relationship between blocking probability and the 

utilization factor when the system processing capability changes. It also shows the 

advantage of the secondary storage device. Figure 3.4.2 shows the effect of c: The 

number of virtual servers of the network, changes if the traffic intensity, is kept 

constant. Figure 3.4.3 and 3.4.4 show the effect of the choice of Nj and N 2 : In 

overloaded states, \>cji, the choice is rather unimportant, while it is quite critical in 

under- loaded states, \<cji. Figure 3.4.5 shows the effect of the disk transfer rate: The 

blocking probability decreases linearly as the disk transfer rate increases. For X=c^, 

the blocking probability almost vanishes when For overloaded states, 

X=1.5*CM, the blocking probability becomes half for a disk with transfer rate C* - J I , 

where 1/ji in general will be in the order of 30 milliseconds or more. So even a 

moderate speed disk can improve the system behavior greatly. Figure 3.4.6 shows the 

effect of using the Erlang(od,k) disk transfer time instead of the exponential transfer 

time, where Erlang(o£,k) distribution has a mean of l/oc and a variance of oc2/k. In this 

f igure, Erlang distributions of the same mean, but with degree one and 10, are 

compared. Although the distribution looks a little different, the blocking probability 

and utilization factor differ from each other very little. 
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3.5. Conclusion 

Both first-fit algorithm and dynamic assignment of fixed-size buffers sacrifice 

the larger size packets too much in a heavily loaded system. But both give a superior 

memory management than other schemes in a lightly loaded system. The proper choice 

of a management schemes depends on the real environment of the communication 

network. Also the priority system discussed in section 3.2 is suggested. A small 

sacrifice of the low priority job can decrease greatly the blocking probability, and 

shorten the response time of high priority jobs. For uniformly distributed packet size, 

the choice of the buffer size is not critical, while the method of distributing the 

memory among different size buffers is important. A secondary storage device might 

well be worth the trouble. Even a relatively slow disk can improve the network 

performance, especially If there is a high probability that integrated switch will enter 

the overloaded states. 
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CHAPTER 4 SENET Network Design 

4.1. Introduction 

The special frame structure of the SENET network brings up the two special 

problems: the channel capacity assignment problem(CA) and the frame skew assignment 

problem (FA). The CA problem is solved once and for all for other communication 

networks at the time of their design stage. However, the SENET network will 

dynamically assign the channel capacity to data traffic under different loading of voice 

traffic, and therefore the CA problem also has to be solved dynamically. The FA 

problem exists only for the special frame structure of the SENET network. As 

mentioned in Chapter 3, the information contained in a frame can only be processed 

after the whole frame is received accurately, and no information in a frame can be 

changed once the switch has begun transmitting the frame. Different frame skew 

assignments may differ by from several milliseconds to one frame period at one 

switching node. This delay is essential for the voice slots which have to pass several 

nodes from source to destination. 

In Section 2, general design variables, performance measures and a formulation 

of the problem of designing a SENET computer-communication network are stated. In 

Section 3, the capacity assignment problem is viewed with the small frame assumption. 

It becomes the general assignment problem that [Ger73] among others has solved. 

Then the coordinate descent method and Newton's method are used to solve the 

general case. A simple example is also given showing the capacity assignments of 

different criteria and constraints. In Section 4, the skew assignment problem is solved 
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as a M1LP( Mixed Integer Linear Problem). In Section 5, a heuristic algorithm is given 

for the skqw assignment problem and the results are compared with those of Section 

4. 

1 3 0 



4.2. The Model 

There will be three sub-sections: variables, performance criteria, and the 

formulations of the problem. 

4.2.1. Variables 

Here we list the variables that are to be considered in this chapter. The list is 

by no means complete and a more sophisticated design might involve additional 

variables( such as: reliability, priority for voice and data, etc.) 

Topology: We consider a directed network [N:A], where N is the set of nodes( of 

cardinality n), and A is the set of directed arcs( of cardinality m). We shall use 

Nj to indicate the ith node and Ay to indicate the directed arc from Nj to Nj. For 

convenience of notation, we also index the links as directed arcs with subscript 

to refer to the jth link as Aj, and index the node Njj as the node at which the ith 

link is connected to jth link. Sets [N:A] are the topology of the communication 

network and are assumed to be fixed over the whole chapter. 

Channels: To each link is assigned a capacity C j which is the bandwidth for data traffic; 

such capacity will be only considered as a continuous variable. Also, for a given 

link i there is a cost Dj associated with value of capacity: 

Dj « d j (C j ) 4.2.1 

Which may be the real cost of the links or just a reflection of voice loading on 

the link. For the linear cost situation we will use d as the cost vector, in which 

dj, the ith element of d, is the capacity-cost of ith link. 

Traffic Matrix: Let XJJ [packets/sec] be the required average rate of transmission of 
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data packets from link i to link j . If link i is not directly connected to link j then 

XjpO. X 0 j is the traffic generated by the node where link j begins. \ j 0 is the 

traffic destined for the node where link i ends. The routing policy of the packet 

is not considered here. 

The channel flow Xj is the traffic on link j . 
m m 

X: = E X:: = E X:: 4.2.2 
J ¡«0 fJ i=0 J* 

Let [bits/packet] be the average packet size. Xj has to be less than CJJJ for 

all the links, otherwise the queue length of link j will be infinite. 

The throughput X of the whole network is defined as the summation of all 

channel flow. 
m m m 

X = E x , =» E E X n 4.2.3 
i*l 1 i » l j « 0 »J 

Frame Skew: Let S j be the frame skew of link j . S j is defined to be greater than or 

equal to zero and less than F, the frame period. All the frame skews are 

relative to each other, so there is one degree of freedom of skew assignment. 

Usually we set S j = 0 , which means the first link is the standard link. The skew 

assignment will only affect the delay of traffic being transferred it will not affect 

the traffic when it is first generated and when it ends at the node. 

Other variables: The storage available in the node could also be considered as a design 

variable and associated with a cost. However, in this chapter no such 

consideration is made. 

Priority can be assigned to packets according to their nature (acknowledgement, 

control packet intrinsic priority, etc.) or weighed by their length. The possibility of 

dividing the packet into priority classes( with the number of classes and boundaries as 

design variables) would probably affect the design of the network; however, we do not 

consider such a feature and assume that all queues are managed on a FIFO basis. 
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4.2.2. Performance Measures 

Several criteria can be adopted to measure the performance of a communication 

network. The lists here are the performance measures most commonly used. 

Average Message Delay T 

Recall, from [Kle70], that the general expression of the message delay T is of 

the following form: 
- m m 

where \ * the total throughput [packets/sec] 

Sj « frame skew of ith link, 

pj * propagation delay in link i [sec/messg] 

rijj » processing time in the node connecting link i to link j . 

Tjj «= delay on the node connecting link i to link j [sec/packets]. 

Tjj consists of the node processing time, queueing time for link j and the waiting 

for the frame to be transmitted. For the special frame structure of the system, Tjj has 

the following form: 

Tjj - s i j + r i j< s j j>* F * ° r W 4 - 2 - 5 

where Sjj is the mis-matched delay of link j from link i. 

S j j • Sj-(sj+pj+njj) mod F 

is the time left for data packets to be transmitted after they have arrived at the 

node and had the necessary processing. 

Because the number of frames is a non-negative integer random number 

depending on sjj , rjj is the number of frames the data packet has to wait until it is 
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transmitted. For X 0 j traffic. s 0 j is assumed to be uniformly distributed in the interval 

[0,F) and rjj is half a frame period. 

A queue for link j is formed. The input is a joint of streams Xjj for all i, each of 

the streams comes in at the discrete time - S j j + k ' F for all integers k. The average Tjj 

becomes 

CO 
T:: « S : : + E P r O b [ ( k - l ) ' F < W-S: : < k'F]*kF 4.2.6 

where W is the waiting time at the queue of link j . 

In this chapter, we will make the following assumptions in different situation. 

(i) Independent Assumption: We are using the assumption made by 

Kleinrock[K!e72] that the independence between the arrival time and the length of a 

data packet can be interpreted as that the packet enters the network from an external 

source. With exponentially distributed packet length and no acknowledgement traffic 

[Kle70], the queue is modeled as a M/M/l system. 

P r o b t r ^ S j j ) « k] - P rob[ (k - l ) -F< W - S j j < k - F ] 4.2.7 

k F + S : : 

= f J dF(W) 4.2.8 
( k - D F + S j j 

where 
clF(W) - (MCjAjtexpH/jCj-^WJ dW 4.2.9 

So 

r «) k= 

oo 
£ k - P r o b R k - D - F s W - s ^ k - F ] 
k=l J 

0 0 

- E k -exp{ - [ (k - l )F+s i j ] ( M c j -X j ) } - k - e x p M k F + S j j X M C j - X j ) } 

00 

- e x p t - ^ C j - X j J S j j l ^ e x p t - k ^ C j - X j J F ] 

l - e x p [ - < » i C j - X j ) F ] 134 



i>0 4.2.11 

for 
r 0 j - F/2 • F/dicj-Xj) 4.2.12 

(ii) Deterministic Assumption. The packet size and the traffic flow are 

deterministic. The voice slots can be considered as a deterministic packet flow in the 

network. This is also the limiting case that the frame period is large compared to the 

mean service time of a link for a data packet. By the law of large numbers, the 

standard deviation of the summation of n independent random numbers is only 1/n of 

each of the individuals. In the frame structure, all the packets coming in a.frame 

period are packed and transmitted together. The variance of waiting time decreases 

as the frame size increases, and r;j>0 is negligble compared to SJJ. We have 

Mean-kth-Power Delay T(k) 

In the paper [Mei72] it was observed that, in minimizing T, a wide variation was 

allowed among the delays Tjj. In order to take into account such variation, the 

following alternative performance measure was proposed: 

where k>l . If k is large enough, the variation among packet delays is 

considerably reduced at the expense of a higher average delay. [Mei72] 

/• \ « m m . 
T< k >- [ i r ; E x, T k . 4.2. J 3 
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Maximum Average Delay Tmax 

Maximum average delay is the special case of mean-kth-power when k goes to 

infinite, it becomes the so called "mini-max criterion". This performance measure is 

used when the guaranteed maximum delay can not exceed some prefixed value. In a 

communication network, especially* for voice and interactive data, this performance 

measure is often used at the expense of a higher average delay. 

T max= m a x
 i t . . I T u ' } 

over all I,J 

Cost 

The total cost of the communication is assumed to be: 

m 
D - JEd.(cj) 

where the function dj( • ) may be the real physical cost of the communication 

links or just a reflection of the blocking probability of voice calls. dj( < ) may be linear 

or concave, depending on the characteristics of the link. 

There are other important criteria such as the throughput and the reliability of 

the system, which we will not discuss here. 

4,2.3. Design Problems 

(i)Optimum Assignment of Capacity (CA problem) 

given : topology, throughput, routing, frame skew 

objective : minimize T 

design variables : capacities. 
m 

constraints : D = f d ^ ) < D m a x 4.2.14 

JICJ > Xj for all j 
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(iiXDptimum Assignment of Frame Skew (SA problem) 

given : topology, throughput, routing, capacity 

objective : minimize T 

design variables : frame skew. 

constraints : /ic: > X: for all j 4.2.15 
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4.3. Capacity Assignment Problem 

given : topology, thruput, routing, frame skew 

minimize T 

design variables : capacities. 
m 

constraints : D - 3C dj(c;> < D m a x 4.3.1 

F4CJ > \J 

The independent assumption of [Kle72] is used. Ty is assumed as follows: 

exp[-OIC r\j)sj:] 

TIJ - « y •
 ]-^- -F 4.3.2 

l-exp[-(/ICJ-Xj)F] 

where SJJ - SJ-(SJ+Pj+n.J) mod F, and 0<SJJ<F 

4.3.1. Small Frame Capacity Assignment 

Here the CA problem is solved for the small frame assumption. At the end of 

this section we will explain the physical meaning of this assumption. It will be clear 

then that this assumption may apply to some systems whose the frame sizes are not 

small. 

The small frame assumption is that the (JJCJ-XJ)F is very small, all the nonlinear 

term of the Taylor Series Expansion of equation (4.3.2) are neglected. 

L-DICJ-XJ>JJ 
TIJ *IJ + 

[NCJ-Xj]F 

SIJ + ¡¡¿5 " »II 

4.3.3 
YEJ-XJ 

This is a well-known formula for ordinary communication networks [Kle72]. Each 
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link is modeled as a M/M/l queue with exponential service time and Poisson input. 

The service rate of a link is Cj [bits/sec] and the input rate of data packets is Xj 

[packets/sec]. The average packet length is [bits/packets] and the average 

waiting time is JITJJ [seconds per packet]. 

The problem becomes: 

given : topology [N:A], data traffic routing Xjj, and frame skew assignment Sjj. 
. m . 

minimize : T - { f « E X r [ — V ^ } 1 ^ 4.3.4 
over c * j " l J ^cj-Xj 

m 
subject to : . ^d j ( c j ) £ D m a x 

îCj>Xj for all j 

This is the general mean-kth-power delay criterion [Mei72]. 

For the monotonic property of function x l / k , to minimizing x^ is equivalent to 

minimizing x under the same set of constraints. So the problem can be written as: 

1 ^ i 
minimize : T - f E X: [—V] K 4.3.5 

over c * j-1 J MCj-Ai 
m 

subject to : E d,(c,) < D m a x 

îCj>Xj for all j 

First the linear cost-capacity function is considered. The objective function is 

convex because it is a sum of convex terms and the set of possible c is also convex, 

therefore a local minimum is also a global minimum [Had64]. This problem can be 

solved using the Lagrange Multiplier. 

The Lagrangian L for the problem is 

L = T + / <?<D-D m a x ) 4.3.6 

1 m 1 u m 

" £ E i C H + ^ d i c r D m a x > 4 - 3 - 7 

where is the Lagrangian multiplier. 
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By differentiating the equation with respect to Cj, we obtain 

A ' Xj i 
- L « _ i [ _ L _ ^ - i ) . _ L l L ^ + fi d 4.3.8 

By setting the partial derivative to zero we obtain the optimum expression for Cj 

lie; - \j •od (X J /d J ) 1 /< k + l ) 4.3.9 

where od is a parameter independent of j . Computing od by satisfying the cost 

constraint obtain: 
m m 

This expression of /iCj is first derived by [Mei72]. When k-1, the problem is to 

minimize the average delay of the network, and the optimum assignment of Cj is so 

called "square root" assignment [Kle72], For the min-max criterion, k~>oo, Cj evenly 

distributes the residue capacity ( D m a x - E djXj). 

n c j ^ - Xj + oc{co) = Xj + ( D m a x - E djXj)/m 4.3.11 

Concave Cost-Capacity Function 

For the concave cost-capacity function, the algorithm to find the local minimum 

can be constructed similarly to the algorithm developed by [Ger73] which solved the 

special case of k-1. No algorithm to find the global minimum existed. The algorithm 

follows, the detailed proof of existence and convergence is cited in [Fra72] and 

[Ger73]. 

Let us assume that d j ( C j ) is a concave, nondecreasing function of C j , for 

i* l , 2, 3 , . , . , N. (see Figure 4.3.1) 
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d ( 0 

- F ^ C 

FIGURE 4.3.1 CONCAVE NONDECREASING COST FUNCTION 

The inspection of the cost constraint of equation (4.3.1) shows that the set of 

feasible Cj 's is not convex. Therefore, there exist in general, several local minima. If 

we assume that all functions d j ( C j ) are continuous and differentiate for Cj>fj, then the 

local minimum is characterized by the following properties: 

Property 4.1 

If c is a local minimum for the concave problem, then it is also a global minimum 

for the problem with cost-capacity curves linearized around c. (see Figure 4.3.2) 

A 

C O S J 

_ > c 

FIGURE 4.3.2 LOCAL MINIMUM 

The above property is an immediate consequence of the fact that the set of 

feasible moves òc around c is the same for both concave and linearized problems. 

Property 4.2 

If c ^ is a feasible assignment, and c* n + 1 * is the solution of the problem 

linearized around c ^ , then 

T(c("+D) < T ( c ( n ) ) 4 < 3 # 1 2 



D c o n c a v e ^ ( n + 1 ) ) * D|inear^ ( n + 1 ) > * ^max 4.3.13 

where D c o n c a v e ( c ( n + 1 > ) is the cost computed on the concave curves and 

^ l i n e a r ^ n + * ^ *s ^ e c o s * computed on the linearized curves of c ^ . 

Property (4.1) and (4.2) lead to the following algorithm for the determination of 

local minima. 

Algorithm 4.1 Let c ^ be a starting feasible assignment. 

[0] (initial) Let n»0, T 0 «oo 

[1] Compute c^ n + ^*solution of the problem linearized around c ^ and compute 

T n + 1 = T ( > + D ) . 

[2] If | T n + p T n | < ^ , where £ is a proper positive tolerance, stop; c ^ n + ^ is a local 

minimum within the tolerance, otherwise, let n=n+l and go to [1]. 

There is an important case of the concave cost-capacity funtion in which the 

local minimum is unique and coincides with the global minimum. Such a case is known 

as the "power law cost function" [Kle70] and the cost function is given by: 

djtcj) - d ^ + d j 0 4.3.14 

where 0<oCSl 

The "power law cost" case has been discussed extensively by Kleinrock and a 

proof of uniqueness of the local minima can be found be in [Kle70]. 

Now we will discuss the physical meaning of the small frame assumption. The 

first order Taylor series expansion will be a good approximation if (1-\J//JCJ)/JCJF is 

small for all j . There are two situations for which this condition will hold. One is when 

jiCjF is ve ry small which is why we call it the small frame assumption. CjjF, which is the 

number of bits for data traffic during a frame period is small. This situation may occur 

on a slow speed link sub-network or on a network with heavily loaded voice traffic 



that little capacity is left for data traffic. The other possibility is when (1-XJ/JJCJ ) is 

small for alt j . This is a heavily loaded network for data traffic. The average queue 

length of links is relatively large and the nature of the frame structure loses its 

proper ty of discreterness. . 

If either of the above situations happens, the small frame assumption applies and 

the network becomes the ordinary packet switching communication network. 

4.3.2. General Capacity Assignment 

The small frame condition is dropped here. First the linear cost-capacity 

condition is considered. We have the problem 

given : S j j , X , j , d|. 

m m Xjj e x p H ^ C j - X j S i j j 
minimize : T - IT E — [ — — — ] k 4.3.15 

over c J " 1 ' Œ ° X l -expHMCj -X^F] 

subject to : CJ>XJ 

j ? i d J c i * W 
The objective T is also convex because it is a sum of convex terms and the set 

of feasible c's is convex, therefore a local minimum is also a global minimum [Had64]. 

We first ignore the constraint JICJ>XJ and verify that the solution satisfies it a 

posteriori . We also notice that the optimum solution satisfies the cost constraints at 

equality and therefore regard it as arj equality constraint. Now the problem becomes: 

minimize T(c) 4.3.16 
over c 

m 

subject to j E d j C j - D m a x 

Instead of minimizing the above problem, the following unconstrained problem is 

minimized. 
m 

minimize f(c|/?)~ T(c)+/?(E d j C j - D m a x ) 2 4.3.17 
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Let {fifo}, h » l ,2 , - - - - , be a sequence tending to infinity such that for each h, fyfO 

and ftfr+^fth- Then for each h solve the problem : minimizing f(c|/tf|T) and obtaining, a 

optimum solution By the theorem of section 12.1 of [Lue73] we Know that any 

limit point of { c ^ } is a solution of the origin problem. Because the local minimum is 

also a global minimum there is only one limit point of { c ^ } . And for each h such that 

j ^ l d j c j h * " D max' t h e n c ( h W h * 1 ) and therefore the optimum solution has been 

found. The algorithm is as followed: 

Algorithm 4.2 

[0] (initial) set n=0, solve for f(c|/?0) by some global convergence algorithm. 

[1] if 1C d : C ^ = D m a x , stop; c*h) is the optimal solution, otherwise fth+i^ot-fifc 

[2] Solve for f (c^ + *)|/?h + i ) by some fast locally convergent algorithm, go to [1]. 

If we choose too large a fi0 to begin with, the initial solution will converge ve ry 

slowly, while too small a fi0 will result in a lot of iterations. Here we propose two 

different algorithms for [0] and [2]. For h»0 the property of global convergence is 

v e r y important, we have to find some thing to begin with. The Coordinate Descent 

Method is chosen for its well-known global convergence property. But for h>0, the 

approximate solution is known, so the local convergence rate is the criterion with 

which to choose the algorithm. Newton's method for m-dimension is chosen. Newton's 

method has convergence rate 2 but has to inverse a matrix of dimension m. In this 

case, there exists a neat analytic form so that the inverse is quickly obtained, and we 

have a v e r y fast algorithm. 

Coordinate Descent Methods 

instead of solving the m dimension problem at once, we solve the problem one 

dimension at a time. 
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minimize f(c«,c ? , . . .cm) 
over C : m 

4.3.18 

The cyclic coordinate descent algorithm minimizes f cyclically with respect to the 

coordinate variables. Thus C j is changed first, then c 2 , and so forth through c m . The 

process is then repeated starting with C j again. Although no proof can be given for 

the global convergence of Newton's method. Newton's method of one dimension for 

this problem can be proven to be globally converge. For coordinate C j , fj(cj) is the 

•t 

object function. Because fj(cj) is convex, fj (cj)<0, the local minimum is also the global 

minimum and there is at most one local minimum point. f j ( C j ) is continuous and its first 

derivative is also continuous for all JICJ>\J. f j ( C j ) is negative at JICJ*\J and positive at 

C j « o o , so the stationary point, f j ( C j ) « 0 , exists. Because of its convex property, fj(cj) 

has a local minimum. In the second derivative of fj(cj) with respect to C j every term is 

positive and is a monotonic decreasing function of C j . It is easy to prove that 

Newton's method is globally and locally convergent for such a function. The iterative 

formula is as follows: 

By the theorem of the coordinate descent method, if every coordinate is globally 

convergent then the whole problem is also globally convergent. 

Newton's Method 

Newton's method for m-dimension has a local convergent rate of 2, although it 

may not be globally convergent. For this problem, it does diverge at points far away 

f / ( c < n ) ) / f / ( c j n ) ) 4.3.19 

from the optimum points. The order of convergence is defined as the supremum of the 

non-negative numbers p satisfying 
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— 
0< limit <oo 4.3.20 

n-+oo |rn-r*|P 

for sequence { r n } converge to r*. 

Before explaining the algorithm, let us introduce some notation: For a scalar 

function f ( c ) of vector c, the gradient of f(c), Vf(c), is a vector whose ith element is the 

partial derivative of f ( c ) with respect to C j . The Hessian matrix, F ( c ) , is defined with 

the (i,j) element as the secondary partial derivative of f(c) with respect to C j and C j . 

The iterative formula of Newton's method of m-dimcnsion is 

c (n4i) , c(n) . [ p ^ n ^ - i v f ^ n ) ) 4 . 3 . 2 1 

f(c) is the Hc\fl) of equation (4.3.17), it is easy to see that f(c) has second partial 

derivatives. If c is near the minimum point, F ( c ) is positive definite and thé method is 

well defined. Now we will prove that F(c) is positive definite for every point. F ( c ) has 

a v e r y good property that it can be represented as a diagonal matrix G ( c ) plus 2*/?rfd\ 

Where G , (c ) , the (i,i)th element of the diagonal matrix G(c) , is equal to the second 

derivative of T ( c ) with respect to C j and is greater than zero for all cj. 

F ( c ) » G ( c ) + 2 / ? K d < f . 4.3.22 

where J is the cost-capacity vector, and d* is its transpose. By definition of 

positive definite. 

x F ( c ) x - x . G ( c ) x . 2/S h(x ,rf) 2  

m 
= X j 2 G j ( c ) + 2/3 k(x ,d) 2 

>0 for all c 4.3.23 

The equality holds only for x « 0 , by the definition that F(c) is positive definite for 

all c . Because F ( c ) can be represent by this form, F(c) can be inversed very easily. 

[F (c ) ] - 1 s [ C ( c ) . 2 / î h ( I d T 1 

= G'l(c)[î * 2 / î h C " 1 ( c ) i I c r 3 " 1 
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* G - J ( c ) [ I - 2/?hG-1(c)clcl7(l+2/?ha,G-1(c)<I)] 4.3.24 

Here we use the identity formula 

[ I + x y T 1 - I - 4.3.25 
L * J 1+x y 

Concave cost-capacity condition 

m 

i » l 
becomes: 

The constraint is now 3E dj (c j )<D m a x > and the unconstrained optimum problem 

minimize f(c|/?h) • T(c)+/?h( £ d : ( c : ) - D m a y 

over c J * ! J J 

4.3.26 

The Hessian matrix now has a more complicated second term. Let D(c) be the 

second term of F{n). Then the (i,j)th element of D(c), the second derivative of 
m 

[ jE^ d j ( c j ) - D m a x ] 2 with respect to Cj and Cj, is as follows: 

D,j(c) - 2 [ - ^ j ( c i ) } [ ^ d j ( c j ) ] 4.3.27 

D | , ( c ) - 2 [ — < J J ( C J > ] 2
+ 2 rdi( ci>[?1

dq< cq>-Dmax3 

dCj d c 2 q - l 

d 2 m 

- - 4.3.28 

i 

D can be presented by a diagonal matrix VdVd\ where Vd is the gradient of d, 

with ith element dj (CJ). The Hessian matrix F(c) of equation (4.3.21) becomes: 

F(c) - C(c) • D(c) 
m 

= C(c) + 2/? hVdVd' + 2/J hH(c)[jC d j ( c j ) - D m a x ] 4.3.29 
«• 

where the diagonal matrix H(c) has ith element dj (CJ), the second derivative of d j ( C j ) 

with respect to C j . Now the positive definite property of F(c) may not be valid. The 

choice of ftfr must be made very carefully. In the begining, ft^ is chosen very small so 
m 

that dj(Cj)-Dmax]Hj is always positive. Then the fi^ can be larger but 
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always keep d j ( C j ) - D m a x ] very small so that the Hessian matrix is positive 

definite around c^n\ the nth iterative value. 
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4.4. Frame Skew Assignment Problem 

In this section the problem of the skew assignment of SENET network is studied 

in order to minimize the data packet delay through the network. 

4.4.1. Formulation 

The capacity assignment problem has the very good property that both the 

objective and the constraints are separable functions( i.e. expressed by summations of 

terms, each term representing the constitution of an individual link). Unfortunately, the 

frame skew assignment problems do not have such good properties. Another problem 

is that the skew time is a mod function which is neither linear nor concave. To solve 

the FA problem is very difficult, so only the deterministic model is tried (i.e. the 

deterministic assumption in section (4.2), in which the service times of packets are not 

random variables). 

The problem is 

To simplify the terms without loss of generality, we will use njj to present the 

terms (pj+njj) mod F, The propagation delay pj on link i is absorbed in njj, the 

processing time for transfer traffic from link i to link j . The problem becomes 

4.4.1 

subject to : 0<s¡<F for all i 

minimize C X¡¡{[s¡ - (s¡+n:¡)]mod F} 
over s IJ J 1 , J 

4.4.2 

The non-linear mod function is replaced by the following form. 

z¡j = S j - (s¡+n¡:)mod F = s: - (s¡+n¡:) + k j j - F 
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where K¡j is an integer. If we define z¡j ts¡ t and n¡j as being in the range [0,F) then K¡j 

can only be one of three values 0, 1, 2. The above non-linear non-concave 

optimization problem can be formulized as a mixed integer linear program as follows: 

minimize \¡ :z¡ : 4.4.3 
over s ij I J , J 

subject to 0<s¡<F for all i 

0<Zjj<F for all i,j 

z , j - S j - (Si+n¡j) + kgjF 

k j j - 0 i l i 2. 

The above formulation can be simplified. Only the z¡j>0 constraints of z r j are 

effective. Therefore the slack variables z¡j can be eliminated and the problem becomes: 

minimize 3p \¡j[sj-(s¡+njj)+k¡jF] 4.4.4 
over s ^ 

subject to. 0<s<F for all 

Sj-(sj+njj)+kjjF>0 

kjj=0,l,2 fori all i,j. 

It seems that the constraint that kjj be a non-negative integer no greater than 2 

is also unnecessary. However in the state of the art, the algorithms to solve integer 

programming are not very well-developed and the upper limit constraints of kjj do 

prevent the algorithm from drifting away. 

4.4.2. Branch and Bound Algorithm 

Branch and bound algorithm, an optimization technique that uses the basic tree 

enumeration, is used to solve the above MILP( mixed integer linear program) [Gar72, 

Lan73]. A binary tree is formed with each edge imposing a constraint and each vertex 
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j representing the set of constraines given by the edges along the unique path Pj from 

F I G U R E A 4 . i BRANCH A N D BOUND TREE ENNUMERATION 

If no further exploration from a vertex can be profitable, it is said to be 

fathomed. More generally, if the problem is to find every x<S, then vertex j restricts x 

to Sj , where Sj is the intersection with the set of points satisfying the constraints 

given by the edge Pj. If Pj has k+1 vertices denoted by 

v 0 - v j ( 0 ) , v j ( 1 ) , v j ( k . 1 ) , v j ( k ) « V j 4.4.5 

then 

S - S j ( 0 ) a S j ( lP 3 D D S j ( k ) » S j 4.4.6 

We call V j ( k - i ) the predecessor of V j , which in turn is called a successor of its 

predecessor. If a vertex j does not have any more integer constraints, it is called a 

tail vertex, or just a tali, I.e. all integer variables of the original problem are fixed by 

the set of constraints Pj. If the original problem is an all integer program, then the 

value of the object function at the tails can be obtained by substituting all the 

constraints. In the M1LP cases, the tails, with all the integer variables fixed, have to 

solve a pure linear program to get the object function. 

A vertex that is not fathomed and whose corresponding constraint set can be 

separated more is called a live vertex. Branching means choosing a live vertex to 

consider next. The rule of branching considered here is to choose one of the 
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successor vertices of the vertex currently being considered. If the current vertex j is 

fathomed, one simply backtracks along Pj until a vertex having at least one live 

successor is found. One of those successor vertices is chosen for branching. If there 

are n o live vertices, the enumeration is complete. 

In a pure enumeration method, every tail is calculated. In branch and bound 

algorithm, every vertex is estimated by an upper bound and the algorithm will go to its 

successors only if it is not fathomed, i.e. if there is any possible improvement of the 

object value. Let the problem be: 

max z(x), x<S 4 . 4 . 7 

Suppose the enumeration is at vertex j in the tree. The problem considered at 

V j i s 

max z(x), x<Sj 4 . 4 . 8 

Let 

z(x*(j» if X j * solves equation ( 4 . 4 . 8 ) . 

Z j * - { - o o if Sj is an empty set. 4 . 4 . 9 

oo if equation ( 4 . 4 . 8 ) is unbounded. 

An upper bound Z j > Z j * m a y be calculated by considering the relaxation of 

equation ( 4 . 4 . 8 ) . 

max z(x) x C T j s S j 4 . 4 . 1 0 

and letting 

oo if equation ( 4 . 4 . 1 0 ) is unbounded 

Z j - { - o o if Tj is empty, infeasible 4 . 4 . 1 1 

Zj°«=z(x°(j)) if x ° ( j ) solves equation ( 4 . 4 . 1 0 ) . 

The choice of Tj is one of the critical parts of any branch and bound algorithm. 

It must be chosen such that equation ( 4 . 4 . 1 0 ) is relatively easy to solve, but at the 

1 5 2 



same time must yield an upper bound at a vertex which is valid for any of its 

successors, since, if v^ is a successor of V j then Tj^Sj^S^. Here the choice of Tj is 

made as follows: 

Sj - { x , y|A 1 i x+A 2 y -bJ , x>0 integer, y>0} 4.4.12 

Tj = {x ,y|A 1 i x+A 2 y=bi , x,y>0} 4.4.13 

so that 2 j is calculated by solving the corresponding linear program. The algorithm to 

solve the MILP is as follow: 

Let us define BEST=best solution discovered so far satisfying all the discrete 

constraints. 

Algorithm 4.3 

[0] (initial) BEST«-oo. 

[1] Set the new vertex as vertex j . Solve the linear program Tj . let 

FUNC«value of the object function of this linear program. 

[2] Check the position of vertx j . If it is a tail then go to [3]; otherwise go to 

[4]. 

[3] (It is a tail vertex) If the value of the object function FUNC i s greater than 

BEST t h e n s u b s t i t u t e the best s o l u t i o n w i t h vertex j , then g o t o [5]. 

[4] (It is not a tail vertex) If value of the object function is greater than BEST, 

this vertex is live, then go to [6]; otherwise this vertex is fathomed, in which 

case go to [5]. 

[5] (back up) Current vertex is either a tail or fathomed. Backtracking along Pj 

until a vertex having at least one live successor is enumerated. Set that live 

vertex as the new vertex considered. If there are no live vertices, then 
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stop, the enumeration is complete, output BEST and the corresponding 

vertex; otherwise go to [1]. 

[6] (branching) It is probably profitable to go on further. Choose one of the 

successor vertices of a current vertex as the new vertex considered, go to 

c u 

4.4.3. Accelerating Algorithm 

The above is the standard branch and bound algorithm for M1LP.; Notice that if a 

vertex is infeasible, i.e. Z J ^ - O D , it takes solving a linear program to find out. In the 

problem of equation (4.4.4); there are other intrinsic constraints which make a lot of 

vertices infeasible. Before we go further, some graph theory terminologies are 

explained. Intuitivly speaking, a di-graph (directed graph) is a set of points, and a set 

of arrows, with each arrow joining one point to another. The points are called the 

nodes of the graph, and the arrows are called the arcs of the graph. An arc is 

represented by an ordered pair (x,y), where x and y are vertices of the graph, node x 

is called its initial endpoint, and node y is called its terminal endpoint. Node y is also 

called a successor of node x, while node x is predecessor of y. If the directions of the 

arrows in a graph are not specified, the graph is called an undirected graph or just a 

graph. The arc without any specification of its direction in the undirected graph is 

called an edge. An undirected graph is callled a simple graph if: 

(i) It has no edge of form (x,x). 

(ii) No more than one edge joins any two nodes. 

A subgraph S of a graph G is a graph with the set of the nodes a subset of 

nodes of G and the set of arcs a subset of the arcs of G. A chain is a sequence 



q^TUPUG, - f *, u r ) of arcs of G such that each arc in the sequence has one endpoint in 

COMMON wilh its predecessor in the sequence and its other endpoint in common with 

its successor in the sequence. A cycle is a chain such that the two endpoints of the 

chain are the same node. A graph is connected if there exists a chain q(x,y) for each 

pair (x ,y) of distinct nodes. The graph is called separated if it is not connected. A 

tree is defined to be a connected graph without cycles. Edges in a tree is called. 

branches. 

Now look back at the constraints: 

SJ-(SJ+njjhkjjFiO • for alt X|j>0 4.4.14 

0<SJ 

For convenience, a delay graph is constructed to show the traffic and the delays 

of the real communication network. Let the node of the delay graph be the 

communication links, an arc (i,j) on the delay graph exists only if the traffic Xjj of the 

communication network is non-zero. Figure 4.4.2 shows an example. Then for the 

summation of equation (4.4.14) over a cycle L of the delay graph, we will get: 

J ? ? . n i i - k.i'F for every cycle L 4.4.15 
( i jXL f i <ij)<L ^ 

We will prove that equation (4.4.15) is the necessary and sufficient condition for 

equation (4.4.14) to have a feasible solution. Suppose a system of linear inequalities 

f j (x )>^ f (l<i<p) 4.4.16 

where f j , f21 . » •> f p are given linear functional on x, and «¿2» •> •> »°^p a r e 

given real numbers. The system is said to be consistent, if there exists an x which 

satisfies the above system; otherwise it is said to be inconsistent.  

Theorem 4.1 (Consistence Theorem of [Fan56] ) 

A system fj(x)>©DJ for ¡«1,2, ., .,p, is consistent if and only if every set of positive 

P P 
numbers X: satisfies ,3T X:f:«0 which in turn implies that 22 \ u<0. 

i= l i=l 1 1 
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Another way to state this theorem is that if a system f j ( X j ) . > c * j , (i<i<p) is 

P 
inconsistent then there exists a set of positive numbers {X.:} such that x.-f¡=0 and 
p i K l 1 ' 

Theorem 4.2 

Equation (4.4.14) has a consistent solution for {SJ} and {kjj} if and only if 

equation (4.4.15) is satisfied. 

Proof : The necessary condition is easy if {SJ} and {kjj} are consistent then equation 

(4.4.15) is just the positive linear combination of equation (4.4.14), so equation 

(4.4.15) will be consistent. 

The sufficient condition can be proven by assuming that ther i exists a set of 

{kjj} which satisfies equation (4.4.15) by not giving a consistent solution of {s f } 

for equation (4.4.14). Now equation (4.4.14) is just a function of s j f and it is 

inconsistent. 

Sj -$j>njj -kjjF for all Xjj>0 4.4.17 

Then by theory 4.1 there exists a positive linear combination of equation 

(4.4.17) which makes the left part equal to zero. But this linear positive 

combination is over the incident matrix of a graph, so this set forms a cycle. 

This is a contradiction because we just assumed that equation (4.4.15) is valid 

for every cycle. This proves the theorem. # 

Algorithm 4.4 Check the feasibility of the vertex of M1LP. 

[0] (initial) B E S T « - o o , find all the simple cycles of the digraph. 

[ l a ] Set all the nonfixed kjj equal to their upper bounds, i.e. Kjj -2. Check all the 

simple cycles to see if {kjj} is feasible for inequality equation (4.4.17). 

[ l b ] If {kjj} is feasible then solve the linear program with {SJ} and all the 

nonfixed kjj; otherwise set F U N C = - o o , i.e. declare the vertex to be fathomed. 
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By the above algorithm, the feasiblity of a simple cycle is always checked first 

before solving the linear problem. 

The k-tree algorithm for a simple cycle of a digraph is used in step [0] of 

algorithm 4.4. [Ber73] The algorithm is based on k-formulas, which are a linear 

notation for the specification of digraphs. The notation was introduced by Krider 

[Kri64]. The trees of k-formula are called k-trees. Let N*{l,2,3,...n} be the set of 

nodes of the digraph. Collect the links for all kCN from which links originate into a tree 

with node k the root, and the terminal nodes arranged in ascending order from left to 

right. This tree is called the atomic tree of node k and is denoted t k . 

^ FIGURE 4.4.2 ATOMIC TREE 

First the atomic trees of all nodes of the digraph are merged into a single k-tree 

or a set of k-trees, T j / I ^ , . , .T m . In one k-tree, any specific atomic tree can 

appear at most once. Here is an example of forming of a k-tree. 

FIGURE 4.4.3 K-TREE 
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Note that a k-tree must merge as many atomic trees as it can, but for some k-

tree it may not be able to merge every atomic tree of the digraph. 

Then we can find all cycles of the digraph by traversing the k-trees and 

checking the path from the root of the tree to the terminal node. If the path contains 

a subpath (c^,.,.,.c^) then one cycle is found. By carefully marking nodes, the duplicates 

can be eliminated [Ber73], 
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4.5. Heuristic Algorithm 

Even with the accelerating algorithm of section 4.4.3, the mixed integer linear 

program still runs very slowly. For a communication network with 4 switching nodes 

and a complete graph topology with duplex links, there are 12 real variables and 24 

integer variables. For a pure enumerating method, 3 2 4 ( each integer has three 

choices) linear program of 12 variables have to be solved. So inherently the integer 

programming costs a lot of computation time. Next we will discuss some properties of 

the optimum solution and develope a heuristic algorithm from that. 

4.5.1. Cuts and Trees 

Here a graph implies a simple connected graph. A maximum spanning tree T of a 

connected graph G is a tree subgraph with a set of nodes containing every node of G. 

Unless otherwise noticed, a tree implies a maximum spanning tree. A cut is a set of 

arcs in a graph such that if the arcs in the cut are removed from the graph the graph 

will be separated. The set of fundamental cut relative to a tree T is the set of 

minimum cut such that each cut contains one link in the cotree G-T of T. Where the 

minimum cut is a cut such that any strict subset of it is not a cut. A fundamental cut Cj 

of tree T is a fundamental cut which has branch i of T in it. Arcs in the tree are called 

branches while arcs in the cotree are called chords. 

Lemma 4.3 

Suppose a communication network which has links a, b, c with non-zero transfer 

traffic to link r, i.e. X a r , \ b p , \ c r greater than zero. And suppose t a , t b , t c are the 
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times when the transfer traffic has finished being processed and they are ready to be 

sent out. Then the optimum assignment of the frame skew of link r must be equal to 

either of t a , t^, or t c . Where optimum assignment is defined as the assignment of the 

least total waiting time. 

The general form of the total delay at this junction is the sum of [ ( s r -

tj) mod F]*\j r where i = a, b, c. 

Suppose that the optimum s r is.not equal to any of t a , t^, t c . Without loss of 

generality, suppose s p the skew assignment of link r, lies between t a and t^. 

FIGURE 4.5.1 MERGING LINK CONFIGURATION 

The delay at the junction will be 

( s r - t a )mod F + (s r-tfc)mod F + (s r - t c )mod F 

= fer-V X a r + < F -*b + s r> X b r + < F * V s r > X c r 

8 8 ( x b r + x c r > F - < t a x a r + t b x b r + t c x c r > + ( X a r + X b r + X c r > s r 

« c * K X a r +^br + x cr>* s r 

It is obvious that decreasing s r a litlle will produce a smaller total delay. So it 

is a contradiction that s r is the optimum skew assignment. It can be proved similarly 

for other configuration of skew assignment. So for a single network like this the 

optimum assignment of link r must be matched to one of the links. 

That communication networks with more than three input links merge into one 

link can be proved similarly, for the third term becomes 
k 

C ( F - t i + s r ) \ i r - <F - t c +s r )X c r 4.5.2 

with 
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and t c = E t ; X | r / X c r 4.5.3 

Next we consider a similar network with a link r which has non-zero transfer 

traffic to links a, b, c f i.e. \ r a , X r b , X r c > 0. 

1 
¿ 1 

FIGURE 4.5.2 SPLIT LINK CONFIGURATION 

Where t a is the skew time of link a minus the necessary processing time for the 

transfer traffic X r a and then mod F, or t a is the perfect matching time of link r to link 

a. The total delay will be the summation of X j a times (tj-s r)mod F over i*a, b, c. 

With the same argument, we will have the delay as 

T= od - (X r a + X r b + X r c ) s r 4.5.4 

for some constant parameter oc which will remain constant until s r matches 

either t a , t b , or t c . It is obvious that increasing s r a little will always give a better 

performance if s r is not equal to any of the times t a , t b , t c . So in this case the optimum 

of s r is also matched to one of the links. 

Now we will consider a more complicated network. 

t I 1 — I -

FIGURE 4.5.3 GENERAL LINK CONFIGURATION 

Where t a , t b , t c are the time ready to transfer the traffic X a r , X b r , X c r , 
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respectively. And t^ is the skew time of link d minus the necessary processing time 

f o r traffic X r c J . t e , tf are defined similarly. In other words, those times t a , t b , t c , t d , t e , 

and tf are the perfect matching times for link r to the specific links. 

Lemma 4.4 The optimum skew assignment for link r can always be set to match 

one of the links. 

The proof is very similar to lemma 4.3. Suppose there is an optimum assignment 

of s r which is not equal to any of the matching points. By similar argument to that of 

the proof of Lemma 4.3, the total delay of the network will be of the form 

T « o d + ( X a r + X b r + X c r ) s r - ( X r d + X r e + X r f )s r 

If ( ^ a r ^ b r ^ c r ) ' s 8 r e a * e r tl"*a n (*rd + \*e + x rf )» ^ e n d e c r e a s * n g s r a ' ^ ' e 

always produce a smaller delay for the network which is a contradiction of s r being 

the optimum assignment. So s r must match one of the tj. Otherwise, the increase of s r 

will always decrease T by the same argumen. If ( X a r + X b r + X c r ) is equal to 

( X r c j + X r e + X r f ) then we can shift s r without affecting the network performance. So we 

can always shift s r until one link is matched. This completes the proof. ;# 

Now we consider a general graph. For any subgraph L of graph N, we will 

p rove that if N is connected, then there is at least one arc which carries non-zero 

transfer traffic between the communication links in L and the communication links in N -

L which is matched, i.e. its transfer delay will be zero. Here the graph is the delay 

graph which has the original communication links as nodes and the non-zero transfer 

traffic as arcs between nodes. Each arc on the delay graph has a corresponding 

traffic and processing time of the communication network. 
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FIGURE 4.5.4 GENERAL NETWORK CONFIGURATION 

The argument is very similar to the argument for the above two lemma. If none 

of the arcs is matched, then the tendency to decrease the skew time will be 

proportional to all the transfer traffic into L, otherwise, the tendency to increase the 

skew time is proportional to the transfer traffic leaving L. If the amount of traffic 

going into L is greater than the amount of traffic leaving L, then decrease the skew 

time a little for all links of L until one arc is matched. This will always decrease the 

total delay. The opposite is true when one increase the skew time a little. So in each 

of these situations the optimum assignment of skew time for L must have at least one 

matched arc. Therefore the following theory is proven. 

Theorem 4.5 

For the optimal skew assignment in a delay graph, there exists a connected sub 

graph of the matched arcs. 

By this theorem, we will only consider the set of skew assignments which has a 

connected sub-graph of matched arcs. In graph theory, a maximum spanning tree of a 

connected graph can reach every node, so a maximum spanning tree of matched arcs 

can determine all the skew of the nodes, or the communication links of the original 
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network. We will call such a maximum spanning tree as matched tree in skew 

assignment. 

By heuristic, it seems that the tree with maximum total transfer traffic will be 

the matched tree of the optimum skew assignment. But this is not true. The following 

example will show the reason and will also explore the complexity of the problem. 

The number on the arcs of the delay graph is the amount of transfer traffic 

corresponding to the arc and the number in parenthesis is the necessary processing 

time for the arc The frame size is 10. 

Then the matched tree of maximum transfer traffic and the corresponding skew 

assignment is . 

FIGURE 4.5.5 AN EXAMPLE 

FIGURE 4.5.6 MAXIMUM TRANSFER TRAFFIC SKEW ASSIGNMENT 

The total mis-matched delay is 

X b d [12-<4+4>] + X d e [ l l - ( 2 + 2 ) ] - 107 

But the matched tree of the optimum assignment is as follows: 

FIGURE 4.5.7 OPTIMUM FRAME SKEW ASSIGNMENT 
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The total mis-matched delay is 

X c d [18 - (5+7) ] + X d e [ l l - ( 8 + 2 > 3 - 93. 

Why is the first skew assignment not optimum? There are two cycles (abdefa) 

and (acdefa). The first skew assignment minimizes the cycle (acdefa), and the second 

skew assignment minimizes the cycle (abdefa). The cycle (abdefa) has total processing 

time 19, and the cycle (acdefa) has total processing time 23. For a network of frame 

size 10, the cycle (abdefa) is much more vulnerable than cycle (acdefa). Hence the 

first skew assignment fails. 

To search all the possible trees is infeasible for a moderately complicated 

network, the number is C n . where m is the number of nodes and n is the number 
' m-1 

pieces of non-zero transfer traffic. A heuristic algorithm which compares the skew 

assignments with matched trees differing by only one arc is developed. It is well 

known in graph theory that the set { X j } u { T - i } is also a tree for any arc X j in Cj. Thus 

w e can replace branch i by any arc of Cj and still make a tree. If we choose these 

trees as matched trees in the skew assignment, then the difference between these 

skew assignments will only occur at the arcs in Cj. Therefore the algorithm must 

choose the arc in a fundamental cut such that the mis-matched delay in the cut will be 

MINIMUM.-

4,5.2. The Algorithm 

Now consider a matched tree T and its relative skew assignment and a 

fundamental cut Cj of T. First we mark the nodes on one side of the cut and assume 

the skew assignment of these nodes to remain constant, because assigning of the skew 

depends on the direction of the branch. Group ail arcs in cut Cj into two sets A and B. 
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If an arc in the cut is from a marked node to an unmarked node then this arc is in A, 

otherwise the arc is in B. If we replace branch i by an arc x in the cut as a matched 

arc. Depending on the direction of the arc x, the change of skew in the unmarked 

nodes will differ. Define x r the original mis-matched delay of arc x. If x is in B then 

e v e r y skew assignment of the unmarked nodes should increase an amount x r ; 

otherwise x is in A and the skew should decrease x r for all the unmarked nodes. For 

an arc y in Cj that is neither i nor x, there will be some change of mis-matched delay 

during the change of the matched tree. Now suppose the new skew increases by x r 

for all the unmarked nodes, then if y is in B the mis-matched delay should subtract x r 

amount, otherwise the new mis-matched delay should add x r amount. The mod F 

should apply to the arithematical operation after the results are found. A decrease of 

skew by x r is equivalent to a increase of skew by F - x r  

Algorithm 4.4 

[0] (initial) Read the frame size, the structure of the delay graph that a two 

column vector LINE of L elements is set with arc I from node LINE[1,I] to 

node LINE[2,I]. Set the incident matrix which the ith row has 1 only at node 

LINE[1,I] and LINE[2,I]. Set the processing time of arc j at vector DELAY[J]. 

[1] Find a tree and set TREE[J>1 if arc J is in the tree; otherwise TREE[J]=0. 

[2] (set the skew assignment of the node by the tree, Mark'a n ^ 

is assigned.) Set SKEW[l] -0, MARK[1]-1; If MARK[1]-1 and MARK[J] -0 and 

• we will mark node J if there is a arc K between I and J. 

SKEW[JHSKEW[I]+DELAY[K]) mod FRAME if arc K is from I to J and 

SKEW[J]-(SKEW[I]-DELAY[K]) mod FRAME if arc K is from J to I. Set 

MARK[J]«1; 
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[3](find the fundamental cut) Inversing the ( M - l ) X ( M - l ) square submatrix of the 

tree and labeling the corresponding column of INCD, the incident matrix will 

become the fundamental cut matrix. For each row i, the set of the column j 

such that INCD[I,J]«1 is a fundamental cut with respect to the column which 

is labeled i. Because one row of INCD is redundant, so INCD[M,K] is used as 

labeling for all K. Set J « l , and continue [4]. 

[4]{find a tree branch) While INCD[M,J>0 increment J by 1, if J>L then the 

algorithm complete, stop; otherwise we have found a tree branch J , Set 

MINN-J , cntinue [5 } 

[5]Put the cut corresponding to branch J into vector COTREE, and the number of 

arcs in the cut is NB; if N(3»0, then J=J+1 go to [4J if NB«1, then if 

LEM[C0TREE[1]]<LEM[J] and arc C0TREE[1] is not matched, then there will be 

profit to switch to the new arc. Set MINN«C0TREE[1], go to [11J if NB>1 

then continue [6]. 

[6]There is a cut corresponding to the branch J of the tree T, mark all the node 

in one side of the cut. 

[7]Set MIN~mis-matched delay with J as branch. Set R » L 

[8]Calculate the total mis-matched delay of the cut with COTREE[R] as the new 

matched branch, and set the value as NEWM1N. 

[9]If NEWMIN<M1N, then set M1N»NEWMIN and MINN»COTREE[R]. 

[10]Set R=R+1. If R<NB, then we have more arcs to look at, go to [8]; otherwise 

all the arcs in the cut have been tried, continue [11]. 

[ l l ] C h e c k if there is a better choice than J . If MINN«J, then J is the best in this 

cut go to [4]; otherwise eliminate the column MINN of the matrix INCD, so 
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that only 1 in the column is at row INCD[M,J] where the branch J is labeled. 

• Set INCD[M,M1NN] equal to this row, and unlabel the column J of JNCD. The 

elimination process is the same as in [3] where the set of fundamental cuts_ 

is found. 

[12]We get a new branch, reassign the unmarked node by increase ing or 

decreaseing the same amount XR such that it makes branch MINN matched. 

Set J « l , go to [4]. 

The above is the main frame of the algorithm. Step [3] is to inverse some of the 

incident matrix and find the fundamental loop. Every iteration will find a new tree and 

increase the performance. There is a finite number of trees, so the algorithm will 

terminate. This algorithm will find a matched tree such that it is better than all its 

immediate neighborhoods where one arc is different. Thus different initial guesses of 

matched trees may result in different sub-optimum configurations of matched trees. 
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CHAPTER 5 Conclusion 

This dissertation describes the model, the analysis and the design of a special 

integrated voice/data computer communication system. The advantages and the 

operation constrains of the integrated switch are thoroughly studied. This dissertation 

gives guidances of the expected performance and the potential storage requirement. 

This chapter presents interpretations of results and indicates directions for future 

research. 

5.1. Interpretation of Results 

In order to meet certain grade of service for voice calls, the communication 

system must have some redundant facility in addition to its traffic requirement. The 

idea of the integrated switch SENET communication network is to use these redundant 

facilities for data packet communication. In Chapter 2, an integrated switch system of 

ten voice channels and of job size ratio 10 and 100 is solved exactly. The exact 

solutions are also compared with various approximation methods and with results of 

similar queueing models. The rationale of the very long data packet queue for the 

integrated switch is thus concluded by the queue occasionally entering the overloaded 

states for a relatively long period. From the heavy load approximation of queueing 

theory , we believe that the diffusion approximation should be a better approximation 

when the scale of the integrated switch increases and be relatively insensitive to the 

distribution of the service requirement. Though the quantitative results of a large 

integrated switch with the realistic job size ratio nepd further investigation, the 
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qualitative results do give a good meaningful estimation of the potential problems. The 

use of the redundant voice communication facilities for data communication will create 

a long queue of data packets and will have slow response for interactive data traffic. 

It is thus conceived that to have real time response for interactive data communication, 

some link capacities shall be reserved for such traffic only. In addition to this, the 

integrated switch needs a much larger memory space to queue the data packets than 

the conventional data communication processors such as ARPA IMP. 

Although the data packet queue of integrated switch is rather long, the number 

of buffer needed for the switch to operate efficiently is limited. The queueing network 

of Section 3.3 models the" buffer life-time and the relationship of throughput and 

number of buffers. The concept of processing bound and buffer bound switching 

processor is developed. In order to minimize the blocking probability for Class II 

packets by lacking of buffer and to maximize the memory utilization, a secondary 

storage is suggested and modelled properly. The use of a disk for switching processor 

is rather unconventionaf, a special reservoir model and a special forward and backward 

algorithm are developed. The block transfer time between disk and core is either 

Exponential distributed or Erlang distributed. It is shown that the performance of the 

switching processor with disk is insensitive to the distribution of transfer time. Using 

a disk for the switch will decrease the buffer requirement and isolate thfe overloaded 

switch from infecting its neighboring nodes. However the disk may create some 

reliability problems and also may complicate the operations of network. Several 

schemes to allocate memory into buffers are also discussed and their performance are 

compared with each others. Both first-fit assignment scheme and dynamic assignment 

of f ixed-size buffer scheme sacrifice the larger size packets too much in a heavy 

170 



loaded system. However both give superior memory management schemes than other 

schemes in a lightly loaded system. A reserve priority buffer assignment scheme is 

suggested for communication network with priority on its data packets. High priority 

packets can be allocated more buffers than low priority packets can. A small sacrifice 

on the low priority packets can decrease the blocking probability and thus shorten the 

response time of high priority packets a lot. 

In order to have real time response to the interactive data communication, some 

communication link capacity shall be reserved for Class II traffic only. The link 

capacity assignment to interactive data is discussed as a grade of service trade-off 

between Class I and Class II traffic. The SENET communication network with frame 

structure and the concave cost-capacity function is solved by the coordinate descent 

method and Newton's method. The capacity assignment problem for the SENÉT 

network is different form other communication networks and the link capacities shall 

be re-assigned when the traffic situation changes. Another problem related to the 

frame structure of SENET is the frame skew assignment problem. Because of the 

frame period, the delay of packets is discretely incremented by the frame period. The 

mis-matching of the frame skew between links will cause the longer buffer life-time, 

thus require larger memory space as well as suffer extra mis-match delay. The frame 

skew assignment problem is formulated as a mixed integer linear program. A special 

speeding algorithm for the global optimal assignment as well as a heuristic algorithm 

for local optimal assignment is developed. This frame skew assignment also needs 

dynamically re-assignment when the traffic flow on links changes. 
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5.2. Directions for Future Research 

With the changing cost structure of processing power and communication power, 

many integrated switch networks will be designed and used. The nature of voice and 

data communications are still unclear, and the relationship between them are also left 

unexplored. The flow control in an integrated switch network is especially important 

to the network performance, while it is totally unknown yet. Possible further studies 

are outlined below: 

l.With a backbone communication network using T l carrier, a 10 millisecond 

frame contains 15,440 bits. If half of the capacity can be used by Class I 

traffic and each voice slot contains 80 bits, then the integrated switch has 97 

Class I channels. For a. 2000 bits packet, a T l carrier can transmit the whole 

packet in about 1.3 millisecond. Comparing 1.3 millisecond with the average 3 

minutes voice call, we find that the realistic Class I/Class II job size ratio is in 

the order of 100,000. An integrated switch of such order can be solved by 

diffusion approximation, but the validation of such approximation either by 

simulation or other methods still needs lots of efforts. 

2.The control protocol for the integrated switch communication network 

especially with disks needs a lot of work to find the impact of the present 

protocol and the effectiveness of the disk. The feasibility of using CCD or 

magnetic bubble as a secondary storage device and their corresponding models 

will lead the communication processor into a better cost-performance region. 
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3.The processing of data packets is assumed to be Exponential distributed. A 

simulation for general processing time will give a better understanding of 

buffer life-time behavior and might suggest a better buffer management 

scheme. 

4.The cost-capacity function discussed in Chapter 4 is assumed to be link 

independent. However, there are some relationship between the cost of 

adjacent links especially in SENET the cost function Is the grade of service of 

Class I traffic. A study of this will give a more clear picture of data flow in the 

network and can provide design guidance of flow control and network protocol. 
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