
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ABSTRACTION and VERIFICATION in ALPHARD:
Iteration and Generators

Mary Shaw, Carnegie-Mellon University

Wm. A. Wulf, Carnegie-Mellon University

Ralph L. London, USC Information Sciences Institute

August 20, 1976

Abstract: The Alphard form provides the programmer with a great deal of control over the
implementation of abstract data types. In this report we extend the abstraction techniques
from simple data representation and function definition to the iteration statement, the most
important point of interaction between data and the control structure of the language itself.
We introduce a means of specializing Alphard's loops to operate on abstract entities without
explicit dependence on the representation of those entities. We develop specification and
verification techniques that allow the properties of such iterations to be expressed in the form
of proof rules. We also provide a means of showing that a generator will terminate and obtain
results for common special cases that are essentially identical to the corresponding constructs
in other languages.

Keywords and Phrases: abstraction and representation, abstract data types, assertions, control
spec.ahzat.on, correctness, generators, invariants, iteration statements, modular decomposition,
program spec.f.cat.ons, programming languages, programming methodology, proofs of
correctness, types, verification

nrp^nr^ ^ h 6 r e W 9 S S U P P ° r t e d m P a r t b y t h e N a t i o n a l S c i e n c e Foundation (Grant
F44620 7 , r n n ^ " ^ D e f 6 n S e A d V a n C 6 d R e S 6 a r c h P r ° j e c t s A S e n c V (Contracts:
7P r v?l,u ' 6 d b y , h e A i r F ° r C e ° f f i c e ° f S c i * n t i f i c R e s e a r c h > «nd DAHC-15-
7 2 - C - 0 J 0 8) The views expressed are those of the authors. This report is one in a series
being printed jointly by CMU and ISI.

http://spec.ahzat.on

Page 2

Contents

Introduction , 3

Form Extensions , 5

Iteration Constructs in Alphard - 6

Defining and Verifying Generators 9

Proof Rules for Loops 13

Special Cases and Examples 19

Termination of Generators 23

Example: Finite Sets , 25

Conclusions 36

References 38

Appendix A: Informal Description of Verification Methodology 39

Appendix B: Derivations of Simplified Proof Rules 40

ALPHARD: Iteration and Generators Page 3

Introduction

This paper is one in a series describing the Alphard programming system and its
associated verification methods. It presumes that the reader is familiar with the material in
[Wulf76a,b], particularly the use of forms for abstraction and the verification methodology for
forms.

The primary goal of the form mechanism is to permit and encourage the localization of
information about a user-defined abstraction. Specifically, the mechanism is designed to
localize both verification and modification. Other reports on Alphard have discussed ways to
isolate specific information about representation and implementation; in this paper we deal
with localizing another kind of information.

Suppose that S is a "set-of-integers" and that we wish to compute the sum of the
integers in this set. In most contemporary programming languages we would have to write a
statement such as

sum <- 0; for i *- 1 step 1 until S.size do sum «- sum + S[i]

or possibly

p <- S; sum «- 0; while p ^ nH do (sum t- sum + p.value; p «- p.next)

or, if we know that the set elements all lie in the range [lb..ub], then we might write

sum<-0; for i<-lb to ub do if. i c S then sum«-sum+i

None of these statements is really satisfactory. First, they all seem to imply an order to the
summation, whereas the abstract computation does not. Next, the first statement strongly
suggests a vector implementation of the set and the second a list implementation. (Although
other implementations are not excluded, the resulting loops will probably be unacceptably
inefficient.) The third statement does not suggest an implementation of the set, but may be too
inefficient if the cardinality of the set is much smaller than ub-lb+1.

It would be much better if we could write something like

sum<-0; for_ x(S do sum«-sum+x

which implies nothing about either the order of processing or the representation of sets.
Except for notational differences, this latter example illustrates our goal. We want to
encourage suppression of the details of how iteration over that abstract data structure is
actually implemented. The difficulty in doing this is that the abstract objects are not

Page 4 Introduction

predefined in Alphard. Hence it is the author of the abstraction, who must specify the
implementation of (the analog of) "x<S".

We resolve the problem by separating the responsibility for defining the meaning of a
loop into three parts. (1) Alphard defines the (fixed) syntax and the broad outline of the
semantics. (2) The definition of the abstraction that is controlling the iteration fills in the
details of the loop control (in particular, the algorithms- for selecting the next element and
terminating the loop). (3) The user supplies the loop body. Conventional languages provide
only a small, fixed number of alternatives (usually one) for the second part of this information.
In Alphard, it is supplied by the form that defines the abstraction; we say this part of the
definition specializes the iteration statement to that abstraction. Related constructs appear in
I P l - V as generators [Newell64] and in Lisp as the mapping functions [McCarthy62,
Weissman67].

One of the major goals of Alphard is to provide mechanisms to support the use of good
programming methodology. The rationale for generators given above is based on
methodological considerations; that is, it is generally good to abstract from the implementation
and hide its details. Generators permit us to do this for control constructs much as the
functions in a form permit abstraction of operations (see [Wulf76a,b]).

A second major goal is to provide the ability to specify precisely the effect of a
program and then prove the program implements that specification. To meet this goal, we
must provide more than just the language mechanism for generators: we must also provide
both a way to specify their effects and a corresponding proof methodology. A natural means
of doing this for generators is somewhat different from one for functions. Functions are
naturally characterized by predicates which relate the state of the computation before their
invocation to its state afterward. Generators, however, are not invoked in the usual sense;
rather they are used to control the repeated execution of an arbitrary "body" of an iteration
statement. Thus, a natural specification of a generator is in terms of a "proof rule" which
permits the effect of the entire iteration statement to be expressed.

This report contains two strongly related components: first we introduce the language
mechanism for generators, then we turn to the specification and verification of generators and
of the iteration statements which use them. We begin with a digression on a language feature
which is not discussed elsewhere, but is needed for the definition of generators. We then
introduce the two Alphard iteration statements and show how they can be specialized by the
user. One of these is an iteration construct designed for searching a series of values for an
element with a desired property. It should replace most of the loop-exit gotps used in current
languages. (Interlisp [Teitelman75] contains a wide variety of iteration statements, one of
which specializes to this construct.)

We obtain general proof rules for the two loop constructs, then state a series of
simplifying assumptions that certain generators may satisfy. We obtain a corresponding series
of proof rules whose simplicity increases with the restrictiveness of the assumptions we make

ALPHARD: Iteration and Generators Page 5

about the generators. These assumptions lead both to rules that correspond directly to
familiar rules for iteration (e.g., those of Pascal [Hoare73, Jensen74]) and to simple rules for a
substantial number of interesting abstract structures (e.g., those given by Hoare [Hoare72a]).

We then show how to use proof rules instead of functional descriptions to specify many
of the forms which define generators. We also give a technique for showing that loops using a
generator will halt (assuming the loop body terminates). We prove, with one application of
this technique, that many common generators have this property.

Finally, we develop an extended example in which a programmer-defined abstraction is
treated as primitive in the implementation of another abstraction. A generator defined in the
former is used in the implementation and verification of the latter.

Form Extensions

In this section we introduce another language facility which makes it more convenient to
define certain abstractions and to manage the definitions after they are written. The facility
allows a programmer to define one form as an extension of another. The new form will have
most or all of the properties of the old one, plus some additional ones. (This mechanism is
similar to, and derived from, the class concatenation mechanism of Simula [Dahl72].) We
introduce this mechanism at this point because it is needed for generator definitions, which
will be discussed in the next section.

The following skeletal form definition illustrates most of the major attributes of the
extension mechanism:

form counter extends i:integer=
beginform
specifications

initially counter = 1;
inherits < =, ±% < >, <, > >;
function

inc(xxounter) . . .,
dec(xxounter) . .

representation
init i « - l ;

implementation
body inc = x.i <- x.i + 1;
body dec = x.i <- x.i-1;

endform

Page 6 Form Extensions

The general flavor of the mechanism is that the new abstraction, "counter" in this case,
is to be an extension of a previously defined one called its base type, here "integer". As such,
the new abstraction inherits the indicated properties specified for the. base type, and may
appear in contexts where the base type was permitted (e.g., as an actual parameter where the
formal specifies the base form). Further, the new abstraction has the additional properties
specified in the extension form t "inc" and "dec" in this case.

Even though the newly defined form is an extension of another, the body of the new
form is not granted access to the representation of the old one; the only access rights
granted to the body of the new form are those defined in the specifications of the one being
extended. Thus, although the extension may add (and delete, see below) properties of the
extended abstraction, it cannot affect the correctness of its implementation, and we need not
rever i f y the properties of the original. (Indeed, since these properties are identical we do not
demand that they even be specified.)

In this example, and indeed more generally, it is not desirable for all of the properties
of the old abstraction to be inherited by the new one. The "<>u notation may be used as in
[Wulf76a,b] to list the rights that the instantiation of the new abstraction is allowed to inherit.
Thus the maximum set of rights permitted to the instantiation of a "counter" is the union of the
inherited rights (=,^,<,>,<,>) and the newly defined rights (inc and dec). Note in particular that
assignment to a counter is not one of the inherited rights; thus the only way to achieve a
side-effect on a counter is through the operations "inc" and "dec". The implementation of the
extension form may, of course, use all operations on the base type.

As a practical matter, the instantiation of the base form (V from "hinteger" in this
example) may be considered a part of the representation part of the extended form. Note,
however , that this need not be the entire representation part of the extension; in many cases
the extension will involve additional data.

Iteration Constructs in Alphard

Alphard provides two iteration commands: the for statement is used for iteration over a
complete data structure, and the first statement is used (primarily) for search loops. As
mentioned above, each of these commands may be specialized for each use. Specialization
information is provided through a standard interface called a generator. A generator is itself
simply a form, but it must adhere to certain special requirements that make it mesh with the
semantics of iteration statements:

(a) It must provide two functions (named ftinit and &next) with properties

described below.

ALPHARD: Iteration and Generators Page 7

(b) Invocation of these functions in a prescribed order must produce a sequence
of values to bind to the loop variable.^

(c) It must be an extension whose base type is the same as the type of the
elements being supplied to the loop body.

Before we discuss generators intended for specific structures, we will illustrate the use of the
for and first statements with simple counting loops.

The [or_ Statement

We shall begin with the for statement. The syntax for the statement is*-

for x: gen(y) while /?(x) do ST(x,y,z)

where fi(x) is an expression, the statement ST(x,y,z) is the loop body, x is the instantiation of
the generator "gen", y is the set of instantiation parameters to the generator, and z is the set
of other variables used in the statement. The phrase "x: gen", which is our notational analog
of the "x(S" in the introduction, means "bind x to an instantiation of the generator named gen
intended specifically to generate the elements specified by y". Then x may appear free in (I
and ST; like any loop variable, x is rebound for each pass through the loop.

The meaning of the for loop is given by the statement

begin local x: gen(y);
n *- x.&init;
while rr cand fiM do

(ST(x,y,z); rr *- x.&next)
end

Here, cand is the "conditional and" operator: "bj cand b 2 " = "if b^ then b 2 else false". Also, (i
and ST are taken from the for statement, and x.&init and x.&next are functions supplied by the
generator as described below. 3 The compiler-generated variable, n, is not accessible to the

1 Although we call this a "loop variable", it will not normally be possible to alter its
value within the loop body.

2 Either "for x:gen(y)" or "while fiM" may be omitted yielding the. pure while and pure
for statements, respectively. If "while /?(x)" is omitted, fi is assumed to be identically true. If
"for x: gen" is omitted, no x is declared or set, ft and ST (clearly) cannot depend on x, and
&init and &next are assumed to be the constant true, ft may depend on y and z in addition to
x.

Page 8 Iteration Constructs in Alphard

programmer.

One of the generators defined in the standard prelude is

upto(lb,ub: integer) extends k: integer

This generator produces the sequence of values <lb, lb+1, lb+2, . . . , ub-1, ub>, or the empty
sequence if lb>ub. This generator, in combination with the for statement, provides the
familiar "stepping" loop found in nearly allprogramming languages; for example, an Alphard
loop for summing the integers from 1 to n is

sum <- 0; for j : upto(l.n) do sum <- sum+j

Note that two types are involved in this example. We said in earlier contexts that the notation
" j : upto(. . .)" means "bind j to an instantiation of upto". This implies that the type of j is
"upto". However, notice that j is used in the body of the loop as though it were an integer.
This is possible because of the extension mechanism described in the previous section.
Although the apparent type of j is upto, form upto extends integers, inheriting all operations
except assignment (the definition is given in the next section). As a result, integer operations
on j are legal and behave as expected.

The first Statement

One of the common uses of loops is for searching a sequence of values for the first one
which passes some test. The use of an ordinary loop construct for this purpose is probably
the most common cause of necessary gotos in conventional programming languages: once the
test has been satisfied, there is no reason to continue executing the loop. Since this case
occurs so often, Alphard provides a special syntax for it. We may write^

first x:gen(y) suchthat ftM then Sj(x,y,z) else S 2 (y ,z)

where S| and S 2 are statements and ft is an expression. Again, x is an instantiation of
generator gen and may appear free in ft and S^ (but not in S 2) . The meaning of the first loop
is given by the statement

3 In Alphard, certain functions are given names beginning with "&". These are usually
functions provided by the user to perform operations that correspond to special constructs of
the language. Outside the form in which they are defined, they may not be called by user
programs. In this case, the for loop expects to call functions named &init and &next with
certain specified properties. Alphard prevents a user from calling them explicitly — to skip
iterations in a loop, for example.

^ Either "then S I " or "else S2" may be omitted; an omitted clause is assumed to denote

the empty statement.

ALPHARD: Iteration and Generators Page 9

begin label X;
begin local x: gen(y);

n <- x.&init;
while n do

if /3(x) then (Si(x,y,z); goto X) else n <- x.&next
end;

S 2 (y , z) ;
X: end

As above, the compiler-generated names, n and X, are not accessible to the programmer.

In [Wulf76a,b] we presented a subroutine to compare two vectors of arbitrary (but
identical) types and index sets. The subroutine presented there was phrased in terms of an
Algol- l ike for loop. It can now be written in real Alphard using the first statement:^

function eqvecs(A,B: vector(?t<^>,?lb,?ub)) returns (eq: boolean) =
first i: upto(lb,ub) suchthat A[i] ± B[i] then eq <- false else eq «- true

It does not matter what the bounds of the two vectors are, as long as they are the same. In
this case, we are not relying on the procedure return or an explicit escape to terminate the
loop early in the case of inequality; that is handled by the first statement. The proof of
"eqvecs" will be given in a later section.

We have introduced Alphard loop constructs by comparing them to simple counting
loops. This is the first step toward solving the problem of sequencing over arbitrary
structures under the control of the defining type. We shall now show how generators and
loops are verified.

Defining and Verifying Generators

We said that a generator is a form which supplies special functions and performs a
sequence of bindings to the control variable of the loop. In this section we will show how a
generator is defined and invoked, still using "upto" as an example. We will first present its
definition, then add assertions, verify it as a form, and establish its special properties as a
generator. Another generator is verified as part of the finite sets example in the sequel.

In this example the function specification and the function body are given as one
declaration. This is an obvious abbreviation of the notation used elsewhere. The Fidentifier
notation is used to indicate that the values of these parameters must be identical for A and B
and that specific values will be supplied implicitly with the vectors. This is explained in
[Wulf76a,b].

Page 10 Defining and Verifying Generators

. The definition of the "upto" generator, without verification information, is

form upto(lb,ub: integer) extends K:integer •
beginform
specifications

inherits <allbut *->;
function

&init(u:upto) returns (btboolean),
&next(u:upto) returns (btboolean);

implementation
body &init = (u.k «- u.lb; b <- u.lb < u.ub);
body &next = (u.k <- u.k+1; b *- u.k < u.ub);

endform

Since no-variables other than k are needed, the representation part is empty at this point.
This form extends integers, but does not pass along the right to assign to an upto;° this
prevents the user from changing the loop variable during the iteration.

Using this form and the meaning of the for statement given in the previous section, we
can exhibit a loop that corresponds to the expansion of the "upto" functions in the statement
for summing integers. This code is, of course, only suggestive, but it illustrates an expansion
which a compiler might reasonably produce. Note that an obvious optimization has been
applied; later, when we exhibit the formal specifications of "upto", the value of the iteration
variable, x, will turn out to be irrelevant when &init or &next returns false.

sum «- 0;
begin

local x: upto(lb,ub);
x <- x.lb;
while x<x.ub do (sum<-sum+x; x«-x+1);

end

Since "upto" is a form, we can verify the form properties as described in [Wulf76a,b]

and summarized in Appendix A. Adding verification information in italics, the definition of

"upto" becomes

6 The phrase "allbut means that ail integer functions except «- are applicable to the

upto.

ALPHARD: Iteration and Generators Page 11

form upto(lb,ub: integer) extends k: integer -
beginform
specifications

requires true;
inherits <allbut «->;
let upto = fib..ub/ where lb < ub ^ upto * /lb..k-l J[k/fk+L.ub/;
invariant true;
initially true;
function

&init(u:upto) returns (b:boolean)
post (b s lb<ub) A (b ^ lb=k<ub),

&next(u:upto) returns (b:boolean)
pre lb < k < ub
post (b = k'<ub) a (b 3 k=k'+l A lb<k<ub>,

representation
rep(k) = i//6<afe t/?eft flb..k-l /fk Ifk+L.ubI else fh
invariant true;

implementation
body ftinit out_ (b = lb<ub) a (b ^ lb=k<ub) =

(u.k <- u.lb; b «- u.lb < u.ub);
body &next In lb<k<ub otU(b = k9<ub) a (b o k = /c'+i A lb<k<ub) «

(u.k <- u.k+1; b <- u.k < u.ub);
endform

The abstract specifications describe an "upto" as an interval [lb..ub]; since the form upto
extends the integer k, a direct reference to a loop variable of type upto will access k, the
current value of the loop counter. We will find it useful later to view the upto as the
concatenation of the interval already processed ([lb..k-l]}, the current element ([k]), and the
interval yet to be generated ([k+l..ub]). Either k stays between the endpoints of the interval
[lb..ub] or the interval is empty. This is enforced by the phrase lb<k<ub which appears in the
pre condition for &next and both post conditions.

Note that no promise about the value of k is made before the loop starts (i.e., before
&init is called) or after it has run to completion (either &init or &next returns false). The rep
function shows how an interval is represented by its two endpoints and the loop variable.
The post condition on &init guarantees that the first element generated is lb, but only if lb<ub.
The pre condition on &next prevents Xnext from being executed when there is no valid
current element (in particular, &init must be called first). The post condition on &next
guarantees that generated values are consecutive and that the generator stops at ub.

For "upto" the four steps which are required to verify the form properties are quite
simple. (Note that the "u." qualification on u.lb, u.k, and u.ub is omitted for simplicity.)

Page 12 Defining and Verifying Generators

For the form
1. Representation validity

Show: true ^ true
Proof: clear

2. Initialization
Show: true { } true a true
Proof: clear

For the function &init
3. Concrete operation

Show: true { k «- lb; b <- lb < ub } (bslb<ub) a. (b:>lb=k<ub)
Proof: Using the assignment axiom, the expression becomes

true => (lb<ub s lb<ub) a (lb<ub ? Ib=lb<ub)
which surely holds.

4. Relation Between Abstract and Concrete
Corresponding abstract and concrete assertions are identical and the rep
function performs a direct mapping, so the proofs are clear.

For the function &next
3. Concrete operation

Show: lb<k<ub { k <- k+1; b <- k<ub } (b ^ u b) a (b^k-k'+l a lb<k<ub)
Proof: Using the assignment axiom, the expression becomes

lb<k<ub 3 (k+l<ub = k'<ub) a (k+l<ub d k+Uk'+ l a lb<k+l<ub)
which holds because k'=k is an implicit hypothesis of the antecedent.

4. Relation Between Abstract and Concrete
Same as &init.4.

QED

To emphasize that a generator is a form, we will now give an example in which a
generator is instantiated in one place and used in another. The following procedure is a
generalized sum routine. Its parameter is an instantiation of a generator and its result is the
sum of the elements produced by that generator. For simplicity, this procedure sums only
integers. That restriction can be relaxed, but to do so would take us into parts of Alphard not
discussed in this paper.^

^ The difficulty is not defining the type of the output, which would be expressed as

function ISUM (g: ?T<generator extends ?$>) returns (sum: S)

but rather the fact that we need to initialize sum and do not know the identity for in type
S. One solution is to treat the first generated element differently from the rest, and we have
deferred discussion of the richer possibilities of generators to a later paper.

ALPHARD: Iteration and Generators Page 13

Definition
function ISUM (g: ?T<generator extends integer>) returns (sum: integer)

begin
sum <- 0;
for g do sum <- sum + g;
end

Examples of Use
begin
local v: vector(integer,l,n),

ig: upto(l,m), vg: invec(v),
ssum, vsum: integer;

ssum <- ISUM (ig);
vsum <- ISUM (vg);
end

This small program declares five variables. The first, v, is a vector of integers indexed from 1
to n. The next two, vg and ig, are (instantiations of) generators; ig is an instance of the upto
we have been discussing and vg is an invec, which we assume is defined along with vectors
and generates the elements of the vector named as its instantiation parameter. The last two
variables, ssum and vsum, are simple integers. The first call on ISUM uses ig (the upto) to
generate integer values; it assigns to ssum the sum of the integers from 1 to m. The second
call on ISUM uses vg (the invec) to generate vector elements; it assigns to ssum the sum of
the elements of v.

Proof Rules for Loops

In this section we shall consider the verification of Alphard's two iteration constructs,
for and first. Specifically, we shall develop proof rules for these statements, discovering in
the process certain desirable properties for forms which are intended to be used as
generators. Some of these properties will be required of all generators; others will be
considered optional, but their presence will substantially simplify proof rules and proofs.

The development will proceed as follows. First we shall consider a proof rule for the
for statement which makes minimal assumptions about the generator. This rule is derived
directly from the statement's meaning as given earlier. As a consequence, it is rather bulky.
Then we shall make a small number of basic assumptions about the generator. For purposes
of this paper, these assumptions will be required of all generators and hence will have to be
discharged when the generator is verified as a form. They will allow us to simplify
substantially the proof rules for the for and first statements. Next we shall consider a further

Page 14 Proof Rules for Loops

set of assumptions about generators; these assumptions are not mandatory, but they are
satisfied by typical generators. These will allow us to obtain still simpler proof rules for
particular generators. Finally, we shall consider the properties that a generator must have in
order to be a terminating generator.

Development of the for Rule

Suppose that we wish to prove

P { for x:gen(y) while /?(x) do ST(x,y,z) | I(x,y,z) } Q

where x, y, and z are as defined earlier and the notation "P { loop | 1 } Q" is used to denote M P
{ loop } Q using I as the loop assertion (invariant) placed after the loop body". Further,
suppose that we make only the minimal assumptions about the form "gen", namely that it has
been verified as a form and that it supplies two functions, &init and &next, each of which
takes a single parameter of type gen and returns a boolean result. We will also assume that
/?(x) has no side effects. We will adopt the following notation in the iteration proof rules:

G - abstract invariant of the generator. G may depend on x and y but not on z.

/^rea = u s u a ' requires clause of the generator, stating restrictions on y so
that the generator can be instantiated.0

fif j = the j-condition for generator function f, e.g.* /^jnit.post *s ^ e p o s *
condition for &init. fif j depends on x and y only.

XQ,...,Xp denotes the previously generated values of x, if any.

Since the generator has been verified as a form, we know

G A /^init.pre { n x ' & i n i t * G A ^init.post
G A <*next.pre I n *~ x ' & n e x t * G A ^next.post

^req { c ' a u 5 e } G

where init clause denotes the mit clause of the representation part.

The expansion of

for x:gen(y) while flM do ST(x,y,z)

8 We conventionally use "/T to name predicates. Hence, e.g., / ? r e q is

/S(x).

ALPHARD: Iteration and Generators Page 15

as a standard while statement, including the assertions which will be required for verification
in the most general case, is

assert P A / ? r e q ;
begin local x: gen(y);
assert P A G a / S j n i t p r e ;
n <- x.&init;
while n cand /3(x) do

begin
ST(x,y,z);

assert. I a G A / 3 n e x t . P r e ;

n <- x.&next;
end;

end;
assert Q

We will give from this expansion a proof rule for the most general Alphard for
statement. The standard while rule is not directly applicable to this expansion because the
loop-cutting assertion is located in the middle of the loop body rather than before the test.
This assertion placement means the test does not always appear just before or just after an
assertion; in two control paths through the expansion (the third and fifth lines in the proof
rule below), the test n cand appears between either the statements n^-x.&init or
n*-x.&next and ST(x,y,z). To indicate in these paths that n cand fiM may be assumed between
the statements, the assume clause is introduced.^ Its proof rule is

P a Q d R

P { assume Q } R

Using the assume clause and considering the five control paths between assertions, the
general proof rule for the for statement is

P A / ? r e q { tnct clause } P A / ? i n i t > p r e

P a G a / S i n j t > p r e { n «- x.&init] -(tta/?(x)) d Q

P a G a / 3 j n j t . p r e { n <- x.&init; assume tta/*(x); ST(x,y,z) } I a G a finex\pre

I a G a ftnextpre { it «- x.&next } -(nA/?(x)) => Q

I a G a / ? n e x t i p r e { n *- x.&next; assume tta/3(x); ST(x,y,z) } I a G a / ? n e x t . p r e

P a fireq { for x: gen(y) while flM do ST(x,y,z) | I } Q

9 ^7 ~
The assume clause appears in [Igarashi75, p. 164] as the "marked" assertion using

the notation Q-if in place of assume Q.

Page 16 Proof Rules for Loops

This formulation, because of its generality, may appear formidable. The main difficulty
appears to be that the three generator functions and the loop body may each change y in
various ways even though P and I hold at the places required by the rule. The generator
functions are, therefore, involved in the verification of each use-of a generator. However, the
following three reasonable assumptions about the generator will simplify matters considerably.

Basic Generator Assumptions:

(a) The post conditions on ftinit and &next are of the form

(b - itj) a /?j and (b s n n) a /3n

respectively, where b is the result parameter of these functions.

(b) G => / 3 j n j { p r e , G a (T T j A / 3 i n i L p o s t v n n A / ? n e x t p 0 $ t) d finexlpre

(c) The init clause and the functions &init and frnext terminate. (This does not

simplify the proof rule. It is, however, a desirable property, and it becomes
especially relevant in the discussion of generator termination below.)

(d) The generator and the loop body are independent. That is, for arbitrary

predicates R and S

R(y,z) { init clause } R(y,z)
R(y,z) { n <- x.&init } R(y,z)
R(y,z) { n *- x.&next } R(y,z)

and S(x,y) { ST(x,y,z) } S(x,y)

Point (a) is a minor restriction and can be checked syntactically. Point (b) requires two
proofs. The first is usually trivial since ftm\\pre is generally omitted (defaulted to true) and
Anex\ p r e is usually included in both post conditions. G may often be strong enough by itself,
but we may not want to commit the generator to provide a value at all times. In the latter
case we therefore require that ftinit and &next make it possible for &next to be executed.
Point (c) can be proved independently of the use of the generator. The proofs should usually
be easy (see the section below on termination).

Point (d) requires four proofs; in the typical case, however, the first three are trivial.
Because of the scope restrictions mentioned in [Wulf76a,b], the only ways the init clause, &init
or &next could affect the predicate R(y,z) are through y, which is explicitly passed as a
parameter to the form gen, and through side-effect-producing operations of &init and &next.
Thus the proof can be carried out locally for the generator definition — generally by
inspection. The fourth proof is more difficult. Because of the scope restrictions, the only way

ALPHARD: Iteration and Generators Page 17

that the loop body could affect the loop variable, x, is for the generator to provide a function
which could have a side effect on x (for example, by exporting assignment rights). This proof
should be local to the generator definition. However, the independence of y from ST cannot in
general be shown for the generator, and must be treated as a restriction on its use.

Simplified Rales for Iteration Statements

If the generator and its use meet the four basic generator assumptions given above, a
simplified proof rule applies to the for statement:^

G A [P A ft- A -(TTjA/?(x)) V l A / ! n A -(n nA/3(x))] => Q
G a ftM a [P a ft] a n j v I a ftn a n n] { ST(x,y,z) } I

P a ftreq (fel *: S e n<y> while ftM do ST(x,y,z) | I } Q

Note that the first line establishes that Q holds when (if) the loop terminates — which may
happen immediately after the invocation of &init (handled by the first term of the disjunction
in [] 's), or after an invocation of &next (handled by the second term of the disjunction). In
both cases termination may result either because the relevant generator function returned
false or because ftM failed — hence the terms of the form "-(n a ft(x))". The second line
ensures that the invariant is established after each application of the loop body.

Under the same assumptions, the following proof rule applies to the first statement:

G a P a [^ a h j v /J nAn nA-v3(x 0 . .x p)] A fiM { S ^ x ^ z) } Q
G a P a [-jTjA/Sj v -n nA/3 nA-v3(x 0..x p)] { S 2 (y ,z) } Q

P a / ? r e q { first x: gen(y) suchthat ftM then Sj(x,y,z) else S2(y>z) } Q

where "-/3(x 0 . .Xp)" is an abbreviation for " ^ (x q) a . . . a ^/3(Xp)". Note that the second line
handles the "else" cases, where no match is found; the two terms of the disjunction are the
case where the generator terminates immediately and the case where every element
generated fails the suchthat test, ftM. The first line handles the case where a match is found.
Note also that the presumed independence of the generator and the user program means that
P is not affected by ftinit and &next.

Simplified Rules for Typical Generators

Most generators are far more stylized than the simple assumptions above require. The

The justifications of this and the first rule, from the corresponding general rules
and the basic generator assumptions, are given in Appendix B.

Page 18 Proof Rules for Loops

following assumptions about standard aggregates used in typical generators allow us to obtain
proof rules of further simplicity.

Standard Aggregate Assumptions

(a) The additional abstraction provided by the generator is explicated in terms of
an aggregate (of objects of the base type) for which the following are
defined:

@ an operator to combine (e.g., concatenate) two aggregates
<> the empty aggregate
lead(S) =» first element of S to be generated.

Examples of such aggregates are sets, sequences, and intervals. The
corresponding empty aggregates are {}, <>, and []; the corresponding @
operators are union, concatenation, and merging adjacent intervals.

(b) The instantiation of the generator will produce the complete aggregate, T, of
objects to be generated. Further, a nonempty T can be decomposed as

T = S (0> <x> <R> t

where: <x> is the unit aggregate consisting of the current element x; s and t
are (possibly empty) aggregates — s, those elements previously generated
and t, those remaining to be generated; and s, <x>, and t are mutually
disjoint.

(c) The specifications on &init and &next have the form

functions
&init(&g:gen) returns &b:boolean

post (&b = T?<>) a (&b => x=lead(T) a Dj (x »
&next(&g:gen) returns &b:boolean

pre D 2 (x)
post (&b E tV<>) a (gib. D x=lead(D a D 3 (x »

where &g is an instantiation of gen corresponding to the aggregate T and
the Dj(x) guarantee that the decomposition of T specified in (b) is legal and
can be found.

The standard aggregate assumptions subsume points (a) and (b) of the basic generator
assumptions, but points (c) and (d) of the latter must still be demonstrated in addition to the
standard aggregate assumptions.

ALPHARD: Iteration and Generators Page 19

If these assumptions hold, we can derive severai simpler proof rules. The rule for the
for statement becomes

G a [P a (T « < > v ^ (l e a d (T))) v T/o a I(s) a (s=T v ->fiM)] D Q

G a T^<> a [P A /?(lead(T)) v (s^T a I(s) a /3(x»] { ST } I(s@<x>)

P a fireq { for x: gen(y) while fiM do ST(x,y,z) | I } Q

and the first rule simplifies to

G a P a Vw(s -vtf(w) a fiM { S ^ x ^ z) } Q
G a P a Vw(T ^ (w) { S 2 (y,z) } Q

P a /3 r e q { first x: gen(y) suchthat fiM then Sj(x,y,z) else S2(y>z) } Q

We call these two rules the standard aggregate rules.

Special Cases and Examples

The Pure for Rule

In many cases the programmer may wish to drop the while clause, treating fiM as
identically true. In addition, he will often wish to choose P = I(<>) and Q = I(T). (Until now the
major reason for distinguishing between P, Q, and I was that if fiM terminates the loop before
the generator signals termination, I(T) is probably not true.) If these decisions are made, the
proof rule simplifies further, since the first premise reduces to true and several terms drop
out of the second. Making the substitutions yields a generic rule similar to those of various
for statements given by Hoare [Hoare72a]:

G a T=sfl><x><$t a I(s) { ST(x,y,z) } I(s@<x>)

I (< >) A fireo { f2L x: gen(y) do ST(x,y,z) } I(T)

Proof Rules for upto

To use one of these rules with a particular generator, we must "instantiate" it with the
particulars of the generator in question. We will illustrate this by developing the proof rules
for upto. First, we discharge parts (c) and (d) of the basic generator assumptions:

Page 20 Special Cases and Examples

(c) The bodies consist of simple assignment statements, and thus clearly terminate.

(d) There is no init clause and functions &init and &next change only local data
and their return values; thus the first three parts of independence are
satisfied. For the fourth point, note that no means is provided for the user
of the form to alter K; the user is expected to refrain from altering lb and
UB.

Next, we discharge the standard aggregate assumptions:

(a) Integer intervals are used.

(B) [l b . . u b] « [lb..k-l][k][k+l..ub] when lb<K<ub.

(c) The pre and post conditions have the required form.

Substituting the interval definitions in the standard aggregate rules and simplifying, WE obtain

P A (l b > U B V ^ (L B)) V LB<K<UBAL[LB. .K-L]A^(K) v LB<UBAL[lb..ub] 3 Q

lb<ub a (P a ft(\b) v LB<K<UB a I[lb..K-1] a /S(k)) { ST(K,y,z) } I[lb..k]

P { for k: upto(lb,ub) while /?(k> do ST(k,y,z) | I(k,y,z) } Q

and

P a LB<K<UB a (Vw ([LB. .K -L] -/8(w)> a /?(K) { S^K.y .z) } Q

P a Vw i [lb..UB] -/?(w) { S 2 (Y , Z) } Q

P { FJRST K: UPTO(LB,UB) suchthat fi(k) then S!<K,Y,Z) else S 2 (Y , Z) } Q

where the Y parameters are <lb,ub>. In the special case P=I[], Q=I[LB..UB], and /?STRUE, W E

obtain the Pascal rule for the for statement [Hoare72a, Hoare73]:

L B < K < U B A I[LB..K-1] {ST(K,Y,Z)} I[LB..K]

I[] { for K:upto(LB,UB) do ST(K,Y,Z) } I[LB..UB]

As must be the case, this rule is also obtained from the pure for rule BY instantiating gen(y)

with upto(LB,UB).

ALPHARD: Iteration and Generators Page 21

The Pure while Rule

We showed above that when the while clause is dropped, the for proof rule resembles
Hoare's. We will now show how to eliminate the loop variable and obtain the standard proof
rule for the pure while statement.

Suppose we had a form named "forever" which extended type boolean and which
satisfied the requirements above by using the value "true" for all the predicates involved.
The aggregate T would be an infinite sequence of "true"s, and the standard aggregate for rule
would become

true a [P a (false v ^/?(true)) v true a I(true*) a (false v -i/?(true))] ^ Q
true A [P a fi(irue) v true a Ktrue*) a /?(true)] { ST(true„z) } I(true*)

P { for x: forever while /3(true) do ST(true„z) | Ktrue*) } Q

where "true*" denotes a sequence of "true"s and the adjacent commas indicate the absence of
the parameters y. By choosing P = I and Q = I a eliminating the vacuous dependencies on
"true", dropping the useless for clause, and simplifying, we obtain

I a fi { ST(z) } I

I { while fi do ST(z) } I A

w h i c h is the conventional while rule.

Generator Specifications by Proof Rules

We have shown how two sets of assumptions about the properties of a generator lead
to v e r y simple proof rules for the iteration statements. Notice now that if a generator
satisfies these assumptions, the specifications for &init and &next can be reconstructed or
obtained from the proof rules. As a result, the author of. the generator can perform the
substitutions and simplifications, then give the proof rules in the specifications instead of
giving the pre and post conditions. When this is possible, we use the keyword generator in
place of form in the specification to alert the user.

To illustrate this, we will write the generator for a counting loop that uses an integer
step size greater than 1. This will provide the Alphard equivalent of Algol's

for i := a step j until b do S

for positive values of j . We first augment the interval notation [a..b] to include a step size:

Page 22 Special Cases and Examples

Example of Loop Verification

In this section we shall illustrate the use of the proof rules given above by v e r i f y i n g
the "eqvecs" function given earlier. With gre and £Osi assertions, the function is

[a(j)b] s^f <a,a+j,a+2*j,... ,b~(b-a) mod j> where j>0

If a>b, then [a(j)b] is <>. Note that [a(l)b] = [a..b]. The following rule allows us to merge two

intervals:

[a(j)b][b+j(j)c]=[a(j)c] provided (b-a) mod j = 0

Using this notation, we can define the generator stepup:

generator stepup (lb,j,ub:integer)extends k:integer =
beginform
specifications

requires j > 0;
inherits <allbut <->;
let stepup = [lb(j)ub] where lb<ub'-=> stepup = [lb(j)k-j][k][k+j(j)ub];

rule forwhile(PAi>O t k, <lb,j,ub>, ft, ST(k,<lb,j,ub>,z), I, Q) =
premise PA(lb>ubv-/?(lb)) v lb<k<ub-dAl[lb(j)k-j]A-/?(k) v lb<ubAl [lb(j)ub] ^ Q,
premise lb<ub a (P/\ft(\b) v lb<k<ub-dAl[lb(j)k-j]A/?(k)) { ST(k,<lb,j,ub>,z) }

I[lb(j)k] where d=(ub-lb) mod j ;

rule fir.st(PAJ>0, k, <lb,j,ub>, ft, S ^ M b ^ u b V) , S2(<lb,j,ub>,z), Q) =
premise P a lb<k<ub a (Vw ([lb(j)k~j] -/S(w)) a ft(k) { S ^ k <lb,j,ub>,z) } Q,
premise P a V w ([lb(j)ub] -/?(w) { S 2(< 'b,j ,ub>,z) } Q;

rule for(lAj>0, k, <lb,j,ub>, ST(k, <lb,j,ub>, z)) « .
premise lb<k<ub-d a I[lb(j)k-j] { ST(k,<lb,j,ub>,z) } I[lb(j)k]

where d=(ub-lb) mod j ;

representation
i
! same as upto
t

implementation
t
! same as upto, except in &next becomes and k'<ub becomes k'+j<ub
I

endform

ALPHARD: Iteration and Generators Page 23

function eqvecs(A,B: vector(?t<V>,?lb,?ub)) returns (eq: boolean) -
pre true post (eq 2 (Vj <• [lb..ub] A[j]«B[j])) «
first i: upto(lb,ub) suchthat A[i] ± B[i] then eq «- false else eq <- true

Using the upto first rule, the proof requires that we establish the two premises:

Show: true a lb<i<ub a (Vw (. [I b J - l] -(A[y]*B[y])) a A[i]*B[i]
{ eq<-false } eq = Vj ([lb..ub] A[j]=B[j]

Proof: This simplifies to lb<i<ub a A[i]^B[i] D 3j d [lb..ub] A[j]^B[j]. Choose j - i .

Show: true a Vw c [)b..ub] -(A[w]^B[w]) { eq<-true } eq E Vj C [lb..ub] A [j] -B [j]
Proof: clear

QED

Termination of Generators

A major advantage of the for statements in many of the more recent programming
languages, such as Pascal, is that they are guaranteed to terminate (provided, of course, that
the statement which is the loop body terminates for each value of the for statement). As a
result the programmer using them never need explicitly demonstrate termination. We would
like to be able to make similar claims about the loops utilizing at least some generators; the
generators having this property will be called terminating generators.

We can now present a technique for demonstrating this p roper ty .^ Although the
general for statement is

for x:gen(y) while fi(x) do ST(x,y,z)

the clause "while /?(x)" can only reduce the number of times ST(x,y,z) is executed. Hence it
suffices to show that

for x:gen(y) do ST(x,y,z)

terminates. Further, the generator and loop body, ST(x,y,z), are independent, so we know that
as long as the body itself terminates for each x, it cannot cause the for statement to fail to

Note that nontermination of the loop might also be caused by nonterminaton of the
init clause or the functions &init and &next in the generator. This is explicitly ruled out by
the basic generator assumptions, but must be treated as an additional requirement for proof of
termination of generators which do not satisfy those assumptions.

Page 24 Termination of Generators

terminate. Thus, if we can show the termination of the above statement for all possible
parameters of the generator and some particular loop body, we will have shown that use of
the generator cannot cause nontermination for any body.

Consider the statement

i<-0; for x:gen(y) do i<-i + l

If we could find: (1) a (non-negative) value My depending only on y for which i<My after
executing the statement, and (2) a loop invariant which allowed us to prove that the loop
terminated with such a value of i, then we would have proved termination of all loops using
gen.

Clearly, the choice of My will depend on the instantiation parameters of the generator,
i.e., on the data structure from which the elements are being generated. The loop invariant
will have to assert that My bounds i; it will also have to relate the value of i to progress
through the loop. The term that accomplishes the latter task, which we shall call Iy(x), must be
chosen for each generator whose termination is to be proved. Thus the loop invariant is of
the form i < M v A l (x). If we can associate with a generator a rule for determining for any
particular instantiation, and if we can find a suitable Iy(x), then it suffices to show 1 *

i=0 { for x:gen(y) do i«-i + l | i<M y Aly(x) } i<M y

Note that the clause "i<My" in this loop invariant ensures that the loop will terminate, since i is

strictly increasing from 0.

Although this must potentially be proved for each generator, we can show the
termination of every generator which satisfies the standard aggregate assumptions (with a
finite aggregate), provided only that it is possible to measure the size of an aggregate. To
demonstrate this, we use the pure for rule taking I(s) as i<size(T)Ai=size(s), where "size" is
defined appropriately for the aggregate. The only premise

G a T=s®<x><s>t a i<size(T) a i=size(s) { iH + 1 } i<size(T) a i=size(s©<x>)

follows since s and <x> are disjoint, whence size(s) < s ized) and size(s<s><x>) » s ize(s)+l .

Hence the conclusion of the pure for rule is

i<size(T) a i=size(<>) { for x: gen(y) do + l } i<size(T) a i=size(T)

This then implies the desired result with M y=size(T) and Iy(x)=size(s).

*2 This method for showing termination is a simple instance of the commonly-used we l l -
founded set notion [Katz75, Luckham75]. Here the well-founded set is the non-negative
integers bounded by M y .

ALPHARD: Iteration and Generators Page 25

Example: Finite Sets

We now turn to a larger example that uses the iteration constructs. This example is
based on Hoare's "smallintset" [Hoare72b], which implements smaH sets of integers. We begin
by presenting and verifying a slightly augmented version of "smallintset". This form, called
"simpleset", uses first statements and the "upto" generator; the program and the verification
can be compared with Hoare's "smallintset". We then discuss the problem of adding new
operations to "simpleset"; we construct a new type with the additional operators by adding a
set-element generator to "simpleset" and writing a new form (which extends "simpleset") for
the nekw operators.

"Simpleset": a Version of Hoare's "Smallintset"

This differs from Hoare's "smallintset" in that it can build sets of many types and the
bound on the set size can be selected for each instantiation. Hoare noted these extensions in
[Hoare72b, section 9]. In addition, the algorithm used in "remove" is slightly d i f fe rent .^

form simpleset(maxsize:integer, thing:form<*-,=>) =
beginform
specifications

requires maxsize > 0;
let simpleset = { . . . Xj . . . } where Xj is thing;
invariant cardinality(simpleset) < maxsize;
initially simpleset = {};
function

insert(s:simpleset, x:thing)
pre cardinality({x} U s) < maxsize
post s = s' U {x},

remove(s:simpleset, x:thing)
post s = s' - {x},

has(s:simpleset, x:thing) returns (b: boolean)
post b = x (s';

To shorten the pre, post, in, and oy i conditions in this paper, we often, by
convention, omit assertions about variables which are completely unchanged. Thus, for
example, we have omitted s=s' from the post condition of has below. Such omitted assertions
are nevertheless used in the proof steps.

Page 26 Example: Finite Sets

representation
unique v: vector(thing,l,maxsize), m: integer jnrt m <- 0;
re£(v,m) = {v[i] | i < [l..m]};
invariant 0<m<maxsize a (Vi,j £ [l..m] (v[i]=v[j] s i-j));

implementation
body insert in (3i ([L.s.m] st x=s.v[i] v s.m<maxsize)

out (Vi([L.s.m'](s.v[i] = s.v'[i]) a (3j < [L.s.m] st s.v[j] = x » =
first p: upto(l,s.m) suchthat s.v[p] = x

else (s.m <- s.m+1; s.v[s.rn] <- x);

body remove out (Vj c [l..s.m](s.v[j] ^ x) a
(Vi « [L.s.m'] 3j * [L.s.m] (s.v'[i] ^ x 3 s.v[j] = s .v ' [i]) » -

first p: upto(l,s.m) suchthat s.v[p] = x
then (s.v[p] <- s.v[s.m]; s.m <- s.m-1);

body has out (b s (3i « [L.s.m] st s.v[i]=x) a s.v'=s.v a s.m'=s.m) •
first p: upto(l,s.m) suchthat s.v[p] = x

then b *- true else b <- false;

endform

Verification of Simpleset

For the form

1. Representation validity
Show: 0<m<maxsize A (Vi,j ([l..m](v[i]=v[j]:>i=j)) -=>

cardinality({v[i] | i i [l..m]})<maxsize)
Proof: clear

2. Initialization
Show: maxsize>0 {m<-0} {v[i] | i < [l..m]}={} a 0<m<maxsize a

V i , j c [l . .m] (v [i>v [j]3
Proof: 0<0<maxsize and [L.0] is [].

For the function insert
3. Concrete operation

Show: /? i n a I c { first p: upto(l,s.m) suchthat s.v[p]=x
else (s.m<-s.m+l; s.v[s.m]«-x } / ? o u { a I C

Proof: The second premise of the upto first rule becomes

ALPHARD: Iteration and Generators Page

/3 j n a I c a l<p<s.m a (Vk l [l . .p - l] (s .v [k]^x» A s.v[p>x { } / 3 Q u t a I C

The second term of /? o uf follows by choosing j^p. The other terms
* are clear.

4a. /? j n holds
Show: I C a cardinality({x}urep(v,m)) < maxsize ^

(3i £ [L.s.m] st x=s.v[i] v s.m<maxsize)
Proof: From I c the v[i]'s are distinct. Hence cardinality(rep(v,s.m»

is s.m. If the 3i term is false, then x ->< rep(v,s.m) and
cardinality({x}urep(v,m)) = l+s.m<maxsize, i.e., s.m<maxsize.

4b. / ? p 0 s t holds
Show: I c a cardinality({x}urep(v ,,s.m1))<maxsize A /3 Q u j D $ « s' u (x)
Proof: s « rep(s.v,s.m) = {s.v[i] | i i [L.s.m]} =

{s.v'[i] | i < [l..s.m ,]J u {s.v[s.m]} = s1 u {x}

For the function remove
3. Concrete operation

Show: /3jn A I Q { first p: upto(l,s.m) suchthat s.v[p]=x
then (s.v[p]<-s.v[s.m]; s.mt-s.m-1 } / ? 0 (j t a I c

Proof: The second premise of the upto first rule becomes

true a I c a Vk ([l..s.m](s.v[k><x) { }
(Vj i [l..s.m](s.v[j]^x)) a (Vi ([L.s.m] 3j € [L.s.m^s.vTifcx =>
s.v[j]=s.v'[i])) a I c

The first term follows by the Vk term. For the second term choose
j=i. I c is clear. The first premise of the first rule becomes

true a I c a l<p<s.m a (Vk £ [l . .p- l](s.v[k]/x)) a s.v[p] = x
{ s.v[p]<-s.v[s.m]; s.rm-s.m-1 } / ? o u t a I c

(3i * [L.s.m] st x=s.v[i] v s.m<maxsize) a 1c a
Vk ([l..s.m](s.v[k]^x) { s.m«-s.m+l; s.v[s.m]*-x }
Vi <; [l..s.m ,](s.v[i]=s.v ,[i]) A (3j £ [L.s.m] st s.v[j]=x) A I c

The first term follows by s.m-s.mM>s.m\ For the second term choose
j=s.m (note l<s.m<maxsize). The first term of I c holds because the Vk
term means s.m<maxsize in the second term of the hypothesis. The
second term of I c holds from I c and the Vk term. The first premise of
the first rule becomes

Page 28 Example: Finite Sets

s.m remains non-negative since s.m'>L The reasons for the other
terms depend on p=s.m or p^s.m. Let p=s.m. For the second term of
I c , note that {s.v[l.,s.m]}-{x} = {s.v'[L.s.m'-1]} so s .v ' [l . .m' - l] is
duplicate-free by I c . The first term of fiou^ follows from the Vk term.
For the second term of /? o uf choose j=i. Now let p^s.m. By I c ,
{v [l . .p - l ,p+l . .s .m' - l] } u (s.v[s.m']} = {v[l..m]} is duplicate-free. The
first term of /? o u j follows from I c and s.v'[p] = x ^ $.v'[s.m'J « s.v[p].
For the second term of /? o u { choose j - i except when i=m' in which
case choose j=p.

4a. /? j n holds
/?j n is true

4b. / ? p o s t holds
Show: I c a / ? 0 (j t ^ s = s' - {x}
Proof: s = {s.v[i] | i <: [L.s.m]}. By the first term of / ? o u t ,

x s apd by the second term of /? o u { , y A D y(s iff y£$\
Hence s = s' - {x}.

For the function has
3. Concrete operation

Show: /3jn a I c { first p: upto{l,s.m) suchthat s.v[p]=x
then b«-true else b*-false } / ? o u (A I c

Proof: I c is unchanged. The second premise of the upto first rule has
the hypothesis Vk ([l..s.m](s.v[k]^x), i.e., the 3 term in fiou^ is false -
b. The first premise has the hypothesis v[p]=x, i.e., choose i=p so the
3 term is true - b.

4a. /? j n holds
/3jn is true

4b. / ? p o s t holds
Show: I c a / ? Q u t 3 b = x < s'
Proof: b = 3i ([L.s.m] st (s.v[i]=x) =

x < {v'[i] | i £ [L.s.m'] = x (s'
QED

We noted earlier that our algorithm for remove is different from Hoare's. Since our /? i n

and / ? o u t can be used for Hoare's remove, the proof of his remove requires changing only
step 3.

Adding Functions to "Simpleset"

Suppose now that we wanted to add other set operations such as union, intersection,
and an inclusion test. We could do this either by adding each new operation to form
"simpleset", or we could write a new form, say "finiteset", which extends "simpleset". In the

ALPHARD: Iteration and Generators Page 29

former case we would have access to the representation of simplesets, but we would have to
be v e r y concerned about possible side effects on the representation and about the possibility
of compromising the existing verification. In addition, each such change alters the
specifications of "simpleset", and thus potentially requires reverification of the programs that
use "simplesets". The latter choice substantially reduces the reverification responsibilities and
allows a number of users to write extended operation sets without interfering with each other.
However, it is feasible only if the set of operations provided by "simpleset" is rich enough.

The version of "simpleset" presented in the previous section is not quite rich enough
for extended operation sets to be independent. The chief deficiency is that there is no way
for a user to find out what elements are in a set. We will remedy that by adding a generator
"inset" to the simpleset form and then write an extension form "finiteset".

"Inset": a Set Element Generator

We said above that a generator produces a sequence of elements. Since sets are not
inherently ordered, we can generate the elements in any order that is convenient. We do,
however , want to be able to promise that each element in a set appears exactly once in the
generated sequence. It is not necessary (or particularly desirable) that the elements of two
equal sets be generated in the same order. In fact, the order in which this generator
produces the set elements is an accident of the history of the s e t . ^

The following program text is the definition of a generator, "inset", which produces the
desired sequence; it is shown in its proper context within the "simpleset" form. We have,
however , deleted (and replaced by ellipses) those parts of "simpleset" which are identical to
their previous definition. The form inset satisfies the standard aggregate assumptions, so we
specify it by giving its proof rules. For simplicity, we provide only the first and the pure for
rules.

form simpleset(maxsize:integer, thing:form<<-,=>) =
beginform

specifications

generator inset(s:simpleset) extends x-.thing
let inset = { x st x (s } where s ^ {} ^ (inset = q u jx] U r and

q, {x}, and r are disjoint);
rule ford, x, s, ST(x, s, z)) =

premise q c s a x (s-q a I(q) { ST(x,s,z) } I(q U {x});

We could, of course, go to extra trouble to generate the elements in a standard
order , but that is a different design decision and leads to a different program.

Page 30 Example: Finite Sets

rule first(P, x, s, ft, S^x , s, z), S 2 (s , z), Q) =
Premise q c s a x C s-q A P a (Vw < q -/?(w)) a /?(x) { S ^ x ^ z) } Q,
premise P a Vw (s i/S(w) { S 2(s,z) } Q;

implementation

body inset -
beginform
representation

unique j:integer;
re£(s.v,s.m,x,j) = it s.m=0 then {} else q u {x} U r where

q = { s . v [i] | i ([l . . j - l] } a n d
x = s.v[j] and
r = {s.v[i] | i ([j+l..m]};

invariant true;
implementation

body &init out. ((&b = s.m>0) a (&b => l=&g.j<s.m a x=s.v[&g.j])) -
if s.m > 0 then (&g.j«-l;.x*-s.v[lj; &b<-true)

else &b<-false;

body &next in l<&g.j<s.m out ((&b s &g.j' < s.m) A
(&b ^ &g.j==&g.j,+l a l$&g.j<s.m A x=s.v[&g.j]))
\± &g.j < s.m then (&g.j<-&g.j+l; x*-s.v[&g.j]; &b<-true)

else &b«-false;
endform

endform

The generator "inset" can now be used to express the iteration which was posed as the
first problem in the introduction, that is, to compute the sum of the elements in a set s.
Compare this Alphard statement with the three versions in contemporary languages given
there:

sum «- 0; for x:inset(s) do sum *- sum + x

This version of the loop does not reveal the implementation, so the users need not be
concerned with which kind of iteration is most appropriate. In addition, the implementor of the
"simpleset" form can now be reasonably sure that a change in the implementation will not
create havoc in user programs. We can verify this program segment using the pure for rule
for inset given in the specifications.

ALPHARD: Iteration and Generators Page 31

Show: true { sum<-0; for x : inset(s) do sum<-sum+x } sum = SIGMAj ($ (j)
Proof: I (U) is sum = 0, I(q) is sum « SIGMAj (q (j) , and the premise of the for rule is

q c s A x (s-q a I(q) { sum<-sum+x } I(q U {x}>
This reduces to the provable formula

q c s a x « s -q A sum = S IGMAj^ j) ^ sum + x = S I G M A j (q U j x j (j)

QED

We next verify inset. We must first reconstruct the gre and post conditions for &init
and &next from the specified proof rules:

&init
post (&bss^{}) A (&b 3 x « s a q={})

&next
pre x(s
post (&bsrV{}> a (&b 3 x i r' a q=q'u{x'})

The reasons that parts (c) and (d) of the basic generator assumptions hold are essentially the
same as for upto. It is also necessary to discharge the standard aggregate assumptions:

(a) Sets are used.

(b) s = q u (x) U r when s^{} (recall disjointness of q, {x}, and r).

(c) The pre and post conditions have the required form.

Since "m" and "v" are unchanged by inset, the I c of simpleset still holds and will be used
throughout this proof. The "s." qualifier is sometimes omitted in the interest of clarity.

For the form

1. Representation validity
Show: true => true
Proof: clear

2. Initialization
Show: true { } true a true
Proof: clear

For the function &init
3. Concrete operation

Show: true { if s.m>0 then (&g.j«-l; x«-s.v[l] ; &b*-true) else &b«-false } /$ 0 (J j A true
Proof: clear by considering the two cases of the if

Page 32 Example: Finite Sets

4a. /? j n holds
fim is true.

4b. /3post h o l d s

Show: true a (&bss.m>0) a (&b s l=&g.j£s.m a x=s.vf&g.j]) o (&b s $+[}) A
(&b D x < s a q - {})

Proof: To obtain s and q in terms of concrete variables, use the rep
function. Then &b's (s.m>0) H {v[i] | i i [l..m]}^{} s Suppose
s.rn>0, i.e., &b = true. Then &gj=l whence x - s . v [l] i [v[i] | i d [l. .m]}
and q = {v[i] | i < [1 . .0]H) .

For the function &next
3. Concrete operation

Similar to &init.3
4a. fi-m holds

Show: x € s ^ l<&g.j<s.m
Proof: Using the rep function, x (s implies v[j] ({v[i] | i * [l..m]},

whence l<&g.j<m.

4b. / * p o s t h o l d s

Show: x (s a (&b=&g.j,<s.m) a (&b D &g.j=&g.j'+lAl<&g.j<s.mAx=s.v[&g.j]) D
(&b = {v[i] | i i [jM..rn]} * { }) a (&b D x ([v[i] | i < [jVl . .m]} a
{v[i] | i < [l . - j - l] } - { v [i] I •

Proof: &b = (&g.j'<s.m) = {v[i] | i c [j'+l..m]} * {}
by reasoning similar to 4a. The second term of the conclusion follows
from l^&g.p&g.j'+l^s.m and x=s.v[&g.j].

QED

"Finitcsetu: an Extension of "Simpleset"

Since the simple set form defined above does not provide the usual set operations one
expects (e.g., union), in this section we shall define and verify an extension of that form which
provides these facilities. All of the mechanisms used in this example have been presented
previously; the example does, however, provide us the opportunity to illustrate the use of the
specifications of one form, "simpleset", in the verification of another. The new form definition
and its proof are given below:

ALPHARD: Iteration and Generators Page 33

form finiteset(maxsize:integer, T:form«-,=>) extends s:simpleset(maxsize,T) «
beginform
specifications

requires maxsize > 0
let finiteset = { . . . Xj . . . } where Xj is thing;
invariant cardinality(finiteset) < maxsize;
initially finiteset = {};
function

union(sl,s2:finiteset(maxsize,T)) returns s3:finiteset(maxsize,T)
pre cardinality(slus2)<maxsize
post s3=sl U s2,

intersect(sl,s2:finiteset(maxsize,T)) returns s3:finiteset(maxsize,T)
post s3=sl n s2,

includes(sl,s2:finiteset(maxsize,T)) returns b:boolean
post b=s2 c s i ;

representation
rep(s) = s
invariant cardinality(s) < maxsize

implementation
body union =

begin
for x:inset(sl) do insert(s3,x);
for x:inset(s2) do insert(s3,x);
end;

body intersect =
for x:inset(sl) do

j i has(s2,x) then insert(s3,x);
body includes =

first x:inset(s2) suchthat -has(sl,x) then b«-false else b*-true;
endform

Verification of Finiteset

Since rep(s) is an identity function except for a type change from simpleset to finiteset,
we shall assume ftpre = fim and fipOS\ = /? o ut in the proof. All the generator uses are
independent of the loop bodies; specifically, s3 is changed but never generated. Note also
that s3 is instantiated as a simpleset whenever it is needed for a return value, and hence is
initialized to {}.

34 Example: Finite Sets

For the form

1. Representation validity
Show: cardinality(s)<maxsize ^ cardinality(s) < maxsize
Proof: clear

2. Initialization
Show: maxsize>0 { "s<-{}" } s={} A cardinality(s)<maxsize
Proof: The notation "s*-{}" refers to the initially clause of simpleset.

The proof is trivial.

For the function union
3. Concrete operation

Show: cardinality(slus2)<maxsize a l c { body of union } s3=slu$2 a I C

Proof: I c remains true because it is unchanged. A loop invariant for the
first [or statement is s3 = q. Since cardinality(q) < cardinality(sl) 6
cardinality(slus2) < maxsize, the pre. condition of insert is met; the
post condition says s3 = q u {x} which shows s3 = q is indeed a loop
invariant. Similarly, a loop invariant for the second for statement is s3
= s i u q. The first for statement is started with s3 = {}; the second
for statement is started with s3 = s i by the result of the first for
statement, which is s3 = s i .

4a. fim holds

^ p r e = ^ in
4b. / ? p o s t holds

/^post = fiou\

For the function intersect
3. Concrete operation

Show: I c { body of intersect } s3 = slns2 a I C

Proof: A loop invariant is s3 = q n s2 because if x (s2 then s3u{x) «
(qns2)u{x} = (qu{x})ns2 while if x s2 then s3 = qns2. The pre
condition for insert holds because s3 = qns2 c slns2 c slus2. The
initialization of s3 to {} starts the loop properly; the result is s3 «
s lns2.

4a. and 4b. As in union.

ALPHARD: Iteration and Generators Page 35

For the function includes
3. Concrete operation

Show: I c { body of includes } b = s2 c s i
Proof: The second premise of the first rule has the hypothesis

Vw < s2 -i-ihas(sl,w) = (s2 c s i) « true. The first premise has the
hypothesis x < s2 a -*(has(sl,x)), i.e., x (s2 a x s i whence b = false
as the body does.

4a. and 4b. As in union.
QED

A Remark on Program Size

We are aware of (and have occasionally shared) the apprehension of some of our
colleagues that Alphard programs will be substantially, even unreasonably, larger than
programs for similar tasks written in other languages. Early results indicate that this need not
be the case. One comparison is made in [Shaw76}, we are now able to compare Hoare's
"smallintset" with "simpleset".

First, let us compare this program text with Hoare's. The Alphard program, "simpleset",
initially looks longer — 32 lines to 28 for Hoare's "smallintset". "Simpleset", however, includes
about 14 lines of verification assertions. With the exception of the in/out assertions, this
information appears in Hoare's paper, but not in the "smallintset" program itself.

We will compare program sizes (exclusive of assertions.) on the basis of the number of
lexemes used, since the division into lines is arbitrary. We divided the lexemes into three
categories: declarations and procedure headers, text grouping symbols like begin and end, and
executable statements. We treated a qualified name as a single lexeme. We found the
following:

executable grouping declaration total
"simpleset" 95 2 81 178
"smallintset" 121 12 58 191

Alphard's shorter executable text is largely attributable to the conciseness of the first
statement; its larger declaration text seems to arise from the separation of specifications from
procedure bodies and from the additional generality. The differences are not large enough to
draw major conclusions from the data, and raw text length is hardly the major criterion for
comparing languages. Nonetheless, the closeness of the numbers should serve to allay any
fears that Alphard programs will necessarily be very large.

Page 36 Example: Finite Sets

Conclusions

The ultimate goal of the Alphard project is to increase the quality and reduce the total,
lifetime, cost of real programs. Of the many alternative approaches to this goal we have
chosen one in which recent results from programming methodology and program verification
are merged in a programming language design.

The Key component of this merger is the introduction of a language mechanism, the
form, to provide explicit support for the development of conceptual abstractions. The close
association between forms and our intuitive notion of abstraction seems sound on
methodological grounds, for it permits the programmer to concentrate on abstractions instead
of their implementations. It also seems sound in terms of current (and projected) verification
technology in that it permits isolated proofs of manageable size which collectively verify the
entire program.

The success of this approach to improving quality and reducing costs depends, in large
measure, on the degree to which the proposed language mechanism is able to express natural
abstractions. In a previous report [Wulf76a,b] we dealt with abstractions whose behavior is
naturally expressed as a collection of operations defined over an abstract data structure. This
is not, however, the full range of behaviors implicit in our understanding of the concept of
"abstraction". Thus, in this report we concerned ourselves with that class of behaviors
corresponding to the notion of enumerating the elements of an abstract aggregate (i.e., data
structure).

The specific content of this report has dealt with two related issues: the language
features for defining and using such abstractions and the development of specification and
verification techniques to accompany the language features. It is reassuring to us that the
existing form mechanism is adequate to capture the new class.of abstractions introduced here.
We also find it interesting that the forms which define generators can be specified quite
naturally in terms of proof rules instead of the usual functional specifications. Despite the
complexity of the full generator mechanism and associated proof rules, a chain of simplifying
assumptions yields the simple rules for common types of loops in other languages;
furthermore, these common loops terminate.

A number of open problems remain. The loop specialization facility in Alphard has made
it possible to encapsulate iteration patterns along with other properties of an abstraction, but
it. has also made it awkward to write certain kinds of loops, including those which operate on
only part of a structure and those in which a structure is modified by the loop which operates
on it.

We may wish to eliminate many such irregular loops on methodological grounds, but
others seem to be reasonable, understandable, and hence safe. For example, it seems
acceptable to write loops for

ALPHARD: Iteration and Generators Page 37

- recurrence relations in which the first k elements Qf a vector are treated

individually and the rest uniformly,

- operations on matrices in which the boundary values receive special treatment,

- tree walks in which data values at the nodes, but not the tree structure, are
changed,

- list processing operations when the loop body is making insertions and deletions
to the list from which elements are being generated, and

- operations in which the loop body may wish to request early loop termination
(without the distributed cost and complexity of including the test in the while
clause).

Since a generator is in fact a form, the ability to write some of these loops may be provided
by defining functions other than &init and ftnext in the generator. Operations on the structure
would then still be performed only by the generator, which eould presumably keep matters in
hand. The restrictions under which this is reasonable are a subject for further research. This
is not, however, an acceptable general solution, for it would require the generator to provide
its own versions of all interesting operations on the structures for which it generates
elements.

A general solution for the problem of permitting interactions between the generator and
the loop body can be found by returning to the original proof rule, without even the basic
generator assumptions. This rule assumes only that &init and &next are functions provided by
the generator. This solution is too general it is too unwieldy for any but the most intricate
of interactions. We believe that a promising path for further research is. the search for sets
of reasonable assumptions which permit interesting interactions and also, like the two sets of
assumptions made in this report, lead to vastly simplified proof rules.

Acknowledgements

We owe a great deal to our colleagues at CMU and ISI, especially Mario Barbacci, Neil
Goldman, Donald Good, John Guttag, Paul Hilfinger, David Jefferson, Anita Jones, David Lamb,
David Musser, Karla Perdue, Kamesh Ramakrishna, and David Wile. We would also like to thank
James Horning and Barbara Liskov and their groups at the University of Toronto and
Massachusetts Institute of Technology, respectively, for their critical reviews of Alphard. We
also appreciate very much the perceptive responses that a number of our colleagues have
made on an earlier draft of this paper. Finally, we are grateful to Raymond Bates, David Lamb,
Brian Reid, and Martin Yonke for their expert assistance with the document formatting
programs.

Page 38 Conclusions

References

[Dahl72] Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Program Structures", in Structured
Programming (O.-J. Dahl, E. W. Dijkstra, and C A R . Hoare), Academic Press, 1972 (pp.
175-220).

[Hoare72a] C. A. R. Hoare, "A Note on the For Statement", 6/7", 12, 1972 (pp. 334-341).

[Hoare72b] C. A. R. Hoare, "Proof of Correctness of Data Representations", Acta Informatica,

1, 4, 1972 (pp. 271-281).

[Hoare73] C A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming Language
Pascal", Acta Informatica, 2, 4, 1973 (pp. 335-355).

[Igarashi75] Shigeru Igarashi, Ralph L. London, and David C. Luckham, "Automatic Program

Verification I: A Logical Basis and its Implementation", Acta Informatica, 4, 2, 1975 (pp.

145-182),

[Jensen74] Kathleen Jensen and Niklaus Wirth, PASCAL User Manual and Report, Springer-
Verlag Lecture Notes in Computer Science, No. 18, 1974.

[Katz75] Shmuel Katz and Zohar Manna, "A Closer Look at Termination", Acta Informatica, 5,

4, 1975 (pp. 333-352).

[London76] Ralph L. London, Mary Shaw, and Wm. A. Wulf, "Abstraction and Verification in
Alphard: A Symbol Table Example", Carnegie-Mellon University and USC Information
Sciences Institute Technical Reports, 1976.

[Luckham75] David C. Luckham and Norihisa Suzuki, "Automatic Program Verification IV: Proof
of Termination within a Weak Logic of Programs", Memo AIM-269, Stanford University,
October 1975.

[McCarthy62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael 1. Levin, LISP LS Programmer's Manual, MIT Press, 1962.

[Newell64] Allen Newell, Fred Tonge, Edward A. Feigenbaum, Bert F. Green Jr., and George H.
Mealy, Information Processing Language-V Manual, Second Edition, Prentice-Hall, 1964.

[Shaw76] Mary Shaw, "Abstraction and Verification in Alphard: Design and Verification of a
Tree Handler", Proc. Fifth Texas Conference on Computing Systems, 1976 (to appear).

[Teitelman75] Warren Teitelman, "Interlisp Reference Manual", Xerox PARC, 1975.

ALPHARD: Iteration and Generators Page 39

[Weissman67] Clark Weissman, LISP LS Primer, Dickenson, 1967.

[Wulf76a] Wm. A. Wulf, Ralph L. London, and Mary Shaw, "Abstraction and Verification in
Alphard: Introduction to Language and Methodology", Carnegie-Melton University and
USC Information Sciences Institute Technical Reports, 1976.

[Wulf76b] Wm. A. Wulf, Ralph L. London, and Mary Shaw, "An Introduction to the Construction
and Verification of Alphard Programs", IEEE Transactions on Software Engineering, SE -
2,4, December, 1976 (to appear).

Appendix A
Informal Description of Verification Methodology

Alphard's verification methodology is designed to determine whether a form will actually
behave as promised by its abstract specifications. The methodology depends on explicitly
separating the description of how an object behaves from the code that manipulates the
representation in order to achieve that behavior. It is derived from Hoare's technique for
showing correctness of data representations[Hoare72b].

The abstract object and its behavior are described in terms of some mathematical
entities natural to the problem domain. Graphs are used in [Shaw76] to describe binary trees;
sequences are used in [Wulf76a,b] to describe queues and stacks and in [London76] to
describe list processing, and so on. We appeal to these abstract types:

- in the invariant, which explains that an instantiation of the form may be viewed

as an object of the abstract type that meets certain restrictions,

- in the initially clause, where a particular abstract object is displayed, and

- in the pre and post conditions for each function, which describe the effect the
function has on an abstract object which satisfies the invariant.

The form contains a parallel set of descriptions of the concrete object and how it
behaves. In many cases this makes the effect of a function much easier to specify and ver i fy
than would the abstract description alone.

Now, although it is useful to distinguish between the behavior we want and the data
structures we operate on, we also need to show a relationship that holds between the two.
This is achieved with the representation function rep(x), which gives a mapping from the

Page 40 Appendix A

concrete representation to the abstract description. The purpose of a form verification is to
ensure that the two invariants and the rep(x) relation between them are preserved.

In order to verify a form we must therefore prove four things. Two relate to the
representation itself and two must be shown for each function. Informally, the four required
steps a r e ^ :

For the form
1. Representation validity

I c (x) D I a (rep(x))

2. Initialization
requires { irtit clause } initially(rep(x)) A I c(x)

For each function
3. Concrete operation

in(x) A I c (x) { function body } out(x) A I c (x)

4. Relation between abstract and concrete
4a. I c (x) a pre(rep(x)) => in(x)
4b. I c (x) a pre(rep(x'» a put(x) :> ppst(rep(x))

Step 1 shows that any legal state of the concrete representation has a corresponding abstract
object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the representation section is legal. Step 3 is the standard verification formula for
the concrete operation as a simple program; note that it enforces the preservation of I c . Step
4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition
holds and (b) that if the operation is performed, the result corresponds properly to the
abstract specifications.

Appendix B
Derivations of Simplified Proof Rules

In this Appendix we show that the general for and first proof rules and the basic

15 We will use I a (rep(x)) to denote the abstract invariant of an object whose concrete
representation is x, I c (x) to denote the corresponding concrete invariant, italics to refer to
code segments, and the names of specification clauses and assertions to refer to those
formulas. In step 4b, "pre(rep(x'))M refers to the value of x before execution of the function.
A complete development of the form verification methodology'appears in [Wulf76a,b].

ALPHARD: Iteration and Generators Page 41

generator assumptions yield the simplified proof rules based on those assumptions. We shall
use the following two sets of assumptions and three proof rules:

Generator Assumptions
(G l) G a fim p r e { n «- x.&init } G a / S i n i t p o s t

(G2) G a / 3 n e x t > p r e { n «- x.&next } G a / ? n e x t

.post

(G3) /? r e q { in.it clause } G

Basic Generator Assumptions

(BG1) The post conditions on &init and &next are of the form

(b = nj) a ft- and (b = n n) a fin

respectively, where b is the result parameter of these functions.

(BG2) G ^ / 3 i n i t . p r e , G a (n jA/? i n i t p 0 $, v n n A / S n e x t p 0 $ L) D ^ n e x t . p r e

(BG3) The generator and the loop body are independent. That is, for arbitrary
predicates R and S

R(y,z) { init clause } R(y,z)
R(y,z) { n x.&init } R(y,z)
R(y,z) { n <- x.&next } R(y,z)

and S(x,y) { ST(x,y,z) } S(x,y)

And Rule

P l { S } Q 1 (P 2 { S } Q 2

P i a P 2 { S } Qi a Q 2

Co«5ec/uence Rules

P => Q, Q { S } R

P { S } R

Q { S } R, R a T

Q { S } T

http://in.it

Page 42 Appendix 8

Semicolon Rule

P{$1 } Q , Q { S 2 } R

P { S t ; S 2 } R

Let us work initially on the for statement. Its general proof rule is

(GforO) P A fireq { Inlt clause } P a , 4 J N I T P R E

(G fo r l) P a G a / ? i n i t _ p r e { n <- x.&init } -<tta/?(x)) * Q
(Gfor2) P a G a /^injt.pre ' n *~ x - & i n i t ' assume nA/?(x); ST(x,y,z) } I a G a / ? n e x t . p r e

(Gfor3) I a G a / ^ n e x t . p r e { n <~ x - & n e x t } -(nA/?(x)) * Q
(Gfor4> I a G a / ? n e x t . D r e (n <" x.&next; assume tta/?(x); ST(x,y,z) } I a G a / 3 n e x t > p r e

P a ftreq { for x: gen(y) while fiM do ST(x,y,z) | I } Q

and the simplified proof rule is

(S f o r l , Sfor2) G a [P a fi{ a -(ttjA/?(x)) v I a fin a -(n nA/?(x))] a Q
(Sfor3, Sfor4) G a fiM a [P a /?j a rtj v I a /3n a n n] { ST(x,y,z) } I

P a / S r e q { for x: gen(y) while /?(x) do ST(x,y,z) | I } Q

Our task, therefore, is to derive each of the five Gfor premises from G, BG, and the four
Sfor premises. If we do this, we obtain the conclusion of the general rule which is the
conclusion of the simplified rule. Note that the inlt clause in GforO is invoked when the
generator is instantiated by the clause "local x.Een(y)" in the expansion of the for statement.

We first note relationships involving x.&next, x.&init, the invariant I, and the assertion P.
Assumption BG1 means that for an arbitrary predicate R involving the set of generated values
XQ,...,Xp, and x (in this notation x is also denoted by X p + p , we know

R({* i> » »Vx }) * n *~ x - & n e) < t } R U x o > - > V X P + l ^ A (n n D x = = x p+2>
R<{}> { n *- x.&init } R({}) A (n , => x = x q)

Thus, provided x is denoted by X p + j , the predicate R is preserved by x.&next and x.&init, and
there may be a newly generated value. Using both BG1 and BG3 we see that x.&next
preserves the invariant I, which depends on x, y, and z. The cases of the Inlt clause and
x.&init preserving P are simpler since P depends only on y and z.

ALPHARD: Iteration and Generators Page 43

Derivation of GforO
ftreq { init clause } G
P { init clause } P
P A /3 r e q { init clause } P A G

G ° A n i L p r e

p A /Veq (^ cZaa^e } P A fi^\\pre

Derivation of Gforl
G A /^init.pre (n *" * - & i n i t < G A Anit.post
P { n «- x.&init } P
P a G a / ? i n i t . p r e { n <- x.&init } G a P a / 8 I N I T > P O S T

G a P A (N=Hj) a /3J d -(ha/?(x)) 3 Q
P a G a /? j n j t p r e { tt «- x.&init } -(nA/?(x)> ^ Q

Derivation of Gfor2
P a G a / ? i n i t < p r e { n <- x.&init } G a P a /? i n i t . p o s . t

G a P a (N=NJ) a /?j a NJ a /?(x) ^ G a P a (nsrtj) a /?j a NJ a /?(x)
G a P a (NSNJ) a ft- { assume JXA/MX) } G a P a (ttsjtj) a ft- a NJ a fiM
G a P A-(nsnj) a ft- a N } a ftM { ST(x,Y,z) } I a NJ

G A ^init.post * ST(x ,Y ,z) } G a ftmitpos{

G a P a (NSNJ) a ft- a N } a fiM { ST(x,Y,z)) I a G a tt5 a /? j n i t p o s t

G a P a (NSNJ) a ft- { assume tta/Kx); ST(x,Y,z) } I a G a NJ a /TFJNJT.P0ST

G a NJ a / ? j n i t > p 0 $ t => / 3 n e x t . p r e
P a G a fi\n\\ pre { n <~ x.&init; assume nA/3<x); $T(x,Y,z) }

1 A G A ^next.pre

Derivation of Gfor3

G A /^next.pre (n <" x - * ' n e x t J G A /^next.post
I { N <- x.&next } I
I a G a / ^ N E X T > P R E { N <- x.&next } G a I a / ? n e x t > p o s t

G a I a (N = N N) a /?n d n(nA/?(x)) ^ Q
I a G A / ? n e x t p r e { n <~ x.&next } -(tta/?(x)) Q

Derivation of GforA
I a G a / 8 N E X T # P R E { n <- x.&next } G a I a / ^ n e x t < p o s t

G a I a (N = N N) a ftn a N N a ^(x) => G a I a (nsnn) a fin a N N a ^(x)
G a I a (N = N N) a { assume nA/3(x) } G a I a (N = N N) a fin a N N a /?(x)
G a I a (N = N N) a /?n a N N a /?(x) { $T(x,Y,z) } I a N N

G A A iext .post I ST(x ,Y ,z) } G a / ? n e x t p 0 $ t

G a I a (nsTTn) a ftn a n n a fiM { ST(x,Y,z) } I a G a N N a /3next.post
G a I a (nsTTn) a ^ n { assume nA^(x); ST(x,Y,z) } I a G a N N a # n e x t . p o s t
G a N N a / 3 N E X T > P O S T * /Wxt.pre
I a G a ftnex\pre { N <- x.&next; assume nA/?(x); ST(x,Y,z))

I a G a / ? n e x t p r e

G3
BG3
and rule
BG2
consequence

G l
BG3
and rule
Sfor l
consequence, BG1

step 3 above
identity
assume rule
Sfor3, private nj
BG3
and rule
semicolon rule
BG2
semicolon rule,

consequence, BG1

G2
BG1, BG3
and rule
Sfor2
consequence, BG1

step 3 above
identity
assume rule
Sfor4, private n n

BG3
and rule
semicolon rule
BG2
semicolon rule,

consequence, BG1

Page 44 Appendix B

We now work on the first statement. The expansion of

first x:gen(y) suchthat fiM then $j(x,y,z) e[se S2(y,z) } Q

using a standard while statement, including the most general case assertions, is

assert P A / 3 r e q ;
begin label X;

begin local x: gen(y);
assert P A G A / ? I N I T P R E ;

n *- x.&init;
while

[assert P A G A ^ (x Q . . x p) A (n ^ n e x t p r e) A < / 3 j n i t - p o s t v / 8 n e x t p o s t)]
n do

it fiM then (Sj(x,y,z); goto X) else n «- x.&next
end;

S 2 (y , z) ;
X: end;

assert Q

The general proof rule for the first statement is

(GfirstO) P A fireq { inlt clause } P A fi\n\\pre

(Gf i rs t l) P A G A fi\n\ipre { n <- x.&init } P A G A (n ^ / ? n e x t p r e >
(Gfirst2) P A G A # 0 . . x p) A (/ t i n i t i p o s t v / I ^ ,) A / ! N E X T I P R E - A n A /1(X)

{ S ^ x ^ z M Q

(Gfirst3) P A G A V < < x 0 - V A <^init.post v ^next.posi* A ^ n * S2<y> z) * Q
(Gfirst4) P A G A -/<(x 0 . .x p) A fineYipre A -/?(x) { n <- x.&next }

.pre?

P A fireq { first x:gcn(y) suchthat fiM then S^x.y .z) else S 2 (y . z) } Q

and the simplified proof rule is

(Sf i rs t l) G A P A [^ jAn , v / ? n A r t n A - ^ (x 0 . . x p)] A fiM { S^x.y .z) } Q
(Sfirst2) G A P A L-njA^i v -.nnA/SnA-/?(x0..xp)] { S 2 (y ,z) } Q

P A fireq { first x: gen(y) suchthat fiM then S^x.y .z) else S 2 (y . z) } Q

In Gf i rst l note that there is no x p before the statement n <- x.&init so - / ? (x 0 . . x p) s t r u e .
As in the for case, the task is to derive each of the five Gfirst premises from G, BG, and the
two Sfirst premises.

ALPHARD: Iteration and Generators Page 45

Derivation of GfirstO
Same as derivation of GforO

Derivation of G first I

G A ^init.pre * n * x ' & i n i t } G A ^init.post
P { n <- x.&init } P

P A G A / 3 i n i t < p r e { n <- x.&init } G A P A /Vit.post

G A P A /?i n i t .post D P A G A ^ n e x t . p r e '
P A G A / t f i n i t - p r e { n «- x.&init } P A G A (n 3 / 3 n e x t

Derivation of Gfirst2
G A P A "

P A G A

P A

P A

pre 7

Gl
BG3
and rule
BG2
consequence

on of Gfirst2

[/tfj A nj A true v fin A n n A V? (x 0 . . x p)] A fiM { Sj(x,y,z) } 0 Sfirst

u A - ,/?(x 0 . .x p) A f(nsnj) A fi{ v (n -n n) A fin] A n A fiM { S^x.y.z) } Q algebi

G A - v3(x 0 . . x p) A < / ? i n i L p o s t v / ? N E X T . P O S T) A n A fiM i S^x.y.z) } Q BG1

G A ̂ (x 0 . . x p) A < / S i n i t i p o s t v /?next.post> A /^next.pre A n A ^ x >
{ S ^ x ^ z) } Q consequence

Derivation of Gfirst3

G A P A [-n (A /?j A true v - n n A fin A -/?(x 0 . .x p)] { S 2 (y.z) } Q

P A G A -/?(x 0 . . x p) A [(nsnj) A fi{ v (nsn n) A / ? N] A -n { S2(y,z> I 0

P A G A - ^ (x o - V A <^init.post v ^next.post) A ^ * S 2 (V ' z) * Q

Derivation of Gfirst4
G A ^next .pre * n <- x.&next } G A /Vxt .post
P { n <- x.&next } P

-v3(x 0 . .Xp) A { n <- x.&next } -V^><o--xp+P

Sfirst2
algebra
BG1

G2
BG3
BG1, definition

of - / a(x 0 . . x p)
P A G A V « x 0 . . x p) A - . / ? < X) A / < n e x t - p r e | n <- x.&next }

P A G A / S n e x t p o s t A -vS(x0..x + 1) and rule
P A G A ^ (x 0 . . x p) A / ? N E X T > P R E A -/?(x) { IT «- x.&next }

P A G A - ^ (x 0 . . x p + 1) A (n=>/3 n e x t p r e) BG2, consequence

