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Introduction 

This paper is one in a series describing the Alphard programming system and its 
associated verification methods. It presumes that the reader is familiar with the material in 
[Wulf76a,b], particularly the use of forms for abstraction and the verification methodology for 
forms. 

The primary goal of the form mechanism is to permit and encourage the localization of 
information about a user-defined abstraction. Specifically, the mechanism is designed to 
localize both verification and modification. Other reports on Alphard have discussed ways to 
isolate specific information about representation and implementation; in this paper we deal 
with localizing another kind of information. 

Suppose that S is a "set-of-integers" and that we wish to compute the sum of the 
integers in this set. In most contemporary programming languages we would have to write a 
statement such as 

sum <- 0; for i *- 1 step 1 until S.size do sum «- sum + S[i] 

or possibly 

p <- S; sum «- 0; while p ^ nH do (sum t- sum + p.value; p «- p.next) 

or, if we know that the set elements all lie in the range [lb..ub], then we might write 

sum<-0; for i<-lb to ub do if. i c S then sum«-sum+i 

None of these statements is really satisfactory. First, they all seem to imply an order to the 
summation, whereas the abstract computation does not. Next, the first statement strongly 
suggests a vector implementation of the set and the second a list implementation. (Although 
other implementations are not excluded, the resulting loops will probably be unacceptably 
inefficient.) The third statement does not suggest an implementation of the set, but may be too 
inefficient if the cardinality of the set is much smaller than ub-lb+1. 

It would be much better if we could write something like 

sum<-0; for_ x(S do sum«-sum+x 

which implies nothing about either the order of processing or the representation of sets. 
Except for notational differences, this latter example illustrates our goal. We want to 
encourage suppression of the details of how iteration over that abstract data structure is 
actually implemented. The difficulty in doing this is that the abstract objects are not 
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predefined in Alphard. Hence it is the author of the abstraction, who must specify the 
implementation of (the analog of) "x<S". 

We resolve the problem by separating the responsibility for defining the meaning of a 
loop into three parts. (1) Alphard defines the (fixed) syntax and the broad outline of the 
semantics. (2) The definition of the abstraction that is controlling the iteration fills in the 
details of the loop control (in particular, the algorithms- for selecting the next element and 
terminating the loop). (3) The user supplies the loop body. Conventional languages provide 
only a small, fixed number of alternatives (usually one) for the second part of this information. 
In Alphard, it is supplied by the form that defines the abstraction; we say this part of the 
definition specializes the iteration statement to that abstraction. Related constructs appear in 
I P l - V as generators [Newell64] and in Lisp as the mapping functions [McCarthy62, 
Weissman67]. 

One of the major goals of Alphard is to provide mechanisms to support the use of good 
programming methodology. The rationale for generators given above is based on 
methodological considerations; that is, it is generally good to abstract from the implementation 
and hide its details. Generators permit us to do this for control constructs much as the 
functions in a form permit abstraction of operations (see [Wulf76a,b]). 

A second major goal is to provide the ability to specify precisely the effect of a 
program and then prove the program implements that specification. To meet this goal, we 
must provide more than just the language mechanism for generators: we must also provide 
both a way to specify their effects and a corresponding proof methodology. A natural means 
of doing this for generators is somewhat different from one for functions. Functions are 
naturally characterized by predicates which relate the state of the computation before their 
invocation to its state afterward. Generators, however, are not invoked in the usual sense; 
rather they are used to control the repeated execution of an arbitrary "body" of an iteration 
statement. Thus, a natural specification of a generator is in terms of a "proof rule" which 
permits the effect of the entire iteration statement to be expressed. 

This report contains two strongly related components: first we introduce the language 
mechanism for generators, then we turn to the specification and verification of generators and 
of the iteration statements which use them. We begin with a digression on a language feature 
which is not discussed elsewhere, but is needed for the definition of generators. We then 
introduce the two Alphard iteration statements and show how they can be specialized by the 
user. One of these is an iteration construct designed for searching a series of values for an 
element with a desired property. It should replace most of the loop-exit gotps used in current 
languages. (Interlisp [Teitelman75] contains a wide variety of iteration statements, one of 
which specializes to this construct.) 

We obtain general proof rules for the two loop constructs, then state a series of 
simplifying assumptions that certain generators may satisfy. We obtain a corresponding series 
of proof rules whose simplicity increases with the restrictiveness of the assumptions we make 
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about the generators. These assumptions lead both to rules that correspond directly to 
familiar rules for iteration (e.g., those of Pascal [Hoare73, Jensen74]) and to simple rules for a 
substantial number of interesting abstract structures (e.g., those given by Hoare [Hoare72a]). 

We then show how to use proof rules instead of functional descriptions to specify many 
of the forms which define generators. We also give a technique for showing that loops using a 
generator will halt (assuming the loop body terminates). We prove, with one application of 
this technique, that many common generators have this property. 

Finally, we develop an extended example in which a programmer-defined abstraction is 
treated as primitive in the implementation of another abstraction. A generator defined in the 
former is used in the implementation and verification of the latter. 

Form Extensions 

In this section we introduce another language facility which makes it more convenient to 
define certain abstractions and to manage the definitions after they are written. The facility 
allows a programmer to define one form as an extension of another. The new form will have 
most or all of the properties of the old one, plus some additional ones. (This mechanism is 
similar to, and derived from, the class concatenation mechanism of Simula [Dahl72].) We 
introduce this mechanism at this point because it is needed for generator definitions, which 
will be discussed in the next section. 

The following skeletal form definition illustrates most of the major attributes of the 
extension mechanism: 

form counter extends i:integer= 
beginform  
specifications 

initially counter = 1; 
inherits < =, ±% < >, <, > >; 
function 

inc(xxounter) . . ., 
dec(xxounter) . . 

representation 
init i « - l ; 

implementation 
body inc = x.i <- x.i + 1; 
body dec = x.i <- x.i-1; 

endform 
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The general flavor of the mechanism is that the new abstraction, "counter" in this case, 
is to be an extension of a previously defined one called its base type, here "integer". As such, 
the new abstraction inherits the indicated properties specified for the. base type, and may 
appear in contexts where the base type was permitted (e.g., as an actual parameter where the 
formal specifies the base form). Further, the new abstraction has the additional properties 
specified in the extension form t "inc" and "dec" in this case. 

Even though the newly defined form is an extension of another, the body of the new 
form is not granted access to the representation of the old one; the only access rights 
granted to the body of the new form are those defined in the specifications of the one being 
extended. Thus, although the extension may add (and delete, see below) properties of the 
extended abstraction, it cannot affect the correctness of its implementation, and we need not 
rever i f y the properties of the original. (Indeed, since these properties are identical we do not 
demand that they even be specified.) 

In this example, and indeed more generally, it is not desirable for all of the properties 
of the old abstraction to be inherited by the new one. The "<>u notation may be used as in 
[Wulf76a,b] to list the rights that the instantiation of the new abstraction is allowed to inherit. 
Thus the maximum set of rights permitted to the instantiation of a "counter" is the union of the 
inherited rights (=,^,<,>,<,>) and the newly defined rights (inc and dec). Note in particular that 
assignment to a counter is not one of the inherited rights; thus the only way to achieve a 
side-effect on a counter is through the operations "inc" and "dec". The implementation of the 
extension form may, of course, use all operations on the base type. 

As a practical matter, the instantiation of the base form ( V from "hinteger" in this 
example) may be considered a part of the representation part of the extended form. Note, 
however , that this need not be the entire representation part of the extension; in many cases 
the extension will involve additional data. 

Iteration Constructs in Alphard 

Alphard provides two iteration commands: the for statement is used for iteration over a 
complete data structure, and the first statement is used (primarily) for search loops. As 
mentioned above, each of these commands may be specialized for each use. Specialization 
information is provided through a standard interface called a generator. A generator is itself 
simply a form, but it must adhere to certain special requirements that make it mesh with the 
semantics of iteration statements: 

(a) It must provide two functions (named ftinit and &next) with properties 

described below. 



ALPHARD: Iteration and Generators Page 7 

(b) Invocation of these functions in a prescribed order must produce a sequence 
of values to bind to the loop variable.^ 

(c) It must be an extension whose base type is the same as the type of the 
elements being supplied to the loop body. 

Before we discuss generators intended for specific structures, we will illustrate the use of the 
for and first statements with simple counting loops. 

The [or_ Statement 

We shall begin with the for statement. The syntax for the statement is*-

for x: gen(y) while /?(x) do ST(x,y,z) 

where fi(x) is an expression, the statement ST(x,y,z) is the loop body, x is the instantiation of 
the generator "gen", y is the set of instantiation parameters to the generator, and z is the set 
of other variables used in the statement. The phrase "x: gen", which is our notational analog 
of the "x(S" in the introduction, means "bind x to an instantiation of the generator named gen 
intended specifically to generate the elements specified by y". Then x may appear free in (I 
and ST; like any loop variable, x is rebound for each pass through the loop. 

The meaning of the for loop is given by the statement 

begin local x: gen(y); 
n *- x.&init; 
while rr cand fiM do 

(ST(x,y,z); rr *- x.&next) 
end 

Here, cand is the "conditional and" operator: "bj cand b 2 " = "if b^ then b 2 else false". Also, (i 
and ST are taken from the for statement, and x.&init and x.&next are functions supplied by the 
generator as described below. 3 The compiler-generated variable, n, is not accessible to the 

1 Although we call this a "loop variable", it will not normally be possible to alter its 
value within the loop body. 

2 Either "for x:gen(y)" or "while fiM" may be omitted yielding the. pure while and pure 
for statements, respectively. If "while /?(x)" is omitted, fi is assumed to be identically true. If 
"for x: gen" is omitted, no x is declared or set, ft and ST (clearly) cannot depend on x, and 
&init and &next are assumed to be the constant true, ft may depend on y and z in addition to 
x. 
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programmer. 

One of the generators defined in the standard prelude is 

upto(lb,ub: integer) extends k: integer 

This generator produces the sequence of values <lb, lb+1, lb+2, . . . , ub-1, ub>, or the empty 
sequence if lb>ub. This generator, in combination with the for statement, provides the 
familiar "stepping" loop found in nearly allprogramming languages; for example, an Alphard 
loop for summing the integers from 1 to n is 

sum <- 0; for j : upto(l.n) do sum <- sum+j 

Note that two types are involved in this example. We said in earlier contexts that the notation 
" j : upto(. . .)" means "bind j to an instantiation of upto". This implies that the type of j is 
"upto". However, notice that j is used in the body of the loop as though it were an integer. 
This is possible because of the extension mechanism described in the previous section. 
Although the apparent type of j is upto, form upto extends integers, inheriting all operations 
except assignment (the definition is given in the next section). As a result, integer operations 
on j are legal and behave as expected. 

The first Statement 

One of the common uses of loops is for searching a sequence of values for the first one 
which passes some test. The use of an ordinary loop construct for this purpose is probably 
the most common cause of necessary gotos in conventional programming languages: once the 
test has been satisfied, there is no reason to continue executing the loop. Since this case 
occurs so often, Alphard provides a special syntax for it. We may write^ 

first x:gen(y) suchthat ftM then Sj(x,y,z) else S 2 (y ,z ) 

where S| and S 2 are statements and ft is an expression. Again, x is an instantiation of 
generator gen and may appear free in ft and S^ (but not in S 2 ) . The meaning of the first loop 
is given by the statement 

3 In Alphard, certain functions are given names beginning with "&". These are usually 
functions provided by the user to perform operations that correspond to special constructs of 
the language. Outside the form in which they are defined, they may not be called by user 
programs. In this case, the for loop expects to call functions named &init and &next with 
certain specified properties. Alphard prevents a user from calling them explicitly — to skip 
iterations in a loop, for example. 

^ Either "then S I " or "else S2" may be omitted; an omitted clause is assumed to denote 

the empty statement. 
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begin label X; 
begin local x: gen(y); 

n <- x.&init; 
while n do 

if /3(x) then (Si(x,y,z); goto X) else n <- x.&next 
end; 

S 2 ( y , z ) ; 
X: end 

As above, the compiler-generated names, n and X, are not accessible to the programmer. 

In [Wulf76a,b] we presented a subroutine to compare two vectors of arbitrary (but 
identical) types and index sets. The subroutine presented there was phrased in terms of an 
Algol- l ike for loop. It can now be written in real Alphard using the first statement:^ 

function eqvecs(A,B: vector(?t<^>,?lb,?ub)) returns (eq: boolean) = 
first i: upto(lb,ub) suchthat A[i] ± B[i] then eq <- false else eq «- true 

It does not matter what the bounds of the two vectors are, as long as they are the same. In 
this case, we are not relying on the procedure return or an explicit escape to terminate the 
loop early in the case of inequality; that is handled by the first statement. The proof of 
"eqvecs" will be given in a later section. 

We have introduced Alphard loop constructs by comparing them to simple counting 
loops. This is the first step toward solving the problem of sequencing over arbitrary 
structures under the control of the defining type. We shall now show how generators and 
loops are verified. 

Defining and Verifying Generators 

We said that a generator is a form which supplies special functions and performs a 
sequence of bindings to the control variable of the loop. In this section we will show how a 
generator is defined and invoked, still using "upto" as an example. We will first present its 
definition, then add assertions, verify it as a form, and establish its special properties as a 
generator. Another generator is verified as part of the finite sets example in the sequel. 

In this example the function specification and the function body are given as one 
declaration. This is an obvious abbreviation of the notation used elsewhere. The Fidentifier 
notation is used to indicate that the values of these parameters must be identical for A and B 
and that specific values will be supplied implicitly with the vectors. This is explained in 
[Wulf76a,b]. 
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. The definition of the "upto" generator, without verification information, is 

form upto(lb,ub: integer) extends K:integer • 
beginform  
specifications 

inherits <allbut *->; 
function 

&init(u:upto) returns (btboolean), 
&next(u:upto) returns (btboolean); 

implementation 
body &init = (u.k «- u.lb; b <- u.lb < u.ub); 
body &next = (u.k <- u.k+1; b *- u.k < u.ub); 

endform 

Since no-variables other than k are needed, the representation part is empty at this point. 
This form extends integers, but does not pass along the right to assign to an upto;° this 
prevents the user from changing the loop variable during the iteration. 

Using this form and the meaning of the for statement given in the previous section, we 
can exhibit a loop that corresponds to the expansion of the "upto" functions in the statement 
for summing integers. This code is, of course, only suggestive, but it illustrates an expansion 
which a compiler might reasonably produce. Note that an obvious optimization has been 
applied; later, when we exhibit the formal specifications of "upto", the value of the iteration 
variable, x, will turn out to be irrelevant when &init or &next returns false. 

sum «- 0; 
begin 

local x: upto(lb,ub); 
x <- x.lb; 
while x<x.ub do (sum<-sum+x; x«-x+1); 

end 

Since "upto" is a form, we can verify the form properties as described in [Wulf76a,b] 

and summarized in Appendix A. Adding verification information in italics, the definition of 

"upto" becomes 

6 The phrase "allbut means that ail integer functions except «- are applicable to the 

upto. 
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form upto(lb,ub: integer) extends k: integer -
beginform  
specifications 

requires true; 
inherits <allbut «->; 
let upto = fib..ub/ where lb < ub ^ upto * /lb..k-l J[k/fk+L.ub/; 
invariant true; 
initially true; 
function 

&init(u:upto) returns (b:boolean) 
post (b s lb<ub) A (b ^ lb=k<ub), 

&next(u:upto) returns (b:boolean) 
pre lb < k < ub 
post (b = k'<ub) a (b 3 k=k'+l A lb<k<ub>, 

representation 
rep(k) = i//6<afe t/?eft flb..k-l /fk Ifk+L.ubI else fh 
invariant true; 

implementation 
body ftinit out_ (b = lb<ub) a (b ^ lb=k<ub) = 

(u.k <- u.lb; b «- u.lb < u.ub); 
body &next In lb<k<ub otU(b = k9<ub) a (b o k = /c'+i A lb<k<ub) « 

(u.k <- u.k+1; b <- u.k < u.ub); 
endform 

The abstract specifications describe an "upto" as an interval [lb..ub]; since the form upto 
extends the integer k, a direct reference to a loop variable of type upto will access k, the 
current value of the loop counter. We will find it useful later to view the upto as the 
concatenation of the interval already processed ([lb..k-l]}, the current element ([k]), and the 
interval yet to be generated ([k+l..ub]). Either k stays between the endpoints of the interval 
[lb..ub] or the interval is empty. This is enforced by the phrase lb<k<ub which appears in the 
pre condition for &next and both post conditions. 

Note that no promise about the value of k is made before the loop starts (i.e., before 
&init is called) or after it has run to completion (either &init or &next returns false). The rep 
function shows how an interval is represented by its two endpoints and the loop variable. 
The post condition on &init guarantees that the first element generated is lb, but only if lb<ub. 
The pre condition on &next prevents Xnext from being executed when there is no valid 
current element (in particular, &init must be called first). The post condition on &next 
guarantees that generated values are consecutive and that the generator stops at ub. 

For "upto" the four steps which are required to verify the form properties are quite 
simple. (Note that the "u." qualification on u.lb, u.k, and u.ub is omitted for simplicity.) 
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For the form 
1. Representation validity 

Show: true ^ true 
Proof: clear 

2. Initialization 
Show: true { } true a true 
Proof: clear 

For the function &init 
3. Concrete operation 

Show: true { k «- lb; b <- lb < ub } (bslb<ub) a. (b:>lb=k<ub) 
Proof: Using the assignment axiom, the expression becomes 

true => (lb<ub s lb<ub) a (lb<ub ? Ib=lb<ub) 
which surely holds. 

4. Relation Between Abstract and Concrete 
Corresponding abstract and concrete assertions are identical and the rep 
function performs a direct mapping, so the proofs are clear. 

For the function &next 
3. Concrete operation 

Show: lb<k<ub { k <- k+1; b <- k<ub } ( b ^ u b ) a (b^k-k'+l a lb<k<ub) 
Proof: Using the assignment axiom, the expression becomes 

lb<k<ub 3 (k+l<ub = k'<ub) a (k+l<ub d k+Uk'+ l a lb<k+l<ub) 
which holds because k'=k is an implicit hypothesis of the antecedent. 

4. Relation Between Abstract and Concrete 
Same as &init.4. 

QED 

To emphasize that a generator is a form, we will now give an example in which a 
generator is instantiated in one place and used in another. The following procedure is a 
generalized sum routine. Its parameter is an instantiation of a generator and its result is the 
sum of the elements produced by that generator. For simplicity, this procedure sums only 
integers. That restriction can be relaxed, but to do so would take us into parts of Alphard not 
discussed in this paper.^ 

^ The difficulty is not defining the type of the output, which would be expressed as 

function ISUM (g: ?T<generator extends ?$>) returns (sum: S) 

but rather the fact that we need to initialize sum and do not know the identity for in type 
S. One solution is to treat the first generated element differently from the rest, and we have 
deferred discussion of the richer possibilities of generators to a later paper. 
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Definition 
function ISUM (g: ?T<generator extends integer>) returns (sum: integer) 

begin 
sum <- 0; 
for g do sum <- sum + g; 
end 

Examples of Use 
begin 
local v: vector(integer,l,n), 

ig: upto(l,m), vg: invec(v), 
ssum, vsum: integer; 

ssum <- ISUM (ig); 
vsum <- ISUM (vg); 
end 

This small program declares five variables. The first, v, is a vector of integers indexed from 1 
to n. The next two, vg and ig, are (instantiations of) generators; ig is an instance of the upto 
we have been discussing and vg is an invec, which we assume is defined along with vectors 
and generates the elements of the vector named as its instantiation parameter. The last two 
variables, ssum and vsum, are simple integers. The first call on ISUM uses ig (the upto) to 
generate integer values; it assigns to ssum the sum of the integers from 1 to m. The second 
call on ISUM uses vg (the invec) to generate vector elements; it assigns to ssum the sum of 
the elements of v. 

Proof Rules for Loops 

In this section we shall consider the verification of Alphard's two iteration constructs, 
for and first. Specifically, we shall develop proof rules for these statements, discovering in 
the process certain desirable properties for forms which are intended to be used as 
generators. Some of these properties will be required of all generators; others will be 
considered optional, but their presence will substantially simplify proof rules and proofs. 

The development will proceed as follows. First we shall consider a proof rule for the 
for statement which makes minimal assumptions about the generator. This rule is derived 
directly from the statement's meaning as given earlier. As a consequence, it is rather bulky. 
Then we shall make a small number of basic assumptions about the generator. For purposes 
of this paper, these assumptions will be required of all generators and hence will have to be 
discharged when the generator is verified as a form. They will allow us to simplify 
substantially the proof rules for the for and first statements. Next we shall consider a further 
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set of assumptions about generators; these assumptions are not mandatory, but they are 
satisfied by typical generators. These will allow us to obtain still simpler proof rules for 
particular generators. Finally, we shall consider the properties that a generator must have in 
order to be a terminating generator. 

Development of the for Rule 

Suppose that we wish to prove 

P { for x:gen(y) while /?(x) do ST(x,y,z) | I(x,y,z) } Q 

where x, y, and z are as defined earlier and the notation "P { loop | 1 } Q" is used to denote M P 
{ loop } Q using I as the loop assertion (invariant) placed after the loop body". Further, 
suppose that we make only the minimal assumptions about the form "gen", namely that it has 
been verified as a form and that it supplies two functions, &init and &next, each of which 
takes a single parameter of type gen and returns a boolean result. We will also assume that 
/?(x) has no side effects. We will adopt the following notation in the iteration proof rules: 

G - abstract invariant of the generator. G may depend on x and y but not on z. 

/^rea = u s u a ' requires clause of the generator, stating restrictions on y so 
that the generator can be instantiated.0 

fif j = the j-condition for generator function f, e.g.* /^jnit.post *s ^ e p o s * 
condition for &init. fif j depends on x and y only. 

XQ,...,Xp denotes the previously generated values of x, if any. 

Since the generator has been verified as a form, we know 

G A /^init.pre { n x ' & i n i t * G A ^init.post 
G A <*next.pre I n *~ x ' & n e x t * G A ^next.post 

^req { c ' a u 5 e } G 

where init clause denotes the mit clause of the representation part. 

The expansion of 

for x:gen(y) while flM do ST(x,y,z) 

8 We conventionally use "/T to name predicates. Hence, e.g., / ? r e q is 

/S(x). 
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as a standard while statement, including the assertions which will be required for verification 
in the most general case, is 

assert P A / ? r e q ; 
begin local x: gen(y); 
assert P A G a / S j n i t p r e ; 
n <- x.&init; 
while n cand /3(x) do 

begin 
ST(x,y,z); 

assert. I a G A / 3 n e x t . P r e ; 

n <- x.&next; 
end;  

end; 
assert Q 

We will give from this expansion a proof rule for the most general Alphard for 
statement. The standard while rule is not directly applicable to this expansion because the 
loop-cutting assertion is located in the middle of the loop body rather than before the test. 
This assertion placement means the test does not always appear just before or just after an 
assertion; in two control paths through the expansion (the third and fifth lines in the proof 
rule below), the test n cand appears between either the statements n^-x.&init or 
n*-x.&next and ST(x,y,z). To indicate in these paths that n cand fiM may be assumed between 
the statements, the assume clause is introduced.^ Its proof rule is 

P a Q d R 

P { assume Q } R 

Using the assume clause and considering the five control paths between assertions, the 
general proof rule for the for statement is 

P A / ? r e q { tnct clause } P A / ? i n i t > p r e 

P a G a / S i n j t > p r e { n «- x.&init ] -(tta/?(x)) d Q 

P a G a / 3 j n j t . p r e { n <- x.&init; assume tta/*(x); ST(x,y,z) } I a G a finex\pre 

I a G a ftnextpre { it «- x.&next } -(nA/?(x)) => Q 

I a G a / ? n e x t i p r e { n *- x.&next; assume tta/3(x); ST(x,y,z) } I a G a / ? n e x t . p r e 

P a fireq { for x: gen(y) while flM do ST(x,y,z) | I } Q 

9 ^7 ~ 
The assume clause appears in [Igarashi75, p. 164] as the "marked" assertion using 

the notation Q-if in place of assume Q. 
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This formulation, because of its generality, may appear formidable. The main difficulty 
appears to be that the three generator functions and the loop body may each change y in 
various ways even though P and I hold at the places required by the rule. The generator 
functions are, therefore, involved in the verification of each use-of a generator. However, the 
following three reasonable assumptions about the generator will simplify matters considerably. 

Basic Generator Assumptions: 

(a) The post conditions on ftinit and &next are of the form 

(b - itj) a /?j and (b s n n ) a /3n 

respectively, where b is the result parameter of these functions. 

(b) G => / 3 j n j { p r e , G a ( T T j A / 3 i n i L p o s t v n n A / ? n e x t p 0 $ t ) d finexlpre 

(c) The init clause and the functions &init and frnext terminate. (This does not 

simplify the proof rule. It is, however, a desirable property, and it becomes 
especially relevant in the discussion of generator termination below.) 

(d) The generator and the loop body are independent. That is, for arbitrary 

predicates R and S 

R(y,z) { init clause } R(y,z) 
R(y,z) { n <- x.&init } R(y,z) 
R(y,z) { n *- x.&next } R(y,z) 

and S(x,y) { ST(x,y,z) } S(x,y) 

Point (a) is a minor restriction and can be checked syntactically. Point (b) requires two 
proofs. The first is usually trivial since ftm\\pre is generally omitted (defaulted to true) and 
Anex\ p r e is usually included in both post conditions. G may often be strong enough by itself, 
but we may not want to commit the generator to provide a value at all times. In the latter 
case we therefore require that ftinit and &next make it possible for &next to be executed. 
Point (c) can be proved independently of the use of the generator. The proofs should usually 
be easy (see the section below on termination). 

Point (d) requires four proofs; in the typical case, however, the first three are trivial. 
Because of the scope restrictions mentioned in [Wulf76a,b], the only ways the init clause, &init 
or &next could affect the predicate R(y,z) are through y, which is explicitly passed as a 
parameter to the form gen, and through side-effect-producing operations of &init and &next. 
Thus the proof can be carried out locally for the generator definition — generally by 
inspection. The fourth proof is more difficult. Because of the scope restrictions, the only way 
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that the loop body could affect the loop variable, x, is for the generator to provide a function 
which could have a side effect on x (for example, by exporting assignment rights). This proof 
should be local to the generator definition. However, the independence of y from ST cannot in 
general be shown for the generator, and must be treated as a restriction on its use. 

Simplified Rales for Iteration Statements 

If the generator and its use meet the four basic generator assumptions given above, a 
simplified proof rule applies to the for statement:^ 

G A [P A ft- A -(TTjA/?(x)) V l A / ! n A -(n nA/3(x))] => Q 
G a ftM a [P a ft] a n j v I a ftn a n n ] { ST(x,y,z) } I 

P a ftreq ( fel *: S e n<y> while ftM do ST(x,y,z) | I } Q 

Note that the first line establishes that Q holds when (if) the loop terminates — which may 
happen immediately after the invocation of &init (handled by the first term of the disjunction 
in [] 's), or after an invocation of &next (handled by the second term of the disjunction). In 
both cases termination may result either because the relevant generator function returned 
false or because ftM failed — hence the terms of the form "-(n a ft(x))". The second line 
ensures that the invariant is established after each application of the loop body. 

Under the same assumptions, the following proof rule applies to the first statement: 

G a P a [ ^ a h j v /J nAn nA-v3(x 0 . .x p)] A fiM { S ^ x ^ z ) } Q 
G a P a [-jTjA/Sj v -n nA/3 nA-v3(x 0..x p)] { S 2 (y ,z ) } Q 

P a / ? r e q { first x: gen(y) suchthat ftM then Sj(x,y,z) else S2(y>z) } Q 

where "-/3(x 0 . .Xp)" is an abbreviation for " ^ ( x q ) a . . . a ^/3(Xp)". Note that the second line 
handles the "else" cases, where no match is found; the two terms of the disjunction are the 
case where the generator terminates immediately and the case where every element 
generated fails the suchthat test, ftM. The first line handles the case where a match is found. 
Note also that the presumed independence of the generator and the user program means that 
P is not affected by ftinit and &next. 

Simplified Rules for Typical Generators 

Most generators are far more stylized than the simple assumptions above require. The 

The justifications of this and the first rule, from the corresponding general rules 
and the basic generator assumptions, are given in Appendix B. 
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following assumptions about standard aggregates used in typical generators allow us to obtain 
proof rules of further simplicity. 

Standard Aggregate Assumptions 

(a) The additional abstraction provided by the generator is explicated in terms of 
an aggregate (of objects of the base type) for which the following are 
defined: 

@ an operator to combine (e.g., concatenate) two aggregates 
<> the empty aggregate 
lead(S) =» first element of S to be generated. 

Examples of such aggregates are sets, sequences, and intervals. The 
corresponding empty aggregates are {}, <>, and []; the corresponding @ 
operators are union, concatenation, and merging adjacent intervals. 

(b) The instantiation of the generator will produce the complete aggregate, T, of 
objects to be generated. Further, a nonempty T can be decomposed as 

T = S (0> <x> <R> t 

where: <x> is the unit aggregate consisting of the current element x; s and t 
are (possibly empty) aggregates — s, those elements previously generated 
and t, those remaining to be generated; and s, <x>, and t are mutually 
disjoint. 

(c) The specifications on &init and &next have the form 

functions 
&init(&g:gen) returns &b:boolean 

post (&b = T?<>) a (&b => x=lead(T) a Dj (x » 
&next(&g:gen) returns &b:boolean 

pre D 2 (x ) 
post (&b E tV<>) a (gib. D x=lead(D a D 3 ( x » 

where &g is an instantiation of gen corresponding to the aggregate T and 
the Dj(x) guarantee that the decomposition of T specified in (b) is legal and 
can be found. 

The standard aggregate assumptions subsume points (a) and (b) of the basic generator 
assumptions, but points (c) and (d) of the latter must still be demonstrated in addition to the 
standard aggregate assumptions. 
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If these assumptions hold, we can derive severai simpler proof rules. The rule for the 
for statement becomes 

G a [P a ( T « < > v ^ ( l e a d ( T ) ) ) v T/o a I(s) a ( s=T v ->fiM)] D Q 

G a T^<> a [P A /?(lead(T)) v (s^T a I(s) a /3(x»] { ST } I(s@<x>) 

P a fireq { for x: gen(y) while fiM do ST(x,y,z) | I } Q 

and the first rule simplifies to 

G a P a Vw(s -vtf(w) a fiM { S ^ x ^ z ) } Q 
G a P a Vw(T ^ ( w ) { S 2 (y,z) } Q 

P a /3 r e q { first x: gen(y) suchthat fiM then Sj(x,y,z) else S2(y>z) } Q 

We call these two rules the standard aggregate rules. 

Special Cases and Examples 

The Pure for Rule 

In many cases the programmer may wish to drop the while clause, treating fiM as 
identically true. In addition, he will often wish to choose P = I(<>) and Q = I(T). (Until now the 
major reason for distinguishing between P, Q, and I was that if fiM terminates the loop before 
the generator signals termination, I(T) is probably not true.) If these decisions are made, the 
proof rule simplifies further, since the first premise reduces to true and several terms drop 
out of the second. Making the substitutions yields a generic rule similar to those of various 
for statements given by Hoare [Hoare72a]: 

G a T=sfl><x><$t a I(s) { ST(x,y,z) } I(s@<x>) 

I ( < > ) A fireo { f2L x: gen(y) do ST(x,y,z) } I(T) 

Proof Rules for upto 

To use one of these rules with a particular generator, we must "instantiate" it with the 
particulars of the generator in question. We will illustrate this by developing the proof rules 
for upto. First, we discharge parts (c) and (d) of the basic generator assumptions: 
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(c) The bodies consist of simple assignment statements, and thus clearly terminate. 

(d) There is no init clause and functions &init and &next change only local data 
and their return values; thus the first three parts of independence are 
satisfied. For the fourth point, note that no means is provided for the user 
of the form to alter K; the user is expected to refrain from altering lb and 
UB. 

Next, we discharge the standard aggregate assumptions: 

(a) Integer intervals are used. 

( B ) [ l b . . u b ] « [lb..k-l][k][k+l..ub] when lb<K<ub. 

(c) The pre and post conditions have the required form. 

Substituting the interval definitions in the standard aggregate rules and simplifying, WE obtain 

P A ( l b > U B V ^ ( L B ) ) V LB<K<UBAL[LB. .K-L]A^(K) v LB<UBAL[lb..ub] 3 Q 

lb<ub a ( P a ft(\b) v LB<K<UB a I[lb..K-1] a /S(k)) { ST(K,y,z) } I[lb..k] 

P { for k: upto(lb,ub) while /?(k> do ST(k,y,z) | I(k,y,z) } Q 

and 

P a LB<K<UB a (Vw ( [LB. .K -L ] -/8(w)> a /?(K) { S^K.y .z ) } Q 

P a Vw i [lb..UB] -/?(w) { S 2 ( Y , Z ) } Q 

P { FJRST K: UPTO(LB,UB) suchthat fi(k) then S!<K,Y,Z) else S 2 ( Y , Z ) } Q 

where the Y parameters are <lb,ub>. In the special case P=I[], Q=I[LB..UB], and /?STRUE, W E 

obtain the Pascal rule for the for statement [Hoare72a, Hoare73]: 

L B < K < U B A I[LB..K-1] {ST(K,Y,Z)} I[LB..K] 

I[] { for K:upto(LB,UB) do ST(K,Y,Z) } I[LB..UB] 

As must be the case, this rule is also obtained from the pure for rule BY instantiating gen(y) 

with upto(LB,UB). 
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The Pure while Rule 

We showed above that when the while clause is dropped, the for proof rule resembles 
Hoare's. We will now show how to eliminate the loop variable and obtain the standard proof 
rule for the pure while statement. 

Suppose we had a form named "forever" which extended type boolean and which 
satisfied the requirements above by using the value "true" for all the predicates involved. 
The aggregate T would be an infinite sequence of "true"s, and the standard aggregate for rule 
would become 

true a [P a (false v ^/?(true)) v true a I(true*) a (false v -i/?(true))] ^ Q 
true A [P a fi(irue) v true a Ktrue*) a /?(true)] { ST(true„z) } I(true*) 

P { for x: forever while /3(true) do ST(true„z) | Ktrue*) } Q 

where "true*" denotes a sequence of "true"s and the adjacent commas indicate the absence of 
the parameters y. By choosing P = I and Q = I a eliminating the vacuous dependencies on 
"true", dropping the useless for clause, and simplifying, we obtain 

I a fi { ST(z) } I 

I { while fi do ST(z) } I A 

w h i c h is the conventional while rule. 

Generator Specifications by Proof Rules 

We have shown how two sets of assumptions about the properties of a generator lead 
to v e r y simple proof rules for the iteration statements. Notice now that if a generator 
satisfies these assumptions, the specifications for &init and &next can be reconstructed or 
obtained from the proof rules. As a result, the author of. the generator can perform the 
substitutions and simplifications, then give the proof rules in the specifications instead of 
giving the pre and post conditions. When this is possible, we use the keyword generator in 
place of form in the specification to alert the user. 

To illustrate this, we will write the generator for a counting loop that uses an integer 
step size greater than 1. This will provide the Alphard equivalent of Algol's 

for i := a step j until b do S 

for positive values of j . We first augment the interval notation [a..b] to include a step size: 
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Example of Loop Verification 

In this section we shall illustrate the use of the proof rules given above by v e r i f y i n g 
the "eqvecs" function given earlier. With gre and £Osi assertions, the function is 

[a(j )b] s^f <a,a+j,a+2*j,... ,b~(b-a) mod j> where j>0 

If a>b, then [a( j )b] is <>. Note that [a(l)b] = [a..b]. The following rule allows us to merge two 

intervals: 

[a(j)b][b+j(j)c]=[a(j)c] provided (b-a) mod j = 0 

Using this notation, we can define the generator stepup: 

generator stepup (lb,j,ub:integer)extends k:integer = 
beginform  
specifications 

requires j > 0; 
inherits <allbut <->; 
let stepup = [lb(j)ub] where lb<ub'-=> stepup = [lb(j)k-j][k][k+j(j)ub]; 

rule forwhile(PAi>O t k, <lb,j,ub>, ft, ST(k,<lb,j,ub>,z), I, Q) = 
premise PA(lb>ubv-/?(lb)) v lb<k<ub-dAl[lb(j)k-j]A-/?(k) v lb<ubAl [ lb( j )ub] ^ Q, 
premise lb<ub a (P/\ft(\b) v lb<k<ub-dAl[lb(j)k-j]A/?(k)) { ST(k,<lb,j,ub>,z) } 

I[lb(j)k] where d=(ub-lb) mod j ; 

rule fir.st(PAJ>0, k, <lb,j,ub>, ft, S ^ M b ^ u b V ) , S2(<lb,j,ub>,z), Q) = 
premise P a lb<k<ub a (Vw ( [lb(j)k~j] -/S(w)) a ft(k) { S ^ k <lb,j,ub>,z) } Q, 
premise P a V w ( [lb(j)ub] -/?(w) { S 2( < 'b,j ,ub>,z) } Q; 

rule for(lAj>0, k, <lb,j,ub>, ST(k, <lb,j,ub>, z)) « . 
premise lb<k<ub-d a I[lb(j)k-j] { ST(k,<lb,j,ub>,z) } I[lb(j)k] 

where d=(ub-lb) mod j ; 

representation 
i 
! same as upto 
t 

implementation 
t 
! same as upto, except in &next becomes and k'<ub becomes k'+j<ub 
I 

endform 



ALPHARD: Iteration and Generators Page 23 

function eqvecs(A,B: vector(?t<V>,?lb,?ub)) returns (eq: boolean) -
pre true post (eq 2 (Vj <• [lb..ub] A[j]«B[j])) « 
first i: upto(lb,ub) suchthat A[i] ± B[i] then eq «- false else eq <- true 

Using the upto first rule, the proof requires that we establish the two premises: 

Show: true a lb<i<ub a (Vw (. [ I b J - l ] -(A[y]*B[y])) a A[i]*B[i] 
{ eq<-false } eq = Vj ( [lb..ub] A[j]=B[j] 

Proof: This simplifies to lb<i<ub a A[i]^B[i] D 3j d [lb..ub] A[j]^B[j]. Choose j - i . 

Show: true a Vw c [)b..ub] -(A[w]^B[w]) { eq<-true } eq E Vj C [lb..ub] A [ j ] -B [ j ] 
Proof: clear 

QED 

Termination of Generators 

A major advantage of the for statements in many of the more recent programming 
languages, such as Pascal, is that they are guaranteed to terminate (provided, of course, that 
the statement which is the loop body terminates for each value of the for statement). As a 
result the programmer using them never need explicitly demonstrate termination. We would 
like to be able to make similar claims about the loops utilizing at least some generators; the 
generators having this property will be called terminating generators. 

We can now present a technique for demonstrating this p roper ty .^ Although the 
general for statement is 

for x:gen(y) while fi(x) do ST(x,y,z) 

the clause "while /?(x)" can only reduce the number of times ST(x,y,z) is executed. Hence it 
suffices to show that 

for x:gen(y) do ST(x,y,z) 

terminates. Further, the generator and loop body, ST(x,y,z), are independent, so we know that 
as long as the body itself terminates for each x, it cannot cause the for statement to fail to 

Note that nontermination of the loop might also be caused by nonterminaton of the 
init clause or the functions &init and &next in the generator. This is explicitly ruled out by 
the basic generator assumptions, but must be treated as an additional requirement for proof of 
termination of generators which do not satisfy those assumptions. 
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terminate. Thus, if we can show the termination of the above statement for all possible 
parameters of the generator and some particular loop body, we will have shown that use of 
the generator cannot cause nontermination for any body. 

Consider the statement 

i<-0; for x:gen(y) do i<-i + l 

If we could find: (1) a (non-negative) value My depending only on y for which i<My after 
executing the statement, and (2) a loop invariant which allowed us to prove that the loop 
terminated with such a value of i, then we would have proved termination of all loops using 
gen. 

Clearly, the choice of My will depend on the instantiation parameters of the generator, 
i.e., on the data structure from which the elements are being generated. The loop invariant 
will have to assert that My bounds i; it will also have to relate the value of i to progress 
through the loop. The term that accomplishes the latter task, which we shall call Iy(x), must be 
chosen for each generator whose termination is to be proved. Thus the loop invariant is of 
the form i < M v A l (x). If we can associate with a generator a rule for determining for any 
particular instantiation, and if we can find a suitable Iy(x), then it suffices to show 1 * 

i=0 { for x:gen(y) do i«-i + l | i<M y Aly(x) } i<M y 

Note that the clause "i<My" in this loop invariant ensures that the loop will terminate, since i is 

strictly increasing from 0. 

Although this must potentially be proved for each generator, we can show the 
termination of every generator which satisfies the standard aggregate assumptions (with a 
finite aggregate), provided only that it is possible to measure the size of an aggregate. To 
demonstrate this, we use the pure for rule taking I(s) as i<size(T)Ai=size(s), where "size" is 
defined appropriately for the aggregate. The only premise 

G a T=s®<x><s>t a i<size(T) a i=size(s) { iH + 1 } i<size(T) a i=size(s©<x>) 

follows since s and <x> are disjoint, whence size(s) < s ized) and size(s<s><x>) » s ize(s)+l . 

Hence the conclusion of the pure for rule is 

i<size(T) a i=size(<>) { for x: gen(y) do + l } i<size(T) a i=size(T) 

This then implies the desired result with M y=size(T) and Iy(x)=size(s). 

*2 This method for showing termination is a simple instance of the commonly-used we l l -
founded set notion [Katz75, Luckham75]. Here the well-founded set is the non-negative 
integers bounded by M y . 
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Example: Finite Sets 

We now turn to a larger example that uses the iteration constructs. This example is 
based on Hoare's "smallintset" [Hoare72b], which implements smaH sets of integers. We begin 
by presenting and verifying a slightly augmented version of "smallintset". This form, called 
"simpleset", uses first statements and the "upto" generator; the program and the verification 
can be compared with Hoare's "smallintset". We then discuss the problem of adding new 
operations to "simpleset"; we construct a new type with the additional operators by adding a 
set-element generator to "simpleset" and writing a new form (which extends "simpleset") for 
the nekw operators. 

"Simpleset": a Version of Hoare's "Smallintset" 

This differs from Hoare's "smallintset" in that it can build sets of many types and the 
bound on the set size can be selected for each instantiation. Hoare noted these extensions in 
[Hoare72b, section 9]. In addition, the algorithm used in "remove" is slightly d i f fe rent .^ 

form simpleset(maxsize:integer, thing:form<*-,=>) = 
beginform  
specifications 

requires maxsize > 0; 
let simpleset = { . . . Xj . . . } where Xj is thing; 
invariant cardinality(simpleset) < maxsize; 
initially simpleset = {}; 
function 

insert(s:simpleset, x:thing) 
pre cardinality({x} U s) < maxsize 
post s = s' U {x}, 

remove(s:simpleset, x:thing) 
post s = s' - {x}, 

has(s:simpleset, x:thing) returns (b: boolean) 
post b = x ( s'; 

To shorten the pre, post, in, and oy i conditions in this paper, we often, by 
convention, omit assertions about variables which are completely unchanged. Thus, for 
example, we have omitted s=s' from the post condition of has below. Such omitted assertions 
are nevertheless used in the proof steps. 
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representation 
unique v: vector(thing,l,maxsize), m: integer jnrt m <- 0; 
re£(v,m) = {v[i] | i < [l..m]}; 
invariant 0<m<maxsize a (Vi,j £ [l..m] (v[i]=v[j] s i-j)); 

implementation 
body insert in (3i ( [L.s.m] st x=s.v[i] v s.m<maxsize) 

out (Vi([L.s.m'](s.v[i] = s.v'[i]) a (3j < [L.s.m] st s.v[j] = x » = 
first p: upto(l,s.m) suchthat s.v[p] = x 

else (s.m <- s.m+1; s.v[s.rn] <- x); 

body remove out (Vj c [l..s.m](s.v[j] ^ x) a 
(Vi « [L.s.m'] 3j * [L.s.m] (s.v'[i] ^ x 3 s.v[j] = s .v ' [ i ] ) » -

first p: upto(l,s.m) suchthat s.v[p] = x 
then (s.v[p] <- s.v[s.m]; s.m <- s.m-1); 

body has out (b s (3i « [L.s.m] st s.v[i]=x) a s.v'=s.v a s.m'=s.m) • 
first p: upto(l,s.m) suchthat s.v[p] = x 

then b *- true else b <- false; 

endform 

Verification of Simpleset 

For the form 

1. Representation validity 
Show: 0<m<maxsize A (Vi,j ( [l..m](v[i]=v[j]:>i=j)) -=> 

cardinality({v[i] | i i [l..m]})<maxsize) 
Proof: clear 

2. Initialization 
Show: maxsize>0 {m<-0} {v[i] | i < [l..m]}={} a 0<m<maxsize a 

V i , j c [ l . .m] ( v [ i>v [ j ]3 
Proof: 0<0<maxsize and [L.0] is []. 

For the function insert 
3. Concrete operation 

Show: /? i n a I c { first p: upto(l,s.m) suchthat s.v[p]=x 
else (s.m<-s.m+l; s.v[s.m]«-x } / ? o u { a I C 

Proof: The second premise of the upto first rule becomes 
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/3 j n a I c a l<p<s.m a (Vk l [ l . .p - l ] (s .v [k]^x» A s.v[p>x { } / 3 Q u t a I C 

The second term of /? o uf follows by choosing j^p. The other terms 
* are clear. 

4a. /? j n holds 
Show: I C a cardinality({x}urep(v,m)) < maxsize ^ 

(3i £ [L.s.m] st x=s.v[i] v s.m<maxsize) 
Proof: From I c the v[i]'s are distinct. Hence cardinality(rep(v,s.m» 

is s.m. If the 3i term is false, then x ->< rep(v,s.m) and 
cardinality({x}urep(v,m)) = l+s.m<maxsize, i.e., s.m<maxsize. 

4b. / ? p 0 s t holds 
Show: I c a cardinality({x}urep(v ,,s.m1))<maxsize A /3 Q u j D $ « s' u (x) 
Proof: s « rep(s.v,s.m) = {s.v[i] | i i [L.s.m]} = 

{s.v'[i] | i < [l..s.m ,]J u {s.v[s.m]} = s1 u {x} 

For the function remove 
3. Concrete operation 

Show: /3jn A I Q { first p: upto(l,s.m) suchthat s.v[p]=x 
then (s.v[p]<-s.v[s.m]; s.mt-s.m-1 } / ? 0 ( j t a I c 

Proof: The second premise of the upto first rule becomes 

true a I c a Vk ( [l..s.m](s.v[k><x) { } 
(Vj i [l..s.m](s.v[j]^x)) a (Vi ( [L.s.m] 3j € [L.s.m^s.vTifcx => 
s.v[j]=s.v'[i])) a I c 

The first term follows by the Vk term. For the second term choose 
j=i. I c is clear. The first premise of the first rule becomes 

true a I c a l<p<s.m a (Vk £ [l . .p- l](s.v[k]/x)) a s.v[p] = x 
{ s.v[p]<-s.v[s.m]; s.rm-s.m-1 } / ? o u t a I c 

(3i * [L.s.m] st x=s.v[i] v s.m<maxsize) a 1c a 
Vk ( [l..s.m](s.v[k]^x) { s.m«-s.m+l; s.v[s.m]*-x } 
Vi <; [l..s.m ,](s.v[i]=s.v ,[i]) A (3j £ [L.s.m] st s.v[j]=x) A I c 

The first term follows by s.m-s.mM>s.m\ For the second term choose 
j=s.m (note l<s.m<maxsize). The first term of I c holds because the Vk 
term means s.m<maxsize in the second term of the hypothesis. The 
second term of I c holds from I c and the Vk term. The first premise of 
the first rule becomes 
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s.m remains non-negative since s.m'>L The reasons for the other 
terms depend on p=s.m or p^s.m. Let p=s.m. For the second term of 
I c , note that {s.v[l.,s.m]}-{x} = {s.v'[L.s.m'-1]} so s .v ' [ l . .m' - l ] is 
duplicate-free by I c . The first term of fiou^ follows from the Vk term. 
For the second term of /? o uf choose j=i. Now let p^s.m. By I c , 
{v [ l . .p - l ,p+l . .s .m' - l ] } u (s.v[s.m']} = {v[l..m]} is duplicate-free. The 
first term of /? o u j follows from I c and s.v'[p] = x ^ $.v'[s.m'J « s.v[p]. 
For the second term of /? o u { choose j - i except when i=m' in which 
case choose j=p. 

4a. /? j n holds 
/?j n is true 

4b. / ? p o s t holds 
Show: I c a / ? 0 ( j t ^ s = s' - {x} 
Proof: s = {s.v[i] | i <: [L.s.m]}. By the first term of / ? o u t , 

x s apd by the second term of /? o u { , y A D y(s iff y£$\ 
Hence s = s' - {x}. 

For the function has 
3. Concrete operation 

Show: /3jn a I c { first p: upto{l,s.m) suchthat s.v[p]=x 
then b«-true else b*-false } / ? o u ( A I c 

Proof: I c is unchanged. The second premise of the upto first rule has 
the hypothesis Vk ( [l..s.m](s.v[k]^x), i.e., the 3 term in fiou^ is false -
b. The first premise has the hypothesis v[p]=x, i.e., choose i=p so the 
3 term is true - b. 

4a. /? j n holds 
/3jn is true 

4b. / ? p o s t holds 
Show: I c a / ? Q u t 3 b = x < s' 
Proof: b = 3i ( [L.s.m] st (s.v[i]=x) = 

x < {v'[i] | i £ [L.s.m'] = x ( s' 
QED 

We noted earlier that our algorithm for remove is different from Hoare's. Since our /? i n 

and / ? o u t can be used for Hoare's remove, the proof of his remove requires changing only 
step 3. 

Adding Functions to "Simpleset" 

Suppose now that we wanted to add other set operations such as union, intersection, 
and an inclusion test. We could do this either by adding each new operation to form 
"simpleset", or we could write a new form, say "finiteset", which extends "simpleset". In the 
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former case we would have access to the representation of simplesets, but we would have to 
be v e r y concerned about possible side effects on the representation and about the possibility 
of compromising the existing verification. In addition, each such change alters the 
specifications of "simpleset", and thus potentially requires reverification of the programs that 
use "simplesets". The latter choice substantially reduces the reverification responsibilities and 
allows a number of users to write extended operation sets without interfering with each other. 
However, it is feasible only if the set of operations provided by "simpleset" is rich enough. 

The version of "simpleset" presented in the previous section is not quite rich enough 
for extended operation sets to be independent. The chief deficiency is that there is no way 
for a user to find out what elements are in a set. We will remedy that by adding a generator 
"inset" to the simpleset form and then write an extension form "finiteset". 

"Inset": a Set Element Generator 

We said above that a generator produces a sequence of elements. Since sets are not 
inherently ordered, we can generate the elements in any order that is convenient. We do, 
however , want to be able to promise that each element in a set appears exactly once in the 
generated sequence. It is not necessary (or particularly desirable) that the elements of two 
equal sets be generated in the same order. In fact, the order in which this generator 
produces the set elements is an accident of the history of the s e t . ^ 

The following program text is the definition of a generator, "inset", which produces the 
desired sequence; it is shown in its proper context within the "simpleset" form. We have, 
however , deleted (and replaced by ellipses) those parts of "simpleset" which are identical to 
their previous definition. The form inset satisfies the standard aggregate assumptions, so we 
specify it by giving its proof rules. For simplicity, we provide only the first and the pure for 
rules. 

form simpleset(maxsize:integer, thing:form<<-,=>) = 
beginform 

specifications 

generator inset(s:simpleset) extends x-.thing 
let inset = { x st x ( s } where s ^ {} ^ (inset = q u jx] U r and 

q, {x}, and r are disjoint); 
rule ford, x, s, ST(x, s, z)) = 

premise q c s a x ( s-q a I(q) { ST(x,s,z) } I(q U {x}); 

We could, of course, go to extra trouble to generate the elements in a standard 
order , but that is a different design decision and leads to a different program. 
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rule first(P, x, s, ft, S^x , s, z), S 2 (s , z), Q) = 
Premise q c s a x C s-q A P a (Vw < q -/?(w)) a /?(x) { S ^ x ^ z ) } Q, 
premise P a Vw ( s i/S(w) { S 2(s,z) } Q; 

implementation 

body inset -
beginform  
representation 

unique j:integer; 
re£(s.v,s.m,x,j) = it s.m=0 then {} else q u {x} U r where 

q = { s . v [ i ] | i ( [ l . . j - l ] } a n d 
x = s.v[j] and 
r = {s.v[i] | i ( [j+l..m]}; 

invariant true; 
implementation 

body &init out. ((&b = s.m>0) a (&b => l=&g.j<s.m a x=s.v[&g.j])) -
if s.m > 0 then (&g.j«-l;.x*-s.v[lj; &b<-true) 

else &b<-false; 

body &next in l<&g.j<s.m out ((&b s &g.j' < s.m) A 
(&b ^ &g.j==&g.j,+l a l$&g.j<s.m A x=s.v[&g.j])) 
\± &g.j < s.m then (&g.j<-&g.j+l; x*-s.v[&g.j]; &b<-true) 

else &b«-false; 
endform  

endform 

The generator "inset" can now be used to express the iteration which was posed as the 
first problem in the introduction, that is, to compute the sum of the elements in a set s. 
Compare this Alphard statement with the three versions in contemporary languages given 
there: 

sum «- 0; for x:inset(s) do sum *- sum + x 

This version of the loop does not reveal the implementation, so the users need not be 
concerned with which kind of iteration is most appropriate. In addition, the implementor of the 
"simpleset" form can now be reasonably sure that a change in the implementation will not 
create havoc in user programs. We can verify this program segment using the pure for rule 
for inset given in the specifications. 
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Show: true { sum<-0; for x : inset(s) do sum<-sum+x } sum = SIGMAj ( $ ( j ) 
Proof: I (U) is sum = 0, I(q) is sum « SIGMAj ( q ( j ) , and the premise of the for rule is 

q c s A x ( s-q a I(q) { sum<-sum+x } I(q U {x}> 
This reduces to the provable formula 

q c s a x « s -q A sum = S IGMAj^ j ) ^ sum + x = S I G M A j ( q U j x j ( j ) 

QED 

We next verify inset. We must first reconstruct the gre and post conditions for &init 
and &next from the specified proof rules: 

&init 
post (&bss^{}) A (&b 3 x « s a q={}) 

&next 
pre x(s 
post (&bsrV{}> a (&b 3 x i r' a q=q'u{x'}) 

The reasons that parts (c) and (d) of the basic generator assumptions hold are essentially the 
same as for upto. It is also necessary to discharge the standard aggregate assumptions: 

(a) Sets are used. 

(b) s = q u (x) U r when s^{} (recall disjointness of q, {x}, and r). 

(c) The pre and post conditions have the required form. 

Since "m" and "v" are unchanged by inset, the I c of simpleset still holds and will be used 
throughout this proof. The "s." qualifier is sometimes omitted in the interest of clarity. 

For the form 

1. Representation validity 
Show: true => true 
Proof: clear 

2. Initialization 
Show: true { } true a true 
Proof: clear 

For the function &init 
3. Concrete operation 

Show: true { if s.m>0 then (&g.j«-l; x«-s.v[l] ; &b*-true) else &b«-false } /$ 0 ( J j A true 
Proof: clear by considering the two cases of the if 
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4a. /? j n holds 
fim is true. 

4b. /3post h o l d s 

Show: true a (&bss.m>0) a (&b s l=&g.j£s.m a x=s.vf&g.j]) o (&b s $+[}) A 
(&b D x < s a q - {}) 

Proof: To obtain s and q in terms of concrete variables, use the rep 
function. Then &b's (s.m>0) H {v[i] | i i [l..m]}^{} s Suppose 
s.rn>0, i.e., &b = true. Then &gj=l whence x - s . v [ l ] i [v[i] | i d [l. .m]} 
and q = {v[i] | i < [1 . .0 ]H) . 

For the function &next 
3. Concrete operation 

Similar to &init.3 
4a. fi-m holds 

Show: x € s ^ l<&g.j<s.m 
Proof: Using the rep function, x ( s implies v[ j ] ( {v[i] | i * [l..m]}, 

whence l<&g.j<m. 

4b. / * p o s t h o l d s 

Show: x ( s a (&b=&g.j,<s.m) a (&b D &g.j=&g.j'+lAl<&g.j<s.mAx=s.v[&g.j]) D 
(&b = {v[i] | i i [ jM..rn]} * { } ) a (&b D x ( [v[i] | i < [ jVl . .m]} a 
{v[ i ] | i < [ l . - j - l ] } - { v [ i ] I • 

Proof: &b = (&g.j'<s.m) = {v[i] | i c [j'+l..m]} * {} 
by reasoning similar to 4a. The second term of the conclusion follows 
from l^&g.p&g.j'+l^s.m and x=s.v[&g.j]. 

QED 

"Finitcsetu: an Extension of "Simpleset" 

Since the simple set form defined above does not provide the usual set operations one 
expects (e.g., union), in this section we shall define and verify an extension of that form which 
provides these facilities. All of the mechanisms used in this example have been presented 
previously; the example does, however, provide us the opportunity to illustrate the use of the 
specifications of one form, "simpleset", in the verification of another. The new form definition 
and its proof are given below: 
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form finiteset(maxsize:integer, T:form«-,=>) extends s:simpleset(maxsize,T) « 
beginform  
specifications 

requires maxsize > 0 
let finiteset = { . . . Xj . . . } where Xj is thing; 
invariant cardinality(finiteset) < maxsize; 
initially finiteset = {}; 
function 

union(sl,s2:finiteset(maxsize,T)) returns s3:finiteset(maxsize,T) 
pre cardinality(slus2)<maxsize 
post s3=sl U s2, 

intersect(sl,s2:finiteset(maxsize,T)) returns s3:finiteset(maxsize,T) 
post s3=sl n s2, 

includes(sl,s2:finiteset(maxsize,T)) returns b:boolean 
post b=s2 c s i ; 

representation  
rep(s) = s 
invariant cardinality(s) < maxsize 

implementation 
body union = 

begin 
for x:inset(sl) do insert(s3,x); 
for x:inset(s2) do insert(s3,x); 
end; 

body intersect = 
for x:inset(sl) do 

j i has(s2,x) then insert(s3,x); 
body includes = 

first x:inset(s2) suchthat -has(sl,x) then b«-false else b*-true; 
endform 

Verification of Finiteset 

Since rep(s) is an identity function except for a type change from simpleset to finiteset, 
we shall assume ftpre = fim and fipOS\ = /? o ut in the proof. All the generator uses are 
independent of the loop bodies; specifically, s3 is changed but never generated. Note also 
that s3 is instantiated as a simpleset whenever it is needed for a return value, and hence is 
initialized to {}. 
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For the form 

1. Representation validity 
Show: cardinality(s)<maxsize ^ cardinality(s) < maxsize 
Proof: clear 

2. Initialization 
Show: maxsize>0 { "s<-{}" } s={} A cardinality(s)<maxsize 
Proof: The notation "s*-{}" refers to the initially clause of simpleset. 

The proof is trivial. 

For the function union 
3. Concrete operation 

Show: cardinality(slus2)<maxsize a l c { body of union } s3=slu$2 a I C 

Proof: I c remains true because it is unchanged. A loop invariant for the 
first [or statement is s3 = q. Since cardinality(q) < cardinality(sl) 6 
cardinality(slus2) < maxsize, the pre. condition of insert is met; the 
post condition says s3 = q u {x} which shows s3 = q is indeed a loop 
invariant. Similarly, a loop invariant for the second for statement is s3 
= s i u q. The first for statement is started with s3 = {}; the second 
for statement is started with s3 = s i by the result of the first for 
statement, which is s3 = s i . 

4a. fim holds 

^ p r e = ^ in 
4b. / ? p o s t holds 

/^post = fiou\ 

For the function intersect 
3. Concrete operation 

Show: I c { body of intersect } s3 = slns2 a I C 

Proof: A loop invariant is s3 = q n s2 because if x ( s2 then s3u{x) « 
(qns2)u{x} = (qu{x})ns2 while if x s2 then s3 = qns2. The pre 
condition for insert holds because s3 = qns2 c slns2 c slus2. The 
initialization of s3 to {} starts the loop properly; the result is s3 « 
s lns2. 

4a. and 4b. As in union. 
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For the function includes 
3. Concrete operation 

Show: I c { body of includes } b = s2 c s i 
Proof: The second premise of the first rule has the hypothesis 

Vw < s2 -i-ihas(sl,w) = (s2 c s i ) « true. The first premise has the 
hypothesis x < s2 a -*(has(sl,x)), i.e., x ( s2 a x s i whence b = false 
as the body does. 

4a. and 4b. As in union. 
QED 

A Remark on Program Size 

We are aware of (and have occasionally shared) the apprehension of some of our 
colleagues that Alphard programs will be substantially, even unreasonably, larger than 
programs for similar tasks written in other languages. Early results indicate that this need not 
be the case. One comparison is made in [Shaw76}, we are now able to compare Hoare's 
"smallintset" with "simpleset". 

First, let us compare this program text with Hoare's. The Alphard program, "simpleset", 
initially looks longer — 32 lines to 28 for Hoare's "smallintset". "Simpleset", however, includes 
about 14 lines of verification assertions. With the exception of the in/out assertions, this 
information appears in Hoare's paper, but not in the "smallintset" program itself. 

We will compare program sizes (exclusive of assertions.) on the basis of the number of 
lexemes used, since the division into lines is arbitrary. We divided the lexemes into three 
categories: declarations and procedure headers, text grouping symbols like begin and end, and 
executable statements. We treated a qualified name as a single lexeme. We found the 
following: 

executable grouping declaration total 
"simpleset" 95 2 81 178 
"smallintset" 121 12 58 191 

Alphard's shorter executable text is largely attributable to the conciseness of the first 
statement; its larger declaration text seems to arise from the separation of specifications from 
procedure bodies and from the additional generality. The differences are not large enough to 
draw major conclusions from the data, and raw text length is hardly the major criterion for 
comparing languages. Nonetheless, the closeness of the numbers should serve to allay any 
fears that Alphard programs will necessarily be very large. 
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Conclusions 

The ultimate goal of the Alphard project is to increase the quality and reduce the total, 
lifetime, cost of real programs. Of the many alternative approaches to this goal we have 
chosen one in which recent results from programming methodology and program verification 
are merged in a programming language design. 

The Key component of this merger is the introduction of a language mechanism, the 
form, to provide explicit support for the development of conceptual abstractions. The close 
association between forms and our intuitive notion of abstraction seems sound on 
methodological grounds, for it permits the programmer to concentrate on abstractions instead 
of their implementations. It also seems sound in terms of current (and projected) verification 
technology in that it permits isolated proofs of manageable size which collectively verify the 
entire program. 

The success of this approach to improving quality and reducing costs depends, in large 
measure, on the degree to which the proposed language mechanism is able to express natural 
abstractions. In a previous report [Wulf76a,b] we dealt with abstractions whose behavior is 
naturally expressed as a collection of operations defined over an abstract data structure. This 
is not, however, the full range of behaviors implicit in our understanding of the concept of 
"abstraction". Thus, in this report we concerned ourselves with that class of behaviors 
corresponding to the notion of enumerating the elements of an abstract aggregate (i.e., data 
structure). 

The specific content of this report has dealt with two related issues: the language 
features for defining and using such abstractions and the development of specification and 
verification techniques to accompany the language features. It is reassuring to us that the 
existing form mechanism is adequate to capture the new class.of abstractions introduced here. 
We also find it interesting that the forms which define generators can be specified quite 
naturally in terms of proof rules instead of the usual functional specifications. Despite the 
complexity of the full generator mechanism and associated proof rules, a chain of simplifying 
assumptions yields the simple rules for common types of loops in other languages; 
furthermore, these common loops terminate. 

A number of open problems remain. The loop specialization facility in Alphard has made 
it possible to encapsulate iteration patterns along with other properties of an abstraction, but 
it. has also made it awkward to write certain kinds of loops, including those which operate on 
only part of a structure and those in which a structure is modified by the loop which operates 
on it. 

We may wish to eliminate many such irregular loops on methodological grounds, but 
others seem to be reasonable, understandable, and hence safe. For example, it seems 
acceptable to write loops for 
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- recurrence relations in which the first k elements Qf a vector are treated 

individually and the rest uniformly, 

- operations on matrices in which the boundary values receive special treatment, 

- tree walks in which data values at the nodes, but not the tree structure, are 
changed, 

- list processing operations when the loop body is making insertions and deletions 
to the list from which elements are being generated, and 

- operations in which the loop body may wish to request early loop termination 
(without the distributed cost and complexity of including the test in the while 
clause). 

Since a generator is in fact a form, the ability to write some of these loops may be provided 
by defining functions other than &init and ftnext in the generator. Operations on the structure 
would then still be performed only by the generator, which eould presumably keep matters in 
hand. The restrictions under which this is reasonable are a subject for further research. This 
is not, however, an acceptable general solution, for it would require the generator to provide 
its own versions of all interesting operations on the structures for which it generates 
elements. 

A general solution for the problem of permitting interactions between the generator and 
the loop body can be found by returning to the original proof rule, without even the basic 
generator assumptions. This rule assumes only that &init and &next are functions provided by 
the generator. This solution is too general it is too unwieldy for any but the most intricate 
of interactions. We believe that a promising path for further research is. the search for sets 
of reasonable assumptions which permit interesting interactions and also, like the two sets of 
assumptions made in this report, lead to vastly simplified proof rules. 
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Appendix A 
Informal Description of Verification Methodology 

Alphard's verification methodology is designed to determine whether a form will actually 
behave as promised by its abstract specifications. The methodology depends on explicitly 
separating the description of how an object behaves from the code that manipulates the 
representation in order to achieve that behavior. It is derived from Hoare's technique for 
showing correctness of data representations[Hoare72b]. 

The abstract object and its behavior are described in terms of some mathematical 
entities natural to the problem domain. Graphs are used in [Shaw76] to describe binary trees; 
sequences are used in [Wulf76a,b] to describe queues and stacks and in [London76] to 
describe list processing, and so on. We appeal to these abstract types: 

- in the invariant, which explains that an instantiation of the form may be viewed 

as an object of the abstract type that meets certain restrictions, 

- in the initially clause, where a particular abstract object is displayed, and 

- in the pre and post conditions for each function, which describe the effect the 
function has on an abstract object which satisfies the invariant. 

The form contains a parallel set of descriptions of the concrete object and how it 
behaves. In many cases this makes the effect of a function much easier to specify and ver i fy 
than would the abstract description alone. 

Now, although it is useful to distinguish between the behavior we want and the data 
structures we operate on, we also need to show a relationship that holds between the two. 
This is achieved with the representation function rep(x), which gives a mapping from the 
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concrete representation to the abstract description. The purpose of a form verification is to 
ensure that the two invariants and the rep(x) relation between them are preserved. 

In order to verify a form we must therefore prove four things. Two relate to the 
representation itself and two must be shown for each function. Informally, the four required 
steps a r e ^ : 

For the form 
1. Representation validity 

I c ( x ) D I a (rep(x)) 

2. Initialization 
requires { irtit clause } initially(rep(x)) A I c(x) 

For each function 
3. Concrete operation 

in(x) A I c (x ) { function body } out(x) A I c (x) 

4. Relation between abstract and concrete 
4a. I c (x ) a pre(rep(x)) => in(x) 
4b. I c (x ) a pre(rep(x'» a put(x) :> ppst(rep(x)) 

Step 1 shows that any legal state of the concrete representation has a corresponding abstract 
object (the converse is deducible from the other steps). Step 2 shows that the initial state 
created by the representation section is legal. Step 3 is the standard verification formula for 
the concrete operation as a simple program; note that it enforces the preservation of I c . Step 
4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition 
holds and (b) that if the operation is performed, the result corresponds properly to the 
abstract specifications. 

Appendix B 
Derivations of Simplified Proof Rules 

In this Appendix we show that the general for and first proof rules and the basic 

15 We will use I a (rep(x)) to denote the abstract invariant of an object whose concrete 
representation is x, I c (x) to denote the corresponding concrete invariant, italics to refer to 
code segments, and the names of specification clauses and assertions to refer to those 
formulas. In step 4b, "pre(rep(x'))M refers to the value of x before execution of the function. 
A complete development of the form verification methodology'appears in [Wulf76a,b]. 
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generator assumptions yield the simplified proof rules based on those assumptions. We shall 
use the following two sets of assumptions and three proof rules: 

Generator Assumptions 
( G l ) G a fim p r e { n «- x.&init } G a / S i n i t p o s t 

(G2) G a / 3 n e x t > p r e { n «- x.&next } G a / ? n e x t 

.post 

(G3) /? r e q { in.it clause } G 

Basic Generator Assumptions 

(BG1) The post conditions on &init and &next are of the form 

(b = nj) a ft- and (b = n n ) a fin 

respectively, where b is the result parameter of these functions. 

(BG2) G ^ / 3 i n i t . p r e , G a (n jA/? i n i t p 0 $ , v n n A / S n e x t p 0 $ L ) D ^ n e x t . p r e 

(BG3) The generator and the loop body are independent. That is, for arbitrary 
predicates R and S 

R(y,z) { init clause } R(y,z) 
R(y,z) { n x.&init } R(y,z) 
R(y,z) { n <- x.&next } R(y,z) 

and S(x,y) { ST(x,y,z) } S(x,y) 

And Rule 

P l { S } Q 1 ( P 2 { S } Q 2 

P i a P 2 { S } Qi a Q 2 

Co«5ec/uence Rules 

P => Q, Q { S } R 

P { S } R 

Q { S } R, R a T 

Q { S } T 

http://in.it
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Semicolon Rule 

P{$1 } Q , Q { S 2 } R 

P { S t ; S 2 } R 

Let us work initially on the for statement. Its general proof rule is 

(GforO) P A fireq { Inlt clause } P a , 4 J N I T P R E 

(G fo r l ) P a G a / ? i n i t _ p r e { n <- x.&init } -<tta/?(x)) * Q 
(Gfor2) P a G a /^injt.pre ' n *~ x - & i n i t ' assume nA/?(x); ST(x,y,z) } I a G a / ? n e x t . p r e 

(Gfor3) I a G a / ^ n e x t . p r e { n <~ x - & n e x t } -(nA/?(x)) * Q 
(Gfor4> I a G a / ? n e x t . D r e ( n <" x.&next; assume tta/?(x); ST(x,y,z) } I a G a / 3 n e x t > p r e 

P a ftreq { for x: gen(y) while fiM do ST(x,y,z) | I } Q 

and the simplified proof rule is 

( S f o r l , Sfor2) G a [P a fi{ a -(ttjA/?(x)) v I a fin a -(n nA/?(x))] a Q 
(Sfor3, Sfor4) G a fiM a [P a /?j a rtj v I a /3n a n n ] { ST(x,y,z) } I 

P a / S r e q { for x: gen(y) while /?(x) do ST(x,y,z) | I } Q 

Our task, therefore, is to derive each of the five Gfor premises from G, BG, and the four 
Sfor premises. If we do this, we obtain the conclusion of the general rule which is the 
conclusion of the simplified rule. Note that the inlt clause in GforO is invoked when the 
generator is instantiated by the clause "local x.Een(y)" in the expansion of the for statement. 

We first note relationships involving x.&next, x.&init, the invariant I, and the assertion P. 
Assumption BG1 means that for an arbitrary predicate R involving the set of generated values 
XQ,...,Xp, and x (in this notation x is also denoted by X p + p , we know 

R( {* i> » »Vx } ) * n *~ x - & n e ) < t } R U x o > - > V X P + l ^ A ( n n D x = = x p+2> 
R<{}> { n *- x.&init } R({}) A ( n , => x = x q ) 

Thus, provided x is denoted by X p + j , the predicate R is preserved by x.&next and x.&init, and 
there may be a newly generated value. Using both BG1 and BG3 we see that x.&next 
preserves the invariant I, which depends on x, y, and z. The cases of the Inlt clause and 
x.&init preserving P are simpler since P depends only on y and z. 
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Derivation of GforO 
ftreq { init clause } G 
P { init clause } P 
P A /3 r e q { init clause } P A G 

G ° A n i L p r e 

p A /Veq ( ^ cZaa^e } P A fi^\\pre 

Derivation of Gforl 
G A /^init.pre ( n *" * - & i n i t < G A Anit.post 
P { n «- x.&init } P 
P a G a / ? i n i t . p r e { n <- x.&init } G a P a / 8 I N I T > P O S T 

G a P A (N=Hj) a /3J d -(ha/?(x)) 3 Q 
P a G a /? j n j t p r e { tt «- x.&init } -(nA/?(x)> ^ Q 

Derivation of Gfor2 
P a G a / ? i n i t < p r e { n <- x.&init } G a P a /? i n i t . p o s . t 

G a P a (N=NJ) a /?j a NJ a /?(x) ^ G a P a (nsrtj) a /?j a NJ a /?(x) 
G a P a (NSNJ) a ft- { assume JXA/MX) } G a P a (ttsjtj) a ft- a NJ a fiM 
G a P A-(nsnj) a ft- a N } a ftM { ST(x,Y,z) } I a NJ 

G A ^init.post * ST(x ,Y ,z ) } G a ftmitpos{ 

G a P a (NSNJ) a ft- a N } a fiM { ST(x,Y,z) ) I a G a tt5 a /? j n i t p o s t 

G a P a (NSNJ) a ft- { assume tta/Kx); ST(x,Y,z) } I a G a NJ a /TFJNJT.P0ST 

G a NJ a / ? j n i t > p 0 $ t => / 3 n e x t . p r e 
P a G a fi\n\\ pre { n <~ x.&init; assume nA/3<x); $T(x,Y,z) } 

1 A G A ^next.pre 

Derivation of Gfor3 

G A /^next.pre ( n <" x - * ' n e x t J G A /^next.post 
I { N <- x.&next } I 
I a G a / ^ N E X T > P R E { N <- x.&next } G a I a / ? n e x t > p o s t 

G a I a ( N = N N ) a /?n d n(nA/?(x)) ^ Q 
I a G A / ? n e x t p r e { n <~ x.&next } -(tta/?(x)) Q 

Derivation of GforA 
I a G a / 8 N E X T # P R E { n <- x.&next } G a I a / ^ n e x t < p o s t 

G a I a ( N = N N ) a ftn a N N a ^(x) => G a I a (nsnn) a fin a N N a ^(x) 
G a I a ( N = N N ) a { assume nA/3(x) } G a I a ( N = N N ) a fin a N N a /?(x) 
G a I a ( N = N N ) a /?n a N N a /?(x) { $T(x,Y,z) } I a N N 

G A A iext .post I ST(x ,Y ,z ) } G a / ? n e x t p 0 $ t 

G a I a (nsTTn) a ftn a n n a fiM { ST(x,Y,z) } I a G a N N a /3next.post 
G a I a (nsTTn) a ^ n { assume nA^(x); ST(x,Y,z) } I a G a N N a # n e x t . p o s t 
G a N N a / 3 N E X T > P O S T * /Wxt.pre 
I a G a ftnex\pre { N <- x.&next; assume nA/?(x); ST(x,Y,z) ) 

I a G a / ? n e x t p r e 

G3 
BG3 
and rule 
BG2 
consequence 

G l 
BG3 
and rule 
Sfor l 
consequence, BG1 

step 3 above 
identity 
assume rule 
Sfor3, private nj 
BG3 
and rule 
semicolon rule 
BG2 
semicolon rule, 

consequence, BG1 

G2 
BG1, BG3 
and rule 
Sfor2 
consequence, BG1 

step 3 above 
identity 
assume rule 
Sfor4, private n n 

BG3 
and rule 
semicolon rule 
BG2 
semicolon rule, 

consequence, BG1 
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We now work on the first statement. The expansion of 

first x:gen(y) suchthat fiM then $j(x,y,z) e[se S2(y,z) } Q 

using a standard while statement, including the most general case assertions, is 

assert P A / 3 r e q ; 
begin label X; 

begin local x: gen(y); 
assert P A G A / ? I N I T P R E ; 

n *- x.&init; 
while 

[assert P A G A ^ ( x Q . . x p ) A ( n ^ n e x t p r e ) A < / 3 j n i t - p o s t v / 8 n e x t p o s t ) ] 
n do 

it fiM then (Sj(x,y,z); goto X) else n «- x.&next 
end; 

S 2 ( y , z ) ; 
X: end;  

assert Q 

The general proof rule for the first statement is 

(GfirstO) P A fireq { inlt clause } P A fi\n\\pre 

(Gf i rs t l ) P A G A fi\n\ipre { n <- x.&init } P A G A ( n ^ / ? n e x t p r e > 
(Gfirst2) P A G A # 0 . . x p ) A ( / t i n i t i p o s t v / I ^ , ) A / ! N E X T I P R E - A n A /1(X) 

{ S ^ x ^ z M Q 

(Gfirst3) P A G A V < < x 0 - V A <^init.post v ^next.posi* A ^ n * S2<y> z ) * Q 
(Gfirst4) P A G A -/<(x 0 . .x p) A fineYipre A -/?(x) { n <- x.&next } 

.pre? 

P A fireq { first x:gcn(y) suchthat fiM then S^x.y .z) else S 2 ( y . z ) } Q 

and the simplified proof rule is 

(Sf i rs t l ) G A P A [^ jAn , v / ? n A r t n A - ^ ( x 0 . . x p ) ] A fiM { S^x.y .z) } Q 
(Sfirst2) G A P A L-njA^i v -.nnA/SnA-/?(x0..xp)] { S 2 (y ,z) } Q 

P A fireq { first x: gen(y) suchthat fiM then S^x.y .z ) else S 2 ( y . z ) } Q 

In Gf i rst l note that there is no x p before the statement n <- x.&init so - / ? ( x 0 . . x p ) s t r u e . 
As in the for case, the task is to derive each of the five Gfirst premises from G, BG, and the 
two Sfirst premises. 
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Derivation of GfirstO 
Same as derivation of GforO 

Derivation of G first I 

G A ^init.pre * n * x ' & i n i t } G A ^init.post 
P { n <- x.&init } P 

P A G A / 3 i n i t < p r e { n <- x.&init } G A P A /Vit.post 

G A P A /?i n i t .post D P A G A ^ n e x t . p r e ' 
P A G A / t f i n i t - p r e { n «- x.&init } P A G A ( n 3 / 3 n e x t 

Derivation of Gfirst2 
G A P A " 

P A G A 

P A 

P A 

pre 7 

Gl 
BG3 
and rule 
BG2 
consequence 

on of Gfirst2 

[/tfj A nj A true v fin A n n A V? (x 0 . . x p ) ] A fiM { Sj(x,y,z) } 0 Sfirst 

u A - ,/?(x 0 . .x p) A f(nsnj) A fi{ v (n -n n ) A fin] A n A fiM { S^x.y.z) } Q algebi 

G A - v3(x 0 . . x p ) A < / ? i n i L p o s t v / ? N E X T . P O S T ) A n A fiM i S^x.y.z) } Q BG1 

G A ̂ ( x 0 . . x p ) A < / S i n i t i p o s t v /?next.post> A /^next.pre A n A ^ x > 
{ S ^ x ^ z ) } Q consequence 

Derivation of Gfirst3 

G A P A [ -n ( A /?j A true v - n n A fin A -/?(x 0 . .x p)] { S 2 (y.z) } Q 

P A G A -/?(x 0 . . x p ) A [(nsnj) A fi{ v (nsn n ) A / ? N ] A -n { S2(y,z> I 0 

P A G A - ^ ( x o - V A <^init.post v ^next.post) A ^ * S 2 ( V ' z ) * Q 

Derivation of Gfirst4 
G A ^next .pre * n <- x.&next } G A /Vxt .post 
P { n <- x.&next } P 

-v3(x 0 . .Xp) A { n <- x.&next } -V^><o--xp+P 

Sfirst2 
algebra 
BG1 

G2 
BG3 
BG1, definition 

of - / a(x 0 . . x p ) 
P A G A V « x 0 . . x p ) A - . / ? < X ) A / < n e x t - p r e | n <- x.&next } 

P A G A / S n e x t p o s t A -vS(x0..x + 1 ) and rule 
P A G A ^ ( x 0 . . x p ) A / ? N E X T > P R E A -/?(x) { IT «- x.&next } 

P A G A - ^ ( x 0 . . x p + 1 ) A (n=>/3 n e x t p r e ) BG2, consequence 


