
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LANGUAGE FOR A DESIGN INFORMATION SYSTEM

Charles Eastman
and

Max Henrion

August 1976

c • u and is monitored by the Air Forrp n f f i ^

LANGUAGE FOR A DESIGN INFORMATION SYSTEM
CONTENTS:

PART I: INTRODUCTION

1 Objectives 1
2 Level of the Language 3
3 Issues of implementation 3
4 Methods of representation 4
5 Syntactic style 5
6 Conclusions 6

PART I I : SPECIFICATION FOR GLIDE 1

1 fundamentals 1
1.1 operating environment 1
1.2 lexemes 1
1.3 data types 2
1.4 expressions and statements 2

1.4.1 procedure calb 3
1.4.2 assignments 3
1.4.3 comments 4
1.4.4 blocks 4
1.4.5 basic declarations 4

1.5 block structure and the
scope of names 4

2 simple types 7
2.1 numbers 7
2.2 booleans 7
2.3 text 7
2.4 vector 8

3 elements 9
3.1 naming elements 9
3.2 attribute declaration 10
3.3 form definition block 10
3.4 location 11
3.5 copy definition 12
3.6 accessing attributes 12
3.7 modifying element definitions 13
3.8 shape 13

3.8.1 topology 14
3.8.2 topology primitives 17
3.8.3 geometry 18
3.8.4 shape information 19
3.8.5 shape operators 20

3.9 standard element attributes
4 Sets

4.1 set definition
4.2 copying a set
4.3 accessing a member of a set
4.4 modifying a set
4.5 standard set functions

5 move operations v

5.1 moving an item
5.2 search operations

6 control structures
6.1 conditional
6.2 for loop
6.3 for loop
6.4 while loop
6.5 forall loop
6.6 exit from loop
6.7 leaving a block

7 procedure declaration
7.1 procedure types
7.2 parameters
7.3 argument separators
7.4 return statement
7.5 externals

8 input and output
8.1 alphanumeric output
8.2 alphanumeric input
8.3 graphic output

8.3.1 view record
8.3.2 display

PART I I I : EXAMPLES OF GLIDE PROGRAMS

1 Automatic detailing
2 Building topological structures
3 Analyses of shapes

APPENDICES

1 BNF conventions
2 Infix operators
3 Reserved words and symbols
4 Standard attributes and functions

GLIDE

PART ONE: INTRODUCTION

The authors are part of a group in the Computer Science Department and
the Institute of Physical Planning at Carnegie-Mellon University, which is
developing a computerised information system for designing large physical
systems. The information system is expected to be useful in the design of
buildings, ships, mechanical components and other entities that normally require
drawings, specifications and a large number of documents for their description
and that must respond to a range of diverse analyses. Its purpose is to allow a
physical system to be represented within a computer by a single integrated
database in sufficient detail for design and construction. It incorporates
compact data structures for representing both three- dimensional and other kinds
of information. Descriptions of these datastructures have been presented
elsewhere [2],[3].

1. OBJECTIVES

The following are some desiderata for such a design information system.
A user should be able to define, inspect, modify and analyze different designs,
and these operations should be executable in a natural and convenient manner.
High-level extensions to the system should be possible for such purposes as
automatic detailing, selection and layout of parts, analysis and evaluation.
Both interactive use and the application of large, pre-defined programs should
be allowed. It may be desirable to interface the integrated database with
external analysis packages, which will involve selection and reformatting of
data. In addition, it should facilitate convenient output, in such forms as
engineering drawings, parts lists and the results of analyses. Many of these
requirements may be unique to particular design professions or organizations,
and such facilities will have to be capable of being tailored to a variety of
professions and organizational environments.

These operations have been conveniently organized as a high level
computer language. The objective of this language is to allow the user to
easily perform the operations required to design within the computer database.
In this sense, it is a LANGUAGE FOR DESIGNING. We have developed and are
implementing such a language, named GLIDE (Graphical Language for Interactive
DEsign). In this paper, we describe the semantics and associated syntax of this
language.

The basic unit of information within GLIDE is an ELEMENT, defined as a
set of attributes describing some coherent entity. An Element may be a building
component, a space or activity area, building subsystem, or any other entity
relevant to design. ATTRIBUTES are properties of an Element, including both
spatial ones, such as location and shape, and others such as weight, material,
surface and color. In GLIDE, a shape is defined as a planar polyhedron.
Attributes may also represent relationships between the referent and one or more
other Elements. Some attributes are system defined and maintained while others
can be defined and manipulated by the user.

LANGUAGE FOR A DESIGN INFORMATION SYSTEM

by Charles Eastman and Max Henrion

GLIDE

Many design components are standard units and described in catalogs.
Many abstract entities, such as activity areas in building design, are also well
defined and available from handbooks. All such standard information used in
design should be accessible from stored catalogs. Other elements are unique and
defined by a designer. There should be convenient graphical means to enter such
information into the system.

As elements are included, they are arranged in spatial relationships.
It is often desirable to operate on a whole collection of elements as a unit. A
language for design should allow the formation of sets Of elements and
operations on those sets.

Design tasks vary from the very repetitive generation of standardized
plans to the creative and sometimes idiosyncratic development of solutions to
unique problems. The full set of objectives involved in a design are rarely
achieved on the first pass. Several iterations are usually required, some for
exploring alternative configurations, and others for considering alternative
objectives, which often change as the design evolves. Moreover, a completely
detailed description of the sub-systems making up a design is often not
available at the start. Rather, the properties of the various subsystems are
defined incrementally, in a particular evolutionary sequence. This might be
called a DESIGN SEQUENCE. Most CAD systems developed to date incorporate a
rigid design sequence, which is effective for only a very limited range of
conventionalized results. A language for design should be able to accommodate a
range of different kinds of design sequences reflecting different styles of
problem solving.

In summary, then, a language for design must minimally support:

1. The selection of elements from a catalog,

2. The graphical definition of custom elements,

3. The placement and grouping of elements, individually or in sets.

4. Visual inspection of a design, in perspective, orthographic, or
schematic representations.

5. Procedures for analysis and evaluation of a design, eg. structural,
acoustical, thermal,etc, either as packages within the language
or by providing interfaces for passing the required data to existing
analysis programs.

6. Evaluation of the internal consistency of a design, with regard
spatial conflicts, joining conditions,etc.

7. Alternative top-down, bottom-up or other evolutionary sequences
of design.

Some other requirements will be introduced as we proceed.

GLIDE

2. LEVEL OF THE LANGUAGE

The development of a computer language for design has no heritage on
which to stand. It is generally agreed that there is no natural language of
design currently in widespread use, in contrast to, say, medicine or law. It
seems doubtful that any one set of high level structures and operations could be
defined that, alone, would be sufficient for a general range of applications.

The alternative is to provide a set of basic commands, plus general
language features, to allow the definition of higher level commands for
particular applications. These facilities should provide an environment in
which a design organization can easily develop software to support its own
particular design sequences and methods. Thus the language should consist of a
set of basic commands for conveniently creating, displaying and modifying design
Elements with powerful features for dealing with geometric properties. In
addition it should contain general control structures and means for defining new
procedures and record formats, which can be used to extend the basic set of
operations and data structures.

The user of the command language and its extensions would be a designer,
architect or other person without programming expertise. However the user of
the complete language, who will write these extensions, would probably be a
specialist applications programmer. In practice there need be no hard dividing
line between these two levels of GLIDE and learning of the complete language
should be feasible in small incremental steps from the simpler sub-language.

For direct interaction with the database the operating environment
should be interpretive, ie commands should be translated and executed as they
are entered line by line. But for efficient execution of pre-defined procedures
it is desirable that they are compiled once only, at the time they are defined.
It is important that such pre-compiled procedures be independent of the
particular state of the database at compilation time, so that their validity
cannot be affected by any changes to it. Hence it must be possible to delay
binding or linking of procedures to other procedures and entities in the
database until execution.

3. ISSUES OF IMPLEMENTATION

Large database systems can be implemented in two basically different
ways : as an extension to an existing language, such as FORTRAN, or as an
independent but complete language unto itself. GLIDE places heavy emphasis on
the manipulation of new, large, system defined records and the operations on
these records were among the major concerns of the language design. Graphical
interaction is to be the major form of interaction and extensions are required
for even this type of input-output. GLIDE is also oriented toward mini-computer
implementation. The range of high level languages to extend was thus quite
limited. Probably most persuasive, however, was the recognition that GLIDE is a
research vehicle, in which we expect to study the operators and syntax most
desireable for developing high level design applications. Restrictions on the
style of language, imposed from the base language adopted, would inhibit work
toward this objective. For these reasons, we chose to implement GLIDE as an

GLIDE

essentially new language. This, however, did not preclude us from adopting a
standard Algol-like syntax where appropriate.

A major feature of GLIDE is its focus on spatial information and its
reliance on interactive graphic techniques for editing it. In the language
definition, however, we have taken a conservative stance toward graphical
operations and have defined only the minimal level needed for this end. They
are easily implemented in direct view storage tube terminals. Later, we may
propose extensions that will provide more powerful graphical operations.

GLIDE utilizes the spatial information record scheme developed in
BDS[2],[3]. That is,)\ stores shape topologies separately from geometries and
requires a shape to reference a topology by name. Topologies can be created
by using special operators, as well as convenient graphical methods. Other
spatial representations are compatible with GLIDE, however, and we have
attempted to provide a syntax and set of commands that are inclusive of a
range of spatial representations. Shapes are manipulated using the spatial
union, intersection and complement operations.

4. METHODS OF REPRESENTATION

An important question in designing representations is whether the
information should be embedded in procedures in implicit form rather than be
represented as explicit data. A procedural representation requires less storage
space, but at the cost of extra computation every time the data is required.
This compute versus store question is not a dichotomous choice but a gradation
of possible trade-offs. The best solution for a particular application depends
on both the computing resources available and the actual demands upon the
system.

At one level this trade-off is a question of the database implementation
and is more or less independent of the language design. For example, in BDS the
vertices of each shape (Form) are stored only once, and the actual co-ordinates
of each instance (Copy) in space are computed only when needed. This and other
decisions were taken to optimize available computing resources, on the basis of
an analysis of expected demandsp]. However GLIDE could well be implemented
with a quite different database organisation.

At a higher level each segment of Glide code constitutes a procedural
representation of some information. In general, source code is the most compact
way of representing a database. We anticipate that a catalog of design elements
will be built up as a library of procedures. In an interpretive environment it
is up to the user to control when a procedure should be converted into explicit
data and how long this structure should be retained. Some features of the
language aid in this task. Any records declared locally within a procedure are
automatically deleted at the end of execution. Thus the information is
incarnated only for the duration of execution of the procedure. Alternatively
the new records may be declared as global within the procedure, in which case
they persist in the database until they are deliberately deleted. Any further
calls to that procedure do not have to recreate the records but can use the
pre-existing definitions. For many practical purposes, such as detecting
spatial conflicts between objects, a procedural representation would be very
unwieldy for large databases. Therefore we anticipate that during interactive

GLIDE I 5

design the primary method of representation will be as explicit data.

5. SYNTACTIC STYLE

Before we go on to describe a particular instantiation of these language
features, some general issues affecting the structure and syntax of the language
should be mentioned. While the selection of many semantic features flows fairly
directly from the needs of a design information system, the choice of syntactic
forms will tend to be more controversial. It seems evident that syntax affects
the ease of learning and of use of a language, especially for users with little
or no programming experience. For more discussion of these issues see Wirth
[4]. One day experimental evidence of the relative merits of syntactic features
may be obtained by comparison of alternative implementations. Meanwhile the
priorities to be awarded to these criteria must be based on conjectures about
future use and users and the relative efficiency of alternative implementations.

GLIDE syntax reflects the twin objectives of providing both a simple
command language and a more general language, with features allowing
extensibility. For the first objective, procedures may be called with a
"command-style" syntax; that is, the arguments need not be enclosed in
parentheses and alphanumeric mnemonics may be used as separators instead of
commas. The more conventional function notation calling syntax may also be used
when preferred. Frequently used constructions such as those for defining a
location and orientation in space, or the co-ordinates of a shape vertex, have
special concise forms with convenient defaults. It also happens that the
reduction of redundancy in the database, especially with regard to spatial
information, encourages conciseness in the linguistic forms for entering the
information, and vice versa. Thus the task of entering spatial information is
much eased, and of course it can be further eased by the use graphic techniques.

The full language incorporates the usual features for control structures
and definition of procedures. For these we have adopted an Algol-based syntax,
with standard block structure. We have followed the precepts of structured
programming. GO TOs are not provided. GLIDE is expression-oriented. That is,
most statements return a value and can be treated as expressions. For example
BEGIN END blocks return the value of their last statement.

In addition to the simple data types - number, boolean and text - GLIDE
has a number of record types which provide special structures for representing
element information. These include TOPOLOGY as mentioned above, FORM which
defines a class of elements and is akin to a user-defined record format, COPY,
being an instance of a Form, and SET, being a group of elements. As in ALGOL,
all identifiers must be declared and their type specified before they can be
used. In most cases the data type of an operand or argument is determined by
its context and can be checked at compilation. Block structure allows dynamic
declarations and allocation of memory during execution, as in Algol or PL/1.

Since a prime objective is the creation of new entities forming a
database, there is particular emphasis on declaration features. Notably, global
records can be created from within inner blocks including from inside
procedures. Correspondingly, deletions are also allowed.

GLIDE

6. CONCLUSIONS

The second part of the paper gives a preliminary description of a
language which attempts to fulfill the requirements outlined above. In the
third section we present some example programs, with which we have attempted
to indicate the kinds of design operations easily defined within GLIDE. The full
extent of the strengths and weaknesses of the language will only be known after
extensive experience with it and other design oriented languages.

This work was funded by the National Science Foundation. We have
received many useful suggestions throughout the development of this work from
many collègues in architecture and computer science, especially Adrian Baer,
Gilles Lafue, Joseph Lividini and Bob Kenyon.

GLIDE II 1

PART TWO: A SPECIFICATION FOR GLIDE

1 FUNDAMENTALS

1.1 OPERATING ENVIRONMENT

The operating environment for Glide is semi-interpretive. In general,
each statement typed into the system is immediately translated and executed. It
is also possible to combine a number'of statements into a single block-statement
enclosed between BEGIN and END. In this case translation, and therefore
syntax-checking, takes place statement by statement, but execution is delayed
until the END of the block. After each line the system responds with a prompt
character and a number of tabs equal to the depth of block nesting, providing
automatic indentation reflecting block structure.

Programs to be stored and executed repeatedly are defined as procedures.
They are compiled as they are first entered into the system, statement by
statement, with the resulting syntax check. A routine library contains
predefined procedures for various data-base manipulations and standard design
operations. It can also contain routines to create standard design components
(Elements) and thus serve as a parts catalog.

1.2 LEXEMES

There are four kinds of lexeme or terminal symbol:

1 Special syntax symbols, such as + * [] () a , :, each being
a single non-alphanumeric character. Listed in appendix 3.
2 Keywords such as BEGIN END FOR IF. Lasted in appendix 3.
3 Literal numbers, both integer and real. See section 2.1.
4 User-declared names or identifiers.

User-declared names consist of a letter or "8" followed by zero or more
letters, digits, "." or "$". Qnly the first 31 characters of a name are
significant. Upper and lower case letters are treated as equivalent throughout.

Successive alphanumeric lexemes must be seperated by a space, tab or
new-l ine, and so these characters cannot occur within them. Beyond this, space,
tab and new-line can be used freely anywhere .in Glide code and are ignored by
the interpreter.

NB <n> denotes examples of Glide code here and subsequently.

<> Legal names:
' A, PDP11, U.S.A., C.mmp, Spiral.staircase.15,

e t c . , $Me!lon
Illegal names:
.NAME, 4B, Go away, POP-10

letter ::= A|B|C|...|Z|a|b|c|...|z|8
digit 1|2|3|4|5|6|7|8|9|0
name r:= letter | name letter | name digit | name .

GLIDE

NB: See appendix 1 for details of the BNF conventions used.

1.3 DATA TYPES

All variables and expressions are of a particular data type. Variable
names must have their type declared before they can" be used. In most cases the
context in which a variable occurs in a statement determines what type it should
be and the interpreter will automatically check that it is correct.

There are three simple data types - Real, Boolean £nd Text. They
consist of a single value, in contrast to records which can contain several
simple values or other sub-records. Record types include Topology, Form,
CopySet and View. Vectors, or 1-dimensional arrays also are provided* but can
only be of simple types.

ELEMENTS in the data-base represent such things as.physical objects and
spaces. An Element consists of a set of ATTRIBUTES, which may include both
user-defined Attributes of the above data types, and some system-structured
Attributes such as SHAPE and LOCATION. FORMS are exemplars or prototypes for
a class of similar Elements. All Elements in such a class are COPIES of the Form
from which they are derived. Forms may also be considered as user-defined
record types, of which Copies are instantiations. SETS are collections of
Elements. ITEMS are reference variables which refer to Elements and Sets.
TOPOLOGIES are used to help define the Shape Attribute of Forms. The names of
these four record types are bound to their referents at definition, and the
binding is fixed for as long as they exist. Such names are constants rather
than variables. Therefore two additional types are provided which are reference
variables: ELEMENT refers to Copies and ITEM can refer to Copies or Sets.

In addition the Geometric types - FACE, EDGE and VERTEX - are parts of a
Shape. The exact nature and use of all these types will be described later.

simple-type ::= REAL | BOOL | TEXT
record-type ::= TOPO I FORM I ITEM I SET j VIEW
geom-type ::= FACE | EDGE | VERTEX
type ::= simple-type | record-type

1.4 STATEMENTS AND EXPRESSIONS

GLIDE is an expression oriented iar~u.ags. Most statements evaluate to a
particular value of known type. The type and value of the different kinds of
statement will be defined as we proceed. Conversely expressions, such as
arithmetic expressions or record definitions, ~an be considered as statements in
many contexts. There are six basic, kinds of statements in addition to
expressions - control statements, procedure calls, assignments, comments,
declarations and blocks. Expressions will be described under headings for their
type. The control statements, including the conventional conditional and loop
statements are described in section 6. The remaining kinds of statement are
described below.

GLIDE II 3

Infix operators are defined for various data types, including the
arithmetic operators (+-*/1), boolean connectives, assignment (<-)" and others.
The full precedence hierarchy for all infix operators is given in full in
Appendix 2. Higher precedence means those operators are evaluated first. Equal
precedence operators are evaluated from left to right. The system precedence
ordering can always be overridden by putting parentheses around those
subexpressions which are to be evaluated first.

statement expression | control-statement | proced-call
| assignment | comment | block | declaration

expression n | bool | text | topo | form | elem | item
| set | view | "("expression")"

1.4.1 PROCEDURE CALLS

Procedure calls can use standard function syntax, with the procedure
name followed by arguments, which are enclosed in parentheses and seperated
by commas. It is also permissable to omit the parentheses. Where they have been
declared, alphanumeric symbols may be used as seperators instead of commas.
This allows a "command-style" syntax, which may be easier for non-specialist
users.

<>

INVERT(a,b,c)
SIN(x)
ALIGN a WITH b ALONG x
REPEAT beam BETWEEN x l , y l , z l TO x2,y2,z2 TIMES 10

proced-call = proced-id [(arg {sep arg})]
| proced-id [arg {sep arg}]

arg = expr
sep = name | ,

1.4.2 ASSIGNMENT

The operator V " assigns the value of an expression into the variable,
which may be a simple type or item variable. The expression to be assigned is
checked for type compatibility with the variable to which it is assigned. Note
that since record names are fixed names and not variable it is meaningless (and
illegal) to assign to them. The value of an assignment statement is the right
operand. Thus assignments may be chained:

<> A«-B<-C<-0;

assignment num-id[index] «- n | bool-id[index] «- bool
| text-id[inc!ex] «- text | item-id .<- item | elem-id «- elem

index ;: = n "] "

GLIDE

1.4.3 COMMENTS

Syntactically, comments are statements which start with T . They may
contain any character except ";" since this terminates them. They are ignored
by the interpreter.

comment ::= ! any-chars-except-;

1.4.4 BLOCKS

Blocks consist of a sequence of statements seperated by ";"s and
enclosed between BEGIN and END. Since a -block is also a statement, this
definition is recursive and allows blocks to be nested fnside one another.

A block can also be treated as an expression and it has the value and
type of the last statement in it.

block ::= BEGIN statement.{; statement } END

1.4.5 BASIC DECLARATIONS

All names (identifiers) must have their type declared before they can be
used. The general format for declarations is the type followed by a list of
names seperated by commas. When a record name is declared it may be bound to
a definition in the same statement using the operator Basic declarations
return no value, but declarations binding a name to a record definition have
that new record as value and type,

<>REAL x,y,z;
ITEM top,bottom, side.piece;
SET boxes = {matchbox[l]; shoebox[3]; glpvebox[2] }

basic-decln ::= simple-decln | record-decln
simple-decln ::= simple-type name {,name}
array-decln ::= simple-type VECTOR name [size] {,name[size]}

u r n „ I I T f l

size ::.= [n J
record-decln ::= record-type name {,name}
record-binding TOPO name = topo | FORM, name - form

| SET name = set | VIEW name = view

1.5 BLOCK STRUCTURE AND THE SCOPE OF NAMES

As in Algol 60 and its derivatives, programs in Glide have a block
structure which defines a hierarchy of scopes for local variables declared
within them. Unless specifically indicated otherwise, variables are local to
the block in which they are declared. This includes simple, vector and
reference variables, but not record names, which are always global wherever they
are declared. For local declarations, the scope within which any name may be
referenced is limited to the block in which it was declared and any sub-blocks
it may contain. Two variables with the same name may be declared at different
block levels. In that case the name is assumed to refer to the variable

GLIDE II 5

declared at the innermost block level in whose scope it occurs.

An entire design project may last over many sessions at the terminal.
Conceptually the scope of a project corresponds with the outermost block level.
This outer block begins at the initiation of a project and is the outer block
level during a terminal session. Therefore variables and entities declared at
this top level are essentially GLOBAL and continue to exist between sessions
over the length of the project.

Record names have global scope no matter where they are declared
starting from the time at which their declaration is first executed. Records
defined in this way persist as a permanent part of the database unless they are
explicitly deleted. Nevertheless it is also possible to create temporary
records if they are not given a fixed name but created within a set or assigned
to a reference variable. In this case their scope is that of their
longest- l ived reference. This allows, for example, procedural representations
of objects, which have only temporary existence as data during the execution of
the procedures.

Procedures are compiled when they are defined, but may be executed much
later. Thus compilation should be independent of any particular globals in the
data base. the linking of references within the procedure to pre-existing
globals is done at run-time. All such globals mentioned must be previously
declared within the procedure as external. Such declarations are introduced by
the keyword GET.

So far, with the exception of the interpretive environment, we have
described the conventional scope hierarchy. But Glide also contains some
additional features:

1 Declarations are not restricted to occurring at the beginning of a
block but may occur wherever a statement may occur.

2 Global declarations of variables also can occur at inside block
levels. This is indicated by using the keyword GLOBAL before the declaration.
In the case that a record name of a variable declared as global has been
previously similarly declared, then the current declaration is treated as an
external declaration. That is the existing name and any value or definition it
may have is linked to the current segment of code at execution time. If the
current declaration is of a record type with a binding tp a definition, this new
definition is ignored. This feature allows procedures to create Global records
they may need the first time they are called, and then use them on subsequent
calls without having to recreate them. In this way it is similar to the "own"
variable concept, but it can be accessed from outside the block in which it was
declared, after the first execution of that procedure.

3 The scope of variables can be limited within their natural scope by
deleting them explicitly with the DELETE command. This is particularly useful
for removing globals that are no longer required.

It should be noted that GET, GLOBAL and DELETE statements are all
executed at run-time and hence they can have no effect on the data-base at
compilation.

GLIDE II 6

<>SET DRAINS = { pipe[l,3,5]; drai.n[l TO 15)}
GET FORM tree, bush; GET ATTRIB TEXT color, density;
DELETE west.wing, east.wing, plumbing;

declaration ::= basic-decln | attrib-decln | record-binding |
global-decln | external-decln | deletion

global-decln ::= GLOBAL basic-decln | record-binding
deletion ::= DELETE name {, name}
external-decln GET basic-decln | extern-proced-decln

GLIDE

2.1 NUMBERS

precedence, above * and / . which are above + and - . g S t

=> REAL x,y,z;..z«-125.2+100/(aî2-bî2);-

n ::= num-id[index] | attribute | proced-cali
I number-literal | num-expr | statement

r

num-expr ::= n arith-op n | (n)
arith-op *|/|-|+|T

integer-literal ::= digit{digit}
real-literal ::= [integer-literal] . integer-literal
number-literal [-]real-literal | [-]integer-literal

2.2 BOOL E ANS

b l OR b2

b2 is not evaluated if bl.evaluates to true,

b bool-id[index] | attribute | proced-call
| bool-lit | bool-expr | statement

bool-expr ::= b bool-op b | n rel-op n | NOT b
| (b) | expr = expr

bool-op ::= AND | OR
rel -op LSS | LEQ | EQL | GEQ | GTR [NEQ
bool-lit TRUE | FALSE

2.3 TEXT

Tex , w'LsTrfTndicLtd Z T T C h a , a C l e , S , r i"BS <" »h«'"y te"8th.

TEXT NAME,TAG
NAME«-'FRANZ KAFKA'; TAG«-TJON"T FORGET'

2 SIMPLE TYPES

GLIDE

text ::= text-id[index] | attribute | proced-cgll | text-literal |
statement

text-literal ' char-string-with-no-single-'

2.4 VECTORS
Variables of any simple type may be declared as vectors with bounds from

1 to n where n is given in square brackets following the name in the declaration
statement. An element of a vector is indicated by a subscript in square
brackets, when it can be used in an expression. Arrays of more than 1 dimension
are not provided.

<>
TEXT VECTOR days[7],months[12]j
BOOL VECTOR gridx[40],gridy[40];
gridx[i]<-gridx[i*3]'0R gridy[i*3+l];

GLIDE

Representations of physical objects and spaces in the data base are
Known as ELEMENTS. Each Element is defined by a set'of ATTRIBUTES which
may include both spatial Attributes such as Shape and location and non-spatial
ones such as cost, density, color, thermal conductivity etc. Elements can also
represent abstract entities, such as design goals, and peed not have any spatial
Attributes.

One way of defining an Element is to enter its entire complement of
Attributes. This is known as a FORM. The other way of defining a new Element
is to describe it as a COPY of an existing Form. It often happens that classes
of Elements exist that have many Attributes in common, especially their Shape.
In this case it is easier to define an Element by exception, in terms of its
differences from an existing Element. One Attribute certain to vary between
Elements is the location. A Copy is defined by entering its location and any
other of its Attributes that differ from the Form from which it is derived. The
Shape of a Copy is largely determined by its originating Form, but may vary in
certain ways described in Section 3.8.3. The Form can be viewed as a typical
exemplar for a class of related Elements. This organization allows a convenient
means for describing many similar objects.

3.1 NAMES OF ELEMENTS

A Copy is identified by adding a.non-zero subscript to, the name of the
Form from which it is derived. The zeroth Copy is the same as the Form Element.

The name of a Form or Copy is bound, to a single general description
throughout its life. While part of the definition can be modified it is not
possible to substitute a new definition. In contrast,, a name declared as an
H E M E N T can refer to a Form or Copy record. The Element variable can be made
to refer to a new record simply by reassigning it. Element is the union of
Form and Copy.

Similarly a name declared as an ITEM is a reference variable to an
Element or a Set of Elements. (Sets are described" in section 4.) Item is the
data type which is the union of Element and Set. It is useful for operations
and procedures which can operate on either single Elements or collections of
them.

These types can be organized in a hierarchical fashion, as shown below.
Each type can refer to any of those below it in the hierarchy:

ITEM

I • —
ELEMENT

I ' 1 r
FORM COPY FORM

SET

SET

3 ELEMENTS

GLIDE II 10

<> ELEMENT thing;
thing<-box[10]}
ITEM this, that, the.other;

copy ::= form-id[index]
elem ::= elem-id | copy | form (proced-call (attribute
item ::= item-id | elem | set

3.2 ATTRIBUTE DECLARATION

An Attribute consists of a name and a value. The same Attribute name,
eg. COLOR or DENSITY, may be relevant to many different Elements, and hence
Attribute names are always Global. Some Attributes such as Shape and Location
are system defined. Further Attributes may be declared by the user to be of any
variable type including vectors, and references to records. The Attribute
declaration is introduced by the keyword ATTRIB, but otherwise resembles a
normal declaration. Attribute declarations return no value* >

<1> ATTRIB TEXT COLOR, MANUF, MATERIAL;
ATTRIB ITEM PARENT,CHILDREN,SIBLINGSi
ATTRIB REAL VECTOR CofG[3J, LENGTH^];

attribute-decln ::= ATTRIB basic-decln

Both system and user defined attribute names identify fields within
Element records. Elements are defined by assigning values to these fields,
either within the Form definition itself or, as exceptions, within the Copy
record. All Copies of a Form have the same set of Attributes.

3.3 FORM DEFINITIONS

Each Element is defined through a Form or Copy declaration. A Form is
defined by a Form procedure or a Form definition block. A Form definition is
enclosed by the brackets, BFORM and END or { and }, which are equivalent. It
contains a set of one or more Attribute assignments, separated by ";"s. Each
assignment consists of an Attribute name which defines a field of the Form
record of a given type, and an expression with matching type, whose value is
used to initialise the field. The Form definition can also contain an existing
Form name or procedure call that rj iurns a Form. The Attributes defined in
these are added to the current Form and thus Forms cä^ be defined hierarchically
in terms of other Forms. Attributes already in the Form being defined and
existing within the named Form are ignored, while all other Attributes in the
named Form are added to the one being defined. After, definition, howrv'er ? all
the Attributes are conceptually at the same levei within the new Form, and can
be accessed directly within it. One restriction is that no Form can contain two
Attributes with the same name. The vaiue of a Fprn b j f td^ - is the new Form.

<> An Oaken beam;
ATTRIB TEXT COLOR, MATERIAL; ATTRIB REAL DEfv H T;

GLIDE II 11

3.4 LOCATION

Location is a system defined Attribute that must be specified for each
Copy of a Form. It may he specified in world co-ordinates or relative to the
origin of any existing Element. This location is defined by 6 numbers -
denoting the X, Y and Z co-ordinates and rotations in degrees round these axes.
The rotation is performed successively round the X, Y and Z axes in that order,
prior to the translation of the Shape. These fields within the Location
Attribute can be viewed as subattributes. and have system defined names for
accessing them. They are:

CX,CY,CZ the three translation values defining an offset.
AX,AY,AZ the three rotation values defining a orientation.

Locations will be entered very frequently and so their syntax has been
designed with conciseness in mind. A location may be specified as relative to
an existing item, introduced by ' V or, if this is omitted, as relative to the
co-ordinate origin (absolute.) The offset and rotation are each specified by up
to 3 numbers, introduced by "\" and ' V respectively. Either or both may be
omitted. Any numbers omitted default to zero.

<>

\10,20,30 «90,0,90
\10 #90,45 is equivalent to \10,0,0 «90,45,0

FORM BEAM = BFORM
MATERIAL^Oak';
DENSITYf-0.532;
CUBOID(2.5,1,3); Iprocedure call defining a Shape.
END;

FORM NEWBEAM = {COLOR^white'; BEAM}

<> A specification for an office work area for one person:
ATTRIB TEXT TITLE, NOTES;
ATTRIB REAL AREA, SHELFLENGTH, DESKFT, FILESPACE;
ATTRIB BOOL PHONE;

FORM WORKSPACE =
{TITLE^secretary 1 ;
AREA<-25; SHELFLENGTH*-15; DESKFT*-5; FILESPACE<-3.25;
PHONES-TRUE; NOTES<-Ukes green wallpaper' };

form-binding EORM name = form-defn
form = form-id | proced-call | form-defn
form-defn M { " statement {; statement} "} M

I BEORM statement {; statement} END

A statement in the context of a form definition block can be
an attribute assignment, or have the latter embedded within
them.

attrib-assign ::== attrib *- expr | shape-spec | statement | form

GLIDE II 12

\25,20 is equivalent to \25,20,0 #0,0,0
#180,90 is equivalent to \Q,Q,0 #180,90,0
& MATCHBOX[5]#0,20 is a location.; restive to. MATCHB0X[5]

location ::= [ifi> copy][offset][rotation]. .
offset ::= \ triad
rotation : :=# triad
triad n [,n [,n]] !

:

. 3.5 COPY DEFINITION

A Copy is named by giving an existing Form with a new subscript. The
subscript may be specified by the user as any integer not yet used. If it is
omitted the system supplies in default the integer succeeding the current
highest subscript. The Copy definition is enclosed between { and }, and its
first part specifies a location. The value of a Copy definition is the Element
defined.

<> COPY B0X[1] = {\20,3O,100};
COPY 30X = {\100 #0,180};
COPY BOX ='{(© WIND0W[2] #180,90};

The Form defines the allowed set of Copy Attributes and their default
values. For all but the Shape these values may be overwritten within each Copy.
In this case the Copy definition includes the appropriate Attribute assignments
after the location specification.

<>C0PY BOX = (\10,10 #0,90; COLOR^black'; LENGTH^2.2};

<> A procedure to create a row of Copies at intervals.
For the syntax of procedures definitions, see Section 7.
PROCEDURE REPEAT (FORM f; .-FROM REAL x,y,z flY dx,dy,d2 :TIMES n) «

FOR i FROM 1 TO n DO COPY f <4\x*dx*j, y+dy*i, z+dz*i}j
! Use procedure to make a stack of 20 boxes.
REPEAT box FROM 100,200,0 BY 0,0,20 TIMES 20;

copy-decln ::= COPY form [index] - copy-defn .
copy-defn ::= " {" location {; attrib-assign } "}"

3.6 ACCESSING ATTRIBUTES

Attribute values may be accessed but not changed outside of the Form or
Copy definition. They may be used in expressions fcs a subexpression, of the
appropriate type, but they may not receive assignments The general syntax for
an Element Attribute is:

attribute ::= attrib-id[index] OF copy

<> shade*- color OF box[l] ;

GLIDE
II 13

If several Attributes are to be accessed from a particular Form or Copy,
they may be put inside a Form or Copy definition block, which has the effect of
defaulting the Form or Copy name for all Attributes named within it. The
default Element can be overridden, however, by using the full Attribute name,
eg.

<> BOX[l]{leng.th<-heighth+length OF bo.x[0]};

3.7 MODIFYING AN ELEMENT RECORD

A Copy or Form can be modified using a syntax similar to that by which
it was initially defined. New attributes can be added to a Form by using the
Form or Copy block structure. Note that certain Attributes, such as Shape and
Vertex co-ordinates (see section 3.8), that were themselves bound in their
initial definition cannot be subseqently modified.

A new value may be assigned to an Attribute of a Copy even if it was not
originally defined as'different from the Form vakie, however it may not be given
an Attribute not hitherto defined for the Form.

Note that assigning a new Attribute value directly to a Form will change
all Copies with the default value for that Attribute, and hence must be used
with care.

<>ATTRIB TEXT material;
FORM table = {materiah-'wood"; color'-'brown';.

tabloicK 1,4,0.5) }
COPY tablef l] - {\250,350; material^stee!1}
tab lef l] - {color<-\vhite ,} ;

ATTRIB REAL cost; table = {cost<-75 };
tab lef l] = {cost<-100}

3.8 SHAPE

Shape is an Attribute of particular importance for designing physical
systems. Shapes are represented as polyhedra with planar faces. The information
required to describe a shape is divided into two parts: The TOPOLOGY and the
GEOMETRY. The TOPOLOGY describes the adjacency relations between the
Faces, Edges and Vertices of the polyhedron. The GEOMETRY specifies the
relative position of the Faces, Edges and Vertices, Thus a Topology formats the
Geometry information. Topologies may be common to many different Shapes and
can be entered independently from any particular one. (See figure 1)

The Shape Attribute is associated with a Form. It is one Attribute that
may not vary in the Copies of a Form. If consists of a number of subrecords
which include FACES, EDGES and VERTICES. A Topology" defines the number
and organization of these subrecords for each Shape. Each Face consists of an
ordered set of Edges. Each Edge contains two Vertices. The Faces, Edges and
Vertices are uniquely numbered within each Shape and t-iis index is used to
identify them.

GLIDE II 14

3.8.1 TOPOLOGY v

A Topology is a record type that is defined independently of the
Elements it partially describes. A new Topology may be constructed by means of
Euler operators, which combine new Vertices, Edges 9 ^ Faces. (They are
named after Euler who showed they are sufficient to construct any legal
polyhedron.)

In order to construct a Topology, a user must declare a set of Faces,
Edges and Vertices from which to construct it. These records are global and
always available within a Topology definition block. Wbfcn used to define a
particular Topology, however, they are bound to that definition and only
accessible through the Topology record they are. bound to. They are declared
using:

FACE[n]; EDGE[m]j VERT[p];

where the n,m, and p denote the number of new records of each type to be
created. As these are used in making Topologies, the remaining are renumbered in
consecutive order. If new ones are added, these are added to the end of those
already existing.

The primitive operators for constructing TopoJQgies from these records
are:

MVE(vl,v2,f) Make a new Vertex v2 linked to v l on
Face f.

MFE(vl,v2,f 1 ,f 2) Make a new Face f l by linking v l and
v2 on f2.

Topology subrecords must be assigned in such a manner that the final product
contains Faces and Vertices numbered successively from 1: to the total number.
To assist in this the following operators supply consecutive numbers for new
faces and vertices.

Create a new Vertex linked to V I ,
and supply new vertex number

Link vertices v l . and v2,
and supply new face number.

Create Multiple Vertices in a
chain of n from v l .

It is possible to create a new topology by modifying an existing one. A copy of
an existing one can be set up at the start of a Topo.logy definition block using:

FETCH topo Copies the named topology to
be modified.

A new topology is constructed inside a topology-definition block,
delimited by BTOPO and END. (As in all record definitions { a n d } may also be
used as delimiters.) Only within this block can the Euler Operators be accessed.

C V E (v l)

CFE(vl ,v2)

CMV(n,v l)

GLIDE II 15

Other statements can be mixed with them. The value of a Topology definition is
the record created. Some examples of Topology definition follow:

<>TOPO PYRAMID = BTOPO
FACE[5>, EDGE[8]; VERT[5];
CMV(4,1); !a chain of 4 vertices from vertex 1;
CFE(2,5); ! Create the base face, vertices 2 to 5;
CFE(1,3); Ivertex 1 is the apex;
CFE(1,4);
CFE(1,5)
END;

<> A procedure to make extrusions or prism topologies, with n
sides. The format of procedure declarations is described
in Section 7.0.
TOPO PROCEDURE EXTRUDE (REAL N) =

BTOPO
FACE[N+2]; EDGE[3*N]; VERT[2*N];
CMV(N-1,1); !the bottom ring of n vertices..
CFE(N,1);
CMV(N.l) ; !the top ring of n vertices;
CFE(N+1,2*N);
FOR I FROM 2 TO N DO CFE 0,1+N)
Ijoin up top and bottom;
END;

GLIDE . II 16

Pyramid Topology Extrude Topology

Cuboid Form

GLIDE
II 17

geom-decln geom-type index
(geom-type ::= FACE | EDGE | VERTEX
index ::= " [V] "
topo-decln ::= TOPO name = topo
topo ::= topo-id | attribute | proced-call | topo-definitioh
topo-definition BTOPO {geom-decln;} topo-*stm1 {\

topo-stmt } END
. topo-stmt ::= euler-op | statement

Any statement in xthe context of a Topology definition can contain Euler
operations embedded within it.

euler -op CFE n,n | CVE n | MFE n,n>n | MVE n,n,n,n | CMV n,n

In addition it is possible to enter topologies graphically on a
digitizing tablet, representing them as a planar graph. Control is passed to
the digitizing program by a procedure DRAWTOPO. When entry is finished this
procedure returns as its value, the new topology record.

TOPO NEWSHAPE = DRAWTOPO;

3.8.2 TOPOLOGY PRIMITIVES

There is a need to access Shape information through a Topology in
certain applications. See for some examples Part Three, Section 3. The
following functions are available for accessing topogical relations within a
Shape.

E.FACE(f,a)

returns the Edge (index) following Edge "a" oh Face f. If a=0 then
it returns the first Edge.

V.FACE(f,a)

returns the Vertex following Vertex "a" on Face f.

F.EDGE(e,a)
returns a Face adjacent to Edge e; one of the two is returned if a*0,
the other if a=l .

V.EDGE(e,a)

returns a Vertex on Edge e; one if a=0, the other if a-1.

F.VERT(v,a)

returns the next Face after "a" adjacent to Vertex v,

E.VERT(v,a)

returns the next Edge after "a" adjacent to Vertex v.

Each operation returns the index of the geometric primitive identified.

GLIDE II 18

3.8.3 GEOMETRY

A Shape is composed of the Face, Edge, and Vertex subrecords. These
subrecords also have system defined subattributes. These attributes take as
subscripts the index of a. Face, Edge, or Vertex. These are;

FACE LEVEL ATTRIBUTES:
FACEA[f] the A coefficient of Face f
FACEB[f] the B coefficient of Face f
FACECff] the C coefficient of Face f
FACEKff] . the K coefficient of Face f

Whenever these Attributes are accessed, all Faces on the Element are checked for
planarity. If they are not, an error message is returned.

VERTEX LEVEL ATTRIBUTES:
VX[n] the X coordinate of vertex n
VY[n] the Y coordinate of vertex n
VZ[n] the Z coordinate of vertex n

A Geometry' is defined by the position of each Vertex. The Face level
attributes are automatically computed from the Vertex information. A Shape is
defined by specifying a Topology, followed by a Geometry, defined as a set of
bindings to the vertex co-ordinates. Each X, Y and Z co-ordinate is bound to a
value relative to the co-ordinate origin. Those not specified are defaulted to
zero. The values can be specified as numerical expressions or Attributes. If a
coordinate value evaluates to a single Attribute within the current Form or
Copy , the binding is delayed until instantiation. Otherwise the coordinate will
be bound to a literal value which is the value of the expression assigned.

In assigning Vertex coordinates, lists of subscripts may be defined in
two different ways: either a simple list of subscripts or else a consecutive
range may be defined by [n l TO n2], indicating that n l , n2 are assigned, and all
integer values between. If nonconsecutive values are desired, then [nl,n2,n3 TO
n4] or any mix may be used. (In the consecutive form, n l < n2 and in the
nonconsecutive form, any order is acceptable.)

<> The shape of Cheops pyramid:
{ SHAPE = PYRAMID; VZ[1]= 400;

VX[2,3]= -500; VX[4,5]= 500;
VY[2,5]= 500; VY[3,4]= -500}

<> A shape definition procedure for a cuboid:
FORM PROCEDURE CUBOID(REAL L,W,H) =

BFORM
SHAPE = EXTRUDE(4); !A hexahedron topology;
VX[1,2,5,6]= L;
VY[2,3,6,7> W;
VZ[4 TO 7]= H;
END;

<> To build a pseudo-cylindrical column with N-gon section.
FORM PROCEDURE COLUMN(REAL N -.RADIUS R -.HEIGHT H) =

GLIDE II 19

shape-spec ::= SHAPE = topo {jcoord-ass }
coord-assign ::= coord-id subscript-list = h | statement

A statement in the context of a Shape specification
can contain coord-assignments embedded within it.

coord- id VX | VY | VZ
subscript-list ::= " [" sub-range {.sub-range} T " I T ALL "] "
sub-range ::= n [TO n]

3.8.4 ACCESSING AND ALTERING SHAPE INFORMATION

Accessing geometry attributes is done in the same way as all other
Element Attributes. See Section 3.6. Modification of the geometry attributes of
an existing Element, however, is limited. While the geometry attributes may not
be directly updated, the vertex coordinates which evaluate to an Attribute are
rebound each time they are accessed; Thus changing the value of an Attribute
referred to by. a geometry also alters the Shape, By initially defining a
Shape's geometry in terms of a set of Attributes, any modification of a Shape is
possible.

The Shape of different Copies of the Form can be varied by redefining the
Attributes used in defining the Shape. Thus by having a unique LENGTH for each
Copy of a Form, for example, each may have a different Shape.

<> ATTRIB REAL LENGTH,WIDTH,HEIGHT,NUMATCHES;
ATTRIB TEXT MANUF, COLOR;
FORM MATCHBOX = BFORM

MANUF <- 'SUN MATCH INC;
COLORf-'RED';
NUMATCHES«-100.0; .
LENGTHt-5.6;
WIDTH<-2.6;
HEIGMV4.825;
SHAPE = HEXA;
VX[1,2,5,6] = LENGTH;
VY[2,3,6,7] = WIDTH;
VZ[4 TO 7] = HEIGHT
END;

By setting up a Form in the above manner, each of its Copies may have a
cuboid shape with different dimensions. The '.initial' values assigned to the
Attributes are the Form's default values.

BFORM
SHAPE = EXTRUDE(N);
FOR I FROM 1 TO N DO

BEGIN
VX[I,I+N]= R*SIN(I*360/N); .
VY[I,I+N]= R*COS(I*360/N)
END;

VZ[N+1,2*N]= H
END;

GLIDE II 20

COPY MATCHB0X[3] » {\ 1.0,10,IQ; " . LENGTH*-7.3; . WIDTH<-3.0} ;

COPY MATCHBOX = {\0.5,100,100 *90; WIOTH^3,0; LENGTH<-3.95};

3.8.5 SHAPE OPERATORS

New Shapes can also be created by combining existing.Element Shapes, by
sticking them together or cutting pieces out. The Shape operators that do this
have as a value a new Shape, consisting of a Topology and Geometry. To be
saved, this Shape mgst be assigned to a Form. Again the new Topology gets the
name of the Form prefaced by "$".

COMB e l WITH e2 The combination or union of the shapes.
LAP e l WITH e2 The overlap or intersection.
CUT e l FROM e2 The difference of e2 - e l

The local origin of any newly created Shapes is the, local origin of the
first operand. The Attributes of the input Shapes are not
transferred.

FORM BLOB - { MATERlAL«-'steeP;
COMBINE D00R[3] WITH PIPE[14]} ;

shape-expr COMBINE elem WITH elem | LAP elem WITH elem |
CUT elem FROM elem

The LAP operation is the ultimate test for spatial conflicts. An
example of its use will be presented later.

3.9 STANDARD ATTRIBUTES

There are a number of standard system-defined Attributes automatically
associated with any Element. None of these may be explicitly modified by direct
assignment, but are computed as results of operations on other parts of the
Element. They include:

NUMCS the number of Copies of the Form
TOPOL the Topology used to describe the shape of an Element
NUMVERTS the number of Vertices in an Element
NUMFACES. the number of Faces in an Element .
NUMEDGES the number of Edges in an Element
MAXX,MINX,MAXY,MINY,MAXZ,MINZ

the largest and least X, Y and Z values
for the vertices in this Element

It is sometimes desireable to determine if a Form has a Shape. This may be
determined by evaluating NUMVERTS; if zero, there is no Shape associated with
the Element. Other system defined Element Attributes are defined in Sections
3.9. All system defined Attributes for an Element are listed in Appendix 5.

TOPOLOGY

GEOMETRY

LOCATION

Xy = x 2 = z
1 = * 4 = 0.0

X 3 = x4 = z 2 = 3̂ = 5.0
* 5 = ¿5 = 2.5

= 0.0
K 5 = 50

LX = 46.3
LY = 2.4
LZ = 26.3
A Y = 0
AY= 0
A ? = 45

*1 = x 2 = z 1
= 4̂ = 0.0

*3 - x 4 = 8.0
z2 = z 3 = 6.0

*5 = 4.0;z 5 = 3.0

Y\ = K 2 = K 3

 = /4 = 0

YS = 14.2

LX^ --26.3 LX = -15.2 LX = 40.6
= 42.3 LY = -18.6 LY = 92.0

¿Z = 0.0 LZ = 10.3 LZ = 15.3
A V = 90 AX = 15 AX = 15
/4/ = 45 AY = 0 AY = 0

' >AZ = 0 AZ = 0 AZ = 0

Figure 1: Three level hierarchy of topology,
geometry and location used in GLIDE.

GLIDE II 21

4 SETS

The Set record provides a way of referencing a number of Elements
together so that they can be treated as a single entity, A Set can contain
Elements and also other Sets. Thus multi-level hierarchies can be defined. A
Set can contain no more than one reference to a Member, and attempts to enter
duplicates.are prevented. .However, an Element may be both a member of a Set
S I and a member of S2 which is also a Member of S2; GLIDE will not recognize
this duplication. All operators which take an Item for their arguments can
operate on Sets.

The members of a Set continue to exist for as long as. they are members,
unless they are explicitly deleted, even after the scope in which they were
created as locals has been exitted.

4.1 SET DEFINITION

A Set can be defined simply by a list of Elements and Sets enclosed
between BSET and END (or, again { and }). A list of several Copies of the same
Form can be specified concisely by listing the index range after the Form name.
The keyword ALL means all the Copies of the Form.

An origin for rotation may be assigned to the Set as the first Element
in the Set definition. If omitted the default is . the co-ordinate origin.

<>

SET BOXES = { MATCHB0X[2]j SOAPBOX[1,3,7]; BOX[l TO 25,27,30]};
SET TRASH = [\10,10,10; SOAPBOX[2,4];MATCHB0X[4 TO 17] };

set-defn ::= "{"[location ;] copy-range {;copy-range} " } w

| BSET [location ;] copy-range {^copy-range} END
copy-range ::= set | form-id [subscript-list] |

set-id[subscript-list]
set-binding ::= SET name = set
set set-id[index] (attr ibute] proced-call J set-defn J

set-expr

: 4.2 COPYING A SET

It is possible to create Copies of a Set at different locations in the
same way as Copies of a Form. They are similarly identified by subscripting the
name of the original Set. Again the subscript may be specified by the user or
supplied by the system.

In contrast to the Form, there are no. consistency conditions on the
Copies of a Set. Any Set of Set Copy may be composed of any Items. Copies
may vary in a free way from the Sets they are initially made from.

<> COPY BOXES[l] = {\100,0, 100};

set -copy-decln COPY set-id [index] = "{" location^

GLIDE II 22

The nth member of a set may be accessed thusr

MEM[n] OF set

This is the nth member at the top level of the Set rather than the nth element
going through subsets recursively, hence it may be an Element or another Set.

4.4 MODIFYING SETS,

It is possible to modify single Elements within Sets in the usual way,
by individually altering their location or other Attributes. It is also
possible to insert and remove members of a set with standard functions PUT and
TAKE.

PUT item IN set
TAKE item FROM set

TAKE gives an error message if the Element is not in the Set.

Note that Copies are made from the original Set-fòrm as it is at that
time, but subsequent alterations to the first Set will NOT affect any Copies
previously derived from it.

4.5 STANDARD SET FUNCTIONS

NUMMEMS set gives the number of members of the Set.
ATOM item is a boolean function which returns TRUE if the Item is

actually a single Element.

<> Examples:
procedure to test if a set contains an Item:
BOOL PROCEDURE MEMBER(ITEM E; :IN SET S) =

BEGIN
FORALL m IN S DO IF m EQL E THEN RETURN TRUE;
RETURN FALSE
END;

procedure to creale union of two sets:
SET PROCEDURE UN10N(SET S I , S2) =

BEGIN ITEM S; S^{} ;
. FORALL m IN SI DO PUT m IN S;
FORALL m IN S2 DO PUT m IN S;
S
END;

! Set difference:
SET PROCEDURE DIFF(SET S1,S2)=

BEGIN ITEM S; S<-{};
FORALL m IN S I DO PUT m IN s;

4.3 ACCESSING A MEMBER OF A SET

GLIDE II 23

FORALL m IN S2 DO IF MEMBER m IN $1 THEN TAKE m FROM S;
S
END;

Procedure to enter attributes in inverted list form,
so that all Elements with a particular Attribute may be
accessed directly:
PROCEDURE COLLECT(ATTRIB SET ATT; :IN ELEMENT BODY; :IS SET VAL) «

BEGIN
BODY = {ATT <- VAL};
PUT BQDY IN VAL;
END;

5.1 MOVE OPERATIONS

The relative placement of Items in space is accomplished with MOVE. It
rotates an Item about its local origin, first about the X, then the Y then the Z
axes, then translates the Item, either in absolute co-ordinates TO a new
location, or relative to its current location BY an offset. Thus these two
statements are equivalent:

<>MOVE BEAM[15] TO P BEAM[15] \25,25;
MOVE BEAM[15] BY \25,25;

move ::= MOVE item TO location | MOVE item BY location

The origin for rotation of an Element's Shape can be moved by the
operation MOVEO. The relative origin for rotation of Copies is an Attribute of
the Form and so Copies of the same Form cannot differ in this respect. Thus
MOVEO can apply to Forms and Sets, but not to their copies.

MOVEO item BY offset

A special form of MOVE operation is the negation of the transform,
reverting the Shape to its location at the origin. This location is particularly
useful for detailing operations. It consists of

ORIGIN item

To move an Element back from the origin to its world location, NORIGIN item is
used. Notice that unintended use of this operation can result in permanent
misplacement of an Element.

5.2 SEARCH OPERATIONS

This standard function returns the Set of Elements (possibly empty)
which overlap or are contained within the specified Element.

FINDLAP elem

The use of the Findlap function is important for finding spatial
conflicts and for determining topological relations between Elements. The

GLIDE II 24

routine below indicates how these issues might be handled in a particular
application.

procedure for checking the spatial conflicts between one
Element and all others:
PROCEDURE WHAT.OVERLAPS(ELEMENT BODY) =

BEGIN
SET SS = FINDLAP BODY;
WRITE'These elements overlap i t : ' ;
FORALL TEMP IN SS DO

BEGIN
FORM INTER = {SHAPE - LAP BODY.TEMP};
IF NUMVERTS OF INTER NEQ 0 THEN WRITE TEMP;
END;

END;

GLIDE II 25

There is no GO TO statement. All changes in flow of control are
achieved by conditionals, loops, procedure calls and the. EXIT, LEAVE and RETURN
escape statements.

control-statement ::= conditional | loop (escape
escape ::= leave | exit | return
loop far-loop | while-loop | forall-loop

6.1 CONDITIONALS v

conditional ::= IF b THEN statement [ELSE statement]

With the usual meaning: The ELSE part can be omitted, the if statement can be
used as an expression, in which case it takes on the value and type of the
statement which is executed, or 0 or null if the condition r$ false and the ELSE
part is omitted. The "dangling else" ambiguity is resolved by binding it to the
most recent IF THEN clause:

<> IF B l THEN IF B2 THEN X ELSE Y;
is equivalent to:
IF B l THEN (IF B2 THEN X ELSE Y);
not:IF B l THEN (IF B2 THEN X) ELSE Y;

6.2 FOR LOOP

for - loop ::= FOR name [FROM nlftTO n2][8Y n3] DO statement

The continue condition is tested before each execution of the body and hence may
be executed 0 or more times. The name is implicitly declared as a number for
the scope of the body of the loop. The FROM, TO and BY clauses can each be
omitted, with the following defaults:

n l defaults to 1
n2 defaults to a very large number
n3 defaults to 1 if n2>nl otherwise -1

6.3 WHILE LOOP .

while-loop WHILE b DO statement

If b is true execute the statement and repeat until b becomes false.

6.4 FORALL LOOP

forall-loop ::= FORALL name IN set DO statement

The name is implicitly declared as an Element with the scope of the loop body.
The block is executed for each successive Element of the Set.

6 CONTROL STRUCTURES

GLIDE II 26

6.5 EXIT FROM A LOOP

exit ::= EXIT expression

This transfers control out of the current innermost loop to next statement after
the end of the loop.

6.6 LEAVING A BLOCK:

leave ::= LEAVE [expr]

This passes control out of the inmost BEGIN-END block in which it
occurs, and returns <expr>, if any, as the value of the block. <expr> must
match the type of the block if any.

7 PROCEDURE DECLARATION

<> REAL PROCEDURE MAX(REAL a,b)-IF a QTR b THEN a ELSE b;

7.1 PROCEDURE TYPES

Procedures may be "functions" in that they return a value of a type
which is specified in the declaration. The procedure type may be any scalar or
record type, but not vectors or routines. It is omitted from the declaration if
the procedure returns no value. The procedure body is an expression of the
same type as the procedure, often being a BEGIN..END block/

7.2 PARAMETERS AND METHOD OF CALLING

The formal parameters are also typed, and must be-explicitly declared at
the beginning of the procedure definition. They can be of.any type but cannot
be procedures. Simple number and boolean type arguments are called by
value, but all others types are called by reference; and the global version
can be changed within the procedure.

7.3 ARGUMENT SEPARATORS

The parentheses enclosing arguments may be omitted in both calling and
declaration of procedures. The separators for the parameters may either be
commas, or they can be symbols of the same construction, as names. These are
declared in the formal declaration, preceded by ":" to identify them. This is
to enable easy extensions of the language with command-style syntax for
non-expert users. The appropriate choice of separators helps to identify the
arguments where the procedure is called. If desired for conciseness commas can
always be used in the call statement even if more expressive separators were

GLIDE
II 27

defined.

< > SQRT n;
CUT Element FROM Element;
MOVE Element TO x, y, z;

REPEAT Element BETWEEN x, y, z AND X) y, z TIMES n;

7.4 RETURN STATEMENT
The return statement gives control back to the calling program, and

returns the value of the associated expression, if any. The type of this
express.on must be compatible with the procedure type. If there is no return
^ S d ^ V a l U e °f t h e P r 0 c e d u r e i s ***** of the last statement in

7.5 EXTERNALS

All user-defined names used within the procedure must be declared within
it. This includes names which have already been declared at the outer level,
and procedures whose type and number of arguments must also be declared
using a similar syntax to the original declaration. These must be declared as
external thus:

GET basic-decln
GET [type] PROCEDURE proced-id

(t y p e argl j : sep type arg2; :sep type arg3j...);

When the procedure is called the system links all the externals of the procedure
to global names, at the same time as it links the formal parameters to actual
values.

extern-proced-decln = GET proced-hdr-decln
proced-decln ::= proced-hdr-decln = statement
proced-hdr-decln ::= [type] PROCEDURE name [formais]

formais ::= (basic-decln { sep-decln basic-decln} }
sep-decln ::= : name | ;

GLIDE II 28

8. INPUT AND OUTPUT

8.1 ALPHANUMERIC OUTPUT

WRITE expr [ON device]

will output the value of the expression onto the device specified. The default
device is the CRT diplay. The output may include text (in quotes) and other
literals, as well as data from the database. The values of numbers, boolean and
text values are output as literals. Record types are output by listing their
names.

For more extensive and informative output regarding the structure of a
file, the command

DUMP expr [ON device]

is available. In this case, record types are output in special formats: Forms
are output with all Attribute names and their values, plus a list of all Copies.
Copies are output as a listing of all Attributes, except for its Shape.

NEWLINE [ON device]

NEWPAGE [ON device] help to format output.

A space can be simply output thus: WRITE '

8.2 ALPHANUMERIC INPUT
READREAL reads in a number from the default input device in either real

or integer format, returning a real.

READTEXT reads a line of text up to but not including the carriage
return, and returns it as a text variable.

8.3 GRAPHIC OUTPUT

Spatial Attributes, namely Shape and Location, of Elements can be output
graphically onto the CRT display or plotter. To do this it is necessary to
specify a view.

8.3.1 VIEW RECORD

View is a record type which can be declared and predefined. A View is
defined in terms of a reference point, view point, cone of vision, whether a
section is desired, and the kind of view. Kinds include perspective and
orthographic. Sections are cut through the reference point normal to the
direction of view.

VIEW plan={ORTHO VIEWPT 0,0,10000}
VIEW front.elevation = {0RTH0 VIEWPT0,10000>0}
VIEW penthouse = { PERSP V1EWPT 1245, 2341,4.10 REFPT 100,0,0 CONE 180}
view-decln : : - VIEW name = view-defn

GLIDE II 29

v iew-defn ::="{" view-sort [SECTI0N1
[VIEWPT n,n,n] [REFPT n,n,n] [CONE n}:"}*

v iew-sort ::= PERSP | ORTHO

The defaults for omitted clauses are:

Kind of view: Perspective, Not sectioned
V iewpoint : 1000,1000,1000
Reference poipt:0,0,Q
Cone of vision: 60 degrees

8.3.2 DISPLAY COMMANDS

Conceptually all Items to be displayed arfc entered into a Display Set by
the command:

DISPLAY item [FROM view][0N device]

and are immediately diplayed from the view specified, if any. Default view is
the last mentioned in a command. Default devke is the fast on mentioned (CRT
or PLOTTER).

Similarly, ERASE deletes the Items from view by removing them from the
Display Set, eg

ERASE item

EXAMPLE ONE:

(b) Hierarchical organization of records created in the second
version of STUDWALL. The first MEM of a set DETAIL is the
PARENT, all others SIBLINGS.

EXAMPLE TWO:
, 1 1 3 4 5 ^ 7

POSSIBLE IAYOUT ADJACENCY MATRIX

GLIDE

PART I I I : SOME EXAMPLE GLIDE PROGRAMS

The creation of a database describing a significant design, in almost
any field, will require a considerable amount of GLIDE code, written over long
periods of time. A faster design process will depend on a library of powerful
Glide subprocedures.

In the following examples, we try to show how some important design
issues can be addressed using the language.

1. AUTOMATIC DETAILING

Most organizations work out standard ways of detailing certain parts of
a design. These may be large units such as a hospital room or small details
such as a joint or fitting. A design language should allow definition of these
standard responses to a specific context and allow them to be applied
automatically. The following procedures provide one example of this.

PROCEDURE STUDWALL(ELEM B, STUD, MAT; REAL SPACE)*
LThis procedure details a rectangular slab B as a stud wall, using two

predefined Forms, STUD and MAT. Copies of STUD are created spaced SPACE units
apart. The studs are covered with a sheet of material MAT on each sides. The
procedure assumes that the original definition of all wall Forms is a rectangle
oriented along the X-axis. The same is true for STUD. MAT is expected to
include two attributes, LENGTH and WIDTH, which determines the covering size.
The wall detail is centered on the centerline of the original rectangle, B;

BEGIN
ATTRIB LENGTH,WIDTH;
SET TEMSET;
REAL TX,TY,TZ,LEN,HT;

! Store a copy of B;
ELEM BO «- COPY B»{@B};
! All attributes will refer to B
B - { TX <- MINX;

TY <- MINY;
TZ <- (MAXZ-MINZ)/2-1.75;
HT <- (MAXY-MINYM.5;
LEN f-(MAXX-MINX) ;
Lcreate plate and runner;
PUT COPY STUD « {\TX,TY,TZ; L E N G T H E N } IN TEMSET;
PUT COPY STUD « {\TX,HT,TZ; LENGTHH-EN } IN TEMSET;

Lcreate studs;
LEN <- HT-1.5;
TY <- TY+1.5 ;
FOR J FROM MINX+1.5 TO MAXX BY SPACE DO

PUT COPY STUD- {\J,TY,TZ #0,0,90; LENGTH<-LEN } IN TEMSET;
Lplace end stud;
PUT COPY STUD - {\MAXX OF B,TY,TZ *0,0,90; LENGTH<-LEN }

IN TEMSET;

file://{/MAXX

GLIDE

Lattach surface materials;
TZ «- TZ+3.5;
B = { LN «- (MAXX-MINXV, HT «- (MAXY-MINY) };
PUT COPY MAT- {\TX,TY,TZ; LENGTH<-LEN;WIDTH«-HT }

IN TEMSETj
TZ *- TZ-3.5;
PUT COPY MAT= {\MAXX OF B,TY,TZ «0,180,0} LENGTH«-LEN; WIDTH.-HT }

INTEMSET;

Lmove rectangle and all its parts back into location;
MOVE TEMSET BY @B0;
DELETE {B,B0};

END;

Notice that the temporary set TEMSET that groups ail new elements allows
them to be moved together, rather than one at a time. At the end of the
procedure, B is deleted from the database. This procedure is facilitated by the
ORIGIN operation and the MIN and MAX attributes.

This detailing procedure is easily extended so as to allow maintaining
the hierarchical relations between sets of Elements. That is, instead of
deleting the original rectangle, a designer may wish to retain it, in that it
has many important uses. First, it allows crude drawings without the detail of
each stud. It also aggregates data for the complete wall. If one desires the
structural or acoustical performance of the wall detail, the enclosing rectangle
is an appropriate single unit for storing that information, rather than with one
of its components. The capability of maintaining hierarchical relations is an
important capability in design, whether manual or automated.

PROCEDURE STUDWALL(ELEM B, MAT, STUD; REAL SPACE)-
.'..This extended procedure makes a Set DETAIL with the details in it.

The B has a set attribute KIDS which points to set DETAIL that contains the
elements which comprise it. Each component has an attribute PARENT of type ELEM
which points to its parent, B;

BEGIN

GET SET DETAIL;
ATTRIB ELEM PARENT, KIDS;
ATTRIB REAL LENGTH,WIDTH;
REAL TX,TY,TZ,LEN,HT;

! Store a copy of B;
ELEM BO <- COPY B-{@B};
ORIGIN B;

Lcreate plate and runner;
B = { KIDS<-COPY DETAIL={}; ! creaate empty Set

TZ <- (MAXZ-MINZ)/2-1.75;
HT <- (MAXY-MINY)-1.5;
LEN *- (MAXX-MINX) };

file://{/MAXX

GLIDE

PUT STUD={\MINX,MINY,TZ; LENGTH.-LEN} IN KIDS;
PUT STUD={\TX,HT,TZ; LENGTH<-LEN} IN KIDS;
!..create studs;
LEN<-HT-1.5;
TY «- TY+1.5;
FOR X FROM MINX+1.5 TO MAXX BY SPACE DO

PUT COPY STUD- {\X,TY,TZ «0,0,90;LENGTH«-LEN} IN KIDS;

TX «- MAXX ;
PUT CQPY STUD - {\TX,TY,TZ «0,0,90;

LENGTH.-LEN };

Lattach surface materials;
TZ «- TZ+3.5;
B - { LN <- (MAXX-MINX);

HT «- (MAXY-MINY) };
PUT COPY MAT - {\TX,TY,TZ; LENGTH*-LEN;WIDTH^HT} IN KIDS;
TX*-MAXX;
T Z . - T Z - 3 . 5 ;
PUT COPY MAT- {\TX,TY,TZ «0,180,0; LENGTHf-LEN;WlDTH«-HT} IN KIDS;

! Put in references up the hierarchy.
FORALL E IN KIDS DO E-{PARENT«-B};
{..relocate all wall components;
MOVE DETA1L[SN] BY © BO;
DELETE 80};

Access to the components of the wall B can be made through
use of:

FORALL S IN KIDS OF B DO statement

2. BUILDING TOPOLOGICAL STRUCTURES

An important use of GLIDE is the deriving of information needed for
analysis programs. Of the data that must be generated, possibly the most
critical are the different topological relations between Elements, such as the
structural grid or mechanical system tree. Below, we indicate how topological
relations may be computed. The capability developed is a general procedure that
generates anadjacency matrix of all Elements within a Set that are adjacent to
one another. Thus if the Set is of structural Elements, the result will be the
structural grid. If the Set includes all mechanical equipment, then the result
will be a matrix with the tree of all mechanical equipment adjacencies.

Several service procedures are introduced first.

BOOL PROCEDURE TOLERANCE(REAL A,B,C) - «A+C GTR B) AND (A -C LSS B » ;

PROCEDURE EXTFACE(ELEM BODY; REAL F; REAL VECTOR C[6]) -

GLIDE

! This procedure returns the coordinates of the enclosing box
around any face and is useful in determining if two faces overlap;

BEGIN
REAL A,Bj

FORM BODY = { B«-A<-V.FACE(F,0);
C[4]*-C[l] f- VX[A] ;

C[5]«-C[2] <- VY[A] ;

C[3]<-C[6] «- VZ[A];
WHILE ((B «- V.FACE(F,B)) NEQ A) DO

BEGIN
IF C [l] GTR VX[B] THEN C [l] <- VX[B]{
IF C[4] LSS VX[B] THEN C[4] *- VX[B]j
IF C[2] GTR VY[B] THEN C[2] *- VY[B];
IF C[5] LSS VY[B] THEN C[5] *- VY[B];
IF C[3] GTR VZ[B] THEN C[3] •* VZ[B];
IF C[6] LSS VZ[B] THEN C[6] <- VZ[B},
END-,

};
RETURN
END;

BOOL PROCEDURE ADJACENT(ELEM A,B) =
L.this procedure tests the adjacency between elements A and B

and returns TRUE if any of their faces are coincident;

BEGIN
EXTERNAL EXTFACE;
REAL VECTOR AF[6],BF[6];

FOR I I FROM 1 TO (NOFACES OF A) BY 1 DO
BEGIN
EXTFACE(A,AF);
FOR 12 FROM 1 TO (NOFACES OF B) BY 1 DO

BEGIN
EXTFACE(B,BF);

Luse the boxtest to see if faces overlap;
IF AF[1] GTR BF[4] OR BF[1] GTR AF[4] OR

AF[2] GTR BF[5] OR BF[2] GTR AF[5] OR
AF[3] GTR BF[6] OR BF[3] GTR AF[6] THEN

EXITLOOP;
Ltest if the faces align;

IF TOLERANCE(FACEAdl) OF A,FACEA(I2) OF B) AND
TOLERANCE(FACEB(Il) OF A,FACEB(I2) OF B) AND
TOLER ANCE(F ACECO1) OF A,FACEC(I2) OF B) AND
TOLERANCE(FACEKdl) OF A,FACEK(I2) OF B) AND

THEN RETURN TRUE;
END;

END;
RETURN FALSE
END;

GLIDE

Lthis procedure builds an adjatenc, ^a\t••. ADJ,beiweeen the Elements
in the Set S. ADJ is the vector in which adjacencies are stored. N is the
dimension of ADJ. It should be equal to (NUMEM * (NUMEM-l))/2, where NUMEM is

• the number of members of S;

PROCEDURE GRAF(SET S; BOOL VECT ADJ[N]) =
FOR I I FROM 1 TO N - l BY 1 DO

FOR 12 FROM 11 + 1 TO N DO
ADJ[11*(I1-1)/2+I2]*-

ADJACENT(MEM(I1,S>, MEM(I2, S%

3. ANALYSES OF SHAPES

An important aspect of some design operations is the analysis of shapes
and the properties of shapes. Examples include computation of the amount of
concrete required for a pour or the length of run of a pipe or duct. These
operations require the ability to access and respond to different conditions
encountered within the topology of a shape.

Below, we provide one meaningful example, an algorithm for computing the
volume of any shape.

REAL PROCEDURE DET(REAL T,V1,V2,V3; ELEM B) - !this procedure computes the
projected area of a triangle defined by the three vertex IDs V1,V2,V3 onto the
plane denoted by XYZ, where XYZ»1 means X, XYZ-2 means Y and XYZ-3 means Z
plane. when the points are taken clockwise, the area sign is negative;

BEGIN
REAL A;
B = { IF (XYZ EQL 3) THEN A*-VX[V1]*VY[V2]-VX[V1]*VY[V3]-

VY[V1]*VX[V2]+VY[V1]*VX[V3]
+VX[V2]*VY[V3]-VY[V2>VX[V3]

ELSE IF (XYZ EQL 2) THEN Af-VZ[Vl]*VX[V2]-VZ[Vl]*VX[V3]-
VX[V1]*VZ[V2]+VX[V1]*VZ[V3]
+VZ[V2]*VX[V3]-VX[V2]*VZ[V3]

ELSE A<-VY[V1]*VZ[V2]-VY[V1]*VZ[V3]-
VZ[V 1]*VY[V2]+VZ[V1]*VY[V3]
+VY[V2]*VZ[V3]-VZ[V2]*VY[V3]a};

RETURN A/2
END;

REAL PROCEDURE AREA(REAL F; ELEM BODY)- ! this procedure computes the area of
face F on body BODY. It chooses the plane of projection most parallel to the
face, then corrects the projected area by the cosin of the angle between the
face and the projection plane;

BEGIN

GLIDE

REAL A,B,C,D,ANGLE,PLANE;

!... compute area of projection;
BODY = {IF FACEA(F) GTR FACEB(F) THEN PLANE<-1 ELSE PLANE<-2;

IF FACEC(F) GTR (IF PLANE EQL 1 THEN FACEA(F)
ELSE FACEB (F))

THEN PLANE<-3;
B«-V.FACE(F,0);
C«-V.FACE(F,B);
D<-V.FACE(F,C);
A*-DET(PLANE,B,C,D,BODY);

WHILE BEGIN
C<-D;
D<-V.FACE(F,D);
(D NEQ B)
END

DO A<-A+DET(PLANE,B,C,D,BODY);
!... compute angle of projection;

B<-FACEA(F)*FACEA(F)+FACEB(F)*BACEB(F)+FACEC(F)*FACEC(F);
IF PLANE EQL 1 THEN D«-FACEA(F) ELSE

IF PLANE EQL 2 THEN D *- FACEB(F) ELSE D <- FACEC(F);
ANGLE«-D/(SQRT(B))};

RETURN A/ANGLE
END;

REAL PROCEDURE VOLUME(ELEM B) =
! this procedure computes the volume of element B;

BEGIN
REAL DIST,J,AREA1,V0L,V;
V^O;
VX[V>-VY[V>-VZ[V]<-0;
AREAl<-0; VOL«-0;

FOR J FROM 1 TO NUMFACES(B) DO
B = { DIST^FACEK(J);

AREA 1 *-ARE A(J,B);
VOL<-VOL+(DIST*AREA)};

RETURN VOL/3
END;

In the examples provided, we have attempted to indicate the kinds of
design operations easily defined within GLIDE. The full extent of the strengths
and weaknesses of the language will only be known after extensive experience
with this and other design oriented languages.

GLIDE

APPENDIX 1 BNF Conventions used:

1. Non-terminal symbols are represented by single or hyphenated words in
lower-case, without the <> delimiters.

eg statement, proced-call, form-defn

2. Terminal symbols (keywords)are in upper-case:eg: IF, THEN, BEGIN, or are
special characters :, *, +, <, !

3 In the BNF the symbol "name" is used to signify a hitherto undeclared name, to
be used in a declaration, or a name of any type. Once they have been declared,
names of various types are referred to thus:

num-id bool-id text-id topo-id form-id item-id set-id v iew-id
routine-id command-id attrib-id elem-id

4. | as usual seperates alternative strings.

eg x ::= a |b c | d

5. [] enclose optional strings

eg a ::= b[c] means a ::= b | b c

6. { } enclose strings repeated 0 or more times.

eg: a ::= b {c} means a ::= b | a c

7. Literal terminal symbols { } [] occurring in the syntax are enclosed in " " to
distinguish them from the meta-symbols defined above.

8. Certain parts of the syntax are highly context-dependent. For example a
statement within certain definition blocks can contain certain operations which
are illegal in other contexts. Such a context is valid no matter how deeply a
statement is nested inside the definition block:

A Euler operations can only occur within a Topology
definition block.

B Attribute assignments can only occur within a Form or Copy
definition block.
C Co-ordinate bindings can only occur within a Shape
definition block.

D In almost all contexts an expression must
be of a particular type, eg the operands of an assignment
must match. In some cases this constraint is not inherent
in the syntax as specified in the BNF, but merely noted
alongside.

APPENDICES:

GLIDE III 8

APPENDIX 2: TABLE OF INFIX OPERATORS WITH PRECEDENCE.

Preced. Operators

1
2
3
4
5
6
7

APPENDIX 3: RESERVED WORDS AND SPECIAL SYMBOLS.

! « & ' <) - \ « { } [] + * ; : . , / « -

AND OR OF FOR FORALL WHILE IF BEGIN END BTOPO BFORM BSET RETURN EXIT DELETE
SHAPE PROCEDURE GET GLOBAL ATTRIB TOPO FORM COPY ITEM ELEM SET REAL BOOL TEXT
VIEW ALL FROM TO BY DO THEN ELSE ORTHO PERSP VIEWPT REFPT CONE SECTION

APPENDIX 4: STANDARD FUNCTIONS AND ATTRIBUTES.

Standard attributes:

SHAPE TOPOL VX VY VZ CX CY CZ AX AY AZ NUMVS NUMFS NUMCS NUMELS MAXX MINX MAXY
MINY MAXZ MINZ E.FACE V.FACE F.EDGE V.EDGE F.VERT E.VERT FACEA FACEB FACEC FACEK

Standard functions and operations:

MOVE MOVEO ORIGIN NORIGIN CMV CFE MVE MFE FETCH CLOSE COMBINE CUT LAP FINDLAP
WRITE DUMP NEWLINE NEWPAGE READREAL READTEXT MEMBER

OR
AND
LSS LEQ NEQ EQL GEQ GTR
+ -

* /
Î OF

