
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PSG MANUAL

A. Newell and J. McDermott
September, 1975

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense (F44628-73-C-8874) and is monitored
by the Air Force Office of Scientific Research. Authors' address:
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa. 15213

CONTENTS

> I. INTRODUCTION
> PRODUCTION SYSTEM ARCHITECTURES
> PSG
> USING PSG
> A SAMPLE PRODUCTION SYSTEM
> A SAMPLE RUN .

> II. THE ARCHITECTURE
> NAMES AND NUMBERS
> THE DATA STRUCTURES
> CONTROL
> EFFICIENCY-

> H I . MEMORIES
> STM
> PRODUCTION MEMORY

> CONDITION
> ACTION

> TE
> LTM

> IV. OPERATING FACILITES
> INITIALIZATION
> CONTROL-POINTS
> INTERACTIVE OPERATION
> AUTOMATIC OPERATION
> FILES AND RECORDING
> ACCOUNTING
> EDITING
> OPTIONS

> V. L*(I)

> VI. REFERENCES

> VII. AVAILABLE COMMANDS
> LISTING BY FUNCTION
> ALPHABETICAL LISTING

1

I. INTRODUCTION

> PRODUCTION SYSTEM ARCHITECTURES
> A production system architecture is a particular kind of information

processing system; it is a control structure which supports
1) a set of productions, each production having a condition side
containing zero or more condition elements and an action side
containing one or more action elements; and 2) a working memory
(a collection of data structures) from which condition elements
can be determined to be true or false and on which action elements
operate. If all of the condition elements in a production match
elements in working memory, then that production is satisfied and is
executed; when i t i§ executed some of its action elements may
modify working memory; this modification may result in some other
production becoming satisfied and being executed, and so on.

> PSG
> PSG (for production system version G) is an architecture which was

designed to faciliate the building and testing of psychological
theories and for carrying out other explorations with production
systems. In fSG, a production is satisfied if its condition
elements all match the elements in the part of working memory called
STM (short term memory). Uhen a true production is executed, those
elements in STM which matched the condition elements of the
production are rehearsed (eg, brought to the front of STM); then
each action element either modifies STM, modifies some other part
of working*memory, evokes the execution of other productions or
production systems, or carries out operations external to the
working memory (such as printing data at the terminal).

> OPTIONS
> There are, of course, many alternative hypotheses, purporting

to help account for different aspects of human cognitive
behavior. These can be combined in a variety of ways to
produce a theory of the control structure of human information
processing. PSG offers the user a set of options which make
it relatively easy to test different combinations of these
hypotheses.
> For example, one of these options is the CONFLICT.1 option

which offers the user several different ways of specifying
which production is# to be executed whenever two or more
productions are true at the same time. Two of the option
settings for the CONFLICT.1 option are PD.ORDER and STM.ORDER.
Thus the CONFLICT option allows the user to decide whether
to let the order of the productions in the production memory
or the order of the elements in STM determine which
production is to be executed. For example, if three
productions (call them PD1 PD2 and PD3) are true at the

2

same time, and if no condition element in PD1 matches the
first element in STM, and if PD2 and PD3 do each have a
condition element that matches the first element, then the
behavior of PSG will depend upon which CONFLICT.1 setting was
specified. If PD.ORDER was specified, then PD1 will be
executed. If STM.ORDER was specified, then either PD2 or
PD3 will be executed; which one is executed will depend on
how the CONFLICT.2 and CONFLICT.3 options were set

> Each of the options is described in the body of this manual;
the name of the option settings are always given with
brackets (eg. [PD.ORDER]); after an option has been discussed,
the format for setting the option is indicated and the
default setting is given.
> See OPTIONS in Section IV

> USING PSG
> To initiate a run of PSG, give the Monitor the command R PSG. PSG

will return a ">"
> The ">" is the PSG prompt character and indicates that PSG is

awaiting a line of input from the user
> PSG will not attend to the line of input until you do a
• carriage return

> Interaction with PSG takes place by the user typing in a series of
expressions and commands
> Expressions define productions, condition elements, action
• elements, memory elements, etc.

> All expressions are enclosed in parentheses to indicate
their scope

> Any expression can be given a name by writing the name,
followed by a colon, followed by the expression; the name
can then be used in place of the expression
> Examples:
STM: (AA BB (CC DD))
PD1: (AA — > (EE FF))

> See NAMES AND NUMBERS in Section II
> After you have defined or redefined an expression, PSG

acknowledges that it has stored it by coming back with its
prompt character

> Commands tell PSG to do things; there are two different ways in
which commands can be used
> The interpreter can be directed to execute a command

immediately. To do this, the user types in the arguments
and then the command followed by an exclamation point and a
carriage return
> Examples:
PS1 START!
(PD1 PDG) PS!

3

> See CONTROL in Section II and CONTROL-POINTS in Section IV
> A command can be put in a command expression on the action

side of a production; this command expression will be
executed whenever the production is fired
> Examples:

PD2: ((AA) --> (NTC BB) (AA «=>))
PD3: (BB — > (PS (PD1 PDG)) (SAY BB) STOP)

> See ACTION in Section III

> You may create a file containing definitions of productions and
various other expressions, and then load the file on top of PSG
> To read a file you have created, do <filnam>.<ext> RDF!; the

response wiI I be
ununn nttunn nn>
Each # indicates that a line has been read, and the' "> M

indicates that the file is loaded
> The file may contain commands which you want executed

immediately; for example, if you include
STILE LOADED" PRSTRING!
as the last line in your file, then FILE LOADED will be
typed out at your terminal when the file has been loaded

> To read someone else's file do <filnam>.<ext> <ppn> RDFPPN!
> Example:

SAMPLE.PSG A118PS00 RDFPPN!

> To quit PSG do tC if PSG is waiting for input; do tCtC if PSG is
running; in both cases you return to the Monitor
> If you then do CONT (or CONTINUE) you will be right back where

you were
> If you do REE (or REENTER) the prior command will be terminated,

but all the rest of your structures will be as they were before
you did tCtC

> To save a core image of your job, do <filnam> SAVE! (do not
indicate an extension); the response will be
VXX.XX CONTINUING
>
To run from a saved core image do RUN <filnam>; the response will
be
VXX.XX RESTARTING
>

> HELP ,
> The HELP command lists the current PSG documentation files and

the current L* documentation files

> TEACHER
> TEACHER calls an interactive introductory SCRIPT which will

4

lead you through PSG; if you are going to Mant the teacher, do
R PSGLRN instead'of R PSG and then type TEACHER

> A SAMPLE PRODUCTION SYSTEM

88188 STM.ORDER S.CONFLICT. 1!
88288 (CS/CTRL PR.CS PR.ACT) ON.ALL!
88388
88488 DIGIT: (CLASS 8 1 2 3 4 5 6 7 8 9)
88588 ANYs (VAR)
88G88
88788 RESPOND: (ACTION (NTC (RESPONSE ANY)) (SAY ANY) (OLD **))
88888
88988 STMI: (READY (ELM 1) (ELM B) (ELM 3) NIL NIL)
81888
81188 PM.ST1: (PD1 PD2 PD3 PD4)
81288 PD1: ((PROBE) (OLD (RESPONSE)) --> (OLD **))
81388 PD2: ((PROBE DIGIT) (ELM DIGIT) — > (RESPONSE YES) RESPOND)
81488 PD3: ((PROBE) (ELM) — > (RESPONSE NO) RESPOND)
81588 PD4: (READY — > ATTEND (NTC (ELM)))
81G88
81788 S"PS.ST1 LOADED" PRSTRING!

> A SAMPLE RUN

>PS.ST1 START!
8. STM: (READY (ELM 1) (ELM G) (ELM 3) NIL NIL)

TRUE: PD4: (READY --> ATTEND (NTC (ELM)))
VARM: (NIL NIL t l READY)

8. ACTION- ATTEND
ATTENDING - INPUT NEXT STIMULUS - >(PROBE G) tZ

1. ACTION- (PROBE G)
1. ACTION- (NTC (ELM))
2. STM: ((ELM 1) (PROBE G) READY (ELM 6) (ELM 3) NIL)

CONFLICT.SET: (PD2 PD3 PD4)
CONFLICT.SET: (PD2 PD3)

TRUE: PD2: ((PROBE DIGIT) (ELM DIGIT) — > (RESPONSE YES) RESPOND)
VARM: (NIL NIL $2 (ELM 6) $1 (PROBE 6) DIGIT G)

2. ACTION- (RESPONSE YES)
3. ACTION- RESPOND
4. ACTION- (NTC (RESPONSE ANY))
5. ACTION- (SAY ANY)

tirMrtrtctrfctrMi YES

6. ACTION- (OLD **)
7. STM: ((OLD (RESPONSE YES)) (PROBE 6) (ELM 6) (ELM 1) READY

(ELM 3))

5

CONFLICT.SET: (PD1 PD2 PD3 PD4)
TRUE: PD1: ((PROBE) (OLD (RESPONSE)) — > (OLD **))
VARM: (NIL NIL $2 (OLD (RESPONSE YES)) 81 (PROBE 6))

7. ACTION- (OLD **)
8. STM: ((OLD (PROBES)) (OLD (RESPONSE YES)) (ELM 8) (ELM 1)

READY (ELM 3))
TRUE: PD4: (READY — > ATTEND (NTC (ELM)))
VARM: (NIL NIL 81 READY)

8. ACTION- ATTEND
. ATTENDING - INPUT NEXT STIMULUS - >(PROBE 8) tZ
9. ACTION- (PROBE 8)
9. ACTION- (NTC (ELM))
18. STM: ((ELM G) (PROBE 8) READY (OLD (PROBE G))

(OLD (RESPONSE YES)) (ELM 1))
CONFLICT.SET: (PD1 PD3 PD4)

TRUE: PD3: ((PROBE) (ELM) --> (RESPONSE NO) RESPOND)
VARM: (NIL NIL 82 (ELM G) 81 (PROBE 8))

18. ACTION- (RESPONSE NO)
11. ACTION- RESPOND
12. ACTION- (NTC (RESPONSE ANY))
13. ACTION- (SAY ANY)

********** NO

14. ACTION- (OLD **)
15. STM: ((OLD (RESPONSE NO)) (PROBE 8) (ELM G) READY

(OLD (PROBE G)) (OLD (RESPONSE YES)))
CONFLICT.SET: (PD1 PD3 PD4)

TRUE: PD1: f(PROBE) (OLD (RESPONSE)) --> (OLD**))
VARM: (NIL NIL 82 (OLD (RESPONSE NO)) 81 (PROBE 8))

15. : ACTION- (OLD **)
16. STM: ((OLD (PROBE 8)) (OLD (RESPONSE NO)) (ELM 6) READY

(OLD (PROBE G)) (OLD (RESPONSE YES)))
TRUE: PD4: (READY --> ATTEND (NTC (ELM)))
VARM: (NIL NIL 81 READY)

16. ACTION- ATTEND
ATTENDING - INPUT NEXT STIMULUS - >STOP tZ

17. ACTION- STOP
17. ACTION- (NTC (ELM))
END: PS PS.ST1 STOPPED

6

II. THE ARCHITECTURE

> PSG is implemented in Lft(I) and is run on a PDP-10
> See Section V

> NAMES AND NUMBERS
> A name may be any string of characters except that it may not

begin with a number, and non-printing characters (eg, space) may
not be used in names
> A string of characters becomes a name simply by using it
> Many punctuation marks and special symbols are recognized even

when adjacent to names. This prohibits their occurrence in
names defined by mention since Lft treats them as boundaries and
breaks the name; for example, attempting to define AB(C to be a
name runs afoul of the use of (as a boundary character
> Boundary characters can occur in names if on first use the

name is prefixed by " and terminated with a space; for
example, "AB(C would define AB(C as a name; on subsequent
occasions it would be recognized without the use of "

> The marks used as boundary characters are
) (: ;] [- X * M • • ! • t *• \ •

> Any expression that has been given a name may be denamed or
renamed
> Format: XI DENAME!
> Format: XI RENAME!

> Digit and digit sequences may be used in one of two ways
> They may designate numbers [NUMBERS]

> This is the normal usage; the digit "6" denotes the number G
and the digit sequence "608" denotes the number 606

> They may be names [NAMES]
> Then "G" and "606" are used in the same way as "A" and

"ALPHA"
> Example: G0G: (AA BB)

> If you want to write an actual number (in order, say, to
have PSG do some computation), the digit or digit sequence
must be prefixed by tf
> Examples: #2 #-6G6 #+18
> This means that the character "0" cannot be used in a name

> Setting the option
> Example: NAMES S.DIGITS!
> Default: NUMBERS

> THE DATA STRUCTURES
> PRODUCTION MEMORY

> A production memory is an ordered list of productions. Each
production pairs a condition with an action. Thus a production
memory is a set of contingent instructions

7

> A production memory may be viewed as a fong term memory or
as that part of a long term memory in which knowledge is
represented procedurally

> A production is activated when a set of elements in working
memory match the condition elements on the condition side of
the production

> WORKING MEMORY
> The central part of working memory is short term memory (STM);

it is a list of elements that are initially the internal
representation of some specific situation. This memory is
highly volatile; as productions become satisfied and are fired,
this representation is modified until some overt behavior such
as modifying the external environment or stating the solution
to a problem becomes appropriate

> Uorking memory may also include a task environment (TE); this
memory, which can be used to simulate an external task
environment, is a list'of elements, any of which can be read
into STM; elements in STM can also be written into TE

> A third memory, long term memory (LTM), may be included as a
part of working memory; this memory can be used to explore long
term memory structures which are different from production
memor ies

> CONTROL
> The bagic unit of behavior is the recognition-act cycle. A cycle

has two parts: 1) discovering the conflict set, the subset of true
productions, and selecting one of the productions in the conflict
set as the production to be fired, and then 2) firing (executing
the action elements of) the production selected. Processing
continues, cycle follows cycle, until either no production is true
or the command STOP (an action element) stops the processing

> CONFLICT RESOLUTION
> Four different resolution procedures exist for settling

conflicts when more than one production is satisfied at the
beginning of a cycle
> The productions may be ordered according to their position

in the production memory; then all productions except the
first are deleted from the conflict set [PD.ORDER]

> The productions may be partially ordered by the working
memory elements they match; a production with a supporting
memory element that occurs earlier in working memory than
those of another production takes precedence over it. Thus,
those true productions with a condition element matched by
the first supporting memory element become the conflict
set [STM.ORDER]
> Example: Given the following expressions

8

STfl: (AA (BB) (CC DD) EE)
PD1: ((CC DD) — > ...)
PD2: (EE (BB) ~ > ...)
PD2 would be selected to be fired

> The productions may be partially ordered by the relation
of being a special case; a production which is a special
case of another takes precedence over it. Thus, those true
productions which have no true productions which are special
cases of them become the conflict set [SPECIAL,CASE.ORDER]
> PDX is a special case of PDY (during a particular cycle)

if and only if each working memory element which supports
a condition element in PDY also supports a condition
element in.PDX and PDX has at least one more condition
element than PDY

> Example: Given the following expressions
STfl: ((RR SS) TT ((UU) VY))
PD1: <(TT (RR SS) — > ...)
PD2: ((RR) TT ((UU)) — > ...)
PD2 would be selected to be fired

> A production may be selected at random from among the true
productions; then all productions except that one are
deleted from the conflict set [RANDOM]

> To provide the possibility of using a combination of resolution
procedures and to insure that a single production is selected
to be fired, three different procedures may be applied
successively to the conflict set; the procedures are sped fed
by setting CONFLICT.1, CONFLICT.2, and CONFLICT.3. Both
CONFLICT. 1 and CONFLICT.2 may be set to any of the four settings
settings above; CONFLICT.3 may be set to either PD:ORDER or
RANDOM
> As soon as the conflict set contains only a single production,

that production is fired
> Setting the option

> Example: STM.ORDER S.CONFLICT. 1! SPECIAL.CASE.ORDER
S.CONFLICT.2! PD.ORDER S.CONFLICT.3!

> Example: PD.ORDER S.CONFLICT.1!
> Example: STM.ORDER S.CONFLICT.1! RANDOM S.CONFLICT.2!
> Default: The default setting for all three options is PD.ORDER
> Note that the order of specification is relevant; for

example, setting CONFLICT.1 to STM.ORDER and CONFLICT.2 to
SPECIAL.CASE.ORDER is not the same as setting CONFLICT.1
to SPECIAL.CASE.ORDER and CONFLICT.2 to STM.ORDER

> COMMANDS
> The following commands may be used to immediately execute

action elements, productions, or production systems
> DO
> PD

9

> PD.TE
> PS
> PS.l
> PS.TE
> PS.l.TE
> START

> For a description of these commands, see Section VII

> EFFICIENCY
> In order to decrease the number of productions which have to be

tested at the beginning of each cycle. PSG has been implemented
with a partial filter which keeps track of the elements entering
and leaving working memory and which is therefore able to exclude
some productions from consideration. The filter can be set to be
more or less discriminating; the most discriminating setting, of
course, has the highest overhead.
> Use setting 1, the least discriminating setting, unless a large

proportion of the condition expressions in the production memory
have the same initial subelement [FILTER1]

> Use setting 2 if a large proportion of condition expressions
have the same initial subelement and only a small proportion
of condition expressions contain subexpressions [FILTER2]

> Use setting 3 if a large proportion of condition expressions
have the same initial subelement and a significant proportion
of condition expressions contain subexpressions [FILTER3]

> Setting the option
> Example: FILTER2 S.FILTER!
> Default: FILTER1

18

III. MEMORIES

> STM: SHORT TERM MEMORY
> STM STRUCTURE

> STM is a list of expressions or elements
> This list is considered to be ordered, so that it is

meaningful to give specifications in terms of front, end,
etc.

> STM has an initial size, determined by the number of expressions
it contains
> The size may be fixed [FIXED]

> That is, it will continue to be whatever size is set
initial Iy
> See INITIALIZATION in Section IV

> The size may expand indefinitely [EXPAND]
> That is, with each addition to STM it grows by one

> The size may be determined by the interplay between processes
of growth and decay [DYNAMIC]

> Setting the option
> Example: EXPAND S.STM.SIZE!
> Default: FIXED

> STM MODIFICATION
> New expressions are added to STM relative to some location

> The location must be specified
> It may be at the front [FRONT]
> It may be at the end [END]
> It may be determined randomly [RANDOM]
> It may be given by the user at the terminal [USER]
> Setting the option

> Example: END S.STM.ADD.LOC!
> Default: FRONT

> How expressions are to be added relative to the location
must also be specified
> They may be inserted before the element in the location

[INSERT.BEFORE]
> They may be inserted after the element in the location

[INSERT.AFTER]
> They may replace the element in the location [REPLACE]
> Setting the option

> Example: REPLACE S.STM.ADD.HOU!
> Default: INSERT.BEFORE

> Expressions are deleted from a location in STM
> It may be the front [FRONT]
> It may be the end [END]
> It may be determined randomly [RANDOM]
> It may be given by the user at the terminal [USER]
> Setting the option

11

• > Example: U$ER S.STM.DEL.LQC!
> Default: FRONT

> STM EXPRESSIONS
> An STM expression is a symbol; it may or may not have an

associated name
;> Example:

STM: (AA (BB CC (DD)) LBL)
> NIL is the null element

> Though it holds a location in STM. NIL may not be matched
against; that is, it cannot be part of a template expression

> AUTOMATIC REHEARSAL
> Automatic rehearsal moves (reorders) the expressions in STM

after a production has been selected to be fired, but before the
first action element is executed
> There are two options

> All of the expressions in STM recognized by the evoked
production may be rehearsed [RECOGNITION]

> There may be no automatic rehearsal [NO]
> Setting the option

> Example: NO S.REHEARSE!
> Default: RECOGNITION

> If automatic rehearsal is specified, then how the rehearsal
is to be realized must also be specified
> The expressions may be moved to the front [MOVE.FRONT]
> Copies may be moved to the front [COPY.FRONT]
> The expressions may be moved to the end [MOVE.END]
> Copies may be moved to the end [COPY.END]
> The expressions may be treated as if they were new

elements being added to STM [MOVE.NEU]
> Copies may be treated as if they were new elements being

added to STM [COPY.NEU]
> Setting the option

> Example: COPY.FRONT S.REHEARSE.HOU!
> Default: MOVE.FRONT

> Expressions in STM can be deliberately rehearsed while the
action side of a production is being executed by using NTC in a
command expression
> See ACTIONS in this Section

> PRODUCTION MEMORY
> A production memory is a set of productions. Each production

consists of a condition paired with an action; productions may be
named
> Format:

<name>: (<condition> — > <action>)

CONDITION
> A condition consists of an ordered sequence of condition

expressions or elements (CEs) each of which must match an
element in STM in order for the condition to be true
> Format:

(CE1 CE2 CE3 ...—>...)
> Example:

((ELM AA) (ELM) BB — > ...)

> CONDITION EXPRESSIONS
> Except for connectives, all condition elements are template

expressions. A template expression is a form which may
include variables
> Variable elements

> Types
> Free var iabIes

> If X is to be a free variable then it is declared
by X: (VAR); X will match any expression
> Example:

X4: (VAR)

> Variables with specified domains
> If X is to be the variable and D is to be the
domain, then X is declared by X: (VAR D); X will
match any expression that matches D
> Example:

X5: (VAR (ELM (Al A2 A3)))
> Local variables

> If in a template expression X ELM occurs
in place of a component, then X is being
declared as a variable with domain ELM within
the scope of the production; for example, if
X: (VAR) then (AA X « (BB) C O matches
(AA (BB) C O , but (X BB X) does not match
(BB CO

> This is simply a naming convenience, so that
the same names can be used over again; it
implies the same processing capabilities as
varibles with domains

> Class Variables
> If X is to be a class variable and CI, C2, .

the members of the class, then it is declared by
X: (CLASS CI, C2 ...)? a class variable can
contain other class variables

> Example:
XG: (CLASS AA BB X2)

> Scope

13

> The variables in the production fired retain their
bindings only for the remainder of the cycle

> Variables may be set on the action side of a
production as well as on the condition side
> See ACTION in this section

> A class variable matches any expression that matches
one of the members of the class
> It may be bound to one value and have that value

for the remainder of the cycle [VAR]
> In this case, class variables have a
disjunctive domain

> It may not be bound at all in which case a single
variable can match different elements in the
class within a single production [TEST]

> Setting the option
> Example: TEST S.CLASS!
> Default: VAR

> VARH is the memory that holds the current variable
bindings; it has the form
VARM: (Xn <value n> ... NIL NIL ... XI <value 1>)
> The NIL NIL separates the bindings that have
been established (for XI ...) from those that
are still tentat ive

> Connectives
> The connective ABS is used to stipulate that there must
be no element in STM which matches the CE preceding it
> Example:

(AA BB ABS (ELM (AA)) ABS (ELM (CO) — > ...)
> (BB BB ABS — > ...) stipulates that there must be only

one element in STM which matches BB
> The connective OR can be used to collapse several

productions with the same action elements into one
production; for example
(AA BB OR CC OR DD EE ABS --> FF)
is equivalent to
(AA BB > FF) (CC --> FF) (DD EE ABS — > FF)

> The connective AND was used in place of juxtaposition in
earlier versions; it is still permitted, but is
unnecessary

> RULES FOR MATCHING
> Distinctness Rule:

> Every template expression on the condition side of a
production must match a working memory element
> Each working memory element must be distinct [YES]
> A working memory element may be matched by more than

one condition element [NO]
>Setting the option

14

>Example: NO S.DISTINCT!
>Default: YES

> Order Rule:
> The template expressions on the condition side of

productions are considered in order; a match*is attempted
with each working memory expression, considered in order,
until a match is found; the first match sticks

> Comparison Rule:
> A working memory expression and a template expression

match only if they are the same symbol or the condition
element is a matching variable or the subelements match
recursively as expressions

> Variable match rule:
> A variable bound to an working memory element matches

another working memory element if and only if the two
working memory elements are the same symbol

> Penetration Rule:
> Ordinarily if' a symbol has a name, it will not match

another symbol which does not have that name even
if the two symbols have identical structures; in other
words, named symbols are closed or impenetrable. A
named symbol can, however, be opened so that PSG's
match procedure will treat it as if it were not named
> See OPEN and CLOSE in Section VII

> Two terminal symbols with different names do not match
even if both symbols have been opened; for example,
AA: 0 and BB: () do not match recursively

> Expression Rule:
> A template expression and a working memory expression

match only if the subelements of the template expression
and the subelements of the working memory expression are
in the same order; for example, (AA BB) does not match
(BB AA)
> The subelements must all match [ALL]
> The subelements of the template expression must match

an initial consecutive sequence of subelements of the
working memory expression [FRONT]

> Each subelement of the template expression must match
a subelement of the working memory expression and the
first subelement of the template expression must match
the first subelement of the working memory expression
[SEQ.ANCHOR]

> Each subelement of the template expression must match
a subelement of the working memory expression tSEQ.ANY)

>. Setting the option
> Example: ALL S.HATCH.EXPR!
> Default: SEQ.ANCHOR

15

> ACTION
> An action consists of an ordered sequence of action expressions

or elements (AEs)
> The action expressions are interpreted in order
> The effects of automatic rehearsal on STM take place before

any action expressions are interpreted
> Format:

(... — > AE1 AE2 ...)
> Example:
(...—> (NTC CC) STOP)

> ACTION EXPRESSIONS
> All action elements are either template expressions or

command expressions
> Uhen a template expression is encountered in the action side

of a production being fired, it is added to STM
> If the template expression is or contains a variable,

then the variable is replaced by its value before the
new expression is added to STM; for example, if
STM: ((AA BB) (EE FF). BB NIL NIL NIL)
XI: (VAR) X2: (VAR)
PD24: ((AA XI) XI X2 ~ > (XI CC X2) XI)
then when PD24 is fired, XI will be bound to BB and X2
will be bound to (EE FF); two new expressions will be
added to STM; it will become
STM: (BB (BB CC (EE FF)) (AA BB) (EE FF) BB NIL)

> If the template expression is unnamed, then it is copied
before it is added to STM; if it is named, then it will
not be copied unless it has been opened
> See OPEN and CLOSE in Section VII

> Uhen a command expression is encountered in the action side
of a production, the command is executed; the remaining
subelements in the expression (if there are any) are the
arguments for the command; some commands take template
expressions as their arguments
> The following commands may be used on the action side of

productions
> 4-4- (ASSIGN NUMBER)
> « (ASSIGN VARIABLE)
> Si (DOLLAR i for i from 1 to 18)
> ** (ENCODE)
> && (FLATTEN)
> — > (REPLACE)
> (REPLACE)
> — » > (REPLACE)
> ACCEPT/PD
> ACTION
> ATTEND

16

> TE AND STM
> TE is used in conjunction with STM to create a more complete

simulation. The expressions in TE must be accessed explicitly;
expressions may be read from TE into STM; they may also be
written from STM into TE
> The following commands may be used in command expressions

to operate on TE
> -TE-> (REPLACE)

. > DTE
> ITE

> BEGIN
> COPY
> D8i (DELETE tl for i from 1 to IB)
> DEMO
> EMBED
> FAIL
> HOLD
> IGNORE
> NTC
> OFF
> OFF.ALL
> ON
> ON.ALL
> PD
> PR
> PR8i (PRINT Si for i from 1 to 18)
> PRNAME
> PRPSPD
> PRSTRING
> PRVL
> PS
> PS.l
> RELEASE
> RPL
> SAY
> STOP
> STM+1
> STM-1
> WHERE
> UHIZ

> For a description of these commands, see Section VII

> TE: TASK ENVIRONMENT
> TE, like STM, is an ordered list of expressions or elements; it is

indefinite in size. It uses the internal encoding which STM uses
so that it bypasses the need for perceptual mechanisms to encode
the external environment into internal form

17

> LOCTE
> NTCTE

> For a description of these commands, see Section VII
> The read operations, LOCTE and NTCTE, involve matching a

template expression in a command expression with an expression
in TE; a command expression whose command is NTCTE may be a
condition element as well as an action element. The matching
rules are given above (see CONDITION); however, the distinctness
rule need not be the same for TE and STM
> Every template expression on the condition side of a

production which is part of a NTCTE command expression
must match a TE element
> Each TE element must be distinct [YES]
> A TE element may be matched by more than one template
expression [NO]

> Setting the option
> Example: YES S.TEDISTINCT!
> Default: NO

> OPERATING ON TE IN ISOLATION
> TEUM rather than STM may be used as the central part of working

memory when a simulation of the external environment is desired
> Though this memory is structurally identical to STM, it need

not have the same size
> The size may be fixed [FIXED]
> The size may expand indefinitely [EXPAND]
> Setting the option

> Example: FIXED S.TEUM.SIZE!
> Default: EXPAND

> Commands
> The following commands may be used to immediately execute

productions on TEUM; they may also be used in command
expressions
> PD.TE
> PS.TE
> PS.l.TE

> For a description of these commands, see Section VII

> LTM: LONG TERM MEMORY
> The following version of long term memory is just one of many

possible memory structures; it has been included because of its
simplicity, not because it has any psychological virtues

> LTM is a simple deliberate content-addressed element long term
memory; like STM and TE, it is an ordered list of expressions; it
is indefinite in size

> LTM AND STM

LTM, like TE, is used in conjunction with STM. The elemente
in LTM must be accessed explicitly
> The following commands may be used in command expressions to

operate on LTM
> DLTM
> I LTM
> NTCLTM

> For a description of these commands, see Section VII

19

IV. OPERATING FACILITIES

> INITIALIZATION
> Several structures need to be initialized to values specified

by the user. This section describes each of these structures
and the means available for initialization

> WORKING MEMORY
> STM, TE, TEUM, and LTM can all be initialized

> INIT.STM creates a new version of STM which is a copy of STMI
> INIT.TE creates a new version of TE which is a copy of TEI
> INIT.TEUM creates a new version of TEUM which is a copy of

TEUM I
> INIT.LTM creates a new version of LTM which is a copy of LTMI

> TIME and COUNTS
> INIT.TC sets TIME to 8 and all counts to 8

> See CONTROL-POINTS in this Section

> The command RESET calls INIT.STM, INIT.TE, INIT.TEUM, INIT.LTM
and INIT.TC
> See RESET in Section VII

> CONTROL-POINTS
> Control and monitorrng of the running system is achieved through

a set of CONTROL-POINTS embedded at stategic places in the program
> Every time the program passes through that point it is prepared

to print characteristic messages, to keep statistics or to
engage in arbitrary monitoring and controlling behavior

> For each control-point two quantities and five processes are
def i ned
> COUNT. <ctM > contains the count of the times the system has

passed through this control-point since it was last reset to 8
> TIME.<ctrl> is the increment of time that is to be accumulated

to TIME for passing through this point
> The units are arbitrary
> See (ASSIGN NUMBER) in Section VII

> <ctrl>/tTRL is the control-point set-up process; in essence it
names the control-point
> Turning a set-up process off (OFF!) disables all the

automatic processing that occurs at that control-point
> Turning a set-up process on (ON!) enables the other processes

to be turned on and off individually
> PSG will run more efficiently if all <ctrl>/CTRL processes

not in use are turned off
> PR.<ctrl> prints the message associated with the control

point <ctrl>

> This happens automatically on each passage
> The message can be rewritten by the user to suit his needs

> <ctrl>/C is the control program for <ctrl>
> This is an arbitrary program that gets executed on each

passage
> It can engage in any sort of controlling or monitoring

behavior
> The normal behavior for <ctrl>/C is to come to the terminal

and give control to the user so he can do anything he
desires. To return control to PSGf the user must type
control Z (tZ)

> ADVC.<ctrl> adds 1 to COUNT.<ctrl>
> This happens automatically on each passage
> PRCOUNTS prints all of the counts that are on

> ADVT.<ctrl> adds TIME.<ctrl> to TIME
> This happens automatically on each passage
> PRTIME prints TIME

The CONTROL-POINTS are:
ACT/CTRL PR.ACT ACT/C ADVC.ACT ADVT.ACT
CALL/CTRL PR.CALL CALL/C ADVC.CALL ADVT.CALL
CE/CTRL PR.CE CE/C ADVC.CE ADVT.CE
CS/CTRL PR.CS CS/C ADVC.CS ADVT.CS
LTM/CTRL PR.LTM LTM/C ADVC.LTM ADVT.LTM
MCH/CTRL PR.MCH riCH/c ADVC.MCH ADVT.UGH
PD/CTRL PR.PD PD/C ADVC.PD ADVT.PD
PS/CTRL PR. PS PS/C ADVC.PS ADVT.PS
START/CTRL PR.START START/C ADVC.START ADVT.START
TE/CTRL PR. TE TE/C ADVC.TE ADVT.TE
VARSET/CTRL PR.VARSET VARSET/C ADVC.VARSET ADVT.VARSET

Control is maintained over all these processes by turning them on
or off
> XI ON! turns XI on
> XI OFF! turns XI off
> (XI X2 ...) ON.ALL! turns XI, X2, ... all on
> (XI X2 ...) OFF.ALL! turns XI, X2, ... all off

Several lists and general processes are available to help the user
select the CONTROL-POINTS he wants
> LIST/CTRL is the list of all <ctrl>/CTRL points
> LIST/C is the list of all control programs
> LI ST.COUNTS is the list of all COUNT.<ctrl> points
> LIST.TIMES is the list of all TIME.<ctrl> points
> LIST.ADVC is the list of all ADVC.<ctrl> points
> LIST.ADVT is the list of all ADVT.<ctrl> points
> LIST.PR is the list of all PR.<ctrl> points
> DEMO.LIST is a list of a fulI set of things to turn on to give

21

a detailed demonstration
> UHIZ.LIST is a minimal list of things to turn on for standard

operat ion
> Any of these lists can be printed to see their actual contents
> ?CTRL.STATE prints the names of all of the control-points that

are on

> control-point actions
> ACT/C is executed just before each action expression is executed
> CALL/C is executed whenever a command calling for terminal input

is executed
> CE/C is executed just before a condition expression is matched

with the expressions in the central part of working memory
> CS/C is executed whenever there is at least one production in

the conflict set; CS/C takes a subset of the set of true
productions (followed by tZ) as input; it then replaces the
current conflict set with this subset

> LTfl/C is executed just before a template expression is matched
with the expressions in LTM

> MCH/C is executed just before a match is attempted between a
template expression and an expression in the central part of
working memory

> PD/C is executed just before the production selected to be
fired is fired; PD/C takes a true production (followed by tZ)
as input; this production, rather than the production selected
by the conflict resolution procedures, is then fired

> PS/C is executed just before a production system is processed
> START/C is executed when a run is about to start
> TE/C is executed just before a template expression is matched

with the expressions in TE
> VARSET/C is executed whenever a variable is about to be assigned

a value

> INTERACTIVE OPERATION
> PSG is intended to be used in an interactive mode; this intent

should be apparent from the nature of the command language
> The interactive printing, definition, editing, etc
> The use of CONTROL-POINTS to permit intervention and

exploration while running

> Interaction is a means of simulating the task environment
> Instead of creating programs to provide for the TE, the

production system can come to the terminal when it requires
input from the environment

> Interaction is a means of simulating aspects of the subject model
> Instead of creating a complete set of productions, the

production system can come to the terminal when it needs to

22

evoke unmodeled actions such as perceptual operations, basic
operations such as addition and multiplication, or LTM
acquisition processes

> ATTEND is the mechanism for interactive operation
> ATTEND evokes CALL/CTRL which does the following things:

> It comes to the terminal
> It prints PR.CALL, which can be modified by the user to

create the display he wants
> It gives control to the user who can then do anything he

wants
> It takes back control when user does tZ (Control-Z) and

accepts all of the action elements input by the user as an
action sequence to be executed
> It executes the actions in the order in which they were

input

> AUTOMATIC OPERATION
> Interactive computing is good while large amounts of uncertainty

exist about the operation, but. it does require a fallible human to
attend continuously

> A facility exists for replacing the user at the terminal with a
fixed sequence of inputs
> Define the sequence of inputs to be the list STIMULUS

> Example: STIMULUS: (READY (ELM 1) (ELM G) (PROBE 6))
> Turn on AUTO.ATTEND

> Format: AUTO.ATTEND ON!
> Then use AUTO.ATTEND in place of ATTEND (or do

ATTEND: (OPR AUTO.ATTEND); AUTO.ATTEND will take the next
stimulus from STIMULUS; when STIMULUS is empty, the processing
of the production system will stop

> To stop the automatic responding, turn off AUTO.ATTEND
> Format: AUTO.ATTEND OFF!

> FILES AND RECORDING
> The standard practice is to keep disk files which contain

production systems; these files can be read in when wanted
> See RDF and RDFPPN in Section VII
> The external disk files can be edited with external editors

such as SOS or TECO
> PSG does not read in the line numbers used in SOS, so you

need not worry about them

> It is possible to make a complete recording of all that happens at
a terminal
> See RECORD and RECORD, in Section VII

23

> ACCOUNTING
> PSG has three types of accounting numbers it can generate

> It can count the number of times the system has passed through
specified CONTROL-POINTS

> It can calculate pseudo time (called TIME)
> This is a weighted sum of fixed contributions from each of

the CONTROL-POINTS; the weights can be set by setting
TIME.<ctrl> for each control-point
> Example: (--> (TIME.CND+ 18B))

> The weights are integers
> It can calculate real time (Pc cycles)

> See TIME.PROCESS and UNTIME.PROCESS in Section VII

> EDITING
> There is an interactive editor for modifying any <pf the structures

in PSG; it is the L>v editor

> The editor is evoked on list structure XI by doing XI EDIT!
> All of the commands within the editor are active; that is, they

do not have to be executed by !; they all start with "!" to
indicate this
> EDIT, the process that initiates an edit, is not active; it

is not within the editor, but outside it

> The editor always locates you somewhere in the list structure
> It prints out a location; this is the name of a symbol if it

has one; otherwise it is the address (eg, 36166%)
> With every edit command you give PSG, it does something (gets

to a new place, makes a modification such as replace) and then
puts you back in control

> The commands of the editor allow you to move around in the
structure and to make modifications; you remain in the structure
after a modification so that you can see the modification,
correct it, or go on to another one

> The edit commands
> <LF> goes to the'next symbol at the current level
> <ALT> goes backwards to the immediately preceding location
> !S goes down a level in the structure

> Note that !S (and all of the other commands below) are active
only after you do a carriage return (so that the machine can
regain control)

> ?S prints the current item
> !U goes up a level in the structure
> !F searched the current level (and up) for the first occurrence

of the symbol XI
> Format: XI !F

> !FX searches all unnamed levels for the first occurrence of the

24

symbol XI
> Format: XI !FX

> !R replaces the current item with XI
> Format: XI !R

> !I inserts XI in front of the current item
> Format: XI !I

> !IN inserts XI after the current item
> Format: XI UN

> !D deletes the current item
> Format: !D

> !. exits from the editor
> Example:

PDX: ((ELM XI XI) (ELM (X2)) (X2) --> (NTC S3) (OLD **) (SAY S4))
then to insert EMBED after (OLD **) and replace $4 with (XI X2), do
PDX EDIT!
(OLD **) !F
EMBED U N
S4 !FX

(XI X2) !R !.

> OPTIONS
> S.<option> is the name of the process that represents <option>

> Example: S.C0NFLICT.1 represents CONFLICT.1
> <option-setting> S.<option>! will set the option to the option

setting specified by the user

> Uoption opt ion-setting> ...) S.SETUP! takes a list as input and
sets the options on that list to the option settings specified;
options which are eiot input to S.SETUP will be assigned their
default option settings
> Example: (S.STM.SIZE FIXED S.CONFLICT STM.ORDER) S.SETUP!

> S.<option> 7STATE will print the current option setting for the
option
> Example: S.CONFLICT.2 7STATE

> S.<option> 70PTI0N will print the settings possible for the
opt i on
> Example: S.STM.SIZE 70PTI0NS

> 70PTI0N.STATE will print a list of all the option states with
their current settings

> The option states and their default settings are:
STM.ADD.LOC FRONT
STM.ADD.HOU INSERT.BEFORE
STM.DEL.LOC END

STM.SIZE
TEUM.SIZE
DISTINCT
TEDISTINCT
MATCH.EXPR
VAR.ACTION
REHEARSE
REHEARSE.HOU
CONFLICT. 1.
CONFLICT.2
CONFLICT.3
CLASS
DIGITS

FIXED
EXPAND
YES
NO
SEQ.ANCHOR
YES
RECOGNITION
MOVE.FRONT
PD.ORDER
PD.ORDER
PD.ORDER
VAR
NUMBERS

L*(I)

TEACHER
> Do R LSISCP and then type TEACHER for an interactive script

describing L>v(I)

> The following files are available on disk [A11BLI88] CMU-1BA
> SCPTXT.LSI is the text of the SCRIPT
> LSI.DOC is an introduction to Lft and a guide to the M-file
> LSIN18 is the fl-file (common source)
> FINDEX.LSI is a facility index to the fl-file
> AINDEX.LSI is an alphabetic index to the M-file
> INDEX.LSI is an index to the source files

Although PSG is implemented in Lv<(I), when working normally in PSG
the user is in a protected name context such that no names defined
within L* are accessible; thus it is safe to use any name not
otherwise used in this manual
> The name of the protected name context is PSGU

> The command UNPROTECT moves into a name context that •includes
PSGU and all inner contexts; PROTECT moves back into PSGU
context

> The command FIXIT mdves into a name context that excludes PSGU,
but includes all inner contexts; FIXIT. moves back to whatever
context was on top of the context stack when the command FIXIT
was given

PSG is designed to be used by individuals with no knowledge of L*.
However, the user who knows L* can extend PSG so that it meets his
particular needs
> Specifically,* the user who knows Lft can define additional

commands to be used in command expressions on the action side
of productions
> To create a command which takes no arguments, make OPR the

first symbol in the L>v program
> Example:

I NCR: (OPR U\NUM 1 +U U)
> To create a command which can be used in a command expression

of the form (<command> XI X2 ... Xn), define the command and
then do <command> SETACXN!
> The one argument to the command will be a list (XI X2 •. • Xn)
> Example:

DEL: (S D) DEL SETACXN!

The version of PSG implemented in L*v(I) is upward compatible with the
version implemented in L*v(H) with the following exceptions

The option setting SEQ.ANY for the option HATCH.EXPR is not
available in the current L>v(I) version

The options CONFLICT and CONFLICT.SELECT have been replaced by
CONFLICT.1, CONFLICT.2, and CONFLICT.3

Neither the option OPAQUE nor the option ELM.ACT is available in
the current version; but see OPEN and CLOSE in Section VII

The control-points CND+/CTRL. CND-/CTRL, and PD+/CTRL have been
eliminated from the current version

The commands ACCEPT/PD and IGNORE have been eliminated from the
current version

VI. REFERENCES

> Newell, A. A theoretical exploration of mechanisms for coding the
stimulus. In Melton, A. U. and Martin, E. (eds.). Coding
Processes in Human Memory. Uinston and Sons, Uashington; D.C.,
1972, 373-434.
> This paper explores a particular task of stimulus encoding to

show how production systems handle it. It uses PSF, an earlier
version of PSG

> Newell, A. Production systems: models of control structures. In
Chase, U. C. (ed.). Visual Information Processing. Academic
Press, New York, N. Y., 1973, 4B3-52B.
> This is a basic introductory paper on productions systems as

models of the human immediate processor; it contains detailed
treatment of the Sternberg paradigm. It uses PSG

> Newell, A. and Simon, H. A. Human Problem Solving, Prentice-Hall,
1972.
> This book contains an extensive general treatment of production

systems in the context of problem solving; it includes detailed
treatment of cryptarithmetic task, and much general background
on information processing theories. It does not use PSG

> For a more complete bibliography, see PS.BIB[A11BPS88] CMU-1BA

2 9

VII. AVAILABLE COMANDS

> This section is a reference section for the available PSG commands; it
has two parts: in the first part, the available commands are grouped
according to their function; in the second part, all of the commands
are listed alphabetically and each command is described. The
descriptions include an statement of the format or formats of each
command; if the command is followed by an exclamation point, then it
is an immediately executable command; if it is enclosed in parentheses,
then it may be used in a command expression; XI, X2, ... Xn are used
to indicate the number of arguments each command takes and where they
are to be placed in relation to the command

> LISTING BY FUNCTION
> Control

> ACTION
> ATTEND
> BEGIN
> CLOSE
> DO
> FAIL
> OPEN
> PD
> PS
> PS.l
> S.<option>
> START
> STOP

> Printing
> PR
> PR»i (PRINT DOLLAR VARIABLE)
> PRNAME
> PRPSPD
> PRSTRING
> PRVL
> SAY

> STM processes
> «-«- (ASSIGN NUMBER)
> « (ASSIGN VARIABLE)
> Si (DOLLAR VARIABLE)
> ** (ENCODE)
> && (FLATTEN)
> ..> (REPLACE)
> ...> (REPLACE)
> -«.-> (REPLACE)
> COPY

> DSi (DELETE DOLLAR VARIABLE)
> EMBED
> NTC
> RPL

TE processes
> =TE-> (REPLACE)
> DTE
> ITE
> LOCTE
> NTCTE
> PD.TE
> PS.TE
> PS.l.TE

LTM processes
> DLTM
> I LTM
> NTCfeTM

Initialization
> INIT.ACT
> INIT.LTM
> INIT.STM
> INIT.TE
> INIT.TEUM
> RESET
> STM+1
> STM-1
> STMI+1
> STMI-1

Control-point Processes
> <ctrI>/C
> ADVC.<ctrl>
> ADVT.<ctrl>
> DEMO
> OFF
> OFF.ALL
> ON
> ON.ALL
> PR.<ctrl>
> UHERE
> UHIZ

Accounting
> HOLD
> RELEASE

> TIME.PROCESS
> UNTIME.PROCESS

Ed i t i ng
> EDIT

File operations
> RDF
> RDFPPN
> RECORD
> RECORD.
> SAVE
> USRSAV

Lt< access
> PROTECT
> UNPROTECT

3 2

> ALPHABETICAL LISTING
> «-«- (ASSIGN NUMBER) assigns a number to a numerical variable

> Numerical variables must be declared to be of type
word; this is done by prefixing the characters "\W"
td the variable name the first time it is used

> Format:
(... --> (XI X2))

> Examples:
(— > (TIME <-<- 8))
(—> (U\NUM «-*- 188))
(--> (NUM <-<- 288))

> « (ASSIGN VARIABLE) assigns an expression to be the value of a
var i abIe
> The variable has to be declared a variable for this
operat ion

> Format:
(... — > (XI — X2))

> Examples:
(—> (X « (AA BB)))
(—> (X -. BB))

> <ctrl>/C is a subroutine which is executed whenever the program
passes through its parent control-point. <ctrl>/CTRLf

provided that it has been turned on and its parent has
been turned on
> Uhenever the program passes through the parent control

point, control is passed to the user who after
inputting whatever he wishes can return control to PSG
by typing tZ

> Any control-point action may be redefined so that
instead of passing control to the user, the control
point action executes a command expression

> Format:
<ctrl>/CTRL ON! <ctrl>/C ON!
<ctrl>/CTRL OFF!
<ctrl>/CTRL ON! <ctrl>/C OFF!

> Examples:
CS/CTRL ON! CS/C ON!

> See CONTROL-POINTS in Section IV

> $i (DOLLAR i for i from 1 to 9) is a free variable whose value is
the expression in STM which matched the ith condition
element
> Format:

(CE1 CE2 --> »1 S2)
> Example:

(ELM (DD)) --> (COPY 81) «2)

3 3

> *hv (ENCODE) stands for the first STM element and is used to replace
that element with an expression which contains one or more
occurrences of i t
> Format:

(CE1 --> (**))
> Example:

((AA BB) — > (OLD ftft (AA **)))

> && (FLATTEN) removes the outer level of parentheses from an
expression
> Format:

(... > (&& ((XI i&& (X2)))))
> Example: (AA && (BB C O) produces (AA BB CC)

> ««> (REPLACE) replaces XI with X2 if the first element in STM is an
expression containing XI; otherwise it does nothing and
processing continues with the next action element
> Format:

((XI) > (XI =-> X2))
> Example: If STM: ((DD) (ELM AA BB) CC and
PD18: ((ELM) — > (AA ««> CC (FF))), then after PD18 is
fired, STM: ((ELM CC (FF) BB) CC (DD))

> This command will only replace elements in an
express Ton; it will not replace subelements
> If the expression (ELM (AA BB)) is the first element

in STM, the command ((AA) «»> (CC AA) will change
the expression to (ELM (CC AA)). To change
(ELM (AA BB)) to (ELM (CC AA BB)), fire a production
of the form ((ELM X) --> (X « > (CC && X)))

> o=o> (REPLACE) replaces XI with X2 if the second element in STM is
an expression containing XI
> Otherwise it is like « >

> »...> (REPLACE) replaces XI with X2 if the third element in STM is
an expression containing XI
;> Otherwise it is like, •=>

> -TE-> (REPLACE) replaces the XI located by the pointer TEL with X 2 ;
it requires NTCTE or LOCTE to establish the pointer
> Format:

(... — > (NTCTE XI) (XI «TE-> X2))
> Example:

(—> (LOCTE (ELM AA)) (AA -TE-> BB))

> ACTION interprets the rest of the expression as a list of action
elements

> Format:
(... — > (ACTION XI X2 ... Xn))

> Example:
(—> (ACTION (SAY LOOK) (NTC (ELM XX)))

ADVC.<ctrl> advances the count associated with the specified
control-point
> Format:
ADVC.<ctrl> ON!
ADVC.<ctrl> OFF!

> Example:
ADVC.nCH ON!

> See CONTROL-POINTS in Section IV

ADVT.<ctrl> advances TIME by the amount associated with the
specified control-point
> Format:
ADVT.<ctrl> ON!
ADVT.<ctrl> OFF!

> Example:
ADVT.PD ON!

> See CONTROL-POINTS in Section IV

ATTEND passes control to the user who after inputting whatever
he wishes can return control to PSG by typing tZ
> Format:

(... — > ATTEND)
> Example:

(—> (SAY S"INPUT (ELM AA)11) ATTEND)

begins a new recognition-act cycle
> Format:
BEGIN tZ

> Example: Assume ACT/CTRL and ACT/C are on f then when
control passes to the user (ELM BB) (ELM C O BEGIN fZ
will cause PSG to begin a new cycle

is used to restore the impenetrability of an expression;
see OPEN
> Format:
XI CLOSE!

> Example:
AA CLOSE!

is used to add to STM an unnamed expression which is a
copy of some named or unnamed template expression
> COPY assigns a new dollar variable, *i, where t i is the

first unassigned dollar variable between t l and t9

BEGIN

CLOSE

COPY

3 5

> Format:
(... — > (COPY XI))

> Example: IF SUE: (AA'BB)f then (COPY SUE) puts a new
unnamed expression (AA BB) into STM

> DSi (DELETE Si for i from 1 to 9) deletes from STM the expression
which matched the ith condition element
> Format:

(CE1 CE2 CE3 --> Dtl DS3)
> Example:

(AA BB — > (NTC CC) DS3)

> DEMO turns on the standard demonstration control-point actions
given on DEMO.LIST
> Initially DEMO.LIST contains many PR.<ctrl>s as well as
CS/C which calls to the terminal whenever there is more
than one production in the conflict set so that the
user can select the production to be fired

> DEMO.LIST can be modified by the user
> Format:
DEMO!

> Example:
DEMO! MCH/CTRL OFF!

> See CONTROL-POINTS in section IV

> DLTM deletes an expression from LTM
> Only the first instance of the expression is deleted
> Formats:

(... — > (DLTM XI))
XI DLTM!

> Examples:
(—> (DLTM MOTHER))
MOTHER DLTM!

> DO executes an action expression (as if it were an action
expression in the production being fired)
> Format:
XI DO!

> Example:
(ELM AA BB) DO!

> DTE deletes an expression from TE
> Otherwise it is like DLTM

> EDIT is used to edit expressions
> Format:
XI EDIT!

> Example:

3 6

PD3 EDIT!
> See EDITING in Section IV

> EMBED embeds the first expression in STM in parentheses
> Format:

(.'.. — > EMBED)
> Example: If STM: (AA BB CC), then EMBED produces
STM: ((AA) BB CC)

> FAIL terminates the action sequence
> Format:

(•.. — > FAIL)
> Example? Assume ACT/CTRL is on, then

ACT/C: (OPR 10 U\NUM <U .+ FAIL) will FAIL if NUM is
greater than 9 when the program passes through ACT/CTRL

> HOLD holds (ceases to increment) TIME and the COUNT.<ctr l>s
> Format:

(... « > HOLD)
> Example:

(•—> HOLD (SAY S"INPUT AN ELM") RELEASE ATTEND)

> ILTM inserts an expression at the front of LTM
> If ILTM is used in a command expression, then if the

instantiated template expression is unnamed or has been
opened, it is copied, before it is inserted into LTM

> Formats:
(... — > (ILTM XI))
XI ILTM!

> Examples:
(--> (ILTM (AA X)))
(AA BB) ILTM!

> INIT.ACT is a list of actions which are executed by START after STM
has been set equal to STMI and before the production
system begins its first cycle
> Default: I \ I LACT: 0
> Format:

INIT.ACT: (XI X2 ... Xn)
> Example:

INIT.ACT: ((SAY L"INPUT AA") ATTEND)

> I NIT. STM creates a new version of STM which is a copy of STMI
> It is caI led by RESET (and thus by START)
> Format:

INIT.STMI!
> For INIT.TE, INIT.TEUM and INIT.LTM, see INITIALIZATION

in Section IV

file:///ILACT

37

> ITE inserts an expression at the front of TE
> Otherwise it is like ILTM

> LOCTE locates an expression in TE
> It does not modify TE or STM; it simply sets the

pointer TEL for the operation of «TE«>
> Format:
. (... — > (LOCTE XI))
> Example:

(—> (LOCTE (BB)) (BB -TE«> C O)

> NTC notices an expression in STM
> It searches STM for an element matching its argument

which is a template expression; if it does not find
one, the production fails at that point; if it does,
it moves the element in the same way it would have
been moved by automatic rehearsal had it matched a
condition expression

> NTC assigns a new dollar variable, Si, where ti is the
first unassigned dollar variable between tl and 19

> Format:
(... — > (NTC XI))

> Example: If REHEARSE is set to RECOGNITION and
REHEARSE,HOU to MOVE.FRONT, then firing
PDG: (BB — > (NTC C O) on STM: (AA BB CC) would result
in STM: (CC BB AA)

notices an expression in LTM
> It searches LTM for an element matching its argument

which is a template expression; if it does not find
one, the production fails at that point; it it does,
it inserts the element found into STM according to the
option settings of STM.ADD.LOC and STM.ADD.HON; it does
not modi fy LTM

> Format:
(... — > (NTCLTM XI))

> Example:
(—> (NTCLTM (LAND)))

notices an expression in TE
> It may be used in both condition expressions and action

expressions; in both cases it searches TE for an
ejement matching its argument which is a template
expression, and in both cases it sets the pointer TEL
for the operation of =TE«=>
> As a condition expression, it is like a condition

template expression except that its argument is

> NTCLTM

> NTCTE

matched with the elements in TE rather than with
the elements in STM and if a match is found a copy
of the TE element is added to STM
> The automatic rehearsal mechanism skips it

> As an action expression it is like NTCLTM
> Format:

((NTCTE XI) — > (NTCTE X2))
> Example: If STM: (AA (BB CC) (DO) NIL NIL),

TE: ((MM PP) NN), and
PD1G: ((NTCTE NN) (BB CC) — > (NTCTE (MM))), then
after PD1G is fired, STM: ((MM PP) (BB CC) NN AA (DD))
and TE: ((MM PP) NN)

turns a process off
> It is used on processes with no inputs (primarily on
control-point processes); it has no effect if the
process is already turned off

> Format:
XI OFF!

> Example:
PR.ACT OFF!

turns off all processes in a list by doing OFF on each
element of the Iist
> Format'

(XI X2 ... Xn) OFF.ALL!
> Example:

(PR.ACT PS/CTRL PS/C) OFF.ALL!

turns a process on
> It is used on processes that have been turned off; it
has no effect if the process is already on

> Format:
XI ON!

> Example:
PR.ACT ON!

turns on all processes in a list by doing ON on each
element of the. I ist
> Format:

(XI X2 ... Xn) ON.ALL!
> Example:

(PR.ACT PS/CTRL PS/C) ON.ALL!

makes a named expression penetrable; that is, after
executing OPEN on a named symbol, that symbol will be
treated as if it were not named
> Format:

3 9

XI OPEN*
> Example: If you want LBL: (AA BB) to match (AA BB),

then do LBL OPEN!

> PD executes a production on STM
> If PD is used in a command expression and the production

it is to execute is not satisfied, then processing
Continues with the next action element

> Formats:
XI PD!
(... --> (PD XI))

> Examples:
PD2 PD!
(--> (PD PD2))

> PD.TE executes a production on TEUM
> Otherwise it is like PD

> PR prints an expression; both the name, if it exists, and the
structure are printed
> ? and PR! are equivalent
> Formats:
XI PR!
(... — > (PR XI))

> Examples:
PD2 PR!
(--> (PR (ELM C O)

> PRSi (PRINT Si for i from. 1 to 9) prints the element in STM that
matched the ith condition element
> Format:

(CE1 CE2 --> PRS1 PRS2)
> Exampl

((ELM iUD)) — > PRS1)

> PR.<crtl> prints the expression associated with the control
point <crtl>
> A specific print routine is defined for each control

point; it may be redefined by the user
> Example: You may wish to redefine PR.ACT so that it

prints STM before it prints the action element; do
UNPROTECT! PR.ACT: (PRTIME STM PR PRTIME S"ACTION- " MRS
ZPDAE S PRXS) PROTECT!

> PRNAME prints the name of an expression; if the expression has no
name, then its internal address is printed
> Format:

(... --> (PRNAME XI))

48

> Examples
(X — > (PRNAHE X))

> PROTECT protects the user from inadvertently using (or redefining)
a routine in the underlying programming language (L>v)
> PSG is protected unless the user does UNPROTECT!

> PRPSPD prints a production memory and then all of its productions
> ?PS and PRPSPD! are equivalent
> Format:
PSX1 PRPSPD!

> Example:
PS1 ?PS

> PRSTRING prints a string
> A literal string is written S"S0ME STRING"
> Formats:
S"X1" PRSTRING!
(..• — > (PRSTRING S"X1"))

> Examples:
STILE LOADED" PRSTRING!
(--> (PRSTRING S"INPUT (ELM BB)"))

> PRVL prints the value of a variable element; the value will be
the expression that was assigned during matching
> Format:

(XI > (PRVL XI))
> Example: If X = (AA BB), where the M- M is used to

indicate that the expression (AA BB) does not have the
name X, but is only a temporarily assigned value (over
the scope of a single production), then (PRVL X) would
print X = (AA BB)

> PS executes a set of productions on the present STM; that is,
RESET is not called; see START
> If PS is used in a command expression and no production

in the set of productions it is to execute is satisfied,
then processing continues with the next action element

> Formats:
XI PS!
(... — > (PS XI))

> Examples:
PS2 PS!
(PD1 PDG PD2) PS!
(—> (PS PS2))
(„> (PS (PD1 PD6 PD2)))

> PS.TE executes a production memory on the present TEUM

> Otherwise it is like PS

> PS.l executes a production memory on STfl for one cycle
> It is like PS except that it quits after a single

selection; thus it operates like a case statement

> PS.l.TE executes a production memory on TEUM for one cycle
> Otherwise it is like PS.l

> RDF reads a file from the user's disk area; the file is read
into the job just as if it were being typed in at a
terminal
> All commands followed by an exclamation point are

executed during the read as they are encountered
> All printing goes to the terminal
> Format:

<filnam>.<ext> RDF!
> Example:

TST1.PSG RDF!

> RDFPPN reads a file from another individual's disk area
> It is identical to RDF except that it' takes a
Project-programmer-number (PPN) without brackets as its
second argument

> Format:
<fi lnam>.<ext> <cmuppn> RDFPPN!

> Example:
SAMPLE.PSG A118PS09 RDFPPN!

> RECORD records the entire terminal interaction on a file
> tO, which turns off display at the terminal while

leaving the output generating, will not turn off the
output stream to the file

> RECORD does not record what happens if you go out to
the Monitor with tC and then return

> Format:
<filnam>.<ext> RECORD!

> Example:
PS3RG.1 RECORD!

> RECORD, terminates recording, closes the record file, and prints
a message to let you know the file has been closed
> Format:
RECORD.!

> Emergency procedure: If you are recording and you end
up in the Monitor with an unrecoverable error (so that
you cannot go back and RECORD.!), then do FINISH (or
FIN); tfyis is a Monitor command to close files

4 2

> RELEASE undoes HOLD
> Format:

(... ~ > RELEASE)
> Example:

(--> HOLD (SAY S11 INPUT AN ELM") RELEASE ATTEND)

> RESET is called by START; it sets STM, TE, TEUM, LTM, Counts,
and TIME to their initial states
> Formats:
RESET!
(... — > RESET)

> Examples:
RESET!
(—> RESET)

> See INITIALIZATION in Section IV

> RPL replaces XI by X2 throughout X3 if X3 is an element in
working memory and XI is that element or a subexpression
in that element
> Format:

(... --> (RPL XI X2 X3))
> Examples:

((AA X (BB X Y)) (CC X) --> (RPL X Y 81))
((AA X (BB X Y)J (CC X) — > (RPL 82 (DO X) 82))

> S.<option> is a process that is executed to select an option
setting for <option>
> See OPTIONS in Section IV

> SAVE saves a core image of your job
> After doing a SAVE you will still be in the job and

able to continue; when you run the job later, you will
be back in exactly the same state as you were when you
did the SAVE

> Format:
<filnam> SAVE!

> Example:
PSGEXP SAVE!

> SAY prints the rest of the expression in a noticeable format
> If Xi 1s a list, then it prints its name, if it has

one, and the structure; if Xi is (or contains) a
variable, the value o,f the variable is printed

> If Xi is T/U, then it prints its structure
> If Xi is a literal string (eg, S"A STRING"), then it

prints that string
> Format:

4 3

> STOP

> STM+1

> STM-1

> STMI+1

> STMI-1

(... — > (SAY XI X2 ... Xn)>
> Example:

((AGE X) --> (SAY S"THE GOAT IS " X S,f YEARS OLD"))

> START executes a production memory on STMI
> It is equivalent to (RESET PS)
> Format:
XI START!

> Examples:
PS3 START!
(PD3 PDG) START!

stops executing the production system at the end of the
current production
> Format:

(... --> STOP)
> Example:

(„ > (SAY SnFINISHEDn) STOP)

adds 1 symbol to STM by inserting a NIL at the end; this
is a* permanent lengthening
> Format:

(... --> STM+1)
> Example: If STM.SIZE is FIXED, with STM of length 6,

then STM+1 will increase the number of elements in STM
to 7

subtracts one symbol from STM by removing the last symbol
> Otherwise it is like STM+1

adds 1 symbol to STMI
> Otherwise it is like STM+1

subtracts 1 symbol from STMI
> Otherwise it is like STM+1

> TIME.PROCESS sets a process to be timed; the time is in Pc seconds
accounted against the actual running time of the program,
measured with a 18 Us clock
> The time is printed at the end of each execution
> Format:
XI TIME.PROCESS!

> Example:
PS TIME.PROCESS!

> UNPROTECT gives the user .access to the routines written in the
underlying programming language (L*) by changing ZCXCRL
and ZCXRGL

4 4

> This command should not be used by anyone unfamiliar
wi th Uv

> UNTI HE .PROCESS sets a process so that it will no longer be timed;
it has no effect if the process was not set to be timed
> Format;

XI UNTI ME.PROCESS!
> Examples
PS UNTIME.PROCESS!

> USRSAV does a SAVE on a file that is set-up for a user; when run
it will be in START/C
> Formats

<filnam> USRSAV!
> Examples
PSGU USRSAV!

> WHERE prints the control-point the system is currently at
> Formats
UHERE!

> Example: If conrol has just been passed to you. type
UHERE! to find out where you are

> UHIZ turns on the standard control-point actions for rapid
operation given on UHIZ.LIST
> Initially UHIZ.LIST contains no calls to the terminal

except CALL/C and no PR.<ctrl>s except PR.PS. PR.PD,
and PR.CALL

> UHIZ.LIST can be modified by the user
> Format:

UHIZ!
> See CONTROL-POINTS in Section IV

