NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C.vmp: The Analysis, Architecture and Implementation
of a Fault Tolerant Multiprocessor

Dan Siewiorek
Mark Canepa
Steve Clark

December 1976

Departments of Electrical Engineering
and
Computer Science

Carnegie-Mellon University
Pittsburgh, Pa. 15213

This research was supported in part by Digital Equipment Corporation and by the
Advanced Research Projects Agency under contract no. F44620-73-0074, monitored
by the Air Force Office of Scientific Research.

TABLE OF CONTENT

. INTRODUCTION
Design goals

. SYSTEM ARCHITECTURE

.System configuration

.Voter modes of operation
Architecture extension

.The transient analysis experiments

. DESIGN OF BUS LEVEL VOTERS
.Synchronous versus asynchronous buses
An efficient bus level Voting Architecture
Voter Simplifications

. C.VMP IMPLEMENTATION EXPERIENCES

Hardware implementation and modifications
Experiences in debugging C.vmp
Power-up, bootstrap and diagnostics

. RELTIABILITY MODELS
Description of models
.Permanent Fanlt Model
Jransient Model

. PERFORMANCE

. SUMMARY AND CONCLUSIONS

. APPENDIX

. REFERENCES

Abstract

The architecture of a multiprocessor with a fault tolerant operating mode is
described and analyzed. A bus level voler is used to satisfy the stringent design
constraints of software transparency (programs from non-redundant versions will
execule in a fault tolerant manner without modification), modularity, use of otf-the~
shelf components, and dynamic trading of performance for reliability. Bus level voting
also allows handling of diverse system components {processors, memories, floppy disks,
teletypes, ete.) in a uniform way. Models of performance degradation {207 siower than
non-redundant on instruction execulion rate, 507 slower on expected disk latency} and
reliability improvement (both permanent and transient failures) are presented as well
as experience in redundant system debugging, system initialization and switchover
software, and initial performance measurements. The system, which is nearing
completion, will be used to measure the occurrence of transient failures and to test
fault tolerant bus protocols.

1. INTRODUCTION

The following trends have fostered an increased concern for highly reliable
computer systems:

LComputer systems are becoming more complex and sophisticaled. Their
complexity is growing at a faster rate than the increase in the component
reliability, thus leading to decrease in overall system reliability [GoldJ75].

.Computers are being used for more crilical applications where the external
environment cannot be precisely controlled and at the same time little or no
maintenance can be performed.

More and more small computer systems are operated by users who either
cannot or do not want to provide their own maintenance. In small systems
the cost of repair and maintenance is guickly dominating the original cost of
the hardware.

Therefore the correct operation of computer systems in the presence of
permanent or transient failures is increasingly important.
The design presented here concentrates on toleration of hardware failures. The
design goals may be summarized as follows:
. Permanent and transient fault survival
. Software transparency lo user
. Real time operation capability
. Modular design

. Off-the-shelf components
. Dynamic Performance /Reliability tradeofts

Design Goals
1) Permanent and transient faull survival.

The system has the capability to continue operation in the presence of
a permanent bardware failure- i.e. a component or subsystem failure- and
in the presence of transient errors- i.e. a component or subsystem is lost
for a period of time due to the superposition of noise on the correct signal.

2) Software transparency to the user,

The user should nol know that he is programming a fault tolerant
computer. All fault tolerance is achieved in the hardware. This also implies
that if a user wanls to upgrade to a fault tolerant system in steps - as will
be described later - he can still maintain software compatibility.

3} Capable of real time operation.

A fault must be detected and corrected within a short period from the time
the fault actually occurs. In real time applications the machine cannot
pause too long to restore itself after an error. The method used to
detect and correct errors depends on the error response time required
by the system. This, in turn, depends on the application,

4) Modular design to reduce down time.

The hardware must be able to operate without certain sections activated.
Hence, maintenance can be performed without having to halt the machine.
Modularity includes 1the design of separate power distribution
networks 1o be able lo deactivate selected sections of the machine. The
use of modules in the design also has the virtue ot aliowing the user to
upgrade from a non-redundant, to a fully fault tolerant computer, in steps.

B) Off-the-shelf components.
To decrease the amount of custom designed hardware, to be able to rely
on an established software library, and to allow systematic upgrading to a
fault tolerant system, the computer primarily employs off-the-shelf
compoanents, In our case the LSI-11 computer was chosen as the primary
building block.

6) Dynamic performance /reliability tradeoffs.
The fault tolerant computer has the capability, under operator or program
control, to dynamically trade performance for reliability. Three computers
executing three separate tasks can, by switching to fault tolerant mode and
thereby working on the same tash, achieve an increase in reliability at the
expense of a performance degradation by a factor of three.

Section 2 describes the architecture that met the design goals, including
multiprocessor organization, extensions to the architecture, and instrumentation for

transient fault measurements. From experience gained in the design and

implementation of C.vmp (for Computer, voted mulli-processor) some conclusions about

fault tolerant bus protocols are given in Section 3, Seclion 4 cutlines experiences in
debugging, initialization, and soltware. Models of reliability (both hard and transient
fauits) and performance are derived in Sections 5 and 6. The paper concludes with a

discussion of current status in Section 7.

2. SYSTEM ARCHITECTURE

The following 1lechniques were explored to decide the best design for a
fault tolerant computer [SiewD71]
1) Code and Hardware duplication

Code duplication techniques put taull lolerance on the software level.
Fault tolerance is no longer user transparent and existing software can no
fonger be used without radical modifications. SIFT [WensJ72] and Randell’s
caching scheme {RandB75]) are examples of software level fault tolerance.
Hardware duplication allows the detection of error but cannot provide error
correction.

2) Coding

Hardware error codes, such as parity, Hamming code and self-checking
circuits provide error detection/correction, and are widely used to
increase reliability (1BM 360 [IBM72]). Coding was a leading candidate,
however an inilial design study* showed it was not modular nor did it allow
dynamic performance freliability tradeotfs.

3) Periodic Diagnostics,
Periodic diagnosis is valuable in maintaining a system’s availability. It is a
powerful failure detection mechanism if the failure is permanent, but it
assists litlle in the detection and correction of transient errors. This
technique also interferes with real time applications.

4) Instruction retry,
Instruction reiry techniques can be used in conjunction with error detection
circuits to correct transient errors (IBM 360 [1BM72], STAR [AvizA71)),

*Coding on a bus with asynchronous prolocol requires breaking the bus and buffering

the signal. In addition coding would not mask processor errors.

q

but such methods would be of little use in the case of a permanent
hardware faiiure.

5) Voting Techniques.

Voting techniques have the potential for fulfilling all the stated design
goals. Triplicated majority voting logic is a classic method to achieve an
increase in reliability for critical applications. First postulated by von
Neumann [VonnJ56] voting requires a set of modules, M, all identical. The
output of each module is compared in the voter. The result of the vote is
then sent to the next stape of computalion (see Figure 1). This is the
simplest voling scheme and assumes a fault free voter.

Voting was thus selected for further study. What remained was to determine
at what level voling was to occur. At the highest leve! of voting there are three
independent computers each executing lhe same program. At certain points during
program execution the three machines, through some common communication
channel, compare results. If the three machines agree, they continue to the next
checkpoint. 1f two of the three machines agree, the result of the vote is forced
upon the disagreeing machine and the program continues execution. This leve! of
voting, called "software voting”, has been used in SIFT [Wensi72]1 This method’s
clear advantage is the simplicity of the interprbcessor communication links.

Software level voting also has some disadvantages. First of all the software
necessary to do the voting is not transparent, and the user has to decide when
and how often 1o vote. Second, the “voter" is not "memoryless”. The three
computers are independently execuling the same task. If one computer makes an
error, this error will not be caught and will be allowed to propagate until the next
checkpoint is reached. When an error is finally detected there is still the
problem ot restoring the fauity computer’s memory. The problem can be further

compounded if the compulers have three diffei ent answers.

At the other end of the spectrum, voting can be done at a very low levet in the

N \“f\

}U
_______;;.M

TRIPLICATION WITH VOTING (FAULT FREE VOTER)

FIG. 1
EXT BU
P PBUS S M
EXT BUS
p | PBUS v M
PBUS EXT 8US
P M

BUS LEVEL VOTING (SINGLE VOTER)
FIG. 2

organization of the computer. The boxes in Figure 1 can be simple units such as
single integrated circuits. Voting at this level solves the problem of propagation of
errors and multiple disagreements. However it leaves the user with reduced
flexibility in the area of reliability versus performance and in the area of gradual
upgrade to fault tolerance. The best solution, at the present leve! of technology,

is somewhere between these two extremes.

System Configuration

To be consistent with the design goals of modularity and software
transparency, voting is performed at the bus level. That is, voting occurs every time
the processors access the bus to either send or retrieve information. There are
three processor-memory pairs, each pair connected via a bus as depicted in Figure 2.
A more precise definition of Cvmp would therefore be: a multi-processor system
capable of fault tolerant operation. Cwmp is in fact composed of three separate
machines capable of operating while independently executing three separate
programs. Under the control of an external event or under the contro! of one of the
processors, Cvmp can synchronize its redundant hardware, and start executing the
critical section of code.

“Wilh the voler active, the three buses are voted upon and the result of the
vote is sent out. Any disagreements among the processors will, therefore, not
propagate to the memories and vice versa. Since voting is a simple act of
comp;'lri-:;on, the voler is memoryless. Disagreements are caught and corrected

before they have a chance to propagate. If the voter is not faultless, triplicaled

voters can be used (Figure 3). With this scheme any single element can have either
a transient or a hard failure and the computer will remain operational. In addition,
provided that the processor is the only cdevice capable of becoming bus master,
only one bidirectional voter is needed regardless of how much memory or how
many }/O modules are on the bus. Voting is done in paraltel on a bit by bit basis. A
computer can have a failure on a certain bit in one bus, and, provided that the other
two buses have the correct information for that bit, operation will continue. There are
cases, therefore, where failures in all three buses can occur simultaneously and the
computer would still be functioning correcthly.

Bus level voling works only if informalion passes through the voter. Usually
the processor registers reside on the processor board and so do not get voted upon.
The PDPL1, for example has six genera! purpose registers, one stack poinier, and one
program counter. However, after tracing over 53 million instructions over 41
programs written by five different programmers and using five different compilers, the
following average program hehaviour was discovered [LundA74]:

On the average a register gets loaded or stored to memory every 24
instructions.

A subroutine call is executed, on the average, every 40 instructions, thus
saving the program counter on the stack.

.The only register that normally is not saved or written into is the stack
pointer. To maintain fault tolerance the user must periodically save and
reload the pointer,
This bus level voting scheme can be contrasted with the Draper Laboratory
Symmetric Fauit Tolerant Multiprocessor [HopkA75]. In SFTMP, memory and processor

triads are interconnected by a triplicated serial bus. Program tasks are read from a

memory triad into local memory in a processor iriad where execution takes place.

. (V)

i U

BUS LEVEL VOTING (TRIPLICATED VOTER)

FIG 3

After execution the re;ults are transferred back to memory triads,. The major
architectural differences from C.vmp are:
.Serial bus rather than paralle! bus, thus degrading performance.
.Voting only fakes place on transfers from and to memory triads. Errors in
the processors may accumulate to the point that their results are not

comparable,

Programmer has to partilion problem into tasks and provide for transfer to
processor iriads.

SFTMP has up to 14 processors that can be dynamically assigned to four
triads {two are spares). When a processor fails it can be replaced in its
triad by another processor. However processors cannol operate
independent of triads to improve throughput.

Another voting design is described by Wakerly [WakelJ75]1 The major
difference from Cwmp is thal a unidirectional voter is employed and only the
information flow from memory to processor is voted upon. Muttiple devices on the bus
require separate voters.

The connection of C.vmp to the external world and the system configuration
presently under development are shown in Figure 4a and 4b respectively. The notation
in Figure 4b is: P-processor, V-voter, L-parallel interface, M-memory, and SLU-terminal
interface. To present a detailed description of the voter a brief digression to
explain the DEC’ LSl-I1 Qbus is necessary [LSI] The bus uses a hybrid of
synchronous and asynchronous protocols.

Every bus cycle begins synchronously with the processor placing an
address on the time mulliplexed Data/Address Lines {(DAL).

-The SYNC line goes high and all the devices on the bus latch the address
from the DAL lines. The address is then removed by the processor.

This terminates the synchronous partion ot the bus cycle.

An the event of an input cycle (DATI shown in Figure 5) the processor
activates DIN on the bus.

Cms
HOST

Front
End

C.vmp

ARPANET ~

C.vmp System configuration

FIG 4b

Computer
PDP-10/A P
C.vmp connection to existing facilities
FIG 42

| {
M DisK

L

v 1 1 I

M | | DIsK SLU

L
] |
M DISK

BDAL ¢ ADDR X - X :)ATA D4
§
|
SYNC \ l e
]
]
DIN N\ e
:
REPLY NS

DATI cycle for LSI-11 computer

FIGS
8DAL W ADDR X DATA) 4
SYNC \ /
bour AN
REPLY N~

DATQ cycle for LSI-11 computer

FIG 6

.The addressed slave responds by placing a data word on the DAL lines
and asserting REPLY.

.The processor latches the data word and terminates DIN and SYNC.

dn the event of an output cycle (DATO, shown in Figure 6), after
removing the address the processor places a data word on the bus and
activates DOUT,

When the slave device has read the word it activates REPLY.

.The processor responds by terminating DOUT and SYNC.

The three processors are kept synchronized by two separate means. A master
clock synchronizes the microinstruction fetch-execute cycle in the three processors.
Since bus transactions are asynchronous, they too must be synchronized in order to
keep the processors in microinsiruction lock step. The voter uses the REPLY signal to
synchronize the external bus, In steady state, REPLY is issued by an external device
at least once every bus cycle. At a cerltain point in time triplicated elements will
issue REPLYs on the buses. These REPLY signals will all be on their respective
buses within a window time t. The voter delays the REPLY signals to the processors
until all the REPLYs have arrived. Then a common VOTED REPLY signal is routed to
the three processors (Figure 7). If a REPLY fails to arrive within a time T>t then that
REPLY signal is considered failed for that cycle and a VOTED REPLY based on the
other two buses is sent fo the processors. T is the maximum delay in REPLY a
device on the bus can exhibit and still be within specifications. This method

allows the three processors to receive REPLY within five nanoseconds of each other

and stay synchronizeds.

VREPLY

A
REPLY B
c

Y
L/

Voting circuit for REPLY and DONE
FIG?7

Voter modes of operation

The Voter (Figure 8) can operate in three modes: independent (Figure 9),
voting (Figure 10) and broadcas! (Figure 11).

Independent mode. Buses BB and CC are routed around the voling
hardware. Bus AA is routed to feed its signals to all three inputs of the
voting elements. In this mode C.vmp is a multiprocessor. Switching between
independent and voting modes allows the user to perform a
performance freliability tradeoff.

Voting mode. The transmitting portion of the three buses are routed into
the voter, and the result of the vote is then routed out to the receiving
portions of all three buses. In addition to the voting elements the voter
has a set of disagreement detectors. These detectors, one for each bus,
activate whenever that bus has "ost® a vote. By monitoring these
disagreement detectors, one can learn about the kinds of faillures the
machine is having.

_ Broadcast mode. Only the ransmitting portion of bus AA is sampted and
the content of bus AA is broadcast to the receiving portions of all three
buses. This mode of operation is used for system initialization as well as
allowing for selective triplication and non-triplication of I/0 devices. This
feature was added to provide reliability /cost tradeofts so that a user can
triplicale only those devices he deems necessary. The voter has no idea
which devices are triplicated and which are not. The only requirement is
that all non-triplicated devices be placed on bus AA. To handle non-
triplicated devices an extra line is added to bus AA. Any non-triplicated
device asserts this line during the addressing portion of the cycle to inform
the voter to switch to broadcast mode.

+ The processor samples external events, like REPLY, on the first phase of
specific microinstructions (microinstructions take a multiple ot four clock phases to
execute) The voter blocks external signals that arrive within ten nanoseconds of the
end of phase four. This insures thal there will be no runt pulses [Chan72] with
sufficient energy to allow some processors to recognize and others to miss the
signat. Such divergence woutd quickly cause the processors to lose
microinstruction synchronism.

10

PBUS BB

—»> EXTBUS BB
PBUS AA Vv —» EXTBUS AA
PBUS CC > EXTBUS CC

Unidirectional Voter data paths

FIG 8a.

5

e

L~

Direction mux. Broadcast mux.

JANVAWAN

7/

Bidirectional voter data paths

Figure 8b.

PA
PB
PC

EA
EB
EC

PBUS BB

D - EXTBUS BB

PBUS AA

VYV EXTBUS AA

PBUS CC >D EXTBUS CC

Unidirectional Voter Independent Moade

FIG 9

PBUS BB

> EXTBUS BB

PBUS AA > EXTBUS AA

» EXTBUS CC

Unidirectional Voter Voting mode
FIG 10

PBUS AA

—_‘—E
A

Broadcast from one pracessor to three external buses

FIG 11a

> EXTBUS CC

PBUS BB

PBUS AA

Broadcast from a non-triplicated element to the three processors

FIG 11b

Architecture Extension

In most cases, triplicating a device just means piugging standard boards into
the backplane, as is the case with memory. In some cases, however, the solution is not
quite so simple. An example of a device that has to be somewhat modified is the RX0!
FLOPPY DISK drive. The three FLOPPYs run asynchronously. Therefore there can be
as much as a 360 degree phase difference in the diskettes. Since the information does
not arrive under the read heads of the three FLOPPYs simultaneously, the obvious
solution to this problem is to construct a buffer whose size is large enough to
accomodate the size of the sectors being transferred. A disk read READ operation
would then occur as follows [RXV1].

.The track and sector number {0 be read are loaded into the three interfaces
and the "READ" command is issued.

.The three FLOPPYs load their respective butfers asynchronously.

.The processors wait unlil the three buffers are loaded and then
synchronously emply the buffers into memory.

A wrile operation would be executed in a similar fashion,

Thé main synchronization problem is to find out when all three FLOPPYs have
completed their task or when one of the FLOPPYs is so out of specification that it can
be considered failed. Once this is determined the "DONE" signals are transmitted to the
three buses simultaneously.

There are times, in the case of a switchover from independent to voting mode,
when the three processors must be able to communicate to each other. For this
reasen there are three full duplex single word transfer fully interlocked paraliel
interfaces in the system (labeled L in Figure 4b). The switchover protocol is

implemented in four steps.

11

1. The processor requesting fault tolerance interrupts the other two via
setling a bit in the appropriate parallel interface control register. All three
load a fault tolerant program into memory, from the disk.

2. When each processor has finished loading the program it sets a bit in the
Voter and enters a "wait-for interrupt-state”. In a "wait-for-interrupt” state
each processor relinquishes controi ot its bus.

3. The voter wails for all three processors to set the bit and then switches
to voting mode. Swilching 1o voting mode is accomplished by the circuit of
Figure 7 (ie. a vote is taken after a specified time period if all three
processors have nol responded).

4. The voter, through the parallel intertaces, posts simultaneous interrupts
to the three processors. Since the voter is in voting mode the following bus
cycle will be voled upon. From then on the processors stay synchronized.

The process of leaving fault tolerant operation is simpler, because the
processors are synchronized. A bit is set in the voter allowing it to switch to
independent mode at the end of the current cycle. Operation then proceeds with three
independent processors.

C.vmp is being built primarily tor experiments on how computers behave in the
presence of noise. A Statistics Board has been designed which straddies the three
buses. On command from certain bus and voter signals, the statistics board latches and
stores selected informalion from the bus., In addition, a unique time reference is also
stored so that the collected data can be analyzed. By exposing certain sections of the

C.vmp to a noisy environment, and protecting the rest of the machine, it is hoped that

a model of how transient failures affect computers can be constructed.

The Transient Apalysis Experiment
A search through the literature reveals little or no experimentation in the area
of noninduced transient fault measurements. The main experiments that we hope to

perform on this machine are the following.

12

The first experiment consists of exposing one of the external buses to a
controlled noise environment, either directly coupled through the power supply, or
radiated by a noise source. The rest of the computer would be kept in & shielded
environment.

With the statistics board operating, we can find out how often we get a failure,
where the failure is most likely to occur, and how long a failure lasts. By repeating
the experiment with different noise frequencies and different noise intensities, we can
map the noise susceptibility of components in the computer. By replacing components
and repeating the experiment we can determine the variation in noise susceptib:llity as
a function of component variation due to construction.

For C.vmp to prove successful, the smallest possible correlation between a
companent failing and a corresponding component failing at the same time is desirable,
since these correlated failures cause a system failure. In theory, we would like to
prove independence between failures in similar sections of the computer. Once we
know the probability of a non-fatal failure, we can expose two sections of the system
that perform the same task, and record fatal failures in the system. From the first
experiment we hope to compute the mean and standard deviation of a non-fatal failure.
From the second experiment we hope to compute the mean and standard deviation for
a fatal failure. We can then measure the independence of two sections of the system

to a noise source.

13

3. DESIGN OF BUS LEVEL VOTERS

From the experience gained in designing and implementing C.vmp some
suggestions about fault tolerant bus protocol and voter design have developed. These
are presented in the following subsections.

Synchronous versus Asynchronous Buses

The bus protocol issue is one of the most important things to settle before
trying to build an effective fault tolerant computer. With different protocols various
cost/reliability /performance tradeoffs can be oblained. A few commonly used
protocois will be oullined and compared.

A computer with an asynchronous bus, and separate address and data lines,
would yield a voter less complicated, but using more hardware than Cvmp. The voter
would be less complicaled because any delays in the voter itself could be ignored and
no latching of information would be necessary. The exira hardware would be needed
because separate voling elements would be required to vote on the address and data
lines. The extra hardware would also make the voler less reliable. This bus protocol
would therefore yield a higher performance, higher cost, lower reliability voter than
C.vmp.

A computer employing a synchronous bus with separate data and address lines
requires a slowing down of the processor clock to wait for the voter delay on the bus.
The slower clock would then unnecessarily degrade processor performance during
internal processor cycles. A fast clock with a longer waiting period during & bus
access can be used, bul this would require modifications to processor hardware and/or
microcode. The full bus requires separate voting elements and a similar

cost/performance freliability tradeoffs as the asynchronous bus.

14

By muitiplexing data and address lines in a fully asynchronous bus,
considerable hardware savings can be realized because the same voting hardware can
be used during the address and data portion of the cycle. The PDP-11 bus uses 556
bus lines while the LSI-11, with a muitiplexed bus, needs only 36. This cuts the
hardware requirements by nearly a third, This bus protocol would yield a faster, more
reliable, lower cost voter than Cvmp. As a comparison with a full-width asynchrenous
bus this protocol would yield a more reliable lfess costly voter because less hardware
would be needed. There would be a resulting performance degradation due to
multiplexing. A synchronous multiplexed bus incurs the same problems as the full
synchronous bus.

The bus that is by far the hardest to handle is a part synchronous/part
asynchronous multiplexed bus. This is exactly what the LSI-11 has. Since the address
is synchronous (and since we did nol want o slow down the processor any more than
necessary) it was decided to latch the address in the voter so that it can be held long
enough to vole on it and send it through to the external side, and then open the
latches so that the asynchronous portion of the cycle can take place. These
observalions led us to suggest the following fault tolerant design.

An efficient bus level voting architecture.

In defining a protocol suitable for a fault tolerant computer, two points should
be kept in mind. First the bus should be kept as narrow as possible since the
complexity of the voter increases, and hence the reliability decreases, with the number
of data paths within it. Second, the bus should not be split to insert the voter. The
ideal solulion would be to have the voler as a guard, passively monitoring the three

buses. When there is no disagreement, lhe bus runs at its normal speed (i.e. there is

15

no degradation due to signal buffering elc.) As soon as a tault is detected the voter
would' take control and provide the corrected information on the bus. The only
problem with this protocol is thal information gets to the voler no faster than it gets
to all the other devices on the bus. It is impossible to vote and have the corrected
information before other devices on the bus get it. The voter, once a mistake is
detected, must suspend the bus master, gain control of the bus and broadcast the
corrected information, This idea can be implemented using both synchronous and
asyncﬁronous buses whelher or not they are muitiplexed, but yields the best
cost/reliability /speed performance for a multiplexed bus. For an asynchronous,
mulliplexed bus the protocol could be implemented as follows.
The proposed protocol does not split the bus. The bus lines needed for a

memory or 1/0 reference are:

16 bus Data/Address lines: BDAL<15:0>

Master Synch Line: MSYS

Data in Line: DATI

Data out Line: DATO

Processor Synchronization Line: VSYNC

Bus Master Hold Line: BHOLD

If there is no error, or if there is no voter, the protocol for a single processor-
memory pair would proceed as follows for a DATA IN bus cycle:
.The Bus Master asserls the address.

After the address has wetlted MSYS 15 activated.

The Slave receives and decodes the address. The address is removed by
the Bus Master and DATI is asserted.

.The Stave puls data on the bus and the Master retrieves it.
The Bus Master terminates DATI and MSYS.

.The bus cycle terminates.

16

The voter controls the Bus Master using the VSYNC and BHOLD lines. VSYNC is
needed to keep the processors synchronized. It is issued by the voter at the end of
each bus cycte. BHOLD is issued by the voter in response to a MSYS, DATI, DATO if a
disagreement has been generated on the bus. The Bus Master responds by releasing
control of the bus and entering a "wait” state until BHOLD is disabled by the voter.
The voter, once a disagreement has been detected, becomes bus Master and
broadcasts out the voted information back on the bus. The receiving device can then
latch the information a second time. The only critical delays are the times between an
MSYS and DATI, MSYS and DATO and the time a Stave responds to a DAT! and the time
MSYS terminates. The time between these signals has to be sufficiently long so that
the voter has time to assert BHOLD if necessary. After the voter has finished the
broadcast operation BHOLD is released and the processors can continue with the next
step in the bus cycle. Operation in independent mode is achieved by disabling BHOLD
and enabling VSYNC. In this fashion the bus master cannot be stopped and will not be
forced in synchrony with the others. Another major advantage is that no data paths
cross the voter. This makes the debugging of the voter easier since a compiete

working voter is not required to operate the multiprocessor.
Voter Simplifications.

One of the major problems with splitting the bus to insert the voter is that the
memory on the LSI-11 card can no longer be used because it is on the wrong side of
the voter. Since this board space can no longer be used for memory, it can be used
for the voter. if the voter can be made compact enough, and if the size of the
processor board could be made HEX instead of QUADs, then the voter could be fitted
* HEX: board containing 108 16 pin ICs and having 216 edge connectors.

QUAD: board containing 72 16 pin ICs and having 114 edge connectors,

17

directly on the processor board. To triplicate the voter, and preserve operation in
independent and broadcast mode, a total of 300 chips would be needed. By
customizing some of the circuitry, however, large hardware savings can be achieved.
One design involves the customization of two chips.

1. A four bit multiplexer with output latches and input bus receivers,

2. A pair of four bit multiplexers with four one bit voters, disagreement
detectors and bus drivers.

This design would reduce the number of ICs far a triplicated voter to 195.
A second, alternative design, involves putting a four bit bidirectional voter and
disagreement detectors and part of the control logic in a 40 pin package. This would

reduce a triplicaled voter to 30 chips. Table 1 summarizes these findings.

Table 1. Chip count for different implementations

Single Voter Triplicated Voter
Current design 250 300
Current design on
processor card 8423 10023
Integration level 1 603 6343
Integration level 2 10 1043

18

4, C.VMP IMPLEMENTATION EXPERIENCE

Hardware implementation and modifications

Figure 8a. shows a single unidirectional line in the voter, such as an interrupt
line. The muitiplexer and output gating select the operating mode. In Figure 8b., a
bidirectional data line is shown. A second set of multiplexers is added to select the
direction of voting (toward or away from the bus master). The propagation delay of
the voter necessitates latching the address, which extends the address time on the
bus. Error detection hardware (no! shown) compares each input with the output of the
voting element for use in gathering statistics on bus errors.

Since one of the goals of the project is to construct a fault tolerant computer
from standard components, few changes have been made to most boards. The
processor clocks were combined into a single clock in the initial design, but this has
been rejected in favor of having three clocks with a common reset line for
synchronizing. Eventually, a true fault tolerant clock (as in [DalyW]) will be
inmplemented.

The Fault Tolerant Computer is assembled in a standard DEC cabinet. It is
composed of the following parts:

1) Power Switch

2) An H720 DEC power supply rated at 20a. @+5v,7a®+21v, 7a.8-21v
3} 3 Backplanes

4) 3 RX01 FLOPPY DISK DRIVES

B) 3 LSI-11 Processors

6) 1 Voter

7} 36K of semiconductor dynamic memory (3 sets of 12K)
8) 6 Parallel Line Unils {PLU)

9) 1 Serial Line Umit

10} 3 RX01 interfaces

11} 3 +12v regulators

Bus, Processor, Voter and Peripherals modifications

19

Processor modificatlions were kept to a minimum and amounted to the addition
of a few wires and the breaking of a few etch points, No new circuits have been
added. The clock on processor AA (PAA) is being used as the Master Clock.

The following modifications are required on PAA,

1) 4 wires to feed the four clock phases to the Voter.

2) 1 wire to generate the memory refresh clock on all three processors.

3) 1 wire to feed the clock to processors BB and CC.

4) 2 wires to synchronize the clocks on processors BB and CC

Processors BB and CC (PBB, PCC) require the following modifications.

1} 1 wire to receive the memory refresh clock. |

2) 1 wire to receive the Master clock.

3) 2 wires to receive the clock synchronization signals
The following modifications must be made in the disk interface to achieve operation in
- fault tolerant mode. Two bits are used by the disk to communicate with the processor
[RXV1] They are TR and DONE. TR specifies that the disk interface needs or has
avallable a byte of information, DONE specifies that a disk operation has been
accomplished. To operate in fault tolerant mode these bits have to appear together on
the three buses. Therefore some circuit must wait untii TR or DONE has appeared
from all three disk controllers before releasing TR or DONE on the buses. This circuit
must also sense when one disk has failed and continue operation without it. A circuit
very similar in concept to thal of the REPLY voter (Figure 7) is implemented for the
dish,

The Serial Line Unit {SLU), or telelype interface has been our example of a

non-triplicated device on the bus. To operate in a non-triplicated mode the SLU must

20

communicate with the voter through the Non Triplicaled Element Line (NTEL). The SLU
asserfs this line whenever its address is on the bus and holds the line asserted for the
whole bus cycle.

The parallel interfaces (PLU) have not at present been installed. However, no
known modifications are required for triplicated operation.

The memory needs no modifications to operate in triplicated mode.

The voter is the only totally custom designed circuit in the Cvmp. It is
compased of three HEX sized boards called VAA, VBB and VCC. VAA and VCC contain
most of the data paths, while VBB contains most of the control logic.

Triplicatled Power Supplies

The three buses need independent power supplies so that any section of the
system can be powered down for maintenance or repair without having to halt the
whole computer. Independent power supplies also reduce the chance of noise
crosscoupling on the three buses. In our case we decided not to triplicale the power
supplies. Only the +12v regulalors have been triplicaled. The +5v and the +12v lines
leading to the three buses have been provided with separate on-off switches.

The Statistics Board

The Slatistics board has been implemented as follows. There are 48x1k shift
registers, Twelve are allocated fo each bus. Twelve are used to store a unique time
reference. For each bus, four shift register positions are altocated for the SYNCH,
REPLY, DIN and DOUT bus signals and eight are allocated for half of the data/address
lines. The botiom or the top half of the data/address lines can be chosen under
manual or program control. The processors can communicate with the Statistics board

in Broadcast mode through the bus as a regular 1/Q device. The Statistics Board is

21

capable of posting interrupts o the processor. The Statistics board receives the
output of the disagreement delectors and certain control lines directly from the voter.
Based on manually preseltable switches the Statistics board can store disagreements
in conjunction with the occurrence of SYNCH, DOUT and REPLY. These signals mark
that there is useful information on the bus.

A twelve bit counter counts bus cycles. The value of the count is stored with
every disagreement providing a unique time signature to the occurrence of a fault.
Every time the counter completes one full cycle an empty frame is stored in the shift
registers to provide further timing information. When the storage capacity of the
Statistics board has been exceeded an interrupt to the processor is posted so that
information can be transferred from the shift registers to the disk where it can later
be retreived for data analysis {See Section 4). However at any time the processor can
reset, stop, or emply a partially filled Statistics board.

Debugging Experience

Fault tolerant computers cannot be debugged and tested as regular computers.
The computer can be execuling correct instructions and performing a required task
and still some of its components might not be functioning. In some designs, where
three processors stay synchronized by virtue of some external timing signal which
depends on the system being operational, the initial phase to bring the the system to
an operating state can be tedious and lenglhy. 1t is imporiant that some features that
céuld ease the debugging effort be designed into the computer. The use of off-the-
shelf components wilh a minimum of modifications helps to reduce the amount of
hardware to build and test. However careful attention should be paid to the kind of

hardware used. For example, the use of dynamic memory is not recommended during

22

the debugging phase if the processor microcode is in charge of doing the refresh. If a
glitch causes a failure, the content ot memory is lost. In our cese the capability to
operate the three computers in independent mode helped considerably. Aimost 907 of
the data paths and virtually all the control logic could be tested with a single
processor operating at a time. Once the three processors work independently, the
task of synchronizing the three computers is greatly simplified.

Power-up, bootstrap sequence and diagnostics

RT-11 is the operating system currently used. It is stored on Floppy disks,
The Serial Line Unit that normally communicates with the console teletypewriter is
connected, through a high speed link, to the HOST computer for Cme [SwanR75]. The
HOST is a DEC PDP 11/10 computer and has a link connecting it to the Front End
compiiter which services the PDP-10 (Figure 4a). The use of the HOST and the Front
End computer make down line loading and bootstrapping from files on the PDP-10
quite easy. The LSI-11 lacks a front console with the lights and switches. Inslead
microcode has been provided to execule ODT with the teletypewriter. A paper tape
bootstrap ioader has also been provided in the microcode. These facilities remove the
inconvenience of having to hand loggle bootstrap programs into C.vmp. Bootstrapping
is done in the following way. The computer is initialized in fault tolerant mode by
manually generating a single initialization signal to the three processors. This brings
C.vmp up in voling mode execuling console ODT to the SLU. The single SLU is now
capable of broadcasting to the three processors. A link from the HOST, through the
Front End, to the PDP-10 is opened to permit file transfer for down line loading C.vmp.
Using a Front End connected terminal we then log on the HOST and request the use of

C.vmp (called Computer Module Fault Tolerant (CMF1) in Cm# notation). From the video

23

termina! we are then able to communicate to CMF1 through ODT. Using this mechanism
programs can be hand lyped in the machine and executed directly. However using the
BLISS! compiler and the MACNL1 assembler, programs can be written and assembled
on the PDPfIO. A binary file is transmitted to the HOST and loaded in CMF]. The
HOST returns control of CMF1 to the terminal in QDT and we proceed from there. The
program loaded is usually the floppy disk bootstrap routine which is used to load the
RT-11 operating system.

Diagnostics far C.vmp

A fault tolerant computer is designed to operate even it certain sections of the
machine are failed. Therafore standard diagnostic methods cannot be used. If a
computer is capable of operating only in fault tolerant mode then the only method to
run diagnostics is to disconnect certain sections of the system until the computer is no
longer fault tolerant. Diagnostics can then be run on sections of the machine at one
time. If, as is the case for Cvmp the three processors can operate in independent
mode then the diagnostic process, although more complicaled than for a regular
computer can, in parl, be automated. The basic idea is that while the three processors
are operating independently each machine can check itself through regular diagnostic
routines and can then check the other two machines through the parallel interfaces.
This set of diagnoslics tests most of the machine, Some of the voter data paths (see
Figure 8) that are not tested by operation in independent mode can be tested by
selectively powering down thal section of the system.

Software protocol for switch between independent and voting mode.

C.vmp would, under normal applications, spend most of its time in independent

mode thus maximizing the performance capability of the system. The three processors

24

would be executing three totally unrelated tasks, with the possible exeption of having
to share some peripherals, or could be working on different section of the same task.
This is the multiprocessor environment. A typical example would be the onboard
computer of a space vehicle where each computer would be assigned a separate task
during noncritical portions of the flight. When the need arises, however, the three
processors must be synchronized in a short time to execute a task in fault tolerant
mode. This case might arise during the calculation of a critical burn, where an error
might lead to a catastrophe during the subsequent burn, and during the burn itself
when the lack of real time response can be just as fatetul. The switchover protocol
always terminates with lhe steps describes in Section 2. We get there as follows.
Assume that the three computers are executing separate tasks and that one of the
processors requests a switch to faull tolerant mode.

1. The requesting processor interrupts the other two and through some

handshaking sequence requests the switchover. At this point the other fwo

processors should make sure of the validity of the request before blindly

accepting it.

2. When the validity of the request is proven the three processors should

determine system resources.

3. The sequence in Section 2 (page 11) is perfarmed.

25

5. RELIABILITY MODELS

There are two ways to improve the hardware reliability of a computer: improve
the component reliabilities, or employ redundancy. The first method has been
effectively applied in complete screening and testing programs. But there is a limit,
set by the law of diminishing returns, beyond which such methods cannot be
economically justified, Redundant design, when coupled with the first technique, can
give improvement in reliability otherwise impossible to obtain.

In any redundant system, results must be obtained by taking a weighted sum of
the outputs of each replicated portion.

Y = alYl + a2Y2 o+ anYn

where a; is the weight of output Y- When equal weights are given to all outputs, the
method is called voling. Each weight is thus:

arnnl

In order to break ties, n must be an odd number. Therefore, n=3 is the least
non-trivial voting configuration.

The size of the portion which is replicated determines the type of voting which
takes place. At one extreme, the entire computer can be reproduced, requiring only
“process-level” voting, This places the burden of voting on the software designer,
since convenient points for saving or comparing results must be inserted in all code.
At the other extreme, voting on the component level would require immense effort on
the part of the hardware designer, as well as an inordinate number of voting devices
[LyonW] Replication at the board leve! facilitates maintenance, but would require a

different voter design for the outputs of each different type of board.

26

Ideally, the voter should be placed at a level where all parts of the syrstem
meet in common. With a computer based on a general bus structure, the choice is
obvious. A bus-level voter will observe all system-wide transactions in a computer
without requiring either extensive redesign or software changes. When the bus
protocol is the master/siave type, one voter is required for each bus master. This
ensures thal every bus transaction will be voted [SiewD76]

This section presents a reliability analysis of C.vmp for both permanent and
transient fauits. The result is compared with an equivalent non-redundant computer,

as well as the effect of the redundant architecture on performance.

Permanent faull models

To calculate the reliability of C.vmp, we assume a hardware configuration which
consists of three processors, 28K of memory per processor, the voter, the console
serial interface (SLU) and appropriate power supplies.

The reliability calculated for permanent (stuck-at) faults is based on a parts
count model of the system [Mii74]). For each component, a failure rate is calculated.
Reliability is assumed to be exponential with failure rate and time, in the form:

Reexp(-LsT)
where L is falure rate in failures per million hours, and T is time in millions of hours,

The reliability of a non-redundant module is the product of its component
reliabilities, which is found by summing the failure rates. The total system reliability
(redundant or non-redundant) is the sum of the reliabilities tor each correctly

operating state.

27

Non-redundant

The non-redundant system has a failure rate found by simple summation of
the individual failure rates:
Rnon =exp{ - (Lp + Lm + Ls + (w)* T)
Substituting the failure rates from Table 2 yields:

Rnon = exp(-844.]1 £ T)

Table 2. Failure rates for system components

Lp = 383.4 .SI-11 processor module.

Lm = 61.1 Memory module (4K semiconductor RAM)
Ls = 4.4 Console terminal serial interface
lw = 250 Master power supply
Lr = 3.6 Replicated section of power supply
Lvp= .8 Triplicaled portion of voter on the processor bus
Lvm= 9 Triplicated portion of voter on the external bus
Lv = 3.1 Triplicaled portion of voter on both buses
ln = 3.7 Nonr-triplicated portion of voter
Triplicated

The reliabilily of the Iriplicated system shown in Figure 4b is found by
summing the reliabilities for all states in which the system is correctly operating. Each
state 15 a combinalion of working and failed units,

The wvarious paris are:
Rp = reliability of processor bus elements

exp{ -(Lp + Lvp + Lr) = T)
exp(-387.8 x T)

1

Rm = reliability of a single 4K memory module
=expl ~Lm «T)
= exp(-61.1 * T}

Rv = reliability of the triplicaled part of the voter

= exp{-Lv = T)
= exp(-3.1 * T)

28

Rn = reliability of the non-triplicated part of the voter
=exp{ -(bn + Lr + Lw + Ls) £ T}
= exp{-36.7 ¢+ T)
Re = reliability of the part of the voter associated with the external bus
w pyp(~{Lvm + Lr) + T)
= exp{4.5 * T)

The reliabilities for each operational state are:

1) At most one processor failed, at most one memory module per
4K address range failed, voter and buses all working.

R1 = (3Rp2 - 2Rp3) + (3RmZ - 2Rm3) s Rv3 Rn + Re®
2) At most one processor failed, single memory bus failed, voter

and all memory on the other two buses working.

R2 = 2 ¢ (3Rp2 - 2Rp3) + Rm!% 3 RV3 + Rn + Re2(1 - Re)
3) One third of voter failed, all processors and memories on the

other two buses working.

R3 = 2 + RpZ + Rm!? x Rv2(1 - Rv) * Rn s Re?

The coetficient of two in 2) and 3) represents the two possible
configurations for this error. If the error were to occur on the third bus (bus A), then
the system would be considered failed, since the console could no longer be accessed.

Note that in the last case, the failure of a third of the voter masks the
operation of one processor-memory pair, Since it no longer matters whether that pair
operates, the Rp and Re terms are only squared.

When added together, the triplicated reliability reduces to:

Rt = (3+RmZ - 2Rm3)7 + Rv3 + Re3 x Rn » (3Rp2 - ERpa)
+ (Rm” % Rv * Re + Rp)? % Rn # {Rv(4 - 6Re - 4Rp + GReRp) + 2)

Substituting the values from Table 2 yields:

Rt = (3 exp(~122.2 % T) - 2 exp(-183.3 + T))’ 1 (3 exp(-835.1 * T)
-2 exp(-12229 £ T)) + A exp(-1649.3 x T) - 6 exp(-1653.8 ¢ T)

29

- 4 exp(-2037.1 + T} + 4 exp(-2041.6 + T) + 2 exp(-1646.2 £ T)
Note that triplicating all elements of the voter would give theoretically
complete single fault tolerance, but would have littie effect on the actual system

reliability, due to the smali size of the failure rates Lv and Lm.

Independent mode

In independent mode, the reliability of a single processing unit is similar to the
non-recdundant system, with the addition of the voter failure rate.

Rind =exp{ -(Lp + (Lvp + Lv + Lvm +Ln) + 7Lm + Ls + Lw + 3Le) 2 T)
this yields:

Rind = exp(-859.8 » T)

Broadcast mode

In broadcas! mode, the processor side (Rps) is triplicated but the external
side (Res) is nol. This gives a reliability of:
Rbrd = (3Rps? - 2Rps3) * Res
where the reliability of the processor side is:

Rps = exp(«{Lp + Lvp + lv +Lr)* T)

and the external side (including the non-triplicated parts of the voter) has a reliability:
Res = exp{ ~{(Ln + Lvm + mT7 + Ls + 2Lr + Lw) = T)
When the numbers are substituted, this reduces to:

Rbrd = 3 exp(-1250.7 #+ T} - 2 exp(-1641.6 # T)

Figure 12 shows a graph of reliability vs. time for each of the above models.

30

1.0

redundant

2 4 non-redundant

P =
e

1000 2000 3000 hours

Figure 12. Permanent fault reliability versus time.

The reliability of C.vmp in independent mode is indistinguishable from that of the non-
redundant LSI-11. Table 3 shows the mission time improvement factors derived from

the graph.

Table 3. Mission time improvement.
Hours of operation above reliabitity

Rel. LSI-11 C.vmp MTI

.99 12 103 8.6

.95 60 286 4.7
.90 125 440 35
80 264 694 2.6

Transient models

To model as system for transient faults, assumptions must be made about the
form that transients will take. The complexity of the system is reduced by assuming
that transients take the form of noise signals added to the bus signals. Since it is also
assumed that bus noise affects all modules connected to that bus, no generality is lost
by ignoring transients which are local to a board.

Bus noise can be characterized by two parameters. The probability that the
noise causes the bus line to be incorrectly read by the receiving device is F. The
duration (in bus cycles) of a transient is N. The measure used for reliability will be the
probability that the system survives a given transient,

Faults are assumned to be signal independent (that is, the fault probability is
not affected by the value of the signal). Faults are also assumed to be well-behaved

[SiewD75]. A weli-behaved fault will affect all paints on the bus identically.

Non-redundant system reliability

31

In the non-triplicaled system, any bus fault will cause a system failure.
Since the LSI-11 uses 32 bus lines (not counting four spares), the probability of
successful operation for a bus cycle during a transient is:
(1 - F32

For the duration of the transient, this becomes:

(1 - Fy3eN

Redundant system

The redundant system can be modeled in more than one way, depending on
what we believe to be the dominant failure mode of the sysiem. The first model
considers the accumulation of disagreements in memory during the course of a
transient [SiewD75) The second model is addressed to loss of synchronization
between processors [WakeJ75} The section concludes with alternative methods for
improvement of reliability, depending on the outcome of the transient analysis

experiments,

Redundant system reliability - memory model

The triplicated system fails if any two control lines fail:

(3(1 - F)2 - 2(1 -)36

Failure also occurs if two dala lines fail. However, data line failures have memory (an
accumulative effect) in thatl a single failure on a write to a memory location, combined
with a single failure on a read to the same location, will cause a system error. Assume

that this accumulative effect only holds for the duration of the transient (i.e., that

32

transients are far enough apart that any wrong memory cell will be correctly
rewritlen, thus erasing the error, before the next transient occurs). Furthur assume a
decaying model of program behavior in memory references. The probability of
accessing the same location on the ith bus cycle atter the initial access is el Hence, a
word written to memory bhas a probability of e’ of being read during the same
transient, and thus being vulnerable to failure. This exponential mode! of program
behavior is intuitive, and does nof, of course, preclude the use of other models.

for the data lines:

((352-253H16 N

where the term for the accumulative etfect of memory errors is:
S=(1-Fe’lr)

Recalling that:
Tel=(-eMete/E1

yields the total equation for the reliability:
Rt = ((3(1-F)% - 2(1-F)3) * (3(1 - F(l-e"Nye/e-1))2

- 21 - Fe(i-e Nye/e-1)3)16N
Tabie 4 lists the reliabilities for some typical values of F and N. Note that the

accumulative effect of memory errors does not severely degrade reliability, even for

extremely long transients.

33

Table 4. Comparison of transient faull reliabilities

C.vmp Non-redundant
F o 001 .00001 001 .00001
N
10 .998 1.000 726 997
100 .979 1.000 041 968
1000 .805 1.000 10718 725
10000 .115 1.000 0 080

Redundant system reliability - synchronization model

A single fault will fail the redundant system onty if voting does not cause the
system to recover before a second error. [f a processor receives an incorrect
instruction, it may lose step with the other two in their microcode sequence. When
this occurs, the processor will either halt due to bus errors, or execute improper code
until it randomly falls into synchronization with the other two.

The probability of an error occurring during a transient is:

1 -1 -F32
The probability that the cycle in which the error occurs is an instruction fetch is:

(1 -(1-F)32) s
Finally, the probability thal the error will cause the processor to hait is:

p2 =(1 -(1 -F)®2) x 1+ D1

A count of the types of PDP-11 instructions and bus cycles in a sample of code
gives a raw estimate of I and Df (see Appendix A). When this is compared to a count
for repeatedly ;execuied code (code appearing in ioops) in order to weight the

numbers for frequency of execution, (rather than just frequency of appearance in a

34

program), the two counts agree closely, and no weighting is required. The estimated
values are 53 for | and .41 for DI,

Garbled data, and some erroneous instructions, wilt not cause the processor to
fail, but the registers will contain incorrect data. Due to the voter and the presence of
two correct processors, the incorrecl processor will continue to execute the same
instruction sequence as the others. This will eventually cause the registers to be
corrected. The recovery rate is an exponential term, which decays over the course of
10 to 50 instructions due to register lifetime [LundA74]. The probability of this type
of error occurring is similar to the above,‘ but the muitiplier is {1 - [sDf) to give the
probability of not halting on an error.

This probability is:

pl=(1 -1 -F)32) (1 - 14D

Hence, there are two system failure modes. A processor can halt when it
receives an incorrect instruction, or it can have a temporary failure from which it will
recover within a few cycles, The system will fail whenever two processors have
simullaneously failed.

We can represent the system as being in one of four states:

SO - all pracessors operating.

S1 - asingle processor has a temparary failure.
S2 - a single processor has halted.

S$3 - system has failed.

A state malrix M can be made of the conditional probabilities of a transition
between any two states. The reliability of the system is the probability that the
system is not in state S3 at the end of N bus cycles. A vector of state probabilities
after N cycles can be found from;

P(N) = S0 ¢ MY

35

Although no solution can be found in closed form, we can compare the two
systems for particular values of F and N (Table 5). The recovery rate from temporary

failures is assumed to be .03, which gives a mean recovery time of about 33 bus

cycles.

Table 5. Comparison of transient reliabilities

F N (1 -FFEN (1 - ot
001 10 .726 839
00001 10 .997 1.000
001 100 .04l 020
00001 100 .968 999

Alternatives

It has been shown that accumulative memory errors will not adversely affect
the reliability of the system. The danger ot a processor becoming unsynchronized is
more acute. Altering the microcode of the LSI-11 can, when combined with
appropriate software, eliminate the possibilities of halts and temporary losses of a
processor. First, the HALT instruction and all bus errors should trap, instead of
entering ODT (the console service routine). A trap routine would resynchronize the
processor which has hailed. If an actual halt state is needed, the branch instruction
would serve (octal "000777). This is an infinite loop consisting of one instruction. A
console switch connected to the HALT fines of the three microprocessors can be used
to enter ODT when necessary (for maintenance, or cold starts etc.), but it should never

be possible to enter ODT under program control, since it is not possible to get out

36

without external assistance, Additional hardware may be needed on each processor
board to sense the beginning of the voted instruction cycle for use in resynchronizing,

Systems employing triplication are characterized by an initially high reliability
due to the probability of ali three sections being operative. This is paid for by a
lower reliability later in the life of the sytem when the probability of a module failure
has increased. To restore the system to its original reliability, periodic maintenance
should be employed. This technique is greatly facilitated by the ability to power down

sections of C.vmp withourt interrupling operation in the other two sections.

37

6. PERFORMANCE MODELS
Pertormance degradation is calculated for two activities: the memory cycle
time, and the disk access time.

Memory cycle time

Two properties of the voler cause an increase in bus cycle time over the non-
redundant system. The propagation delay of the voter requires some of the control
sighalts 1o be delayed to insure correct data reception. Secondly, the voter prevents
the processors from losing synchronization by latching inbound control signals (e.g.
reply line and interrupt requests) during the clock phase in which they are sampled by
the processors. This insures that all three processors will see the reply during the
same clock phase, but also causes receipt of these signals to occasionally slip by one
clock cycle {400 ns.). Since the window during which the signals are latched tasts 40
ns. out of every bus cycle, the average degradation per cycle is: 5 * (40/400)
* 400 = 20 ns,

The address part of the bus cycle is lengthened 200 ns, by the delay on the
SYNC control line. This is the sum of the voler propagation delay, the bus settling time
and lhe worst-case processor ctlock skew (assumed to be half of a clock phase, or 50
ns.). Because 200 ns. is longer than the time that the address is present on the
processor bus, latches are used {0 hold the address until it can be seen by the slave.
Other data signals are allowed lo appear only after the address is gone, so read and
write cycles are delayed an additional B0 ns. for propagation delay. Finally, the end of
the cycle is delayed to match the start. The typical time degradations are listed in

Table 6.

38

Table 6. Performance degradation due to the voter.

typ latch delays total degradn
DATO 1600 20 450 470 29 7%
DATI] 2000 20 450 470 237
DATIO 3600 40 650 690 197

Disk access time

Access time to a particular position on a rotating memory is assumed to be
direclly proportional to the initial position of the disk. Since the hardware makes no
attempt to synchronize disk rotation, access to the triplicaled disks will take the
maximum of the three times. In general, for n disks, the access time is given by
[LevnD74]:

To = MAX (t1, 12, .. tn)

Assuming that each access lime 1t is uniformly distributed over the normalized

range (0,13, the expected value for access time is:
Tn=n }/{n+])

This means that for a single disk (n=1), we can expect to wait .5 rotations; for

the triplicaled disk (n=3), .75 rolations. This gives a 507 degradation in access time

for the triplicated disks over the non-triplicated disk.

39

7. SUMMARY AND CONCLUSIONS

The goal of the project was to propose, analyze and synthesize a computer
capable of operation in spite of transient and hard faults. Various design techniques
were explored lo fulfill the goals of software transparency, modularity, real time
capability, and performance/reliability tradeofts. Triplicated modular redundancy at
the bus level was selected as the architecture best suited to the task. Cvmp is
capable of operation in three modes: independent, each processer communicates with
its own bus; voting,the fault tolerant mode; broadcast, selective devices may be left
non-triplicated. Off-the-shelf components were used with only minor modifications: in
the LSI-11 processor, four wire changes; in memory, no changes; and to the floppy
disks, three chips added. Synchronization was achieved by both an internal clock
synchronizing the microinstruction execution and an external timing signal
synchronizing the bus cycles. Early performance measurements show a degradation of
20-307 over a non-redundant system. The main use of Cwvmp will be to perform

experiments on the occurrence of transient faults in computers.

Acknowledgements

Cvmp was designed using the Stanford Drawing Package which produces
hardcopy logic drawings and wirewrap lists. Al Dunlop assisted in the design,
documentation and production of the voter and statistics boards. Ed Snow contributed
numerous hours in the debugging phase. Also, special help was offered throughout the
project by William Avery, Lloyd Dickman, Steve Teicher, Rick Dlsen, and Mike Titlebaum
of Dipilal Equipment Corporation. The faculty and students of the Computer Science
Department provided a cheerful ambience during the production of this report.

40

8. APPENDIX A

Instruction mix in a sampie of PDP-11 code
Assuming that the code as a whole represents the same mix as the code
executed, a count of 200 instructions from a real-time processing system [AlsuM74]

can be broken down as tollows:

Table A.1 Breakdown of code by bus cycles.

Total Inioops Type of cydles

91 40 Fetch only
38 9 Fetch + DIN

5 2 Fetch + DOUT

1 13 Fetch + RMW

a9 0 Fetch + DIN « DOUT
ib 0 Fetch + DIN + RMW
1 0 Fetch + DIN + DIN

where DIN = data in, DOUT = data oul and RMW = read-modify-write.

To justify the assumplion abou!l execution, a second count was made of just
that porlion of the code which was repetilively execuled (appeared in loops). This
method is admitiedly ad hoc; however, it was felt that if the two counts agreed then it
did nol matter how often sections of code were traversed, the overall execution would
still remain homogeneous with respect to the types of bus cycles being executed. The
counts for the loops appear in the second column of Table A1,

The resulting breakdown is shown in Table A2

Table A.2 Frequency of bus cycle types

Type Total In loop
Feteh 53 7 63 7
Data in 28 22
Data out 15 i5
Read-mod-write q 0

41

9. REFERENCES

[AlsuM74] Alsup, Clark, Hackwelder, MConnell, Price, Talmadge, "A Computer -
Controlled Vehicle with Sonar Obstacle Detection”, Electrical Eng. Dept.,
C-MU, 1974

[AvizA71] Avizienis, A, G. D. Gilles, F. P. Mathur, D. A. Rennels, J. 5. Rohr, D. K. Rubin,
"The STAR (Self-Testing-And-Repairing) Computer: An Investigation of
the Theory and the Practice of Fault Tolerant Computer Design”, IEEE
Transactions on Computer, Vol. ¢-20, no. 11, November 1971, pp. 1312-
1321

[BarlO67] Bartos, 0.1, "Simple Models of Group Behaviour”, Coloumbia Press, 1967, pp
23-38,

[BourWé9] Bouricius, W.G.,, W.C. Carler, P.R. Schneider, "Reliabiiity Modeling Techniques
for Self-Repairing Computer Systems", IBM Watson Research Center,
Yorktown Heights, N.Y. 1969.

(BourW71] Bouricius, W.G., W.C. Carter, D.C. Jessep, P.R. Schneider, A.B. Wadia,
"Reliability Modeling for Fault Tolerant Computers”, IEEE Transactions
on Computers, Nov, 1971.

[Cane76] Canepa, MA, "Cvmp: The Implementation of a Fault Tolerant Multi-
processor”, EE. Dept., C-MU, 1976.

[Chan72) Chaney, T.J, Ornstein, S.M, Littlefield, W.M.,, "Beware the Synchronizer”,
Compcon 1972, pp. 317, 319.

[ClarS76] Clark, S.0, "Design and Analysis of a Fault Tolerant Computer”, E.E. Dept.,
C-MU, 1976,

[DatyW] Daly, WM, Hopkins, Al.Jr, McKenna, JF., "A Fault Tolerant Digital Clocking
System”, MIT C.S,, Draper Laboratory, Cambridge Ma.

[DuntA76] Dunlop, A, "Reliability Calculation for a Fault Tolerant Computer", C-MuJ
Memo, 1976,

[Gold.}75] Goldberg, J, "New Problems in Fault Tolerant Computing", International
Symposium on Fault Tolerant Computing, 1975,

[HopkA75] Hopking, AL, Jr, Smith, T.B, "The Architectural Elements of a Symmetric
Fault Tolerant Multiprocessor”, IEEE Transactions on Computers Volume
C-24, no. B, May 1975, pp. 498-505.

[IBM72] "A Guide to the IBM Syslem/360 Model 145", IBM Corporation, Technical

Publicalion Department, 1133 Westchester Avenue, White Plains, New
York, Third Edition, August 1972,

42

(LevnD76] Levner, D, "The N-Disk Problem Solved”, C-MU Memo, Nov 1976,

[LogA] “1600A Logic Stale Analyzer Operating and Service Manual” Hewlett
Packard Colorado Springs division,

(LSI1] "LSI-11 PDP11/03 Users Manual®, Digital Equipment Corporation.

[LundA74] Lunde, A, "Evaluation of Instruction Set Processor Architecture by program
tracing", Depariment of Computer Science, Carnegie Mellon University,
July 1974,

[LyonR62] Lyons, RE., Vanderkulk, W., “The use of Triple-Modular Redundancy to
Improve Computer Reliabitity”, IBM Journal of Research and
Development April 1962, pp 200-209.

[Mil74] Mil-Std-Hdbk-2178, “"Military Standardization Handbook: Reliability
Prediction of Electronic Cquipment”, Sept 1974,

[RandBB75] Randell, B, "System Structure tor Software Fault Tolerance”, IEEE
Transactions Software Engineering, June 1975, pp 220-232.

[RXV1] "RXV11 Users manual”, Digital Equipment Corporation,

[SiewD71] Siewiorek, D.P., "A Unifying Perspective of Fault Tolerani Computer
Technigques”, Technical note no 61, Digital Systems Laboratory, Stanford
University, 1971.

[SiewD75] Siewiorek, D.P, "Tranuient Fault Model for a Triplicated Fault Tolerant LSI-
11", Research & Development Group, Digital Equipment Corp., 1975.

[SwanR75] Swan, R}, Fuller SH, Siewiorek D.P, “The Structure and Architecture of
Cma", Computer Science Departement Research Review, 1975, 76,
Carnegie-Mellon Universily,

[Vonndb6] von Neumann, I, "Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components”, Aulomata Studies, from Annals
of Mathematics Studies no 34, Princeton University Press, pp43-99,
1956.

[Wakel75] Wakerly, LF., "Reliability of Microcomputer Systems Using Tripie modular
Redundancy”, Technical note no. 4], Digital Systems Labaratory,
Department of Electrical Engineering and Computer Science Stanford
Umiversity, April 1975,

[Wensd72] Wensley, JH, "SIFT - Software Impiemented Fault Tolerance” AFIPS

Conference Proceedings, Vol. 41, Part 1, AFIPS Press, Montvale, New
Jersey 1972, pp. 243-254,

43

