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Preface

This report is a collection of three papers that describe the design and implementation
of the multi-microprocessor computer system (Cm#) currently under developement at
Carnegie Melion University. The three papers are:

Cma: A Modular Multiprocessor

The

The architecture of a new muitiprocessor that supports a large number of
processors (on the order of 100} is described in this paper. The system enables
very close cooperation between the large numbers of inexpensive processors, All
processors share access to a single virtual memory address space. There are no
arbitrary limits on the number of processors, amount of memory or communication
bandwidth in the system. Considerable support is provided for low level
operating system primitives and inter-process communication.

Implementation of the Cms Multi-Microprocessor

The tmplementation of the Cms mulliprocessor multiprocessor ts presented. The
lowest level of the structure, a Computer Moduie, is a processor-memory pair.
Computer Modules are grouped to form a cluster; communication within the
cluster is via a parallel bus controlled by a centralized address mapping
processor. Clusters communicate via intercluster busses. A memory reference by
a program may be routed, transparently, to any memory in the system. This
paper discusses the hardware used to implement the communication mechanism.
The use of special diagnostic hardware and performance models is also discussed.

Software Management of Cms, a Distributed Multiprocessor

This paper describes the software system being developed for Cms#, a
distributed multi-microprocessor,  This software provides for flexible, yet
controlied, sharing of code and data via a capability addressed virtual memory,
creation and management of groups of processes known as task forces, and
efficient interprocess communication,
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Abstract

This paper describes the architecture of a new large
multiprocessor computer system being built at Carnegie-
Melicn University. The system allows close cooperation
between large numbers of Inexpensive processors. All
processors share access to a single virtual memory address
space. There are no arbitrary limits on the number of
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level operating system primitives and inter-process
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1. Introduction

Cm* |5 an experinental computer system designed to
investigate the problems and potentials of modular, multi-
microprocessors. The initial impetus for the Cm™ project
was provided by the continuing advances in semiconductor
technology as exemplified by processors-on-a-chip and
large memory arrays. In the near future processors of
moderate capabiity, such as a PDP-11, and several
thousand words of memory will be placed on a single
Integrated circuit chip. It large computer systems are to be
built from such chips, what should be the structure of such
a 'computer module'?

inltial versions of the Cm* architecture [Fuller, et al. 73]
grew in part as an extension to the modular design of
systems from register transfer modules, or RTMs [Bell et al,
72]. In addition there was substantial interest in the
development of large multiprocessor systems such as
Pluribus [Heart, et al. 73] and C.mmp[Wulf and Bell, 72].
Cm* is intended to be a testbed for exploring a number of
research guestions concerning muitiprocessor systems, for
exampla potential for deadlocks, struecture of Inter-
processor control mechanisms, modularity, rellability, and
techniques for decomposing sigorithms iInto  paralied
cooperating processes.

The structure of Cm* is vary briafly described in Section
2. Section J is a description of the address structure and
discusses the support given for the operating system. The
use of the addressing structura for Inter-process
communication and control operations Is discussed in
Section 4. A companion paper [Swan, et al. 77] discusses
the wvarious mechanisms used to implement the complex
address mapping and routing structure of Cm*. Some
results from the pertormence meodelling aof Cm*® are also
presented. A second companion papoer [Jones, et al. 77]
daescribcs the structure of the basic operating system and
support software.

2. The Structure of Cm*

There is a surprising divaersity of ways to approach the
interconnection of processors into a computing system
[Anderson and Jensen, 76]. The processors could be
interconnected with several serial {/Q lnks tc form a
computer network; they could be interconnected in a tight
synchronous fashion to builld an array processor; or the
processors could Ybe c¢rganized to share primary memory.
This last approach, a muitiprocesser organization, was
chosen for Cm* because it offers a closer deyree of
coupling, or communication, between the processors than
would a multicomputer  or netwerk  configuration.
Multiprocesscrs  also  have a more general range of
applicability than other multipla processor systems.
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Figure 2.1 Canonical Computer Module Structure

During the development of the Cm* structure a wide
variaty of multiprocessor switch structures were considered
[Swan, et al. 768]. The basic structure selected is
represented in Figure 2.1. The essential feature which
distinguishes it from other multiprocessor structures is that
shared memory Is not separated from the processing
elements, but rather a unit of memory and & processor are
closely coupied in each module and & network of buses
gives a processor access 1o noniocal memory. This
structure allows modular expanston of the number of
processors and memory modules without a rapld increase in
the interconnaction costs. Memory can be shared even
though there Is no direct physical connection between the
requesting processor and the required memory. For
example, consider a reguest by processer, Pt, to the
memoty, Md, in Figure 2.1, The address mappling element,
K1, directs the reference from P1 onte the intermodule bus.
The address is recognized by K2, which directs it onto a
second inter-module bus, The reference is finally accepted
by K4, which accesses the request memory location and
passes back an acknow'azdgement or data te the requesting
processor. The need for high inter-module communication
rates will be minimized It a large fraction of each
processor's reterences {o primary memory 'hit' the section
of memory local to the processor. {Preliminary experiments
in the Fall of 1876 indicate that hit ratios of better than
Q0% can be expected provided thal the code executed Is
normally held locai to the processor.)
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2.1 Deadlock with References 1o Nonlocal Memory

Almost all computer systems impiement accesses from
processor to primary memory with Circult Switching, that
is, a complete path is established from a processor to the
memory belng referenced. Circult switching Is not feasible
for a structure llkke Cm* where local memory is also
accessible as shared memory. Figure 2.1 shows the path
used for P1 to access M4 via K2. Consider a concurrent
attempt by P4 to access M1 via K2. With a circult switch
implamentation, a situation could arise where P1 held its
local memory bus and the bus connecting X2, while P4 also
holds its own memory bus plus the bus connecting K4 to K2.
Neither memery reference could complete without one
processor first releasing the buses It holds. There are
numerous situations where deadiock over bus allocation can
occur. Resolving this deadlock raquires, at the very least, a
timeout and retry mechanism.

The altarnative to circuit switching is Pachket Switching.
In a packet switched implemantation, the address from the
processor is latched at each level in the bus structure.
Buses are not allocated for the full duration of a memory
reference, but just for the time taken to pass a ‘packet’,
containing an address and/or data, from one node on the
bus to another. Therefore packet switching allows
significantly better bus utilization and significantly reduced
bus contention in Cm*-iike structures. The use ot packet
swlitching eliminates the possibllity of deadlock over hus
allogation but introduces the possibility of deadlock over
buffer allacation. [Fuller, et ai. 73; Swan, et al. 706A]
Buffers, or intermadiate registers, are resources which can
be provided very cheaply, relativa to providing additional
inter-Cm buses, with present technology.

2.2 The Actua! Structure of Cm*

Design studles indicated that very ittle performance
loss would result from combining several indlvidual Computer
Modules into a cluster and providing a shared address
mapping and routing processor, Kmap, which allowed
communication with other clusters. Because tha cost of the
Kmap is distributed across many processors it can be
endowed with considerable flexibility and power at
relatively little Incremental cost.  Because of Its
cominanding position in the cluster, the Kmap can ensure
mutual axclusion on access to shared data structures with
vary little overhead.

The Ffull structure of Cm* Is shown In Figure 2.2.
individual Computer Modules, or Cms, consist of a DEC L51-
t1 processor, an Slocal and standard LSi=11 bus memory
and devices. The processor is program compatible with
PDP-11s; thus a large body of software is immediatety
available. The prinie function of the Slocal, or local switch, is
to direct references from the processor seloctivaly either
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Figure 2.2 A Simple 2 Cluster Cm* System

to local! memory or to the Map Bus, and to accept
references from the Map Bus to the iocal memory.

Up to 14 Computer Modules and ene Kmap form a cluster.
The Kmap, or mapping processor, consists of three major
components. The Kbus arbitrates and controls the Map bus.
The Pmap Is a horizontally microcoded 150 ns cycle time
processor. The basic configuration has 1 K x 80 bits of
writable control store and 5K x 16 bits of bipolar RAM for
holding mapping tabtes etc. The third level of the Cm*
structure is provided by the intercluster buses which allow
communication between clusters. The Linc provides the
interface to two intercluster huses,

There are no arbhitrary limits te the size of a Cm* system.
Memories, processors and Kmaps can be incrementally
added to suit needs. Any processor can access any memory
location in the system. The routing of & processor's
reference to a target memory is transparent to the program,
thus the system can be raconfigured dynamically in
response to hardware failures.

Kmap
3
Map Bus
f 1
PS-M PS-M
LSI-11 BUS
LSI-11

IMemoryl [Deuices l

Detail of a Computer Module

3. Architecture of the Address Transiation Mechanlsms

Many of the more conventicnal aspacts of the
architecture of the Cm* system are consequences of using
L31-11's for the central processing elements, The
organization an< encoding of the instructions, interrupt and
trap sequencing, and the 64K byte processor address
space of a Cm* system are ali a result of the PDP-11
architecture as Implemented on the LSi-11. By selection of
the LSI-T1, however, we do not want to imply that the PDP-
11 architecture is ideally suited to muitiprocessor systems.
The ideal solution would have been for us to have designed
our own processors. Howaver, practical considerations of
time, money, and existing support software lead us in aarly
1975 to recognize that by chosing the LSi-11 we could
concentrate on those aspects of the Cm* architecture
unique to multiprocessor systems. This saction, and the
tollowing section on control structures, will discuss the Cm*
architecture as we extlended it beyond the standard PDP-
11 architecture.

The addressing structure is one of the the most
important aspects of any computar architecture, it is svan
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more significant when cooperation between multiple
processors is to be achieved by sharing an address space.
Denning [1870] lists four objectives for a memory mapping
schema:

(a) Program modularity: the abillty to independently
change and recompiie program modules.

(b} Variable size data structures,
(c) Protection

(d) Data and program sharing: allowing independent
programs to access the same physical memory
addresses with different program names,

For Cin*, where we are using processors with only a 64K
byte address space, we must add the following
requirement:

{e) Expansion of a processor's address space.

Cm* has a 228 byte segmented virtual address space.
Segments are of variable size up to a maximum of 4K bytes.
There is a capability-based protection scheme enforced by
the Kmap. The addressing structure provides considerable
support for operating system primitives such as context
switching and interprocess message transmission.

3.1 The Path from Processor to Memory

The Slocal (see Figures 2.2 and 3.1) provides the first
level of memory mapping. A reference to local memory is
simply relocated, on 4K byte paye boundaries, by the
relocation table in the Slocal. As discussed above, it is
assumed that most memory references will be made by
processors to their local memory. Relocation of lotal
memory references can Dbe impiemented  with no
performance overhead because the synchronous pProcessor
has sufficicntly wide timing margins at the points where
address relocation is performed. For segments which are
not in a processor's iocal memory the relocation table has a
status bit which causes the address to be latched, the
processor forced off the LSE-11 bus, and a Service Reguest
to be signolled to the Kmap. All transactions on the Map bus
are controllod by the Map bus controlier, or Kbus, which Is a
component of the Kmap. The address generated by the
processor is transferred via the Map bus to the Pmap, the
microprogrammed Pracessor within the Kmap. |f the
reference is for memory within the cluster then the Pmap
generates a physical address and sends it to the
appropriate Slocal. Hf itis & write apcration, data is passed
directly from the source Slocal to the destination Slocal;
the data does not have to ba routed through the Kmap. The
selected destination Slocal performs the requested memory

reference and the processor in the destination Computer
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Figure 3.1
Addressing Mechanism for Local Memory References

Module is not involved. When the reference Is complate the
Kbus transfers the data raad from the destination Slocal
dircctly back to the reguesting processor via the Map bus
and its Slocal.

It the processor references a segment In another
cluster then the Pmap will transmit a requeast to the desired
ciuster via the Linc and the Intercluster buses. {See Fig.
2.2.) 1t the destination cluster is not dircctly connected to
the source cluster, that is, If it does not share a common
Intercluster bus, then the message will be automatically
routed via Intermediate ciusters. When the message
reaches the destination cluster, the memory reference is
performed similar to a request from a processor within the
cluster, An  acknowledgement, or Return, message
(containing data in the case of a read) is always sent back
to the source ciuster and subsequently to the requesting
Processor.

3.2 The Addressing Environment of a Process

The virtuai address space of Cm* is subdivided into up
to 216 Segments. Each segment is defined by a Segment
Descriptor. The standard type of segment is similar to
segments in other computer systems; it is simply a vector of
memory locations. The segment descriptor specifies the
physical base address ot the segment and the length of
the segmant. Segments are varlable in size from 2 bytes to
4 K bytes. However, other segment typas may be more
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than simple linear vectors of references to
segments may invoke special operations. Segmepts may
have the properties of stacks, queues or other data
structures. Some segments may not have any memory
associated with them, and & reference to the segment
would inveke a control operation. For each segment type,
up to eight distinct operations can be defined. For normal
segyments the cperations are Read and Write. Conceptually,
segmeants are never addressed directly; they are always
referenced indirectly via a Capability. A capability is a two-
word item contalning the name of a segment and a Rights
field. Esch bit In the rights field Indicates whether the
corresponding operation is permitted on the segment.

mamory;

User Environment
Register

Capability List Structure Segments

Primary Cai-"isl’//pr———-—\
' 3 State Vector

—

Capabillty List {0]

D ™

Code, Data or
other Segment

B - “

_,'-—J Code, Data or
) othar Sagment
[}
Capability List [7]
 mam—
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| other Segmant
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e
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other Sagment
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Figure 3.2 The Environment of a User Software Module

To provide efficient support for context swapping,
message-sending ete., it is necessary for the Kmap
microcode to understand some of the structure of an
executable software moduie (variousiy called a process,
activity, address space etc, ). E£ach executable software
module is represented by an Environment, Figure 3.2. An
environment is a three-level structure composed of
segmants. The first leve! In the structure is a Primary
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Capability List, CL[0]. The first entry in CL[0] is a
Capability for a State Yector, which holds the process state
whila it i5 not executing on a processor. Entries CL{OJ{1)
to CL[OI(7) i the Primary Capabillty list may contain
Capabllities for Secondary Capabllity Lists referred to as
CL[1] through CL{7] respectively. The remaining entries in
the Primary Capability List and all the entrias In the
Secondary Capability Lists contain Capabilities for segmants
witich can be made directly addressable by the process
when it executes. These may be code, data or any other
type of segment. The provision of up to elght Capability
Lists facilitates the sharing of segments and sats of
segmeants by cooperating processes. A software module
can only access those segments for which it has
capabhilities and perform only those operations permitted by
the capabilities.

3.3 Virtual Address Generation

28
2 Byte Virtual
Address Space

e ———————

64 K Byte Processor
Address Space

Page [15] [ Reserved

Page [0]

Figure 3.3
Windows from the Processor's immediate Address Space
to the Virtual Address Space

The processors in Cm*, LSI-11s, can directly generate
only a 16 bit address. This 64 K byte address space is
divided into 16 pages of 4 K bytes aeach. Each page
provides a window into the system wide 228 byte wvirtual
address space, (see Figure 3.3) and can be independently
bound to a different segment in the virtual address space.
The top page in the processor's address space, page 15, is
reserved for direct program interaction with the Kmap. This
mechanism is anajlogous to the 1/O page convention in
standard POP-11s. In page 15 there are 15 pseudo
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registers, called Window Registers. Thesa detine the
binding between page frames in the processor's immediate
address space and segments in the virtual address space,
This binding is done indirectly via capabilities. Each window
register holds an index for a capability in the currently
executing software module's capability list structure. A
Capability List index consists of a three bit field to select
one of the up to eight Capability Lists, plus an offset within
the C-List.

To overlay the processor's address space, ie. to change
the mapping from page frame to segment in the virtual
address space, a program simply writes a new capability
index Into the appropriate window register, This overlay
operation is compictely protected; the program can only
reference segments for which it has a Capability. The act
of writing the Capabllity index into the window register
activates the Kmap. The Kmap retricves the selected
Capability from main memory and places it In its "Capability
cache”. The Kmap adjusts its internal tables so that
subsequent references to the page frame will map to the
segment specified by the Capabliity. 1f the segment Is local
to the processor then the Kmap may also change the
relocation register in the Slocal so that references to the
segment can be poerformed at full speed without the
intervention of the Kmap. The Slocal, for cost and
porformance reasons, does not have the hardware
necessary for bounds checking on variable sized segments.
Thus only flxed size 4 K byte segments can be accessed
without Kmap asslstance.

The Cm* mechanism for address space overlaying should
be contrasted with mechanisms in other computer systems,
When executing & large proyram on a processor with a small
immediate address space, the time taken to overlay the
address space can have a cruciai effect on performance.
Measurements made of the execution of the operating
system HYDRA [Wulf et al, 76] on the C.mmp multiprocessor
showed that relocation registers were kbeing changed
approximately every 12 instructions, (This does not,
however, imply that user Pprograms perform overlay
operations this frequently.) Within the operating system
this overlay operation is a singie PDP-11 MOWE instruction
pecause nho protection is involved. However for user
programs running under HYDMHA, an overlay operation
requires Invocation ot the operating system with several
hundred Instructions of software overhead. Subsequent
optimization, and partial microcoding, have greatly reduced
this overhead.

Figure 3.4 shows the conceptual translation from a 16
bit processor-generated address to a virtual address. The
four high order address bits from the processor select one
of 15 Window regisiers. The Window register hoids an
index for a Capabiiity In the executing software modules
Capability List structure. The 16 bit segmant name from the
selected Capability is concatenated with the 12 low order
bits from the processor to torm a 28 bit virlua! address.

Cm*: a Modular, Muiti-Microprocessor
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Figure 3.4
Conceptual Virtual Address Generation and Rights Checking

Figure 3.4 also shows tha read/write indicator from the
processor being concatenated with two bits in tha address
expansion reglsters to form & three bit opcoda. The
corresponding bit in the Capabliity rights field Is seiected
and testad. |1 tha operation is not permitted then an error
trap is forced.

3.4 Virtual to Physical Address Mapping

The mapping from virtuai to physical address depends on
the location of the segment in the nctwork and, of course,
on the type of the segment. We begin with the case of a
simple read/write segment residing within the same cluster
as the processor referencing the segment. This mapping is
shown in Figure 3.5. The segment namo is used to access
the corresponding segment descriptor. The descriptor
provides a limit value which is checked against the 12 bit
offset in the wvirtual address. It the reference is oul of the
bounds of the segmaent then an error trap OCCUrS. The
offset is added to the physical base address from the
descriptor. The resultng 18 bit value Is a physical address
within the 256 K byte address space of the computer
module also specified in the descriptor.

if the virtual address references a segment outside the
source cluster then the segment name 15 used to access an
Indirect Descriptor Reference rather thap the descriptor
itself. The indircct reference simply lndicates n which
cluster the segment resides. The Xmap then passes the
virtual address to that cluster via the inter-cluster buses,
An alternative approach would be to have duplicate copics
of the segment descriptors in every cluster. Thus the
virtual-to-physical mapping couid be done at the source
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Figure 2.5 Virtual to Physical Address Mapping
for a Variable Sized Segment

cluster, with possibly some savings in overhead. However,
any attempt to change the wvwiual-to-physical binding of a
segmant (e.g. moving it to & different memery module or onto
backing store) would require an effectively simultanecus
change to ail copies of the segment descriptor. In a targe
network this operntion would be slow and cumbersome, if
not impossible, A further advantage to ensuring that only a
single cescriptor exists for each segment is that a leck B/t
can be provided in the descriptor. The lock bit can be used
to ensure mutual exclusion for special segmeant operations,

3.5 The Kernel Address Space

Each processor can execute in either of two address
spaces. One is the User A4ddress Space which was
described above. The second is the Kernel Address Space,
which is similar to a user addrcss space wilth the addition of
some meachanisims reserved for the operating system. The
currently executing address space 15 selected by a bit in
the Processor Status Word of the LSI-11. A Kernef
Environment is similar to a User Environment; however
seyments at the third ieve! of the Capability List structure
(Figure 3.2) can be User Primary Capability Lists. That is, a
Kerne! Capability list structure can have user envirenmonts
as substructures.

There are several addilional pseudo registers provided
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in paqge 15 of the kernel address space. One of these, the
User Eavironment register, hoids an dex for a Capability in
the kernel environment which points to a user environment.
This register specifies the current user environmant for this
processor. I the kernal writes & new Index Into the
tagister the sddrossing state of the old user process is
saved by the Kmap in the state vector part of the old user
environment. The addressing state of the new user is then
loaded from the specifiead new user environment. The
addrressing state is the wvalue of the window and other
system registers in page 15 of the executing program,
Ideally, this operation, which performs a context swap by
saving one addressing state and loading another, would also
save the internal processor registers. Unfortunately there
is no way for the Kmap to access the internai registers of
an LSi-11. Thus internal registers must be saved and
restored under program control.

4. Control QOperations

The philosophy in Cm* is to implement all special control
operations, such as interprocessor interrupts, by references
to the physical addreoss space. This not only avoids a
proliteration ot special control signais, but also allows the
power of the system's address mapping and protection
mechanisms to be appliad to control operations.

The Slocal prowvides a three priority tevel interrupt
scheme. An interrupt is invoked by writing Into the
appropriate physical address on the LSI-11 bus of the
target processor. Thus an Iinterrupt can ba requested by a
process anywhere in the network, provided the process has
a Capability for a segment which maps to the corrcct
rhysical address. Another example is the abort operation.
If the appropriate bit Is writtan, a NXM {(Non Existent
Memory) trap by the local processor Is forced, This
mechanism will be used when an error occurs during o
remote reference by the processor.

The following examples show how references to special
typed segments, or special operations on standard
segments, are used to invoke microcoded operations In the
Kmap.

4.1 Primitive Loclt Cperations

For processars in the PDP-11 family, most write
operations are part of a reed-modify-write seguence. In
standard PDP-11s (including LSI-11's) this sequence is
implemented as an indivisible, single bus operation. This
improves  performance by reducing bus overhead and
allowing optimization of references 1o memory with
destructive read operations (2.g. core and dynamic MOS
memory). ln C.mmp the ndivisibility of these operations is
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maintained through the switch to shared memory. This ailows
the implementation of Locks and Semaphores because a
memory location can be both tested and set without feer of
an intervening access by somo other processor. Indivisible
read-modify-write operations to nonlocal memory wil hot be
imptemented inh Cm* because of increased bus and memory
contention and hardware complexity. Wa will provide an
equivalent function by making use of the Kmap's ability to
lock a segment descriptor while it makes a series of
references to the segment, To implement a basic lock
mechanism two special seyment operations are defined:

Inspect the word addressed. |f greater than 2ero,
then decrement. Return the ariginal value,

Increment the word addressed, Return the original
value.

4.2 An Inter~Process Message System

Message systems can  provide particularly  clean
machanisms for communication between processes [Brinch-
Hansen, 73. Jeffarson , 77]. In the past, a drawback to
maessage systems has been the substantlal operating
system overhead in transferring a message from one
process to another in & fully protected way. The
architecture of Cm* provides an cpportunity to build a fully
protected message system which can be used with very
lowr averhead.

A message port, or mail box, will be a speciat segment
type. Messages wili either be entirc segments, passec by
transferring c¢apabilities, or will be singla data words
encoded as data capabilities. Two representative
operations on Mailbox sagments aro:

Send (Message, ReplylailBox, MailBox)

This transfers capabillties for a message and a reply
mall box from the caller's Capabillty List to the Mal
box. If the mailbox then the caller is
suspended.

is  full

Receive {MailBox)

If the mailbox contains a message then a Capability
for the message and & Reply Mailbox wil be
transferred into  the caller's Capabitity List.
Otherwise the calier 1s suspended.

Provided that the above operations are successful, they
are performed complately in Kmap microcode, and messages
may be passed with probably less than 100 microseconds
delay. If the operation cannot be completed because the
Mailbox is full or empty, then the operating system s
invoked to suspend the requesting process. The Kmap can

Cm*: a Modular, Multi-Microprocessor

also request the operating system to wake up a suspended
process when the operation is complate.

5. Development Aids

The development of hardware and software for a new
computer system is a major undertaking. We have
attempted to ease this burden by using & variety of alds.
All the major hardware components were drafted using an
interactive drawing packege (& version of the Stanford
Drawing Package). To facilitate the development of
software, prior to the availahility ot hardware, a functional
simulation of Cm* was programmed, which executes on
C.mmp. Development of the Kmap hardware and microcode
has been greatly benefited by the use of the "hooks"
mechanism in the XKmap. This connection to the Kmap
allows a program executing ¢n an LSI-11 aimost complete
access to the internal state of the Kmap.

In order to expedite hardware debugging and software
development, a host program devetopmant system was
constructed. The host is connected to each Cm in the
system by a Serlal Line Unit (SLU) to allow down line mamory
toading and dutmping from the associated Cm. In addition,
the SLU makes consoic control functions for each LS1-11
available to the host computer [van Zoren, 751 The Host In
turn is connected to a POP-10 timesharing system.

6. Cancluding Remarlks and Project Status

Cm* is projected to be constructed in three stages. The
first staye is a ten-processor, three Kmap system. The
subsequent stages will include 30-processors and later
100-~processars. Detailed hardware design began in fate
Julty, 1975, As of late summer, 1976, & three-processor,
one-Kmap system was operational. it is expected that the
first stage Cm® configuration will be pperational in the
second quarter of 1977. The Initial operating system is
described in [Jones, et al. 77] and is being developed both
on the Cm® simuiator which runs on C.mmp and on the real
hardware with the support of the Host Cevelopment system.

The essential features of the Cm* architecture have
been presented. Bath the coupling of a processor directly
with each unit of sharcd memory and the three level bus
structure which makes all memory accessibla by every
processor are primary features of the Cm* structure. Muach
of the sophistication in the architecture is associated with
the addross translation mechanisms. A description has boen
given af how the small processor adcress space of the
POP-11 is mapped into the larger giobal virtual address
space of the Cm* system and how the global virtual address
space is mapped onto the distributed physical address
space of the Cm* system.
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A number of important aspects of the Cm® project are
outside the scope of this paper and interested readers are
referred to other papers for a mere complete discussion
{Jones, et al. 77, Swan, et al. 7GA, 768, 77, Ingle and
Stewiorek, 76A, Ingie and Siewiorek, 76B, Siewiorek, et al.
76}, Reliability and performance mpdels have been
developed concurrently with the hardware design of the
system and have been used to guide several important
decisions  concerning  the  structure of the Cm*
implementation.
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Abstract

The implementation of a hierarchical, packet switched
multiprocessor is presented. The lowest level of the
structure, a Computer Module, is a processor-memory palr,
Computer Modules are grouped toc form a cluster;
communication within the cluster Is via a paralle! bus
controlled by a centralized address mapping processor.
Clusters communicate wvia interciuster busses. A memory
reference by a program may be routed, transparently, to
any memory in the system. This paper discusses the
hardware used to implement the communication mechanism.
The use of special diagnostic hardware and performance
medels is also discussed.
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1 Introduction

The companion paper, [Swan et al. 1877], has
introduced Cm* as a large, extensible muitiprocessor
architecture. It has an unusually powertui and complex

addressing  structure which allows close, protected
cooperation between large numbers of Inexpensive
processors. This paper describes the combination of

hardware and firmware which imploments the address space
sharing and interprocessor communication mechanisms.

Cm* is a multiprocessor system as we define tt (rather
than a network of independent computers) because the
processors share a common address space. All processors
have immediate access to ali memory. The structure of Cm*
Is shown in Figure 1.1, The primary unit is the Computer
Module or Cm. This consists of a processor, memory and
peripherals interfaced to a local memory bus and a "local
switch". The local switch, or Sfoca!‘. interconnects the
processor, its local memoary bus and tie Map Bus. The Map
Bus provides communication between up to fourteen
Computer Modules within a cluster, and is centrally
cantrolled by the Kmap, =& high performance
microprogrammed processor. Each Kmap interfaces to two
Intercluster busses, by means of which it communicates with
the other ciusters in the system.

There is a system-wide 28 blt virtual address space.
This address space is divided Into segments with a maximum
size ot 4096 bytes. Programs refer to segments Indirectly
via Capabilities, which are two-word items containing the
global name of a segment and specitying access rights to
the segment. The processora have a 16 bit address space
which is divided intc 16 pages. A mechanism is provided
which allows a program to associate any Capability it
posesses (and hence any segment ta which It is allowed
access) with any page in its immediate address space. A
full description of the address mapping schema is given in
[Swan et al. 1977].

To demonstrate the viability of a structure It Is
necessary to build & pilot system with currently available
components. To be a successtul demonstration, the pliot
system has to be a useful, economical computing resource
in its own right. Therefore, in the Cm® network described
here, many design tradeotfs were made on the basis of
current technology and the resources avaitabia. The highly
experimental nature of the project encouraged an emphasis

'The names used for hardware components of Cm® are
derived from PMS notation [Beil and Newell, 71]. The
leading, copitalized letter indicates the grimary function of
the unit, eg. Computer, Prucessor, Kontrotlar, Link, Swikch.
The subsequent Iotters, optionally separated with a period,
give some attribute of the unit. For exemple, Slocal is a
local switch. Pmap 1s a mapping processor. The name Cm*®
dertves from (Computermodular)® whera * is the Kleene
star,
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Figure 1.1 A Simple 3 Cluster Cm* System

on generality and ease of debugaing in the hardware
components, rather than just minimization of costs. There
are many aspects of the detailed design which would have
to be re-evaluated if the structure were to be implemented
in a ditferent technology or built as a commarcial product.
In particular the distribution of functions between the
processors and the Kmap would be carefally reconsidered.
The modular nature of Cm* makes it particularly suitable for
implementation in LS.

Section 2 ilustrates the mechanism for memory
references. The various hardware components of Cm* are
described in the foliowing six sections, Section 3 describes
the processor-memory pairs and their interface to the Map
Bus. In Section 4 opportunities for parallelilsm in the
address mépping machanism are consldered. Three
autonomeus functional uhits of the Kmap are presented in
Sections 5, 6. and 7. Section 8 describes the support
given to hardware diagnosis and microcode development in
the Kmap. For an effective implementation it was
necessary to find & reascnable performance balance
between system components. Some of the performance
modelling which guided our judgement is presented in
Saction 9,

2 The Mechanism for Local and Nonlocal References

Addresses generated by processors in a Cm* system
may refer to memory anywhere within the system. Mapping
of an addross and routing to the appropriate memory are
performad in a way that Is totally transparent to the
processor generating the address. !t an address Is to refer
to the memory locai te that processor, the memory
reference s performed in & completely standard way
except that the Slocal relocates tha high-order four bits of
the address. See Figure 2.1,

when the page being referenced is not local (i.e. the
"Map" LIt for tha referenced page is set in the Slocal) a
service request Is made to the Kmap by the Slocal. Upon
recciving the service request the Xmap executes a Map
Bus cycle to read In the processor-generated address from
the Slccal, as well as the number of the Cm making the
requaest, and two status bits indicating which addresas space
was executing on the processor and whether the reference
was a road or @ write (see Figure 2.2). I the segment
being reterenced ts local 1o the cluster, tha Kmap wil use
information cached in its high-speed buffers to bypass most
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of the processor-to-virtual-to-physical address mapping.
Thus it can quickly translate from the page number
referenced by the processor to a physical address
conststing of the number of the Cm containing the physical
location and an eighteen-bit local addross. A second Map
Bus transaction is executed to pass this address, and a bit
indicating whether a read or a write is to be performed, to
the destination Siocal. If the operation is a write, the data
may be passed directly from the Cm making the reference
toc the Cm containing the word to be written. The
destination Slocal performs the read or write via a Direct
Memory Access. When this is completed It issues a refurn
request to the Kmap to acknowledge completion. A third
Map Bus cycle is performad to transfer the data back to the
processor that made the reference (in the case of a read)
and to acknowliedge completion of the reference so that the
requesting processor may resume activity.

recelves an
location belng

A second alternative when the Kmap
address to map is that the physlical
referenced Is not lecal to the cluster. In this case the
information cached in the Kmap for the page Dbeing
referenced will not indicate a physical location directly;
instead it will give a sixteen-bit segment name, the number
of the ciuster containing the physical memory allacated to
the segment, and two bits used to extend the read/write
bit to a three-bit op code. This information is combined with
the twelve fow-order bits of the onginal processor address
to form the full virtual address of the object being
refercnced. See Figure 2.3. The virtual address, along with
the processor data {if a write is being performed) is sent
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Figure 2.2 The Mechanism far Cluster-local References

via an Intercluster Bus to the Kmap of the cluster containing
the segment (if there Is no interciuster Bus directly
cannecting tire two Kmaps the message will be steered from
Kmap to Kmap until it reaches the destination cluster). The
destination Kmap witl then map the wvirtual address to a
physical one within its ctuster. Map Bus transactions will be
executed to pass the physical address (and data if
needed) to an Slocal which in turn performs the operation
and returns acknowlcdgemant (and, perheps, data) back to
the destination Kmap. A return message Is used to pass
back acknowledgement and data to the Kmap of the
originating cluster. Finally, this Kmap will relay the data and
acknowledgement back to the initlating Cm to complate the
raference,

Severa!l points are worth noting with respect to the
above schemes. Except at the local memory bus level,
where conventianal  circuit switching is used, ali
commuaication Is performed by packet switching. That is,
busses are aliocated oniy for the period required to transfer
data. The data is latched at each interface, rather than
estabhshing a contituous circuit from the source to the
destination. This approach gives greater bus utilization and
avoids deadlock over bus allocation. AW transactions are
complataly interiocked witly positive acknowlaedgement being
required to signal complation of an operation (it is passible
to allow a processor executing & nonlocal write to proceed
as soon as the cdata for the write has been received by the
Kmap or destination Slocal, without watting for complation of
the aperation; however In this case the Kmap wili axpect
to raceive acknowledgement in place of the processcr so
that appropriate actions may be taken if none is received).
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The complete processor-to-virtual-to-physical address
mapping is performed only in the case of intercluster
references. As the locality of a reference increases the
amount of this mapping that may be bypassed (and hence
the speed of the reference) increases, with local caches of
certain mapping information usad to effect the bypass. An
important characteristic of the addressing structure is that
there is exactly one Kmap that may perform the virtval-to-
physical mapping for a given segment, The requirement that
all references to a segment occur with the cognizance of a
single Kmap greatly simplifies the moving of segments and
the implementation of operations requiring mutual exclusion.

3 The Computer Moduie

The first level of the Cm* network hierarchy Is the
Computer Module, or Cm, The Cm's provida both the memory
and processing power for the muitiprocessor system.

The decislon to use a standard, commercially available
processor {the DEC LSI-11) has had a considerable impact
on the design. Use of a standard instruction set has made a
large pool of software and software development aids
dircctly avaitabla. The not inconsiderable effort to design
and implement & naw processor has been avoided.

At the software level, the prime disadvantage of the
LSI-11 Instruction set is that only 16 bit addresses can be
directly manipulated. The companion architecture paper
discusses in detail the mechanism used to expand a
processor's address space from 16 blts to 28 bits,

3.1 The Components of a Computer Module

A Computer Module, Figure 3.1, can act as a stand alone
computer system, The standard commercially aveliable
components include the DEC LSI-11 processor and dynamic
MOS memory. Any LSi-11 peripheral may be used on the
bus, including serial and paralle! mnterfaces, floppy and fixed
head disks, etc. The standard 16 bit memory has been
extended with byte parity. Memory refresh Is normally
performed by microcode in the LSI-11; however, the fact
that a processor may be suspended indefinitely while
awaiting the completion of a compiex external reference
has made it necessary to augment each Cm with a special
bus device to perform refresh.

The most important component which has been added to
each Cm is the Siocal. This provides the interface botween
the processor, the Map Bus and the LSI-11 Bus. The prime
function of the Slocal is 1o selectively pass references trom
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Figure 3.1 Details of a Computer Moduie

the processor to either the LSi-11 Bus or the Map Bus and
to accept references from the Map Bus to the LSI-11 Bus.
The Slocal also provides simpla address relocation for
references made by its processor to local memory. Figure
2.1 shows how this relocation is performed; the "Map Bit" in
the local relocation table is set for pages which are not In
the local mamory of the processor.

in addition to the Local Relocation Table the Slocal
providles a number of other control regyisters. Al these
registers are addressabie as memory locations on the LSI-
11 bus; however only the Kmap and highly priviieged system
code will have direct access to them. One of the key
registers is  the eXternal Processor Status Werd
{XPSW<(15:8>). The LSI-11 implements only the ilow order
byte of the standard PDP-11 Processor Status Word
(PSWC7:0>). Logic in the Siocal (with assistance of
standard signals from the LSI-11) aliows the XPSW to be
saved and restored during interrupt, trap and other
operations in unison with the internal PSW. The XPSW
allows selective enabling of various Siocal tunctions and
controls a simple three ievel interript scheme. On pPOWEr-up
the XP3W is cleared, which disables all special operations
by the Slocal including the relocation of local memory
references. In this mode the processor acts as a hare,
unmodified LS-11. The Local Relocation Table cun be
initialized either hy console operations, execution of local
bootstrap code or remotely by any processor in the
network. After initialization, enabling Reloc Mode
(XPSW<C113) will allow Iocai relocation and give access to
the rest of the network.

Incorrect use of PDP-11 iastructions such as HALT,
RESET, Move-To-Processor-Status-word, Return from
interrupt, etc. can coause loss of a processor, parbiing of an
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I/O operation or enabla circumvention of the system's
protection scheme. The Privilaged [nstructlon Mode bit
(XPSW<13>) enables logic in the Slocal which detects the
fetching of any “dangerous” instruction. An immediate error
trap is forced if an unprivileged program attempts to
axacute a privileged instruction.

Several registers in the Slocal are concerned with
providing diagnosis and recovery information after a
software or hardware error is detected. Almost all errors
are reported to the processor by forcing a NXM (Non
eXistent Memory) trap. This includes errors detected by the
Kmap during remote references. The Kmap signals the error
by writing to the "Force NXM" bit in an addressable register
In the Slocal. The Local Error Ragister indicates the nature
of the error and whether the erroneous reference was
mapped. The "Last Fetch Address" register is updated to
hold the address of the first word of an instruction every
tine the LSI-11 fetches a new Instruction. 1f an error is
detected, this register is frozen until the Local Error
Register is explicitly cleared. Also frozen in tha Local Error
Register is & count of the numbar of memory references
rerformod  In the execution of tha Instruction. In
conjunction, these two registers provide sufficient
information to restore the state of the LSI-11 for ratry of
the instruction during which the error was detected,

The Slocal also provides two interrupt request registers.
Interrupt enable bits in the external processor status word
aliow masking of the interrupt requests. Provided refarence
is permitted by the memory protection schema, any
processor in the network can Interrupt any other processor
simply by writing to the correct address.

3.2 Data Paths far Nonlocal References

An idealized form of the basic data paths and latches
within &8 Cm" cluster 1s shown in Figure 3.2, Depending on
the address generated, a reference from the processor s
passed either to the locnl memory bus or to the Map Bus. A
local memory reference 1s performad In a convantional way.
For a nonloga! reference, the address {and possibly data) Is
latched end a service request is issved to the Kmap. The
broken line in Figure 3.2 shows the path of a read to the
memory of another Cm in the cluster. The address from the
source processor is read by the Kmap which transiates it
into a physical addrrss within the memeory of a Computer
Module. This physical address is placed onto the Map Bus
by the Kmap and latched at the target Cm. A conventional
Direct Memory Access (DMA) cycle is performed by the
destination Slocal, the data read is latched and the Kmap is
again requested, this time with a return request. To
complete the operation, the Kinap responds by transferring
the data over the Map Bus from the target Cm to the
requesting Cm (this simpiy requires the latch at the target
Cm to be enabled onto the Map Bus and the latch at tha
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requesting Cm to be strobed). At this point the source
processor, which was suspended, is given the data as If a
normal memory reference had been performad.

This simplified description of a Computer Module has
been presented to emphasize the simplicity of the basic
mechanisms required for an intra-cluster reference in Cm*.
In the actual implementation using the LSI-11 processor the
data paths are rather different than the idealized structure
shown in Figure 3.2. The differences are due primarily to the
need to mininize the changes to the LSI-11. Although stilt
simplified, Figure 3.3 is a more accurate representation of
the data paths and latches used 1o intetface the LSI-11
and the LS1-11 bus to the Map Bus.

The processor board is modified so that the Local
Relocation Tabie in the Siocal can be serted in the data
path of the four high order address bits. The timing margins
in the processor's address path are wide encugh to allow
msertion of tiws delay without joss of performance, The
LS1-11 Bus is the only data path from the processcr for both
local and non locai references. If the Processser wero
permitted to hold the LSi-11 bus while waiting for
completion of a nonlocal reference then references from
other processors in the network to memory on the LSI1-17
bus would be blocked. This could very easily lead to
deadiock situations. To give greater concurrency and to
elimnate the deadiock potential, the Siocal is able (using
simple microcoded state sequence logic) to force the
processor off the LSI-11 bus while It s waiting for
compietion of noniocal references. While the processor is
forced off the local bus the Siocal takes owver DMA bus
arbitration for the suspended processor.

4 Concurrency within the Mapping Mechanism

Early in the design of Cm* the speeds of the various
components in the system began to appear ns follows: the
bme for a "typical" Map Bus transaction was about 0.5
microseconds: the time requircd in the computationat unit of
the Kmap for an address mapping was 1-2 microseconds;
the time to transfer a message on an Intercluster Bus was
2-4 microseconds; and the time for an Slocal to exccute a
read or wrile requested by the Kmap was 3-4
microseconds. in referring to the mechanisms for nonlocal
mappings it can be seen that no single component is
responsible for a very large fraction of the time required for
a nonlocal reference. Thus if each cluster had a mapping
concurrency of one {only one nonloca reference could be
processed at a time per cluster) bath the utilization of the
mapping compenents and the throughput of the mechanism
wotld  be low (the effect of concurrency on system
parformance is discussed quantitatively in Section 8). In
additton  the  possibitity  of deadiock  in intercluster
references is introduced.
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Figure 4.1 The Components of the Kmap

The solution adopted for Cm* was to separate the four
functions whose tunings are given sbove and to allow a
concurrency of eight in the mapping mechanism of each
cluster. The packet-switched nature of Cm* yields cleanly
to this approach, and requires only that queues be
mplementcd to storc messages at the interfaces between
the compononts. Figure 4.1 depicts this structure, in which
the Kman has beoen logicaly sub-divided into three separate
units:  the Kbus, which is master of the Map Bus and
controls &ll trensactions on it; the Pmap, or mapping
processcr, which does all the address transiation and
mamtains the caclhie used to speed up mapping; and the
Linc, or intercluster  bnk, presides over the
transmission of messages Letween clusters.

which

One other notion must be mtroduced before proceeding
ta a detailed discussion of the components of the Kmap,
namely that of a context. Operations requiring mutual
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exclusion (for example, changing the virlual-to-physicat
mapping of the system) will be implemented In Cm* as
memory references to "special" segments which will then
cause the Kmap 1o perform the desired pperations in a
protected way. In general these operations will require
several references by the Kmap to main memory. |If the
Pmap Is to be used for other mappings whila these main-
memory references are being made by the Kbus and Slocals,
there must be some means of saving and restoring its state
so that processing can be resumed witen the memory
reference has been completed. The solution adopted Is to
provide registers in the Xmap to save and restore state for
ip to eight overlapping operations. A mapped operation in
some stage of processing by the Kmap is referred to as a
context. Each context has allocated to its exclusive use
eight general-purpose registers and four subroutine linkage
registers {one of which is used to save the microprogram
addrizss  while awaiting the completion of Map Bus
transactions).

The Kbus maintains the status of the eight Pmap
contexts and aliocates them to new service requests. The
context number and other status are then placed in the Run
Queue to signal the Pmap that the context is runnable. The
mapping processor activates the context by removing its
number from the Run Queue and starting execution of
microcode at an address determined by the status bits.
When the new context is activated the processor address
Is mapped, and a request for a main-memory reference is
placed in the Out Quoue (during this time the Kbus has been
free to read in service requests or perform functions
requested by the Pmap). A context swap is executed in the
Pmap to deactivate the current context pending the
complation of the memory reference and to activate the
next one in the Run Queue. The Kbus transfers address and
data to the destination Slocal, then processes other
requests while the memory reference is being performed.
when the memory reference Is completed the Kbus either
reads the acknowledgement and/or data back into the Kmap
and places the context back in the Run Queue for
reactivation, or it sends the acknowledgement back to the
processor that orlginally made the service request (thereby
compicting the mapping operation} and marks the associated
context as "free" for reallocation to a new service request.
The fact that a context remains allocated to each nonlocal
reference unth that reference is completed (regardiess of
whether or not mcre Pmap processing is expected to be
needed) means that if an error Is detected the context can
be reactivated and will have enocugh state information to
handie the error in an intelligent fashion.

Communication between the Linc and Pnrap is similar to
that between the Kbus and Pmap, the Pmap queues a
request for an intercluster message to be sent (separate
queues are provided for each Intercluster Bus) and
suspends the requesting context, When a return message
is received for the context the Linc causes the Kbus to
reactivate the context in tha Run Queue. When an incoming
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intercluster message is received by one of the Linc's
Intercluster Bus Ports, it is queued and a request is Issued
to the Kbus to allocate a free context to the request and
activate it in the Run Queue.

& The Kbus and the Map Bus

Becguse of the great variety of tasks It must perform
and the necessity that it be able to respond to errors in an
Intetiigent  way, the Kbus was designed as a
microprogrammed processor controlied by 256 40-bit words
of read only memory. [t has a microcycle time of 100
nanoseconds which is synchronized with the 150
nanosecond clock of the Pmap and Ling at S0 nanosecond
intervals. Figure 5.1 shows the major elements of the bus
controller.

The Map Bus contains 38 slgnals, of which 20 are
bidircctional lines used to transmit addresses and data
between the Slocals and Kbus ot the cluster. The Khus is
master of all transactions on the bus; as such it specifies a
source and destination for each cycle as well as status bits
indicating the use of the data (address, data, etc.). The
bus is synchronous, with the Kbus generating all of the
strobes used to transmit data. Each Siocal is provided with
private service and return request lines to the Khus., The
arhiter section of the Kbus scans these in a pseudo round
rabin priority scheme.

The Kbus malntains the queues and registers used for
communication with the Pmap. The Run Queue contains
eight eight-bit slots (and thus its guaranteed never to
overllow), each containing a three-bit context name and
five additional bits of activation status. The Out GQueue
contains four 39-bit entries. The Pmap locads this queue to
request Kbus operations and must check its state betore
Ioading to insure that it never overflows. Each Qut Queue
slot contains an op code used to select one of thirty-two
Kbus opecrations, and additionatl address, data, and context
information relevant to the operation. Two registers ere
icaded by the Kbus on behalf of each Pmap context. They
arc readable only by the Pmap and writable only by the
Kbus. The Bus Data Register contains the iast data word
read in trom thc Map Bus for the context and the Bus
Condition Register gives control and status information for
the transaction,

The Kbus s responsible for the allocation and
deallocation of contexts, and maintains the status of each
context for this purpose. It also keeps two additional bits
of status for each context which are used to insure that,
when a context suspends itse!f to await the execution of a
mamn-memory reference or the sending of an intercluster
message, an acknowledgemant of the compietion of the
operation IS received within a reasonable time (two
milllseconds). if a suspended context times out it is forcibly
reactivated with status bits indicating the error.
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Figure 5.1 The Components of the Kbus

The Kbus also maintains nine bits of status for each
Slocal in the cluster indicating whether the Slocal is busy
with a Kmap-requested memory reference and, if s0, what
to do with the information retuined at the end of the
transaction. This status is set whenever a local memory
reference is initiated and is used to insure that two
contexts do not simultaneously try to request a memory
access through the same Siogal,

6 The Pmap, the Address Mapping Processor

The mapping processor of the Kmap, or Pmap, is a
sixtean-bit  horicontally nMCroprogrammey  pProcessor. It
occupirs a central position within the Kmap, coordinating
the activities of the other components. it is pipelined and
has a cycle time ot 150 nanoseconds. Microinstrictions are
80 bhits wide; a 1K*80 bipolar RAM I1s used as a wrtable
microstofre. The Pmap also uses a high-specd 5K*"16 RAM to
store the active Capabilities and seygment descriptors. In
addition to performing the basic address translation for the
nonlocal references of a cluster, the Pirap must support
certain operating system primitives, statistics gathering,
and other experimental functions without excessive
nerformance degradation.

6.1 Data Paths

A register transfer level diagram of the Pmap is given
i Figure 6.1. The man data paths consist of three internal
high specd tri-state busses. Two of these, the 4 and 8

busses, take data from varicus sources and feed them to
the inputs of the Arithmetic Logic Unit, The third bus, the
F Bus, takes the ALU output and distributes it to various
parts of the Kmap. The Kbus and Linc are also connected to
these busses. Pipcline latchas are used to overlap fetch of
operands with current data operations.

The Shift and Mask /nit provides the ability to perform
ticld-extraction on one of the ALU operands. This capability
is important since the Pmap frequently deals with packed
Information 1 segment descriptors, intercluster massages,
etc. The input to the Shift and Mask Unit is rotated by an
arbitrary amcunt and then masked by one of 32 16-bit
standard masks stored in a PROM.

For efficient address mapping, it is crucial that the Kmap
have fast access to the information it needs to perform the
virthal-te-physical  address translation.  This information
consists largely of the active Capabilities and segment
descriptors, of which up to 448 may exist in the cluster at
a tine (sixteen in each of two address spaces for each of
fourteen processcrs).  Although content addressable
mcmory  was not used because of the large capacity
heeded, the careful positioning of tables withln the data
memory, combined with a hash-coded list structure used for
storing descriptors, has produced a cache-ike structure.

The data momory, or Mdata, is divided inta 1024
(expandahle to 4090) rccords, each record contamming five
16-bit words. The record organization was chosen because
the segment with cacheing information, fit
comfortably within this 80-bit space. Each word has
associatocd with it two parity bits, one for gach byte. The
memary s word addressable, with the record address
coming from the Data Adrress Register (DADR) and three-bit

doscriptors,
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Figure 6.1 Data Paths in the Pmap

word indices from fields in the current microinstruction.
Thus once the record address of a descriptor or capability
hlas been computed, the individuai subwords may be
accessed without expending further cycles to generate
data memory addresses.

Data to be written in the Mdata may be taken either
from the A Bus or F Bus. Because it is frequently necessary
to set and clear status bits in segment descriptors (for
exampla the “dirty" and "use" bits used for demand paging,
and the lock bit used for mutual exclusion) bit set and clear
logic Is provided for data input from the A Bus. It provides
tor the setting or clearing of either or both of the two high-
order bits of the input word. To turther increase parallelism,
it is possible to simultaneously read and write different
words of the same record. It Is therefore possible, say, to
set the “use bit" in one word ot a segment descriptor and
at the same time extract the segment limit from another
word of the same descriptor.

6.2 Microprogram Sequencing Logic

One characteristic of the Cm* address mapping
algorithms s the large number of conditions to be tested.

The service of a typical request will require testing of
request status, operation type, and segment type and
checking of the followmng conditlons: protection violation,
descriptor locked, seygment localizable etc. To perform
address mapping within a reasonable number of cycles
requires the Pmap to have a fiexible multi-way branch
capability.

A block diayram of the microprogram sequencing logic Is
given in Figure 6.2. A Base Addraess is selected from elther
the Next Address field in the current microlnstruction or the
output of the Subroutine linkage Registars. Two bits in
the microinstruction select the mode of branching (two-
way, four-way, sixteen-way) and two three-bit fields
control six 8-to-1 condition code multiploxers. Multi-way
hbranching was implemented in the conventlonal way by
OR'ing the selected condition codes with the Base
Address. The address thus generated is stored in MADA,
the Microprogram Address Register, to fetch the next
microinstruction. There is a conditional override mechanism
that can prohibit a potential 16-way branch. When the
override condition i8 true, a branch is taken to a
saventeenth location regardiess of the value of the 16-way
branch condition code.
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_

€.3 Context Considerations

There are a total of G4 general purpose and 232
subroutine  linkage repsters, alowing each context
exclusive use of eight general purpose registers and four
subroutine linkage registers. The Current Context Number,
stored In the Context Register, selects the current register
bank. Normally this register is loaded from the Run Queue
when a context swap is executed. For diagnostic purposes
the Pmap may directly toad the Context Register, hence if
requircd a microprogram may access the registers of any
context. Each context may nest subroutine calls up to four
levels deep. By convention, the zeroth linkage reglster Is
also used to store the reactivation address of a suspended
context. The status bits in the Run Gueue indicate whether
a context is to be activated at its reactivation address (to
continue an ongoing cperation) or to be explicitly started at
one of the first sixteen locations in the microstore (to begin
a new oparation, or handle certain error conditions).
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7 The Linc and Intercluster Bus Structure

The Linc provides intercluster communication by
connecting the Pmap to two Intercluster busses.
Communication is in the form of short massages passed
between Kmaps, Mcessages are stored in a Message RAM
which is shared between the Pmap and the two Intercluster
Bus Ports. Pointera to messages pass through an automatic
system of queucs. Mcssages are usually sent directly from
source to destination ciuster, but they can also be
torwarded by intermcdiate clusters (thus allowing arbitrary
network topologics to be constructed). Message routing is
controlied by Pmap microcode. The goal in the Line design
was to provide fast, deadiock-free  Intercluster
communication with a minimum of Pmap overhead.

7.1 Intercluster Bus Protocol

The intercluster busses contain 26 lines: 16 data, 2
parity, and 8 control. They cperate in an asynchronous,
interlocked fasiion at a transfer rate of 450 nanoseconds
per word. Mastership is passed cyclicly between
requesting ports, effectively implementing a round robin
priority scheme, The current bus master arbitrates future
mastership in parallel with its current data transfers.

Forward Message Return Message
15 12 6 0 15 12 6

0

)

Figure 7.1 Standard Message Farmats

intercluster messages consist of one to eight 18 bit
words. The most common formats are shown in Figure 7.1.
The Meader word contains & six bit identifier for source and
destination cluster. the source context number and the
complex bit. A returp message has a unigue sourca field of
all ones. The scurce context number s sent with the
message to allow a direct reactivation of the suspended
source context. The complex bit provides an escape
machanism to other message formats, eq for arror messages
or bleck transfers.

' ™
Cl CX i Sowice iDcstination F:I CX {11111 Destinntiorq
1
-i QP | Offset l Data Word (Read}
Segment Name C  Complex Bit
. CX Context
X Data Word (Write) | OP Op Coda
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7.2 Components of the Ling (Flgure 7.2)

Buffer space for mossages is provided in the central
1K*18 Message RAM, divided into 128 buffers of eight
wortds each. This is sufficient to avoid any possibility of
deadiock owver buffer aliocation except In wvery large
systems [Swan et al. 1976b]. The Pmap has priority for
access to the Message RAM, aithough 1t is alse directly
accessible by the Ports. Several contexts may use the
Linc in an ovetlapped fashion without interference since
each context has private facllities for addressing message
butfers. A context has two ways to address message
buffers. It may use its context number to access a
reserved buffer which is used for the creation of forward
messages and to receive return messages. There is also a
Pmap Address Register for each context to deal with
incoming forward messages. Words within a butfer are
selected by a Pmap microcode fieid. Each Port section has
an address register and a word count register for accessing
the Messaga RAM.

Five queues are maintained by the Linc. Two Sead
Queues, one for each Port, are used by the Pmap to request

transmission of massages. To request that a message be
sent on an Interclustar Bus, the Pmap places the address of
the message butfer in the appropriate Send Queue. The
Free Queve keeps the addresses of ali the message buffers
not currently in use. The Service Queve is used by the Linc
to notify the Kbus and Linc of the addresses of incoming
forward messages, and the Return Queue to regquest that
the Kbus reactivate contexts when replies to thelr forward
messages are received. All of the queues are Implemented
as partitions of a single 1K*11 bipolar RAM,

The Linc uses the same 150 nanosecond clock as the
Pmap. For diagnostic purposes the Pmap has access to
almost all of the Internal state of the Ling and may execute
all the internal microcycies executable by the Ports.

7.3 An Intercluster Message Transaction

A complete message transfer is shown in Figure 7.3.
The Pinap at the source cluster creates the forward
massage in a reserved context butfer. Then its pointer is
put into the appropriate Send Queue. The Linc pops the
pointer off the Send Queue inta the Port Address Reglster,
acquires mastership of the corresponding bus and transfers
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Figure 7.3 An Intercluster Message Transaction

the message, one word at a time, from its Message RAM
onto the Intercluster Bus and into the Message RAM of the
destination Linc,

At the destination side the receiving Port has already
obtained a buffer from the Free Queue. If the message Is
received complataly without error, then its pointer is placed
into the Service Queue {if not, the messaga is ignored; a
tinaout will occur at the source). The Service Queue
requests the Kbus to allocate a free Pmap context to
service the message. It nciudes status bits to start up
specific microcode. The context will transfer the pointer
from the Service Queue into the Pmap Address Register and
process the message, making appropriate main-memory
references. It then crcates a return message in the same
buffer, setting the source field to ones to indicate this. On
a Read, the data word will be appended. The buffer pointer
of the complated return message is gueued again in the
Send Queue. When the message has been sent, the pointer
> reloased into the Free Queue. At the original source the
return message is placed in the reserved buffer for the
regueesting context.  Its context number plus status is
passed to the Return Gueue and the context 15 reactivated
10 send data or an ascknowledgement back to the requesting
processor.

8 Development and Diagnostic Aids

A common sirategy used to aid in hardware and/or
microcode development is to construct s software simulator
for the hardware. This aliows imtial debugging to be

pertormed betore the actual hardware s available and can
provide a more comfortahle environmant in which to work.
Howewver, simulators are expensive both In terms of
development effort and computer time; furthermore they
cannot give an exact reflection of the hardware. Thus this
approach leaves the final bugs to be found using the real
hardware, and is of nc aid in diaghosing componant failures
{rather than design errors). The alternative approach
acdopted for Cm* was to incorporgte speclal hardware,
calted Hooks, dircctly into the Kmap for use in hardware and
microcode development. The interfacing of the Hooks to a
standard LSI-11 aliows extensive software support for
hardware developmant and diagnostics whila at the same
time proviting a convenient environment for the debugging
of microcode an the real hardware.

The Hooks give to an LSI-1 i, referred to as the MHooks
Processor, the ability to mtimatety examine and change the
Internal state of the Kmap. They provide the capabllity for
the Hooks Processor to load microcode into the writable
contrcl store of the Pirap, read the values on the A and B
busses of the Pmap, and to independentiy start, stop, and
single-cycle the Pmap-Ling and Kbus clocks. An interrupt is
generated for the Hooks Processor whenever the Pmap
clock stops {either due to a microprogram-invoxed halt or g
memaory parity erfor on the contro! or data stores).
Furthermore, several of the internai registers of tha Pmap
have "twin registers” associated with them which may only
be Ioaded by the Hooks Processor. These alternate
registers may be enabied via the Hooks to override
meroprogram-controlicd values, The presence of the Hooks
added approximately ten percent to the cost of the Pmap
wlile enormously reducing system development tima.
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9 Performance: Measurements and Predlctions

Before discussing the models used to estimate the
performance of a Cm* cluster, several simple measurements
(made on a cluster containing two processors) will be
presented. The average time between memory refarences
(including both code and data} made by & single LSi-11
executing entirely out of local memory varies between 2.5
and 4.0 microseconds, depending on the mix of Instructions
heing executed. For a "typical' code sequence, based on
measurements o! compilad BLISS-11 programs, the Inter-
reference time was 3.0 microseconds. Measurements
made on the samae “typical" code sequence, except with all
refercnces mapped via the Kmap to the other processor In
the cluster, yielded an average time between references of
7.7 microseconds. With the latter measuremant thete was
no contention for use of the Map Bus, Kmap, or destination
Slocal. Although no actual measurements were available at
the tima of this writing, it is expected that the time for
intercluster references will be between 15 and 20
microseconds.

A simple queueing model was developed to estimate the
pertormance of & cluster [Swan et al,, 1876a]. The model
assumed an exponentlal distribution of nonlocal requests,
exponential service time in the Pmap, and exponential
distribution of the tota! non-Pmap overhead incurred during
a nonlocal reference. It is assumed that the Pmap is the
primary cause of contention hence the waiting time for
other facilities is ignored. Figure 8.1 piots the results ot
this analysis. The relative rate ot memory referencing in a
cluster is plotted as a function of the number of active
processors and their A/t ratio to locol memory.

Because of the inability of the queueing analysis to
model contention for all cluster facilities it was feared that
the results would prove to be an optimistic estimate of
cluster performance. Therefore a series of simulations was
performed In order to model more closely the true operation
of a cluster [Brown 1976]. The simuiation and queueing
results were in close agreement and so the simulation study
will not be discussed further.

Figure 9.1 Indicates that system performance Is
extremely dependent on the locai hit ratio. It has been
fiypothesized that the local hit ratio would lie in the range
between 85% and 85%, in which case the effect of the
nonlocal refercnces would  be  "reasonably"  smal.
Unfortunately, this implies that code must be entirely local
to the processor exacuting it. Two memory-intensive
programs, a quicksort and a memory diagnostic, have been
run on the initial Cm* system {one cluster, two modutes).
Measuremants of tha performance degradation when code
and local variables are kept local but the area being sorted
or diagnosed is moved to the other processor in the cluster
indicate that locol hit ratios of G0% or higher are being
obtained in both cases. Expensive operating system
functions such as block transfers are expected to lower
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this figure, but it is also expected that most user programs
will make less intensive use of shared databases than the
above examplas.

The queueing model was used to predict the degradation
of cluster performance if either the Pmap were made slower
(and thus cheaper) or if the concurrency of the mapping
mechanism were elininated. Tha results for a cluster
containing twelve processors are shown in Flgure 8.2 A
slower Pmap was modelled by increasing Its service time
from 1.5 to 3.0 microseconds. The last model represents a
cluster implementation where each external reference Is
carricd to completion before servicing subsequent requests.
This would be the situation it only one Pmap Context were
provided, i.e. eliminating the concurrency between the Map
Bus and the Pmap. Both the slow and non-concurrent
clusters show enormous performance iosses, especlally at
the lovs end of the 85% to 95% hit ratio range. The inability
ot slower or non-concurrent Kmaps to support large numbers
of modules implies a need for more Kmaps per Cm* system.
It also suggests that more intercluster communication will be
required since each module will have fewer immediate
neighbors,
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10 Conclusion

Detailed hardware design of Co* begain in tate July,
18975, The initial goa! of a 10 processor, three cluster
system Is expected to be realized in the first quarter of
1977, Considering the Kmap alone, the time from the
beginning of design to a working protatyove (excluding the
Linc) was less than nine months. It is feit that this
relatively short development time is due to extensive use of
automated design ads, micreprogramming at almost every
level and the inclusion of additional hardware to aid in
debugaing. The Hooks taciily in the Kmap has becn
particularly successful. However 11 will not bo possible to
declare the overall system a success until it is regularty and
reliably supporting a community of satisfied users.
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introduction

Semiconductor technology advances are leading toward
the Inexpensive production of computer modules (l.e. a
processor plus memory of a moderate size) on a single chip.
Muitiple computer modules interconnected to form a
multiprocessor or & network offer a large number of
processing cycles far more Inexpensivaly than an equally
fast uniprocessor. Yot, such a computer moduie system is
useful only if a suitable fraction of the processing cycles
can actually be used for applications.

The software designed to manage a computer module
system can contribute substantially to making the system a
cost effective environment in which to program applications.
This paper discusses the software designed to manage a
computer module system called Cm* which is currently under
construction at Carnegie-Mellon University. We pay
particular attention to the philosophy of software
construction that influenced many of the design decisions.

For the purposes of this paper we will only review socma
attributes of the architecture that are salient to the design
of operating system software. Companion papers [Swan et
al., 77a Swan et al. 77b] describe and discuss the Cm”*
architecture in detail.

Cm* is a multiprocessor composed of computer moduies,
each consisting of a DEC t5i-11, a standard LSI-11 bus,
mamory and devices. We describe Cm* as a multiprocessor
because the system's primary memory forms a single virtual
addrcss space; any processor can directly access memoty
anywhere in the system. To implement such a virtual
memory, we introduced into each computer module a local
switch, the Slocat! which routes locally generated
references selectively to local memory or to the Map Bus
(when the reference is to memory in another computer
module}). The Siocal likewise accepts references from
distant sources ta its local memory,

Connected to a single Map Bus may be up to fourteen
computer modules that share a single address mapping and
routing processcr, calied the Kmap. The computer modules,
Kmap, and Map Bus together comprise a cluster. A Cm*
configuration can be grown to  arhitrary size by
interconnecting clusters wvia inter-cluster Busses (see
Figure 1). (A cluster need not have & direct bus connection
to every other cluster in a configuration.) Collectively, the
Kmaps mediate each non-local reference made by a
computer module, thus sustaining the appearance of a single
virtual address space.

Because processors are numerous, applications of any
size will tend not to be designed in the form of a single
program executed by a sequentiai process., Instesd we

1In several cases names ot Cm* components are derived
from the PMS notation described in [Bell and Newell 71].
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Figure 1. A Simple 3 Cluster Cm= System

expect users to create fashk forces, i.e. groups of processes
cooperating to achieve a goal. Because the number of
processes inh a task force may wvary with the avallable
resources and task parameters, and because proGesses
tend to be small {due to the relatively slow processors or
limitations on the amount of local memory), a user wil often
be unconcerned with indlvidual processes, communicating
only with the task force itself.

The Cm* architecture offers to a user the option of
empioying tightly or loosely coupled processes. Loosely
coupled processes communicate rarely, usually In
conventional ways via a message transmission mechanism.
Tightlly coupled processes communicate often, sometimes
using the efficient unconstrained paths provided by shared
memory. Cm* permits both types of communication since it
provides a message transmission facility as well as direct
agdressing of shared memory. Effectively, a user is free to
view Cm* as either a muitiprocessor or a computer network.

Software Design Methodology

Cm* Is a vahicle for experimentation, particularty in the
area of parallel decomposition of algonthms and their
efficient implementation on a computer module processing
resource. We expect it to be rare that an experimanter
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{which we will refer to as a user hereafter) ls contident
that all his code is debugged, since he will routinely aiter
parameters and even the code for his task forces in
substantial ways. We also expect users to ncrementally
construct experiments. In addition we expect users to
reconfigure modules (of softwara) combining them to form
a new experiment.

Such a view of the user has led us to belleve that it is
as important for the kernel (or lowest level) software to
support the user's software construction actlvities as it is
to provide the primitive runtime tacilitles required for
multiple users to share the computer resources in &
disclplined cooperative fashion, Consequently, the software
design reflects this concern. We view users as
constructing their experiments by incremantally building
modules2. Each module implements some abstraction useful
to other madules that will come to depend upon it. A module
then is a 'unit of abstraction'. 1t is implemented as

--code and data private to the module,
--a set of externally known functions that can be
invoked by other meduies making use of the
apstractions, and
--a set of refercnces to externally defined modules
defining  functions used in implamenting the
abstraction.

The kernel software supports the notion of a madule by
providing user facilities to creste modules and to invoke
functions of a modula i a protected way. An invoked
tunction is executed n an envireament that gives It access
to code and data that are part of the module, together with
any actual parameters specified by the invoker. Thus the
software enforces the boundaries of a module by providing
a well defined transition between execution in one module
and execution in another. Hopefully this will help contain
tie influence of errors and expedite debugging.

This notion of moduie is based on earler work. In
particular 1t is built on the Ideas of modular decomposition
siscussed in [Parnas 737 and abstract data types [Liskov
74] as used in language design,

Module boundarics are used for protection purposes at
Each function is executed with access only to
In designing the kernel
its modules

runtinee.
those objects which it requires.
software, we have found that some of
imptement rather complex abstractions. Yet not all uses ot
a moduie require the entire abstraction; some uses rely
only on part of the abstraction whila others rely on a
simplified abstraction. For design purposes & module may be

2Tnis paper always uses the words "computer moduie" to
refer to the hardware structure, and will in the sequel use
the {(commonly accepted) single word "moduie” to refer to a
programming abstraction. Cantext shouid also serve to
elinunate any ambiguity.
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partitioned into a strictly ordered set of levels as described
in [Habermann et al. 7G]. The purpose of dividng a
moduie's design into levels is to permit either incremental
introduction of the differrent parts of one abstraction or
increasingly more complex (and powerful) versions of the
entire abstraction. The introduction of complexity Is
postponed untll it is truly required. Multiplo levels of one
moduig share data structures and even code.

The first level within a multi-level module may define
only a subset of the functions of the compiete abstraction,
but that subset of functions is & useful self-contained, but
limited version of the abstraction. Subseguent levels are
introduced into the hierarchy as needed. Additional levels
of a module may introduce entirely new data structures or
extend existing ones. Npo protection boundaries exist
between levels so that higher level code may manipulate
data structures Introduced in Iower levels. Consequently,
though module Dboundarics are transiated into runtime
protection boundaries, the boundaries between ‘levels of
design' are not detectable in the runtime implementation
structures. Wa will illustrate this difference botween
modules and levels later when we discuss the Cm* message
transmission moduie.

Levels within a module are strictly ordered. We can
detine a level A to be 'higher' than level & in another module
in case A invokes a function defined in B, The set of all
levels (of all modules) is partially ordered by dependency.
In the design of opernting system software there is not
necessarily a cleanily identifiabic division of a hierarchy of
levels into supervisory and user software. The operating
system facilities required by one user differ from those
required by another, particularly In an experimental setting.
The partially ordered system structure is in a form such that
it is readily possible to replace 'upper' portions of the
dependency hierarchy since level boundries are clear and
the dependency relations between levels are Known.

Cm* Software System Design

Before describing the kerne! software design, we wiil
define two notions that play an important part in that
design: objects and capability addreasing of objects, The
basic unit which can be named, shared and Indlvidually
protected, and for which memory is allocated for
representation purposes is the object. Each object has a
unigue name and a definitive description used by the
software system, Every object has a type that determines
the structure of its representation and the operations or
accesses which can be performed on it. Current design
specifies three types of objects: data segments, which are
llnear arrays of words that may be read and written;
capability lists, which are structures containing capabiities
(to be discussed betow); and maifboxes, which are
structures containing messages.
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Objects are named (addressed) using capabilities
{Dennis and Van Horn G8, Lampson G9]. A capability may
only be created and manipulated in controiled ways {by
kernel provided capabliity functions). Since users cannot
create or forge capabilities, possaession of & capability is
evidence that the user can reference the object whose
unique name appears within the capability. A capabliity not
only identifies a unique object, it records a set of rights
indlcating which of the defined operations (accesses) are
permitted to be performed on the object. Controllad use of
objects is enforced because an oblect can be accessed
only it a program presents a capability naming that object
which contains a right for the desired access. Since
possession of a capability endows the possessor with the
ability to perform accesses, capabilities also record those
rights which a possessor may exercise with respect to the
capabilities themselves. (For exampla, copying a particular
capability may not be permitted.)

Based on the sbove discussion, we next describe the
Cm* kernel software. The purpose of the initial levels of
software is to provide facililies required for shared usage
of resources in an 'enforcably cooperative’ way. In addHtan
we wish to assist users in programming and executing thelr
experiments by providing coavenient structures and
functions for creating and executing modules. The
operating system software Itseif is composed of a partialty
ordered set of levels. [n several Instances two modules are
divided into a pair of tevels. For convenient reference
leveis are labeled with a tag in the format 'module-level'.
Modules are given alphabetic names; levels are numbered in
increasing order as thoy appear in the systam construction
hierarchy. The kernel levels to be discussed In this papear
are:

CAP-1: Capability referencing Parforms mapping
from a capability via a segment descriptor to
physical representation of segment (including
access control checking)

CAP-2:  Capability addressing and memory
allocation Defines an object address space
and interpretation of an address: performs
memory allocation ensuring that the segments
used to represent objects are pairwise
exclusive

ME-1: Enviconments anc Modules Implements the
creation and deletion of modules and
execution envircnmants

MSG-1: Conditicnal message transmisslon Defines
the structures message and mailbox; permits
sending and receiving of messages when
process suspensici is not required

DSP: Dispateching Dofines hardware implemented
data structures used to 'load' an environment
onto the processor and commence execution
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MPX: Multipiexing Selects the next environment
to execute on a processor

ME-~-2: Environment relations Records the ancestry
by which environments are related; provides

tor nested and parallel execution of
environments
MSG-2: Unconditional message transmission

Provides for sendlng, receiving, and replying
to messages even If environments Involved
are forced to wait for an indeterminate time to
complate message transmission

Ti: Trap and Interrupt handling Provides routing of
control when either interrupts or traps occur

A diagram indicating the dependency relations among
these levels appears as Figure 2. An arrow from levei A to
leve! B indicates that a funtion in level B is invoked in level
A. In addition, it is possitle that levei A invokes functions in
any of the levels 'below' B in the dependency graph.

Capability Addressing

Module CAP provides capability addressing. Level CAP-
1, which is implemented in Kmap microcade, interprets
capability references to objects, L.a. it maps a capabllity to
the physical representation of the object named by the
capability. Because the state of an object may change and
its physical representation may move, the system maintains
a single definitive dascription of each object called &
descripter or segment descriptor. it records the type of
the object, the physical description of its representation
(inctuding cluster, module, starting address, and size), state
information {e.g. whether the representation is in core, thirty,
or locked for Kmap usage), and the (reference) count of the
number of cutstanding capabilities for the object.

Every existing object has a uugue name--the memory
address of its descrptor. To perform & mapping from a
capability to a object, the jdentity of the object's
descriptor is determned from the capability. It, in turn, s
referenced to determine the physical representation of the
object. A capability reference fails it the right required to
perform  the operation desrcd Dby the addressing
environment originnting  the referenco is not in the
capability.

Level CAP-2 extends level CAP-1 to provide for the
generation of capabililty references (we refer to this as
capabhllity addressing), and  for capability manipulation.
Capabilities used for adiressing purposes are stored in
capability array objects called capability fists. Given a
capability list CL and an index X, one can determine the X-
th capability in capability list CL. This may be a capability
for an object of arbitrary type, including a capability list
object. By repcated application ot capability indexing,
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Figure 2. Levels and Modules of Cm» Software

abjects to any depth can be addressed. Because capabilily
list indexing |s performed in microcode a&s well as In
software, the architecturo restricts indexing to depth 2 in
any singie operation. This means that in & single addressing
operation the path to a target object may 'Indirect through'
at most two capability lists bofore arriving at the (third)
target object. Whenever a processar 18 executing (i.e.
generating capability addresses) ona capabllity Hst Is
distingiished as the primdry capabitity list. The first index
cf a capability address is an offset Into this primary
capabiity Iist.

CcAP-2 also defines (ancrocoded) tunctions for creating,
copying, movmg, and deleting capabilities as well as for
manipuiating the rignis encoded within a capabllity.
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A Cm* processor (an LSi-11) has a word size of only 16
bits. To permit 16 bit addresses to be mapped to the
arbitrarity sized Cm* memory, the notion of a window was
ntroduced. it consists of 15 window registers, each of
which can be thought of as holding a capabillty. (Actuaily,
in the current design, each window register holds an index
to a capability which can be indexed via the current primary
capability list.) CAP-2  provides two (microcode
impleamented) functions Segload and Unlfoad to associata
and de-associate, a wihdow register and a capability. To
read or write a data segment, a capability tor the segment
must be Segioaded into a window register.

A 16 bit machine address is interpreted to select a
window register (and thus a capability} and possibly to
specify an offset into a segmant of memory. For enhanced
performance of capability referencing, the descriptors for
the objects nametd in the capabilities associated with the
window repisters are cached in the Kmap. This mechanism
provikles virtual addressing and allows for conventional
refjocation of physical memory. It is sutficiently general to
support the definition of Kmap microcodad operations on
capability lists and mailtboxes.

The last facility introduced in CAP-2 is that of memory
allocation. Physical memory is allocated to hold segments
so that no two segments ovearlap.

Modules and Environments

Level ME-1 provides for the creation and deletlon of
modutes (as discussed earlier) and for executing invoked
functions. A module is implemented by a module capability
list containing

--capabilities for the code and data segments
requircd to perform the functions defmed in this
module,

--a data segment containing a vector of function
descriptors which specily the code to be executed
when & particuiar function is Invoked (e.g. the tndex
into the module capability list for the segment
conteining code for this function), the number of
parameters expected and the size of stack reguired
to perform the function,

--a list of other 'known' modules contgining functions
that can be invoked by this module.

ME-1 also defines an environment, the structure created
45 a resuit of a function invocation. An environment Is
defined by several objects; one is the primary capability list
which Is privaie to a function invocation and acts as the
root capability list for all addressing of objects during
exccution of the function.

The primary capability list contains capabillties for

~-the execution stack (private to the

environment)
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--the module capability list which defines the module
containing the invoked function,

--a state vector (private to the envirenment) which
contains the processor and addressing state when
the environment is not executing on a processor.
({The state vector includes processor registers,
processor status word, scheduling data, trap and
arror masks for communicating with the Kmap, and
indices ot tha capabilities Segioaded Ito the window
registers during the environments execution.}
--parameter objacts specified by the Invoker,

The module capability tist contains capabilities for those
cobjects shared by all who invoke a tunction in the moduia.
The primary capability list contains capabilities which are
local to a particular invocation of a function.

Level ME-1 provides functions for the creation,
initlalization and delation of modules snd environments.
These, in turn, are used by tevel ME-2 in providing functions
relating the execution gf different environments. Functions
Call and Return allow nested execution, i.e. the Calling
environment is suspended for the duration of the exacution
of the newly created (Called) environment which
terminates when the CaMed environment Returns. The
function Fork permits an environment to request that a
function be invoked to execute In parallel with Its invoker
until the function Joi/n is performed.

ME-2 initializes a newly created environment to record
priority information tor scheduling purposes and to record
the existence of a newly created environment in the
{ineage (tamily tree) of its creator, It is this lineage which
is used by siift higher leveis to keep track of a task force,
the set of environments which are copperating to achieve
some goal.

Message Transmission

The members of a task force need to be able to
synchronize their actions and te communicate with one
another. To this end module M5G defines an abstraction of
a mailbox which can contain messages. A mailbox is
capable of containing some tixed finite number of messages
maintained in FIFQ order. To permit users to communicate
arbitrury objects to one another, rather than data only,
messages are pairs of capabilities. (To transmit 16 bits of
information, a user can create a data capability to contain
this user specified mformation.)

Levels MSG-1 and MSG-2 ditfer in that MSG-1 provides
only the functions CondSend and CondReceive to transmit
messages when these functions can be completed without
suspension  of  the invoker. CongSend succeeds In
depositng a message into a mailbox only If the mailliox has
roam for it. CondRece/ve is a function which returns the
oldest message in case the malbox is not aempty. Hence
CondRaceive can be used for polling. A receivad maessage 13
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placed In the receiving environment's message-pouch, a
designated pair of positions in the environment's primary
capability list. CondSend and CcndReceive will return an
arror code If the mallbox overflows (is fuii) or underflows (s
empty), respectively.

The second level, M5G-2, extends the set of message
transmission functions to provide a synchronization as well
as a communication mechanism, MSG-2 is relies on the
hicrarchy ahove the MPX level where the notion of blocked
environments was introduced. MSG-2  provides the
unconditional message functions: Send, Recelve, and Reply.
Send performs the same tasks as CondSend; except when
the target mailbox is tull, Send will cause the sending
environment to be blocked awaiting an opportunity to deliver
Its message. Likewise, the Receive function causes the
environment attempting to Receive a message from an
empty mailbox to become blocked. Sending a message to
an empty maitbox on which an environment is waiting will
cause that environment to AReceive the message and
become unblocked. Similarly, it Receive causes a full
mailbox to no longer be fuli, it wil awaken the oldest
environment awaiting to deposit a message.

MSG-2 also defines a Reply function for mailboxes. This
function ditfers from Send in that after executing the Reply
function on a mailbox as permitted by a capability for that
mailbox, the right to Reply to that matlbox is removed from
the capability.

The two levels of tha massage transmission module
provide an excelient example ot a decomposition of a single
module. MSG-1 defines both message and mailbox data
structures, but provides functions which are of limited
applicabilily; in some situations the functions fail returning
an error code. Conditional functions are used to transmit
messages in a weli-detined fashion, but do not perform
synchronization.

MSG-2 extends the definition of the mallbox data
structure so that waiting environments can be recorded
when necessary. It also provides new tiinctions extending
the usefulness of mailboxes, but not ‘covering up' or
subsuming the conditional functions which are useful when
polling is desired. The multipiexing module relles on the
conditionat message functions of MSG-1 and implemants
biocking and unbiocking on which the second lavel of MSG
depends.

Dispatching and Multiplexing

Dizpatching (DSP) and Muitipiexing (MPX) are both
levels and entire modules. BSP defines the hardware
implemented state vector and its associated Envioad
functicn which loads an envirenment onto a computer module
and begins execution, Envioad is implemented in &
combination of Kmap microcode and software. Software
portions of Envioad locote the process register values and

Software Management of Cm*

the processcr status word values in the state vector and
ioad them into the physical processor registers. The
software then stores the index of its capability for the
environment in a special Iocation which alerts the Xmap that
an Envioad is in progress., The Kmap portion of this function
loads appropriate values found in the state vector into the
window registers and various Slocal registers.

Functions in OSP are used exclusively by the
multiptexing module {(MPX) which is responsible for selacting
the next environment to be Envicaded. Module MPX defines
a set of Runqueues, each of which Is a maibox. if an
environment is eligible for execution, i.e. it la not biocked
nor already executing on some processor, then there Is a
message containing & capability for it in one of the
rungqueves.

Associated with each processor is an ordered list of at
least some of the runqueues. The ardering selects the
priority with which that processor services the mailboxes.
The same Runqueue may appear in various positions in the
ordered list of runqueues of different processors. The
Multiplex tunction, invoked by the superior levels ME-2 and
TI, cycles down the list of rungueues (private to the
processor executing Multiplex) pertorming CondRecalves on
the runqueues. |f the CondRecelve is successful, then the
resuit is a capability for the next environment to be
Envioaded on the executing processor.

Trap and Interrupt Handiing

Software traps and Interrupts  signal exceptional
conditions caused by programn action and external
asynchronous ewvents, respectively. With only a few

exceptions (e.g. responding to a clock interrupt or to a high
speed device interrupt), hardware traps and interrupts are
translated into software traps and interrupts, so that
modules can indicate what action is to be taken when they
occur.

Defining a new trap (interrupt) means deflning a new
trap (interrupt) vector entry indicating what funtion in what
module is to be invoked if the trap (interrupt) occurs., When
a trap occurs, it was caused by the executing environment,
so a Call is perfomed to suspend the current environment
and cause the function nsmed in the appropriate trup vector
entry to be executed,

Interrupts are asynchronous and are not necessarily
related to the current processor execution. Tl offers two
options. As a resuit of an interrupt a Fork can be performed
to the function namad in the associated interrupt vactor.
This will cause the mterrupt to be serviced in parailel with
axccution of other environments. Alternatively, an interrupt
vector or trap vector entry may direct that as a resuit of an
interrupt, status information be sent as & message to a
specified mailbox. Presumably some environment capable of
handiing the interrupt wil Recefve of CondReceive to get the
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message. Interrupts would then be processed sequentially
by order of occurence.

Two ohservaions are appropriate here. On is that using
the trap and interrupt mechanism, any level above Ti can
detine vector entries so that code from higher ievels can
respond to exceptional conditions encountered when code
from lower levels is executing. This effects 'outward calis'
so that lower leveis can rely on higher levals when
exceptional conditions arise. The second observation is
that the trap and interrupt module is quite small, relying
heavily on ME for Fork and Call, and on MSG for mailboxes.

The Kernel System

The Cm* architecture provides allernative ways to
implement functions. A function may be implemented In
Kmap microcode, or it may be implemented in software to be
exccuted by one or more of the computer modules. A
computer module may execute a function in either of two
address spaces (user or kernel space). The decision where
to place a particular function of a particular level of

a particular madule is deternined by considerations such
as maximizing performance, providing for proper
synchronization, and ease of implementation, as well as
maintaining  protection  boundarics between moduie.
Because of this independence between the design and the
physical reaitzation, alternative implementations of &
function are possible. This faciity is expected to be
vaiuable In a system designed for experimental use
because it allows for function substitution and redesign.

The kernel software system described here is
implemented in two parts: Kmap microcode and a set of
programs which run in the kernel space of the computer
module processors. It is intended that in the initia! system
all of the cepabitity functions and message tunctions will be
performed by Kmap microcoede. The remaining functions will
be implemented in software to be execcuted from the kernel
space of the computer moduies.

The kernel and user spaces have syibmetric cata
structures because both are executing environments. Both
the user and the kernel system have a primary capalbility
list which acts as a ‘'root' for capability addressing
purposes. Both prinary capabitity Jists include a capabitity
for a state vector and for a moduie capability list. It is the
primary capability list and the state vector of the kercnel
space that maintain information particular 10 & processor.
Shared data and code in the kernel are referenced via
capabilities In the kernel's module capability list.
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Status of Software Development

As of Deccember 1976, the microcode available provided
only for simple relocation of physical addresses with no
capability referencing. Development of microcode to
support capability operations and the message facility will
follow shorthy.

Kerne! space programs have been coded In BLISS-11
fwuif et al. 71). & system Implamentation langtrage. This
set of programs is beinp tested using & simulator for the
Cm* machine [Chansler 76] which executes on C.mmp,
another multiprocessor system developed at Carhegle-
Mellon University [Wulf et at. 74]. The simulator models
multiple computer moduies as multiple processes, and is able
to run at about half the speed of a Cm* pracessor by
exploiting the writable control store features of the C.mmp
multiprocessor. Since the kernel code is successfully
executing on the simulator, it is expected that the software
kernel will be avallable tor use shortly after the complation
of the Kmap microcoding.

Future Software Development

The kernel system modules as described constitute a
very prinitive system. A numbor of additional software
levels and now modules are in various stages of design. It
is expected that most of the lavels in these modules will he
implemented as programs In the user space. Modules under
developmant include:

Secondary Store Management--Current design proposes
adding same disk memory local to some clusters, with large
fite storage accessibie via a high speed link to elther the
C.mmp or the DEC KL-10.

Linkediting--The creation and management of modules as
Cm* modules will be performed by a linkeditor intendecd ta
simplity the construction and management of function
tables, segments of code, and invocation sequences.

Command Interpreter--This module will provide on-line,
Interactive access to the Cm* machine. This will allow a
programmer to dynamically manage a task force. Currently
interactive terminal communication is provicded by a PDOP-11
connected to each computer module by & serial line unit
[van Zoeren 76].

ALGOL 6B Runtime System--The first pragramming
system to bo availaivie on the Cm* machine is expectad to
be ALGOL 88. {Until such a system is avaiiable, code will be
cross-compiled on another machine). This version of ALGOL
68 will be designed to exploit the multiprocessing facilitios
of the Cm* machine.

Resource Poncy HModules--A task force requires many
runtime decisions concerning scheduling and resource
allocation. It is the task of a policy module to provide for



Page 8

these decisions based up on the dynamic state of the task
force and the Cm* machine as a whole.
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Summary

This paper represents a status report on the design of
the firmware and software for management of a distributed
multiprocessor called Cm* and the software construction
philosophy which influgnced its design. We have described
the lowest levels of the kernel; some of the microcode and
all of the software implementing what we have described
now exists,

Besides continuing with the design and implementation
of further levels of software, we intcnd to experiment with
the placemant and execution of kernel code within different
Cm* configurations. Parameters of these experiments will
include varying the physica! iocation of the kerne! code, the
number of copies of that code as well as which computer
mocdules can axecute different portions of the code.

For exampla, one cxperiment is 1o limit the number of
processors that can execute MC-2 code to (say) two
processors in & cluster. It user programs executing on
processors other than the designated two request ME-2
functions, their requests will be recorded so that the
designated two processors can process these requests at
some later tine. The motivation for such an arrangement is
that a processor Is much more efficient if it exacutes code
from its local memory.

in addition to such operating system experiments, we
plan a number of axperments employing Cm* in the solution
of different types of applications problems.

Software Management of Cm*
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