
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Collection of Papers on Cm*:

A Multi-Microprocessor Computer System

S.K Fuller, A.K. Jones, D.P. Siewiorek, R.S. Swan,
A. Bechtolsheim, R J . Chansler, I. Durham, P. Fei ler,

K.W. Lai, J . Ousterhout and K. Schwans

February , 1977

Department of Computer Science
Carnegie-Mel lon Universi ty

Pittsburgh, PA 15213

Th i s w o r k was s u p p o r t e d in part by the Advanced Research Projects A g e n c y under
c o n t r a c t number F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 , which is monitored by the Air Force Off ice of
Sc ient i f ic Research , and in part by the National Science Foundation Grant G J 32758X.
T h e L S I - i T s and re lated equipment were supplied by Digital Equipment C o r p o r a t i o n .

Preface

T h i s r e p o r t is a col lect ion of three papers that describe the design and implementation
of the mul t i -mic roprocessor computer system (Cm*) cur rent ly under developement at
C a r n e g i e Mel lon Un ivers i t y . The three papers are:

Cm*: A Modular Multiprocessor

T h e arch i tecture of a new multiprocessor that supports a large number of
p r o c e s s o r s (on the order of 100) is described in this paper. The system enables
v e r y c lose cooperat ion between the large numbers of inexpensive p rocessors . All
p r o c e s s o r s share access to a single virtual memory address space. T h e r e are no
a r b i t r a r y limits on the number of processors, amount of memory or communication
b a n d w i d t h in the system. Considerable support is p rov ided for low leve l
o p e r a t i n g system primitives and inter -process communication.

T h e Implementation of the Cm* Multi-Microprocessor

T h e implementation of the Cm* multiprocessor multiprocessor is p resented . T h e
lowest leve l of the s t ructure , a Computer Module, is a p r o c e s s o r - m e m o r y pair .
C o m p u t e r Modules are grouped to form a cluster; communication wi th in the
c lus ter is via a parallel bus controlled by a central ized address mapping
p r o c e s s o r . C lusters communicate via intercluster busses. A memory r e f e r e n c e b y
a p r o g r a m may be routed , transparently , to any memory in the sys tem. This
p a p e r discusses the hardware used to implement the communication mechanism.
T h e use of special diagnostic hardware and performance models is also d iscussed.

Software Management of Cm*, a Distributed Multiprocessor

This paper descr ibes the software system being developed for Cm*, a
d i s t r i b u t e d mult i -microprocessor . This software provides for f lex ib le , y e t
c o n t r o l l e d , sharing of code and data via a capability addressed v ir tual memory,
c rea t ion and management of groups of processes known as task fo rces , and
ef f ic ient in terprocess communication.

Page 1

1. Introduction

Cm*: a Modular, Multi-Microprocessor

R. J . Swan
S. H. Fuller
D. P. Slewiorek

Carnegie-Mellon University
Pittsburgh, PA 15213

Cm* is an experimental computer system designed to
investigate the problems and potentials of modular, multi-
microprocessors. The initial impetus for the Cm* project
was provided by the continuing advances in semiconductor
technology as exemplified by processors-on-a-chip and
large memory arrays. In the near future processors of
moderate capability, such as a PDP-11, and several
thousand words of memory will be placed on a single
integrated circuit chip. If large computer systems are to be
built from such chips, what should bo the structure of such
a 'computer module'?

November 30, 1976

Abstract

This paper describes the architecture of a new large
multiprocessor computer system being built at Carnegie-
Mellon University. The system allows close cooperation
between large numbers of Inexpensive processors. All
processors share access to a single virtual memory address
space. There are no arbitrary limits on the number of
processors, amount of memory or communication bandwidth
in the system. Considerable support is provided for low
level operating system primitives and inter-process
communication.

CR Categories: 6.20, 4.30, 4.32

Keywords: Multiprocessor, microprocessor, computer
architecture, virtual memory

Initial versions of the Cm" architecture [Fuller, et al. 73]
grew in part as an extension to the modular design of
systems from register transfer modules, or RTMs [Bell et al,
72]. In addition there was substantial Interest in the
development of large multiprocessor systems such as
Pluribus [Heart, et al. 73] and C.mmp[Wulf and Bell, 72].
Cm" is intended to be a testbed for exploring a number of
research questions concerning multiprocessor systems, for
example potential for deadlocks, structure of Inter-
processor control mechanisms, modularity, reliability, and
techniques for decomposing algorithms into parallel
cooperating processes.

The structure of Cm" is very briefly described in Section
2. Section 3 Is a description of the address structure and
discusses the support given for the operating system. The
use of the addressing structure for inter-process
communication and control operations is discussed in
Section 4. A companion paper [Swan, et al. 77] discusses
the various mechanisms used to implement the complex
address mapping and routing structure of Cm". Some
results from the performance modelling of Cm" are also
presented. A second companion paper [Jones, et al. 77]
describes the structure of the basic operating system and
support software.

2. The Structure of Cm«

This work was supported In part by the Advanced
Research Projects Agency under contract F 4 4 6 2 0 - 7 3 - C -
0074, which is monitored by the Air Force Office of
Scientific Research, and in part by the National Science
Foundation Grant GJ 32758X. The LSI-11's and related
equipment were supplied by Digital Equipment Corporation.

There is a surprising diversity of ways to approach the
interconnection of processors into a computing system
[Anderson and Jensen, 76]. The processors could be
interconnected with several serial I/O links to form a
computer network; they could be interconnected in a tight
synchronous fashion to build an array processor; or the
processors could be organized to share primary memory.
This last approach, a multiprocessor organization, was
chosen for Cm" because it offers a closer degree of
coupling, or communication, between the processors than
would a multicomputer or network configuration.
Multiprocessors also have a more general range of
applicability than other multiple processor systems.

Page 2
Cm*: a Modular, Multi-Microprocessor

2.1 Deadlock with References to Nonlocal Memory

!Ki

K3

P 2 - - M 2

1
I
Y

Figure 2.1 Canonical Computer Modulo Structure

During the development of the Cm* structure a wide
var iety of multiprocessor switch structures were considered
[Swan, et al. 76B]. The basic structure selected is
represented in Figure 2.1. The essential feature which
distinguishes it from other multiprocessor structures is that
shared memory is not separated from the processing
elements, but rather a unit of memory and a processor are
closely coupled in each module and a network of buses
gives a processor access to nonlocal memory. This
structure allows modular expansion of the number of
processors and memory modules without a rapid increase in
the interconnection costs. Memory can be shared even
though there is no direct physical connection between the
requesting processor and the required memory. For
example, consider a request by processor, P1, to the
memory, M4, in Figure 2.1. The address mapping element,
K1, directs the reference from P1 onto the intermodule bus.
The address is recognized by K2, which directs it onto a
second inter-module bus. The reference Is finally accepted
by K4, which accesses the request memory location and
passes back an acknowledgement or data to the requesting
processor. The need for high inter-module communication
rates will be minimized if a large fraction of each
processor 's references to primary memory 'hit' the section
of memory local to the processor. (Preliminary experiments
in the Fall of 1976 indicate that hit ratios of better than
907. can be expected provided that the code executed is
normally held local to the processor.)

Almost all computer systems Implement accesses from
processor to primary memory with Circuit Switching, that
is, a complete path is established from a processor to the
memory being referenced. Circuit switching Is not feasible
for a structure like Cm" where local memory Is also
accessible as shared memory. Figure 2.1 shows the path
used for P1 to access M4 via K2. Consider a concurrent
attempt by P4 to access M1 via K2. With a circuit switch
implementation, a situation could arise where P1 held Its
local memory bus and the bus connecting K2, while P4 also
holds its own memory bus plus the bus connecting K4 to K2.
Neither memory reference could complete without one
processor first releasing the buses It holds. There are
numerous situations where deadlock over bus allocation can
occur. Resolving this deadlock requires, at the very least, a
timeout and retry mechanism.

The alternative to circuit switching is Packet Switching.
In a packet switched implementation, the address from the
processor is latched at each level In the bus structure.
Buses are not allocated for the full duration of a memory
reference, but just for the time taken to pass a 'packet' ,
containing an address and/or data, from one node on the
bus to another. Therefore packet switching allows
significantly better bus utilization and significantly reduced
bus contention in Cm*-like structures. The use of packet
switching eliminates the possibility of deadlock over bus
allocation but introduces the possibility of deadlock over
buffer allocation. [Fuller, et al. 73; Swan, et al. 76A]
Buffers, or intermediate registers, are resources which can
be provided very cheaply, relative to providing additional
Inter-Cm buses, with present technology.

2.2 The Actual Structure of Cm*

Design studies indicated that very little performance
loss would result from combining several Individual Computer
Modules into a cluster and providing a shared address
mapping and routing processor, Kmap, which allowed
communication with other clusters. Because the cost of the
Kmap is distributed across many processors It can be
endowed with considerable flexibility and power at
relatively little incremental cost. Because of its
commanding position in the cluster, the Kmap can ensure
mutual exclusion on access to shared data structures with
v e r y little overhead.

The full structure of Cm* Is shown In Figure 2.2.
Individual Computer Modules, or Cms, consist of a DEC LS I -
11 processor, an Slocal and standard LSI-11 bus memory
and devices. The processor is program compatible with
PDP-11s; thus a large body of software is Immediately
available. The prime function of the Slocal, or local switch, Is
to direct references from the processor selectively either

Cm": a Modular, Multi-Microprocessor Page 3

lntercluster Bus

Map Bus

P-S-M P-S-M ~F>3-M

lntercluster Bus

Kmap
1

Map Bus
— r
P-S-M P-S-M

Kmap
3

Map Bus

P-S-M

LSI-11

73-M

LSI-11 BUS
/SlocalV

1

Memory Devices

Detail of a Computer Module

A Cluster of Computer Modules

Figure 2.2 A Simple 3 Cluster Cm* System

to local memory or to the Map Bus, and to accept
references from the Map Bus to the local memory.

Up to 14 Computer Modules and one Kmap form a cluster.
The Kmap, or mapping processor, consists of three major
components. The Kbus arbitrates and controls the Map bus.
The Pinap Is a horizontally microcoded 150 ns cycle time
processor. The basic configuration has 1 K x 30 bits of
writable control store and 5K x 16 bits of bipolar RAM for
holding mapping tables etc. The third level of the Cm"
structure is provided by the intercluster buses which allow
communication between clusters. The Line provides the
interface to two intercluster buses.

There are no arbitrary limits to the size of a Cm" system.
Memories, processors and Kmaps can be Incrementally
added to suit needs. Any processor can access any memory
location in the system. The routing of a processor's
reference to a target memory is transparent to the program,
thus the system can be reconfigured dynamically in
response to hardware failures.

3. Architecture of the Address Translation Mechanisms

Many of the more conventional aspects of the
architecture of the Cm" system are consequences of using
LSI -11 's for the central processing elements. The
organization and encoding of the instructions, Interrupt and
trap sequencing, and the 64K byte processor address
space of a Cm" system are all a result of the PDP-11
architecture as implemented on the LSI-11. By selection of
the LSI -11, however, we do not want to Imply that the PDP-
11 architecture is ideally suited to multiprocessor systems.
The ideal solution would have been for us to have designed
our own processors. However, practical considerations of
time, money, and existing support software lead us in early
1975 to recognize that by chosing the LSI-11 we could
concentrate on those aspects of the Cm* architecture
unique to multiprocessor systems. This section, and the
following section on control structures, will discuss the Cm"
architecture as we extended it beyond the standard PDP-
1 1 architecture.

The addressing structure is one of the the most
important aspects of any computer architecture, it is even

Page 4 Cm*: a Modular, Multi-Microprocessor

more significant when cooperation between multiple
processors is to be achieved by sharing an address space.
Denning [1970] lists four objectives for a memory mapping
scheme:

(a) Program modularity: the ability to independently
change and recompile program modules.

(b) Variable size data structures.

(c) Protection

(d) Data and program sharing: allowing independent
programs to access the same physical memory
addresses with different program names.

For Cm*, where we are using processors with only a 64K
byte address space, we must add the following
requirement:

Read Only Map Physical Page
External Processor \ .
Status Word

User/Kernel
Space

Offset

Relocation
Table

12

(e) Expansion of a processor's address space.

Cm* has a 2^8 byte segmented virtual address space.
Segments are of variable size up to a maximum of 4K bytes .
There is a capabiiity-based protection scheme enforced by
the Kmap. The addressing structure provides considerable
support for operating system primitives such as context
switching and interprocess message transmission.

3.1 The Path from Processor to Memory

The Slocal (see Figures 2.2 and 3.1) provides the first
level of memory mapping. A reference to local memory is
simply relocated, on 4K byte page boundaries, by the
relocation table in the Slocal. As discussed above, it is
assumed that most memory references will be made by
processors to their local memory. Relocation of local
memory references can be implemented with no
performance overhead because the synchronous processor
has sufficiently wide timing margins at the points where
address relocation is performed. For segments which are
not in a processor's local memory the relocation table has a
status bit which causes the address to be latched, the
processor forced off the LSI-11 bus, and a Service Request
to be signalled to the Kmap. All transactions on the Map bus
are controlled by the Map bus controller, or Kbus, which Is a
component of the Kmap. The address generated by the
processor is transferred via the Map bus to the Pmap, the
microprogrammed processor within the Kmap. If the
reference is for memory within the cluster then the Pmap
generates a physical address and sends It to the
appropriate Slocal. If it is a write operation, data is passed
directly from the source Slocal to the destination Slocal;
the data does not have to be routed through the Kmap. The
se lec ted destination Slocal performs the requested memory
reference and the processor in the destination Computer

Processor generated Physical Address
Address on LSI-11 Bus

Figure 3.1
Addressing Mechanism for Local Memory References

Module is not involved. When the reference is complete the
Kbus transfers the data read from the destination Slocal
directly back to the requesting processor via the Map bus
and its Slocal.

If the processor references a segment In another
cluster then the Pmap will transmit a request to the desired
cluster via the Line and the Intercluster buses. (See Fig.
2.2.) If the destination cluster is not directly connected to
the source cluster, that Is, if it does not share a common
Intercluster bus, then the message will be automatically
routed via intermediate clusters. When the message
reaches the destination cluster, the memory reference is
performed similar to a request from a processor within the
cluster. An acknowledgement, or Return, message
(containing data in the case of a read) is always sent back
to the source cluster and subsequently to the requesting
processor.

3.2 The Addressing Environment of a Process

The virtual address space of Cm* is subdivided into up
to 2 1 G Segments. Each segment is defined by a Segment
Descriptor. The standard type of segment is similar to
segments in other computer systems; it is simply a vector of
memory locations. The segment descriptor specifies the
physical base address of the segment and the length of
the segment. Segments are variable in size from 2 bytes to
4 K bytes . However, other segment types may be more

Cm": a Modular, Multi-Microprocessor Page 5

than simple linear vectors of memory; references to
segments may invoke special operations. Segments may
have the properties of stacks, queues or other data
structures. Some segments may not have any memory
associated with them, and a reference to the segment
would invoke a control operation. For each segment type ,
up to eight distinct operations can be defined. For normal
segments the operations are Read and Write. Conceptually,
segments are never addressed directly; they are always
referenced indirectly via a Capability. A capability is a t w o -
word item containing the name of a segment and a Rights
field. Each bit in the rights field indicates whether the
corresponding operation is permitted on the segment.

User Environment
Register

Capability List Structure

Primary Cap. List

Segments

r ->
U

»»

U

»»

l
I
1
l

U

»»

U

»»

J

Code, Data or
other Segment

Capability List [7]

Code, Data or
other Segment

Code, Data or
other Segment

Code, Data or
other Segment

Capability List, CL[0] . The first entry in CL[0] Is a
Capability for a State l/ecfor, which holds the process state
while it is not executing on a processor. Entries CL [0] (1)
to CL [0] (7) in the Primary Capability list may contain
Capabilities for Secondary Capability Lists referred to as
C L [1] through CL [7] respectively. The remaining entries in
the Primary Capability List and all the entries In the
Secondary Capability Lists contain Capabilities for segments
which can be made directly addressable by the process
when it executes . These may be code, data or any other
t ype of segment. The provision of up to eight Capability
Lists facilitates the sharing of segments and sets of
segments by cooperating processes. A software module
can only access those segments for which It has
capabilities and perform only those operations permitted by
the capabilities.

3.3 Virtual Address Generation

2 2 8 B y t e Virtual
Address Space

64 K Byte Processor
Address Space

Page [1 5]

Page [0]

Figure 3.3
Windows from the Processor's Immediate Address Space
to the Virtual Address Space

Figure 3.2 The Environment of a User Software Module

To provide efficient support for context swapping,
message-sending etc., it is necessary for the Kmap
microcode to understand some of the structure of en
executable software module (variously called a process,
act iv i ty , address space etc.). Each executable software
module is represented by an Environment, Figure 3.2. An
environment is a three-level structure composed of
segments. The first level in the structure is a Primary

The processors in Cm", LSI - 11s, can directly generate
only a 16 bit address. This 64 K byte address space is
divided into 16 pages of 4 K bytes each. Each page
provides a window into the system wide 2^® byte virtual
address space, (see Figure 3.3) and can be independently
bound to a different segment in the virtual address space.
The top page in the processor's address space, page 15, is
reserved for direct program interaction with the Kmap. This
mechanism is analogous to the I/O page convention in
standard PDP-11S. In page 15 there are 15 pseudo

Pago 6 Cm": a Modular, Multi-Microprocessor

registers, called Window Registers. These define the
binding between page frames In the processor's Immediate
address space and segments in the virtual address space.
This binding is done indirectly via capabilities. Each window
register holds an index for a capability in the currently
execut ing software module's capability list structure. A
Capability List index consists of a three bit field to select
one of the up to eight Capability Lists, plus an offset within
the C-L ist .

To overlay the processor's address space, ie. to change
the mapping from page frame to segment in the virtual
address space, a program simply writes a new capability
index into the appropriate window register. This overlay
operation is completely protected; the program can only
reference segments for which it has a Capability. The act
of writing the Capability index into the window register
act ivates the Kmap. The Kmap retrieves the se lected
Capability from main memory and places it in its "Capability
cache" . The Kmap adjusts its internal tables so that
subsequent references to the page frame will map to the
segment specif ied by the Capability. If the segment Is local
to the processor then the Kmap may also change the
relocation register in the Slocal so that references to the
segment can be porformod at full speed without the
intervention of the Kmap. The Slocal, for cost and
performance reasons, does not have the hardware
necessary for bounds checking on variable sized segments.
Thus only f ixed size 4 K byte segments can be accessed
without Kmap assistance.

The Cm* mechanism for address space overlaying should
be contrasted with mechanisms in other computer systems.
When executing a large program on a processor with a small
immediate address space, the time taken to overlay the
address space can have a crucial effect on performance.
Measurements made of the execution of the operating
system HYDRA [Wulf et al, 76] on the C.mmp multiprocessor
showed that relocation registers were being changed
approximately every 12 instructions. (This does not,
however , imply that user programs perform overlay
operations this frequently.) Within the operating system
this overlay operation is a single PDP-11 MOVE instruction
because no protection is involved. However for user
programs running under HYDRA, an overlay operation
requires Invocation of the operating system with several
hundred Instructions of software overhead. Subsequent
optimization, and partial microcoding, have greatly reduced
this overhead.

Figure 3.4 shows the conceptual translation from a 16
bit processor-generated address to a virtual address. The
four high order address bits from the processor select one
of 15 Window registers. The Window register holds an
index for a Capabiiity in the executing software modules
Capability List structure. The 16 bit segment name from the
se lec ted Capability is concatenated with the 12 low order
bits from the processor to form a 28 bit virtual address.

Window Register Capability

OP Cap. Index Rights Segment Name

I - H :
A

Read/
" 4 A

Write

3-K
16

Rights Check

1 6 Bit, Processor
Generated Address

28 Bit, System Wide
Virtual Address

Figure 3.4
Conceptual Virtual Address Generation and Rights Checking

Figure 3.4 also shows the read/write indicator from the
processor being concatenated with two bits in the address
expansion registers to form a three bit opcode. The
corresponding bit in the Capability rights field is se lected
and tested. If the operation Is not permitted then an error
trap Is forced.

3.4 Virtual to Physical Address Mapping

The mapping from virtual to physical address depends on
the location of the segment in the network and, of course,
on the type of the segment. We begin with the case of a
simple read/write segment residing within the same cluster
as the processor referencing the segment. This mapping is
shown in Figure 3.5. The segment name is used to access
the corresponding segment descriptor. The descriptor
provides a limit value which is checked against the 12 bit
o f fset in the virtual address. If the reference is out of the
bounds of the segment then an error trap occurs. The
of fset is added to the physical base address from the
descriptor. The resulting 18 bit value is a physical address
within the 256 K byte address space of the computer
module also specified in the descriptor.

If the virtual address references a segment outside the
source cluster then the segment name is used to access an
indirect Descriptor Reference rather than the descriptor
Itself. The indirect reference simply indicates in which
cluster the segment resides. The Krnap then passes the
virtual address to that cluster via the inter-cluster buses.
An alternative approach would be to have duplicate copies
of the segment descriptors in every cluster. Thus the
virtual-to-phys<cal mappmg could be done at the source

Cm": a Modular, Multi-Microprocessor Page 7

Segment Descriptor

Type Limit Base Address CM#

OP Code

Simple
Read/Write

Segment Name

'16

Offset

CM#

Limit

Check V + J ' 18 ^

12

28 Bit, Virtual Address
22 Bit, Physical

Address within Cluster

Figure 3.5 Virtual to Physical Address Mapping
for a Variable Sized Segment

cluster, with possibly some savings in overhead. However,
any attempt to change the v»i tual-to-physical binding of a
segment (e.g. moving it to a different memory module or onto
backing store) would require an effectively simultaneous
change to all copies of the segment descriptor. In a large
network this operation would be slow and cumbersome, if
not impossible. A further advantage to ensuring that only a
single descriptor exists for each segment is that a Lock Bit
can be provided in the descriptor. The lock bit can be used
to ensure mutual exclusion for special segment operations.

3.5 The Kernel Address Space

Each processor can execute in either of two address
spaces. One is the User Address Space which was
descr ibed above. The second is the Kernel Address Space,
which is similar to a user address space with the addition of
some mechanisms reserved for the operating system. The
currently executing address space is selected by a bit in
the Processor Status Word of the LSl-11. A Kernel
Environment is similar to a User Environment; however
segments at the third level of the Capability List structure
(Figure 3.2) can be User Primary Capability Lists. That is, a
Kernel Capability list structure can have user environments
as substructures.

There are several additional pseudo registers provided

in page 15 of the kernel address space. One of these, the
User Environment register, holds an index for a Capability in
the kernel environment which points to a user environment.
This register specifies the current user environment for this
processor. If the kernel writes a new index Into the
register the addressing state of the old user process is
saved by the Kmap in the state vector part of the old user
environment. The addressing state of the new user is then
loaded from the specified new user environment. The
addressing state is the value of the window and other
system registers in page 15 of the executing program.
Ideally, this operation, which performs a context swap by
saving one addressing state and loading another, would also
save the internal processor registers. Unfortunately there
is no way for the Kmap to access the internal registers of
an LSl -11. Thus internal registers must be saved and
restored under program control.

4. Control Operations

The philosophy in Cm" is to implement all special control
operations, such as interprocessor interrupts, by references
to the physical address space. This not only avoids a
proliferation of special control signals, but also allows the
power of the system's address mapping and protection
mechanisms to be applied to control operations.

The Slocal provides a three priority level interrupt
scheme. An interrupt is invoked by writing into the
appropriate physical address on the LSl-11 bus of the
target processor. Thus an Interrupt can be requested by a
process anywhere in the network, provided the process has
a Capability for a segment which maps to the correct
physical address. Another example is the abort operation,
if the appropriate bit Is written, a NXM (Non Existent
Memory) trap by the local processor Is forced. This
mechanism will be used when an error occurs during a
remote reference by the processor.

The following examples show how references to special
t yped segments, or special operations on standard
segments, are used to invoke microcoded operations in the
Kmap.

4.1 Primitive Lock Operations

For processors in the PDP-11 family, most write
operations are part of a read-modify-write sequence, in
standard PDP-11s (including LSI-11's) this sequence is
implemented as an indivisible, single bus operation. This
improves performance by reducing bus overhead and
allowing optimization of references to memory with
destruct ive read operations (e.g. core and dynamic MOS
memory). In C.mmp the indivisibility of these operations is

Page 8 Cm": a Modular, Multi-Microprocessor

maintained through the switch to shared memory. This allows
the implementation of Locks and Semaphores because a
memory location can be both tested and set without fear of
an intervening access by some other processor. Indivisible
read-modlfy-wrlte operations to nonlocal memory will not be
implemented in Cm" because of increased bus and memory
contention and hardware complexity. We will provide an
equivalent function by making use of the Kmsp's ability to
lock a segment descriptor while it makes a series of
references to the segment. To implement a basic lock
mechanism two special segment operations are defined:

Inspect the word addressed. If greater than zero,
then decrement. Return the original value.

Increment the word addressed. Return the original
value.

4.2 An Inter-Process Message System

Message systems can provide particularly clean
mechanisms for communication between processes [Brlnch-
Hansen, 73. Jefferson , 77]. In the past, a drawback to
message systems has been the substantial operating
system overhead in transferring a message from one
process to another in a fully protected way. The
architecture of Cm* provides an opportunity to build a fully
protected message system which can be used with v e r y
low overhead.

A message port, or mail box, will be a special segment
type . Messages will either be entire segments, passed by
transferring capabilities, or will be single data words
encoded as data capabilities. Two representative
operations on Mailbox segments are:

Send (Message, ReplyMuilGox, MailBox)

This transfers capabilities for a message and a reply
mall box from the caller's Capability List to the Mail
box. If the mailbox is full then the caller is
suspended.

Receive (MailBox)

If the mailbox contains a message then a Capability
for the message and a Reply Mailbox will be
transferred into the caller's Capability List.
Otherwise the caller is suspended.

Provided that the above operations are successful , they
are performed completely in Kmap microcode, and messages
may be passed with probably less than 100 microseconds
delay. If the operation cannot be completed because the
Mailbox is full or empty, then the operating system Is
invoked to suspend the requesting process. The Kmap can

also request the operating system to wake up a suspended
process when the operation is complete.

5. Development Aids

The development of hardware and software for a new
computer system is a major undertaking. We have
attempted to ease this burden by using a variety of aids.
All the major hardware components were drafted using an
interactive drawing package (a version of the Stanford
Drawing Package). To facilitate the development of
software, prior to the availability of hardware, a functional
simulation of Cm" was programmed, which executes on
C.mmp. Development of the Kmap hardware and microcode
has been greatly benefited by the use of the "hooks"
mechanism in the Kmap. This connection to the Kmap
allows a program executing on an LSI-11 almost complete
access to the internal state of the Kmap.

In order to expedite hardware debugging and software
development, a host program development system was
constructed. The host is connected to each Cm in the
system by a Serial Line Unit (SLU) to allow down line memory
loading and dumping from the associated Cm. In addition,
the SLU makes console control functions for each LSI-11
available to the host computer [van Zoren, 75]. The Host in
turn is connected to a POP-10 timesharing system.

6. Concluding Remarks and Project Status

Cm* is projected to be constructed in three stages. The
first stage is a ten-processor, three Kmap system. The
subsequent stages will include 30-processors and later
100-processors. Detailed hardware design began in late
July , 1975. As of late summer, 1976, a three-processor,
one-Kmap system was operational. It is expected that the
first stage Cm" configuration will be operational in the
second quarter of 1977. The initial operating system Is
descr ibed in [Jones, et at. 77] and is being developed both
on the Cm* simulator which runs on C.mmp and on the real
hardware with the support of the Host Development system.

The essential features of the Cm" architecture have
been presented. Both the coupling of a processor directly
with each unit of shared memory and the three level bus
structure which makes all memory accessible by every
processor are primary features of the Cm" structure. Much
of the sophistication in the architecture is associated with
the address translation mechanisms. A description has been
given of how the small processor address space of the
PDP-11 is mapped into the larger global virtual address
space of the Cm* system and how the global virtual address
space is mapped onto the distributed physical address
space of the Cm" system.

Cm*: a Modular, Multi-Microprocessor Page 9

A number of important aspects of the Cm* project are
outside the scope of this paper and interested readers are
referred to other papers for a more complete discussion
[Jones , et al. 77, Swan, et al. 7GA, 76B, 77, Ingle and
Siewiorek, 76A, Ingle and Siewiorek, 76B, Siewiorek, et al.
76] , Reliability and performance models have been
developed concurrently with the hardware design of the
system and have been used to guide several important
decisions concerning the structure of the Cm*
implementation.

Acknowledgements

During the years of its initial development, many
individuals have contributed to this project. Gordon Bell, Bob
Chen, Doug Clark and Don Thomas contributed ideas to
earlier versions of this architecture. Anita Jones and Victor
Lessor have contributed to the present architecture. Miles
Barel, Paulo Corrulupi, Levy Raskin and Paul Rubinfeld have
all contributed to bringing the hardware to an early fruition.
Kwok-Woon Lai and John Ousterhout are largely responsible
for the successful development of the Kmap. Andy
Bechtolsheim designed the Line. Lloyd Dickman, Rich Olsen,
S teve Teicher and Mike Titelbaum at Digital Equipment
Corporation have provided information, ideas, and support
critical to the success of the project.

References

[Anderson and Jensen, 76] Anderson, G. A. and E. D.
Jensen. , "Computer Interconnection Structures:
Taxonomy, Characteristics and Examples", Computing
Surveys 7, 4, December 1975, 197-213.

[Bell et al. 1972] Bell, C G., J . L. Eggert, J . Grason, and P.
Williams, "The Description and the Use of Register
Transfer Modules (RTMs)," IEEE Transactions on
Computers, Vol. C-21, No. 5, May 1972, 495-500.

[Bell et al. 1973] Bell, C. G., R. C. Chen, S. H. Fuller, J .
Grason, S. Rege, and D. P. Siewiorek, "The Architecture
and Applications of Computer Modules: A Set of
Components for Digital Design," IEEE Computer Society
international Conference, CompCon 73, March 1973,
1 77-180.

[Bell and Newell 1971] Bell, C. G. and A. Newell, Computer
Structures: Readings and Examples, McGraw-Hill, New
York, New York, 1971.

[Brinch-Hansen 1973] Brinch-Hansen, Per, Operating
System Principles, Chapter 8, "A Case Study: RC-
4000," Prentice Hall, 1973.

[Denning 1970] Denning, P. J . , "Virtual Memory," Computing
Surveys, Vol. 2, No. 3, September 1970, 153-190.

[Fuller et al. 1973] Fuller, S. H., D. P. Siewiorek, and R, J .
Swan, "Computer Modules: An Architecture for Large
Digital Modules," Proceedings of the First Annual
Symposium on Computer Architecture, University of
Florida, Gainesville. Also in ACM SIGARCH, Computer
Architecture News, Vol. 2, No. 4, December 1973, 231-
236.

[Heart et al. 1973] Heart, F. E., S. M. Ornstein, W. R.
Crowther, and W. B. Barker, "A New
Minicomputer/Multiprocessor for the ARPA Network,"
IF/PS Conference Proceedings, Vol. 42, NCC 1973, 529-
537.

[Ingle and Siewiorek, 1976] Ingle, Ashok and D. P.
Siewiorek, "Reliability Modeling of Multiprocessor
Structures," Proceedings IEEE CompCon '76, September
1976.

[Ingle and Siewiorek. 1976B] Ingle, Ashok and D. P.
Siewiorek, "Reliability Models for Multiprocessor Systems
with and without Periodic Maintenance", Computer
Science Technical Report, Carnegie-Mellon University,
September 1 976.

[Je f fe rson , 1977] Jefferson, David, "The Hydra Message
System," to be published.

Page 10

[Jones , et al. 77] Jones, A. K., R. J . Chansler, I. Durham, P.
Feiler and K. Schwans. "Software Management of Cm",
a Distributed Multiprocessor, Submitted to the 1977
National Computer Conference.

[Siewiorck, et al. 76] Siowiorek, D. P., W. C. Brantley Jr . ,
and G. W. Lieve, "Modeling Multiprocessor
Implementations of Passive Sonar Signal Processing",
Final Report, Carnegie-Mellon University. Pittsburgh, Pa.
15213, October 1976.

[Swan et al. 1976A] Swan, R. J . , L. Raskin, and A.
Bechtolsheim, "Deadlock Issues in the Design of the
Line," Internal Memo, March 1976.

[Swan et al., 1976B] Swan, R. J . , S. H. Fuller and D. P.
Siewiorek, "The Structure and Architecture of Cm*: A
Modular, Multi-Microprocessor". Computer Science
Research Review 7975-76, Carnegie-Mellon University,
Department of Computer Science, Pittsburgh, Pa.,
December 1976, pp 25-47.

[Swan, et al. 1977] Swan, R. J . , A. Bechtolsheim, K. Lai and
J . Ousterhout. "The Implementation of the Cm* Multi-
Microprocessor", submited to the 1977 National
Computer Conference.

[Van Zoren, 75] Van Zoren, H. "Cm* Host User's Manual",
Department of Computer Science, Carnegie-Mellon
University, December 1975.

[Wulf and Bell 1972] Wulf, W. A. and C. G. Bell, "C.mmp - A
Multi-Mini-Processor," AFIPS Conference Proceedings,
Vol. 41, part II, FJCC 1972, 765-777.

[Wulf et al. 1974] Wulf, W., E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Piorson, and F. Pollack, "HYDRA: The Kernel
of a Multiprocessor Operating System," Communications
of the ACM, Vol. 1 7, No. 6, June 1 974, 337-345.

Page 1

The Implementation of the
Cm* Multi-Microprocessor

Richard J . Swan
Andy Bechtolsheim
Kwok-Woon Lai
John K. Ousterhout

Carnegie-Mellon University
Pittsburgh, PA 15213

December, 1976

Abstract

The implementation of a hierarchical, packet switched
multiprocessor is presented. The lowest level of the
structure, a Computer Module, is a processor-memory pair.
Computer Modules are grouped to form a cluster;
communication within the cluster i3 via a parallel bus
controlled by a centralized address mapping processor.
Clusters communicate via intercluster busses. A memory
reference by a program may be routed, transparently, to
any memory in the system. This paper discusses the
hardware used to implement the communication mechanism.
The use of special diagnostic hardware and performance
models is also discussed.

Computing Reviews Category: 6.20

Keywords and Phrases: multiprocessor, microprocessor,
packet switching, virtual memory

1 Introduction

The companion paper, [Swan et al. 1977], has
introduced Cm" as a large, extensible multiprocessor
architecture. It has an unusually powerful and complex
addressing structure which allows close, protected
cooperation between large numbers of Inexpensive
processors. This paper describes the combination of
hardware and firmware which implements the address space
sharing and interprocessor communication mechanisms.

Cm" Is a multiprocessor system as we define it (rather
than a network of independent computers) because the
processors share a common address space. All processors
have immediate access to all memory. The structure of Cm"
is shown in Figure 1.1. The primary unit is the Computer
Module or Cm. This consists of a processor, memory and
peripherals interfaced to a local memory bus and a "local
swi tch" . The local switch, or Slocal^, interconnects the
processor, its local memory bus and the Map Bus. The Map
Bus provides communication between up to fourteen
Computer Modules within a cluster, and is centrally
controlled by the Kmap, a high performance
microprogrammed processor. Each Kmap Interfaces to two
Intercluster busses, by means of which it communicates with
the other clusters in the system.

There is a system-wide 28 bit virtual address space.
This address space is divided into segments with a maximum
size of 4096 bytes. Programs refer to segments indirectly
via Capabilities, which are two-word items containing the
global name of a segment and specifying access rights to
the segment. The processors have a 1 6 bit address space
which is divided into 16 pages. A mechanism Is provided
which allows a program to associate any Capability it
posesses (and hence any segment to which it is allowed
access) with any page in its immediate address space. A
full description of the address mapping scheme is given in
[Swan et al. 1 977].

To demonstrate the viability of a structure it Is
necessary to build a pilot system with currently available
components. To be a successful demonstration, the pilot
system has to be a useful, economical computing resource
in its own right. Therefore, in the Cm* network described
here, many design tradeoffs were made on the basis of
current technology and the resources available. The highly
experimental nature of the project encouraged an emphasis

This work was supported in part by the Advanced Research
Projects Agency under contract number F 4 4 6 2 0 - 7 3 - C -
0074, which is monitored by the Air Force Office of
Scientific Research, and In part by the National Science
Foundation Grant GJ 32758X. The LSI-11's and related
equipment were supplied by Digital Equipment Corporation.

1 The names used for hardware components of Cm" are
derived from PMS notation [Bell and Newell, 71]. The
leading, capitalized letter indicates the primary function of
the unit, eg. Computer, Processor, Kontroller, Link, Switch.
The subsequent letters, optionally separated with a period,
give some attribute of the unit. For example, Slocal is a
local switch. Pmap is a mapping processor. The name Cm*
derives from (Computer.modular)" where * is the Kleene
star.

Page 2 The Implementation of the Cm* Multi-Microprocessor

Intercluster Bus

P-S-M

lntercluster Bus

Kmap
1

Map Bus
I

P-S-M P-S-M 73-M

LSl-11

Memory Devices

Detail of a Computer Module

A Cluster of Computer Modules

Figure 1.1 A Simple 3 Cluster Cm* System

on generality and ease of debugging in the hardware
components, rather than just minimization of costs. There
are many aspects of the detailed design which would have
to be re-evaluated if the structure were to be implemented
in a different technology or built as a commercial product.
In particular the distribution of functions between the
processors and the Kmap would be carefully reconsidered.
The modular nature of Cm* makes it particularly suitable for
implementation in LSI.

Section 2 illustrates the mechanism for memory
references. The various hardware components of Cm* are
described in the following six sections. Section 3 describes
the processor-memory pairs and their interface to the Map
Bus. In Section 4 opportunities for parallelism in the
address mapping mechanism are considered. Three
autonomous functional units of the Kmap are presented in
Sections 5, 6. and 7. Section 8 describes the support
given to hardware diagnosis and microcode development in
the Kmap. For an effective implementation it was
necessary to find a reasonable performance balance
between system components. Some of the performance
modelling which guided our judgement is presented in
Section 9.

2 The Mechanism for Local and Nonlocal References

Addresses generated by processors in a Cm* system
may refer to memory anywhere within the system. Mapping
of an address and routing to the appropriate memory are
performed in a way that is totally transparent to the
processor generating the address. If an address Is to refer
to the memory local to that processor, the memory
reference is performed in a completely standard way
e x c e p t that the Slocal relocates the high-order four bits of
the address. See Figure 2.1.

When the page being referenced Is not local (i.e. the
"Map" bit for the referenced page is set in the Slocal) a
service request Is mado to the Kmap by the Slocal. Upon
receiving the service request the Kmap executes a Map
Bus cyc le to read In the processor-generated address from
the Slocal, as well as the number of the Cm making the
request , and two status bits indicating which address space
was executing on the processor and whether the reference
was a read or a write (see Figure 2.2). If the segment
being referenced is local to the cluster, the Kmap will use
information cached in its high-speed buffers to bypass most

The Implementation of the Cm* Multi-Microprocessor Page 3

Read Only Map Physical Page

External Processor \
Status Word

User/Kernel
Space

^ 4

Relocation
Table

Offset

it*

Processor generated
Address

Physical Address
on LSl-11 Bus

Figure 2.1
Addressing Mechanism for Local Memory References

of the processor-to-virtual -to-physical address mapping.
Thus it can quickly translate from the page number
referenced by the processor to a physical address
consisting of the number of the Cm containing the physical
location and an eighteen-bit local address. A second Map
Bus transaction is executed to pass this address, and a bit
indicating whether a read or a write is to be performed, to
the destination Slocal. If the operation is a write, the data
may be passed directly from the Cm making the reference
to the Cm containing the word to be written. The
destination Slocal performs the read or write via a Direct
Memory Access. When this is completed it issues a return
request to the Kmap to acknowledge completion. A third
Map Bus cycle is performed to transfer the data back to the
processor that made the reference (in the case of a read)
and to acknowledge completion of the reference so that the
requesting processor may resume activity.

A second alternative when the Kmap receives an
address to map is that the physical location being
referenced is not local to the cluster. In this case the
information cached in the Kmap for the page being
referenced will not indicate a physical location directly;
instead it will give a sixteen-bit segment name, the number
of the cluster containing the physical memory allocated to
the segment, and two bits used to extend the read/write
bit to a three-bit op code. This informotion is combined with
the twelve low-order bits of the original processor address
to form the full virtual address of the object being
referenced. See Figure 2.3. The virtual address, along with
the processor data (if a write is being performed) is sent

Intercluster
Busses

r - Read/Write
- Space
C M Page Offset

12

t Map Bus

-Read/Write
CM Physical Address

18

16
Data

Source Cm Destination Cm

Figure 2.2 The Mechanism for Cluster-local References

via an Intercluster Bus to the Kmap of the cluster containing
the segment (if there is no Intercluster Bus directly
connecting the two Kmaps the message will be steered from
Kmap to Kmap until it reaches the destination cluster). The
destination Kmap will then map the virtual address to a
physical one within its cluster. Map Bus transactions will be
e x e c u t e d to pass the physical address (and data if
needed) to an Slocal which in turn performs the operation
and returns acknowledgement (and, perhaps, data) back to
the destination Kmap. A return message Is used to pass
back acknowledgement and data to the Kmap of the
originating cluster. Finally, this Kmap will relay the data and
acknowledgement back to the initiating Cm to complete the
reference.

Several points are worth noting with respect to the
above schemes. Except at the local memory bus level,
where conventional circuit switching is used, all
communication Is performed by packet switching. That is,
busses are allocated only for the period required to transfer
data. The data is latched at each interface, rather than
establishing a continuous circuit from the source to the
destination. This approach gives greater bus utilization and
avoids deadlock over bus allocation. All transactions are
completely interlocked with positive acknowledgement being
required to signal completion of an operation (it is possible
to allow a processor executing a nonlocal write to proceed
as soon as the data for the write has been received by the
Kmap or destination Slocal, without waiting for completion of
the operation; however In this case the Kmap will e x p e c t
to receive acknowledgement in place of the processor so
that appropriate actions may be taken if none is received) .

Pago 4 The Implementation of the Cm* Multi-Microprocessor

Op Segment Offset

r
Intercluster Busses

^ Read/Write
^Space
CM Page Offset

Kmap

ffl 12

t Map Bus

CJ±Z>
Data

16 12

16
Data

Kmap
Read/Write

CM Physical Address
13

Map Bus

16

Source Cluster

Figure 2.3 The Mechanism for Intercluster References

Data

Destination Cluster

The complete processor-to-virtual-to-physical address
mapping is performed only in the case of intercluster
references. As the locality of a reference Increases the
amount of this mapping that may be bypassed (and hence
the speed of the reference) increases, with local caches of
certain mapping information used to effect the bypass. An
important characteristic of the addressing structure is that
there is exact ly one Kmap that may perform the v i r tual - to -
physical mapping for a given segment. The requirement that
all references to a segment occur with the cognizance of a
single Kmap greatly simplifies the moving of segments and
the Implementation of operations requiring mutual exclusion.

3 The Computer Module

The first level of the Cm* network hierarchy Is the
Computer Module, or Cm. The Cm's provide both the memory
and processing power for the multiprocessor system.

The decision to use a standard, commercially available
processor (the DEC LSI-11) has had a considerable impact
on the design. Use of a standard instruction set has made a
large pool of software and software development aids
directly available. The not inconsiderable effort to design
and implement a new processor has been avoided.

At the software level, the prime disadvantage of the
LSI-11 instruction set is that only 16 bit addresses can be
directly manipulated. The companion architecture paper
discusses in detail the mechanism used to expand a
processor 's address space from 16 bits to 28 bits.

3.1 The Components of a Computer Module

A Computer Module, Figure 3.1, can act as a stand alone
computer system. The standard commercially available
components include the DEC LSI-11 processor and dynamic
M0S memory. Any LSI-11 peripheral may be used on the
bus, including serial and parallel interfaces, floppy and f ixed
head disks, etc. The standard 16 bit memory has been
ex tended with byte parity. Memory refresh Is normally
performed by microcode in the L S I - 1 1 ; however, the fact
that a processor may be suspended indefinitely while
awaiting the completion of a complex external reference
has made it necessary to augment each Cm with a special
bus device to perform refresh.

The most important component which has been added to
each Cm is the Slocal. This provides the interface between
the processor, the Map Bus and the LSl-11 Bus. The prime
function of the Slocal is to selectively pass references from

The Implementation of the Cm" Multi-Microprocessor Page 5

Map Bus

Siocal

Pc
LSI-11

LSl-11 Bus

Mp
4-124k

Parity
Refresh

Figure 3.1 Details of a Computer Module

the processor to either the LSl-11 Bus or the Map Bus and
to accept references from the Map Bus to the LSl-11 Bus.
The Slocal also provides simple address relocation for
references made by its processor to local memory. Figure
2.1 shows how this relocation is performed; the "Map Bit" In
the local relocation table is set for pages which are not In
the local memory of the processor.

In addition to the Local Relocation Table the Slocal
provides a number of other control registers. All these
registers are addressable as memory locations on the LS l -
1 1 bus; however only the Kmap and highly privileged system
code will have direct access to them. One of the key
registers is the external Processor Status Wcrd
(XPSW<15:8>). The LSl-11 implements only the low order
by te of the standard PDP-11 Processor Status Word
(PSW<7:0>). Logic in the Slocal (with assistance of
standard signals from the LSl-11) allows the XPSW to be
saved and restored during interrupt, trap and other
operations in unison with the internal PSW. The XPSW
allows select ive enabling of various Slocal functions and
controls a simple three level interrupt scheme. On power-up
the XPSW is cleared, which disables all special operations
by the Slocal including the relocation of local memory
references. In this mode the processor acts as a bare,
unmodified LSl-11. The Local Relocation Table can be
initialized either by console operations, execution of local
bootstrap code or remotely by any processor in the
network. After initialization, enabling Reloc Mode
(XPSW<11>) will allow local relocation and give access to
the rest of the network.

Incorrect use of PDP-11 instructions such as HALT,
RESET, Move-To-Processor-Status-word, Return from
Interrupt, etc. can cause loss of a processor, garbling of an

I/O operation or enable circumvention of the system's
protection scheme. The Privileged Instruction Mode bit
(XPSW<13>) enables logic in the Slocal which detects the
fetching of any "dangerous" instruction. An immediate error
trap is forced if an unprivileged program attempts to
e x e c u t e a privileged instruction.

Several registers in the Slocal are concerned with
providing diagnosis and recovery information after a
software or hardware error is detected. Almost all errors
are reported to the processor by forcing a NXM (Non
eXistent Memory) trap. This includes errors detected by the
Kmap during remote references. The Kmap signals the error
by writing to the "Force NXM" bit in an addressable register
In the Slocal. The Local Error Register indicates the nature
of the error and whether the erroneous reference was
mapped. The "Last Fetch Address" register is updated to
hold the address of the first word of an instruction every
time the LSl-11 fetches a new Instruction. If an error Is
detec ted , this register is frozen until the Local Error
Register is explicitly cleared. Also frozen in the Local Error
Register is a count of the number of memory references
performed in the execution of the instruction. In
conjunction, these two registers provide sufficient
information to restore the state of the LSl-11 for retry of
the instruction during which the error was detected.

The Slocal also provides two interrupt request registers.
Interrupt enable bits in the external processor status word
allow masking of the interrupt requests. Provided reference
is permitted by the memory protection scheme, any
processor in the network can interrupt any other processor
simply by writing to the correct address.

3.2 Data Paths for Nonlocal References

An idealized form of the basic data paths and latches
within a Cm" cluster is shown In Figure 3.2. Depending on
the address generated, a reference from the processor is
passed either to the local memory bus or to the Map Bus. A
local memory reference is performed in a conventional way.
For a nonlocal reference, the address (and possibly data) is
latched and a service request is issued to the Kmap. The
broken line in Figure 3.2 shows the path of a read to the
memory of another Cm in the cluster. The address from the
source processor Is read by the Kmap which translates it
into a physical address within the memory of a Computer
Module. This physical address is placed onto the Map Bus
by the Kmap and latched at the target Cm. A conventional
Direct Memory Access (DMA) cycle is performed by the
destination Slocal, the data read is latched and the Kmap is
again requested, this time with a return request. To
complete the operation, the Kmap responds by transferring
the data over the Map Bus from the target Cm to the
requesting Cm (this simply requires the latch at the target
Cm to be enabled onto the Map Bus and the latch at the

Page 6 The Implementation of the Cm* Multi-Microprocessor

Address from Processor ,

Data from Memory

, ^Physical address

and Acknowledgement !

I

* Map Bus 5 5

K V 3

|A Out
Address

Data Out!

Data In

D Outi D In |A n | 1 D In | [P Out A Out D Outi D In A In 1

t

i

i
i
i
i

P In D Outi

i
i

I

i

Local Memory Bus

M M

i 1
1

M N

Figure 3.2 An Idealized and Simplified Representation of the Data Paths in a Cluster

Map Bus

LSI-11

ft

i> Read Only
i> Map Address Data Data

Out Out In

Relocation of High
Order Address Bits

DMA
Address

Write
Data

Data
Read

LSI-11 Bus

Figure 3.3 Simplified LSI-11 - Slocal Data Paths

The Implementation of the Cm* Multi-Microprocessor Page 7

requesting Cm to be strobed). At this point the source
processor, which was suspended, is given the data as if a
normal memory reference had been performed.

This simplified description of a Computer Module has
been presented to emphasize the simplicity of the basic
mechanisms required for an intra-clustor reference in Cm*.
In the actual implementation using the LSI-11 processor the
data paths are rather different than the idealized structure
shown in Figure 3.2. The differences are due primarily to the
need to minimize the changes to the LSI-11. Although still
simplified, Figure 3.3 is a more accurate representation of
the data paths and latches used to Interface the LSI-11
and the LSI-11 bus to the Map Bus.

The processor board is modified so that the Local
Relocation Table in the Slocal can be inserted in the data
path of the four high order address bits. The timing margins
in the processor's address path are wide enough to allow
insertion of this delay without Joss of performance. The
LS I - 1 1 Bus is the only data path from the processor for both
local and non local references. If the processor were
permitted to hold the LSI-11 bus while waiting for
completion of a nonlocal reference then references from
other processors in tiie network to memory on the LSI-1 1
bus would be blocked. This could very easily lead to
deadlock situations. To give greater concurrency and to
eliminate the deadlock potential, the Slocal is able (using
simple microcoded state sequence logic) to force the
processor off the LSI-11 bus while it is waiting for
completion of nonlocal references. While the processor is
forced off the local bus the Slocai takes over DMA bus
arbitration for the suspended processor.

Intercluster Bus 1

Intercluster Bus 0

4 Concurrency within the Mapping Mechanism

Early in the design of Cm* the speeds of the various
components in the system began to appear as follows: the
time for a "typical" Map Bus transaction was about 0.5
microseconds; the time required in the computational unit of
the Kmap for an address mapping was 1-2 microseconds;
the time to transfer a message on an Intercluster Bus was
2 -4 microseconds; and the time for an Siocal to execute a
read or write requested by the Kmap was 3 -4
microseconds. In referring to the mechanisms for nonlocal
mappings it can be seen that no single component is
responsible for a very large fraction of the time required for
a nonlocal reference. Thus if each cluster had a mapping
concurrency of one (only one nonlocal reference could be
processed at a time per cluster) both the utilization of the
mapping components and the throughput of the mechanism
would be low (the effect of concurrency on system
performance is discussed quantitatively in Section 9). In
addition the possibility of deadlock in intercluster
references is introciuced.

Map Bus

Figure 4.1 The Components of the Kmap

The solution adopted for Cm* was to separate the four
functions whose timings are given above and to allow a
concurrency of eight in the mapping mechanism of each
cluster. The packet-switched nature of Cm* yields cleanly
to this approach, and requires only that queues be
implemented to store messages at the interfaces between
the components. Figure 4.1 depicts this structure, in which
the Kmao has been logically sub-divided into three separate
units: the Kbits, which is master of the Map Bus and
controls all transactions on it; the Pmap, or mapping
processor, which does ail the address translation and
maintains the cache used to speed up mapping; and tiie
Line, or intercluster link, which presides over the
transmission of messages between clusters.

One other notion must be introduced before proceeding
to a detailed discussion of the components of the Kmap,
namely that of a context. Operations requiring mutual

Page 8 The Implementation of the Cm* Multi-Microprocessor

exclusion (for example, changing the virtual-to-physical
mapping of the system) will be implemented in Cm* as
memory references to "special" segments which will then
cause the Kmap to perform the desired operations in a
protected way. In general these operations will require
several references by the Kmap to main memory. If the
Pmap Is to be used for other mappings while these main-
memory references are being made by the Kbus and Slocals,
there must be some means of saving and restoring its state
so that processing can be resumed when the memory
reference has been completed. The solution adopted is to
provide registers in the Kmap to save and restore state for
up to eight overlapping operations. A mapped operation in
soma stage of processing by the Kmap Is referred to as a
context. Each context has allocated to its exclusive use
eight general-purpose registers and four subroutine linkage
registers (one of which is used to save the microprogram
address while awaiting the completion of Map Bus
transactions).

The Kbus maintains the status of the eight Pmap
contex ts and allocates them to new service requests. The
contex t number and other status are then placed In the Run
Queue to signal the Pmap that the context is runnable. The
mapping processor activates the context by removing Its
number from the Run Queue and starting execution of
microcode at an address determined by the status bits.
When the new context Is activated the processor address
is mapped, and a request for a main-memory reference Is
placed in the Out Queue (during this time the Kbus has been
free to read in service requests or perform functions
requested by the Pmap). A context swap is executed in the
Pmap to deactivate the current context pending the
completion of the memory reference and to activate the
next one in the Run Queue. The Kbus transfers address and
data to the destination Slocal, then processes other
requests while the memory reference is being performed.
When the memory reference is completed the Kbus either
reads the acknowledgement and/or data back into the Kmap
and places the context back In the Run Queue for
reactivation, or it sends the acknowledgement back to the
processor that originally made the service request (thereby
completing the mapping operation) and marks the associated
contex t as " f ree" for reallocation to a new service request.
The fact that a context remains allocated to each nonlocal
reference until that reference is completed (regardless of
whether or not more Pmap processing is expected to be
needed) means that if an error is detected the context can
be react ivated and will have enough state information to
handle the error in an intelligent fashion.

Communication between the Line and Pmap is similar to
that between the Kbus and Pmap; the Pmap queues a
request for an intercluster message to be sent (separate
queues are provided for each Intercluster Bus) and
suspends the requesting context. When a return message
is rece ived for the context the Line causes the Kbus to
react ivate the context in the Run Queue. When an incoming

intercluster message is received by one of the Line's
Intercluster Bus Ports, it is queued and a request is Issued
to the Kbus to allocate a free context to the request and
act ivate it in the Run Queue.

6 The Kbus and the Map Bus

Because of the great variety of tasks it must perform
and the necessity that it be able to respond to errors In an
intelligent way, the Kbus was designed as a
microprogrammed processor controlled by 256 40-bit words
of read only memory. It has a microcycle time of 100
nanoseconds which is synchronized with the 150
nanosecond clock of the Pmap and Line at 50 nanosecond
intervals. Figure 5.1 shows the major elements of the bus
controller.

The Map Bus contains 38 signals, of which 20 are
bidirectional lines used to transmit addresses and data
between the Slocals and Kbus of the cluster. The Kbus is
master of all transactions on the bus; as such it specifies a
source and destination for each cycle as well as status bits
indicating the use of the data (address, data, etc.) . The
bus is synchronous, with the Kbus generating all of the
strobes used to transmit data. Each Slocal Is provided with
private service and return request lines to the Kbus. The
arbiter section of the Kbus scans these In a pseudo round
robin priority scheme.

The Kbus maintains the queues and registers used for
communication with the Pmap. The Run Queue contains
eight eight-bit slots (and thus is guaranteed never to
overf low) , each containing a three-bit context name and
f ive additional bits of activation status. The Out Queue
contains four 39-bit entries. The Pmap loads this queue to
request Kbus operations and must check Its state before
loading to insure that it never overflows. Each Out Queue
slot contains an op code used to select one of th i r ty - two
Kbus operations, and additional address, data, and context
information relevant to the operation. Two registers are
loaded by the Kbus on behalf of each Pmap context . They
are readable only by the Pmap and writable only by the
Kbus. The Bus Data Register contains the last data word
read in from the Map Bus for the context and the Bus
Condition Register gives control and status Information for
the transaction.

The Kbus is responsible for the allocation and
deallocation of contexts, and maintains the status of each
contex t for this purpose. It also keeps two additional bits
of status for each context which are used to insure that,
when a context suspends itself to await the execution of a
main-memory reference or the sending of an Intercluster
message, an acknowledgement of the completion of the
operation is received within a reasonable time (two
milliseconds). If a suspended context times out it is forcibly
react ivated with status bits indicating the error.

The Implementation of the Cm* Multi-Microprocessor Page 9

Service and Return Queues from Line

Context
Status Run Queue

Slocal
Status

Micro -
Controller

Arbiter

Out Queue

31 Map Bus

Pmap

i
Bus Condition
Registers

Tt
Bus Data
Registers

Figure 5.1 The Components of the Kbus

The Kbus also maintains nine bits of status for each
Slocal in the cluster indicating whether the Slocal is busy
with a Kmap-requested memory reference and, if so, what
to do with the information returned at the end of the
transaction. This status is set whenever a local memory
reference is initiated and is used to insure that two
contex ts do not simultaneously try to request a memory
access through the same Slocal.

6 The Pmap, the Address Mapping Processor

The mopping processor of the Kmap, or Pmap, is a
s ix teen-b i t horizontally microprogrammed processor. It
occupies a central position within the Kmap, coordinating
the activities of the other components, it is pipelined and
has a cyc le time of 150 nanoseconds. Microinstructions are
80 bits wide; a 1K*80 bipolar RAM is used as a writable
microstore. The Pmap also uses a high-speed 5K"16 RAM to
store the active Capabilities and segment descriptors. In
addition to performing the basic address translation for the
nonlocal references of a cluster, the Pmap must support
certain operating system primitives, statistics gathering,
and other experimental functions without e x c e s s i v e
performance degradation.

6.1 Data Paths

A register transfer level diagram of the Pmap is given
in Figure 6.1. The mam data paths consist of three internal
high speed tr i -state busses. Two of these, the A and B

busses, take data from various sources and feed them to
the inputs of the Arithmetic Logic Unit. The third bus, the
F Bus, takes the ALU output and distributes it to various
parts of the Kmap. The Kbus and Line are also connected to
these busses. Pipeline latches are used to overlap fetch of
operands with current data operations.

The Shift and Mask Unit provides the ability to perform
f ield-extract ion on one of the ALU operands. This capability
is important since the Pmap frequently deals with packed
information in segment descriptors, intercluster messages,
etc . The input to the Shift and Mask Unit is rotated by an
arbitrary amount and then masked by one of 32 16-bit
standard masks stored in a PROM.

For efficient address mapping, it is crucial that the Kmap
have fast access to the information it needs to perform the
virtual - to-physical address translation. This information
consists largely of the active Capabilities and segment
descriptors, of which up to 448 may exist In the cluster at
a time (s ix teen in each of two address spaces for each of
fourteen processors). Although content addressable
memory was not used because of the large capacity
needed, the careful positioning of tables within the data
memory, combined with a hash-coded list structure used for
storing descriptors, has produced a cache-like structure.

The data memory, or Mdata, is divided into 1024
(expandable to 409C) records, each record containing five
16-bit words. The record organization was chosen because
the segment descriptors, with cacheing information, fit
comfortably within this 80-bit space. Each word has
associated with it two parity bits, one for each byte. The
memory is word addressable, with the record address
coming from the Data Address Register (DADR) and three-bit

Page 10 The Implementation of the Cm* Multi-Microprocessor

from Kbus
and Line

from Kbus

Bit Set/Clr:

Mdata
1024*5*16

General
Purpose
Registers
8*8«16

A Bus

Counter k*

Encoder k —

B Bus
J i

Constant FS Latch B Reg.

1£
Shift &
Mask

to Kbus
and Line

F Bus

A Reg.

Arithmetic and
Logic Unit

7

Figure 6.1 Data Paths in the Pmap

word indices from fields in the current microinstruction.
Thus once the record address of a descriptor or capability
has been computed, the individual subwords may be
a c c e s s e d without expending further cycles to generate
data memory addresses.

Data to be written in the Mdata may be taken either
from the A Bus or F Bus. Because it is frequently necessary
to set and clear status bits in segment descriptors (for
example the "dirty" and "use" bits used for demand paging,
and the lock bit used for mutual exclusion) bit set and clear
logic is provided for data input from the A Bus. It provides
for the setting or clearing of either or both of the two high-
order bits of the input word. To further increase parallelism,
it is possible to simultaneously read and write different
words of the same record. It is therefore possible, say, to
set the "use bit" in one word of a segment descriptor and
at the same time extract the segment limit from another
word of the same descriptor.

6.2 Microprogram Sequencing Logic

One characteristic of the Cm* address mapping
algorithms Is the large number of conditions to be tested .

The serv ice of a typical request will require testing of
request status, operation type, and segment type and
checking of the following conditions: protection violation,
descriptor locked, segment localizable etc. To perform
address mapping within a reasonable number of cyc les
requires the Pmap to have a flexible multi-way branch
capability.

A block diagram of the microprogram sequencing logic Is
given in Figure 6.2. A Base Address is selected from either
the Next Address field in the current microinstruction or the
output of the Subroutine Linkage Registers. Two bits in
the microinstruction select the mode of branching (two -
way , four -way, s ix teen-way) and two three-bit fields
control six 8-to-1 condition code multiplexers. Multi -way
branching was implemented in the conventional way by
OR'ing the selected condition codes with the Base
Address. The address thus generated is stored in MADR,
the Microprogram Address Register, to fetch the next
microinstruction. There is a conditional override mechanism
that can prohibit a potential 16-way branch. When the
override condition is true, a branch Is taken to a
seventeenth location regardless of the value of the 16-way
branch condition code.

The Implementation of the Cm* Multi-Microprocessor Page 11

7 The Line and Intercluster Bus Structure

B Bus

Din
Writable Microstore

1024 « 8 0

DOUT

V80

Up to 4K
80-bit Words

to Rest of Kmap

Subroutine
Linkage
Registers
8*4*16

Next
Address

A

Mux

CC Select

Y7
Condition
Codes

CC Muxes

MADR

Figure 6.2 Microinstruction Address Generation Logic

6.3 Context Considerations

There are a total of 6 4 general purpose and 3 2
subroutine linkage registers, allowing each context
exc lus ive use of eight general purpose registers and four
subroutine linkage registers. The Current Context Number,
stored in the Context Register, selects the current register
bank. Normally this register is loaded from the Run Queue
when a context swap is executed. For diagnostic purposes
the Pmap may directly load the Context Register, hence if
required a microprogram may access the registers of any
context . Each context may nest subroutine calls up to four
levels deep. By convention, the zeroth linkage register is
also used to store the reactivation address of a suspended
context . The status bits in the Run Queue indicate whether
a context is to be activated at its reactivation address (to
continue an ongoing operation) or to be explicitly started at
one of the first s ixteen locations in the microstore (to begin
a new operation, or handle certain error conditions).

The Line provides intercluster communication by
connecting the Pmap to two Intercluster busses.
Communication is in the form of short messages passed
between Kmaps. Messages are stored in a Message RAM
which is shared between the Pmap and the two Intercluster
Bus Ports. Pointers to messages pass through an automatic
system of queues. Messages are usually sent directly from
source to destination cluster, but they can also be
forwarded by intermediate clusters (thus allowing arbitrory
network topologies to be constructed). Message routing is
controlled by Pmap microcode. The goal in the Line design
was to provide fast, deadlock-free Intercluster
communication with a minimum of Pmap overhead.

7.1 Intercluster Bus Protocol

The Intercluster busses contain 2 6 lines: 16 data, 2
parity, and 8 control. They operate in an asynchronous,
interlocked fashion at a transfer rate of 4 5 0 nanoseconds
per word. Mastership is passed cycllcly between
requesting ports, effectively implementing a round robin
priority scheme. The current bus master arbitrates future
mastership in parallel with its current data transfers.

Forward Message Return Message
1 5 12 6 0 15 12 6 0

c | c x
—I

I *\
Source j Destination c CX 1 1 1 1 1 1 Destination

- j OP Offset
v

Data Word (Read)

Segment Name
C Complex Bit

Data Word (Write) CX Context
OP Op Code

Figure 7.1 Standard Message Formats

Intercluster messages consist of one to eight 16 bit
words. The most common formats are shown in Figure 7 . 1 .
The header word contains a six bit identifier for source and
destination cluster, the source context number and the
complex bit. A return message has a unique source field of
all ones. The source context number is sent with the
message to allow a direct reactivation of the suspended
source context . The complex bit provides an escape
mechanism to other message formats, eg for error messages
or block transfers.

Page 12 The Implementation of the Cm* Multi-Microprocessor

Intercluster Bus 0

Intercluster Bus 1

Port 0 Port 1

Line Data Bus

Message

RAM

Send Qs Free Q

A
Port
Adrs Register

Pmap
Adrs Reg

Line Adrs Bus

F Bus A Busl

Pmap

Service Q

i f

Return Q

Map Bus

r I p

>
I I L/

Kbus

Figure 7.2 Components of the Line

7.2 Components of the Line (Figure 7.2)

Buffer space for messages is provided in the central
1K*18 Message RAM, divided into 128 buffers of eight
words each. This is sufficient to avoid any possibility of
deadlock over buffer allocation except In very large
systems [Swan et al. 1976b]. The Pmap has priority for
access to the Message RAM, although it is also directly
accessible by the Ports. Several contexts may use the
Line in an overlapped fashion without interference since
each context has private facilities for addressing message
buffers. A context has two ways to address message
buffers. It may use its context number to access a
reserved buffer which is used for the creation of forward
messages and to receive return messages. There is also a
Pmap Address Register for each context to deal with
incoming forward messages. Words within a buffer are
se lected by a Pmap microcode field. Each Port section has
an address register and a word count register for accessing
the Message RAM.

Five queues are maintained by the Line. Two Send
Queues, one for each Port, are used by the Pmap to request

transmission of messages. To request that a message be
sent on an Intercluster Bus, the Pmap places the address of
the message buffer in the appropriate Send Queue. The
Free Queue keeps the addresses of all the message buffers
not currently in use. The Service Queue is used by the Line
to notify the Kbus and Line of the addresses of Incoming
forward messages, and the Return Queue to request that
the Kbus reactivate contexts when replies to their forward
messages are received. All of the queues are implemented
as partitions of a single 1K"11 bipolar RAM.

The Line uses the same 150 nanosecond clock as the
Pmap. For diagnostic purposes the Pmap has access to
almost all of the Internal state of the Line and may e x e c u t e
all the Internal microcycies executable by the Ports.

7.3 A n Intercluster Message Transaction

A complete message transfer is shown In Figure 7.3.
The Pmap at the source cluster creates the forward
message in a reserved context buffer. Then its pointer is
put into the appropriate Send Queue. The Line pops the
pointer off the Send Queue into the Port Address Register,
acquires mastership of the corresponding bus and transfers

The Implementation of the Cm* Multi-Microprocessor
Page 13

Port
Out

Send Q

Message RAM

Reserved Buffer

Intercluster Bus

Return Q

Pmap <f-s> ̂ Kbus^j< /

Free CT

Serid Q

Port
Out

Port \

Service Q

H

Message RAM

Allocated Buffer

Adrs
Reg

I
I Vmapj<t--s> Kbus\

Source Cluster

Figure 7.3 An Intercluster Message Transaction

Destination Cluster

the message, one word at a time, from its Message RAM
onto the Intercluster Bus and into the Message RAM of the
destination Line.

At the destination side the receiving Port has already
obtained a buffer from the Free Queue. If the message is
rece ived completely without error, then its pointer is placed
into the Service Queue (if not, the message is ignored; a
timeout will occur at the source). The Service Queue
requests the Kbus to allocate a free Pmap context to
serv ice the message. It includes status bits to start up
specif ic microcode. The context will transfer the pointer
from the Service Queue into the Pmap Address Register and
process the message, making appropriate main-memory
references. It then creates a return message in the same
buffer, setting the source field to ones to indicate this. On
a Read, the data word will be appended. The buffer pointer
of the completed return message is queued again in the
Send Queue. When the message has been sent, the pointer
«s released into the Free Queue. At the original source the
return message is placed in the reserved buffer for the
requesting context . Its context number plus status is
passed to the Return Queue and the context is reactivated
to send data or an acknowledgement back to the requesting
processor.

8 Development and Diagnostic Aids

A common strategy used to aid in hardware and/or
microcode development is to construct a software simulator
for the hardware. This allows initial debugging to be

performed before the actual hardware is available and can
provide a more comfortable environment in which to work.
However, simulators are expensive both In terms of
development effort and computer time; furthermore they
cannot give an exact reflection of the hardware. Thus this
approach leaves the final bugs to be found using the real
hardware, and is of no aid In diagnosing component failures
(rather than design errors). The alternative approach
adopted for Cm* was to incorporate special hardware,
called Hooks, directly into the Kmap for use in hardware and
microcode development. The Interfacing of the Hooks to a
standard LSI -11 allows extensive software support for
hardware development and diagnostics while at the same
time providing a convenient environment for the debugging
of microcode on the real hardware.

The Hooks give to an L S I - 1 1 , referred to as the Hooks
Processor, the ability to intimately examine and change the
internal state of the Kmap. They provide the capability for
the Hooks Processor to load microcode into the writable
control store of the Pmap, read the values on the A and B
busses of the Pmap, and to independently start, stop, and
s ingle -cyc le the Pmap-Linc and Kbus clocks. An interrupt is
generated for the Hooks Processor whenever the Pmap
clock stops (either due to a microprogram-invoked halt or a
memory parity error on the control or data stores) .
Furthermore, several of the internal registers of the Pmap
have "twin registers" associated with them which may only
be loaded by the Hooks Processor. These alternate
registers may be enabled via the Hooks to override
microprogram-controlled values. The presence of the Hooks
added approximately ten percent to tiie cost of the Pmap
while enormously reducing system development time.

Page 1 4 The Implementation of the Cm* Multi-Microprocessor

9 Performance: Measurements and Predictions

Before discussing the models used to estimate the
performance of a Cm* cluster, several simple measurements
(made on a cluster containing two processors) will be
presented. The average time between memory references
(including both code and data) made by a single LSl-11
execut ing entirely out of local memory varies between 2.5
and 4.0 microseconds, depending on the mix of instructions
being executed . For a "typical" code sequence, based on
measurements of compiled BLISS-11 programs, the inter-
reference time was 3.0 microseconds. Measurements
made on the same "typical" code sequence, except with all
references mapped via the Kmap to the other processor in
the cluster, yielded an average time between references of
7.7 microseconds. With the latter measurement there was
no contention for use of the Map Bus, Kmap, or destination
Slocal. Although no actual measurements were available at
the time of this writing, it is expected that the time for
intercluster references will be between 15 and 20
microseconds.

A simple queueing model was developed to estimate the
performance of a cluster [Swan et al., 1976a]. The model
assumed an exponential distribution of nonlocal requests,
exponential service time in the Pmap, and exponential
distribution of the total non-Pmap overhead incurred during
a nonlocal reference. It is assumed that the Pmap is the
primary cause of contention hence the waiting time for
other facilities is ignored. Figure 9.1 plots the results of
this analysis. The relative rate of memory referencing in a
cluster is plotted as a function of the number of act ive
processors and their hit ratio to local memory.

Because of the inability of the queueing analysis to
model contention for all cluster facilities it was feared that
the results would prove to be an optimistic estimate of
cluster performance. Therefore a series of simulations was
performed in order to model more closely the true operation
of a cluster [Brown 1976]. The simulation and queueing
results were in close agreement and so the simulation study
will not be discussed further.

Figure 9.1 indicates that system performance Is
extremely dependent on the local hit ratio. It has been
hypothesized that the local hit ratio would lie in the range
between 85% and 95%, In which case the effect of the
nonlocal references would be "reasonably" small.
Unfortunately, this implies that code must be entirely local
to the processor executing it. Two memory-intensive
programs, a quicksort and a memory diagnostic, have been
run on the initial Cm* system (one cluster, two modules).
Measurements of the performance degradation when code
and local variables are kept local but the area being sorted
or diagnosed is moved to the other processor in the cluster
indicate that local hit ratios of 90% or higher are being
obtained in both cases. Expensive operating system
functions such as block transfers are expected to lower

10 Memory References/Sec

0 I I I I I
1.0 .9 .8 .7 .6

Hit Ratio to Local Memory

Local Reference Time = 3.0 uSec
External Service Time = 1.5 uSec
plus 6.5 uSec Constant Overhead

Figure 9.1 Absolute Cluster Performance

this figure, but it is also expected that most user programs
will make less intensive use of shared databases than the
above examples.

The queueing model was used to predict the degradation
of cluster performance if either the Pmap were made slower
(and thus cheaper) or if the concurrency of the mapping
mechanism were eliminated. The results for a cluster
containing twelve processors are shown In Figure 9.2. A
slower Pmap was modelled by increasing Its service time
from 1,5 to 3.0 microseconds. The last model represents a
cluster implementation where each external reference is
carried to completion before servicing subsequent requests.
This would be the situation if only one Pmap Context were
provided, i.e. eliminating the concurrency between the Map
Bus and the Pmap. Both the slow and non-concurrent
clusters show enormous performance losses, especially at
the low end of the 857. to 95% hit ratio range. The Inability
of slower or non-concurrent Kmaps to support large numbers
of modules implies a need for more Kmaps per Cm* system.
It also suggests that more intercluster communication will be
required since each modulo will have fewer immediate
neighbors.

The Implementation of the Cm" Multi-Microprocessor Page 15

10 Memory References/Sec

1-0 .9 .8 J .6
Hit Ratio to Local Memory

Figure 9.2 Cluster Performance with Slower Pmap
or without Concurrency between Pmap and Map Bus

References

[Beli and Newell 1971] Bell, C. G. and A. Newell, Computer
Structures: Readings and Examples, McGraw-Hill, New
York. New York, 1971.

[Brown 1976] Brown, K. Q., "Simulation of a Cm* Cluster",
Internal Memo, Computer Science Dept., Carnegie-Mellon
University, May 1976.

[Swan et al. 1976a] Swan, R. J . , S. H. Fuller, and D. P.
Siewiorek, "The Structure and Architecture of Cm*: A
Modular, Multi-Microprocessor", Tiie Computer Science
Department Research Review 1975-1976, Carnegie-
Mellon University, December 1976.

[Swan et al. 1976b] Swan, R. J . , L. Raskin and A.
Bechtolsheim, "Deadlock Issues in the Design of the
Line", Internal Memo, Computer Science Dept., Carnegie-
Mellon University, March 1976.

[Swan et al. 1977] Swan, R. J . , S. H. Fuller, and D. P.
Siewiorek, "Cm*: a Modular, Multi-Microprocessor",
submitted to the 1977 National Computer Conference.

1 0 Conclusion

Detailed hardware design of Cm* begain in late July.
1975. Tiie Initial goal of a 10 processor, three cluster
system is expected to be realized in the first quarter of
1977. Considering the Kmap alone, the time from the
beginning of design to a working prototype (excluding the
Line) was less than nine months. It is felt that this
relatively short development time is due to extensive use of
automated design aids, microprogramming at almost every
level and the inclusion of additional hardware to aid in
debugging. The Hooks facility in the Kmap has been
particularly successful. However it will not be possible to
declare the overall system a success until it is regularly and
reliably supporting a community of satisfied users.

Page 1

Introduction

Software Management of Cm*,
a Distributed Multiprocessor

Anita K. Jones
Robert J . Chansler, Jr.
Ivor Durham
Peter Feiler
Karsten Schwans

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

December, 1976

A b s t r a c t

This paper describes the software system being
developed for Cm", a distributed multi-microprocessor. This
software provides for flexible, yet controlled, sharing of
code and data via a capability addressed virtual memory,
creation and management of groups of processes known as
task forces, and efficient interprocess communication. Both
the software and hardware are currently under construction
at Carnegie-Mellon University.

CR Categories; 4.32, 4.35, 6.29

Keywords: modular decomposition, capability addressing,
computer modules, virtual memory, multiprocessor
scheduling, task force

Semiconductor technology advances are leading toward
the inexpensive production of computer modules (I.e. a
processor plus memory of a moderate size) on a single chip.
Multiple computer modules Interconnected to form a
multiprocessor or a network offer a large number of
processing cycles far more Inexpensively than an equally
fast uniprocessor. Yet, such a computer module system is
useful only if a suitable fraction of the processing cyc les
can actually be used for applications.

The software designed to manage a computer module
system can contribute substantially to making the system a
cost ef fect ive environment in which to program applications.
This paper discusses the software designed to manage a
computer module system called Cm* which is currently under
construction at Carnegie-Mellon University. We pay
particular attention to the philosophy of software
construction that influenced many of the design decisions.

For the purposes of this paper we will only review some
attributes of the architecture that are salient to the design
of operating system software. Companion papers [Swan et
al., 77a Swan et al. 77b] describe and discuss the Cm*
architecture in detail.

Cm" is a multiprocessor composed of computer modules,
each consisting of a DEC LSl-11, a standard LSl-11 bus,
memory and devices. We describe Cm* as a multiprocessor
because the system's primary memory forms a single virtual
address space; any processor can directly access memory
anywhere in the system. To implement such a virtual
memory, we introduced into each computer module a local
switch, the Slocal 1 which routes locally generated
references selectively to local memory or to the Map Bus
(when the reference is to memory in another computer
module). The Slocal likev/ise accepts references from
distant sources to its local memory.

Connected to a single Map Bus may be up to fourteen
computer modules that share a single address mapping and
routing processor, called the Kmap. The computer modules,
Kmap, and Map Bus together comprise a cluster. A Cm*
configuration can be grown to arbitrary size by
interconnecting clusters via Inter-cluster Busses (see
Figure 1). (A cluster need not have a direct bus connection
to eve ry other cluster in a configuration.) Collectively, the
Kmaps mediate each non-local reference made by a
computer module, thus sustaining the appearance of a single
virtual address space.

This work was supported by the Defense Advance
Research Projects Agency under contract F 4 4 6 2 0 - 7 3 - C -
0074 which is monitored by the Air Force Office of
Scientific Research.

Because processors are numerous, applications of any
size will tend not to be designed in the form of a single
program executed by a sequential process. Instead we

In several cases names of Cm" components are derived
from the PMS notation described in [Bell and Newell 71].

Page 2 Software Management of Cm*

Intercluster Bus
1

Kmap
1

1 1 n P-S-M P -S -M p-s-r\

Intercluster Bus
i i

Kmap Kmap
Map Bus

P - S - M P-S -M P-S-M P-S -M P -S -M

LSI-11 — Slocal
LS1-11 Bus

T
Memory Devices

Detail of a Computer Module

Figure 1. A Simple 3 Cluster Cm* System

e x p e c t users to create task forces, i.e. groups of processes
cooperating to achieve a goal. Because the number of
processes in a task force may vary with the available
resources and task parameters, and because processes
tend to be small (due to the relatively slow processors or
limitations on the amount of local memory), a user will often
be unconcerned with Individual processes, communicating
only with the task force itself.

The Cm* architecture offers to a user the option of
employing tightly or loosely coupled processes. Loosely
coupled processes communicate rarely, usually in
conventional ways via a message transmission mechanism.
Tightly coupled processes communicate often, sometimes
using the efficient unconstrained paths provided by shared
memory. Cm* permits both types cf communication since it
provides a message transmission facility as well as direct
addressing of shared memory. Effectively, a user Is free to
v iew Cm* as either a multiprocessor or a computer network.

(which we will refer to as a user hereafter) is confident
that all his code is debugged, since he will routinely alter
parameters and even the code for his task forces in
substantial ways. We also expect users to Incrementally
construct experiments. In addition we expect users to
reconfigure modules (of software) combining them to form
a new experiment.

Such a v iew of the user has led us to believe that It Is
as important for the kernel (or lowest level) software to
support the user's software construction activities as It Is
to provide the primitive runtime facilities required for
multiple users to share the computer resources in a
disciplined cooperative fashion. Consequently, the software
design reflects this concern. We view users as
constructing their experiments by incrementally building
modules2. Each module implements some abstraction useful
to other modules that will come to depend upon it. A module
then is a 'unit of abstraction'. It is implemented as

- - c o d e and data private to the module,
- - a set of externally known functions that can be
invoked by other modules making use of the
abstractions, and
- - a set of references to externally defined modules
defining functions used in implementing the
abstraction.

The kernel software supports the notion of a module by
providing user facilities to create modules and to Invoke
functions of a module in a protected way. An invoked
function is executed in an environment that gives it access
to code and data that are part of the module, together with
any actual parameters specified by the invoker. Thus the
software enforces the boundaries of a module by providing
a well defined transition between execution In one module
and execution in another. Hopefully this will help contain
the influence of errors and expedite debugging.

This notion of module Is based on earlier work. In
particular it is built on the ideas of modular decomposition
discussed in [Parnas 73] and abstract data types [Liskov
74] as used in language design.

Module boundaries are used for protection purposes at
runtime. Each function is executed with access only to
those objects which it requires. In designing the kernel
software, we have found that some of its modules
implement rather complex abstractions. Yet not all uses of
a module require the entire abstraction; some uses rely
only on part of the abstraction while others rely on a
simplified abstraction. For design purposes a module may be

Software Design Methodology

Cm* is a vehicle for experimentation, particularly In the
area of parallel decomposition of algorithms and their
efficient implementation on a computer module processing
resource. We expect it to be rare that an experimenter

2 T h i s paper always uses the words "computer module" to
refer to the hardware structure, and will in the sequel use
the (commonly accepted) single word "module" to refer to a
programming abstraction. Context should also serve to
eliminate any ambiguity.

Software Management of Cm" Page 3

partitioned into a strictly ordered set of levels as described
in [Habermann et al. 76]. The purpose of dividing a
module's design into levels is to permit either incremental
introduction of the differrent parts of one abstraction or
increasingly more complex (and powerful) versions of the
entire abstraction. The introduction of complexity is
postponed until it is truly required. Multiple levels of one
module share data structures and even code.

The first level within a multi-level module may define
only a subset of the functions of the complete abstraction,
but that subset of functions is a useful self -contained, but
limited version of the abstraction. Subsequent levels are
introduced into the hierarchy as needed. Additional levels
of a module may Introduce entirely new data structures or
ex tend existing ones. No protection boundaries ex is t
between levels so that higher level code may manipulate
data structures introduced in lower levels. Consequently,
though module boundaries are translated into runtime
protection boundaries, the boundaries between 'levels of
design 1 are not detectable In the runtime implementation
structures. We will illustrate this difference between
modules and levels later when we discuss the Cm* message
transmission module.

Levels within a module are strictly ordered. We can
define a level A to be 'higher' than level B in another module
in case A invokes a function defined in B. The set of all
levels (of all modules) is partially ordered by dependency.
In the design of operating system software there is not
necessari ly a cleanly identifiable division of a hierarchy of
levels into supervisory and user software. The operating
system facilities required by one user differ from those
required by another, particularly in an experimental setting.
The partially ordered system structure is in a form such that
it is readily possible to replace 'upper' portions of the
dependency hierarchy since level boundries are clear and
the dependency relations between levels are known.

Cm* Software System Design

Before describing the kernel software design, we will
define two notions that play an important part in that
design: objects and capability addressing of objects. The
basic unit which can be named, shared and individually
protected, and for which memory is allocated for
representation purposes is the object. Each object has a
unique name and a definitive description used by the
software system. Every object has a type that determines
the structure of Its representation and the operations or
accesses which can be performed on it. Current design
specif ies three types of objects: data segments, which are
linear arrays of words that may bo read and written;
capability lists, which are structures containing capabilities
(to be discussed below); and mailboxes, which are
structures containing messages.

Objects are named (addressed) using capabilities
[Dennis and Van Horn 68, Lampson 69]. A capability may
only be created and manipulated in controlled ways (by
kernel provided capability functions). Since users cannot
create or forge capabilities, possession of a capability is
ev idence that the user can reference the object whose
unique name appears within the capability. A capability not
only identifies a unique object, it records a set of rights
indicating which of the defined operations (accesses) are
permitted to be performed on the object. Controlled use of
objects is enforced because an object can be accessed
only if a program presents a capability naming that object
which contains a right for the desired access. Since
possession of a capability endows the possessor with the
ability to perform accesses, capabilities also record those
rights which a possessor may exercise with respect to the
capabilities themselves. (For example, copying a particular
capability may not be permitted.)

Based on the above discussion, we next describe the
Cm" kernel software. The purpose of the initial levels of
software is to provide facilities required for shared usage
of resources in an 'enforcabiy cooperative' way. In addition
w e wish to assist users in programming and executing their
experiments by providing convenient structures and
functions for creating and executing modules. The
operating system software Itself is composed of a partially
ordered set of levels. In several Instances two modules are
divided into a pair of levels. For convenient reference
levels are labeled with a tag in the format 'module-level'.
Modules are given alphabetic names; levels are numbered in
increasing order as they appear in the system construction
hierarchy. The kernel levels to be discussed In this paper
are:

CAP-1: Capability referencing Performs mapping
from a capability via a segment descriptor to
physical representation of segment (including
access control checking)

CAP-2 : Capability addressing and memory
allocation Defines an object address space
and interpretation of an address; performs
memory allocation ensuring that the segments
used to represent objects are pairwise
exclusive

ME-1: Environments and Modules Implements the
creation and deletion of modules and
execution environments

MSG-1: Conditional message transmission Defines
the structures message and mailbox; permits
sending and receiving of messages when
process suspension is not required

DSP: Dispatching Defines hardware Implemented
data structures used to 'load' an environment
onto the processor and commence execution

Page 4
Software Management of Cm*

MPX: Multiplexing Selects the next environment
to execute on a processor

M E - 2 : Environment relations Records the ancestry
by which environments are related; provides
for nested and parallel execution of
environments

M S G - 2 : Unconditional message transmission
Provides for sending, receiving, and replying
to messages even if environments involved
are forced to wait for an Indeterminate time to
complete message transmission

T l : Trap and Interrupt handling Provides routing of
control when either interrupts or traps occur

A diagram indicating the dependency relations among
these levels appears as Figure 2. An arrow from level A to
level B indicates that a funtion in level B is invoked in level
A. In addition, it is possibie that level A invokes functions in
any of the levels 'below' B in the dependency graph.

Capability Addressing

Module CAP provides capability addressing. Level CAP-
1, which is implemented in Kmap microcode, interprets
capability references to objects, I.e. it maps a capability to
the physical representation of the object named by the
capability. Because the state of an object may change and
its physical representation may move, the system maintains
a single definitive description of each object called a
descriptor or segment descriptor. It records the type of
the object , the physical description of its representation
(including cluster, module, starting address, and size) , state
information (e.g. whether the representation is in core, dirty,
or locked for Kmap usage), and the (reference) count of the
number of outstanding capabilities for tiie object.

Every existing object has a unique name--the memory
address of its descriptor. To perform a mapping from a
capability to a object, the identity of the object 's
descriptor is determined from the capability. It, in turf), is
referenced to determine the physical representation of the
object . A capability reference fails if the right required to
perform the operation desired by the addressing
environment originating the reference Is not In the
capability.

Level CAP-2 extends level CAP-1 to provide for the
generation of capability references (we refer to this as
capability addressing), and for capability manipulation.
Capabilities used for addressing purposes are stored in
capability array objects called capability fists. Given a
capability list CL and an index X, one can determine the X -
th capability in capability list CL. This may be a capability
for an object of arbitrary type, including a capability list
object . By repeated application of capability indexing,

Figure 2. Levels and Modules of Cm* Software

objects to any depth can be addressed. Because capability
list indexing Is performed in microcode as well as in
software, the architecture restricts indexing to depth 2 in
any single operation. This means that in a single addressing
operation the path to a target object may 'Indirect through'
at most two capability lists before arriving at the (third)
target object. Whenever a processor is executing (I.e.
generating capability addresses) one capability list Is
distinguished as the primary capability list. The first index
of a capability address Is an offset Into this primary
capability list.

CAP -2 also defines (rmcrocoded) functions for creating,
copying, moving, and deleting capabilities as well as for
manipulating the rigtus encoded within a capability.

Software Management of Cm" Page 5

A Cm" processor (an LSl -11) has a word size of only 16
bits. To permit 16 bit addresses to be mapped to the
arbitrarily sized Cm" memory, the notion of a window was
introduced. It consists of 15 window registers, each of
which can be thought of as holding a capability. (Actually,
in the current design, each window register holds an index
to a capability which can be indexed via the current primary
capability list.) CAP-2 provides two (microcode
implemented) functions Segload and Unload to associate
and de-associate , a window register and a capability. To
read or write a data segment, a capability for the segment
must be Segloaded into a window register.

A 16 bit machine address is Interpreted to select a
window register (and thus a capability) and possibly to
spec i fy an offset into a segment of memory. For enhanced
performance of capability referencing, the descriptors for
the objects named in the capabilities associated with the
window registers are cached in the Kmap. This mechanism
provides virtual addressing and allows for conventional
relocation of physical memory. It is sufficiently general to
support the definition of Kmap microcoded operations on
capability lists and mailboxes.

The last facility introduced in CAP-2 is that of memory
allocation. Physical memory is allocated to hold segments
so that no two segments overlap.

Modules and Environments

Level ME-1 provides for the creation and deletion of
modules (as discussed earlier) and for executing invoked
functions. A module is implemented by a module capability
list containing

- -capabil it ies for the code and data segments
required to perform the functions defined in this
module,
- - a data segment containing a vector of function
descriptors which specify the code to be executed
when a particular function is invoked (e.g. the index
into the module capability list for the segment
containing code for this function), the number of
parameters expected and the size of stack required
to perform the function,
- - a list of other 'known1 modules containing functions
that can be invoked by this module.

ME-1 also defines an environment, the structure created
as a result of a function invocation. An environment Is
defined by severai objects; one is the primary capability list
which is private to a function invocation and acts as the
root capability list for ail addressing of objects during
execut ion of the function.

The primary capability list contains capabilities for

— t h e execution stack (private to the
environment)

- - t h e module capability list which defines the module
containing the invoked function,
- - a state vector (private to the environment) which
contains the processor and addressing state when
the environment is not executing on a processor.
(The state vector includes processor registers,
processor status word, scheduling data, trap and
error masks for communicating with the Kmap, and
indices of the capabilities Segloaded Into the window
registers during the environments execution.)
- -parameter objects specified by the Invoker.

The module capability list contains capabilities for those
objects shared by all who invoke a function in the module.
The primary capability list contains capabilities which are
local to a particular invocation of a function.

Level ME-1 provides functions for the creation,
initialization and deletion of modules and environments.
These , in turn, are used by level ME-2 in providing functions
relating the execution of different environments. Functions
Call and Return allow nested execution, i.e. the Ca//ing
environment is suspended for the duration of the execution
of the newly created {Called) environment which
terminates when the Called environment Returns. The
function Fork permits an environment to request that a
function be invoked to execute in parallel with its invoker
until the function Join is performed.

ME-2 initializes a newly created environment to record
priority information for scheduling purposes and to record
the ex istence of a newly created environment in the
lineage (family tree) of its creator. It is this lineage which
is used by still higher levels to keep track of a task force,
the set of environments which are cooperating to achieve
some goal.

M e s s a g e Transmission

The members of a task force need to be able to
synchronize their actions and to communicate with one
another. To this end module MSG defines an abstraction of
a mailbox which can contain messages. A mailbox is
capable of containing some fixed finite number of messages
maintained in FIFO order. To permit users to communicate
arbitrary objects to one another, rather than data only,
messages are pairs of capabilities. (To transmit 16 bits of
information, a user can create a data capability to contain
this user specified information.)

Levels MSG-1 and MSG-2 differ in that MSG-1 provides
only the functions CondSend and CondReceive to transmit
messages when those functions can be completed without
suspension of the invoker. CondSend succeeds in
depositing a message into a mailbox only if the mailbox has
room for it. CondReceive is a function which returns the
oldest message in case the mailbox is not empty. Hence
CondReceive can be used for polling. A received message is

Page 6
Software Management of Cm*

placed In the receiving environment's message-pouch, a
designated pair of positions in the environment's primary
capability list. CondSend and CondReceive will return an
error code If the mailbox overflows (is full) or underflows (Is
empty), respectively.

The second level, MSG-2, extends the set of message
transmission functions to provide a synchronization as well
as a communication mechanism. MSG-2 is relies on the
hierarchy above the MPX level where the notion of blocked
environments was introduced. MSG-2 provides the
unconditional message functions: Send, Receive, and Reply.
Send performs the same tasks as CondSend; except when
the target mailbox is full, Send v/ill cause the sending
environment to be blocked awaiting an opportunity to deliver
Its message. Likewise, the Receive function causes the
environment attempting to Receive a message from an
empty mailbox to become blocked. Senc/ing a message to
an empty mailbox on which an environment is waiting will
cause that environment to Receive the message and
become unblocked. Similarly, if Receive causes a full
mailbox to no longer be full, it will awaken the oldest
environment awaiting to deposit a message.

MSG-2 also defines a Reply function for mailboxes. This
function differs from Send in that after executing the Reply
function on a mailbox as permitted by a capability for that
mailbox, the right to Reply to that mailbox is removed from
the capability.

The two levels of the message transmission module
provide an excellent example of a decomposition of a single
module. MSG-1 defines both message and mailbox data
structures, but provides functions which are of limited
applicability; in some situations the functions fail returning
an error code. Conditional functions are used to transmit
messages in a well-defined fashion, but do not perform
synchronization.

MSG-2 extends the definition of the mailbox data
structure so that waiting environments can be recorded
when necessary. It also provides new functions extending
the usefulness of mailboxes, but not 'covering up' or
subsuming the conditional functions which are useful when
polling is desired. The multiplexing module relies on the
conditional message functions of MSG-1 and implements
blocking and unblocking on which the second level of MSG
depends.

Dispatching and Multiplexing

Dispatching (DSP) and Multiplexing (MPX) are both
levels and entire modules. DSP defines the hardware
implemented state vector and its associated Envload
function which loads an environment onto a computer module
and begins execution. Envload is implemented in a
combination of Kmap microcode and software. Software
portions of Envload locate the process register values and

the processor status word values in the state vector and
load them into the physical processor registers. The
software then stores the index of its capability for the
environment in a special location which alerts the Kmap that
an Envload is in progress. The Kmap portion of this function
loads appropriate values found in the state vector into the
window registers and various Slocal registers.

Functions in DSP are used exclusively by the
multiplexing module (MPX) which is responsible for selecting
the nex t environment to be Envloaded. Module MPX defines
a set of Runqueues, each of which Is a mailbox. If an
environment is eligible for execution, i.e. It is not blocked
nor already executing on some processor, then there Is a
message containing a capability for It in one of the
runqueues.

Associated with each processor is an ordered list of at
least some of the runqueues. The ordering selects the
priority with which that processor services the mailboxes.
The same Runqueue may appear in various positions In the
ordered list of runqueues of different processors. The
Multiplex function, invoked by the superior levels ME-2 and
T l , cyc les down the list of runqueues (private to the
processor executing Multiplex) performing CondReceives on
the runqueues. If the CondReceive is successful, then the
result is a capability for the next environment to be
Envloaded on the executing processor.

Trap and Interrupt Handling

Software traps and interrupts signal exceptional
conditions caused by program action and external
asynchronous events, respectively. With only a few
except ions (e.g. responding to a clock interrupt or to a high
speed device interrupt), hardware traps and interrupts are
translated into software traps and interrupts, so that
modules can indicate what action is to be taken when they

Defining a new trap (interrupt) means defining a new
trap (interrupt) vector entry indicating what funtion in what
module is to be invoked if the trap (interrupt) occurs. When
a trap occurs, it was caused by the executing environment,
so a Call is perfomed to suspend the current environment
and cause the-function named in the appropriate trap vector
entry to be executed.

Interrupts are asynchronous and are not necessarily
related to the current processor execution. Tl offers two
options. As a result of an interrupt a Fork can be performed
to the function named in the associated interrupt vector .
This will cause the interrupt to be serviced In parallel with
execut ion of other environments. Alternatively, an interrupt
vector or trap vector entry may direct that as a result of an
interrupt, status information be sent as a message to a
specif ied mailbox. Presumably some environment capable of
handling the interrupt will Receive or CondReceive to get the

Software Management of Cm* Page 7

message. Interrupts would then be processed sequentially
by order of occurence.

Two observaions are appropriate here. On is that using
the trap and interrupt mechanism, any level above Tl can
define vector entries so that code from higher levels can
respond to exceptional conditions encountered when code
from lower levels is executing. This effects 'outward calls'
so that lov/er levels can rely on higher levels when
exceptional conditions arise. The second observation is
that the trap and interrupt module is quite small, relying
heavily on ME for Fork and Call, and on MSG for mailboxes.

The Kernel System

The Cm* architecture provides alternative ways to
implement functions. A function may be implemented In
Kmap microcode, or it may be implemented in software to be
e x e c u t e d by one or more of the computer modules. A
computer module may execute a function in either of two
address spaces (user or kernel space). The decision where
to place a particular function of a particular level of

a particular module is determined by considerations such
as maximizing performance, providing for proper
synchronization, and ease of implementation, as well as
maintaining protection boundaries between module.
Because of this independence between the design and the
physical realization, alternative implementations of a
function are possible. This facility is expected to be
valuable in a system designed for experimental use
because it allows for function substitution and redesign.

The kernel software system described here is
implemented in two parts: Kmap microcode and a set of
programs which run in the kernel space of the computer
module processors. It is intended that in the initial system
all of the capability functions and message functions will be
performed by Kmap microcode. The remaining functions will
be implemented in software to be executed from the kernel
space of the computer modules.

The kernel and user spaces have symmetric data
structures because both are executing environments. Both
the user and the kernel system have a primary capability
list which acts as a 'root' for capability addressing
purposes. Both primary capability lists include a capability
for a state vector and for a module capability list. It is the
primary capability list and the state vector of the kerenel
space that maintain information particular to a processor.
Shared data and code in the kernel are referenced via
capabilities in the kernel's module capability list.

Status of Software Development

As of December 1976, the microcode available provided
only for simple relocation of physical addresses with no
capability referencing. Development of microcode to
support capability operations and the message facility will
follow shortly.

Kernel space programs have been coded In BLISS-11
[Wulf et al. 71], a system implementation language. This
se t of programs is being tested using a simulator for the
Cm* machine [Chansler 76] which executes on C.mmp,
another multiprocessor system developed at Carnegie-
Mellon University [Wulf et al. 74]. The simulator models
multiple computer modules as multiple processes, and is able
to run at about half the speed of a Cm* processor by
exploiting the writable control store features of the C.mmp
multiprocessor. Since the kernel code is successfully
executing on the simulator, it is expected that the software
kernel will be available for use shortly after the completion
of the Kmap microcoding.

Future Software Development

The kernel system modules as described constitute a
v e r y primitive system. A number of additional software
levels and new modules are in various stages of design. It
is e x p e c t e d that most of the levels in these modules will be
implemented as programs in the user space. Modules under
developmant include:

Secondary Store Management—Current design proposes
adding some disk memory local to some clusters, with large
file storage accessible via a high speed link to either the
C.mmp or the DEC KL-10.

Linkediting--The creation and management of modules as
Cm* modules will be performed by a linkeditor intended to
simplify the construction and management of function
tables, segments of code, and invocation sequences.

Command Interpreter—This module will provide on-line,
Interactive access to the Cm* machine. This will allow/ a
programmer to dynamically manage a task force. Currently
interactive terminal communication is provided by a PDP-11
connected to each computer module by a serial line unit
[Van Zoeren 76],

ALGOL 68 Runtime System—The first programming
system to bo available on the Cm* machine is expected to
be ALGOL 68. (Until such a system is available, code will be
cross-compiled on another machine). This version of ALGOL
68 will be designed to exploit the multiprocessing facilities
of the Cm* machine.

Resource Policy Modules—A task force requires many
runtime decisions concerning scheduling and resource
allocation. It is the task of a policy module to provide for

Page 8
Software Management of Cm"

these decisions based up on the dynamic state of the task
force and the Cm* machine as a whole.

Acknowledgements

The Cm* software design was strongly Influenced by the
ideas which emerged from the family of operating system
project (reported in [Habermann et al. 76]) and the virtual
memory project which predated the family of operating
system effort (reported in [Parnas et al. 73]) .

In addition we would like to thank three individuals,
Richard Swan, Victor Lesser, and Lee Cooprider for their
comments and suggestions.

Summary

This paper represents a status report on the design of
the firmware and software for management of a distributed
multiprocessor called Cm" and the software construction
philosophy which influenced its design. We have described
the lowest levels of the kernel; some of the microcode and
all of the software implementing what we have described
now ex is ts .

Besides continuing with the design and implementation
of further levels of software, we intend to experiment with
the placement and execution of kernel code within different
Cm" configurations. Parameters of these experiments will
include varying the physical location of the kernel code, the
number of copies of that code as well as which computer
modules can execute different portions of the code.

For example, one experiment is to limit the number of
processors that can execute ME-2 code to (say) two
processors in a cluster. If user programs executing on
processors other than the designated two request ME-2
functions, their requests will be recorded so that the
designated two processors can process these requests at
some later time. The motivation for such an arrangement is
that a processor is much more efficient if it executes code
from its local memory.

In addition to such operating system experiments, we
plan a number of experiments employing Cm* in the solution
of different types of applications problems.

References

[Bell and Neweii 71] Bell, C. Gordon and Allen Newell,
Computer Structures: Readings and Examples, McGraw-
Hill, 1971.

[Chansler 76] Chansler, R. J . , "Cm* Simulator Users '
Manual", Department of Computer Science, Carnegie-
Mellon University, 1976.

[Dennis and Van Horn 63] Dennis, J . B. and E. C. Van Horn,
"Programming Semantics for Multi-programmed
Computations", Communications of the ACM 7 7,3 (March
1968).

[Habermann et al. 76] Habermann, A. N., Lawrence Flon and
Lee Cooprider, "Modularization and Hierarchy In a Family
of Operating Systems", Communications of the ACM 19,A
(April 1976).

[Lampson 69] Lampson, B. W., "Dynamic Protection
Structures", Proc. AFIPS 7 969 FJCC 35, AFIPS Press,
Montvale, N. J . , (1969).

[Liskov 74] Liskov, B. and Steven Zilles, "Programming with
Abstract Data types" , SIGPLAN Notices 9,4 (April 1974).

[Parnas 72] Parnas, D. L., "On the Criteria to be Used in
Decomposing Systems into Modules," Communications of
the ACM 75,12 (Dec. 1972).

[Parnas et al. 73] Parnas, D. L., and W. R. Price, "The
Design of the Virtual Memory Aspects of a Virtual
Machine", Proceedings ACM SIGARCH-SIGOPS Workshop
on Virtual Computer Systems, 1973.

[Swan et al. 77a] Swan, R. J . , S. H. Fuller and D. P.
Siewiorek, "Cm*: a Modular, Multi-Microprocessor",
submitted to the 1977 National Computer Conference.

[Swan et al. 77b] Swan, R. J . , A. Bechtolsheim, K. Lai and J .
Ousterhout, "The Implementation of the Cm* Multi-
Microprocessor", submitted to the 1977 National
Computer Conference.

[Van Zoeren 75] Van Zoeren, H. "Cm" Host User's Manual",
Department of Computer Science, Carnegle-Mcllon
University, December 1975.

[Wulf et al. 71] Wulf, W., et al., "Bliss: A Language for
Systems Programming", Communications of the ACM 7 4,
12 (Dec. 1971).

[Wulf et al. 74] Wulf, W., et al., "HYDRA: the Kernel of a
Multiprocessor Operating System", Communications of
the ACM 17, 6 (June 1974).

