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Preface 

T h i s r e p o r t is a col lect ion of three papers that describe the design and implementation 
of the mul t i -mic roprocessor computer system (Cm*) cur rent ly under developement at 
C a r n e g i e Mel lon Un ivers i t y . The three papers are: 

Cm*: A Modular Multiprocessor 

T h e arch i tecture of a new multiprocessor that supports a large number of 
p r o c e s s o r s (on the order of 100) is described in this paper. The system enables 
v e r y c lose cooperat ion between the large numbers of inexpensive p rocessors . All 
p r o c e s s o r s share access to a single virtual memory address space. T h e r e are no 
a r b i t r a r y limits on the number of processors, amount of memory or communication 
b a n d w i d t h in the system. Considerable support is p rov ided for low leve l 
o p e r a t i n g system primitives and inter -process communication. 

T h e Implementation of the Cm* Multi-Microprocessor 

T h e implementation of the Cm* multiprocessor multiprocessor is p resented . T h e 
lowest leve l of the s t ructure , a Computer Module, is a p r o c e s s o r - m e m o r y pair . 
C o m p u t e r Modules are grouped to form a cluster; communication wi th in the 
c lus ter is via a parallel bus controlled by a central ized address mapping 
p r o c e s s o r . C lusters communicate via intercluster busses. A memory r e f e r e n c e b y 
a p r o g r a m may be routed , transparently , to any memory in the sys tem. This 
p a p e r discusses the hardware used to implement the communication mechanism. 
T h e use of special diagnostic hardware and performance models is also d iscussed. 

Software Management of Cm*, a Distributed Multiprocessor 

This paper descr ibes the software system being developed for Cm*, a 
d i s t r i b u t e d mult i -microprocessor . This software provides for f lex ib le , y e t 
c o n t r o l l e d , sharing of code and data via a capability addressed v ir tual memory, 
c rea t ion and management of groups of processes known as task fo rces , and 
ef f ic ient in terprocess communication. 
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1. Introduction 

Cm*: a Modular, Multi-Microprocessor 

R. J . Swan 
S. H. Fuller 
D. P. Slewiorek 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

Cm* is an experimental computer system designed to 
investigate the problems and potentials of modular, multi-
microprocessors. The initial impetus for the Cm* project 
was provided by the continuing advances in semiconductor 
technology as exemplified by processors-on-a-chip and 
large memory arrays. In the near future processors of 
moderate capability, such as a PDP-11, and several 
thousand words of memory will be placed on a single 
integrated circuit chip. If large computer systems are to be 
built from such chips, what should bo the structure of such 
a 'computer module'? 

November 30, 1976 

Abstract 

This paper describes the architecture of a new large 
multiprocessor computer system being built at Carnegie-
Mellon University. The system allows close cooperation 
between large numbers of Inexpensive processors. All 
processors share access to a single virtual memory address 
space. There are no arbitrary limits on the number of 
processors, amount of memory or communication bandwidth 
in the system. Considerable support is provided for low 
level operating system primitives and inter-process 
communication. 

CR Categories: 6.20, 4.30, 4.32 

Keywords: Multiprocessor, microprocessor, computer 
architecture, virtual memory 

Initial versions of the Cm" architecture [Fuller, et al. 73] 
grew in part as an extension to the modular design of 
systems from register transfer modules, or RTMs [Bell et al, 
72]. In addition there was substantial Interest in the 
development of large multiprocessor systems such as 
Pluribus [Heart, et al. 73] and C.mmp[Wulf and Bell, 72]. 
Cm" is intended to be a testbed for exploring a number of 
research questions concerning multiprocessor systems, for 
example potential for deadlocks, structure of Inter-
processor control mechanisms, modularity, reliability, and 
techniques for decomposing algorithms into parallel 
cooperating processes. 

The structure of Cm" is very briefly described in Section 
2. Section 3 Is a description of the address structure and 
discusses the support given for the operating system. The 
use of the addressing structure for inter-process 
communication and control operations is discussed in 
Section 4. A companion paper [Swan, et al. 77] discusses 
the various mechanisms used to implement the complex 
address mapping and routing structure of Cm". Some 
results from the performance modelling of Cm" are also 
presented. A second companion paper [Jones, et al. 77] 
describes the structure of the basic operating system and 
support software. 

2. The Structure of Cm« 

This work was supported In part by the Advanced 
Research Projects Agency under contract F 4 4 6 2 0 - 7 3 - C -
0074, which is monitored by the Air Force Office of 
Scientific Research, and in part by the National Science 
Foundation Grant GJ 32758X. The LSI-11's and related 
equipment were supplied by Digital Equipment Corporation. 

There is a surprising diversity of ways to approach the 
interconnection of processors into a computing system 
[Anderson and Jensen, 76]. The processors could be 
interconnected with several serial I/O links to form a 
computer network; they could be interconnected in a tight 
synchronous fashion to build an array processor; or the 
processors could be organized to share primary memory. 
This last approach, a multiprocessor organization, was 
chosen for Cm" because it offers a closer degree of 
coupling, or communication, between the processors than 
would a multicomputer or network configuration. 
Multiprocessors also have a more general range of 
applicability than other multiple processor systems. 
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2.1 Deadlock with References to Nonlocal Memory 
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Figure 2.1 Canonical Computer Modulo Structure 

During the development of the Cm* structure a wide 
var iety of multiprocessor switch structures were considered 
[Swan, et al. 76B]. The basic structure selected is 
represented in Figure 2.1. The essential feature which 
distinguishes it from other multiprocessor structures is that 
shared memory is not separated from the processing 
elements, but rather a unit of memory and a processor are 
closely coupled in each module and a network of buses 
gives a processor access to nonlocal memory. This 
structure allows modular expansion of the number of 
processors and memory modules without a rapid increase in 
the interconnection costs. Memory can be shared even 
though there is no direct physical connection between the 
requesting processor and the required memory. For 
example, consider a request by processor, P1, to the 
memory, M4, in Figure 2.1. The address mapping element, 
K1, directs the reference from P1 onto the intermodule bus. 
The address is recognized by K2, which directs it onto a 
second inter-module bus. The reference Is finally accepted 
by K4, which accesses the request memory location and 
passes back an acknowledgement or data to the requesting 
processor. The need for high inter-module communication 
rates will be minimized if a large fraction of each 
processor 's references to primary memory 'hit' the section 
of memory local to the processor. (Preliminary experiments 
in the Fall of 1976 indicate that hit ratios of better than 
907. can be expected provided that the code executed is 
normally held local to the processor.) 

Almost all computer systems Implement accesses from 
processor to primary memory with Circuit Switching, that 
is, a complete path is established from a processor to the 
memory being referenced. Circuit switching Is not feasible 
for a structure like Cm" where local memory Is also 
accessible as shared memory. Figure 2.1 shows the path 
used for P1 to access M4 via K2. Consider a concurrent 
attempt by P4 to access M1 via K2. With a circuit switch 
implementation, a situation could arise where P1 held Its 
local memory bus and the bus connecting K2, while P4 also 
holds its own memory bus plus the bus connecting K4 to K2. 
Neither memory reference could complete without one 
processor first releasing the buses It holds. There are 
numerous situations where deadlock over bus allocation can 
occur. Resolving this deadlock requires, at the very least, a 
timeout and retry mechanism. 

The alternative to circuit switching is Packet Switching. 
In a packet switched implementation, the address from the 
processor is latched at each level In the bus structure. 
Buses are not allocated for the full duration of a memory 
reference, but just for the time taken to pass a 'packet' , 
containing an address and/or data, from one node on the 
bus to another. Therefore packet switching allows 
significantly better bus utilization and significantly reduced 
bus contention in Cm*-like structures. The use of packet 
switching eliminates the possibility of deadlock over bus 
allocation but introduces the possibility of deadlock over 
buffer allocation. [Fuller, et al. 73; Swan, et al. 76A] 
Buffers, or intermediate registers, are resources which can 
be provided very cheaply, relative to providing additional 
Inter-Cm buses, with present technology. 

2.2 The Actual Structure of Cm* 

Design studies indicated that very little performance 
loss would result from combining several Individual Computer 
Modules into a cluster and providing a shared address 
mapping and routing processor, Kmap, which allowed 
communication with other clusters. Because the cost of the 
Kmap is distributed across many processors It can be 
endowed with considerable flexibility and power at 
relatively little incremental cost. Because of its 
commanding position in the cluster, the Kmap can ensure 
mutual exclusion on access to shared data structures with 
v e r y little overhead. 

The full structure of Cm* Is shown In Figure 2.2. 
Individual Computer Modules, or Cms, consist of a DEC LS I -
11 processor, an Slocal and standard LSI-11 bus memory 
and devices. The processor is program compatible with 
PDP-11s; thus a large body of software is Immediately 
available. The prime function of the Slocal, or local switch, Is 
to direct references from the processor selectively either 
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Figure 2.2 A Simple 3 Cluster Cm* System 

to local memory or to the Map Bus, and to accept 
references from the Map Bus to the local memory. 

Up to 14 Computer Modules and one Kmap form a cluster. 
The Kmap, or mapping processor, consists of three major 
components. The Kbus arbitrates and controls the Map bus. 
The Pinap Is a horizontally microcoded 150 ns cycle time 
processor. The basic configuration has 1 K x 30 bits of 
writable control store and 5K x 16 bits of bipolar RAM for 
holding mapping tables etc. The third level of the Cm" 
structure is provided by the intercluster buses which allow 
communication between clusters. The Line provides the 
interface to two intercluster buses. 

There are no arbitrary limits to the size of a Cm" system. 
Memories, processors and Kmaps can be Incrementally 
added to suit needs. Any processor can access any memory 
location in the system. The routing of a processor's 
reference to a target memory is transparent to the program, 
thus the system can be reconfigured dynamically in 
response to hardware failures. 

3. Architecture of the Address Translation Mechanisms 

Many of the more conventional aspects of the 
architecture of the Cm" system are consequences of using 
LSI -11 's for the central processing elements. The 
organization and encoding of the instructions, Interrupt and 
trap sequencing, and the 64K byte processor address 
space of a Cm" system are all a result of the PDP-11 
architecture as implemented on the LSI-11. By selection of 
the LSI -11, however, we do not want to Imply that the PDP-
11 architecture is ideally suited to multiprocessor systems. 
The ideal solution would have been for us to have designed 
our own processors. However, practical considerations of 
time, money, and existing support software lead us in early 
1975 to recognize that by chosing the LSI-11 we could 
concentrate on those aspects of the Cm* architecture 
unique to multiprocessor systems. This section, and the 
following section on control structures, will discuss the Cm" 
architecture as we extended it beyond the standard PDP-
1 1 architecture. 

The addressing structure is one of the the most 
important aspects of any computer architecture, it is even 
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more significant when cooperation between multiple 
processors is to be achieved by sharing an address space. 
Denning [1970] lists four objectives for a memory mapping 
scheme: 

(a) Program modularity: the ability to independently 
change and recompile program modules. 

(b) Variable size data structures. 

( c ) Protection 

(d) Data and program sharing: allowing independent 
programs to access the same physical memory 
addresses with different program names. 

For Cm*, where we are using processors with only a 64K 
byte address space, we must add the following 
requirement: 

Read Only Map Physical Page 
External Processor \ . 
Status Word 

User/Kernel 
Space 

Offset 

Relocation 
Table 

12 

(e ) Expansion of a processor's address space. 

Cm* has a 2^8 byte segmented virtual address space. 
Segments are of variable size up to a maximum of 4K bytes . 
There is a capabiiity-based protection scheme enforced by 
the Kmap. The addressing structure provides considerable 
support for operating system primitives such as context 
switching and interprocess message transmission. 

3.1 The Path from Processor to Memory 

The Slocal (see Figures 2.2 and 3.1) provides the first 
level of memory mapping. A reference to local memory is 
simply relocated, on 4K byte page boundaries, by the 
relocation table in the Slocal. As discussed above, it is 
assumed that most memory references will be made by 
processors to their local memory. Relocation of local 
memory references can be implemented with no 
performance overhead because the synchronous processor 
has sufficiently wide timing margins at the points where 
address relocation is performed. For segments which are 
not in a processor's local memory the relocation table has a 
status bit which causes the address to be latched, the 
processor forced off the LSI-11 bus, and a Service Request 
to be signalled to the Kmap. All transactions on the Map bus 
are controlled by the Map bus controller, or Kbus, which Is a 
component of the Kmap. The address generated by the 
processor is transferred via the Map bus to the Pmap, the 
microprogrammed processor within the Kmap. If the 
reference is for memory within the cluster then the Pmap 
generates a physical address and sends It to the 
appropriate Slocal. If it is a write operation, data is passed 
directly from the source Slocal to the destination Slocal; 
the data does not have to be routed through the Kmap. The 
se lec ted destination Slocal performs the requested memory 
reference and the processor in the destination Computer 

Processor generated Physical Address 
Address on LSI-11 Bus 

Figure 3.1 
Addressing Mechanism for Local Memory References 

Module is not involved. When the reference is complete the 
Kbus transfers the data read from the destination Slocal 
directly back to the requesting processor via the Map bus 
and its Slocal. 

If the processor references a segment In another 
cluster then the Pmap will transmit a request to the desired 
cluster via the Line and the Intercluster buses. (See Fig. 
2.2.) If the destination cluster is not directly connected to 
the source cluster, that Is, if it does not share a common 
Intercluster bus, then the message will be automatically 
routed via intermediate clusters. When the message 
reaches the destination cluster, the memory reference is 
performed similar to a request from a processor within the 
cluster. An acknowledgement, or Return, message 
(containing data in the case of a read) is always sent back 
to the source cluster and subsequently to the requesting 
processor. 

3.2 The Addressing Environment of a Process 

The virtual address space of Cm* is subdivided into up 
to 2 1 G Segments. Each segment is defined by a Segment 
Descriptor. The standard type of segment is similar to 
segments in other computer systems; it is simply a vector of 
memory locations. The segment descriptor specifies the 
physical base address of the segment and the length of 
the segment. Segments are variable in size from 2 bytes to 
4 K bytes . However, other segment types may be more 
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than simple linear vectors of memory; references to 
segments may invoke special operations. Segments may 
have the properties of stacks, queues or other data 
structures. Some segments may not have any memory 
associated with them, and a reference to the segment 
would invoke a control operation. For each segment type , 
up to eight distinct operations can be defined. For normal 
segments the operations are Read and Write. Conceptually, 
segments are never addressed directly; they are always 
referenced indirectly via a Capability. A capability is a t w o -
word item containing the name of a segment and a Rights 
field. Each bit in the rights field indicates whether the 
corresponding operation is permitted on the segment. 

User Environment 
Register 

Capability List Structure 

Primary Cap. List 

Segments 

r -> 
U 

»» 

U 

»» 

l 
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l 

U 

»» 
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»» 

J 
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other Segment 

Capability List [7 ] 

Code, Data or 
other Segment 

Code, Data or 
other Segment 

Code, Data or 
other Segment 

Capability List, CL[0] . The first entry in CL[0] Is a 
Capability for a State l/ecfor, which holds the process state 
while it is not executing on a processor. Entries CL [0] (1 ) 
to CL [0 ] (7 ) in the Primary Capability list may contain 
Capabilities for Secondary Capability Lists referred to as 
C L [ 1 ] through CL [7 ] respectively. The remaining entries in 
the Primary Capability List and all the entries In the 
Secondary Capability Lists contain Capabilities for segments 
which can be made directly addressable by the process 
when it executes . These may be code, data or any other 
t ype of segment. The provision of up to eight Capability 
Lists facilitates the sharing of segments and sets of 
segments by cooperating processes. A software module 
can only access those segments for which It has 
capabilities and perform only those operations permitted by 
the capabilities. 

3.3 Virtual Address Generation 

2 2 8 B y t e Virtual 
Address Space 

64 K Byte Processor 
Address Space 

Page [ 1 5 ] 

Page [ 0 ] 

Figure 3.3 
Windows from the Processor's Immediate Address Space 
to the Virtual Address Space 

Figure 3.2 The Environment of a User Software Module 

To provide efficient support for context swapping, 
message-sending etc., it is necessary for the Kmap 
microcode to understand some of the structure of en 
executable software module (variously called a process, 
act iv i ty , address space etc. ). Each executable software 
module is represented by an Environment, Figure 3.2. An 
environment is a three-level structure composed of 
segments. The first level in the structure is a Primary 

The processors in Cm", LSI - 11s, can directly generate 
only a 16 bit address. This 64 K byte address space is 
divided into 16 pages of 4 K bytes each. Each page 
provides a window into the system wide 2^® byte virtual 
address space, (see Figure 3.3) and can be independently 
bound to a different segment in the virtual address space. 
The top page in the processor's address space, page 15, is 
reserved for direct program interaction with the Kmap. This 
mechanism is analogous to the I/O page convention in 
standard PDP-11S. In page 15 there are 15 pseudo 
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registers, called Window Registers. These define the 
binding between page frames In the processor's Immediate 
address space and segments in the virtual address space. 
This binding is done indirectly via capabilities. Each window 
register holds an index for a capability in the currently 
execut ing software module's capability list structure. A 
Capability List index consists of a three bit field to select 
one of the up to eight Capability Lists, plus an offset within 
the C-L ist . 

To overlay the processor's address space, ie. to change 
the mapping from page frame to segment in the virtual 
address space, a program simply writes a new capability 
index into the appropriate window register. This overlay 
operation is completely protected; the program can only 
reference segments for which it has a Capability. The act 
of writing the Capability index into the window register 
act ivates the Kmap. The Kmap retrieves the se lected 
Capability from main memory and places it in its "Capability 
cache" . The Kmap adjusts its internal tables so that 
subsequent references to the page frame will map to the 
segment specif ied by the Capability. If the segment Is local 
to the processor then the Kmap may also change the 
relocation register in the Slocal so that references to the 
segment can be porformod at full speed without the 
intervention of the Kmap. The Slocal, for cost and 
performance reasons, does not have the hardware 
necessary for bounds checking on variable sized segments. 
Thus only f ixed size 4 K byte segments can be accessed 
without Kmap assistance. 

The Cm* mechanism for address space overlaying should 
be contrasted with mechanisms in other computer systems. 
When executing a large program on a processor with a small 
immediate address space, the time taken to overlay the 
address space can have a crucial effect on performance. 
Measurements made of the execution of the operating 
system HYDRA [Wulf et al, 76] on the C.mmp multiprocessor 
showed that relocation registers were being changed 
approximately every 12 instructions. (This does not, 
however , imply that user programs perform overlay 
operations this frequently.) Within the operating system 
this overlay operation is a single PDP-11 MOVE instruction 
because no protection is involved. However for user 
programs running under HYDRA, an overlay operation 
requires Invocation of the operating system with several 
hundred Instructions of software overhead. Subsequent 
optimization, and partial microcoding, have greatly reduced 
this overhead. 

Figure 3.4 shows the conceptual translation from a 16 
bit processor-generated address to a virtual address. The 
four high order address bits from the processor select one 
of 15 Window registers. The Window register holds an 
index for a Capabiiity in the executing software modules 
Capability List structure. The 16 bit segment name from the 
se lec ted Capability is concatenated with the 12 low order 
bits from the processor to form a 28 bit virtual address. 

Window Register Capability 

OP Cap. Index Rights Segment Name 

I - H : 
A 

Read/ 
" 4 A 

Write 

3-K 
16 

Rights Check 

1 6 Bit, Processor 
Generated Address 

28 Bit, System Wide 
Virtual Address 

Figure 3.4 
Conceptual Virtual Address Generation and Rights Checking 

Figure 3.4 also shows the read/write indicator from the 
processor being concatenated with two bits in the address 
expansion registers to form a three bit opcode. The 
corresponding bit in the Capability rights field is se lected 
and tested. If the operation Is not permitted then an error 
trap Is forced. 

3.4 Virtual to Physical Address Mapping 

The mapping from virtual to physical address depends on 
the location of the segment in the network and, of course, 
on the type of the segment. We begin with the case of a 
simple read/write segment residing within the same cluster 
as the processor referencing the segment. This mapping is 
shown in Figure 3.5. The segment name is used to access 
the corresponding segment descriptor. The descriptor 
provides a limit value which is checked against the 12 bit 
o f fset in the virtual address. If the reference is out of the 
bounds of the segment then an error trap occurs. The 
of fset is added to the physical base address from the 
descriptor. The resulting 18 bit value is a physical address 
within the 256 K byte address space of the computer 
module also specified in the descriptor. 

If the virtual address references a segment outside the 
source cluster then the segment name is used to access an 
indirect Descriptor Reference rather than the descriptor 
Itself. The indirect reference simply indicates in which 
cluster the segment resides. The Krnap then passes the 
virtual address to that cluster via the inter-cluster buses. 
An alternative approach would be to have duplicate copies 
of the segment descriptors in every cluster. Thus the 
virtual-to-phys<cal mappmg could be done at the source 
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Figure 3.5 Virtual to Physical Address Mapping 
for a Variable Sized Segment 

cluster, with possibly some savings in overhead. However, 
any attempt to change the v»i tual-to-physical binding of a 
segment (e.g. moving it to a different memory module or onto 
backing store) would require an effectively simultaneous 
change to all copies of the segment descriptor. In a large 
network this operation would be slow and cumbersome, if 
not impossible. A further advantage to ensuring that only a 
single descriptor exists for each segment is that a Lock Bit 
can be provided in the descriptor. The lock bit can be used 
to ensure mutual exclusion for special segment operations. 

3.5 The Kernel Address Space 

Each processor can execute in either of two address 
spaces. One is the User Address Space which was 
descr ibed above. The second is the Kernel Address Space, 
which is similar to a user address space with the addition of 
some mechanisms reserved for the operating system. The 
currently executing address space is selected by a bit in 
the Processor Status Word of the LSl-11. A Kernel 
Environment is similar to a User Environment; however 
segments at the third level of the Capability List structure 
(Figure 3.2) can be User Primary Capability Lists. That is, a 
Kernel Capability list structure can have user environments 
as substructures. 

There are several additional pseudo registers provided 

in page 15 of the kernel address space. One of these, the 
User Environment register, holds an index for a Capability in 
the kernel environment which points to a user environment. 
This register specifies the current user environment for this 
processor. If the kernel writes a new index Into the 
register the addressing state of the old user process is 
saved by the Kmap in the state vector part of the old user 
environment. The addressing state of the new user is then 
loaded from the specified new user environment. The 
addressing state is the value of the window and other 
system registers in page 15 of the executing program. 
Ideally, this operation, which performs a context swap by 
saving one addressing state and loading another, would also 
save the internal processor registers. Unfortunately there 
is no way for the Kmap to access the internal registers of 
an LSl -11. Thus internal registers must be saved and 
restored under program control. 

4. Control Operations 

The philosophy in Cm" is to implement all special control 
operations, such as interprocessor interrupts, by references 
to the physical address space. This not only avoids a 
proliferation of special control signals, but also allows the 
power of the system's address mapping and protection 
mechanisms to be applied to control operations. 

The Slocal provides a three priority level interrupt 
scheme. An interrupt is invoked by writing into the 
appropriate physical address on the LSl-11 bus of the 
target processor. Thus an Interrupt can be requested by a 
process anywhere in the network, provided the process has 
a Capability for a segment which maps to the correct 
physical address. Another example is the abort operation, 
if the appropriate bit Is written, a NXM (Non Existent 
Memory) trap by the local processor Is forced. This 
mechanism will be used when an error occurs during a 
remote reference by the processor. 

The following examples show how references to special 
t yped segments, or special operations on standard 
segments, are used to invoke microcoded operations in the 
Kmap. 

4.1 Primitive Lock Operations 

For processors in the PDP-11 family, most write 
operations are part of a read-modify-write sequence, in 
standard PDP-11s (including LSI-11's) this sequence is 
implemented as an indivisible, single bus operation. This 
improves performance by reducing bus overhead and 
allowing optimization of references to memory with 
destruct ive read operations (e.g. core and dynamic MOS 
memory). In C.mmp the indivisibility of these operations is 
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maintained through the switch to shared memory. This allows 
the implementation of Locks and Semaphores because a 
memory location can be both tested and set without fear of 
an intervening access by some other processor. Indivisible 
read-modlfy-wrlte operations to nonlocal memory will not be 
implemented in Cm" because of increased bus and memory 
contention and hardware complexity. We will provide an 
equivalent function by making use of the Kmsp's ability to 
lock a segment descriptor while it makes a series of 
references to the segment. To implement a basic lock 
mechanism two special segment operations are defined: 

Inspect the word addressed. If greater than zero, 
then decrement. Return the original value. 

Increment the word addressed. Return the original 
value. 

4.2 An Inter-Process Message System 

Message systems can provide particularly clean 
mechanisms for communication between processes [Brlnch-
Hansen, 73. Jefferson , 77]. In the past, a drawback to 
message systems has been the substantial operating 
system overhead in transferring a message from one 
process to another in a fully protected way. The 
architecture of Cm* provides an opportunity to build a fully 
protected message system which can be used with v e r y 
low overhead. 

A message port, or mail box, will be a special segment 
type . Messages will either be entire segments, passed by 
transferring capabilities, or will be single data words 
encoded as data capabilities. Two representative 
operations on Mailbox segments are: 

Send (Message, ReplyMuilGox, MailBox) 

This transfers capabilities for a message and a reply 
mall box from the caller's Capability List to the Mail 
box. If the mailbox is full then the caller is 
suspended. 

Receive (MailBox) 

If the mailbox contains a message then a Capability 
for the message and a Reply Mailbox will be 
transferred into the caller's Capability List. 
Otherwise the caller is suspended. 

Provided that the above operations are successful , they 
are performed completely in Kmap microcode, and messages 
may be passed with probably less than 100 microseconds 
delay. If the operation cannot be completed because the 
Mailbox is full or empty, then the operating system Is 
invoked to suspend the requesting process. The Kmap can 

also request the operating system to wake up a suspended 
process when the operation is complete. 

5. Development Aids 

The development of hardware and software for a new 
computer system is a major undertaking. We have 
attempted to ease this burden by using a variety of aids. 
All the major hardware components were drafted using an 
interactive drawing package (a version of the Stanford 
Drawing Package). To facilitate the development of 
software, prior to the availability of hardware, a functional 
simulation of Cm" was programmed, which executes on 
C.mmp. Development of the Kmap hardware and microcode 
has been greatly benefited by the use of the "hooks" 
mechanism in the Kmap. This connection to the Kmap 
allows a program executing on an LSI-11 almost complete 
access to the internal state of the Kmap. 

In order to expedite hardware debugging and software 
development, a host program development system was 
constructed. The host is connected to each Cm in the 
system by a Serial Line Unit (SLU) to allow down line memory 
loading and dumping from the associated Cm. In addition, 
the SLU makes console control functions for each LSI-11 
available to the host computer [van Zoren, 75]. The Host in 
turn is connected to a POP-10 timesharing system. 

6. Concluding Remarks and Project Status 

Cm* is projected to be constructed in three stages. The 
first stage is a ten-processor, three Kmap system. The 
subsequent stages will include 30-processors and later 
100-processors. Detailed hardware design began in late 
July , 1975. As of late summer, 1976, a three-processor, 
one-Kmap system was operational. It is expected that the 
first stage Cm" configuration will be operational in the 
second quarter of 1977. The initial operating system Is 
descr ibed in [Jones, et at. 77] and is being developed both 
on the Cm* simulator which runs on C.mmp and on the real 
hardware with the support of the Host Development system. 

The essential features of the Cm" architecture have 
been presented. Both the coupling of a processor directly 
with each unit of shared memory and the three level bus 
structure which makes all memory accessible by every 
processor are primary features of the Cm" structure. Much 
of the sophistication in the architecture is associated with 
the address translation mechanisms. A description has been 
given of how the small processor address space of the 
PDP-11 is mapped into the larger global virtual address 
space of the Cm* system and how the global virtual address 
space is mapped onto the distributed physical address 
space of the Cm" system. 
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A number of important aspects of the Cm* project are 
outside the scope of this paper and interested readers are 
referred to other papers for a more complete discussion 
[ Jones , et al. 77, Swan, et al. 7GA, 76B, 77, Ingle and 
Siewiorek, 76A, Ingle and Siewiorek, 76B, Siewiorek, et al. 
76] , Reliability and performance models have been 
developed concurrently with the hardware design of the 
system and have been used to guide several important 
decisions concerning the structure of the Cm* 
implementation. 
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Abstract 

The implementation of a hierarchical, packet switched 
multiprocessor is presented. The lowest level of the 
structure, a Computer Module, is a processor-memory pair. 
Computer Modules are grouped to form a cluster; 
communication within the cluster i3 via a parallel bus 
controlled by a centralized address mapping processor. 
Clusters communicate via intercluster busses. A memory 
reference by a program may be routed, transparently, to 
any memory in the system. This paper discusses the 
hardware used to implement the communication mechanism. 
The use of special diagnostic hardware and performance 
models is also discussed. 

Computing Reviews Category: 6.20 

Keywords and Phrases: multiprocessor, microprocessor, 
packet switching, virtual memory 

1 Introduction 

The companion paper, [Swan et al. 1977], has 
introduced Cm" as a large, extensible multiprocessor 
architecture. It has an unusually powerful and complex 
addressing structure which allows close, protected 
cooperation between large numbers of Inexpensive 
processors. This paper describes the combination of 
hardware and firmware which implements the address space 
sharing and interprocessor communication mechanisms. 

Cm" Is a multiprocessor system as we define it (rather 
than a network of independent computers) because the 
processors share a common address space. All processors 
have immediate access to all memory. The structure of Cm" 
is shown in Figure 1.1. The primary unit is the Computer 
Module or Cm. This consists of a processor, memory and 
peripherals interfaced to a local memory bus and a "local 
swi tch" . The local switch, or Slocal^, interconnects the 
processor, its local memory bus and the Map Bus. The Map 
Bus provides communication between up to fourteen 
Computer Modules within a cluster, and is centrally 
controlled by the Kmap, a high performance 
microprogrammed processor. Each Kmap Interfaces to two 
Intercluster busses, by means of which it communicates with 
the other clusters in the system. 

There is a system-wide 28 bit virtual address space. 
This address space is divided into segments with a maximum 
size of 4096 bytes. Programs refer to segments indirectly 
via Capabilities, which are two-word items containing the 
global name of a segment and specifying access rights to 
the segment. The processors have a 1 6 bit address space 
which is divided into 16 pages. A mechanism Is provided 
which allows a program to associate any Capability it 
posesses (and hence any segment to which it is allowed 
access ) with any page in its immediate address space. A 
full description of the address mapping scheme is given in 
[Swan et al. 1 977]. 

To demonstrate the viability of a structure it Is 
necessary to build a pilot system with currently available 
components. To be a successful demonstration, the pilot 
system has to be a useful, economical computing resource 
in its own right. Therefore, in the Cm* network described 
here, many design tradeoffs were made on the basis of 
current technology and the resources available. The highly 
experimental nature of the project encouraged an emphasis 

This work was supported in part by the Advanced Research 
Projects Agency under contract number F 4 4 6 2 0 - 7 3 - C -
0074, which is monitored by the Air Force Office of 
Scientific Research, and In part by the National Science 
Foundation Grant GJ 32758X. The LSI-11's and related 
equipment were supplied by Digital Equipment Corporation. 

1 The names used for hardware components of Cm" are 
derived from PMS notation [Bell and Newell, 71]. The 
leading, capitalized letter indicates the primary function of 
the unit, eg. Computer, Processor, Kontroller, Link, Switch. 
The subsequent letters, optionally separated with a period, 
give some attribute of the unit. For example, Slocal is a 
local switch. Pmap is a mapping processor. The name Cm* 
derives from (Computer.modular)" where * is the Kleene 
star. 
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Figure 1.1 A Simple 3 Cluster Cm* System 

on generality and ease of debugging in the hardware 
components, rather than just minimization of costs. There 
are many aspects of the detailed design which would have 
to be re-evaluated if the structure were to be implemented 
in a different technology or built as a commercial product. 
In particular the distribution of functions between the 
processors and the Kmap would be carefully reconsidered. 
The modular nature of Cm* makes it particularly suitable for 
implementation in LSI. 

Section 2 illustrates the mechanism for memory 
references. The various hardware components of Cm* are 
described in the following six sections. Section 3 describes 
the processor-memory pairs and their interface to the Map 
Bus. In Section 4 opportunities for parallelism in the 
address mapping mechanism are considered. Three 
autonomous functional units of the Kmap are presented in 
Sections 5, 6. and 7. Section 8 describes the support 
given to hardware diagnosis and microcode development in 
the Kmap. For an effective implementation it was 
necessary to find a reasonable performance balance 
between system components. Some of the performance 
modelling which guided our judgement is presented in 
Section 9. 

2 The Mechanism for Local and Nonlocal References 

Addresses generated by processors in a Cm* system 
may refer to memory anywhere within the system. Mapping 
of an address and routing to the appropriate memory are 
performed in a way that is totally transparent to the 
processor generating the address. If an address Is to refer 
to the memory local to that processor, the memory 
reference is performed in a completely standard way 
e x c e p t that the Slocal relocates the high-order four bits of 
the address. See Figure 2.1. 

When the page being referenced Is not local (i.e. the 
"Map" bit for the referenced page is set in the Slocal) a 
service request Is mado to the Kmap by the Slocal. Upon 
receiving the service request the Kmap executes a Map 
Bus cyc le to read In the processor-generated address from 
the Slocal, as well as the number of the Cm making the 
request , and two status bits indicating which address space 
was executing on the processor and whether the reference 
was a read or a write (see Figure 2.2). If the segment 
being referenced is local to the cluster, the Kmap will use 
information cached in its high-speed buffers to bypass most 



The Implementation of the Cm* Multi-Microprocessor Page 3 

Read Only Map Physical Page 

External Processor \ 
Status Word 

User/Kernel 
Space 

^ 4 

Relocation 
Table 

Offset 

it* 

Processor generated 
Address 

Physical Address 
on LSl-11 Bus 

Figure 2.1 
Addressing Mechanism for Local Memory References 

of the processor-to-virtual -to-physical address mapping. 
Thus it can quickly translate from the page number 
referenced by the processor to a physical address 
consisting of the number of the Cm containing the physical 
location and an eighteen-bit local address. A second Map 
Bus transaction is executed to pass this address, and a bit 
indicating whether a read or a write is to be performed, to 
the destination Slocal. If the operation is a write, the data 
may be passed directly from the Cm making the reference 
to the Cm containing the word to be written. The 
destination Slocal performs the read or write via a Direct 
Memory Access. When this is completed it issues a return 
request to the Kmap to acknowledge completion. A third 
Map Bus cycle is performed to transfer the data back to the 
processor that made the reference (in the case of a read) 
and to acknowledge completion of the reference so that the 
requesting processor may resume activity. 

A second alternative when the Kmap receives an 
address to map is that the physical location being 
referenced is not local to the cluster. In this case the 
information cached in the Kmap for the page being 
referenced will not indicate a physical location directly; 
instead it will give a sixteen-bit segment name, the number 
of the cluster containing the physical memory allocated to 
the segment, and two bits used to extend the read/write 
bit to a three-bit op code. This informotion is combined with 
the twelve low-order bits of the original processor address 
to form the full virtual address of the object being 
referenced. See Figure 2.3. The virtual address, along with 
the processor data (if a write is being performed) is sent 
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Figure 2.2 The Mechanism for Cluster-local References 

via an Intercluster Bus to the Kmap of the cluster containing 
the segment (if there is no Intercluster Bus directly 
connecting the two Kmaps the message will be steered from 
Kmap to Kmap until it reaches the destination cluster). The 
destination Kmap will then map the virtual address to a 
physical one within its cluster. Map Bus transactions will be 
e x e c u t e d to pass the physical address (and data if 
needed) to an Slocal which in turn performs the operation 
and returns acknowledgement (and, perhaps, data) back to 
the destination Kmap. A return message Is used to pass 
back acknowledgement and data to the Kmap of the 
originating cluster. Finally, this Kmap will relay the data and 
acknowledgement back to the initiating Cm to complete the 
reference. 

Several points are worth noting with respect to the 
above schemes. Except at the local memory bus level, 
where conventional circuit switching is used, all 
communication Is performed by packet switching. That is, 
busses are allocated only for the period required to transfer 
data. The data is latched at each interface, rather than 
establishing a continuous circuit from the source to the 
destination. This approach gives greater bus utilization and 
avoids deadlock over bus allocation. All transactions are 
completely interlocked with positive acknowledgement being 
required to signal completion of an operation (it is possible 
to allow a processor executing a nonlocal write to proceed 
as soon as the data for the write has been received by the 
Kmap or destination Slocal, without waiting for completion of 
the operation; however In this case the Kmap will e x p e c t 
to receive acknowledgement in place of the processor so 
that appropriate actions may be taken if none is received) . 
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The complete processor-to-virtual-to-physical address 
mapping is performed only in the case of intercluster 
references. As the locality of a reference Increases the 
amount of this mapping that may be bypassed (and hence 
the speed of the reference) increases, with local caches of 
certain mapping information used to effect the bypass. An 
important characteristic of the addressing structure is that 
there is exact ly one Kmap that may perform the v i r tual - to -
physical mapping for a given segment. The requirement that 
all references to a segment occur with the cognizance of a 
single Kmap greatly simplifies the moving of segments and 
the Implementation of operations requiring mutual exclusion. 

3 The Computer Module 

The first level of the Cm* network hierarchy Is the 
Computer Module, or Cm. The Cm's provide both the memory 
and processing power for the multiprocessor system. 

The decision to use a standard, commercially available 
processor (the DEC LSI-11) has had a considerable impact 
on the design. Use of a standard instruction set has made a 
large pool of software and software development aids 
directly available. The not inconsiderable effort to design 
and implement a new processor has been avoided. 

At the software level, the prime disadvantage of the 
LSI-11 instruction set is that only 16 bit addresses can be 
directly manipulated. The companion architecture paper 
discusses in detail the mechanism used to expand a 
processor 's address space from 16 bits to 28 bits. 

3.1 The Components of a Computer Module 

A Computer Module, Figure 3.1, can act as a stand alone 
computer system. The standard commercially available 
components include the DEC LSI-11 processor and dynamic 
M0S memory. Any LSI-11 peripheral may be used on the 
bus, including serial and parallel interfaces, floppy and f ixed 
head disks, etc. The standard 16 bit memory has been 
ex tended with byte parity. Memory refresh Is normally 
performed by microcode in the L S I - 1 1 ; however, the fact 
that a processor may be suspended indefinitely while 
awaiting the completion of a complex external reference 
has made it necessary to augment each Cm with a special 
bus device to perform refresh. 

The most important component which has been added to 
each Cm is the Slocal. This provides the interface between 
the processor, the Map Bus and the LSl-11 Bus. The prime 
function of the Slocal is to selectively pass references from 
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the processor to either the LSl-11 Bus or the Map Bus and 
to accept references from the Map Bus to the LSl-11 Bus. 
The Slocal also provides simple address relocation for 
references made by its processor to local memory. Figure 
2.1 shows how this relocation is performed; the "Map Bit" In 
the local relocation table is set for pages which are not In 
the local memory of the processor. 

In addition to the Local Relocation Table the Slocal 
provides a number of other control registers. All these 
registers are addressable as memory locations on the LS l -
1 1 bus; however only the Kmap and highly privileged system 
code will have direct access to them. One of the key 
registers is the external Processor Status Wcrd 
(XPSW<15:8>). The LSl-11 implements only the low order 
by te of the standard PDP-11 Processor Status Word 
(PSW<7:0>). Logic in the Slocal (with assistance of 
standard signals from the LSl-11) allows the XPSW to be 
saved and restored during interrupt, trap and other 
operations in unison with the internal PSW. The XPSW 
allows select ive enabling of various Slocal functions and 
controls a simple three level interrupt scheme. On power-up 
the XPSW is cleared, which disables all special operations 
by the Slocal including the relocation of local memory 
references. In this mode the processor acts as a bare, 
unmodified LSl-11. The Local Relocation Table can be 
initialized either by console operations, execution of local 
bootstrap code or remotely by any processor in the 
network. After initialization, enabling Reloc Mode 
(XPSW<11>) will allow local relocation and give access to 
the rest of the network. 

Incorrect use of PDP-11 instructions such as HALT, 
RESET, Move-To-Processor-Status-word, Return from 
Interrupt, etc. can cause loss of a processor, garbling of an 

I/O operation or enable circumvention of the system's 
protection scheme. The Privileged Instruction Mode bit 
(XPSW<13>) enables logic in the Slocal which detects the 
fetching of any "dangerous" instruction. An immediate error 
trap is forced if an unprivileged program attempts to 
e x e c u t e a privileged instruction. 

Several registers in the Slocal are concerned with 
providing diagnosis and recovery information after a 
software or hardware error is detected. Almost all errors 
are reported to the processor by forcing a NXM (Non 
eXistent Memory) trap. This includes errors detected by the 
Kmap during remote references. The Kmap signals the error 
by writing to the "Force NXM" bit in an addressable register 
In the Slocal. The Local Error Register indicates the nature 
of the error and whether the erroneous reference was 
mapped. The "Last Fetch Address" register is updated to 
hold the address of the first word of an instruction every 
time the LSl-11 fetches a new Instruction. If an error Is 
detec ted , this register is frozen until the Local Error 
Register is explicitly cleared. Also frozen in the Local Error 
Register is a count of the number of memory references 
performed in the execution of the instruction. In 
conjunction, these two registers provide sufficient 
information to restore the state of the LSl-11 for retry of 
the instruction during which the error was detected. 

The Slocal also provides two interrupt request registers. 
Interrupt enable bits in the external processor status word 
allow masking of the interrupt requests. Provided reference 
is permitted by the memory protection scheme, any 
processor in the network can interrupt any other processor 
simply by writing to the correct address. 

3.2 Data Paths for Nonlocal References 

An idealized form of the basic data paths and latches 
within a Cm" cluster is shown In Figure 3.2. Depending on 
the address generated, a reference from the processor is 
passed either to the local memory bus or to the Map Bus. A 
local memory reference is performed in a conventional way. 
For a nonlocal reference, the address (and possibly data) is 
latched and a service request is issued to the Kmap. The 
broken line in Figure 3.2 shows the path of a read to the 
memory of another Cm in the cluster. The address from the 
source processor Is read by the Kmap which translates it 
into a physical address within the memory of a Computer 
Module. This physical address is placed onto the Map Bus 
by the Kmap and latched at the target Cm. A conventional 
Direct Memory Access (DMA) cycle is performed by the 
destination Slocal, the data read is latched and the Kmap is 
again requested, this time with a return request. To 
complete the operation, the Kmap responds by transferring 
the data over the Map Bus from the target Cm to the 
requesting Cm (this simply requires the latch at the target 
Cm to be enabled onto the Map Bus and the latch at the 
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requesting Cm to be strobed). At this point the source 
processor, which was suspended, is given the data as if a 
normal memory reference had been performed. 

This simplified description of a Computer Module has 
been presented to emphasize the simplicity of the basic 
mechanisms required for an intra-clustor reference in Cm*. 
In the actual implementation using the LSI-11 processor the 
data paths are rather different than the idealized structure 
shown in Figure 3.2. The differences are due primarily to the 
need to minimize the changes to the LSI-11. Although still 
simplified, Figure 3.3 is a more accurate representation of 
the data paths and latches used to Interface the LSI-11 
and the LSI-11 bus to the Map Bus. 

The processor board is modified so that the Local 
Relocation Table in the Slocal can be inserted in the data 
path of the four high order address bits. The timing margins 
in the processor's address path are wide enough to allow 
insertion of this delay without Joss of performance. The 
LS I - 1 1 Bus is the only data path from the processor for both 
local and non local references. If the processor were 
permitted to hold the LSI-11 bus while waiting for 
completion of a nonlocal reference then references from 
other processors in tiie network to memory on the LSI-1 1 
bus would be blocked. This could very easily lead to 
deadlock situations. To give greater concurrency and to 
eliminate the deadlock potential, the Slocal is able (using 
simple microcoded state sequence logic) to force the 
processor off the LSI-11 bus while it is waiting for 
completion of nonlocal references. While the processor is 
forced off the local bus the Slocai takes over DMA bus 
arbitration for the suspended processor. 

Intercluster Bus 1 

Intercluster Bus 0 

4 Concurrency within the Mapping Mechanism 

Early in the design of Cm* the speeds of the various 
components in the system began to appear as follows: the 
time for a "typical" Map Bus transaction was about 0.5 
microseconds; the time required in the computational unit of 
the Kmap for an address mapping was 1-2 microseconds; 
the time to transfer a message on an Intercluster Bus was 
2 -4 microseconds; and the time for an Siocal to execute a 
read or write requested by the Kmap was 3 -4 
microseconds. In referring to the mechanisms for nonlocal 
mappings it can be seen that no single component is 
responsible for a very large fraction of the time required for 
a nonlocal reference. Thus if each cluster had a mapping 
concurrency of one (only one nonlocal reference could be 
processed at a time per cluster) both the utilization of the 
mapping components and the throughput of the mechanism 
would be low (the effect of concurrency on system 
performance is discussed quantitatively in Section 9). In 
addition the possibility of deadlock in intercluster 
references is introciuced. 

Map Bus 

Figure 4.1 The Components of the Kmap 

The solution adopted for Cm* was to separate the four 
functions whose timings are given above and to allow a 
concurrency of eight in the mapping mechanism of each 
cluster. The packet-switched nature of Cm* yields cleanly 
to this approach, and requires only that queues be 
implemented to store messages at the interfaces between 
the components. Figure 4.1 depicts this structure, in which 
the Kmao has been logically sub-divided into three separate 
units: the Kbits, which is master of the Map Bus and 
controls all transactions on it; the Pmap, or mapping 
processor, which does ail the address translation and 
maintains the cache used to speed up mapping; and tiie 
Line, or intercluster link, which presides over the 
transmission of messages between clusters. 

One other notion must be introduced before proceeding 
to a detailed discussion of the components of the Kmap, 
namely that of a context. Operations requiring mutual 
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exclusion (for example, changing the virtual-to-physical 
mapping of the system) will be implemented in Cm* as 
memory references to "special" segments which will then 
cause the Kmap to perform the desired operations in a 
protected way. In general these operations will require 
several references by the Kmap to main memory. If the 
Pmap Is to be used for other mappings while these main-
memory references are being made by the Kbus and Slocals, 
there must be some means of saving and restoring its state 
so that processing can be resumed when the memory 
reference has been completed. The solution adopted is to 
provide registers in the Kmap to save and restore state for 
up to eight overlapping operations. A mapped operation in 
soma stage of processing by the Kmap Is referred to as a 
context. Each context has allocated to its exclusive use 
eight general-purpose registers and four subroutine linkage 
registers (one of which is used to save the microprogram 
address while awaiting the completion of Map Bus 
transactions). 

The Kbus maintains the status of the eight Pmap 
contex ts and allocates them to new service requests. The 
contex t number and other status are then placed In the Run 
Queue to signal the Pmap that the context is runnable. The 
mapping processor activates the context by removing Its 
number from the Run Queue and starting execution of 
microcode at an address determined by the status bits. 
When the new context Is activated the processor address 
is mapped, and a request for a main-memory reference Is 
placed in the Out Queue (during this time the Kbus has been 
free to read in service requests or perform functions 
requested by the Pmap). A context swap is executed in the 
Pmap to deactivate the current context pending the 
completion of the memory reference and to activate the 
next one in the Run Queue. The Kbus transfers address and 
data to the destination Slocal, then processes other 
requests while the memory reference is being performed. 
When the memory reference is completed the Kbus either 
reads the acknowledgement and/or data back into the Kmap 
and places the context back In the Run Queue for 
reactivation, or it sends the acknowledgement back to the 
processor that originally made the service request ( thereby 
completing the mapping operation) and marks the associated 
contex t as " f ree" for reallocation to a new service request. 
The fact that a context remains allocated to each nonlocal 
reference until that reference is completed (regardless of 
whether or not more Pmap processing is expected to be 
needed) means that if an error is detected the context can 
be react ivated and will have enough state information to 
handle the error in an intelligent fashion. 

Communication between the Line and Pmap is similar to 
that between the Kbus and Pmap; the Pmap queues a 
request for an intercluster message to be sent (separate 
queues are provided for each Intercluster Bus) and 
suspends the requesting context. When a return message 
is rece ived for the context the Line causes the Kbus to 
react ivate the context in the Run Queue. When an incoming 

intercluster message is received by one of the Line's 
Intercluster Bus Ports, it is queued and a request is Issued 
to the Kbus to allocate a free context to the request and 
act ivate it in the Run Queue. 

6 The Kbus and the Map Bus 

Because of the great variety of tasks it must perform 
and the necessity that it be able to respond to errors In an 
intelligent way, the Kbus was designed as a 
microprogrammed processor controlled by 256 40-bit words 
of read only memory. It has a microcycle time of 100 
nanoseconds which is synchronized with the 150 
nanosecond clock of the Pmap and Line at 50 nanosecond 
intervals. Figure 5.1 shows the major elements of the bus 
controller. 

The Map Bus contains 38 signals, of which 20 are 
bidirectional lines used to transmit addresses and data 
between the Slocals and Kbus of the cluster. The Kbus is 
master of all transactions on the bus; as such it specifies a 
source and destination for each cycle as well as status bits 
indicating the use of the data (address, data, etc. ) . The 
bus is synchronous, with the Kbus generating all of the 
strobes used to transmit data. Each Slocal Is provided with 
private service and return request lines to the Kbus. The 
arbiter section of the Kbus scans these In a pseudo round 
robin priority scheme. 

The Kbus maintains the queues and registers used for 
communication with the Pmap. The Run Queue contains 
eight eight-bit slots (and thus is guaranteed never to 
overf low) , each containing a three-bit context name and 
f ive additional bits of activation status. The Out Queue 
contains four 39-bit entries. The Pmap loads this queue to 
request Kbus operations and must check Its state before 
loading to insure that it never overflows. Each Out Queue 
slot contains an op code used to select one of th i r ty - two 
Kbus operations, and additional address, data, and context 
information relevant to the operation. Two registers are 
loaded by the Kbus on behalf of each Pmap context . They 
are readable only by the Pmap and writable only by the 
Kbus. The Bus Data Register contains the last data word 
read in from the Map Bus for the context and the Bus 
Condition Register gives control and status Information for 
the transaction. 

The Kbus is responsible for the allocation and 
deallocation of contexts, and maintains the status of each 
contex t for this purpose. It also keeps two additional bits 
of status for each context which are used to insure that, 
when a context suspends itself to await the execution of a 
main-memory reference or the sending of an Intercluster 
message, an acknowledgement of the completion of the 
operation is received within a reasonable time (two 
milliseconds). If a suspended context times out it is forcibly 
react ivated with status bits indicating the error. 
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Figure 5.1 The Components of the Kbus 

The Kbus also maintains nine bits of status for each 
Slocal in the cluster indicating whether the Slocal is busy 
with a Kmap-requested memory reference and, if so, what 
to do with the information returned at the end of the 
transaction. This status is set whenever a local memory 
reference is initiated and is used to insure that two 
contex ts do not simultaneously try to request a memory 
access through the same Slocal. 

6 The Pmap, the Address Mapping Processor 

The mopping processor of the Kmap, or Pmap, is a 
s ix teen-b i t horizontally microprogrammed processor. It 
occupies a central position within the Kmap, coordinating 
the activities of the other components, it is pipelined and 
has a cyc le time of 150 nanoseconds. Microinstructions are 
80 bits wide; a 1K*80 bipolar RAM is used as a writable 
microstore. The Pmap also uses a high-speed 5K"16 RAM to 
store the active Capabilities and segment descriptors. In 
addition to performing the basic address translation for the 
nonlocal references of a cluster, the Pmap must support 
certain operating system primitives, statistics gathering, 
and other experimental functions without e x c e s s i v e 
performance degradation. 

6.1 Data Paths 

A register transfer level diagram of the Pmap is given 
in Figure 6.1. The mam data paths consist of three internal 
high speed tr i -state busses. Two of these, the A and B 

busses, take data from various sources and feed them to 
the inputs of the Arithmetic Logic Unit. The third bus, the 
F Bus, takes the ALU output and distributes it to various 
parts of the Kmap. The Kbus and Line are also connected to 
these busses. Pipeline latches are used to overlap fetch of 
operands with current data operations. 

The Shift and Mask Unit provides the ability to perform 
f ield-extract ion on one of the ALU operands. This capability 
is important since the Pmap frequently deals with packed 
information in segment descriptors, intercluster messages, 
etc . The input to the Shift and Mask Unit is rotated by an 
arbitrary amount and then masked by one of 32 16-bit 
standard masks stored in a PROM. 

For efficient address mapping, it is crucial that the Kmap 
have fast access to the information it needs to perform the 
virtual - to-physical address translation. This information 
consists largely of the active Capabilities and segment 
descriptors, of which up to 448 may exist In the cluster at 
a time (s ix teen in each of two address spaces for each of 
fourteen processors). Although content addressable 
memory was not used because of the large capacity 
needed, the careful positioning of tables within the data 
memory, combined with a hash-coded list structure used for 
storing descriptors, has produced a cache-like structure. 

The data memory, or Mdata, is divided into 1024 
(expandable to 409C) records, each record containing five 
16-bit words. The record organization was chosen because 
the segment descriptors, with cacheing information, fit 
comfortably within this 80-bit space. Each word has 
associated with it two parity bits, one for each byte. The 
memory is word addressable, with the record address 
coming from the Data Address Register (DADR) and three-bit 
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Figure 6.1 Data Paths in the Pmap 

word indices from fields in the current microinstruction. 
Thus once the record address of a descriptor or capability 
has been computed, the individual subwords may be 
a c c e s s e d without expending further cycles to generate 
data memory addresses. 

Data to be written in the Mdata may be taken either 
from the A Bus or F Bus. Because it is frequently necessary 
to set and clear status bits in segment descriptors (for 
example the "dirty" and "use" bits used for demand paging, 
and the lock bit used for mutual exclusion) bit set and clear 
logic is provided for data input from the A Bus. It provides 
for the setting or clearing of either or both of the two high-
order bits of the input word. To further increase parallelism, 
it is possible to simultaneously read and write different 
words of the same record. It is therefore possible, say, to 
set the "use bit" in one word of a segment descriptor and 
at the same time extract the segment limit from another 
word of the same descriptor. 

6.2 Microprogram Sequencing Logic 

One characteristic of the Cm* address mapping 
algorithms Is the large number of conditions to be tested . 

The serv ice of a typical request will require testing of 
request status, operation type, and segment type and 
checking of the following conditions: protection violation, 
descriptor locked, segment localizable etc. To perform 
address mapping within a reasonable number of cyc les 
requires the Pmap to have a flexible multi-way branch 
capability. 

A block diagram of the microprogram sequencing logic Is 
given in Figure 6.2. A Base Address is selected from either 
the Next Address field in the current microinstruction or the 
output of the Subroutine Linkage Registers. Two bits in 
the microinstruction select the mode of branching ( two -
way , four -way, s ix teen-way) and two three-bit fields 
control six 8-to-1 condition code multiplexers. Multi -way 
branching was implemented in the conventional way by 
OR'ing the selected condition codes with the Base 
Address. The address thus generated is stored in MADR, 
the Microprogram Address Register, to fetch the next 
microinstruction. There is a conditional override mechanism 
that can prohibit a potential 16-way branch. When the 
override condition is true, a branch Is taken to a 
seventeenth location regardless of the value of the 16-way 
branch condition code. 
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Figure 6.2 Microinstruction Address Generation Logic 

6.3 Context Considerations 

There are a total of 6 4 general purpose and 3 2 
subroutine linkage registers, allowing each context 
exc lus ive use of eight general purpose registers and four 
subroutine linkage registers. The Current Context Number, 
stored in the Context Register, selects the current register 
bank. Normally this register is loaded from the Run Queue 
when a context swap is executed. For diagnostic purposes 
the Pmap may directly load the Context Register, hence if 
required a microprogram may access the registers of any 
context . Each context may nest subroutine calls up to four 
levels deep. By convention, the zeroth linkage register is 
also used to store the reactivation address of a suspended 
context . The status bits in the Run Queue indicate whether 
a context is to be activated at its reactivation address (to 
continue an ongoing operation) or to be explicitly started at 
one of the first s ixteen locations in the microstore (to begin 
a new operation, or handle certain error conditions). 

The Line provides intercluster communication by 
connecting the Pmap to two Intercluster busses. 
Communication is in the form of short messages passed 
between Kmaps. Messages are stored in a Message RAM 
which is shared between the Pmap and the two Intercluster 
Bus Ports. Pointers to messages pass through an automatic 
system of queues. Messages are usually sent directly from 
source to destination cluster, but they can also be 
forwarded by intermediate clusters (thus allowing arbitrory 
network topologies to be constructed). Message routing is 
controlled by Pmap microcode. The goal in the Line design 
was to provide fast, deadlock-free Intercluster 
communication with a minimum of Pmap overhead. 

7.1 Intercluster Bus Protocol 

The Intercluster busses contain 2 6 lines: 16 data, 2 
parity, and 8 control. They operate in an asynchronous, 
interlocked fashion at a transfer rate of 4 5 0 nanoseconds 
per word. Mastership is passed cycllcly between 
requesting ports, effectively implementing a round robin 
priority scheme. The current bus master arbitrates future 
mastership in parallel with its current data transfers. 

Forward Message Return Message 
1 5 12 6 0 15 12 6 0 

c | c x 
—I 

I *\ 
Source j Destination c CX 1 1 1 1 1 1 Destination 

- j OP Offset 
v 

Data Word (Read) 

Segment Name 
C Complex Bit 

Data Word (Write) CX Context 
OP Op Code 

Figure 7.1 Standard Message Formats 

Intercluster messages consist of one to eight 16 bit 
words. The most common formats are shown in Figure 7 . 1 . 
The header word contains a six bit identifier for source and 
destination cluster, the source context number and the 
complex bit. A return message has a unique source field of 
all ones. The source context number is sent with the 
message to allow a direct reactivation of the suspended 
source context . The complex bit provides an escape 
mechanism to other message formats, eg for error messages 
or block transfers. 
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Figure 7.2 Components of the Line 

7.2 Components of the Line (Figure 7.2) 

Buffer space for messages is provided in the central 
1K*18 Message RAM, divided into 128 buffers of eight 
words each. This is sufficient to avoid any possibility of 
deadlock over buffer allocation except In very large 
systems [Swan et al. 1976b]. The Pmap has priority for 
access to the Message RAM, although it is also directly 
accessible by the Ports. Several contexts may use the 
Line in an overlapped fashion without interference since 
each context has private facilities for addressing message 
buffers. A context has two ways to address message 
buffers. It may use its context number to access a 
reserved buffer which is used for the creation of forward 
messages and to receive return messages. There is also a 
Pmap Address Register for each context to deal with 
incoming forward messages. Words within a buffer are 
se lected by a Pmap microcode field. Each Port section has 
an address register and a word count register for accessing 
the Message RAM. 

Five queues are maintained by the Line. Two Send 
Queues, one for each Port, are used by the Pmap to request 

transmission of messages. To request that a message be 
sent on an Intercluster Bus, the Pmap places the address of 
the message buffer in the appropriate Send Queue. The 
Free Queue keeps the addresses of all the message buffers 
not currently in use. The Service Queue is used by the Line 
to notify the Kbus and Line of the addresses of Incoming 
forward messages, and the Return Queue to request that 
the Kbus reactivate contexts when replies to their forward 
messages are received. All of the queues are implemented 
as partitions of a single 1K"11 bipolar RAM. 

The Line uses the same 150 nanosecond clock as the 
Pmap. For diagnostic purposes the Pmap has access to 
almost all of the Internal state of the Line and may e x e c u t e 
all the Internal microcycies executable by the Ports. 

7.3 A n Intercluster Message Transaction 

A complete message transfer is shown In Figure 7.3. 
The Pmap at the source cluster creates the forward 
message in a reserved context buffer. Then its pointer is 
put into the appropriate Send Queue. The Line pops the 
pointer off the Send Queue into the Port Address Register, 
acquires mastership of the corresponding bus and transfers 
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the message, one word at a time, from its Message RAM 
onto the Intercluster Bus and into the Message RAM of the 
destination Line. 

At the destination side the receiving Port has already 
obtained a buffer from the Free Queue. If the message is 
rece ived completely without error, then its pointer is placed 
into the Service Queue (if not, the message is ignored; a 
timeout will occur at the source). The Service Queue 
requests the Kbus to allocate a free Pmap context to 
serv ice the message. It includes status bits to start up 
specif ic microcode. The context will transfer the pointer 
from the Service Queue into the Pmap Address Register and 
process the message, making appropriate main-memory 
references. It then creates a return message in the same 
buffer, setting the source field to ones to indicate this. On 
a Read, the data word will be appended. The buffer pointer 
of the completed return message is queued again in the 
Send Queue. When the message has been sent, the pointer 
«s released into the Free Queue. At the original source the 
return message is placed in the reserved buffer for the 
requesting context . Its context number plus status is 
passed to the Return Queue and the context is reactivated 
to send data or an acknowledgement back to the requesting 
processor. 

8 Development and Diagnostic Aids 

A common strategy used to aid in hardware and/or 
microcode development is to construct a software simulator 
for the hardware. This allows initial debugging to be 

performed before the actual hardware is available and can 
provide a more comfortable environment in which to work. 
However, simulators are expensive both In terms of 
development effort and computer time; furthermore they 
cannot give an exact reflection of the hardware. Thus this 
approach leaves the final bugs to be found using the real 
hardware, and is of no aid In diagnosing component failures 
(rather than design errors). The alternative approach 
adopted for Cm* was to incorporate special hardware, 
called Hooks, directly into the Kmap for use in hardware and 
microcode development. The Interfacing of the Hooks to a 
standard LSI -11 allows extensive software support for 
hardware development and diagnostics while at the same 
time providing a convenient environment for the debugging 
of microcode on the real hardware. 

The Hooks give to an L S I - 1 1 , referred to as the Hooks 
Processor, the ability to intimately examine and change the 
internal state of the Kmap. They provide the capability for 
the Hooks Processor to load microcode into the writable 
control store of the Pmap, read the values on the A and B 
busses of the Pmap, and to independently start, stop, and 
s ingle -cyc le the Pmap-Linc and Kbus clocks. An interrupt is 
generated for the Hooks Processor whenever the Pmap 
clock stops (either due to a microprogram-invoked halt or a 
memory parity error on the control or data stores) . 
Furthermore, several of the internal registers of the Pmap 
have "twin registers" associated with them which may only 
be loaded by the Hooks Processor. These alternate 
registers may be enabled via the Hooks to override 
microprogram-controlled values. The presence of the Hooks 
added approximately ten percent to tiie cost of the Pmap 
while enormously reducing system development time. 
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9 Performance: Measurements and Predictions 

Before discussing the models used to estimate the 
performance of a Cm* cluster, several simple measurements 
(made on a cluster containing two processors) will be 
presented. The average time between memory references 
(including both code and data) made by a single LSl-11 
execut ing entirely out of local memory varies between 2.5 
and 4.0 microseconds, depending on the mix of instructions 
being executed . For a "typical" code sequence, based on 
measurements of compiled BLISS-11 programs, the inter-
reference time was 3.0 microseconds. Measurements 
made on the same "typical" code sequence, except with all 
references mapped via the Kmap to the other processor in 
the cluster, yielded an average time between references of 
7.7 microseconds. With the latter measurement there was 
no contention for use of the Map Bus, Kmap, or destination 
Slocal. Although no actual measurements were available at 
the time of this writing, it is expected that the time for 
intercluster references will be between 15 and 20 
microseconds. 

A simple queueing model was developed to estimate the 
performance of a cluster [Swan et al., 1976a]. The model 
assumed an exponential distribution of nonlocal requests, 
exponential service time in the Pmap, and exponential 
distribution of the total non-Pmap overhead incurred during 
a nonlocal reference. It is assumed that the Pmap is the 
primary cause of contention hence the waiting time for 
other facilities is ignored. Figure 9.1 plots the results of 
this analysis. The relative rate of memory referencing in a 
cluster is plotted as a function of the number of act ive 
processors and their hit ratio to local memory. 

Because of the inability of the queueing analysis to 
model contention for all cluster facilities it was feared that 
the results would prove to be an optimistic estimate of 
cluster performance. Therefore a series of simulations was 
performed in order to model more closely the true operation 
of a cluster [Brown 1976]. The simulation and queueing 
results were in close agreement and so the simulation study 
will not be discussed further. 

Figure 9.1 indicates that system performance Is 
extremely dependent on the local hit ratio. It has been 
hypothesized that the local hit ratio would lie in the range 
between 85% and 95%, In which case the effect of the 
nonlocal references would be "reasonably" small. 
Unfortunately, this implies that code must be entirely local 
to the processor executing it. Two memory-intensive 
programs, a quicksort and a memory diagnostic, have been 
run on the initial Cm* system (one cluster, two modules). 
Measurements of the performance degradation when code 
and local variables are kept local but the area being sorted 
or diagnosed is moved to the other processor in the cluster 
indicate that local hit ratios of 90% or higher are being 
obtained in both cases. Expensive operating system 
functions such as block transfers are expected to lower 
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Figure 9.1 Absolute Cluster Performance 

this figure, but it is also expected that most user programs 
will make less intensive use of shared databases than the 
above examples. 

The queueing model was used to predict the degradation 
of cluster performance if either the Pmap were made slower 
(and thus cheaper) or if the concurrency of the mapping 
mechanism were eliminated. The results for a cluster 
containing twelve processors are shown In Figure 9.2. A 
slower Pmap was modelled by increasing Its service time 
from 1,5 to 3.0 microseconds. The last model represents a 
cluster implementation where each external reference is 
carried to completion before servicing subsequent requests. 
This would be the situation if only one Pmap Context were 
provided, i.e. eliminating the concurrency between the Map 
Bus and the Pmap. Both the slow and non-concurrent 
clusters show enormous performance losses, especially at 
the low end of the 857. to 95% hit ratio range. The Inability 
of slower or non-concurrent Kmaps to support large numbers 
of modules implies a need for more Kmaps per Cm* system. 
It also suggests that more intercluster communication will be 
required since each modulo will have fewer immediate 
neighbors. 
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1 0 Conclusion 

Detailed hardware design of Cm* begain in late July. 
1975. Tiie Initial goal of a 10 processor, three cluster 
system is expected to be realized in the first quarter of 
1977. Considering the Kmap alone, the time from the 
beginning of design to a working prototype (excluding the 
Line) was less than nine months. It is felt that this 
relatively short development time is due to extensive use of 
automated design aids, microprogramming at almost every 
level and the inclusion of additional hardware to aid in 
debugging. The Hooks facility in the Kmap has been 
particularly successful. However it will not be possible to 
declare the overall system a success until it is regularly and 
reliably supporting a community of satisfied users. 
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A b s t r a c t 

This paper describes the software system being 
developed for Cm", a distributed multi-microprocessor. This 
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code and data via a capability addressed virtual memory, 
creation and management of groups of processes known as 
task forces, and efficient interprocess communication. Both 
the software and hardware are currently under construction 
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Semiconductor technology advances are leading toward 
the inexpensive production of computer modules (I.e. a 
processor plus memory of a moderate size) on a single chip. 
Multiple computer modules Interconnected to form a 
multiprocessor or a network offer a large number of 
processing cycles far more Inexpensively than an equally 
fast uniprocessor. Yet, such a computer module system is 
useful only if a suitable fraction of the processing cyc les 
can actually be used for applications. 

The software designed to manage a computer module 
system can contribute substantially to making the system a 
cost ef fect ive environment in which to program applications. 
This paper discusses the software designed to manage a 
computer module system called Cm* which is currently under 
construction at Carnegie-Mellon University. We pay 
particular attention to the philosophy of software 
construction that influenced many of the design decisions. 

For the purposes of this paper we will only review some 
attributes of the architecture that are salient to the design 
of operating system software. Companion papers [Swan et 
al., 77a Swan et al. 77b] describe and discuss the Cm* 
architecture in detail. 

Cm" is a multiprocessor composed of computer modules, 
each consisting of a DEC LSl-11, a standard LSl-11 bus, 
memory and devices. We describe Cm* as a multiprocessor 
because the system's primary memory forms a single virtual 
address space; any processor can directly access memory 
anywhere in the system. To implement such a virtual 
memory, we introduced into each computer module a local 
switch, the Slocal 1 which routes locally generated 
references selectively to local memory or to the Map Bus 
(when the reference is to memory in another computer 
module). The Slocal likev/ise accepts references from 
distant sources to its local memory. 

Connected to a single Map Bus may be up to fourteen 
computer modules that share a single address mapping and 
routing processor, called the Kmap. The computer modules, 
Kmap, and Map Bus together comprise a cluster. A Cm* 
configuration can be grown to arbitrary size by 
interconnecting clusters via Inter-cluster Busses (see 
Figure 1). (A cluster need not have a direct bus connection 
to eve ry other cluster in a configuration.) Collectively, the 
Kmaps mediate each non-local reference made by a 
computer module, thus sustaining the appearance of a single 
virtual address space. 

This work was supported by the Defense Advance 
Research Projects Agency under contract F 4 4 6 2 0 - 7 3 - C -
0074 which is monitored by the Air Force Office of 
Scientific Research. 

Because processors are numerous, applications of any 
size will tend not to be designed in the form of a single 
program executed by a sequential process. Instead we 

In several cases names of Cm" components are derived 
from the PMS notation described in [Bell and Newell 71]. 
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Figure 1. A Simple 3 Cluster Cm* System 

e x p e c t users to create task forces, i.e. groups of processes 
cooperating to achieve a goal. Because the number of 
processes in a task force may vary with the available 
resources and task parameters, and because processes 
tend to be small (due to the relatively slow processors or 
limitations on the amount of local memory), a user will often 
be unconcerned with Individual processes, communicating 
only with the task force itself. 

The Cm* architecture offers to a user the option of 
employing tightly or loosely coupled processes. Loosely 
coupled processes communicate rarely, usually in 
conventional ways via a message transmission mechanism. 
Tightly coupled processes communicate often, sometimes 
using the efficient unconstrained paths provided by shared 
memory. Cm* permits both types cf communication since it 
provides a message transmission facility as well as direct 
addressing of shared memory. Effectively, a user Is free to 
v iew Cm* as either a multiprocessor or a computer network. 

(which we will refer to as a user hereafter) is confident 
that all his code is debugged, since he will routinely alter 
parameters and even the code for his task forces in 
substantial ways. We also expect users to Incrementally 
construct experiments. In addition we expect users to 
reconfigure modules (of software) combining them to form 
a new experiment. 

Such a v iew of the user has led us to believe that It Is 
as important for the kernel (or lowest level) software to 
support the user's software construction activities as It Is 
to provide the primitive runtime facilities required for 
multiple users to share the computer resources in a 
disciplined cooperative fashion. Consequently, the software 
design reflects this concern. We view users as 
constructing their experiments by incrementally building 
modules2. Each module implements some abstraction useful 
to other modules that will come to depend upon it. A module 
then is a 'unit of abstraction'. It is implemented as 

- - c o d e and data private to the module, 
- - a set of externally known functions that can be 
invoked by other modules making use of the 
abstractions, and 
- - a set of references to externally defined modules 
defining functions used in implementing the 
abstraction. 

The kernel software supports the notion of a module by 
providing user facilities to create modules and to Invoke 
functions of a module in a protected way. An invoked 
function is executed in an environment that gives it access 
to code and data that are part of the module, together with 
any actual parameters specified by the invoker. Thus the 
software enforces the boundaries of a module by providing 
a well defined transition between execution In one module 
and execution in another. Hopefully this will help contain 
the influence of errors and expedite debugging. 

This notion of module Is based on earlier work. In 
particular it is built on the ideas of modular decomposition 
discussed in [Parnas 73] and abstract data types [Liskov 
74] as used in language design. 

Module boundaries are used for protection purposes at 
runtime. Each function is executed with access only to 
those objects which it requires. In designing the kernel 
software, we have found that some of its modules 
implement rather complex abstractions. Yet not all uses of 
a module require the entire abstraction; some uses rely 
only on part of the abstraction while others rely on a 
simplified abstraction. For design purposes a module may be 

Software Design Methodology 

Cm* is a vehicle for experimentation, particularly In the 
area of parallel decomposition of algorithms and their 
efficient implementation on a computer module processing 
resource. We expect it to be rare that an experimenter 

2 T h i s paper always uses the words "computer module" to 
refer to the hardware structure, and will in the sequel use 
the (commonly accepted) single word "module" to refer to a 
programming abstraction. Context should also serve to 
eliminate any ambiguity. 
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partitioned into a strictly ordered set of levels as described 
in [Habermann et al. 76]. The purpose of dividing a 
module's design into levels is to permit either incremental 
introduction of the differrent parts of one abstraction or 
increasingly more complex (and powerful) versions of the 
entire abstraction. The introduction of complexity is 
postponed until it is truly required. Multiple levels of one 
module share data structures and even code. 

The first level within a multi-level module may define 
only a subset of the functions of the complete abstraction, 
but that subset of functions is a useful self -contained, but 
limited version of the abstraction. Subsequent levels are 
introduced into the hierarchy as needed. Additional levels 
of a module may Introduce entirely new data structures or 
ex tend existing ones. No protection boundaries ex is t 
between levels so that higher level code may manipulate 
data structures introduced in lower levels. Consequently, 
though module boundaries are translated into runtime 
protection boundaries, the boundaries between 'levels of 
design 1 are not detectable In the runtime implementation 
structures. We will illustrate this difference between 
modules and levels later when we discuss the Cm* message 
transmission module. 

Levels within a module are strictly ordered. We can 
define a level A to be 'higher' than level B in another module 
in case A invokes a function defined in B. The set of all 
levels (of all modules) is partially ordered by dependency. 
In the design of operating system software there is not 
necessari ly a cleanly identifiable division of a hierarchy of 
levels into supervisory and user software. The operating 
system facilities required by one user differ from those 
required by another, particularly in an experimental setting. 
The partially ordered system structure is in a form such that 
it is readily possible to replace 'upper' portions of the 
dependency hierarchy since level boundries are clear and 
the dependency relations between levels are known. 

Cm* Software System Design 

Before describing the kernel software design, we will 
define two notions that play an important part in that 
design: objects and capability addressing of objects. The 
basic unit which can be named, shared and individually 
protected, and for which memory is allocated for 
representation purposes is the object. Each object has a 
unique name and a definitive description used by the 
software system. Every object has a type that determines 
the structure of Its representation and the operations or 
accesses which can be performed on it. Current design 
specif ies three types of objects: data segments, which are 
linear arrays of words that may bo read and written; 
capability lists, which are structures containing capabilities 
( to be discussed below); and mailboxes, which are 
structures containing messages. 

Objects are named (addressed) using capabilities 
[Dennis and Van Horn 68, Lampson 69]. A capability may 
only be created and manipulated in controlled ways (by 
kernel provided capability functions). Since users cannot 
create or forge capabilities, possession of a capability is 
ev idence that the user can reference the object whose 
unique name appears within the capability. A capability not 
only identifies a unique object, it records a set of rights 
indicating which of the defined operations (accesses) are 
permitted to be performed on the object. Controlled use of 
objects is enforced because an object can be accessed 
only if a program presents a capability naming that object 
which contains a right for the desired access. Since 
possession of a capability endows the possessor with the 
ability to perform accesses, capabilities also record those 
rights which a possessor may exercise with respect to the 
capabilities themselves. (For example, copying a particular 
capability may not be permitted.) 

Based on the above discussion, we next describe the 
Cm" kernel software. The purpose of the initial levels of 
software is to provide facilities required for shared usage 
of resources in an 'enforcabiy cooperative' way. In addition 
w e wish to assist users in programming and executing their 
experiments by providing convenient structures and 
functions for creating and executing modules. The 
operating system software Itself is composed of a partially 
ordered set of levels. In several Instances two modules are 
divided into a pair of levels. For convenient reference 
levels are labeled with a tag in the format 'module-level'. 
Modules are given alphabetic names; levels are numbered in 
increasing order as they appear in the system construction 
hierarchy. The kernel levels to be discussed In this paper 
are: 

CAP-1: Capability referencing Performs mapping 
from a capability via a segment descriptor to 
physical representation of segment (including 
access control checking) 

CAP-2 : Capability addressing and memory 
allocation Defines an object address space 
and interpretation of an address; performs 
memory allocation ensuring that the segments 
used to represent objects are pairwise 
exclusive 

ME-1: Environments and Modules Implements the 
creation and deletion of modules and 
execution environments 

MSG-1: Conditional message transmission Defines 
the structures message and mailbox; permits 
sending and receiving of messages when 
process suspension is not required 

DSP: Dispatching Defines hardware Implemented 
data structures used to 'load' an environment 
onto the processor and commence execution 
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MPX: Multiplexing Selects the next environment 
to execute on a processor 

M E - 2 : Environment relations Records the ancestry 
by which environments are related; provides 
for nested and parallel execution of 
environments 

M S G - 2 : Unconditional message transmission 
Provides for sending, receiving, and replying 
to messages even if environments involved 
are forced to wait for an Indeterminate time to 
complete message transmission 

T l : Trap and Interrupt handling Provides routing of 
control when either interrupts or traps occur 

A diagram indicating the dependency relations among 
these levels appears as Figure 2. An arrow from level A to 
level B indicates that a funtion in level B is invoked in level 
A. In addition, it is possibie that level A invokes functions in 
any of the levels 'below' B in the dependency graph. 

Capability Addressing 

Module CAP provides capability addressing. Level CAP-
1, which is implemented in Kmap microcode, interprets 
capability references to objects, I.e. it maps a capability to 
the physical representation of the object named by the 
capability. Because the state of an object may change and 
its physical representation may move, the system maintains 
a single definitive description of each object called a 
descriptor or segment descriptor. It records the type of 
the object , the physical description of its representation 
(including cluster, module, starting address, and size) , state 
information (e.g. whether the representation is in core, dirty, 
or locked for Kmap usage), and the (reference) count of the 
number of outstanding capabilities for tiie object. 

Every existing object has a unique name--the memory 
address of its descriptor. To perform a mapping from a 
capability to a object, the identity of the object 's 
descriptor is determined from the capability. It, in turf), is 
referenced to determine the physical representation of the 
object . A capability reference fails if the right required to 
perform the operation desired by the addressing 
environment originating the reference Is not In the 
capability. 

Level CAP-2 extends level CAP-1 to provide for the 
generation of capability references (we refer to this as 
capability addressing), and for capability manipulation. 
Capabilities used for addressing purposes are stored in 
capability array objects called capability fists. Given a 
capability list CL and an index X, one can determine the X -
th capability in capability list CL. This may be a capability 
for an object of arbitrary type, including a capability list 
object . By repeated application of capability indexing, 

Figure 2. Levels and Modules of Cm* Software 

objects to any depth can be addressed. Because capability 
list indexing Is performed in microcode as well as in 
software, the architecture restricts indexing to depth 2 in 
any single operation. This means that in a single addressing 
operation the path to a target object may 'Indirect through' 
at most two capability lists before arriving at the (third) 
target object. Whenever a processor is executing (I.e. 
generating capability addresses) one capability list Is 
distinguished as the primary capability list. The first index 
of a capability address Is an offset Into this primary 
capability list. 

CAP -2 also defines (rmcrocoded) functions for creating, 
copying, moving, and deleting capabilities as well as for 
manipulating the rigtus encoded within a capability. 
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A Cm" processor (an LSl -11) has a word size of only 16 
bits. To permit 16 bit addresses to be mapped to the 
arbitrarily sized Cm" memory, the notion of a window was 
introduced. It consists of 15 window registers, each of 
which can be thought of as holding a capability. (Actually, 
in the current design, each window register holds an index 
to a capability which can be indexed via the current primary 
capability list.) CAP-2 provides two (microcode 
implemented) functions Segload and Unload to associate 
and de-associate , a window register and a capability. To 
read or write a data segment, a capability for the segment 
must be Segloaded into a window register. 

A 16 bit machine address is Interpreted to select a 
window register (and thus a capability) and possibly to 
spec i fy an offset into a segment of memory. For enhanced 
performance of capability referencing, the descriptors for 
the objects named in the capabilities associated with the 
window registers are cached in the Kmap. This mechanism 
provides virtual addressing and allows for conventional 
relocation of physical memory. It is sufficiently general to 
support the definition of Kmap microcoded operations on 
capability lists and mailboxes. 

The last facility introduced in CAP-2 is that of memory 
allocation. Physical memory is allocated to hold segments 
so that no two segments overlap. 

Modules and Environments 

Level ME-1 provides for the creation and deletion of 
modules (as discussed earlier) and for executing invoked 
functions. A module is implemented by a module capability 
list containing 

- -capabil it ies for the code and data segments 
required to perform the functions defined in this 
module, 
- - a data segment containing a vector of function 
descriptors which specify the code to be executed 
when a particular function is invoked (e.g. the index 
into the module capability list for the segment 
containing code for this function), the number of 
parameters expected and the size of stack required 
to perform the function, 
- - a list of other 'known1 modules containing functions 
that can be invoked by this module. 

ME-1 also defines an environment, the structure created 
as a result of a function invocation. An environment Is 
defined by severai objects; one is the primary capability list 
which is private to a function invocation and acts as the 
root capability list for ail addressing of objects during 
execut ion of the function. 

The primary capability list contains capabilities for 

— t h e execution stack (private to the 
environment) 

- - t h e module capability list which defines the module 
containing the invoked function, 
- - a state vector (private to the environment) which 
contains the processor and addressing state when 
the environment is not executing on a processor. 
(The state vector includes processor registers, 
processor status word, scheduling data, trap and 
error masks for communicating with the Kmap, and 
indices of the capabilities Segloaded Into the window 
registers during the environments execution.) 
- -parameter objects specified by the Invoker. 

The module capability list contains capabilities for those 
objects shared by all who invoke a function in the module. 
The primary capability list contains capabilities which are 
local to a particular invocation of a function. 

Level ME-1 provides functions for the creation, 
initialization and deletion of modules and environments. 
These , in turn, are used by level ME-2 in providing functions 
relating the execution of different environments. Functions 
Call and Return allow nested execution, i.e. the Ca//ing 
environment is suspended for the duration of the execution 
of the newly created {Called) environment which 
terminates when the Called environment Returns. The 
function Fork permits an environment to request that a 
function be invoked to execute in parallel with its invoker 
until the function Join is performed. 

ME-2 initializes a newly created environment to record 
priority information for scheduling purposes and to record 
the ex istence of a newly created environment in the 
lineage (family tree) of its creator. It is this lineage which 
is used by still higher levels to keep track of a task force, 
the set of environments which are cooperating to achieve 
some goal. 

M e s s a g e Transmission 

The members of a task force need to be able to 
synchronize their actions and to communicate with one 
another. To this end module MSG defines an abstraction of 
a mailbox which can contain messages. A mailbox is 
capable of containing some fixed finite number of messages 
maintained in FIFO order. To permit users to communicate 
arbitrary objects to one another, rather than data only, 
messages are pairs of capabilities. (To transmit 16 bits of 
information, a user can create a data capability to contain 
this user specified information.) 

Levels MSG-1 and MSG-2 differ in that MSG-1 provides 
only the functions CondSend and CondReceive to transmit 
messages when those functions can be completed without 
suspension of the invoker. CondSend succeeds in 
depositing a message into a mailbox only if the mailbox has 
room for it. CondReceive is a function which returns the 
oldest message in case the mailbox is not empty. Hence 
CondReceive can be used for polling. A received message is 
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placed In the receiving environment's message-pouch, a 
designated pair of positions in the environment's primary 
capability list. CondSend and CondReceive will return an 
error code If the mailbox overflows (is full) or underflows (Is 
empty), respectively. 

The second level, MSG-2, extends the set of message 
transmission functions to provide a synchronization as well 
as a communication mechanism. MSG-2 is relies on the 
hierarchy above the MPX level where the notion of blocked 
environments was introduced. MSG-2 provides the 
unconditional message functions: Send, Receive, and Reply. 
Send performs the same tasks as CondSend; except when 
the target mailbox is full, Send v/ill cause the sending 
environment to be blocked awaiting an opportunity to deliver 
Its message. Likewise, the Receive function causes the 
environment attempting to Receive a message from an 
empty mailbox to become blocked. Senc/ing a message to 
an empty mailbox on which an environment is waiting will 
cause that environment to Receive the message and 
become unblocked. Similarly, if Receive causes a full 
mailbox to no longer be full, it will awaken the oldest 
environment awaiting to deposit a message. 

MSG-2 also defines a Reply function for mailboxes. This 
function differs from Send in that after executing the Reply 
function on a mailbox as permitted by a capability for that 
mailbox, the right to Reply to that mailbox is removed from 
the capability. 

The two levels of the message transmission module 
provide an excellent example of a decomposition of a single 
module. MSG-1 defines both message and mailbox data 
structures, but provides functions which are of limited 
applicability; in some situations the functions fail returning 
an error code. Conditional functions are used to transmit 
messages in a well-defined fashion, but do not perform 
synchronization. 

MSG-2 extends the definition of the mailbox data 
structure so that waiting environments can be recorded 
when necessary. It also provides new functions extending 
the usefulness of mailboxes, but not 'covering up' or 
subsuming the conditional functions which are useful when 
polling is desired. The multiplexing module relies on the 
conditional message functions of MSG-1 and implements 
blocking and unblocking on which the second level of MSG 
depends. 

Dispatching and Multiplexing 

Dispatching (DSP) and Multiplexing (MPX) are both 
levels and entire modules. DSP defines the hardware 
implemented state vector and its associated Envload 
function which loads an environment onto a computer module 
and begins execution. Envload is implemented in a 
combination of Kmap microcode and software. Software 
portions of Envload locate the process register values and 

the processor status word values in the state vector and 
load them into the physical processor registers. The 
software then stores the index of its capability for the 
environment in a special location which alerts the Kmap that 
an Envload is in progress. The Kmap portion of this function 
loads appropriate values found in the state vector into the 
window registers and various Slocal registers. 

Functions in DSP are used exclusively by the 
multiplexing module (MPX) which is responsible for selecting 
the nex t environment to be Envloaded. Module MPX defines 
a set of Runqueues, each of which Is a mailbox. If an 
environment is eligible for execution, i.e. It is not blocked 
nor already executing on some processor, then there Is a 
message containing a capability for It in one of the 
runqueues. 

Associated with each processor is an ordered list of at 
least some of the runqueues. The ordering selects the 
priority with which that processor services the mailboxes. 
The same Runqueue may appear in various positions In the 
ordered list of runqueues of different processors. The 
Multiplex function, invoked by the superior levels ME-2 and 
T l , cyc les down the list of runqueues (private to the 
processor executing Multiplex) performing CondReceives on 
the runqueues. If the CondReceive is successful, then the 
result is a capability for the next environment to be 
Envloaded on the executing processor. 

Trap and Interrupt Handling 

Software traps and interrupts signal exceptional 
conditions caused by program action and external 
asynchronous events, respectively. With only a few 
except ions (e.g. responding to a clock interrupt or to a high 
speed device interrupt), hardware traps and interrupts are 
translated into software traps and interrupts, so that 
modules can indicate what action is to be taken when they 

Defining a new trap (interrupt) means defining a new 
trap (interrupt) vector entry indicating what funtion in what 
module is to be invoked if the trap (interrupt) occurs. When 
a trap occurs, it was caused by the executing environment, 
so a Call is perfomed to suspend the current environment 
and cause the-function named in the appropriate trap vector 
entry to be executed. 

Interrupts are asynchronous and are not necessarily 
related to the current processor execution. Tl offers two 
options. As a result of an interrupt a Fork can be performed 
to the function named in the associated interrupt vector . 
This will cause the interrupt to be serviced In parallel with 
execut ion of other environments. Alternatively, an interrupt 
vector or trap vector entry may direct that as a result of an 
interrupt, status information be sent as a message to a 
specif ied mailbox. Presumably some environment capable of 
handling the interrupt will Receive or CondReceive to get the 
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message. Interrupts would then be processed sequentially 
by order of occurence. 

Two observaions are appropriate here. On is that using 
the trap and interrupt mechanism, any level above Tl can 
define vector entries so that code from higher levels can 
respond to exceptional conditions encountered when code 
from lower levels is executing. This effects 'outward calls' 
so that lov/er levels can rely on higher levels when 
exceptional conditions arise. The second observation is 
that the trap and interrupt module is quite small, relying 
heavily on ME for Fork and Call, and on MSG for mailboxes. 

The Kernel System 

The Cm* architecture provides alternative ways to 
implement functions. A function may be implemented In 
Kmap microcode, or it may be implemented in software to be 
e x e c u t e d by one or more of the computer modules. A 
computer module may execute a function in either of two 
address spaces (user or kernel space). The decision where 
to place a particular function of a particular level of 

a particular module is determined by considerations such 
as maximizing performance, providing for proper 
synchronization, and ease of implementation, as well as 
maintaining protection boundaries between module. 
Because of this independence between the design and the 
physical realization, alternative implementations of a 
function are possible. This facility is expected to be 
valuable in a system designed for experimental use 
because it allows for function substitution and redesign. 

The kernel software system described here is 
implemented in two parts: Kmap microcode and a set of 
programs which run in the kernel space of the computer 
module processors. It is intended that in the initial system 
all of the capability functions and message functions will be 
performed by Kmap microcode. The remaining functions will 
be implemented in software to be executed from the kernel 
space of the computer modules. 

The kernel and user spaces have symmetric data 
structures because both are executing environments. Both 
the user and the kernel system have a primary capability 
list which acts as a 'root' for capability addressing 
purposes. Both primary capability lists include a capability 
for a state vector and for a module capability list. It is the 
primary capability list and the state vector of the kerenel 
space that maintain information particular to a processor. 
Shared data and code in the kernel are referenced via 
capabilities in the kernel's module capability list. 

Status of Software Development 

As of December 1976, the microcode available provided 
only for simple relocation of physical addresses with no 
capability referencing. Development of microcode to 
support capability operations and the message facility will 
follow shortly. 

Kernel space programs have been coded In BLISS-11 
[Wulf et al. 71], a system implementation language. This 
se t of programs is being tested using a simulator for the 
Cm* machine [Chansler 76] which executes on C.mmp, 
another multiprocessor system developed at Carnegie-
Mellon University [Wulf et al. 74]. The simulator models 
multiple computer modules as multiple processes, and is able 
to run at about half the speed of a Cm* processor by 
exploiting the writable control store features of the C.mmp 
multiprocessor. Since the kernel code is successfully 
executing on the simulator, it is expected that the software 
kernel will be available for use shortly after the completion 
of the Kmap microcoding. 

Future Software Development 

The kernel system modules as described constitute a 
v e r y primitive system. A number of additional software 
levels and new modules are in various stages of design. It 
is e x p e c t e d that most of the levels in these modules will be 
implemented as programs in the user space. Modules under 
developmant include: 

Secondary Store Management—Current design proposes 
adding some disk memory local to some clusters, with large 
file storage accessible via a high speed link to either the 
C.mmp or the DEC KL-10. 

Linkediting--The creation and management of modules as 
Cm* modules will be performed by a linkeditor intended to 
simplify the construction and management of function 
tables, segments of code, and invocation sequences. 

Command Interpreter—This module will provide on-line, 
Interactive access to the Cm* machine. This will allow/ a 
programmer to dynamically manage a task force. Currently 
interactive terminal communication is provided by a PDP-11 
connected to each computer module by a serial line unit 
[Van Zoeren 76], 

ALGOL 68 Runtime System—The first programming 
system to bo available on the Cm* machine is expected to 
be ALGOL 68. (Until such a system is available, code will be 
cross-compiled on another machine). This version of ALGOL 
68 will be designed to exploit the multiprocessing facilities 
of the Cm* machine. 

Resource Policy Modules—A task force requires many 
runtime decisions concerning scheduling and resource 
allocation. It is the task of a policy module to provide for 
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these decisions based up on the dynamic state of the task 
force and the Cm* machine as a whole. 
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Summary 

This paper represents a status report on the design of 
the firmware and software for management of a distributed 
multiprocessor called Cm" and the software construction 
philosophy which influenced its design. We have described 
the lowest levels of the kernel; some of the microcode and 
all of the software implementing what we have described 
now ex is ts . 

Besides continuing with the design and implementation 
of further levels of software, we intend to experiment with 
the placement and execution of kernel code within different 
Cm" configurations. Parameters of these experiments will 
include varying the physical location of the kernel code, the 
number of copies of that code as well as which computer 
modules can execute different portions of the code. 

For example, one experiment is to limit the number of 
processors that can execute ME-2 code to (say) two 
processors in a cluster. If user programs executing on 
processors other than the designated two request ME-2 
functions, their requests will be recorded so that the 
designated two processors can process these requests at 
some later time. The motivation for such an arrangement is 
that a processor is much more efficient if it executes code 
from its local memory. 

In addition to such operating system experiments, we 
plan a number of experiments employing Cm* in the solution 
of different types of applications problems. 
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