
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Instructable Production System:

Basic Design Issues

Michael D. Rychener and Al len Newel l

May 1977

Department of Computer Science

Carnegie-Mel lon University

Pittsburgh, PA 15213

Th is pape r has been submitted for presentation at a Workshop on Pa t t e rn -D i r e c ted

In fe rence Systems, chaired by D. A. Waterman and F. Hayes-Roth, Honolulu, May 2 3 - 2 7 ,

1977 .

Th i s r e sea r ch was suppor ted in part by the Defense Advanced Research Pro jec ts A g e n c y

unde r Cont rac t no. F44620-73-C-0074 and monitored by the Air Force Off ice of Sc ient i f i c

Resea r ch .

5/cK ??o9

Co2 5 V

Hawai i

Table of Contents

SECTION
P A G E

1 Inst ruct ion Tasks and Large Product ion Systems 1

1.1 Introduct ion and overv iew •' . . . 2

1.2 Bui lding a large product ion system 3

1.3 The abstract job shop task 4

1.4 The instruction mode 6

1.5 The product ion system architecture and task environment 8

2 The Initial Instructable System 12

2.1 The problem-solv ing component of the Kernel 13

2.2 External language capabil it ies of the Kernel 16

2.3 Bui lding productions and the interface to the TE 18

2.4 Discussion of the Kernel design , 19

3 Sample System Behavior , . . k 19

4 Conc lus ions . 2 3

5 Re f e r ences 2 7

5.1 Footnotes 2 8

»

Hawai i

An Instructable Production System: Basic Design Issues #l.

Michael D. Rychener and Al len Newell

Department of Computer Science

Carnegie-Mel lon University

Pittsburgh, PA 15213

Abs t r a c t . The full advantages of the incremental propert ies of product ion systems have

ye t to be exp lo i ted on a large scale. A promising vehicle for this is the task of ins t ruc t ing

a s y s t em to so lve problems in a complex domain. For this, it is important to exp re s s the

ins t ruc t i on in a language similar to natural language and without detai led knowledge of the

inner s t ruc tu re of the system. Instruction and close interaction with the sys tem as it

b ehave s are p r e f e r r ed over a longer feedback loop with more independent learn ing by the

sys t em. The domain is initially an abstract job shop. The beginning sys tem has

capab i l i t i es for solv ing problems, processing language building product ions, and in te rac t ing

w i t h the task environment. All parts of the system are subject to instruct ion. The main

p rob l em-so l v i ng strategy, which permeates all four system components, is based on

means -ends analysis and goal-subgoal search. This is coupled wi th an expl ic i t

r ep r e sen t a t i on of contro l knowledge. The system's behavior so far is res t r i c ted to s imple

env i ronmenta l manipulations, a number of which must be taught be fore more complex tasks

can be done.

1. Instruction Tasks and Large Production Systems

1

Hawai i Instruction Tasks and Large Product ion Systems

1.1. Int roduct ion and overv iew

Th is paper repor ts the beginnings of a system-bui lding project. The aim is to bu i ld

a la rge , genera l l y intell igent system by gradual instruction start ing from a small init ial

s y s t em. At present , the large system is still in the future. This descr ipt ion is l imited to

de s c r i b i ng a promis ing initial system, along with the rationale for be l iev ing it has

s ign i f i cant potent ia l for further work. Likewise, the task domain of the eventua l sys tem is

not ye t determined, though there is an initial domain.

. P roduc t i on systems are the system architecture most consonant w i th the p ro jec t ' s

aims. The i r basic condit ion-act ion form, along with the global and open nature of the i r

ac t ion , indicate their usefulness for a task involving incremental growth, r e cogn i t i on -based

p r ob l em so lv ing, respons iveness to unexpected conditions, and other attr ibutes d iscussed,

b e l ow . The initial task domain is based on the problem of scheduling a job shop. Th is has

unusua l fea tures that allow tests of basic instruction issues, part icular ly a w ide range of

tasks w i th s imp ly-produced variants. Thus the potential exists for instruct ing the s y s t em

o n one var iant, and then introducing perturbations to which it must dynamical ly adjust;

e vok i ng the need for further instruction. There are several constra ints on what

i ns t ruc t i on , is and on what the instructors can know about the internal content of the

s y s t em.

The remainder of this sect ion discusses in more detail the basic task and sy s t em

i ssues , and introduces a suitable production system architecture. Sect ion 2 d i scusses the

ra t iona le for our approach to building the initial system, cal led the Kerne l . The Kerne l

embod i e s a set of assumptions about problem solving, language use, the part icu lar task,

and augmentat ion. Sect ion 3 presents an instruction protocol that the sys tem has

p e r f o rmed . Sect ion 4 summarizes our current status.

Hawai i Instruction Tasks and Large Product ion Systems

3

1.2. Bu i ld ing a large product ion system

P roduc t i on systems (abbreviated "PSs") have a brief but i l lustrious h i s to ry w i th in

art i f i c ia l inte l l igence (AI) and cognitive psychology. For general background, the reader is

r e f e r r e d to [5], [10] and [12]. There are four architectural components of the k ind of PS

u s ed he re : product ion memory, working memory, recognize-act cyc le, and conf l i c t

r e so l u t i on pr inc ip les . Act ion arises from the system as a result of condit ions (l e f t -hand

s ides) of product ions being recognized true of the current work ing memory state. T h e

recogn i t i on leads to the performance of associated actions (r ight-hand sides). Th is is the

bas i c recogn i ze-ac t step, except that in general the conflict resolut ion pr inc ip les must be

app l i ed to dist inguish be tween productions whose conditions are s imultaneously t rue ,

making a se lect ion be fore actions are actually performed. The per formance of act ions

resu l t s in a new work ing memory state, and the recognize-act step is repeated.

We have chosen PSs for our instructable system for a number of reasons. A l l

p roduc t i ons are sensit ive to a single working memory, with no contro l o rgan i za t i on

imposed on them, and with all necessary control achieved by goals and other data

conven t i ons wi th in work ing memory. In practice, productions tend to be small (only a f e w

cond i t i ons and actions) and relatively independent of each other. Thus they are at t ract ive

w h e r e s t ruc tu re is to be added gradually and incrementally. Their feasib i l i ty, powe r ,

t r anspa rency , f lexibi l i ty, and conciseness has been shown empirical ly by implement ing

we l l - unde r s t o od A l systems [13]. The importance of having actions cond i t ioned on the

r e cogn i t i on of aspects of a global state is central. Actions are not evoked d i rec t l y b y

o the r act ions, but are per formed whenever the appropr iate condit ions emerge. Thus

in te l l igence is d is t r ibuted rather than concentrated in a complex control execut ive or o ther

o r ches t r a t i ng mechanism. Since intell igence requires the ability to respond to important

Hawai i Instruction Tasks and Large Product ion Systems

4

a spec t s of complex states, the high degree of cond i t iona l ly of action in PSs appears to

have merit.

In bui ld ing the system, the PS architecture is used according to spec i f ic convent ions .

A l l l ong- te rm knowledge is kept as productions, and working memory is used exc lus i ve l y

fo r sho r t - t e rm, dynamic state. This is in contrast to a possible v i ew of work ing memory as

a l ong- te rm database, wi th "facts" stored in it, to be manipulated by "p rocedures " c o d e d as

p roduc t i ons . Though work ing memory may become large, our convent ion is., t o - s t o r e as

p roduc t i ons such database- l ike things as facts about objects in the wor l d , re la t iona l

s t r u c tu r e s {semantic networks), e t c

A large intel l igent system of the sort envis ioned places new demands on PSs and on

sys tem-bu i l d i ng capabi l i t ies in general. Building such systems is interest ing in its o w n

r ight , ra is ing issues of representat ion accommodation, and a whole range of act iv i t ies

assoc ia ted w i th intel l igence [9, see also 1]. To study many of these issues f ru i t fu l ly , as

many have noted, an uncommonly large-scale knowledge base is necessary. F rom a pu r e

PS r e s ea r ch standpoint, building a large system (on the order of severa l t housand

p roduc t i ons) , espec ia l ly including a rich diversity of knowledge, al lows us to tes t

h ypo t he s e s about PS eff ic iency openness, modularity, automatic augmentat ion,

r ep resen ta t i ona l f lexibi l i ty, and feasibil ity. The system is to develop, eventual ly , past the

cu r r en t state of the art in AI.

1.3. T he abstract job shop task

Severa l cr i ter ia are essential to our choice of an initial task for an ins t ruc tab le

s y s t em. The task domain should be rich in problems of suff icient chal lenge to r equ i r e

i ns t ruc t i on it should be amenable to the instructional mode (see Sect ion 1.4); and it

s hou l d not be amenable to a general solution mechanism, which, once const ruc ted , w o u l d

Hawai i Instruction Tasks and Large Product ion Systems

5

make fu r ther instruct ion unnecessary. Among the general task areas that might be

a pp r op r i a t e are: a tutor in some domain, an intel l igence-test taker, an automatic

p rogramming system, and the higher, cognitive levels of an image understanding sys tem.

W e have chosen for the time being a toy task, the abstract job shop (AJS). The job shop

has as its ob jec t ive to produce objects with speci f ied des i red proper t ies f rom r aw

mater ia ls accord ing to some schedule. The shop contains stacks of materials and part ia l

p r oduc t s , machines that must be started with explicit commands, and means for

t r anspo r t i ng objects from one place to another within the shop. The detai ls of the

par t i cu la r implementation of this idea are given in Section 1.5. This toy task has a

number of c lose analogs that are potential applications of any useful techn iques

d e v e l o p e d : rea l -wor ld product ion scheduling, the general problem of funct ional des ign ,

s chedu l i ng in computer operat ing systems, and coding computer programs (to name just a

f ew) . It also contains within it the possibi l ity of exploring the full range of AI tasks k nown

as the " toy b locks wor ld . "

If all goes we l l , the AJS task has attributes that are the extra bonus for immediate

pu r po se s . A JS has an unusual number of variants, including the basic task of p roduc i ng

d e s i r e d ob jec ts , the allocation of scarce resources, advanced kinds of p lanning, and

p r oduc t i o n under time constraints. After the system has. been instructed in a number of

bas i c var iants , perturbat ions to the tasks and to the environment (the job shop) can pose

major d i f f i cu l t ies for the system. Among these perturbat ions are: changes in the p r o f i t -

ob j e c t i v e funct ion for var ious mixes of outputs, spoilage of materials, e r ro r in machines,

acc idents in moving objects, additional time constraints and last-minute changes in o rde r s .

T h e d i f f i cu l t ies of the basic task should preclude any advance planning on the part of the

ins t ruc to r to have the system respond graceful ly to such basic task changes. Thus, the

Hawai i Instruction Tasks and Large Product ion Systems

6

sys tem ' s behav ior wi l l be interesting, whether it can adjust easi ly or not. T h e

e f f e c t i v enes s of the ent ire approach, including the use of PSs, wil l be measured b y the

adequacy of the system's behavior over a set of such perturbat ions.

1.4. The instruct ion mode

Pos ing the task as one of growing a large system through instruct ion i n t roduces

addi t iona l issues. Some of these might seem irrelevant to the main aims, but o the rs are

d i r e c t e d towards important questions with respect to the study of the rep resen ta t i on and

use of know ledge . The fo l lowing attempts to justify this third major concern , ins t ruc t ion ,

w h i c h is in addit ion to the concerns with building a general ly intell igent system and us ing

PSs as a basis.

The instruct ion mode used here forces the automatic encoding of know ledge as

p roduc t i ons . This al lows the verif ication of essential propert ies of. PSs, part i cu lar ly those

dea l i ng w i th the independence or modularity of the knowledge in the PS. If the PS w e r e

augmented by simply composing and adding Ps, there would still be a poss ib i l i ty for the

s y s t em to be ve r y intr icately contr ived, with implicit global coordinat ion of p roduc t i on

ac t i on sequences . A language of instruction is used that states each new item of

k now l edge in a human-readable, plausibly independent form, with no re fe rence to in terna l

s t r u c t u r e .

Instruct ion takes place under the fol lowing constraints:

1. The instructor (Ins) can see what the system (IPS, Instructable PS) is do ing in

the environment, and can communicate with IPS, but cannot examine the in terna l

s t ruc ture of the system direct ly.

2. Interact ion be tween Ins and IPS is in an external language, analogous to natura l

language, rather than in internal representations, either of work ing memory or

p roduct ion memory forms.

Hawai i Instruction Tasks and Large Product ion Systems

7

3. T h e init iative for interaction is mixed. IPS's behavior can be in te r rup ted b y Ins

at any time, for correct ive instruction or interrogation. L ikewise, IPS may

communicate to Ins and interrupt him.

4. Instruct ion may be about any topic within the total environment: the s t ruc tu re of

the environment, how to perform a task, the language of communicat ion, the

detec t ion and correct ion of errors, how to learn about the env i ronment, etc .

A lso, the instruct ion may be at whatever level Ins wishes or can ach ieve:

spec i f i c behavior sequences, gênerai methods, abstract pr inc ip les, models,

theor ies , etc,

5. Knowledge gained through instruction accumulates over the life of the sys tem.

Having the system be instructable adds to its capabil it ies as a total man-computer

i n te rac t i ve system, so that in ultimate real applications the performance of the combinat ion

s y s t em can be expec ted to be higher than either participant alone. As a prac t i ca l

measure , making the system instructable also reduces the possibi l i ty of internal cod ing

conven t i ons that wou ld prohibit multiple instructors from understanding the ex i s t ing

s y s t em. That is, all communication is forced to be in a language of instruct ion, wh i ch may

be more eas i ly shared than program conventions. If instructabi l ity can be ach ieved, it

s hou l d be wo r t h the extra initial effort.

The instruct ion mode can be contrasted with a learning mode in wh ich the sys tem is

set tasks and then requ i red to learn on its own from the environment. Here Ins g ives

incomp le te or' approximate instructions and watches very closely for oppor tun i t i es to

i n te r rup t IPS and ref ine them. It is "incomplete or approximate instruct ions" because too

much p re -p l ann ing by Ins is bound to be futile, given Ins's imperfect knowledge of IPS's

in te rna l s t ruc ture , and given a task suff iciently complex to make antic ipation di f f icult and

Hawai i Instruction Tasks and Large Product ion Systems

8

i ne f f e c t i ve . Wi th Ins watching IPS so closely, the need for learning by the sys tem on its

o w n is minimized. But such independent learning is not excluded. It can eventua l ly ar ise

in the w a y IPS interacts with and gathers knowledge from the-task env i ronment, in the

w a y IPS uses the external language, and in other knowledge acquisit ion mechanisms.

P r e sumab l y the best strategies of instruction and performance require that IPS be ab le to

l e a rn for itself about a changing environment. The sequence of novel but re la ted tasks is

i n t ended in part to arouse this. Nor does the futil ity of pre-p lanning rule out g iv ing IPS

gene ra l methods, anticipating certain types of diff iculties. Such general methods, h oweve r ,

a re bound to have incompleteness similar to that of specif ic ones.

1.5. The product ion system architecture and task environment

Be f o r e detai l ing the PS architecture used for IPS, a few dist inguishing fea tu res of

our overa l l PS approach are pointed out. The way that action deve lops f rom the PS

d i f f e r s f rom some others in being a forward recognit ion-dr iven cyc le , rather than a

backward-cha in ing , goal-dr iven cycle, as in the MYCIN system [4]. The sys tem is

c on t r o l l ed by signals and symbol structures in the global work ing memory, ca l led goa ls ,

w h i c h are inc luded expl ic it ly in production conditions when appropr iate. This is in cont ras t

to M Y C I N and to DENDRAL [3]. The PS architecture is used as the total sys tem, ra ther

than hav ing it be one of a number of procedural components. Other sys tems have

e m p l o y e d addit ional, non-PS procedures for such activities as modifying and ana lyz ing the

PS . Wo rk i ng memory is arbitrary list structures in an extensive database- l ike s t ruc tu re ,

w i t h a vast major i ty of items explicit ly stored rather than represented as computab le

p red i ca tes . Product ion conditions make use of general pattern-matching capabi l i t ies, as is

common in other recent AI languages [2]. Though the general archi tecture de r i ves f r om

c o n c e r n for human cognit ion [10, 12], little consideration is g iven to psycho log i ca l

cons t ra in t s .

Hawai i Instruction Tasks and Large Product ion Systems

The part icular architecture and language used for IPS is cal led OPS (Official, at least

loca l ly , PS) [7] and is an iteration on earlier designs [11, 13]. Product ion memory in OPS

is an uns t ruc tured , unordered set of productions. Working memory is l i kewise an

u n o r d e r e d set of list structures, without duplications. It is bounded in s ize, by de le t ing

e lements whose last assert ion occurred more than some arbi trary number of s y s t em

act ions in the past (current ly 300). The recognize-act cycle is: (1) form a conf l ict set of

p roduc t i ons whose condit ions are current ly satisfied; (2) apply the confl ict reso lu t i on

p r inc ip l es to select a unique element, from the conflict set; and (3) execute the act ions of

the se l e c ted product ion.

For conf l ict resolut ion (the most distinctive component of OPS) the fo l l ow ing ru les

app l y , in order . These rules are experimental in nature, and are expec ted to change as

unders tand ing of instructabi l i ty increases [8].

1. Refract ion: a product ion is not f ired twice on the same data (instantiat ion of a

pat tern) unless some part of that data has been re- inser ted into wo r k i ng

memory since the previous firing. This prevents most infinite loops and o the r

use less repet i t ions.

2. Lex icographic recency: the production using the most recent ly inser ted e lements

of work ing memory is pre ferred. "Most recent" is determined lex icographica l ly ,

i.e., if there is a tie on the most recent element used, the next-most recent

e lements are compared, and so on; use of any element is cons idered more recent

than using none, e.g., (A X) is ordered before (A). Recency order d iscr iminates

at the level of individual actions within productions, rather than taking all the

act ions per fo rmed by a production to be of equal recency. This rule s e r ve s to

focus the attention of the system very strongly on more recent events, a l low ing

cur rent goals to go to completion before losing control.

Hawai i , Instruction Tasks and Large Product ion Systems

10

3. Spec ia l case: a product ion is pre fer red that has more condit ions, inc lud ing

negat ive condit ions which do not match to specif ic memory elements. Mos t of

the meaning of having one production be a special case of another is c a p t u r ed

by ru le 2, since a special case that uses more data than a genera l one is

lex icographica l ly more recent. Preferr ing special cases to genera l ones f o l l ows

the expectat ion that a specif ic method is more appropr iate to a s i tuat ion than a

more genera l one. Also, this is consonant with a strategy of augmentat ion b y

prov id ing more discriminative rules.

4. P roduc t ion recency: the more recently created product ion is p r e f e r r ed . Th is

a l lows identical ly condit ioned rules (with perhaps contrad ictory act ions) to be

d ist inguished and assumes that a more recent instruction is more cor rec t .

5. A rb i t r a ry : a select ion is made among multiple matches to the same p roduc t i on

us ing the same data.

A s a matter of pract ice, conflict resolution rarely requires more than the first two ru les.

OPS has severa l other distinguishing features. The pattern matching a l lows a l imited

f o rm of segment var iables namely, a variable may match an indef in i te-s ized tail of a l ist.

T h e Pa t t e r n -And (Pand) feature allows an expression to be matched to severa l pa t te rns ,

and then bound to a var iable. OPS allows complex negative condit ions to be spec i f i ed , fo r

ins tance , inc luding the negation of an entire production condit ion with in the cond i t ion of

ano ther product ion . Product ions in OPS are compiled into an eff ic ient network form, ra ther

than i n t e rp re ted [6]. OPS has an operator for adding productions to product ion memory

w h i c h have been formed (in terms of an appropriate data structure) in work ing memory;

s u ch addit ions are done direct ly into the compiled network dur ing the runtime c y c l e

w i thou t excess ive cost.

Hawai i Instruction Tasks and Large Product ion Systems

IW6

IW98

IW72

I

w i t h the internal representat ion,

L I B : (NAME L 1 5

TYPE STACK

MEMBER TE-ARRAY

POS IT ION (2 3)

COMPOSITION (U6 W98 U72))

T h e object W98 might be def ined as:

W98: (NAME W98

TYPE WOOD

MEMBER L 1 5

POS I T ION (2)

SHAPE TRIANGULAR

LENGTH 5

WIDTH 7

COLOR RED)

Ob jec t s are potent ia l ly hierarchical, wi th values of attr ibutes composed of other ob jec t s .

Re la t ions b e tween posit ions of the TE and objects can be determined by TE opera to r s .

T h e ope ra to r s on the TE are:

1. V i ew: the at i r ibute-value pairs for an object or location appear in wo r k i ng

memory.

11

A subsys tem of OPS provides the task environment (TE) for instruct ion. The T E is

r e p r e s e n t e d as an array of discrete locations, within which objects can be p laced, p lus a

set of " pe r cep tua l " and "motor" operators. Each location and object is r ep re sen ted as a

l ist of pa i rs in attr ibute-value form, with certain attributes g iven special in te rpre ta t ions .

Fo r example , the externa! display of a location in the TE (L15), wou ld be

L 1 5 I — — —

Hawai i Instruction Tasks and Large Product ion Systems

2. The Initial Instructabie System

The instructabie system is initialized with a relat ively small set of hand - coded

p roduc t i ons ca l led the Kernel. The Kernel design includes a minimal'set of components that

c an suppo r t all of .the present instruction goals and provide an interface to the TE . The

componen t s at present achieve minimal capabil it ies for: (1) solv ing prob lems, (2)

p r o ce s s i ng language, (3) building productions, and (4) interacting with the TE.

A number of design issues influenced the Kernel. These der ive f rom a w i sh to

mainta in easy instructabi l i ty within the rules laid out above for the instruct ional mode.

1. Every th ing in the system is potentially instructabie and improvable. Th i s

inc ludes especia l ly the components of the Kerrtel and the results of ins t ruc t ion

that the Kernel produces. The Kernel itself may eventual ly be s upe r s eded b y

product ions gained through instruction, and commitments to techn iques and

representa t ions in the Kernel may eventual ly be altered.

12

2. Scan: the TE is searched for an object satisfying a pattern, and if it is f ound , it

is V i ewed .

3. T rans: an object is t ransferred from one location to another wi th in the TE .

4. Start: a machine in the TE is started, consuming a set of inputs (spec i f i ed as

va lues of INPUT attribute) and producing a set of outputs (spec i f ied as va lues of

OUTPUT) . The machine operates once, not continuously.

5. Compare: two attrjbute-value pairs are compared, with results depend ing on the

va lues compared. For instance, if the values are pairs of numbers, as f o r

POSITION, the result is a spatial relation, amounting to, say, "northwest ."

Hawai i The Initial Instructable System

13

2. The system should be instructable without detai led knowledge of in terna l

s t ruc tures . Thus the Kernel design must include some capabi l i ty for mapp ing

f rom external to internal forms, and vice versa.

3. Knowledge should not be globally coordinated or pre-p lanned, but shou ld

deve l op in locally plausible, concrete increments. This part icu lar ly a f fects the

form of problem-solv ing methods and language processing techniques.

A. The construct ion of the Kernel should not embody a commitment to focus ing on a

part icu lar kind of problem, e.g., language, but should be amenable to ins t ruc t ion

in a number of problem areas.

2.1. The prob lem-so lv ing component of the Kernel

The Kerne l has tv/o general forms, of problem-solving unit, co r respond ing to two

uses of the basic condit ion-act ion form of productions. The first recogn izes a goal and

p r o p o s e s means to achieve it:

goal & condit ions => possible means.

The means to achieving a goal can be one or more subgoals, direct actions on the TE, or

r eques t s to Ins.

The second form of product ion serves as a test or recognizer:

goal & condit ions => goal success or failure or consequences.

The g r ow th phi losophy for the IPS revolves around means-ends analys is [12].

Know l edge added to the system forms a conceptual network of connect ions b e tween goa ls ,

means to achiev ing them, and tests on the results of applications of means. Goals

cons t i tu te the most meaningful port ion of the dynamic state of the system (work ing

memory) , whi le means and tests are permanent productions added gradual ly t h rough

ins t ruc t i on and learning. It is important that this network of means and ends is de f i ned at

Hawai i The Initial Instructabie System

14

the leve l of individual product ions rather than, say, at some higher level of o rgan i za t i on

w i t h p roduc t ions used to code an interpret ive mechanism for the network. For the means -

ends s t ruc tu re must be applicable to creating, shaping, and correct ing all aspects of the

behav i o r of the system, down to the finest detail.

Augmentat ion of networks of means-ends structures leads to a f lex ib le but h igh ly

ine f f i c ient computat ional structure. Strategies for convert ing or compil ing these s t r u c tu re s

a re a necessa ry component of the growth phi losophy outl ined here, wh ich howeve r w i l l

not be d i s cussed further.

T w o basic convent ions built into the system help to make the basic p roduc t i on f o rm

adequate for genera l problem solving: the lexicographic event order confl ict r eso lu t i on

ru le and a taxonomy of PS control, represented in a particular way. Recall that the

conf l i c t reso lut ion pr inciple orders production firings based on the relat ive recency of da ta

u sed . Th is g ives a depth-f i rst emphasis, focusing on recent ly p roposed goals be f o r e o lde r

one s and a l lowing successes to propagate in order ly fashion. It does not p re c l ude ,

h oweve r , having emerging conditions unexpectedly satisfy an older goal and lead to act ion

qu i te dist inct f rom what was the immediately preceding focus.

Whi le the confl ict resolut ion principle is built into the PS archi tecture, the Kerne l ' s

know l edge of contro l is by way of modifier tags that appear in most work ing memory

e lements . The current system of representat ion is based on an analysis of past PSs [13] .

T h e bas ic representa t ion form is:

(Primary Secondary Modif ier Body)

A p r imary is a v e r b or main data structure name, while a secondary is an object of a v e r b ,

an a t t r ibute of a- structure, or the name of a substructure. Some examples of p r i m a r y -

s e c onda r y pa irs: examine object, interrogate value, object color, and phrase bounda ry .

Hawai i The Initial Instructable System

15

T h e modi f ier is a list w i th posit ions occupied by values from prede f ined c lasses: goa l

va lues , data values, process values, truth values, and degrees of complet ion. By combin ing

va lues f rom var ious classes, a large number of meanings can be assumed by a modi f ier,

w h i c h in turn affects the interpretat ion by productions of the representat iona l unit

con ta in ing it.

Space does no.t permit giving the entire modifier system, but the main ent i t ies that

are u sed in the Kernel are as fol lows (examples of actual representat ions appear in

Sec t i on 3). The most important goal value indicates "Want", and marks units that are

c u r r en t l y des i red goals. Other goal values indicate "Old", "Don't-want", and "Neu t r a l 0 .

Evoca t i on , intermediate control , and results of processes employ goal values in combinat ion

w i t h p ro ces s and data values: "Activate", "Iterate", "Hold", "Result", and "Cont inue". T r u t h

va lues are "True", "False", and "Unknown".

Mod i f i e r values are made coherent by certain establ ished knowledge about con t ro l .

Fo r instance, a process is usually initiated by a "Want Act ivate" signal, wh ich then becomes

"Want Cont inue" , if it has several steps to be performed. The steps are indicated by us ing

d e g r e e s of complet ion, which are simply ordinals. When the process is s tar ted, the "Want

A c t i v a t e " becomes "Old Activate", but the content of the initiation signal itself is sti l l

ava i lab le , shou ld it become necessary later to examine it. Similarly, contro l for a p r o ce s s

can go into a dormant "Hold" status until some pre-set condit ion arises, w h e r e u p o n it

r e v e r t s to its former status. When a process finishes, it may produce an item w i t h

modi f ier "Neutra l Result". •

The use of these explicit modifiers in the basic representat ional units makes the

behav i o r of the system open for detailed self-examination, when combined wi th the bas ic

o p e n n e s s of work ing memory. Such a simple scheme for managing contro l know ledge is

Hawai i . The Initial Instructable System

16

ba s ed on the ease of control in PSs general ly, and its feasibi l i ty has been t e s t ed

ex t ens i ve l y on typica l AI tasks {13], though its suitabil ity for the present inst ruct ion task

has yet to be ver i f i ed in large-scale practice. As shown below, control knowledge can be

eas i l y e xp r e s sed in the external language by using key phrases cor respond ing to modi f ier

var ian ts . The avai lable knowledge and basis of control can similarly be expanded.

The Kerne l itself is a problem solver (in the domains of language, bu i ld ing

p roduc t i ons , etc.), and is wr i t ten using the conventions just sketched. But it is also the

p r oduce r of programs embodying the same conventions. Thus, initial ins t ruct ion is

c ons t r a i ned to be c lose to such forms. Later on, as IPS becomes more soph i s t i ca ted ,

in terna l prob lem-so lv ing method forms should be producible from instruct ion requ i r i ng

more di f f icult mappings. Incidentally, the Kernel itself is simple enough that a

s t r a i gh t f o rwa rd instruct ion sequence should be able to reproduce it.

2.2. Externa l language capabil it ies of the Kernel

The Kerne l is built to understand a limited external language. The language

capab i l i t y has three aims: to make interactions with IPS readable b y the instructors and b y

o the r AI researchers; to make the interactions occur in something other than a PS

language; and to encode a number of representational conventions, so that ins t ructors can

r e f e r to the same internal entity in a variety of ways - i.e., a mapping or ass imi lat ion

fac i l i ty , re lat ing external to internal structures. To keep the Kernel simple, an init ial

l anguage w i th rather r igid format has been chosen.

Language express ions are processed primarily in a bottom-up fashion, w i th on ly a

f e w k e ywo r d s having specif ic meanings to start with. That is, a keyword is r e cogn i zed and

c lass i f i ed , and a number of the actions associated with it (its semantics) are pe r f o rmed . A

de fau l t act ion is taken for words with no known classif ication. Occasional ly, a k e y w o r d

Hawai i The Initial Instructable System

17

se t s up ant ic ipat ions for actions later in the input, giving the process ing a part ia l t o p -

d o w n or ientat ion. The default action for unclassified words is easi ly superseded , us ing the

spec i a l - case conf l ict resolut ion principle. Along with the careful design of the Kerne l to

a l l ow all of its goals and subgoals to be discussed in the external language, this use of

spec ia l cases forms the basis for extensibil ity. A similar bottom-up approach, though not

c o d e d s t r i c t ly incremental ly, has been used successful ly in a toy blocks domain [13].

The main form in the language is an image of a product ion or of a c lose ly re l a ted set

of p roduc t ions . The form starts with "To", with an express ion of a condit ion fo l l ow ing ,

t hen a sequence of actions. "To" is taken as an abbreviat ion of "If you want to". Fo r

examp le ,

To examine an object in some location t do v iew that location t

In this example, the keywords have been italicized. The other words are g iven in an

o r d e r i n g that co r responds to the basic pr imary-secondary form d iscussed above. Thus

"examine ob jec t " is the essence of a representational unit forming the goal in a c ond i t i on -

s ide of a p roduct ion to be built. Most of the keywords not shown deal w i th the fo rmat ion

of con junct ions and sequences of units, so that product ions can test more complex

cond i t i ons and per fo rm more complex actions: "and", "then", and "if". "Some", "that", and a

f e w o ther keywo rd s allow the specif ication of match variables, as opposed to constants .

Deta i l ed examples of the use of the language in a simple instruction protoco l are s h own in

the f o l l ow ing sect ion.

Ano the r main keyword in the language is "Next". "Next" is fo l lowed by text v e r y

much l ike the "To " clause above. This allows a process for achieving some goal to be

e x p r e s s e d as a set of c losely related productions, related by being cont inuat ions or s t eps

in the common process . That is, the "To" clause of an instruction signals the main or f i rs t

Hawai i The Initial Instructable System

s t ep in the so lut ion of some goal (the phrase immediately fo l lowing the "To"). When "Nex t "

c l auses fo l l ow the. "To" clause, they give succeeding steps in the p rocess , wh i c h

p r e sumab l y test the outcome of the first step and take further actions accord ing ly. Some

f o rm of the main goal appears in all of the productions constructed with in such a set of

c l auses . Th is loose content-based association of productions is cal led a module, t hough

no th ing s t ructura l in the architecture distinguishes it. The product ions in such a module

s ha r e interna l assumptions, since they arise from a contiguous instruct ion sequence . T h e

module is known to other modules usually only through its main goal unit, wh i ch is its

e vok i ng condi t ion. To connect this with the discussion on means-ends analysis above , the

language a l lows the local (intra-module) sharing of assumptions about means to ach ieve a

goa l .

2.3. Bu i ld ing product ions and the interface to the TE

The Kernel 's third and fourth components are minimal: the system's abi l i t ies to bu i ld

p roduc t i ons and to manipulate the TE effect ively are expected to deve lop as sy s t em

behav i o r deve lops and as considerations arise from the task that vary f rom our p resen t

p re concep t i ons .

Bas ica l ly only simple, direct ways exist for tell ing IPS what to s tore in p roduc t i on

memory and what to do in the TE. Both capabilities rely on the c loseness of ex te rna l

l anguage express ions to internal forms. The main sentence form is an image of a

p roduc t i on , so the operat ion needed to build an actual product ion is a simple i terat ion ove r

a list of units extracted from an input string. The . cu r r en t s t rategy for add ing to

p r oduc t i on memory treats the memory as an unordered set. To spec i fy a TE opera to r , the

ins t ruc to r uses the keyword "do" and fol lows it with a phrase in the p roper form for the

ope r a t o r . The expandabi l i ty of both components rests on the basic openness of the i r

18

Hawai i The Initial Instructable System

3. Sample System Behavior

The Kerne l starts with essential ly no behavioral capabil ity wi th respect to the TE .

Thus , it must be instructed in some basic TE tasks to build up a network of goals for do ing

more s igni f icant tasks. A sequence of progress ively more complex tasks has b e e n

e s t ab l i s hed to bui ld complex abilities from the simple ones in the Kernel.

The f irst task attempted is to instruct IPS to look at the top of a stack of ob jec t s in

19

Ke rne l representa t ion , rather than on specif ic structural design. The simple goals by

w h i c h they are present ly achieved are expressed using a small set of pr imar ies and

seconda r i e s , along wi th a few modifier tags to indicate partial results and i terat ions.

2 A Discuss ion of the Kernel design

T o recap the basic strategy in building the Kernel, focus is p laced on a pr imit ive

l anguage capabi l i ty embodying definite problem-solving and goal search methods. Th is is

not because language issues are most important, but because language seems to p rov i de

the shor tes t path to easier instruction, to flexibility, and to the encoding of basic p r o b l e m -

so l v i ng method assumptions. That is, an instructable language system leaves a large

amount of openness for further instruction without precluding desirable opt ions. Our

e xpe r i e n c e over the short history of our attempts, cover ing a dozen or. so initial abor t i ve

Kerne l s , indicates that the best strategy is to rely more on spontaneous ad hoc methods

ar i s ing f rom interact ions than on initial knowledge about aspects of prob lem so lv ing. Th is

i nsu res that important aspects of the system relating to the prob lem-so lv ing task are

themse lves instructable, rather than "cast in concrete."

Hawai i .. Sample System Behavior

20

a T E locat ion. This wi l l involve Viewing the location (in the TE sense of V i ew de f i n ed

above) , check ing to see that there is in fact a stack of objects there, and then f ind ing the

t op of that stack and V iewing it. Instructing it to achieve these goals g ives it some

mater ia l to wo rk w i th on tasks that fol low this first one, which include looking at ob j e c t s

o the r than the top one in a stack, determining the type of an object (which requ i res that it

b e l ooked at f i rst), and comparing the types of two objects. More complex tasks inc lude

r ea r r ang i ng ob jec ts and determining the requirements and ef fects of machines in the TE .

The instruct ion sequence to be given now consists first of giving IPS a t op - l e ve l

subgoa l sequence to achieve the goal. Then a concrete task is given, involv ing that goa l ,

so that its behav ior gives rise to subgoals that it can't solve, at wh ich points fu r the r

i ns t ruc t i on is g iven.

IPS starts by asking for input, and it is given the fol lowing:

To examine an object the top [n some location x want do v iew that locat ion then

want test the status of_ the. value of. that location composit ion t Next _

In the text, indicates that more is to come below; it doesn't appear in actual input.

Note that the language is ve ry primitive in expression, a consequence of our des i re to

inc lude on ly the minimum necessary for communication of basic ideas, thus exc lud ing

famil iar l inguist ic e laborat ions.

T h e system uses the word "next" to act as a temporary boundary for the input, and

fo rms the fo l lowing product ion before continuing to scan further.

R l (e xam ine o b j e c t (want a c t i v a t e) t o p i n ^ l o c a t i o n) 8 = c l

— > (v i e w . T E = l o c a t i o n (want a c t i v a t e))

(t e s t s t a t u s (want a c t i v a t e) v a l u e ^ l o c a t i o n c o m p o s i t i o n)

(e xam ine o b j e c t (want c o n t i n u e 1) t o p i n ^ l o c a t i o n)

(e xam ine o b j e c t (o l d a c t i v a t e) t o p i n » l o c a t i o n) (d e l e t e = c l)

T h e OPS notat ion for product ions gives the name, R l , fo l lowed by the cond i t ion s ide ,

Hawai i Sample System Behavior

21

f o l l o w e d by " - -> " , fo l lowed by the action side, and terminated by ";". " - " is used to mark

va r i ab l e s as in " l o c a t i o n " , which makes "location" a variable. "#" stands for Pa t t e rn -and ,

w h i c h a l lows two match express ions to use the same working memory express ion . In R l ,

"$ " is used to b ind the single condit ion element and the variable c l to a s ingle wo r k i ng

memory element. A product ion is executed as a result of matching its condi t ion, wh i ch

resu l t s in b inding its variables to elements or subelements of work ing memory. F i r ing the

p r oduc t i on then results in asserting or deleting working memory elements accord ing to the

ac t i on-s ide forms ("assert" is implicit, "delete", explicit), in such a way that the lef tmost

ac t ion becomes the most recent working memory element,, for purposes of conf l i c t

r eso lu t i on .

The phrase be tween "To" and the first "," has been formed into the condi t ion s ide of

R l . The mapping of text to representational unit is direct, with the Kernel supp ly ing the

"want ac t iva te" modif ier and the "$ -cV\ which is used to delete the "want act ivate" fo rm

af ter it is conve r t ed to "old activate" at the end of the action side. "Direct mapp ing "

means that wo rds are added to a unit in. the same order as g iven in the text. The

rema inder of the text is converted to. a sequence of two representat ional units, the f i rst

t w o in the act ion side. This convers ion is also quite direct. These serve as subgoa ls , the

f i rs t of wh ich , v iew.TE, will be achieved by Kernel mechanisms, and the second, by fu r the r

ins t ruc t ion . The third action element is a signal that will stay in work ing memory unti l the

f i rs t and second action elements have been recognized and their consequences f o l l owed

up , at wh i ch time it wil l become most recent, and . productions using it wil l become

cand ida tes for f i r ing.

The f irst segment of the instruction has establ ished a topic for the ent i re sequence

up to the next ".", namely the goal of "examine object". The next segment of the

i ns t ruc t i on for this goal is:

Hawai i Sample System Behavior

22

Next if the result of test the status is non-empty is the value of that locat ion

composi t ion t want find the top of. the value of that location composi t ion » Else „ .

Th i s resu l ts in forming a second production, including as a condit ion the "want con t i nue "

unit f rom R l and a unit corresponding to the text between "if" and.",":

(test status (neutral result) non-empty value ^location composit ion)

The p roduc t i on tests the result of the second subgoal of R l (to test the status of the

compos i t i on attr ibute of the V iewed location) and proceeds with a further subgoa l (to f ind

the top of the composit ion list) if appropriate. To do the continuation, it inc ludes a "want

cont inue 2" unit w i th the form of the main topic.

The next phrase tells IPS what to do if another condit ion arises as a result of that

s e c ond R l subgoa l .

1^1 Else if the result o£ test the status is empty is the value of that locat ion

compos i t ion t tjie result g i examine the. object is failure t Next

Th i s f ragment g ives one of the possible results of the topic goal, which indicates a fa i lu re

(at p resent , in a non-informative way).

The next" segment forms a production to recognize the result of the " f ind t o p "

subgoa l , V i ew that result, and leave the name of the result in work ing memory (a "neutra l

r e su l t " fo rm similar to the one above).

Next jf the result of find the top is. some object t want do v iew that ob jec t

^ and the result of examine the object is that object .

The sys tem has now taken that instruction sequence and formed four p roduc t i ons .

It t hen awaits further input, which is the fol lowing:

T r y examine the object top in L23 ._

Th i s tel ls IPS to actually try to achieve an "examine object" goal for a part icu lar T E

Hawai i Sample System Behavior

4. Conclusions

The aim of this initial examination of the problem of an instructable PS has been to

mot ivate the start ing assumptions, to discuss some broad issues for PSs and for

i n s t ruc tab le systems, and to give some detail on where the project stands as a resu l t of

s e ve r a l des ign iterat ions.

A PS arch i tecture has been developed that builds on substantial expe r i ence w i t h

past arch i tec tures . Its conflict resolution scheme appears to be compat ib le w i t h

inc rementa l addit ive growth, and it essential ly abandons the use of static o rder ings of the

p roduc t i ons . A small kernel system of about 150 productions current ly exists, embody ing

an incrementa l approach to solving problems, processing language, represent ing know ledge

as p roduc t i ons , and interact ing with a toy environment. The system's p rob lem so lv ing

capab i l i t i es explo i t a form of knowledge that is natural for PSs, means-ends analysis. W i th

that, a taxonomy of some simple control mechanisms in PSs prov ides the sys tem w i th the

capab i l i t y to do complex tasks.

23

locat ion . It wou ld not get ve ry far before stopping, in need of further instruct ion to a l low

it to ach ieve the "test status" goal (the second goal in the action side of R l) . Ins

de te rm ines what the system is in need of (if he can't remember) by asking it, "What want

?", wh i c h IPS answers by finding its most recent "want"-modif ied unit. Instruct ion for the

" test s ta tus " goal can be given so that the system can achieve it d irect ly. That is, a s ing le

p r oduc t i on suf f i ces to per form the test and return a result, without further subgoa l s .

A f t e r that, it needs instruct ion on the "find top" goal, which can also be ach ieved d i rec t l y .

Hawai i Conclusions

The initial ingredients assembled seem ideally suited to attaining the incrementa l

g r o w t h of a complex understanding system. Experimentation w i th a sequence of

p r oge s s i v e l y more diff icult tasks will reveal whether this is the case. However , it may not

h a p p e n quick ly. Exper ience so far, expressed in a good dozen kernels, has s hown h o w

d i f f i cu l t it is to get the details right, even while the general features of the scheme ho ld

up ra ther we l l . Part ly the diff iculty is that our design intuitions imply a substant ia l

" k e r n e l " of capabi l i t ies in place, whereas it is necessary to g row (instruct) that " k e r ne l "

t h r ough a much leaner initial system, which is certainly highly atypical and c o u n t e r

intu i t ive in many ways . Any attempt to lay down this larger "kerne l" by an act of des i gn

(in the usual system-bui ld ing fashion) seems sure to create a beast that is un ins t ruc tab le

e x cep t a long l imited dimensions. Thus a regimen of iteration and back-track ing at pr imi t ive

l eve l s seems necessary .

One issue that has ar isen about the particular ingredients can serve to summar ize

and i l luminate the current state of understanding of the approach. If the ob se r vab l e

behav i o r of the PS is to be organized completely as a means-ends network, then what ro le

d o the p rope r t i e s of the PS architecture play? Wouldn't any other arch i tecture or bas i c

p rogramming sys tem do as well?

T o see the force of this, consider what makes means-ends analysis attract ive for the

i ns t ruc tab le - sys tem task. It permits simple addition to the exist ing sys tem, s ince

inc rements are made by attaching new (alternative) methods to exist ing goals, f rom wh i ch

o the r goa ls and methods may f ree ly branch. Its network of goals and methods can be

d r i v e n d o w n to any f ineness of processing detail, permitting the scheme to be u sed fo r

any p rocess ing . If care is taken initially, then all aspects of the system wil l be f o rmed as a

means -ends st ructure; hence, all aspects will be open to modif ication by fur ther means -

24

>• i i i mi m i i i I I i n n inn mi mi || mm if inn urn 1111111 ||
Hawai i Conclusions 3 flLjflz 0 0 5 7 1 t , E 5 T

ends const ruc t ion . To util ize such a scheme requires of the under ly ing programming

s y s t em (which const i tutes the operators and associated data structures through wh i ch the

means -ends net works) only that it be complete, have a fine enough gra in of act ion, and

p e r hap s be rather simply composable.

These p roper t i es constitute a significant fract ion of the claimed advantages of PSs .

What do PSs prov ide that is not already latent in an approach that focuses pu re l y o n

cons t ru c t i on of means-ends networks?-

Means -ends analysis dictates (hence provides) a structure of goals, methods, g o a l -

tes ts , ope ra to r s and operands (data structures). But it only provides funct ional ro les, not

the programming system. Subject to the conditions of f ineness of detail and comple teness ,

w e do not see that PSs have a striking advantage over other homogeneous a rch i tec tures

for rea l i z ing these processes in general.

In a per formance system the instances of these structures are p rov ided by the

s y s t em creator . In a learning system they must be provided by the system itself, and the

p r ope r t i e s of the architecture become relevant to how easy or hard that wi l l be. A n

ins t ruc tab le system, though it can shade into a programmed system espec ia l ly init ial ly, is

fundamenta l ly a learning system.

Without be ing exhaustive, some of the important functions to be pe r f o rmed in

l ea rn ing a means-ends structure are the detection of error and/or the oppor tun i t y fo r

l ea rn ing , the construct ion of hypothesized means-ends structures, their instal lat ion so as

to s upe r s ede se lec ted pre-exist ing structure, their validation and debugging, and a se cu re

env i ronment wi th in which learning experimentation can occur. Means-ends itself does he lp

on some of these functions, notably installation and (possibly) supersess ion, but does not

p r o v i d e he lp w i th most of them.

25

Hawai i Conclusions

26

PSs appear to be a useful architecture for a number of these aspects, though no

c la im can be made that it is especial ly perspicuous across the board. Detect ion, va l idat ion

and debugg ing seem to require wide-band access to the existing knowledge in the sy s t em

at all t imes, i.e., in a monitoring-l ike mode. This is distinctly a feature of PSs. A l though not

qu i te so obv ious , w ide-band access seems important also to the const ruct ion of n e w

hypo t h e s i z e d goals and methods. Successful modifications depend, not just on some f i xed

p r o c e d u r e for cor rect ing fai led goals, but on detecting and attending to highly va r i ous

f e a tu r e s of the environment and to equally various aspects of past exper i ence . The

p r ob l em of memory search to make contact with relevant but d isparate ly r e p r e s en t e d

e xpe r i e n ce is not so lved in PSs just by the recognit ion scheme, but the arch i tecture seems

a use fu l one for approaching the problem.

The extreme simplicity of the ultimate forms of both goal tests and method s teps in

PSs is p robab l y also important. They can consist simply of throwing together some

hope fu l l y re levant 'd is t inct ions on the environment as conditions along wi th some l i kew ise

hope fu l l y re levant actions, then adding the collection to the program memory w i thout

f u r the r ado. This is a fundamentally task-oriented operat ion, unencumbered by syntac t i c

ceremqoies- or other detai led knowledge. That the elementary form of funct iona l ly

re l evant addit ions can be so sftftple rests upon two other aspects that PSs seem to p rov i de

in some measure. The first is security, which is provided by all behavior in a PS be ing

e f f e c t i v e l y monitored (by the whole production memory). It can be brought under

i n t e rp re t i ve contro l at any time to dampen the prospects of "sudden death". The s e cond

aspec t is the re lated ability to program by debugging, i.e., by adding f ragments and

mod i fy ing the system later on the basis of se l f -observed behavior.

Our present assessment is that the ingredients will cooperate together in a mutual ly

