NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Insiructable Praduction System:
Basic.Design Issues
Michael D. Rychener and Allen Newell
May 1977
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

This paper has been submitted for presentation at a Workshop on Paﬂern—Directed
Inference Systems, chaired by D. A. Waterman and F. Hayes-Roth, Honolulu, May 23-27,
1977,

This research was supported in part by the Defense Advanced Research Projects Agency

under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research,

L/, PV %
v ol).?f/w

21

Haw aii _

Table of Contents

SECTION

1 Instructlon Tasks and Large F’roduchon Systems .
1.1 Introduction and overview e e e e
1.2 Building a large production system e e e e
1.3 . The abstract job shop task’ BT
1.4 The instruction mode .
15 The production system archltecture and task enwronment .

2 The Initial Instructable System

2.1 The problem- -solving component of the Kernel .

2.2 External language capabilities of the Kernel

2.3 Building productions and the interface to the TE

2.4 Discussion of the Kernei design . .
3 Sample System Behavior . ., Coe e e e
4 Conclusions , . , | e

5 References e
5.1 Footnotes

PAGE

WO D WN -

13
16
18
19

19
23

27
28

~Hawati

An Instructable Production System: Basic Design Issues «1.
Michael D. Rychener and Ailen Newel!
 Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract. The full advantages of the incremental properties of production systems have

yet to be exploited on a large scale. A promising vehicle for this is the task of instructing

a system to solve problems in a complex domain. For. this, it is important to express the

instructi;)n in a language similar to natural language and without detailed knowledge of the
inner structure of the system. Instruction and close interaction with the system as it
behaves are preferred over a longer feedback loop with more independent learning by the
system. The domain is initially an abstract job shop. . The beginning system has‘
capabilities for solving problems, processing language building productions, and _interact'i‘ng
with the task environ'men'f. All parts of the system are subject to instruction. The main
problem-solving strategy, which permeates all four system components, is based on

means-ends analysis and goal-subgoal search. This is coupled with an explicit

| representation of control knowledge. The system’s behavior so far is restricted to simple

envireanmental manipulations, a number of which must be taught before more complex tasks

" ¢an be done.

1. Instruction Tasks and Large Production Systems

Haw aii _ Instruction Tasks and Large Production Systems

1.1. Introduction and overview

This paper reports the beginnings of a system—buil'ding project. The aim is to build

. a large, generally intelligent system by gradual instruction startmg from a small mltaal
""system At present, the large system is still in the future. This descrlphon is limited to'

‘describing a promising initial system, along with the rationale for behevmg it has
7 signiﬁcant potential for further work. Likewise, the task domain of th_e eventual system is-

not yet determined, though there is an initial domain.

‘Production _systerns are the system architecture most consonant with the project’s
aims. ITheir basic condition-action form, along with tﬁe global and épen nature of their
actioﬁ, indicate their usefulness for a task involving increment:;I growth, recognition-based
prcblem solving, #_:eéponsiveness to unexpected condi_’tior;s; and. oth.e.r attributes diseussedn
below. The initial task domain is based on the problem of scheduling a job f.shop. This has
unusual features that allow tests_of basic instl;uction issues, particularly a wide range of

tasks with simply?produced variants. Thus the potential exists for instructing the system.

on one variant, and then introducing perturbations to which_ it must dynamically adjust, -

evoking the need for further instruction. There are several constraints on what

instruction.is and on what the instructors can know about the internal content of the
system.

The remainder of this sectioh discusses in more detail the. basic task and system

" issues, and introduces a suitable production system architecture. Section 2 discusses the

rationale for our app‘roach to building the initial system, called the Kernel. The Kernel
émbodies a set of assumptions about problem solving, language use, the particular task,

and aUgmentati'on. Section 3 presenis an instruction protocol that the system has

_performed. Section 4 summarizes our current status.

Haw aii Instruction Tasks and Large Production Systems

1.2. Building a large production system

Production systems (abbreviated "PSs") have a brief but illustrious history within
“artificial intelligence .(AI) and cognitive psychology. Fdr géneral b.ackground, the readef is
referred to [B], [10] and [12) There are four architectural components of the kind.of PS
used here: production memory, working memory, recognize-acl cycle, and conflict
reéo!ution brincipies; Action arises from the system as a result of conditions (left-hand
sides) of productions being recognized true of the'_current working memory state. The
recognition leads to the performance of associated actions (right-hand Isides). This is the
basic recognize-act step, except that in general the conflict.resolution principles m.us’(be
applied to distinguish between productions whose conditions are simultaneously true,
making a selection before actions are actually performed. The performance of actions
results in a new working memory state, and the recognize-act step is repeated.

We Ah::ve chosen PSs for our instru.ctable system for a number of reasons. Al
prod_uctions are sensitive fo a single working memory, with no control organization
impbsed on them, ahd with all necessary control achieved by goals and other data
cénventions -within wofking memé_ry. In practice, productions tend to .be smaff. {only a few
conditions and actions) and relatively independent of each ot!ﬁer. Thus the‘y are attractive
where structure is to be added gradually and incrrementally. Their feasibility, power,
transparency, flexibility, and conciseness has been Is'hown empirically by implemenﬁﬁg
well-understood Al systems [13.]. The importance of having- actions conditioned on the
recognitioﬁ of aspects of a global stale is ceniral. Actions are not evoked directly by
other actions, but are performed whenever the appropriate conditions emerge. Thus
intelligence is distributed ralher than concentrated in a complex control executive or other

orchestrating mechanism. Since intellipence requires the ability to respond to important

Haw aii Instruction Tasks and Large'Produétion--Systems

aspects of complex states, the high degree of conditionaiity- of action in PSs appears to

~ have merit.

‘In building the systen&, the PS architecture is used according to specific conventions.
All long-term knov&ledge is kept as productions, and working memory is used exclusively

for short-term, dynamic state. This is in contrast to a possible view of working memory as

‘a Iong—terrﬁ database, with "facts” stored in it, to be manipulated by. “procedures” coded as

productions. Though working me-mo'ry may become large, our convention is to store as
pfoductions such database-like things as facts aboul objects in the world, relational
structures (éemantic networks), etc. |

A large intelligent system of.the sort env.isioned places néw demands on PSs and on
system-building capaﬁilities in general. Building such systems is interesting in its own

right, raising issues of representation accommodation, and a whole range of activities

associated with intelligence [9, see also 1} To study many of these issues fruitfully, as

many have noted, an uncommonly large-scale knowledge bése is necessary. From a pure
PS.fesearciw sta_ndpoint,’ building a large system (on the order of several thousand
productions), especially including a rich_diversity of knowrl'edge, aHows. us to"test
hypotheses about PS efficiency openness; modularity, auton_natic éugmeniatio_h,
r.épreseniational ﬂe#ibiiity, and feasibility. The system‘ is to develop, _eventually, past the

current state of the art in AL

1.3. The abstract job shop task

Several criteria are essential to our choice of an initial task for an instructable
system. The task domain should be rich in prcblerﬁs of sufficient challenge to require
in-struction it should be amenable te the instructional mode (see Section 1.4) and it

should not be amenable to a general solution mechanism, which, once constructed, would

Hawaii Instruction Tasks and Large Production Systems

make further instruction unnecessary. Among the general fask areas that might be
appropr-iate are: a tutor in sorﬁe ddmain, an intelligence-test taker, an automatic
programming system, and the higher, cognitive levels oflan image understanding system.
We have chosen for the--time being 3 toy task, the -aBstract job shop (AJS). The job shop
has as its objective to produce objects with specified desired .properties fram raw
materials according to som'e schedule. The shop contains stacks of materials and partial
prbducts, machines "that must be s_ta,rted with explicit . commands, a.nd means . for '
transporting objecls from one place to another Qithin the shop. The details of the |
particular implementation of this idea are given in Section 15. This toy task has a
number of close analogs that are potential applications of any useful techniques
developed: real-world production scheduling, t_he general problem of functional design,
sclweduling in computer operating systems, and coding con{puter programs (to name just a
few). It also contains within it the possibility of explor.ing the full range of Al tasks known
as the "toy blocks world." | |

VIf all goes well, the AJS task has attributes that are the extra bonus for immediate
purpﬁses. AJS has an unusual number of variants, including the basic task of prod'ucing
desired objects, the allocation of scarce resources, advar‘wce‘d.kinds of planning, and
broduction under time _constrainfs. After the system has been instructed in a number of
ba.sic variants, perturbations to ihe tasks and to the en\;fironment‘(the job shop} ‘can pose
major difficulties for the system. Among these perturbations are: changes in the profit-
objective fur?ction for various.mixes of oulpuis, s‘poi!age of materials, error in m_achines,
accidents in moving .ob}'ecfs, additional time constraints and last-minute changes .in orders.
The difficulties of the basic task should preclude any advance planning on the part of the

instructor to have the system respond gracefully to such basic task changes. Thus, the

[$1)

Haw aii Instruction Tasks and Large Production -Systerns'

system’s behavior will be .interesting, whether it can adjust eaSIly or not.' The
effectlveness of the entire approach,.including the use of F’Ss, will be measured by the

' adequacy of the system’s behavior over a set of such perturbations,

1.4, The inslruction mode

Posing the task as one of growing. a large system througn instruction ‘introduces
additional issues. _So.me of these might seem irrelevant t_o the main aims, but others are
directed towards important quesllons with respect to the study of the representation a.n.d
use -of knowledge. The following attempts to justify this third major concern, instruction,
which is in addition to the concerns with building a generally intelligent system and using
PSs as a basis. |
The instruction mode used here forces the aulomatic encoding ot knowledge as
productions. This allows the veriflcetion of:essential properties_; of PSs, particularly those
7 dealing with the independence or modularlty of the knowledge in the PS. If the PS were
augmented by simply composing and adding Ps, there woutd stlll be a possubilrty for the
system to be very mtrtcatety contrwed with implicit global - coordmatlon of productaon '
action sequences A language of instruction is used that states each new item of
| knowledge in a human- readable, plausnbly independent form, wqth no reference to |nternal '
structure. |

Instruction takes place under the following constraints:

.1. The instructor {ins) can see what the'system {iPs, Instructaole PS) is doing in
the environment,. and can communicate with_IPS, but cannot examine the internal
structure'o.f the system directly,

2. Interaction between Ins and IPS is in an external language, analogous to natural
language, rather than in internal representations, either of worklng memory or

production memory forms.

Haw aii ln§trucii0n Tasks and Large Production Systems

3. The initilatiye fr..)r interé_ction is mixed. IPS’s behavior can be interrupted by Ins
at any .time, for corrective instruction or interrcgation. Likewise, IPS may
communicate fo Ins and interrupt him. |

4. Instruction may be about any topic within the total environment: the structure of
the environmeht, how to perform a task, the i_anguage of communication, the
detection and correction of error#, how to learn about ‘the environment, etc.
Also, the instruct_ion may be at whatever level Ins wishes or can achieve:
specific behavior sequences, generai metlwodé, abstract principles, models',.
theories, ete. |

5. Knowledge gained through instruction accumutates ov;ar the life of the system.

Having trhe system be instructable adds to its capabilities as a total maln—computer

intéractive system, so that in ultimate real applications the performance of the combination
system can be t_ax‘peciéd to be higher than either participant alone. ‘As a practical
measure, making the system instfuclab:‘e alsa reduces the péssibility of internal coding
conventions that would prohii?it multiple instructors from,u_nderstanding the existing
sysfem. That .is, all communication is forced to be in a ianguage of insfruction, -which may
be more eas-ily shared tha.n program conventions. If instructability can be achieved, it
should be worth the extra initial effort, |

The instruction mode can be contrasted with a learning modé in which the system is

set tasks and then required to learn on its own from the e.nvironmeni.' Here Ins gives
incomplete or approximate instructions and watches very closely for opportuniti.es to
interrupt 1IPS and refine them. It is “incomplete or approximate instructions" because too
much pre-planning by Ins is bound to be futile, given Ins’s imperfect knowledge of 1PS’s

internal structure, and given a task sufficiently complex to make anticipation difficult and

Hawaii ' . Instruction Tasks and Large Production Systems

‘ineff.ective. With Ins watching IPS so closely, the need for learning by the rsyslltem on it.s'
own is minimized. But such independent Iearrning, i.s not. egclode_d. It can QVentuain arise
in the way -IF’S interacts with and gathers knowledge from the task environlment_, in the_
'w'ay IPS uses the external language, .and in other knowledge acqoisitioo mechani-sr.ns.'
| Presumably the best sirategies of instruction and oerformahce require that IPS be ab!e to
Iearo for itself about a changing environment.. The sequence of novel but related tasks is
.intendedr in part to arouse this. Nor does the futility_of pre-planning fule out giving IPS
génera! methods, anticipating crertain types of difficulties. Such gener.al methods, };owever,

are bound to have incompleteness similar to that of specific ones.

1.5. The production system architecture and task environment

Before detallmg the PS archltecture used for IPS a few distinguishing features of
our overail PS approach are pomted out. The way that action deveio;)s from the PS
"differs from some others in being a forward recognition-driven cycle, rather “than a
V' backward—chaining,'goal—driven.cycle, as in the MYCINrsystem' [4]. The system is
rcontrolled by s:gnals and symbol structures in the global workmg memory, called goals,
whtch are included exphc:ﬂy in productron conditions when apprcprlate This is in. contrast
to MYCIN and to DENDRAL [3] The PS architecture is used as the total system, rather
than having it be one of a number of procedural components. Other systems have
er;nployed additional, non-PS procedures fo.r such activities as modifying and analyzing the
PS. Working memory is arbitrary list structures in an extensive database-like structure,
with a vast majority of .items expllcuily stored rather than represented as computable
oredicates. Production conditions make use of general pattern- matchlng capabllltles, as is
common in other recent Al languages [2}. Though the general architecture derives from
concern for human cognition [10, 12], little consideration is given to psychological

constraints,

Hawaii " Instruction Tasks and Large Production Systems

The particuiar architecture and language used for IPS is-cafled OPS {(Official, at least
locally, PS} [7] and is an iteration on earlier des.ign_s [11, 13]. Production memory in OPS
is an .unstructured, uncrdered set- of productions. * Working memory is -likewise an
unordered set of .Iisll str@tures, without duplications. It is bounded in size, by deleting
elements whose last assertion occurred more than some.arbitrary- number of system
actions in the past (currrently 300). The recognize-act cycle is: (1} form a conflict set of
productions whose cor;diiions are currenity Satisfied;. (2) apply the conflict resolution
principles to select a unique element from the confi.ict sel; and (3) execute the actions of
the selected production.

For conflict resolution (the most distinclive component of OPS) the following rules
apply, in order. These rules are exporimental in nature, and are expected to change as
understanding of instructability increases [8]

1. Refractibn: a 'production is not fired twice ﬁn the same data (instarntiation of a
pattern) unless some part of that data has beeﬁ re-inserfed into working
memory since the previous firing. This prevents most infinite foops and other
useless repetitions.

2. Lexicographic recency: the prodqction using the most recently inserted elements
of workinglmemory is preferred. _"Most recent” is determined lexicographically,
e, if there is a lie on the most recent element use‘d,-the next-most recent
elements are compared, and so on; use of arﬁf element is considered more recent
than using none, e.g.,, (A X) is ordered before (A). Recency order discriminates
at tl;ue level of individual actions within productions, rather than takihg all the
actions performed by a production to be of equal recency. This rule serves to
focus the attention of the system very strongly on more recent events, aliowing

current goals to go to completion before losing control.

Haw aii

. Instruction Tasks and Large Production Systems

Special case: a prqductioh '_is p_referred that has more co.ndi_tions,'inclﬁdir.wg
negative conditions which do nol match to specific memory elements. Most of
the meaning of having one. production be a special case of another is captured
by rule 2, since a special case that uses more data than a general one is
|exi§Ographica!ly more recent. Preferring speeial cases to general ones follows -
the expectatio'n that a specific method is more appropriate to a sitﬁation than.a
more general one. Also, this is cornsonant with a.si.rategy 6f augmentation by
providing more discriminative rules. |

Production recency: the more recently created produét_ion is preferred. This
allows identically conditioned rules {with perhaps con‘tradictory actions) fo be
distinguished and assumes that a more recent instruction is more correct.
Arbitrary: a selection is made among multiple matches to the. same production

using the same data.

As a matter of practice, conflict resotution rarelv requires more than the first two rules.

OPS has several other distinguishing features. The.pattern matching allows a limited

form of segment variables namely, a variable may match an indefinite-sized tail of a list.

The Pattern-And (Pand) feature allows an expression to be métched to saveral patterns,

and then bound to a variable. OPS allows complex negétivé'conditions to be specified, for

instance, inciuding the negation of an entire production condition within the cendition of

another production. Productions in OPS are compiled into an efficient network form, rather

than interpreted [6]. OPS has an operator for adding productions to production memory

w'hich' have been formed (in terms of an appropriate data structure) in working memory;

such additions are done directly "into the compiled network during the runtime cycle

without excessive cost.

10

Hawaii Instruction Tasks and Large Production Systems

A subsystem of OPS brovides the lask environment (TE) fo-r instruction. The TE is
repfesented as an array of discrete locations, within which objects can be placed, plus a
set of "perceptual” and "motor” operators. Each location and objéct is represenféd as a
list of pairs in attribute-value fOt;n1, with certain atiributes given special interpretations.
For example, the external display of a location in the TE (L15), would be.

L15 [—

with the internal representation,

L15: { NAME 1L15
TYPE STACK
MEMBER TE-ARRAY

POSITION (2 3)
COMPOSITION (W W38 W72))

The object W38 might be defined as:

Wag: { NAME K98

TYPE HOOD
HEMBER L15
POSITION (2)

SHAPE TRIANGULAR
LENGTH 5

MIDTH 7

COLOR RED)

.Objects are potlehtiaily hierarchical, with values of attributes composed of other objects.
Relations between positions of the TE and t.)bjectsrcanr be determined by TE operators.

The operators on the TE are: |

1. View: the aliribute.-value pairs for an object or location appear in working

memory.

1t

"Hawaii _ Instruction Tasks and Large Production Systems

2. Scan: the TE is searched for an object satisfying a pattern, and if it is fbund, it
is Viewed. | |

3. Trahs: an object is transferred from one location to another within the TE.

4. Start: a machiné in tHe TE is started, consuming a set of inputs (specified as
values of INPUT atiribute) and producing a set of outpuls (specified as values of
OUTPUT). "Tl'.xe machine operates once, not continuously.

5. Compare: two atl'rjbule—.value pairs are compared, with fesults' depending onrthe
values compared. For instance, if the values are pairs of numbers, as for

- POSITION, the result is a spatial relation, amounting to, _say, “northwest.”

2. The Initial Instructable System

The instructable system is initialized wi-th a rel'atively small set of ‘hand-coded
productions called the Kernel. The Kernel design inclﬁdes a minimal set of ;omponents that
can s'upport' all of the present instruclion goals and pro;/ide an interface to the TE. The
components at present achieve minimal capabilities for:- (1)} solving lpro.blems, (2)
processing language, (3) building productions, and (8) interactingx with the TE.

" A number of design issues influenced the Kernel. These der‘ive.from a wish té
ﬁqaintain easy instructability within the rules laid out above for the instructional mode.

1. Everything in the system is potentially instructable and improvable. This
includes 'espeqiatly t-he com-ponents of the‘e Kerriel and the results of instruction
that the Kernel produces. The Kernel itself may eventually be superseded by
productions gained through instruction, and commitments to techniques and

representations in the Kernel may eventually be altered.

12

Haw aii -+ The Initial Instructable System

2. The system should‘ be instructable without detailed knowledge of internal
structures. Thus fhe Kerne! design must include some capability for mapping
from external to internal forms, and vice versa,

3. Knowledge should not be globally coordinéted or pre-planned, but shoul&
develop in locally plausible, concrete increments. This particularly affects the
form of problem-soiving methods and tanguzage processing techniques.

4. The construction of the Kernel should not embody a commitment to focusing on a
particuiar kind of proBlem, e.g., language, but should be amenable to instruction

in a number of problem areas.

2.1. The problem-solving component of the Kernel

The Kernel has two general forms of problem-solving unit, corresponding to fwo
- uses of the basic condition-aclion form of productions. The first recoghizes a goal and
proposes means to achieve it:

goal & conditions => possible means.
The means to achieving a goal can be one or more subgoals, direct actions on the TE, or
requests to Ins. |

The second form of production serves as a test or recagnizer:

goal & conditions => goal success or failure or cansequences,

Thge growth philroso;)hy for the IPS revolves around méans—ends analysis [12].
Knowiedge added {o the sy‘stem forms a conceptual network of connections between goals,
meahs to achieving them, and tests on the results of appl.ications of means. Goafs
canstitute the mogt meaningful portion of the dynémic state .of the system (working
memory), while means and tests are permanent productions added gradually through

instruction and learning. It is important that this network of means and ends is defined at

13

Hawaii ‘ . The Initial Instructable System -

the level of individual produc‘ti'ons rather than, say, at some h.igher level of organization
with productions used fo code an interpretive mechanism for the network. For the means -
ends structure must be épplicable to creating, shaping, and con;recting all aspects of the
behavior of .the system,.dOWn to the finest detail. | | |

Augmentation of networks of means-ends structures [e;ds to a fiexible but highly
inefficient computational structure. Strateg;es for converting or compiling these structures
are a necessary component of the growth philosophy outlined here, which however wil!
not be discussed further. |

Two basic conventions buiit into the system help to make the basic produ‘ctiorw form
adequate for general prob!e'm solving: the lexicographic event order conflict re.solution_
rule and a taxonomy of PS control, represented in a particular way. Recall thét the
conflict resolution prinéiple orders proauction firings based on the relative recency of data
used. fhis gives a depth-firsi emphas-is, focusing on recent—!y proposed goals b-efore older
ones and< allowing successes to propagate in orderly fashion: It does not preclude,
however, havihg emerging conditions unexpectedly satisty an older goa.t __and‘lead to ﬁction
quité distinct from what was the immediately precéding focles.‘ |

While thé éonflict resolution principle is .built.into the PS architecture, the Kérnel's

knowledge of control is by way of modifier tags that appear in most working memory

ete;nents. The current system of representation is based on an analysis of past PSs {13].

The basic representation form_ is:

(Primary Secondary Moditier Body)
A primary is a verb or main data structure name, while a secoﬁdary is an object of a verb,
an attribute of a structure, or the name of a substructure. Some examples of primary—

secondary pairs: examine object, interrogate value, object color, and phrase boundary.

14,

S . W |

.,

B e L L S

Hawaii The Initial Instructable System

The modifier is & list with positions occupied by valL-Jes‘ferm bredéfined classes: goal
values, data values, process values, truth values, and de‘greesrof completion. By .combining
values from various: classes, a large number of rﬁeanings can be ass.umed by a modifier,
\.v‘hich in turn affects the interpretation by productions of the- representational unit
C'OI-wtainirjg it. |

Space does not permitl giving the entire modifie.r system, but the main entities that
are used in the Kernef are as follows (examples of actual Eepresentations appear in
Section 3). The most important goal value indicates "Want", and marks units -that are
currently desired goals. Other goal values indicate "Old", "Con’t-want", and "Neutral®.

Evocation, intermediate control, and results of processes employ goal values in combination

with process and data values: "Activate", "lterate”, "Hold", "Result”, and “Continue”. Yruth

values are "True”, "False", and "Unknown"

Modifier values are made ce.herent by certain establiﬁhc_d fmoﬁ!edge about control.
For instance, a process -is usually ?nitiated by a “Want Activate” signal, which then becomes
"Want Continue”, if it has several steps to be performed. The sieps'are indicated by using
degrees of completion, which are simply ordinals. When the process is started, the "Want
Activate” becomes "Old Activa'te", but the content of the initiation signal itself is still
available, should it become necessary later to examine it. Simitarly, control for a p.roc.ess
can go inte a dormant "Hold" siélus until some pre-sel concjition arises, whereupon it
reverts to its former status. When a process finishes, it may produce an item With
modifier "Neutral Result”.

The use of these explicit modifiers in the basic representational units makes the
behavior of the system open for detailed self-examination, when combiﬁed with the basic

openness of working memory. Such a simple scheme for managing control knowledge is

| Haw aii - ~The Initial Instructable System

based on the ease of control in PSs generally, and its feasibility has been tested
exiensively on typical Al tasks {13'], thOUéh its suitability for the preseﬁt iﬁstruction task
has yetl to be verified. in large-scale practice. As shown bel()w,- contrel knowledge can be
“easily expressed in the external language by using key phrases corresponding to modifier
variants. The available knowledge and basis of control _c.an similarly be expanded.

The Kernel itself is a problem sotver (in the ddmains of language, building
pr.c-aductions, etc.), and is written using the coﬁventions just sketched. But it is also the
producer of'progranﬁs embodying the same. conventions. Thus, initial instructio.n is
consirained to be close fo such forms. Later on; as IPS beco-me-s Vmore sophisticated,
irﬂernal pfoblemfsolving method forms should be producible fr-om inst;'uction requiring
more difficult mappings. Incidentally, the Kernel itself is simple enough that a

straightforward instruction sequence should be able to reproduce it.

2.2. External language capabilities of the Kernel

The Kernel is built to understand a- 1imited external language. The language
capability has three aims: to make interactions with IPS readable by the instructors and-by
‘other Al researcheré; to make the interactions occur in .somethihg other than a PS
-language; and to encode a number of represent‘ational conventions, so that instructors can
refer to the same internal entily in a variely of ways - ie., a ‘mapping or as#imilation
facility, relatiﬁg external to internal structures. To keep the Kernel simple, an initial
|anguége with rathe.r rigid format has been chosen. | .A

Language expressio'ns are processed primarily in a bottom-up féshion, with only é
%ew keywords having specific rheanings to start with. That is, a keyword is recognized and
_clas-sified, and a number of the actions associated with it (i.ts semantics) are- performed. A ‘

default action is taken for words with no known classification. Occasionally, a keyword

i6

Haw aii : The Initial Instructable System

sets up anticipations for actions fater in the input, giving the processing a partial top-
down orientation. The default action for unclassified words is easily superseded, using the

special-case conflict resolution principle. Along with the careful design of the Kernei to

- allow all of its goals and subgoals to be discussed in the external language, this use of

special cases forms the basis for exteesibiiity. A similar bottom-up approach, though not
coded strictly incrementally, has been used successfully in a toy blocks domain [13].

The main form in the fanguage is an image of a production or. of a closely related set
of productions. The form starts with "To", with an expression of a condition following,
then a sequence of actions, "To" is taken as an abbreviation of "If you want to". For
e'xamp.!e,

J0 examine an objeei in some location , do view .thi location

In this example, the keywords have been italicizod. The other words are given in an
ordering that correspoeds to the basic primary-secondary form discussed above. TheS
"examine object” is the. essence of a representational unit forming the goal in a condition- '
side of a production to be buill. Most of the keywords not shown deal with the formatioh
of conjunctions and sequences of units, so that productions can test rr‘1.ore complex
conditions and perform more complex actions: "and", "then", and “if". "Some", "that", and a
few other keywords allow the specification of match variables, as opposed to constants,
Detailed examplies of the use of the language in a simplelinstrucfion protocol are shown in
the foliowing section. |

Another main keyword in the language is "Next". "Nex{" is. followed By text very
much like the "To" clause above. This allows a process for achieving some goal to be
expressed as a set of closely related productions, retated by being continuations or steps

in the common process. That is, the "To" clause of an instruction signals the main or first

17

Haw aii _ The Initial Instructable System

step in the solution of some gba! (the phrase immediately following the "To"). When "Next"
clauses follow the "To" clause, they .give suqceedi.ng. .step-s in the process, which
presumably test the outcome of the first step and take further actions écéordirrgly. Some
form of the main goal éppear_s in all of the productions constructed within such a set of
clauses. This loose content-based association of productions |s called a module, though

nothing structural in the architecture dlstmgmshes it. The productions in.such a module

_ share infernal assumptl()ns, since they arise from a conhguous ms'truchon sequence. . The

module is known to other modules usually only through |ts main goal unlt, which is its

evoking condition. _Tb connect this with the discussion on means-ends analysis above, the -

language aliows the local {intra-module) sharing of assﬂhptions about means to achieve a

goal.

2.3. Building productions and the interface to the TE

The Kernel’s third and fourth components are minimal: the s)./stem’s abilities to build
productions and to mampu!ate the TE effectrveiy are expected to develop as system .
behavior deve|ops and as cons |derattons arise from the task that vary from our present
preconceptions,

Bésically only simple, direct ways exist fo.r telling iP,S what to store in production
rﬁemory and what to do in the TE. Bolh capabilities rely on the closeness of external
|anguage express10ns to internal forms. The main sentence form |s an image of a
production, so the operation needed to build an actual productlon i a simple |terah0n over
a list of units extracted from. an input string. The current strategy for addmg to
productton memory ‘treats the memory as an unordered set To specify a TE operator, the
instructor uses the keyword "do” and follow; it with.a phrase in the proper form for the

'6perator. The expandability of both components rests on the basic openness of their

18

Haw aii | The Initial Instructable System

Kernel representation, rather than on specific structural design. The simple goals by
which they are presenlly achieved are expressed using a small set of primaries and

secondaries, along with a few modifier tags to indicate partial results and iterations.

2.4. Discussion of the Kernel de'sign

To recap the basic strategy in building the Kerr;el, focﬁs is placed on a primitive
language capability embodying definite problem-solving aﬁd goal search methods. This |s
not because language issues are most important, but because lagguage seems to provide |
the shortest path to easier instru;tion, to flexibility, andlio the encoding of basic probtem-

solving method assumptions. That is, an instructable language system leaves a farge

~amount of openness for further instruction without precluding desir.a_b!e options. Qur

experience over lhe short history of our attempts, covering a dozen or so initial abortive

Kernels, indicates that the best strategy is to rely more on spontaneous ad hoc methods

arising from interactions than on injtial knowledge about aspects of problem salving. This
insures that important aspects of the system relating o the problem-solving task are

themselves instructable, rather than "cast in concrete.”

3. - Sample System Behavior -

The Kernel starts with essentially no behavioral capability with respect to the'TE.
Thus, it must be instructed in some basic TE tasks to build up a network of goals for doing
more significant tasks. A sequence of progressively more complex tasks has been
established to build complex abilities from the simple ones in the Kernel. |

The first task attempted is to instruct IPS to look at the top of a stack of objects in

19

Hawaii - . Sample System Behavior

a TE location. This will involve Viewing the location (in the TE sense of View def%ned‘
above), checking to see that there i.s in fact a stack of obiec’ts there, ana then finding the
top of that stack and Viewing it. Instructing it tq achievé these gbals giv.es it some
material to work with on tasks that follow this-first one, which include looking at 6bjects .
other than the top one in a stack, determining the type of an objeéi {which requires that it
be looked at first), and comparing the types of two objects. More complex tasks include
réa_rranging objects and determining the requirements and effects of machines in the TE.

The instruction sequence to be given now cons'is‘ts‘first of giving IPS a top-level
subgoal sequence to achieve the goal. Then a'concrete_'task is given, involving that goal, .
so that its behav_ior gives rise to subgoals that it cén’t solve, at which points fur_ther

" instruction is given.

IPS starts by asking for input, and it is given the following:

To examine an object the tog in some location , want do view that location then

want test the status of the value of that iocation compositibn , Next ...

In the fext, ".." indicates that mo-re is to come below; it doesn’t appear in actﬁa! iﬁput.
Note that the lanéuage' ié very primitive in expression, a consequenéé of our desire t‘.o
include on1y. the minimum necess'ary for communication of basic ideas, thus excluding
familiar linguistic elaborations. |
The system use.s the word "next” to act as a terﬁporary boundary for the input, and
- ___-_fbrms' tHe following production .bef‘ore continuing to scan further. |
R1 (rexamine object {uant activate) top in <location} $ =cl-
-—> (vien.TE =location {want activate)) ‘ _
(test status (want activate) value =location composition)

{examine object (want continue 1) top in =location)
{examine object {old activate) top in =location) (delete =cl) ;

The OPS notation for productions gives the name, Rl, followed by the condition side,

20

Haw aii | Sample System Behavior - 7

foilowed by "-->", followed by the action side, and t-erminated by " "="is used to mark
variables as in "=location", -which makes "location” a variable. "$" stands for Pattern-and,
which allows two match expressions to use the same working_'-memory expression. In R,
"$" is used to bind the single condition'e!ement_and the variable ¢l to a single working
memory element. A production is executed as a result of matching its condition, which
results in binding its variables to elemenis or subelements of working memory. Firing the
production then results in asserting or ‘deieting working memor'y elements according to the
action-side forms (“assert” is implicit, "delete", explicit), in such é‘way that the leftmost

action becomes the most recent working memory element, for purposes of conflict

resolution.

The pHrase between "To" and the first " has been formed into the condition side of
RI. The mapping of text to representational unit is direct, with the Kernel supplying the
"want activate” modifier and the ';S =cl", which is used to de-lete the "want activate" form
after it is converted tc "old activate" at the end of the ac.tio_n side. "Direct mapping"
means that words are added to a unit in the same order as given in the text. The
remaindet; of the text is conQerted to. a sequence of two representational units, the firs-t
two in the action side. This conversion is also quite direct. These serve as subgoals, tﬁ-e
firs_t of which, view.TE, will be achieved by Kernel mechanisms, and the second, by further
instfuction. The third action element is a signal that will stay in working memory until the
fifst and second action elements have been recognized and iheil; consequences followed

up, at which time it will become most recent, and. productions using it will become

. candidates for firing,

The first segment of the instruction has establiéhed a topic for the entire sequence

up to the next ™", namely the goal of "examine object". The next segment of the

instruction for this goal js:

21

Hawaii o -Sample System Behavior

= Next if the resuit of test the status is n.c-n—err'\p{y‘ig the value of that location

composition , want find the top of the value of that location composition , Else ...

This results in forming a second production, including as a condition l.he "want continue”
unit from R1 and a unit corresponding t_o the text between "if" .and_",":
(test status (neutral result) non-empty value =location cdmposit.ion.)

The production tests the result of the second subgoal of R1 (to test the statu.s of Ath,e
~ composition attribute of the Viewed location) and proceeds with a further subgoal (to find-
. the top of the composition list) if appr(-)p‘riate. To do the conti.nuatior_\, it includes a "want
continue 2" unit with the form of the main topic.

The next bhrase tells 1PS wﬁat to do if another condition arises as a resulf of that

second R1 subgoal.

.., Else Lf_'th result of test the status is empty is the value of that location

‘composition , the result of examine the object is failure , Next ..

This fragment gives one of the ;:;ossibfe results of the topic goal, which indicates a failure
{at present, in a non-informative way).

The next segment..forms a production to recognize the result of the "find top”
sLibgoal, View that result, and Iéave the name of the result in working memory (a "neutral

result” form similar to the one above).

y . Next if the result of find the top is some qbiegt , want CLJ_ view that object

. and the result of examine the object is that object .

The system has now taken that instruction sequence and formed four productions.
It then awaits further input, which is the following:
Iry examine the obiect top in L23,

This tells IPS to actually try to achieve an "examine object” goal for a particular TE

22

Haw aii _ Sample System Behavior

location. It would not get very far before stopping, ir.w need of further instruction to allow
it to achieve the "test status” goal (the second goal in the act?or} side of R1). Ins
dete-rn{ines what the system is in need of (if he can't remember) by asking it, "What want
?", which IPS answers by finding its most recent "want"-modified unit. Instruction for the
"test status” goal can be given so that the system can achieve it directly. That is, a éingle

production sufiices to per_form the test and return a result, without further subgoals.

After that, it needs instruction on the "find top" goal, which can also be achieved directly.

4. Conclusions

The aim éf this initia! examination of the problem of an instructable PS has been to
motivate the stérting assumptions, to discuss §ome broad i;ssues for PSs and for
instructable syslems, and to give some detail on where the project stands as a result of
several design iterations. |

A PS architecture has been developed that buildé on substantial experience with
past architectures, its conflict resolution scheme appears to be compalible with
incremental additive growth, and it essentially abandons the use of static orderin.gs of the
productions. A small kernel system of about 150 productions currently exists, embodying
an increméntal approach to solving problems, processing language, representing knowledge
as productions, and interacting with a toy environment.. The system’s pr.oblem soiving
capabilities expioit a form of knowledge that is natural for PSs, means-ends analysis. With
that, a taxonom.y of some simple control mechanisms in PSs provides the system with the

capability to do complex tasks.

23

Hawaii ' - - Conglusions

The initial _ingredients assembled seem ideally suit_ed tor attaining the iﬁcrer;'-ental
grthh of a complex uhdgrstanding system. Experimentation with a sequence of
| progessivély more diffi;ult tasks will reveal whether this is the case. However, it may not
happen quxckly Experience so far, expressed in a good dozen kernels, has shown how
dufflcult it is to get the details right, even while the general features of the scheme hold
up rather well. Partly the difficulty is that our design intuitions imply a substant:al
"rernel" of capabilities in place, whereas it is necessary to grow (instruct) that kernel
through a much leaner initial system, which is certainly higﬁiy atypical and counter-
.intuitive in many ways. Any attempt to lay down this-larger "_kernei" by an act of design
_{in the usual system-building fashién) seems sure to create a beast that is ‘uninstructable
except along limited dimensions, Thus a regimen of iteration and backrtrackihg at primitive
levels seems necessary.

One issue that has arisen about the particular ingredients can serve to summarize
and illuminate the cqrfent state of understanding of the approach. If the observable
behavior of the PS is to be organ';;-«:éd c0mpleté|y as a means-ends network, then what. role
do the properties of ihe PS architecture play? unldn’t ahy other architecturg or basic
programming system do as well?

To see the force of this, consider what makes means-ends anatysis attractive fpr the
‘ instrucfable—system task. It permits simple additio.n to the existing system, since
incrementé are made by altaching new (alternative) methods to existing goals, from whi_ch
other goals and methods may freely branch. Its network of‘go;ﬂs and methods can be
driven down to any f_in_eness of processing detail, permifting the scheme to be used for
any processing. If care is taken _initialiy, {hen all aspects of the system will be formed as a

means-ends structure; hehce, all aspects will be open to modification by further means-

24

MR

Haw aji , ' Conclusions 3 A482 00571 k259

ends construction. To ulilize- such a scheme requires of the underlying programming
system (which constitutes the operators and associatedAdafa structures through which the
means-ends net works). only that it be complete, have a fine enough_ grain of action, and
perhaps be rather simply composable.

These properties constitute a significant fracfion of the claimed advantages of PSs.
What do PSs provide that is not already latent in an approach. that focuses purely on
construction of means-ends nelworks? | | |

| Means-ends analysis dictales (hence provides} a structure of goals, methods, goal-
fests, operators aind opérands (data structures). But it only provides functional roles, not
the programming system. Subjecl to the condilions of fineness of detail and COmpleteness,
we do not see that PSs have a striking advantage cver other homogeneous architectures
for realizing these processes in general,

In a .performance system the instances of these structures are provided by the
system creator. In a learning system they rﬁust be provided by the system itself, and the
properties of the architeciure become relevant to how easy or ha.rd that will be. An
instructable system, thopgh it can shade into a programméd system especially initially, is
fundamentally a learning system.

Without being’ exhaus!iv_e, some of the important functions fo be perf;)rmed in
Iearning a means-ends structure are the dele;tion of error and/or the opportunity for
learning, the construction of hypothesized means-ends structures, their installation so as
te supersede selected pre-existing structure, their validation and debugging, and a secure
environment within which learning experimentation can occur. Means-ends itself does help
on some of these functions, notably instaliation and (pOSSibly)‘supersession, but does not

provide help with most of them.

25

Hawaii. - Conclusions

PSs appear to be a useful architeclure for a number of these aspects, though no '

claim can be made that it is especially perspicuous across the board. Detection,'validation'

and debugging seem to require wide-band access to the existing knowledge in the system
at all times, i€, in a monitoring-itke mode. This is distinctly a feature of PSs. Although not
quite so obvious, wide-band access seems important also to ’(he‘ construction of new
hypothesized goals and methods. Successtul medifications de-p_énd,' hot just on some fixed
procedure for correcting failed goals, but on detecting and attending to highly various
features of the environment and to equalty various aspects of past experience. The
problem of memory qeérch to make contact with relevan’r but disparately reprefented
experience is not qoived in PSs just by the recognition scheme, but the architecture seems
a useful one for approachmg the probiem. | -

The extreme simplicity of the ultimate forms of both ,gqa! lests and method steps in
PSs is probably also important. They can consist sim.ply'of throwing together some
hopefully relevant: distinctions on the environment as conditions along with- some likewise
hopefully relevant actio-ns,' then adding the collection to-the progrém memoty without

further ado. This is a fundamentally task-oriented operation, unencumbered by syntactic

-eeremqmes or other detailed knowledge. That the elementary form of functionally

_ relevant additions can_b'e SO simple rests upon two other aspects that PS* seem to provide

in some measure. The first is security, which is provided by all behavior in a PS being
effectively ménitored-_ {by the whole production memory). It can be brought under
intefpreiive control at any time to dampen the prospects of "sudden death". The second

aspect is the related ability to program by debugging, i.e, by adding fragments and

modifying the system later on the basis of se!f—observed behavior,

Qur present assessment is that the ingredients will cooperate together in a mutually

26

