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1. I N T R O D U C T I O N 

D i v i d e - a n d - c o n q u e r is one of the most f requently used methods for the des ign of fast 
a lgor i thms. T h e most common application of the technique involves breaking a p rob lem of 
s i z e N into t w o subproblems of size N/2, solving these subproblems, then doing w o r k 
p r o p o r t i o n a l to N to "mar ry " the partial answers into a solution for the ent i re p r o b l e m ; 
th is scheme leads to algorithms of 0 (N log N) wors t - case time complexity . In this p a p e r 
w e inves t iga te a similar d i v ide -and -conquer technique which can be used to c o n s t r u c t 
a lgor i thms w i t h l inear average -case time complexity. 

T h e p r o b l e m of determining the convex hull of a set of points in t w o and t h r e e 
d imens ions has p r o d u c e d a rash of recent papers [4, 8, 15, 16], all containing algor i thms 
w i t h 0 ( N log N) w o r s t - c a s e performance. That this is optimal fol lows from the fact that in 
t h e w o r s t case all N points may be vert ices of the convex hull, and since the v e r t i c e s o f a 
c o n v e x p o l y g o n occur in so r ted angular order about each interior point , any c o n v e x hull 
a lgor i thm must be able to sort [14, 8 J If the boundary of the convex hull contains v e r y 
f e w po in ts , h o w e v e r , this lower bound does not apply, and a faster algorithm may b e 
p o s s i b l e . T h e algorithm of Jan/is [5 ] runs in time O(bN), where h is the number of actual 
hul l v e r t i c e s , and thus takes advantage of the fact that h may be small. U n f o r t u n a t e l y , if 
h is not k n o w n ih advance, the algorithm may take quadratic time, E d d y [ 2 ] has 
d e v e l o p e d a hull algorithm analogous to QUICKSORT that has good empirical pe r fo rmance 
b u t also has a quadratic w o r s t case. Our goal in this paper is to use information about 
t h e p r o b a b i l i t y d is t r ibut ion of h to obtain an algorithm with 0(N) expec ted running time 
w i t h o u t sacr i f ic ing 0 ( N log N) wors t - case behavior. 

Th i s n e w c o n v e x hull algorithm leads to linear expected- t ime solutions to a host of 
o t h e r g e o m e t r y problems that are related to hull -f inding. Among these are determining 
t h e g r e a t e s t d istance b e t w e e n two points of a set, the smallest circle enclosing a set , and 
c o n s t r u c t i n g l inear pat tern classifiers. Analogous techniques y ie ld a linear a v e r a g e - c a s e 
a lgor i thm for l inear programming in two variables. 
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T h e d i v i d e - a n d - c o n q u e r scheme we use to achieve the above results seems to be a 
g e n e r a l method suitable for the construction of fast average-case algorithms. It ach ieves 
fast e x p e c t e d time at the cost of making only relat ively weak assumptions about the 
u n d e r l y i n g p robab i l i t y distr ibution of the inputs. Whereas many fast a v e r a g e - c a s e 
a lgor i thms d isp lay poor w o r s t - c a s e behavior (QUICKSORT, for example; see [13] ) , those 
that w e g i v e in this paper have optimal wors t -case performance. These algorithms are 
n o t m e r e l y of asymptotic interest — they are faster than prev ious methods e v e n f o r 
v e r y small p rob lem sizes (N > 40, for example). 

In read ing this paper , one must be v e r y careful to keep in mind the d ist inct ion 
b e t w e e n w o r s t - c a s e and average-case analyses. For example, whi le any c o n v e x hull 
a lgor i thm must run in time fl(N Ig N) for some inputs^, w e will g ive an algorithm w i t h 
l inear e x p e c t e d running time (for some distribution of inputs). Notice that there is no 
c o n t r a d i c t i o n b e t w e e n a w o r s t - c a s e lower bound of ft(N Ig N) and an a v e r a g e - c a s e 
u p p e r b o u n d of 0(N). 

Basic resu l ts from stochastic geometry are descr ibed in Section 2; these resul ts fo rm 
t h e basis of o u r probabil ist ic analysis of the algorithms presented. In Sect ion 3 w e g i v e 
a fast e x p e c t e d - t i m e algorithm for finding convex hulls in the plane and invest igate in 
deta i l the schema used in the algorithm, Section 4 shows how this method can be app l ied 
to o t h e r prob lems and used as a building block for developing additional fast e x p e c t e d -
t ime algor i thms. Sect ion 5 contains suggestions for further work along these l ines. 

2. R E S U L T S FROM STOCHAST IC GEOMETRY 

Stochast ic g e o m e t r y deals with the propert ies of random sets of points, lines and o t h e r 
g e o m e t r i c o b j e c t s and is an essential tool for analyzing the average case of geometr ic 
a lgor i thms. Many phenomena in geometrical probabil i ty are counter - in tu i t i ve and dif f icult 
to e x p l a i n w i thout the tools of probabilistic measure theory . For example, the s tatement , 
" C h o o s e N points at random in the plane M , is meaningless without a prec ise spec i f icat ion 
o f d i s t r i b u t i o n f rom which the points are to be chosen. Furthermore, not all conce ivab le 
d i s t r i b u t i o n s sat is fy the axiomn of probabil i ty . Points can be chosen uniformly in the 
p lane o n l y f rom a set of bounded Lebesgue measure [6] , so the intui t ive ly a t t rac t i ve 
n o t i o n of a uni form random selection from the whole plane must be discarded. 

T h e p r o b l e m of determining h(N), the expected number of ver t ices of the c o n v e x hull 
o f N po ints , has rece i ved a good deal of attention [ I , 3, 9, 11]; a summary of this w o r k 
may be found in [12] . We now quote several results that will be used later in ana lyz ing 
o u r a lgor i thms: 

T h e o r e m 1. (Reny i and Sulanke [11]) If N points are chosen uniformly 
and independent l y at random in the plane from a convex r - g o n , then 
as N -> oo, 

! We say thai f(N) - f f o ( N ) ) if f(N)/g(N) IB boun:ii<l below by *om* nonrrro conetnn! C N oo. 
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h(N) - (2r/3> ( % • l o g e N ) ^ 0(1) . ( % « Euler's constant) 

T h e o r e m 2. (Raynaud [9] ) If N points are chosen uniformly and 
i n d e p e n d e n t l y at random from the interior of a k-dimensional 
h y p e r s p h e r e , then as N - » oo, f(N), the expected number of faces of 
the c o n v e x hull , is g i ven asymptotically by 

f (N) « O W ^ - W ^ ) . 

Since w i t h p robab i l i t y one each face of the hull is simplicial and thus 
is d e t e r m i n e d b y k ver t i ces , Theorem 2 implies that 

h(N) « 0 (N*/3) t f 0 r points chosen uniformly in a circle, and 
h(N) « 0 (N*/2) j f o r points chosen uniformly in a sphere. 

T h u s in any dimension, for points in a hypersphere , the expected numbor 
o f hull v e r t i c e s is bounded above by IMP, for some p < l . 

T h e o r e m 3. (Raynaud [9] ) If N points are chosen independently 
f r o m a normal d ist r ibut ion in k dimensions, then as N oo the 
asymptot i c behav io r of h(N) is g iven b y 

h(N) - 0( (log f\j)(fc~D/2 ) . 

A usefu l connect ion can be established between the stochastic p roper t ies of c o n v e x 
hul ls and the e x p e c t e d number of maximal vectors in a random set. A maximal v e c t o r is 
o n e that is not less than any other in all components. Under v e r y general condit ions the 
e x p e c t e d number of maximal vectors in a set is quite small: 

T h e o r e m 4. (Kung, Schkolnick, Thompson [7]) If N k-dimensional vectors 
a re c h o s e n such that their components are distr ibuted independently , 
t h e n A(N,k) , the e x p e c t e d number of maximal vectors , is bounded b y 

A(N,k) < ( l o g g N ^ - 1 for N > 3 . 

N o t e that a v e r t e x of the convex hull of a finite k-dimensional set is maximal fo r some 
ass ignment of plus and minus signs to all coordinates of its points. This implies that fo r 
d i s t r i b u t i o n s sat is fy ing the independence assumption of Theorem 4, the e x p e c t e d number 
o f v e r t i c e s of the convex hull is bounded b y 

E (h ) < 2 K ( l o g e N ) K ~ 1 = 2 (2 i o g g N ) ^ 1 . 

T h e mult ivar iate normal of Theorem 3, the multivariate exponent ial , and the uni form 
d i s t r i b u t i o n o v e r a h y p e r c u b e all satisfy the independence-of -components assumption. 
T h e qual i ta t i ve behav ior of the hulls of random sets may be understood in tu i t i ve ly as 
f o l l o w s : fo r uniform sampling within any bounded figure F, the hull of a random set wi l l 
t e n d to assume the shape of the boundary of F. If F is a po lygon , points accumulating in 
t h e " c o r n e r s " wil l cause the resulting hull to have v e r y few vert ices . Because the c i rc le 
has no c o r n e r s , the expec ted number of hull vert ices is comparat ive ly high. It is 
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r e a s o n a b l e that on l y some small fraction of the sample points should s u r v i v e as hull 
v e r t i c e s , but in all of the above theorems the order of h(N) is subl inear. Informal ly w e 
may account for this b y noting that the hull is a manifold of st r ic t ly lower dimension than 
t h e set f rom w h i c h the points are being chosen. If this is not t rue , w e may have h(N) « 
0<N). F o r example , if N points are selected uniformly on the boundary of a c i rc le , t h e n 
h (N) « N. A s w e shall see in the next section, the only assumption about the d i s t r ibu t ion 
o f po in ts that needs to be made in order to obtain a linear expected - t ime algor i thm is 
that h(N) » O(NP) , for some p < l . 

3. C O N V E X HULLS IN THE PLANE 

T h e fast c o n v e x hull algorithm is easily described as a recurs ive p r o c e d u r e : If N, the 
n u m b e r of g i v e n points, is less than some constant C, then the procedure calculates the 
hul l b y some s t ra igh t fo rward method and returns. If N is large, though, the p r o c e d u r e 
f i r s t d i v ides the N points into two subsets of approximately N/2 points each b y a method 
w h i c h e n s u r e s that the result ing subproblems are random. It then finds the c o n v e x hulls 
o f the random subproblems recurs ive ly , which will take expected time 2T(N/2) , s ince the 
s u b p r o b l e m s are of the same form as the original. The result of each of the r e c u r s i v e 
cal ls is a c o n v e x p o l y g o n whose expected number of vert ices is 0 ( N P ) , w i th p < l . T h e hul l 
o f the g i v e n set is now just the hull of the union of the hulls found in the subprob lems . 
Shamos [ 1 5 ] has g i ven an algorithm to find the hull of the union of two convex p o l y g o n s 
in time p ropor t iona l to the total number of vert ices of both. We may use this a lgor i thm 
t o m e r g e the resul ts of the subproblems in expected time 0 ( N p ) . The average runn ing 
t ime o f this algorithm thus o b e y s the recurrence 

(1 ) T (N) « 2T(N/2) + 0 ( N p ) , 

w h o s e so lut ion , for p < l , is T(N) * 0(N). Thus we have shown that the algorithm runs in 
l inear e x p e c t e d time for point sets satisfying the assumptions made in Sect ion 2. 

W e assumed above t w o important propert ies about the division step of the d i v i d e - a n d -
c o n q u e r a lgor i thm: that it can be accomplished in constant time and that the points in the 
s u b p r o b l e m s o b e y the same probabi l i ty distribution as do the original points. A d iv i s ion 
s t e p w i t h these p roper t ies can easily be implemented on a RAM b y storing the points in a 
t w o b y N a r r a y of cartesian coordinates. Each point is initially assigned a random 
locat ion in the a r r a y and a subset of the points is represented as a pair o f i n tegers 
w h i c h def ine the left and right endpoints of a segment of the ar ray . Division into f u r t h e r 
s u b s e t s can be accomplished by taking the arithmetic mean of the endpoints as def in ing 
t w o n e w segments , etc.; note that the division preserves randomness. In implementing 
this a lgor i thm r e c u r s i v e l y , it is crucial to pass only pointers in the subrout ine calls. If 
e n t i r e subprob lems are passed, equation (1) no longer applies and an N log N algor i thm 
wi l l resu l t , no matter how few points are on the convex hull. 

Let us now note the features of the above algorithm that g ive it l inear e x p e c t e d time. 
F i r s t , the e x p e c t e d size of the output is small. Second, solutions to the random 
s u b p r o b l e m s can be married quickly to form a solution to the total problem. Note that 
t h e a lgor i thm also has optimal wors t - case performance. Since the largest hull that can b e 
r e t u r n e d b y a subprob lem is of size N, we always have 
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( 2 ) T (N ) < 2T(N/2) + 0(N) , 

w h o s e so lu t ion is T (N) < 0 ( N log N). We can use this algorithm as a paradigm b y w h i c h to 
c r e a t e o t h e r s w i th l inear expected time and optimal wors t - case behavior . 

4. F U R T H E R EXAMPLES 

T h e f i r s t simple extens ion of the algorithm of Section 3 gives a l inear e x p e c t e d - t i m e 
a lgor i thm for the convex hull of a set of points in three dimensions. Preparata and Hong, 
in an important recent paper [8] , have shown that the hull of the union of t w o dis jo int 
c o n v e x three -d imens iona l po lyhedra can be found in time that in the w o r s t case is o n l y 
l inear in the total number of vert ices. Their algorithm makes no essential use of the fact 
that the p o l y h e d r a are disjoint and can be readily modified to include the case in w h i c h 
t h e in te rsec t ion is nonempty. If the points are drawn from a distr ibut ion sat is fy ing the 
assumpt ions of Sect ion 2, then the recurrence relation (1) applies and w e again h a v e a 
l inear e x p e c t e d - t i m e algorithm. 

M a n y geometr ic algorithms are based on finding convex hulls. For example, the 
d iameter of a set (distance between its two farthest points) is always rea l i zed b y t w o 
v e r t i c e s of the hull. Fur thermore , these points con be found in linear time ( in t w o 
d imens ions ) once the convex hull is available [14]. We thus immediately have a l inear 
e x p e c t e d - t i m e diameter algorithm. Somewhat more complicated is the p rob lem of 
d e t e r m i n i n g the smallest circle enclosing a plane set of points. This is a classical p r o b l e m 
w i t h an e x t e n s i v e l i terature. An 0(N log N) worst -case algorithm is g i ven in [16] . It is 
e l e m e n t a r y to show that the two or three points determining this circle are v e r t i c e s of 
t h e c o n v e x hull . If w e f irst find the hull with a linear expected- t ime algorithm, the time 
r e q u i r e d fo r the remaining step (finding the circle) is not linear in the number of hull 
v e r t i c e s . If E(h) is the expected number of hull vert ices, we need to know E(h log h) to 
c o m p l e t e the analysis. (Mote that we always have 1 S h <N and 

N 
E (h ) - Z i P j 

i -1 

w h e r e Pj is the p robab i l i t y thai h « i . Now, since log i < log N, 

N 
E (h log h) = 2 (i log i> p f 

i -1 

< (log N) E(h) . 

T h u s , if E(h) - OflMP), p < l , then E(h log h) - 0 0 ^ ) , for some q < l . We may t h e r e f o r e f ind 
the smallest c i rc le enclosing a plane set in linear average time. 

In g e n e r a l , determining expectat ion values of functions of h is a difficult p rob lem and 
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w e o f t e n must be satisf ied with upper bounds. The largest area tr iangle determined b y 
t h r e e points of a set of N points in the plane can be found in time that is quadrat ic in the 
n u m b e r of v e r t i c e s of the hull [15] . In order to be able to calculate the a v e r a g e - c a s e 
b e h a v i o r of the algorithm, w e must compute E ( h 2 ) . If E(h) « ( X N p ) f then c e r t a i n l y 
E ( h ^ ) < 0 ( N p * l ) . App ly ing Theorem 2, we may find the largest determined t r iangle in 
0 { N 4 / 3 ) e x p e c t e d time in t w o dimensions, and this bound is highly pessimistic. 

T h e o r e m 4 leads d i rect ly to a linear expected-t ime algorithm for finding the maxima o f 
N k -d imensional vec to rs whose coordinates are chosen independent ly . It is o n l y 
n e c e s s a r y to remark that the marriage step of the d iv ide -and -conquer algorithm finds the 
common maxima of t w o subproblems of s ize N/2, each of which has v e r y f e w maxima, on 
t h e a v e r a g e . 

W e o f t e n o b s e r v e that the performance of an algorithm is much better than its w o r s t -
c a s e l o w e r bounds would lead us to expect ; the Simplex algorithm for linear programming 
is a s t r ik ing example of this phenomenon. Fast as Simplex is, h o w e v e r , it is k n o w n not to 
b e opt imal for problems wi th small numbers of variables, and a d i v i d e - a n d - c o n q u e r 
a p p r o a c h can be used to advantage [17] : the feasible region of a t w o - v a r i a b l e p r o b l e m is 
the i n t e r s e c t i o n of the half -p lanes determined by the linear constraints. If w e denote the 
i*'1 h a l f - p l a n e b y Hj, then w e want to form 

H j n H 2 n , , . o H N . 

S i n c e the in tersect ion operator is associative, this may be rear ranged as 

( H t n . . . n H N / , 2 ) n < H N / , 2 + j n . . . n H N ) . 

E a c h term is an intersect ion of N/2 half -planes, and is thus a convex po lygonal r e g i o n of 
at most N/2 ve r t i ces . The intersection of two such f igures can be found in l inear time at 
w o r s t [ 1 4 ] , so equat ion (2) descr ibes the worst -case behavior of the algorithm. We may 
t h u s f ind the intersect ion of N half -planes in 0(N log N) time. If many of the ha l f -p lanes 
a r e r e d u n d a n t , though, the final intersection will have v e r y few ver t i ces , and w e may 
take advantage of this fact to develop a better algorithm. Suppose that K Q is a b o u n d e d 
c o n v e x r e g i o n of the plane that contains another convex region K j . If N lines Lj are 
d r a w n independent l y and at random to meet KQ but not K j , and w e define Hj to be the 
c l o s e d ha l f -p lane bounded by Lj that contains K j , consider E(v) , the e x p e c t e d number of 
v e r t i c e s of the intersect ion of all the Hj. Preliminary results were obtained b y R6nyi and 
Su lanke [ 1 0 ] and Ziezold [18] has shown by duality that E(v ) is of the same asymptot ic 
o r d e r as the e x p e c t e d number of points on the hull of a set of N points d r a w n un i formly 
w i t h i n K , . If K j shrinks to a point, then E(v) approaches the constant n 2 / 2 . In a n y 
e v e n t , under fa i r l y conservat i ve assumptions we will have E(v ) « 0 ( N P ) , p < l , and a l inear 
a v e r a g e - c a s e algorithm for intersecting N half-planes results. This leads immediately to 
an O (N) e x p e c t e d - t i m e algorithm for linear programming in two var iables and for f inding 
t h e k e r n e l of a p o l y g o n [14] . 

5. S U G G E S T I O N S FOR FURTHER WORK 
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It is natura l to t r y to ex tend the results of this paper to higher -dimensional prob lems 
in g e o m e t r y and to other problem domains. The limiting factor, h o w e v e r , is not the 
t e c h n i q u e but ou r inadequate knowledge of the propert ies of random sets and o u r 
inab i l i t y to d e v e l o p eff icient merge procedures to make d i v ide -and -conquer p r o d u c t i v e . 
A s an example , no method is now known to find the hull of the union of four -d imens iona l 
p o l y h e d r a in less than quadratic expected time. (Quadratic time is requ i red in the w o r s t 
case . See [8] . ) L ikewise, the expected value of the square of the number of v e r t i c e s of 
t h e hull of N points chosen uniformly in a four-dimensional h y p e r s p h e r e in not k n o w n to 
b e less than 0 < N 8 / 5 ) . We are thus unable to give an algorithm for the four -d imens iona l 
c o n v e x hull w h o s e e x p e c t e d running time is p rovab ly less than 
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