NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Symbolic Manipulation of Computer Descriptions:
ISPL Compiler and Simulator

Mario R. Barbacci
Department of Computer Science
Carnegie-Mellon University
Pittsburgh Pa.

August 2, 1976

This project is supported in part by the Advanced Research Projects Agency (ARPA) of
the Department of Defense, under contract F44620-73-C-0074, monitored by the Air

Force Office of Scientific Research, and by the National Science Foundation, under
grant GJ 32758X.

ISPL Compiler: User’s Manual

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 3
2 Declarations 6
21 Memories and Registers 6
22 Macros. . 7

23 ldentifiersand Constants 8

24 Comments 9

3 Register Transfers 10
81 Structure Selectors. 10

82 Transfers ... 12

33 ShiftOperators 12

34 Arithmetic Expressions 14

35 Relalional Expressions 15

4 Register Transfer Sequences 17
Al Blocks. ... 17

4.2 Conditional Statements, 17

43 Labelled Statements., 19

44 The BAILOUT Operation 19

45 Statement-lists ... 20

5 ISPL Programs 21

ISPL Compiler: User’s Manual

10

11

12

The Compiter Output o v v 0 o
6.1 Running the Compiler
6.2 Examplel-Llisting
63 Example I - Symbo!l Table
6.4 Example | - Cross Reference

65 Example | - Gtalement Table
REfErences . . « « « « = « o+ v s om s
Appendix | - The Minicomputer Listing
Appendix 1 - 1SPL Reservéd Keywords

Appendix II - The XTOP1O.REQ File

Appendix 1V - The Multiplier MACRO10 Format

Appendix V - The SIMISP.REQ File
12.1 The Statement Table
122 The Symbol Table -

123 Table Diagrams <+« - - -

ISPL Compiler: User’s Manual

A User’s Guide to the ISPL Compiler
Mario R. Barbacci
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa.

ISPL Compiler: User’s Manual

ABSTRACT
The compiler described in this manual will translate programs written in a subset
of ISP [Bell, 1971] into register transfer level instructions. The code thus generated
could be used for the implementation of wiring list generators, simulators, or other
Computer Aided Design applications. This manual describes the syntax and semantics of

the language (ISPL) accepted by the compiler.

ACKNOWLEDGEMENTS
The compiler described here is an improved version of an original system
implemented by S. Goldman and R, Scroggs. The syntax graph driving the compiler is
generated using a program (GRIE‘GEN) written by P. Kariton and R. Scroggs. This
version of the manual reflects the modifications and improvements suggested by the
users during the preparation of the ISP description of the candidate architectures for
the Army/Navy CFA project. Special thanks are due to H. Elovitz (NRL), R. Gordon

{NUSC), R. Howbrigg (NUSC}), D. Siewiorek (CMU), and S. Zuckerman (NRL).

The Symbolic Manipulation of Computer Descriptions:
ISPL Compiler and Simulator

The Department of Computer Science at Carnegie-Mellon University is currently
engaged in a research project exploring the uses of computer description languages in
the automatic design of both software and hardware systems. This document describes
a language, ISPL, based on the Instruction Set Processor notation of Bell&Newell
[Bell,1971). The language was designed as a tool for the description of instruction sets
i.e. the architecture of a computer, and has been used extensively in a design
automation project at CMU [Siewiorek,1976] and in the Army/Navy Computer Family
Architecture Project.

Traditional computer descri;ﬂion languages have been designed primarily for
human communicaiion andfor simulation. The SMCD [Barbacci,1974] project has the
more ambitious goal of developing design automation tools which would permit the
generation of machine-relative software, documentation, hardware modular design,
program verification, simulalion, and generation of microcode. As in any evolutionary
project, preliminary resulls are necessarily short of the ultimate goal; thus at this point
we can present two concrete systems: a compiler and a simulator. A machine-relative
compiler-compiler is being investigated by a group under W. Wulf. An automatic
generator of hardware modular specifications is being developed by a group under D.
Siewiorek and A. Parker. Further studies of computer descriptive languages are being
carried out by this author and others.

As indicated above, the systems described in this report have been used as part
of the Army/Navy CFA project, sponsored by the Army Electronics Command and the
Naval Research Laboratory. Part of the proiect involved the description, in ISPL, of

three commercial architectures: The DEC PDP-11, the IBM /360,370, and the Interdata

8/32. These descriptions were used to collect statistics on the execution of a set of
benchmark programs under the ISPL simulator. Although the simulator is not
particularly fast, its interactive facilities allow very extrict control and detailed analysis
of the register transfer operations being performed during the fetch/decode/execute
cycle of the machines, The simulator was not meant to be used as a software
development tool (although in fact, some CFA benchmarks for the Interdata 8/32 were
debugged under the simulator, it being more accessible at CMU than the real machine),
it is rather an Architectural Design tool that allows the user to explore alternative

instruction sets and to collect statistics on the performance of the architectures.

Mario R. Barbacci
August 2, 1976

[Barbacci,1974] Barbacci, MR. and D.P. Siewiorek: "Some Aspects of the Symbolic
Manipulation of Computer Descriptions”, Department of Computer
Science, Carnegie-Melion University, July, 1974.

[Bell,1971] Bel, C.G. and A. Newell: “"Computer Structures: Readings and
Examples”, McGraw-Hill Book Company, New York, 1971.

[Siewiorek,1976] Siewiorek, D.P., and MR. Barbacci: “The CMU RT-CAD System: An
Innovative Approach to Computer Aided Design", National
Computer Conference, NCC76, New York, June 1976.

ISPL Compiler: User’s Manual

1. Introduction

The ISP (for Instruction Set Processor) notation was developed for a text [Bell,
1971] to precisely describe the programming level of a computer in terms of iis
memory, instruction format, data types, data operations, and a set of interpretation
rules.

The behavior of a processor is determined by the nature and sequence of its
operations, This sequence is given by a set of bits in primary memory (a program) and
a set of interpretation rules {usually in the central processor). Thus if we specify the
nature of the operations and the rules of interpretation, the actual behavior of the
processor depends on the initial conditions and a particular program.

Although the above format is commonly used to describe a digital computer, ISPL
is not intended to force the user into a given description style; ISPL can be used to
describe register transfer systems in general (digital computers are a subset of such
systems, namely those systems that interpret an instruction set).

The subset of ISP impiemented by the compiler under discussion contains a
number of teatures that allow the user to describe a wide variety of digital systems:
Pseudo register declarations, macros, and compound statements, For efficiency reasons,
certain other features described in [BeH, 1971] are not impfemented. Among these are:
multidimensional memory arrays, parameterized procedures, multiple word access, and
scattered bit access. However byte access is implemented.

An ISPL program consists of a description of the memory components {memories
and registers} and a description of the behavior of the system. Memory components

are defined in ISPL by a name and a description of their structure using brackets to

ISPL Compiler: User’s Manual

group the subcomponents along a given dimension. In the current implemention the
only subcomponents allowed are memory words and bits {(as subcomponents of memory
words and registers). The behavior of the system is given by a set of register
transfer statements. These statements can be performed in sequence or concurrently.
In ISPL, concurrency of actions is the rule rather than the exception, and it is reflected
in the use of ™" as a delimiter for lists of concurrent actions. Sequencing is expressed
by using the term "next" as a delimiter for lists of sequential actions. Complex
concurrent and sequential activities can be described in terms of simpler activities
using "next”, ™", "(", and ")" in an Algol-like block structure.

The ISPL compiler produces code for an idealized Register Transfer Machine.
There are two types of instructions in the RTM: Data and Control instructions. Control
instructions are used to sequence the operation of the machine. They contain
‘ instructions to START, STOP, BRANCH, DIVERGE into concurrent execution paths, etc.
The Data instructions are used to define the Arithmetic and Logical operations among
the registers of the machine. They are described in terms of a 3-address format:

destination « sourcel operation sourcel

The RTM code produced by the compiler is presented in two formats. The first
format is simply a tabular listing intended primarity for human use. The second format
is intended primarily for machine consumption. The human intended tabular
representation could be digested by suitable string manipulating programs and stored
into a more convenient machine format. Several reasons argued against this approach:
depending on the language used, writting these interface programs might involve a non

trivial amount of work. Worse yet, any format modification intended to help human

readers will render these programs obsolete. The solution adopted was to produce

ISPL Compiler: User’s Manual

another copy of the RTM code directly into a machine understandable format. Thus the
version of the RTM code intended for machine use is created as a "program” using
MACRQ-10 as the intermediate language. The format of these programs is described in

the appendices.

ISPL Compiler: User’s Manual

2. Declarations

There are two types of declarations in ISPL: Memory Declarations {explained in

this section) are used to describe the structure of the registers and memories in a

machine; Procedure Declarations (explained in later sections) are used to describe the

behavior of the functional units in a machine.

2.1. Memories and Registers

Memory components are defined in ISPL by a name and a description of their
structure. The number of subcomponents at each level of decomposition is given by a

bracketed list of constants, much like an array declaration in Algol.

declaration-part = DECLARE declaration-list ERALCED
declaration-list ::= declaration |

declaration-list ; declaration
declaration = memory-declaration |

memory-declaration := memory-declaration |
procedure-declaration

procedure-declaration = identifier = (statement-list)
memory-declaration = identifier structure-declaration
structure-declaration ::= [word-list] < bit-list > |

[word-list] <> |

< hit-list > |

< >
word-list ::= name-list
bit-list 1= name-list
name-list ;= element-range |

name-list , element-range
element-range ::= number | number : number

“'Il

The declarations are given by a list of individual component declaration using 7
as delimiter. There are two types of memory declarations: 1) A definition of a physical
component (physical declaration), and 2} A definition of a logical component {logical

declaration) in terms of a previously declared (physical or logical) component. A logical

declaration uses the ":=" operator to make an equivalence between two components,

ISPL Compiler: User’s Manual

Examples

A<15:0> Declares A as the name of a register 16 bits wide,

named 15, .. 0 (from left to right). The ™" or
range operator is used to denote an abreviated
tist of subcomponent names.

Mp[0:4095]<0:1 1> Square brackets are used to specify those
dimensions where the accessing is done through
some “addressing” (switching) schema. The
memory, Mp, consists of 4096 words, each of 12
bits, named (from left to right} 0,1,..11.

R<15,13,11,9:10> In general, the list of subcomponents along any
dimension is given by a list of "names” for the
individual subcomponents. Numbers used to name
individual elements do not indicate relative
position.

Mw[32767:0]<15:0>;

Mb[65535:0]<7:0>:=Mw([32767:0]<15:0>; Now the designer can use either Mw {the
"word" memory) or Mb (the “byte” memory).

The only concession to the use of numbers as both names and position
indicators is by using the range (":") operator, whereby the abreviated list consists of
the bounds and all integers in between, with the implication that these consecutive
numbers also name consecutive (from left to right) elements. The use of an empty bit-
list {<>) indicates a single, unnamed bit.

Undeclared variables or multiple declarations of a variable are, usually, non-fatal
errors. The compiler will warn the user it this situation arises. The compiler compares
the lengths (NwordssNbits) of the left and right hand sides of a logical declaration; if

the lengths do not match a warning is issued.
2.2. Macros

A different type of declaration, the MACRO declaration, allows the designer to

ISPL Compiler: User’s Manual

abreviate the description by naming often used strings of characters. The macro name
can then be used instead of the full string. The format of a macro declaration is the
following:

MACRO identifier := any-string-of-characters-not-containing-a-$-sign 8§

Macros are handled in its entirety by the lexical phase, thus the parser never
"spes” a macro expansion. Macros can, therefore, be declared at any point in the
description, not necessarily in the declaration part, and remain in effect until the end
of the description.

Examples

MACRO SIGNBIT := ACC<0> § _The use of SIGNBIT some time later in the
description is equivalent to using ACC<0>. Macros
are strictly in-line string substitutions.

A macro can be defined in terms of other macros and the user should be careful
to avoid a recursive definition which would create a non-terminating string
replacement loop.

There are implementation dependent limits on the size of a macro string. If a

macro declaration exceeds this limit (1000 characters at present) a warning will be

issued. Results might be unpredictible if this situation occurs.

2.3. ldentifiers and Constants

An identifier in ISPL is a string of letter, digits, and "."'s, beginning with a letter;
the "" is included as an identifier character for readability purposes. In the current
implementation only the first 6 characters of an identifier are kept by the compiler.
Identifiers must, therefore, differ in the first 6 characters for the compiler to

distinguish them. The lexical phase accepts upper and lower case ASCII characters but

ISPL Compiler: User’s Manual

they are converted and stored internally as upper case characters. This is another
limitation of the implementation,

For readabiiity purposes, idenlifiers can be followed by a larger and more
descriptive version of the identifier. This secondary identifier is treated like an inline
comment by the lexical phase. The syntax for this extended identifier use is:

short.identifier\this.is.a.long.identifier

An extended identifier can be appended to a short identifier using the "\"
character. Such compound identifiers are valid wherever an identifier is valid. Notice
that this is not the same thing as an "alias", as described in the full language [Bell,
1971] The secondary name is stripped by the lexical phase and the designer must
use the primary name for identification purposes,

Constants are strings of digits, interpreted as a number in some base. The
default base is 10 (i.e, constants are decimal numbers unless otherwise specified).
Constants in base 8 (octal numbers) must be tagged with the character #, as in #100
(decimal 64). Constants in base 2 (binary numbers) must be tagged with the character
", as in "100 {(decimal 4). Constants in base 16 (hexadecimal numbers) must be tagged

with the character ", as in "Al (decimal 161). The length of a constant is the minimum
number of bits needed to represent it (i.e. leading 0%s are stripped). The constant O is

1 bit tong. The current implementalion of the compiler limits constants to a maximum

size of 35 bits,

2.4. Comments

Comments can be inserted in a description by preceeding the comment string
with the character ™", All characters following the ™" until the end of the line are

ignored.

ISPL Compiter: User’s Manual

3. Register Transfers

Register Transfers are used to describe the data operations on the memories
and registers (the data components) of the system, The syntax of a transfer follows
very closely that of most programming languages. The main difference is the use of
some special operators and the use of a non-standard operator precedence to
accomodate these new operators.

The operators act upon the components of the system by taking the data stored
in some components (the inputs), operating (i.e., transforming) on the data, and storing .
the resulting data in some component (the output).

The data used by the operators is defined in terms of the components that
contain it. Since the memories and registers are declared as structured components
made out of words and bits, a siructure selector is needed in order to‘access or store

data.

3.1. Structure Selectors

structure-selector = term | term < selector-range >
term := number | memory-access | { expressian)
memory-access = identifier |

identifier [arithmetic-expression]
identifier [element-name]
element-name = mimber
selector-range bit | bit : bit
bit = number

The terms are the building blocks used in a register transfer expression. A term
can be a constant, a memory-access (to select data stored in a memory or register), or
an expression in parenthesis (thus allowing large and complex register transfer

expressions).

10

ISPL Compiler: User’s Manual

A structure-selector is vsed to select parts of a term (i.e. to select bits of a
register, a constant, or an expression). The nature of the register transfer operators
requires that the operands be of homogeneous type (ie, register-like) and length.
Thus multiword memories must be accessed using an arithmetic-expression (the
address calculation) enclosed in "[" and "]" to select one and only one word of the
array.

The compiler compares the maximum value that the result of an address
computation can have with the number of words declared for a memory. If the former
exceeds the latter, a warning is issued.

When a selector-range is applied to a memory or register access term it must
use the bit names used in the declaration. When it is applied to other types of term,

whose structure has nol been declared (i.e,, constants and expressions), the bits of the

term are implicitly named n, n-1, ..., 1, O (from left to right}l
Examples
ACC Select the entire ACC register
Mp[Pc} Select the word whose address is contained in
register Pc
ACC<5> Select bit 5 of register ACC

Mp[R{INDEX]}+DISPLACEMENTJ<0> Select bit 0 of the word whose address is given
by the eftective address calculation expression

(A<7:0>+B<7:0>)<5:4> Select the Bth and 6th bits {from the right) of the
result of the addition

Attemptling to access undeclared bits of a register or memory word will resuit in
a warning message. The compiler will then default the erroneous bit name to the
leftmost bit of the declaration. When the selector range of a register or memory word

attempts to switch the relative position of two bits, the compiler will switch the

11

ISPL Compiler: User’s Manual

selector range boundaries and issue a warning message. For instance, if X is declared
as X<0:5>, both X<2:3> and X<3:2> are equivalent terms but in the second case a

warning is issued.
3.2. Transters

Register transfers are used to modify the contents of the registers and
memories, The syntax of a transfer is the following:

transfer ;= - memory-access « arithmetic-expression |
memory-access <selector-range> « arithmetic-expression

The use of a selector-range on the left hand side of the "«" specifies a partial
register {or memory word) modification; the non-selected bits are not disturbed. If the
right hand side is shorter than the left hand side, the result is stored right justified
and 0’s are concatenated to its left to clear the high order bits of the left hand side. If
the right hand side is larger than the left hand side truncation of the high order bits
will occur (the compiter will issue a warning if this situation occurs).

The right hand side of a transfer is always an arithmetic-expression. The
difference between an arithmetic-expression and an expression properly is in the use

of relational operators, which are not allowed in the former. We will give more details

in the subsection dealing with expressions.

3.3. Shift Operators

shift u= structure-selector |
strueture-selector shift-op structure-selector
shift-op := TSL) TSR | TSLO | TSRO | TSLI [TSR1 | TRL | TRR }
concatenation
concatenation = ()]

12

ISPL Compiler: User’s Manual

A shift is the first step in the hierarchy of register transfer operations, shift

operators have the highest binding power (precedence). A shift always takes the

following form:

left.operand shifi-op right.operand

The meaning of the operators {(all of them have the same precedence) is the

following:
OPERATGOR

TSL

TSR

TSLO

TSRO
TSL1
TSR1

TRR

TRL

MEANING

Shift left the left.operand, one position, and insert the (rightmost bit of the)
right.operand into the vacant position, dropping the leftmost bit of the
left.operand. The length of the result is the same as the length of the
left.operand. The result can be stored in a register ar used as an operand
when building complex expressions. The operator does not modify the
left.operand, only the transfer operator ("«") can perform side effects.

Shift right the left.operand, one position, and insert the (rightmost bit of
the) right.operand into the vacant position, dropping the rightmost bit of
the left.operand. The length of the result is the same as the length of the
teft.operand.

Shift left the left.operand the number of positions indicated by the value of
the right.operand inserting 0’s in the vacant positions and dropping the
righmost bits of the leftoperand. The rightoperand is treated as an
unsigned integer. The result has the same length as the left.operand..
Similar to TSLO but shifting right.

Simitar to TSLO but inserting 1’s into the vacant positions.

Similar to TSL1 but shifting right.

Rotate towards the right the left.operand by the number of positions
indicated by the value of the right.operand. The length of the result is the
same as the length of the left.operand.

Similar to TRR but rotating left.

Concatenate the left.operand with the right.operand. This operator is

included among the shift operators for symmetry reasons. The length of
the result is the sum of the lengths of the operands.

13

ISPL Compiler: User’s Manua!

3.4. Arithme‘ic Expressions

shift | NOT shift
complement |
conjunction AND complement |
conjunction EQV complement
disjunction ;= conjunction |

disjunetion OR conjunction |

disjunction XOR conjunction
negation = disjunction |

- disjunction |

MINUS disjunction |

+ disjunction
factor ::= negation |

Jactor * negation |

factor [negation
sum = factor |

sum - factor |

sum MINUS factor |

sum + factor
erithmetic-expression ::= sum

eomplement
conjunction :

)

All togical operators (NOT, AND, EQV, OR, and XOR) operate on a bit by bit basis.
If the operands have unequal lengths the shortest operand is expanded (on the left)
with 0’s,

The arithmetic operators, with the exception of MINUS, operate on unsigned
(pure magnitude) operands, the MINUS operator assumes a Two’s Complement
represention with a sign bit in the leftmost position, The main difference is in the
padding used to match the length of their operands. The MINUS operator extends the
sign of the shortest operand, the other operators use 0 as the padding character.

The length of the result of the infix operators "+", "-", and "MINUS" is one bit
targer that the fargest operand. The length of the result of the "+" operator is the sum
of the lengths of the operands. The length of the result of the "/" operator is the same

as the length of the left operand {the dividend).

14

ISPL Compiler: User’s Manual

3.5. Relational Expressions

In order to describe non-trivial systems, ISPL provides certain facilities to
control the execution of the transfers. Thus certain transfers may or may not be
executed depending on the result of some previous operation. These conditional
activities are described in more detail in the following section. Here we are concerned
with the basic data operators of the language, among which we include the relational

operators used to build conditional expressions.

relation ;= arithmetic-expression |

arithmetic-expression relop arithmetic-ex pression
relop = EQL J NEQ | LSS | LEQ | GEQ | GTR) TST
expression ;= relation

Relational operatars perform a test between their left and right operands. The
result for all these operators, with the exception of TST, is a boolean value (TRUE or
FALSE) which can be tested by one of the control operations defined in the following
section. All relational operators treat the operands as unsigned integers. A 2’s
complement representation of a negative humber will therefore look greater than a
positive number of the same length.

The TST operator performs a logical subtraction of its operands and produces a
result of 0, 1, or 2, indicating that the left operand is less than, equal to, or greater
. than the rigth operand, respectively.

Beware that relational operators have less precedence than logical and
arithmetic operators, thus, the expression: A LSS B AND C GEQD is parsed as:
A LS5 (B AND C) GEQ D which is syntactically incorrect. The proper way of writting
the expression is: (A LSS B) AND (C GEQ D) |

It was indicated before that the right hand side of a register transfer operation

15

ISPL Compiler: User's Manual

(¢} must be an arithmetic expression. This does not allow the use of relational
operators. In order to use them on the right hand side of a transfer, the (relational)
expression must be enclosed in parenthesis. This in effect transtorms the (relational)
expression into a term, a valid arithmetic-expression, e.g.:

FLAG«+(A NEQ B); ! Yields O or 1

TVAL<14(D TST E); ! Yields 1,2, 0r 3

16

ISPL Compiler: User’s Manual

4. Register Transfer Sequences

The behavior of a digital system is described in ISPL by a list of statements.
These statements can be build up from register transfers by using two special
delimiters to indicate sequential or concurrent execution. Statement lists can be nested
using parenthesis to build more complex statement lists. The syntax of the register
transfer sequences is as follows:
statement-list = parallel-statement-list |

BAILOUT identifier |
statement-list NEXT parallel-statement-list

parallel-statement-list ::= lnhelled-statement |

parcllel-statement-list | labelled-statement
labelled-statement ::= statement |

identifier .= statement
statement ;= conditional-execute |

conditional-decode |

block |

transfer |

identifier
conditional-execute u= (IF expression => statement-list)
conditionnl-decode :i= (DECODE expression => parallel-statement-list)
block ::= (statement-list)
4.1. Blocks

Blocks are the simplest building tools to define complicated statements. A block
is a statement-list enclosed in parenthesis:

(A0 NEXT AeA OR B[X]<7:0>; CeC+])

4.2, Conditional Statements

There are two ways of specifying conditional activities. These are the
conditional-decode and the conditional-execute statements:

{ condition => statement(s)),

17

ISP Compiler: User’s Manual

where the conditions and their interpretation are as follows:
CONDITION INTERPRETATION

DECODE expression The value of the expression is interpreted as an integer and used to
select one out of n possible statements, given as a fist of alternatives.

nu
.

These alternatives are separated by ™", but in this case they are not
considered to be concurrent activities; only one of them will be executed.
The statements in the list are numbered O through n-1, from left to right.
The ith statement is executed if the value of the expression is equal to i.

IF expression This is a special case of the conditional-decode statement. The
statement-list following the => operator is initiated if the logical value of
the expression is TRUE, otherwise it is bypassed.

For simplicity, the expressions used in the candlitional—execule statement do not
have to be relational-expressions, yielding a TRUE or FALSE value. An arithmetic-
expression can be used, with the implication that the result of the expression is tested
against 0. The statement-list is executed if the expression is not equal to O, it is
bypassed otherwise. In other words, the expression is interpreted as (expression NEQ
. 0). For similar reasons, the conditional-decode statement accepts a relation as the
conditiona! expression, with the implication that the logical values FALSE and TRUE are
interpreted as the numbers O and 1, respectively.

The language does not provide an IF .. THEN .. ELSE type of conditional
statement. They are trivially described using a 2-way DECODE statement. The user
should be careful to write the alternative statements in the proper order: the Oth case
(logical FALSE) first and the 1st case (logical TRUE) second. Thus the statements are
reversed from the normal Algol-like order. |

Do not forget the "i"s after each alternative, except the last one, of a DECODE
statement. A missing ";" in this context is a fatal error that is sometimes detected

several lines after the offending alternative. The compiler will complain about a

"missing action list".

18

ISPL Compiter: User’s Manual

A.3. Labelled Statements

The statements described above can be identified with a label. This label is used
to designate the starting point of the statement. The label of a statement can be used
wherever a statement is valid. The interpretation given lo the use of a label in the
middle of a statement-list is the following:

1} If the label is associated with 3 procedure definition, it is interpreted

as a call {invocation) of the procedure, unless the invocation occurs
inside the definition of the procedure, in which case the invocation is
interpreted as a jump to the starting point of the sequence (i.e. there
are no recursive calls in ISP).

2} Other invecations are treated as jumps to the starting point of the
sequence. In the current implementation, labels (and their
sequences) need not be declared before they are used. Thus we can
jump forward in the description.

A reserved label, STOP, is predeclared in the compiler. It can be used to

indicate a jump to the end of the description.

4.4. The BAILQUT Operation

The BAILOUT operation provides a way lo describe the handling of exceptional
conditions that might occur during the fetching, decoding, and execution of instructions.
This operation is in effect a super RETURN from a procedure when an exceptional
condition arises. The BAILOUT operator is used ngetﬁer with the label of the
procedure whose context we want to leave, ie, BAILOUT relurl;ws accross muitiple
levels of (dynamically) nested procedures. For instance:

Examgles;
pl = {..NEXT (IF x => yez NEXT BAILOUT p2} NEXT ..)
p2 = (.NEXT pl NEXT ..)

Main := (_.NEXT p2 NEXT)

19

ISPL Compiler: User’s Manual

In the' above example, procedure MAIN invokes procedure P2 which starts
execution of procedure Pl. At some point, Pl decides that some error has accurred
(IF X => ..) and that only MAIN can handle the situation. The effect 6f "BAILOUT P2"
is to terminate the execution of P1 and P2 and return t.o procedure MAIN, at the paint

were it invoked P2.

45, Statement-Lists

Statements, labelled or otherwise, can be used to describe.a list of concurrent
activities, a parallel-statement-list, using the "" as delimiter. Parallel-statement-lists
can be used to build sequences of activilies or statement-lists, using the "next”
operator as delimiter. Notice that the %" when used 1o indicate concurrency has a
higher precedence than the "next” used to indicate sequentiality. For instance, in the
following statement-list: AcB ; CeD NEXT E«F the transfers .A4-B and C«D are executed
concurrently, and only when they are both completed' wili the locus of control pass to
the next statement, the transfer E«F, | o

One detail to keep in mind is that ISPL is a statement language, not an
expression language (in the BLISS sense). In 'particu!ai', there .is no such thing as an
empty or null sequence, thus sequences like: (AeB;) or A«B; NEXT CeD are invalid (the
"* must be followed by a statement). In some cases the compiler is capable' of

" detecting the extra *" and will eliminate it after warning the user.

20

ISPL Compiler: User’s Manual

5. ISPL Programs

As mentioned in the Introduction, an ISPL description consists of a set of

component declarations, together with a description of the behavior of the {main)

system:

ispl-program ::= identifier .= (declaration-part statement-list)
The above syntax indicates that ISPL programs look like labelled blocks, with a

declaration-part, local to the body of the block.

EXAMPLE

HULT: =
(DECLARE
MPD<15:8>;
P<l5:8>;
Ccl5:85;
STEP := (DECODE P =» PeP TSR 83 P« (P+NPD)<15:8> 1SR 0)

ERRLCED
LB:= {
Ce8 NEXT
Ll:= {
STEP NEXT
Ce(C-17<)15:8> NEXT
(IF C NEQ B => L1}
)
)

The first example presents the ISPL description of a simpte 8-bit muitiplier using
the shift-and-add algorithm. The multiplicand resides in the leftmost 8 bits of the MPD
register. The multiplier resides in the rightmost 8 bits of. the P register. The partial
product is developed using all 16 bits of the P register. Additional details about the
algorithm can be found in [Bell, 1972]

The description begins with the specification of the label for the program
(MULTIPLIER). Labels are used in ISPL to identify activities so that they can be

branched to, or used as subroutines,

21

ISPL Compiler: User’s Manual

The program itself is enclosed in parenthesis, and consists of two parts. The
declarations and the specification of the behavior, The former are specitied as a list of
individual component declarations (muttiplicand, multiplier /product, and step counter),
and one procedure (STEP) which performs the basic multiplication operation, using the
reserved identifiers DECLARE and ERALCED as brackets, The specification of the
activities of the system is given as a list of two sequential steps. The first step (Ce8)
initialises the counter and the second is given by a labelled (L1) block of activities. this
consists of a sequence of three steps. The first one performs the basic multiplication
operation by calling the procedure; the second step decrements the counter; the third
step tests the counter to see if the operation has been completed. If the value of the
counter has not reached 0 then a jump to the label is indicated by using the label (L1)
as an activity. If the counter is 0 then control flows out of the labelled statement and
reaches the end of the program.

The basic multiplication operation is described using the DECODE control
operation. It implements a 2-way branch depending on the value of the expression
P<0>. The alternative paths selected by this operation are given as a list using the ;"
as delimiter. The first path (P<P 1SR 0) is selected if the value of the controlling
expression (P<0>) is 0; the second path (P—(P+MPD) 1SR 0) is selected if the value is 1.

The operator TSR O represents a shift right inserting zero in the vacant position,

22

ISPL Compiler: User’s Manual

EXAMPLE

MINI:=(DECLRRE [IMEHORY AND REGISTERS

MIB:4377)<11:85; IMRIN HEMORY

Z2«<7:8>; !EFFECTIVE ADDRESS REGISTER

CACC<12:8>; ! 13 BIT ACCUMULATOR WITH CARRY POSITION
CARRY.BIT<> := CACC<iZ>;
SIGN.BIT«<> := CACC<1I>;
ACC<11:8> := CACCell:85;

IR<1l:8>; PINSTRUCTION REGISTER
0P<11:9> := TRell:9>;

1.B17<> := IR«Bx;

ADDRESS<7:8> := IR<7:8>;
10.BIT5<7:8> := IR<7:8>;

UCLASS<> := IR<7>;
L<7:8>; 'RETURN REGISTER

PC<7:85; 'PROGRAN COUNTER
T0.REG<7:8>; VINPUT-OUTPUT REGISTER

RUN<>; 'RUN MODE

! PROCEDURE TO INCREMENT PROGRAM COUNTER

INCRPC:=(PC+(PC+1)<7:8>) ! ROTE THAT PC NILL WRAP
ERSLCED
START: = (DECODE RUN =»>
5TOP; 1 14 runcz@

{ IR-MIPC] NEXT INCRPC NEXT
(DECGDE I.BIT => Z+RDDRESS ; 2-MIADDRESS!<7:8>) NEXT
(DECODE OP =»> FINSTRUCTION DECOCING
ACC~ACC RAND MI21; 'AND
ERCCACC + NIZ); 1TAD (SETS CARRY 8IT)
MIZ1-(M02)+1) <11:@> NEXT (IF M{Z) EQL 8 =» INCRPC)); |1SZ
(H[Z2)«ARCC NEXT ACC+8); 'OCA

(L-PC NEXT PCe2); 1JSR
PC-2Z; 1 JUMP
10.REG+10.BITS; 1107

(DECODE UCLRSS =»

{ (1F
(IF

(IF

953

(IF

(IF

(IF

((IF
' (IF
CIF

(iF

(IF

)

[R => INCRPC} NEXT
IR<5>» => ACC+ NOT ACC) NEXT
IR<4> => RACC+0) NEXT
IR<3> => CRCC+ACC+1) NEXT ! (SETS CARRY BIT)
IR<2> =» CRCC+RCC-1) NEXT ! (SETS CRRRY BIT IF BORROM)
IR<1l> => ACC+ ACL 1SRE 1) NEXT
IR<B8> =» ACC. ACC t5LE 1)); YEND OF UCLASS<8
IR => INCRPC) NEXT
IR<5> => PCeL) NEXT
IR<d> => PC.CRCC<7:8>) NEXT
IR<3> => RUN+B} NEXT
(IR<2> AND SIGN.BIT} OR
(IR<1> AND (ACC EQL @)) OR
(IR<8> AND (NOT SIGN.BIT}) => INCRPC)

) 'END OF UCLASS DECOOING
) JEND OF INSTRUCTION DECODING

) 'END OF RUN=1 MODE

) NEXT 'END OF INSTRUCTION CYCLE

START

23

ISPL. Compiler: User’s Manual

6. The Compiler Output

The compiler produces a listing file {with extension LST) and an "object code"
file (with extension RTM). The latter extension stands for Register Transfer Machine.
In other words, the compiler produces code for some idealized machine which executes

register transfer operations.

6.1. Running the Compiler

The following example shows a typical execution. The actual calling procedure
may change from installation to i[\sta!ialion‘ When the compiler starts executing it
prompts the user for the ISP source file name. If there are any error messages they
are printed on the user’s terminal as welt as in the listing file. When the compilation is
done (the compiler types messages indicating the current phase it is executing) it
automatically calls the MACRO10 assembler and passes to it the name of the RTM file.
At the end of the assembly the user should have the fatlowing files {assume the ISP
source is called X.ISP): X.LST, X.RTM, X.REL, as well as the X.ISP file, of course.

ru isp
Input File: muit.isp

ISP COMPILER Thursday 29 Jul 76 23:42:13 NULT. ISP INGS5NB25] PAGE 1

Parse Completed.

Optimization Completed.

Semantic Check and Output Follows
iSP:NO ERRORS DETECTED

23:43:57

MACRO: .MAIN

EXIT

24

ISPL Compiler: User’s Manual

6.2. Example 1 - Listing

The listing file reproduces the ISPL scurce program together with any warning
and error messages. The listing file is organized in 4 parts: 1) The listing proper, 2) A
cross-reference listing indicaling the places in the RTM object code were the registers,
memories, and labels are being used, 3) A symbol table listing containing all the user
and system declared entities, together with their attributes, and 4) A statement table

listing containing a readable version of the RTM object code.

[881) MULT:=

(881l {DECLARE

[882] NPD<15:8>;

(8821 P«<15:08>;

EBB2] C<15:8>; .

(882 STEP := (DECODE P => P«P t5R 8; P+ (P4+1PD)<15:8> 1SR &)
(893] ERALCED

[8e31 LO:= (

i8a3] C+8 NEXT

:1: 1Y Ll:= (

(8841 STEP NEXT

[ees? ColC-1)<15:8> NEXT

[885] (IF C NEQ € => L1}
T 1895))

[@e5])

{805)})

(885)

6.3. Example [- Symbol Table

The compiler produced symbol tabie for the multiplier example is shown below.
There is an entry (1 line) for each user or compiler declared companent. These include
memory components, labels, and constants. The INDEX column indicates the position in
the symbol table of the entity. This index is used to represent the variables in the

statement table.

ISP COMPILER Thursday 2% Jul 76 22:89:14 TEMP. TP [N6S5MB2S] PAGE 2
) 8 16888808 8 8 8] 8 ’e '
1 2 10609880 a (- e 28 1C '<B(47): 17 (8>
2 4 lageslee @ 8 16) e 'Le i
3 4 18808188 9 8 21 B 8 'Li 4

25

ISPL Compiler: User’s Manual

4 2 16p80888 8 8 8 28 1 'MPD '<B(17):17(8)>
5 4 10e0elee & 8 1 8 o 'MULT °
& 21e0ppese 8 8 B 28 1P 1¢8(17):17(8) >
7 416061168 8 8 3 8 8 'STEP °
18 4 lgogelel § B 35 B 8 'stop
11 3 1eepeeél © 8 B 1 (]]
12 5 1peogeer & 8 B 1 o 8,8
13 3 19086881 8 8 B 1 (] 1
14 3108881 © 8 B 4 0 18
15 5 1gegoesl 8 8 B 29 6 i7,, @
16 19 ipeseesl 8 & 8 1 0 'XTFARA’
17 7 1s6eegal 8 e 8 21 9 'ZTRAAA!
20 7 186peepl B8 8 8 28 0 ’XTRAAB’
21 7 1eeepesl B8 @8 8 1 8 ’2TRRAC’

The TYPE column describes the type of "variable” stored in a given entry of the
symbol table. The valid types are: Memory Array (TYPE=1), Register (2), Constant (3),
Label {(4), Mask (5), Flag (6), Temporary register (7), and Temporary flag (10). The last
two are used for compiler declar;d variables (for instancé,.temporary registers are
declared in order to store partial results when evaluating expressions).

The FLAGS field contains information used by the compiler. It is displayed as
part of the output mainly for debugging purposses (i.e. they show the status of the
symbol table entry).

The DEF field is used to store a pointer to an associated symbol table entry. It
is used when a memory component, say a register, is defined in terms of. a previously
declared memory component. For instance, we can declare: |

INSTRUCTION.REGISTER<15:0>;

OP.CODE<3:0> := INSTRUCTION.REGISTER<15:12>;

In the symbol table listing, the DEF field for OP.CODE will point to a pseudo
register declaration entry, corresponding to INSTRUCTION.REGISTER<15:12>. The DEF
field for the latter will point to the main declaration of INSTRUCTION.REGISTER<15:0>.

I¥ INSTRUCTION.REGISTER had been mapped on top of another register or memory

26.

ISPL Compiler: User’s Manual

declaration, the DEF fields will chain these definitions. (DEF defines a chain of
definitions, the last entry of which is always the main declaration).

The LBL (LaBel} field associates with every user declared label, an integer used
by the compiler. This integer constitutes an internal (abel.

The BCNT and WCNT (Bit CouNT and Word CouNT, respectively) indicate the
number of bits and words for each memory and constant. (The count is given as an
octal number).

The PNAME (Print NAME) contains an identifier for each entry. For user
declared variables and labels it contains the identifier used in the program (truncated
to six characters). Constants are identified by their numeric value (octal). Masks are
represented as a pair of octal numbers. These indicate the left and rightmost bit
positions of the mask with respect to the right edge of the word (for instance, a bin;ry
mask like 00011000 will appear as 4,3). System declared registers and flags are
given compiler generated names.

The last field of the symbol tabie, WORDS;BITS, contains the list of
subcomponents for each user declared memory or register. The list contains the bit
(word) names given in the declaration as well as the internal bit {word) names
generated and used for the compiler. The compiler generates a position dependent
internal bit (word) name which can be used to generate the proper subcomponent
accessing code. These position identifiers are indicated in parenthesis, next to the

user specified bit (or word) names.

27

ISPL Compiler: User’s Manual

6.4, Example 1 - Cross Reference

INDEX

le
11

12

13
14

15

16

17

28

21

VAR

9c ’
28
’LB ¥
33
’Ll ¥
38
‘npp
1t
HULT
34
’P ¥
5
*'STEP
15
*STOP

20
17,, @
12
*XTFAAR’
26
' XTRAAR’
11
'XTRAAB’
12
'*TRRAC*
5

STATEMENTS

24

32

23

13

25

27

12

13

25 26
11 13
26

24 25

ISPL Compiler: User’s Manual

6.5. Example | - Statement Table

INDEX LABEL FLRG

] 8 ’START ?
1 "MULT * 1 'SHERGE’
« 5)
2 8 ‘1P
3 'STEP ' 1 *SHERGE’
(3
4 8 ISP ?
5 @ ’RBYTE *’XTRAAC’'P '8, 8
214 Bt 12
B ® ’BRANCH’ * XTRARC"
(20
7 8 'RSHFT **p 1p ’]
B) (B¢ D
18 8 'JOIN °*
11 8 ADD ’’XTRARA’’P THPD 2
U) (&
12 8 ’RBYTE *’XTRARB''ZTRAAR’ 17,, 8
W INC 15
13 8 RSHFT ''P *+ XTRAAD’ 0
B0 200 1D
14 8 ’SMERGE’
15 ® ’RETURN’ 'STEP
(7
16 L8 * 1 ’SMERGE’
(2)
17 g ISP !
28 8 ’HOVE ' 10
Do 1
21 'Ll ' 1 ’SHERGE’
(3)
22 e ISP
23 8 CALL ’ *STEP *
(7
24 8 *DECR ’’%TRARR’’C ’
174 1
25 8 ’RBYTE ''C "IITRARA’ 17,, ©
ne e s
26 8 NEQ *’ITFAAA*IC ’ 8
16) ¢ ne oD
27 B IF *XTFRAR’
« 16)
38 & CJOIN S S
(3
3L 8 'SHERGE’
32 8 'NOOP * "y
(N
33 B 'NOOP e’
(2)
34 & ’NOOP ° TLT ¢
¢ 5)
35 ’STOP * '} ‘STOP °
ST

OPCODE DEST

29

SQOURCEL SOURCE2 MERGE

16

14

14

31

2l

2t

16

PATHS

31,30

ISPL Compiler: User’s Manual

The LABEL field is used to identify the individual statements.

The FLAGS field, as in the symbo_| table, is used internally by the compiler. In
this particular example, the only flag shown indicates whether the fabel associated with
the instruction was declared by the user (1) or by the compiler(0).

The OPR field contains the operation name. The meaning of most operations
should be obvious from their names. Data operations are described as a 3-address
assembly-like instruction. The source operands and the destination operand are
indicated by their index into the symbol table (columns SRCL, SRC2, and DEST). The
RBYTE operation is used to extract a byte from a register. The interpretation of the
operation is the following: DESTINATIONFSOURCEI<SOURCE2> where destination and
sourcel are of type register and source2 is a mask. Other non-obvious data

operations (not shown in the example) are:

WBYTE (DESTINATION<SOURCE1>«SOURCE2),

READ (DESTINATION«SOURCE1{SOURCEZ2)), and

WRITE (DESTINATION[SOURCE1}<SOURCE2).

The RTM code uses at most three operands, thus an ISP statement like:
A«B[C]<1> compiles into two RTM operations. The first is a READ operation that loads
a {compiler generated) temporary register with B[C]. The second operation is a RBYTE
that extracts bit 1 of this temporary (the position of this bit is deduced from the
declaration of B) and stores it into A. Control operations are slightly more complex.
Serial Merge (SMERGEOP) operations are used as merging points for non-concurrent
sequences. Parallel merge (PMERGEOP) operations are used as merging points for
concurrent sequences. Branch (BRANCHOP) operators select one out of many

alternative sequences. These sequences are identified by a list of the tabels of their

30

ISPL Compiler: User’s Manual

_entry points, given in the same order as the conditional statement in the original ISP.
Diverge (DIVERGEOP) operations are used to initiate simuttaneous, concurrent paths.
These paths are, as in the branch operations, indicated by a list of labels.

Branch and Diverge operations also specify the label of the statement following
the alternative or concurrent paths. That statement is the "merge_" point for the
different paths.

The join (JOIN) operator is used as an unconditional jump statement.]t generally
appears as the last statement of a path, and jumps to the appropriate merging point (a
serial or parallel merge). The NOOP operation is used as a controi operation. It is
generated by the compiler to indi_pate the end of a block. The statement points to the

entry point of the block.

31

ISPL Compiler: User’s Manual

7. References

[Barbacci, 1973] Barbacci, M. R. and D. P. Siewiorek: “The Automated Exploration of
the Design Space for Register Transfer (RT) Systems”. First
Annual Symposium on Computer Architecture, University of Florida,
Gainesville, Florida, December 1973.

[Bell, 1971] Bell, C. G. and A Newell: "Computer Structures: Readings and
Examples”. McGraw Hill Book Company, New York, 1371.

[Bell, 1972] Bell, C. G, J. Grason, and A. Newell: "Designing Computers and
Digital Systems” Digital Press, Digital Equipment Corporation,
1972.

32

ISPL Compiler: User’s Manual

8. Appendix I ~ The Minicomputer Listing

(881} MINI:=(DECLRRE 'MEMORY AND REGISTERS
H{B:123771<11:8>; 'MAIN MEMORY

fee2]
(8821
[882]
(882}
[0g2]
[e82)]
[a92]
1882]
[662]
reez)
(892}
{ep2]
(8021
[eez)
[882]
(gg21?
regz;
[eaz]
{ep83]

C<7:8>;

'EFFECTIVE ADDRESS REGISTER

CACC<12:8>; ! 13 BIT ACCUNULATOR WITH CARRY POSITION

CARRY.BIT<> := CACC<12>;
SIGN.BlT<> := CACCc<ll>;
RCCe<ll:8> := CACC<Il:P>;

IR<11:0>; VINSTRUCTION REGISTER

OP<11:9> := 1R«1l:9>;
I.BIT<> := IR<8>;
ADDRESS<7:8> 1= IR<7:8>;
I0.BITS<7:8> := IR<7:18>;
UCLASS<> := IR<7>;

L<7:8>; 'RETURN REGISTER
PC<7:8>; IPROGRAM COUNTER
I0.REG«<7:8>; TINPUT-OUTPYUT REGISTER
RUN<>; TRUN MODE
! PROCEDURE TO INCREMENT PROGRAN COUNTER
INCRPC: = (PCe(PC41)<7:8») ! ROTE THAT PC KILL WRAP
ERALCED

[883) START:=

{e04]
[804]
[ea4)
[864]
(284
[884]
[8041
[8g4)
10841
(884]
[(ees]
ILLY]
(884
[ee4}
[884)
1811
(884}
tees)
[904)
[e84)
fees]
[ag4}
[684]
[8e4)
[884]
{884]
[884)
[ge4]
18:1:19]
[e8s)
[9084]
{884)
[8e431

{

(DECODE RUN =»
5TOP; Y I run=@
IR-MIPC] NEXT INCRPC NEXT
{DECODE .BIT => Z.ADDRESS ; Z~M{ADDRESS]<7:d8>) NEXT
(DECODE OP => !INSTRUCTION DECOGING
ACC-ACC AND M2, 'AND
ERCLAACC + ML), ITAG (SETS CARRY BIT)
(RIZT-(M[Z]+1}<1]:@> NEXT (IF M{Z) EQL & => INCRPC) ¥y 1182
(M121+ACC NEXT RCC+BY; {DCA

(LePC NEXT PC+2); 1JSR
PCe2; tJune
10.REG+ID.BITS; 1107

(DECODE UCLASS =»
((IF IR<6> => INCRPC) NEXT
(IF IR<S> =» ACC+ NOT ACC) NEXT

(IF IR<é> => ACC+@) NEXT
(IF IR<3> => CACC+ACC+1} NEXT | (SETS CARRY BIT)
(IF IR<2> => CACCACC-1) NEXT 1 (SETS CARRY BIT IF BORROW}
(IF IR<i> => BCCe ACC TSRO 1) NEXT
(IF IR<8> => ACC+ ACC 1518 1) }; IEND OF UCLASS=H
((IF IR<B» => INCRPC} NEXT
(IF JR«<5> =» PCel) NEXT
(IF IR<d> => PC+CACC<7:8>) NEXT
(IF IR<3> =»> RUN-8} NEXT

{IF (IR<2> AND SIGN.BIT} OR
(IR<1> AND (ACC EGL &) OR
(IR AND (NOT SIGH.BIT)) => INCRPC)
}

) 'END OF UCLASS DECODING
) 'END DF INSTRUCTION DECDDING
) 'END OF RUN=1 MODE
) NEXT 'END OF INSTRUCTION CYCLE
START

33

ISPL Compiler: User’s Manual

INDEX TYPE

8
2
2
4
Z
2
2
2
2
4
2
2
2
2
2
2
P4
2
2
1
§
2
2
2
2
4
&
2
2
)
3

[

3
5
&
5
5
5
5
5
5
8
7
7
7
7
7
7
7
7

FLAGS DEF BLK LBL BCNT

100908888
l1ealspee
igeleece
1g16e0080
leippeas
jepopees
18180809
lealeeoe
ieoleeee
laeegliee
lee19088
1eapo0ed
lpleesas
10160808
lelpe0e8
igoe0088
lelo8080
101060069
1pe0080600
188000060
18008108
lg8l1e808
18008088
18086088
lag1a86@
18680180
10600181
laplppe8
18000000
leposesl
18808001
188000881
18080801
19e60091
100000881
tgogeesl
lapegacl
1eegogel
BULLLT::D
lgaeessl
10688081
18808001
18888881
18086881
18808981
10988081
ibespeol
10090801
18068001

L

[
£

| ~nN L
~w~ o oeouaNDO AN

— -
R I - - e

[t

QG@@@QG@@QGWQQQQO&QOQD—WQWQQG-Q&@

GO@@@@Q@QGGQ@QQ@@ﬂ@QQGQQQ@QG@Q@QGQQO@@QGQ@GQWG@@@

H OO0 DDOHDEODIWEHDODIDODDD

@Q@@G@@@Q@QQG@G@QQQ@QQP—OQQ@QF—

)
14
18

1
14
15

1

1

1

]
ie
L)

3

1

18-

14
18

1
18

—
>

[
b b et et s e e it e (D e D D e e D WD

— —
o b = S U P e B D

[
[

WCNT

34

1
1
1
1
i

1
1
1
8
1
1
1
1

I
1
1
1
1
]
)
1
1
1
i
B
)
1
1
)
8
)
)
8
)
8
8
]
9
8
)
0
0
q
9
L.
0
8
e

PNAME WORDS;B1TS:NARE (POSITION)
!e *

'ACC '<B(13):13¢8)>
*RDORES' <B(7):7(8)>
PCACC '<13(B)>

PCACC *<B(13):13(8)>
CRCC *<B{14):14(8)>
PCRCC ?<14(8)>
*CARRY. "

'1.BIT *

» INCRPC’

110.BIT’ <B(7): 748D >
"10.REG’<8(7):7(8)>
VIR '<l1(2):13(8)>
IR t<18(8)>

VIR '<B(7):7(8)>
IR P BUD I3
'IR '<B(7:7(0)>
'R <70

4 1<BL7):7(0)>
N *[377(377):0(8))<8(13):13(0) >
*MINI ?

'op 'el11(2):13¢8)>

'PC 'cB(7):7(B) >

'RUN !

’SIGN.B’

ISTRRT °

*STOP *

*YCLASS!

172 BN 7 (>
?,,

L,
2!’
3"
4y,
50
6y,
7!9
13,,
'2TFAAR’
' ZTRAAA’
* LTRARD"
*¥TRAAC’
' ZTRARD’
» XTRARE"
' STRARF?
* XTRARG"
P XTRARK?

D DO A WN - D

ISPL Compiler: User’s Manual

INDEX

11

12

13

17

22

23

24

25

26

27

38

31

32

33

34

35

36

37

40

VAR

*RCC '
27

'ABDRES®
28
*cacc
32
CARRY.
'1.BIT ?
17
' INCRPC'
7
'10.BIT*
56
*10.REG’
S8
!IR »
15

’L 1
51
’n 1
15
*MINT
168
’Up 13
25
!Pc ’
5
IRUN ’
12
'SIGN.B’
137
'START
156
*5T0P
13
*UCLASS?
658
!2 ’
28

8,, 8
111

8
41

1
187
1,1

STRYZNENTS

-

i

61
116

124

22

134

144

157

23
52

145

140

it3

4B
i3

183

43

65
122

26

15

26
54

47

148

138

63

71
126

3l

51

31

67

128

75
132

34

52

34

35

73

151

181
136

37

54

37

77

185
141

LY

124

48

183

11
145

i

138

46

ISPL Compiler: User’s Manual

41

42

43

44

45

L1

47

50

5t

52

53

54

55

56

57

60

185
2”
181
3!1
75
d!!
71
5!!
B5
B,y
61
7!)
6
13,,
36

6

8

g

'ATFARA’

41

*ZTRARA’

22

'Y TRAAB'

35

*ZTRAAC?

36

7 TRAAD’

61

' YTRARE '

141

ZTRRAF

144

'ZTRAAG’

5

' ¥ TRARH’

145

141

136

132

i26

122

1iB

23

62
101
122
143
142

146

146

130

lag

26
41

65
182
123
147

143

147

142

27

66
185
126
158

31

71
106
127

36

32

72
111
132

34

75
112
133

35

76
116
136

117
137

ISPL Compiler: User’s Manual

INDEX

18

11
12

13

14
15

1

17

28

21
22

23

24

25

26

27

30
31

32

33
34

35

36

LABEL FLRG

'HINT 1
(24)

' INCRPC’ 1
(10

'START * 1
(D

&0

OPCODE DEST

START °
' SMERGE "
risp ?
' SHERGE’
)ISP H]
"INCR *’XTRAAG’’PC °*
¢ sHe 26
"RBYTE **PC '’XTRRAG’ 7,, @
(260 STYC 4B)
"RETURN® * INCRPC
« ap
SHERGE
!ISP]
*BRANCH’ 'RUN
« 2n
"JOIN *STOP *
« 32)
TJOIN
'RERD ''IR ''M rpc 2
U 1M 210 28
'CALL " INCRPL”
¢ 1D
*BRANCH' 'LLBIT
ST
THOVE **7 **ADDRES’
(38 2)
YJ0IN
'READ ' *XTRARA''M * "ADDRES’
€ 5D 23t 2)
'RBYTE 2 PIXTRARR’ 7,, @
(3 5D(46)
' SHERGE?
*BRANCH® rop
(25)
'RERD **%TRRAA’ M 12 '
¢ 5D 2»C 34
'AND "'ACC PRCC ''YXTRARA’
{ D De 5D
PJOIN ¢
"RERD ' ?ZTRARA’'N 2¥ ’
(5D 2n(34
'ADD ’*CACC ’*ACC *’YTRARA’

(5 ni 51}
*JOIN

'READ **XTRRAR'’M 4 ’
(Y RN 23 ¢ 34)
*INCR *’2TRRAB’’ZTRANR’

(32) (51)

*RBYTE ’'XTRRAC'*ZTRARB* 13,, 8

37

SOURCEL SQURCEZ MERGE

1o

158

164

155

24

24

154

154

154

PATHS

13,15

28,22

26,31,34,46,51,54,56,

ISPL Compiler: User’s Manual

a7
49
41
42
43
44
45
46

47

58
51

52

53
54

55
56

57
68

6l

62

63

64
65

&6

67

7@
71

72

73

74
75

(53 ¢ 523 (47)
PURITE *°H e VX TRAAC’
{ 239 ¢ 34)(53
YREAD ’*XTRARA’'H 112 '
(S (2t 3

*EQL ’*ZTFARA’’XTRARA’ 8
(58 ¢(s (36)
*IF ! *XTFARR’
(58)
ALl ¢t * INCRPC'’
t in
*SMERGE'
YJOIN !
'HRITE *’N 1z pce !

¢ 2t 3w B

'CLEAR '’ACC *

¢
PJOIN ?
MOVE 'L 'PC

(22(28
MOVE *'PC 2

(280(34

SJOIN '

‘HOVE ''PC 'Z
(20 3

PJOIN

'HOVE ’’10.REG'’'10.BIT’
(1B 12
PJOIN ?
" BRANCH’ 'UCLASS’
33
*RBYTE *’2TRARD’’IR ° 6,, 6
(S0 IDC 45

'1F * *XTRARD’
{ 54)
rcaLL ' INCRPC’
(11}
*SHERGE’

SREYTE **XTRARD'’IR ' 5,, 5
(s&C 1T 44)
"IE *2 TRAAD?
(54
JNOT *’RACC '’REC ?
(N 1
" SHERGE®
SJRBYTE **XTRAAD’'IR ° 4, &
C SO0 1IN0 4

'IF ' *XTRARD®
(54)
*CLEAR *’ACC °
t Y
' SHERGE’

*RBYTE ’'’XTRARD’'’IR * 3,3
(543 (FEA R 42)

38

44

154

154

154

154

154

153

64

70

74

44,43

61,116

64,63

78,67

74,73

ISPL Compiler: User’s Manual

INDEX LRABEL

76

77

lag
le1

182

163

104
185

186

197

119
111

112
113
114

115
116

129

121
122

123

124

125
128

127

138

131
132

133

FLRG

a

OPCODE DEST

'IF ! '%*TRARD’
(54)
INCR "'CRCC ’’RCC
(Si(n
'SMERGE’
'RBYTE ' 'XTRAAD'* IR '
(54) (i«

'IF ' ' XTRAAD*
{ 54}
*DECR '’CARCC '’pcC !
(S 1)

* SHERGE*

'RBYTE ’’ZTRAAD'’ IR '
{ 541 (173 ¢

*IF ! ' XTRARD®
t 54)
'RSHFT8’*ACC **ACC
{ Dt Dt
' SHERGE’

'RBYTE '"XTRARD'']R '
(. 548X YRR

TIF i *YTRAAD’
{ 54)
'LSHFTB’’ACC ''ACC
(Dt 1
*SHERGE?
’JOIN L

"RBYTE **XTRRAD’’ IR !
{ 541 ¢ 173

*1F ! *XTRAAD’
{ 54)
'caL * INCRPC’
{ 11)
* SMERGE?

"RBYTE '’XTRAAD''IR '
{ S4) ¢ 1704

'IF i * ZTRARD’
{ 54)
'HOVE *’PC 'L 4

(26} { 22}
' SHERGE'
'RBYTE **%TRARD'® IR ’
(54) ¢ 1INt
TIF ! *ZTRARD’
(54)
'RBYTE *’PC '*CRCC !
(280 ¢ 5)(
' SMERGE?
'RBYTE **XTRRAD’’ IR '
{ 54X (17
YIF i ' XTRARD’
54)
PLLEAR P PRUN
(2N

39

43)

SOURCEL SOURCE2 MERGE

188

1684

118

114

153

i21

125

13t

135

PATHS

188,77

184,182

110,187

114,117

121,120

125,124

131,138

135,135

ISPL Compiler: User’s Manual

DEST

**XTRARD’* IR 24y 2
{ 58)(1M¢ 40
**XTRARD’ * XTRRAD’ *SIGN. B’

(s&){ 58 38
»s3TFRAR’PACC ' 8
(53¢ ne 3.
*»2TRAAE’ ' IR 1,, 1
(550 1D &8
* % TRARE® * XTRARE* * XTEAAR?
(55 55¢ 58
» * S TRARD' * X TRARD’ * XTRARE®
(58¢ 58(5%
" YTRAAF ' ' SIGN.B’
(SB)(38
"'ITRAAHYPIR 7 @,, 8
(BBYC 17¥C 3%

}*XTRARH® * ZTRARK' ' XTRARF’
{ Ga)(68) { 56)
**XTRARD * XTRARD’ * XTRARH’®
(.58 54) L 60)
' *XTRARD®
(54)
' * INCRPC!
{ 11}

' *START ?
(an
: 'START *
(n
’ "MINI
(24)

INDEX LRBEL FLRG OPCODE
135 8 *SHERGE’
136 o 'RBYTE
137 8 'AND
149 8 *EQL
141 8 *RBYTE
142 8 'AND
143 B 'OR
144 8 'NOT
145) 'RBYTE
1486) 'AKND
147] 'OR
158 8 'IF
151 8 'CALL
152) »SMERGE’
153 e *SMERGE’
154 e *SMERGE?
155 8 ' SMERGE’
156 8 *NOOP
157 B *JOIN
lge 8 *NOOP
161 °’sTOP * 1 *5T0P

(32)

40

SOURCEY SOQURCEZ MERGE

PRTHS

~152 182,151

3

18

L]

ISPL Compiler: User’s Manual

9. Appendix Il - ISPL Reserved Keywords

The following keywords and identifiers are reserved in the language:

AND
BAILOUT
DECLARE
DECODE
DELAY (not described in this manual)
FOL

EQV
ERALCED
GEQ

GTR

IF

LSS

LEQ
MACRO
MINLIS
NEQ
NEXT
NOT

OR

STOP
157
WAIT {not described in this manual)
XOR

41

ISPL Compiler: User’s Manual

10. Appendix 11 - The XTOP10.REQ File

XTTESTOP- #2080,
XTEQLOP=#281,
XTNEQOP=#282,
XTLSS0P=-4281,
XTLEQOP=#284,
XTGEQOP=4285,
XTGTROP=#286,
XTHOVEOP=#210,
XTCLEARDP=#211,
XTNOOP=#212,
XTHBYTEOP=#213,
XTRBYTEQOP=#214,
© XTREADOP=4228,
XTHRITEQOP=#221,
XTLROTOP=4#226,
XTRROTOP=4227,
XTNOTOP=2230,
XTINCROP=#231,
XTDECROP=#232,
XTLSHFTOP=#233,
XTRSHFTOP=#234,
XTRNDOP=4235,
XTOROP=#236,
XTXOROP=#241,
XTEQVOP=2242,
XTADDOP=#243,
XTSUBOP=£244,
XTLSHFT10P=#245,
XTRSHFT10P=4246,
XTLSHFTO0P=#247,
XTRSHFTBOP=#2580,
XTCONCOP=#251,
XTNEGOP=#252,
XTSUBTHOOP=#253, 1Tuc’s Complement Subtract
XTMULTOP=#380,
XTDIVOP=#381,
XTIFOP=#358,
XTRETURNOP=#351,
XTISPOP=#352,
XTPJOINOP=#353,
XTBAILOUTOP=#361,
XTCALLOP=#363,
XTJOINOP=#365,
XTBRANCHOP=#371,
XTOIVERGEOP=#372,
XTSMERGEOP-#373,
XTPMERGEDOP=#374,
XTSTARTOP=#376,
XTSTOPOP=#377,

42

ISPL Compiter: User’s Manual

11. Appendix IV - The Multiptier MACRQ10 Format

Another version of the RTM code intended for machine consumption consists of a
MACRO10 program in which all the information in the symbol and statement tables is
encoded as MACRO10 statements (all of which are in fact, data definition statements).

In order to understand the RTM file {the ISP and listing files associated with this
example were described previously, in the section describing the compiler output), the
reader should have a working knowledge of BLISS10, enough to understand the
SIMISP.REQ file describing the structure of the MACROIO statements. The SIMISP.REQ

file is given after the example.

{ARF ISP COMPILER - JUNE 1976
THOSEG
INTERN SYTABL,STTRBL,SYTOP,STTOP, ISPTIT
INTERN 1SPFNM, 1SPEXT, ISPDAT, ISPTIN, ISPPPN, ISPVER
RELOC 48B8H

7BB8O5: EXP 8,17,17,8,-1

7BB6A3: EXP 8,17,17,8,-1

7896801: EXP 9,17,17,8,-1

$60825: EXP 27,28

$20086: EXP 7,11

‘ RELOC 8

SYTABL:
BYTE (878,208¢18)8,8,0,0,0(36)'q N
BYTE (972,208(18)8,8,28,8, 788801 (36)°C 'l
BYTE (9)4,204¢18)8,17,8,8,8(36)°L) .8

BYTE (3)2,288(18)8,8,20,8,7B8893(36) NP0 *,1
BYTE (9)4,204(18)8,1,8,8,8(36) 'HULT *,0

BYTE 19)2,2088(18)8,8,20, 6, 7RPE05 (36)°P 'l
BYTE (9)4,214(18)8,3,8,8,8(36)*STEP ’,8

BYTE (9)4,285(18)8,32,8,8,8(36)’5TOP

¥
BYTE {9)5,261(18)8,0,1,8,0(36) 0,8
BYTE (9)3,201(18)8,8,1,0,B(36} 8,8
BYTE (9)3,281(18)0,8,1,8,0(36) 1,0
BYTE (9)3,281(18)8,0,4,0,8(36) 18,8

BYTE (9)5,281118)8,8,20,8,08(36) 17862080, 6
BYTE (9)18,281(18)8,0,1,8,8(36)’ XTFAAR’, 6
BYTE (9)7,201(18)9,0,21,8,8(36)’ XTRRAR’, 8
BYTE (9)7,281(18)8,8,28,8,8(36)’ XTRARB’, 8
BYTE (8)7,281(18)8,8,1,8,8¢36)* LTRARC" 0
STTABL:

BYTE (98,376 (18)2361(1218,8,8(1818,16,8,8
BYTE {9)1,373(18)5261(12)8,8,8(18)8,8,0, 4

BYTE (918,352 (18)4301¢12)8,0,0(188,2,8,8
BYTE (911,373(18)5261(12)8,0,8(18)8,8,8,6
BYTE (9)8,352(]18)430111219,0,8(18)9,3,8,0

43

ISPL Compiler: User’s Manual

BYTE (9)@,214(18)11221(12)20,5,18(18)8,9,8,8
BYTE (9)8,371(18)13461(12)8,28,8(18)2,14,$60886,08
BYTE (9)@,234(18)7878(12)5,5,11(18)0,0,8,0
BYTE (9)8,365(18)2341(12)8,8,0(18)8,14,8,8
BYTE (9)8,243(18)7121(12)16,5,3(1818,0,8,8
BYTE (9)0,214(18)11221(12)17,16,14(18)8,8,8,8
BYTE (9)0,234(18)7870(12)5,17,11(18)8,8,8,0
BYTE (9)8,373(18)5261(12)8,8,08(18)9,8,8,8
BYTE (9)9,351(18)1421(12)8,6,8118)8,3,9,6
BYTE (9)8,218(18)18021112)1,13,8(1818,8,0,8
BYTE (9)1,373(18)5261(12)8,8,8(1810,8,9,2
BYTE (9)8,352(18)4301(12)8,0,9(18)8,4,0,6
BYTE (9)0,353(18)2601112)0,6,8(18)9,3,8,8
BYTE (9)0,232(i8)18824(12)16,1,8(18)8,8,8,8
BYTE (9)8,214(18)11221(12)1,16,14(18)9,€,8,8
BYTE (9)8,282(18)7842(12)15,1,11(18)9,8,0,8
BYTE (9)0,358(18)6241(12)8,15,8(18)2,27,$88825,8
BYTE (9)4,365(18)2341(12)8,2,8(18)8,17,8,0
BYTE (9)8,373(18)5261(12)8,8,8(18)8,8,€,8
BYTE (9)8,212(18)212112)8,2,0(188,17,8,8
BYTE (9)8,212(18)2121(12}8,4,8(18)0,1,8,0
BYTE (9)1,377(18)1441(12)8,8,8(18)8,8,8,7
SYTOP: EXP 28)
STTOP: EXP 32
15PTIT: RSCIZ 'Friday 23 Jul 78 19:22:58 TEST.ISPIN6SSMB25)’
ISPFNM: SIXBIT 'TEST °
ISPEXT: SIXBIT 'ISP *
ISPOAYT: RSCIZ *23 Jui 76’
1SPTIM: ASCIZ *19:22:58'
1SPPPN: EXP 32548, 334165
ISPVER: EXP 9,0,0,0
END

The MACRO10 program starts by declaring certain symbols to be accessible to
separately compiled modules. This is done with the INTERN MACRO10 operator. The
symbols in question are the base address for the symbol and statement tables and the
number of entries in each table (actually the index of the last entry, the first entry has
index 0). The user therefore can access the symbol table entries between
SYTABL[O,<fieldname>] and SYTABL[@SYTOP,<fieldname>] and the statement table
entries between STTABL[O,<fieldname>] and STTABL[@STTOP,<fieldname>]

The MACRQL0 program is divided in two segments, the high segment contains
the bit and word lists of the symbol table, as .well as the label lists of the statement

table. The low segment contains the symbol and statement tables properly.

44

ISPL Compiler: User’s Manual

The bit and word lists are declared as a list of expressions, using the EXP
l MACROI10Q operation, each element of the list takes a full word on the PDP-10. Each bit
and word list is identified by a label of the form: ZBnnnn for bit lists and ZWnnnn for
word lists were nnnn is the index of the symbol table associated with the bit/word list.
Every element of a bit/word list appears as a pair of consecutive elements in the EXP
statement. The first {(odd) element is the bit/word name. The second (even) element is
the bit/word position. The bit/word list ends with a -1 as a bit/word name element.
The statement table label lists appear as lists of expressions, again using the
EXP operation. These lists are identified by a label of the form $nnnnn were nnnnn is
the index of the statement table associated with the label list. There is no need for a
special list terminator, the statement table entry contains a count or vector length for

its label list, if any.

45

ISPL Compiler: User’s Manual

12. Appendix V -~ The SIMISP.REQ File

12.1. The Statement Table

HACRO :
STFLAGS=8,27,98, IRSSORTED FLAGS FOR THE STATEMENT
STOPERATION=9,18,98, !OPERATION CODE., SEE XTOP,REQ
STARFOP=9, 8, 188, | ARF DPERATION COOE
STOESTINATION=1,26,128, IDESTINATION VARIABLE SYMBOL TRBLE INDEX
STSOURCEL=1,12,128, ISDURCE] VARIABLE SYMBOL TABLE INDEX
STSOURCE2=1,0, 128, ISOURCEZ " " " .
STSCOUNT=2, 18,188, INUMBER OF ELEMENTS IN STSLIST,
STLABEL=3,0, 188, ISYNBOL TABLE INDEX OR 6.

STHERGELABEL=2,8,18%, TLABEL OF THE ASSOC. MERGE STATEMENT FOR
IXTDIVERGE ,XTBRANCH RND XTCALL OPS.
JLABEL OF ASSOC. STATEMENT FOR XTCALLOP.

STSL1IST=3,18,18%; IPOINTER TO VECTOR OF SUCCESSOR STATEMENTS.
ISTSUCSTRUCT iS MAPPED ONTCG THE VECTOR

BIND ITHE STTRBLE FLAGS

STUSERLAB=118, YSTRTEMENT LABEL WAS OECLRRED BY USER

STBRERK=111, IBREAK FLAG. SINULATOR BREAKS AFTER FLAGGED
ISTATEMENTS ARE EXECUTED

STTRRCE=112, 'TRACE FLAG. SIMULATOR WILL PRINT VARIABLES
! AFTER EXECUTION.

STRECORD=113, IRECORD THE SINULATED TIME OF EACH EXECUTION

STIGNORED=114, IFLAGS DIVERGE,PHERGE AND RS50C. JOINS AS
JDELETED STATEHENTS!!

STOPRQUE=115, ! DISABLES RERD/WRITE/RCCESS TALLY

STETCETC=0; IADC ANY OTHER FLAGS YOU LIKE

BIND
STENTRYSIZE=4; 14 HORDS/ENTRY

STRUCTURE STSTRUCTURE [INDEX,HORD,P,S51= (. STSTRUCTURE+, INDEX#STENTRYSIZE+. HORD) <. P, . 5>}

EXTERNAL STSTRUCTURE STTARBLE; 1THE STATEMENT TRABLE

EXTERNAL STTOP; ITHE INDEX OF THE LAST STTABLE ENTRY (STRRTING FROM 8)
MACRO

STSUCLABEL=18,188$, ITHE SUCCESSOR LABEL

STSUCINDEX=8,18%; ITHE SUCCESSOR INDEX

STRUCTURE STSUCSTRUCT [HORD,P,5]= (L STSUCSTRUCT+.UORD) <.P,.5>;

a6

ISPL Compiler: User’s Manual

12.2. The Symbol Table

MACRD

SYTYPE=8,27,9%, (THE ENTRY TYPE (1=MEMORY,2=REGISTER, 3=CONSTANT,

14=LABEL, 5=MASK, 6=FLAG, 7=TREGISTER, #18=TFLAG)
SYFLAGS=8, 18,98, IASSORTED FLAGS FOR THE ENTRY
SYDEFINITION=8,0,18%, tINDEX OF ASSOCIATED ENTRY. USED FOR REG-DEFINITIONS
SYLABEL:=1, 18, 183, VINTERNAL STATEMENT TABLE INDEX FOR ENTRIES OF TYPEc4
SYBITCNT=1,8, 35838, {NUMBER OF BITS/MORD OR CONSTANT LENGTH
SYWROPTR=2, 18, 188, 'POINTER YO HORD LIST (ONLY FOR FYPE=1)
SYBITPTR-2,8, 188, tPOINTER TO BIT LIST (ONLY FOR TYPE=L OR 2)
SYPNRHE=3, 8,363, i SIXBIT STRING FOR VARIABLES, VALUE FOR

ICONSTANTS AND MASKS (LEFTBIT, RIGHTBIT)
SYHRDCNT=6, 8,368, 'NUMBER OF WORDS {ONLY FOR TYPE=1)

8IND

SYENTRYSIZE=5, 15 WORDS/ENTRY
SYSYSTEMVAR-119, 1SYSTEM DECLARED VAR. (TYPE=3,5,7,4#18)
SYBREAK=111, IBREAK FLAG. USED ONLY FOR LRBELS.
SYTRRCE=112, ITRACE FLAG. SIMULATOR TELLS AFTER VARIABLE IS WRITTEN INTO.
SYPRINMRRY=$14, IINDICRTES VAR, 15 LEFT HALF OF REG-DEFINITION
SYSECONDARY=115, IINDICATES VAR. 1S RIGHT HALF OF REG-OEFINITION
SYBITADDRES5:=116, 'INDICATES STORRGE IS BIT ADDRESABLE
TYPEMEMORY=1, IFOR SYTYPE ABOVE

TYPEREGISTER=2, P " "
TYPECONSTRNT=3, i
TYPELABEL =4, !
TYPEMASK =S, !
TYPEFLAG=6, [" "
TYPETREGISTER=7, !
TYPETFLAG=8; !

STRUCTURE SYSTRUCTURE {INDEX HORD,P S1=(.SYSTRUCTURE+. INDEX#SYENTRYSIZE+.HORD) <.P,.5>;

EXTERNAL SYSTRUCTURE SYTABLE; ITHE SYMBOL TRBLE
EXTERNAL SYTOP; 1THE NUMBER OF ENTRIES -1 (].E. MAX INDEX)

STRUCTURE IVECTORINDX)={1)(,.IVECTOR+.NDX)<8,36>;

EXTERNAL ISPTIT, ISPFNAM, ISPEXT, ISPPPN, ISPDRT, ISPTIN, ISPVER;

47

ISPL Compiler: User’s Manual

12.3. Iable Dlagrams

4

) STFLAGS | STOPERATION | STARFOP :
) STOESTINATION | STSGURCEY 1 STSQURCEZ |
-l- ————— g;;ea{;;; --------- | STMERGELABEL |
v osTsLisT | STLABEL |
T_;;;UCINDEX | STSUCI:I‘;;EI.:“I 15T SUCCESSOR
[

T STSUCINDEX 1 STSUCLABEL 1 "STSCOUNT"TH SUCCESSOR
| e v
;-;\-’;;;E-----;-;;;E;E;--"I. ------- ;YDEFIHITION l

| SYI:;;-EI“ o I SYB[TCH;--— I .

| svRoPTR | SYBITPTR |
v SYPNANE u
v SYWRDCNT |

. = Py

o o ke Al e e e e e

48

ISPL Simulator: User’s Manual

A User’s Guide to the ISPL Simulator

Mario R. Barbacci
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa.

ISPL Simulator: User’s Manual

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 0o 3
2 From ISPL to RTMand Beyond 4
3 The Command Language 6
3.1 START and CONTinue 7

32 EXIT T 7

33 READand DUMP L 7

34 ECHOand DECHO 8

35 RADIX e e e e e e 8

3.6 CTR,SETCTR,and OUTCTR. _ 8

3.7 OPAQUE and DOPAQUe e e e e e 9

38 VALUE and SETVALue 9

3.9 TRACE, UTRACE, DTRACE, and TELLTRace 10

3.10 BREAK, DBREAK, and TELLBReak e e e e e e e e e 10

3.11 SBREAK, DSBREAK, and TELLSBreak 10

3.12 ICONNEct and OCONNEet i0

SA3 HELP 11

4 Storage Mapping 12
4.1 Allowable Types of Mapping, . 14

ISPL Simulator: User’s Manual

5.1 Linking the Compiler Qutput with the Simutatar e e e e 15
5.2 Running the Simulator . ., 0., 16
5.3 Executing Selected Procedures . e 18

B.4 Reading CommandFiles 19

ISPL Simulator: User’s Manual

Abstract
The simulator described in this manual will interpret the output of the ISPL
compiler, the RTM code, thus allowing the users a generalized computer architecture

simulation facility. This manual describes the commands available to the users.

Acknowledgements

The ISP simulator is a much improved version of a primitive system developed
by S. Rodkey at CMU during the spring of 1975. The system was modified and
expanded by Greg Lloyd of the Naval Research Laboratory during‘lhe Fall of 1975. The
system was further enhanced by the author during the Winter and Spring of 1976.
Many commands and features were added to the system as part of the Army/Navy CFA
project. Special thanks are due to the users of the system for their comments and
suggestions, among them: H. Elovitz (NRL), R. Gordon (NUSC), R. Howbrigg (NUSC), D.

Siewiorek (CMU)), and S, Zuckerman (NRL).

ISPL Simulator: User’s Manual

1. Introduction

The ISPL compiler translates Computer Architecture (Instruction Set)
Descriptions written in a subset of ISP [Beli71] into instructions for an idealized
Register Transfer Machine (RTM) which can perform the primitive Register Transfer
Operations needed to felch, decode, and execute instructions. The ISP simulator is in
effect an implementation of the Register Transfer Machine.

Some effort has been put into isolating the user from the low level detail of the
RTM code. Under r{ormal circumstances, the user will interact with the simulator using
the names of registers, memories, procedures, etc, as declared in the ISPL description.

The simulator follows the convention of the ISPL compiler with regard to number
representation, it uses an unsigred (pure magnitude) representation. Internally, the
simulator uses multiple precision operations on the PDP-10 to execute the data
operations and transfers. A current implementation limitation sets a limit of 140 hits
for the length of the variables used in the register transfer operations (beware that
- the ISPL compiler will allow the user to declare registers and memories of arbitrary
tength - the simulator will warn the user if any attempt is made to operate on
variables larger than 140 bits).

Although concurrency is easily described in ISPL, the simulator makes no attempt
to provide this facility. It will execute concurrent operations in sequence and the user

should avoid writting order-dependent parallel ISP statements.

ISPL Simulator: User’s Manual

2. From ISPL to RTM and Beyond

The process of obtaining a running simulator given a syntactically correct ISP
description is rather simple. The ISPL compiler, in the abscence of sericus errors, will
produce a MACRO10 program containing the RTM object code. This program should be
assembled in order to produce a réltxatab!e PDP-10 binary file. This process is also
handled by the ISPL compiler (i.e. it will generate the‘RTM tile and then invoke the
MACRO10 asse'mbler). At the end of the compilation the user has the following files
(assume that the original ISP files was X.ISP):

X.ISP (The source _file)

X.LST (The listing file, described in the ISPL compiler manual)
X.RTM (The object file, described in the ISPL compiler manual)
X.REL (The relocatable binary version of the X.RTM file)

At this point you can get rid of the X.LST and X.RTM files, as far as the simulator
is concerned, they are not needed at all. Hold onto the X.REL file for dear life, unless
cycles are cheap at your instailation and can afford to .run the ISPL compiler as often
as you please.... . |

The simulator consists of a group of (currently 7) binary files that must be
linked, using one of the standard PDP-10 CUSPs, with the X.REL fiie. Once this is done, |
you can save the core image and you are all set to go. .T.He exact procedure might
change from installation to installation, depending on whether you use LOAD or LINK10.

A typical procedure might look like:

EXECUTE X.REL,@ISPSIM.CMD

<or alternative, if you have the LINK-10 loader in your system:>
R LINK

+x.REL

+®ISPSIM.CMD

s<any switches you want>
+/SSAVE x

ISPL Simulator: User’s Manual

* /GO
The above sequence will produce two files: X.SHR and X.LOW. These are your
ISPL description compiled, linked, saved, and ready to run:

RU x < and off you go!, good luck!>

ISPL Simulator: User’s Manual

3. The Command Language

The simulator accepts a small number of commands; using a fixed format:

<keyword> <parameter> <parameler> ...

Only one command is accepted per line. Commands migﬁt be typéd, in upper or
lower case, directly from the user’s terminal or can be.retrieved from command files
{the latter can be done recursively, up to 16 Ievéls ‘of nested command files).
Comments can be inserted in the command stream by typing a ™" followed by any
arbitrary string. The command scaner will ig'nore anything bét’ween the "!" and the end
" of the line. Most parameters represent ISPL variable names 6r numeric values. The
latter can be typed in several modes (Binary,‘ Octal, Decimal, and Hexadecimal) and
there are facilities to set up a proper default value of the type-in type-out redix.

All variables, labels, and constants defined in the ISP source program have
activity counters associated with them. This allows the user to collect statistical data
when running benchmark programs unc_!er the simulator. There are commands to clear,
preset, and interrogate the value of these counters.

The command language include a group of commands to trace variables, start,
break, and continue a simulation run, as well as commands to set and interrogate the
values of the register and memories of the target machine.

When the simulator is running and the user suspects an infinite loop of

instructions, typing a § (Altmode) will break the execution, Actually, any type ahead

will produce an interruption. § is the preferred mode.

3.1. START and CONTinue

ISPL Simulator: User’s Manual

START <label> is the command used to begin the simutation of an ISP procedure
or main program. <label> is the name of a procedure declared in the ISP description.
The START command is valid only at the top level of simulation. Thus, after a

breakpoint in the simulation the user must use the command CONT to proceed.

3.2. EXIT

EXIT is the command used lo finish a simulation run, It allows an orderly return
to the PDP-10 monitor. EXIT closes the files that might have been created with the
QOCONNECT command. Typing TC will return to the monitor but CONNECTed files will be

lost.

3.3. READ and DUMP

READ <dev:filename.ext[ppn}> allows the user to specify a file containing
simulation commands. Essentially, READ substitutes the user terminal with the file and
proceeds to read and execule commands until the end of the file is found, at which
point the user ferminal is again the command input device. Defaults are DSK (device),
SIM (extension) and current user’s PPN. Command files can contain comments. A
comment is anything between a ! and the end of a line.

DUMP is used to save the status of a simulation run, DUMP creates a file
containing the values of each variable (if non-zero), trace/break flags, read/write
counters, etc. The file created by DUMP‘can be read by the READ command, thus
allowing a simple way of reinitializing a simutation at the point the DUMP command was

issued.

ISPL Simulator: User’s Manual

3.4. ECHQ and DECHO

ECHO and DECHO are commands used to set an internal flag that controls the
ECHOiIng of the commands being read from a command file onto the user terminal.
After the ECHO command is issued, the execution of a READ command will type onto
the user”s terminal the command lines as they appear in the command file. DECHO
disables this type-out. ECHO and DECHO tan be issued_from inside the command file

thus allowing a selective type-out.
3.5. RADIX

RADIX <base> is used to sef the numeric base to be used for typing in and out.
<base> is one of the following strings: BINARY, OCTAL, DECIMAL, or HEX. If base is
ommited the command simply types the name of the current base without altering it.
The current base setting might be bypassed on input by prefixing the constant with
one of the following: * (binary), # (octal) or " (hex). Regardiess of the current radix,
HEX constants which begin with a letter MUST be prefixed wilth " (this is a requirement

that will be lifted in a future release).

3.6. CTR, SETCTR, and QUTCTR

CTR <name> displays the value of the counter_(s) associatéd with <name>, These
counters are tagged with R, W, or L to indicate whether they are the Read, Write, ar
Label count respectively. SETCTR <name> <readcounter>.<writecounter> gllows the
user to specify the setting of these counters. If <name> is a label, then the
<readcounter> plays the role of label count. If the <..counter> values are ommitted

they default to 0. Instead of <name> the user may specify ALL and the command is

ISPL Simulator: User’s Manual

applied to all the variables and labels. All read/write counts are expressed in terms of
8-bit bytes. Thus, reading a 16 bit register increments the R counter by 2. The
register lengths are rounded up to the next multiple of 8. hefore incrementing the
counter: A 19 bit register counts as 3.

QUTCTR <filename.extippn]> is a subset of the DUMP command. It creates a file

{default extension CTR) with the values of of all non-zero counters.

3.7. QPAQUE _and DOPAQUe

OPAQUE <label-list> and DOPAQUE <label-list> are used to inhibit or enable the
variable and label activity counters. The parameters to these two commands are labels
or procedure names. If a procedure is OPAQUEd then no activity counts are
incremented during its execution. The DOPAQUE command re-enables the activity
counting. These two commands affect only those procedures named in the parameter

list. Procedures called by OPAQUEd or DOPAQUEd procedures are not affected.

3.8. VALUE and SETVALue

VALUE and SETVALue are the commands used to set and interrogate the
contents of the ISP variables. The valid formats are:
VALUE <regname> (displays the value of a single register).

VALUE <memname> [<fromword> {: <loword>}] (displays the values stored in a
memory),

SETVAL <regname> = <value> (stores <value> into the register)
SETVAL <memname> [<fromword>] = <value-list> (stores into the memory. If more

than one value is specified, they are stored in succesive
memory positions, starting at <fromword>).

ISPL Simulator: User’s Manual

3.9. TRACE, UTRACE, DTRACE, and TELI. TRace

{TRACE | UTRACE | DTRACE} <variable-list> are the commands used to enable or
disable the tracing of variables during the simulation. If the identifier ALL is specified
instead of a variable list, the command applies to all variables. TRACE and UTRACE
differ in that the former applies to all variables (including compiler deciared temporary
registers and flags) while the latter only applies to user declared variables (registers
and memories). DTRACE is used to disable the tracing.

TELLTRace will type on the user’s terminal the list of variables currently being

traced.

3.10. BREAK, DBREAK, and TELLBReak

{BREAK | DBREAK] <label-list> are the commands used to enable or disable the
setting of breakpoints during the simulation. The parameters are either ISP procedure

namas or labels. TELLBR displays on the user’s terminal the list of breakpoint names.

~ 3.11. SBREAK, DSBREAK, and TELLSBreak

These commands are similar to BREAK, DBREAK, and TELLBReak but instead of
using ISP labels as parameters they take RTM statement numbers. Thus allowing a
finer degree of control on the placement of the breakpoints. These commands are not

particularly useful for the normal user, who should not be concerned with the RTM

code.

3.12. ICONNEct and OCONNEct

ICONNEct <identifier><channel-number>,<variable-name>
OCONNEct <identifier><channel-number><variable-name>

10

1SPL Simulator: User’s Manual

These commands are used to "connect" ISP variables to PDP-10 ASCII files
which will act as potentially intinite sources/sinks for variable vatues. When a variable
is connected to an input file, each time the variable is accessed, the value will be
obtained from the file instead of the simulated storage allocated to the variable.
Similarly, writting into a variable that has been connected to an output file resuits in
the value being written into the file {as well as into the storage allocated to the
variable). The format for both input and output files is the same: one number fline.

The file names are created by the simulator and consist of the first parameter to
the command (the <identifier>) as the file name, with extension ICn (ICONNEct) or OCn
(OCONNEct), where n is the user specified channel number. The current implementation
only allows up to three input and three output channels open simultaneoulsy. Thus the

only valid channel numbers are 1, 2 and 3.

3.13. HELP

HELP telis the wuser about the command names and their format. HELP

<commandname> tells the user about a specific command.

11

ISPL Simulator: User’s Manual

4. Storage Mapping

The simulator allocates space for the registers and rﬁemories declared in the
RTM symbol table using contiguous storage on the memory of the POP-10. The fact
that the PDP-10 is a 36 bits/word, 2's complement machine is completely transparent
to the user. All RTM operations are interpreted rather than compiled into PDP-10
instructions. Moreover, the simulator does not impose any limitations derived from the
word length; ISPL registers and memories are allocated contiguous bit strings on the
PDP-10. |

The use of logical register/memory declarations in the ISPL description presents
the following problem: The ISPL compiler allows the user to define arbitrary mappings
between bits of the left and right hand sides of the logical declaration, the only check
made at that point is that the number of bits is the same. From the simula.tor point of
view, it could be posible fo implement arbitrary bit mappings at a tremendous
degradation in performance (accessing a bit of a register or memory word that is
mapped onto some other component implies searching a table of bit name/position
equivalences; having to foliow this procedure bit by bit, even for full register/word
accesses could be hard to justify). The simulator makes a compromise between
convenience to the ISPL writer and efficiency of simulation. The solution adopted is to
restrict the types of mappings that the simulator can handle: all the bits of the right

hand side of a logical declaration must be contiguous. Continuity is defined in terms of

the word/bit naming convention used in the main declaration of the register/memory
used on the right hand side of the logical declaration. There are no limitations as to
what can appear on the left hand side of the logical declaration, these bits are by

definition contiguous.

12

ISPL Simutator: User’s Manual

Specifically, the following are the valid types of mappings allowed by the
simulator:

1) If the right hand side of a mapping was declared as a register, the
structure of the right hand side must specify a contiguous string of
bit names as specified in the main declaration. The number of bits
may range from 1 to the entire register length and, for proper
subsels of the main declaration, may be located anywhere in the
register.

2) If the right hand side of a mapping consists of a single memory word,
the valid mappings are those defined as above.

3) If the right band side of a mapping consists of a set of memory
words, the structure of the right hand side must specify a contiguous
string of full words as specified in the main declaration. The number
of words may range from 1 to the entire memory range and, for
proper subsets of the main declaration, may be located anywhere in
the memory.

13

ISPL Simulator: User's Manual

4.1. Allowable Types of Mapping

The following list of memory maps gives a good coverage of the allowable cases:

HIH777777: 4770088, #7777:8) <7:8>; 'THE ADDRESSING SPACE
NBIN7777:8)<7:8> tx NIN7777:81<7:8>;
MBIOL#777777: #77B088) <71 0> r= ML#777777: 47700081 <7:8>;
MU [#3777:8)<15:0> t= NiA7777:0)<7:05;
NUIGI#377777:4#370000] <15:0> = NI#777777:4770860) <7:8>;

RBNON[B:255) <B: 155,
RONNB[D:255) «15:8>;
ANPBN1255:8) <81 15>;
ANGNBI255:8] <15: 8>

RBN<B:15>;

RN@<i5:0>;

HAPL11[0:15])<B: 15> te RBNBN[188:115)<8: 15>
HAPL2(@:15]1<8:15> 1. RBNNB[188:115)<15:8x;
HAP13(8: 15} <8: 15> iz ANBONI[115:100] <8:15>;
MAP1418:15) <8: 15> = ANGNG{115:108] <1518>;
MAP15{8:2)<B:2> e RBN<5:13>;
HAP16(0:2] <B: 2> te RNB<}3:5>;

MAPZ2110:15) <15:0>
MAP22(8:15]<15:8>
MAP23(0:15)<15:08>
MAP24[8:15)<15: 8>
MAP25(8:2]1<2:0>
HAP26 (#12) <2: 0>

ABNBN[180:115)<0:15>;
ABNNB(188:115)<15: 8>y
ANBBN[115:108) <8: 15>;
ANBNB[115:108) <J5:8>;
RON<5:13>;
RMBc13:55;

FrR—-

ar wm e
L DN R N BN

MAP31(15: 8] <B: [5>
MAP32[15:8] «B: 15>

ABNBNL1680:115]<@:15>;
RENNBT188:115] <15:8>;

. e e ae

MAP33115:8]<0: 15> = RANGBNI[115:188] <81 15>}
MAP34[15:8) <@: 15> = ANBNB[115:108) <15: 8>
MAP35[2:8} <B: 2> t= RBN<5:13»;
MAP36(2:0]1 <0:2> t= RNB<13:5>;
MAP41115:0)<15:8> iz AGNBNI186:115) <B: 15>
NAP42(15:8)<15:8> te RONNB[180:115) <15:85;
MAP43([15:8F <15:8> t= RNBONILL115: 1887 <@: 15>;
MAP44[15:8] <15:8> 1= ANENBI115: 5087 <1518>;
MAP4512:0] <2: 8> t= R8N<5:13»;
MAPAG[2:8) <2:0> 1= RNB<13:55;
MAP51<8:5> te RBNON[10@) <4:9>;

HAP52<8:5> t= RBNNE{188]<9:d>;

RAPS3<5: 8> ta RON«<5:18>;

HAP54<5: 8> t= RNB<18:5>;

14

ISPL Simutator: User’s Manual

5. Examples

This section contains the transcript of several actual runs. The first example is
based on the smail ISPL example described in the ISPL manual. The transcript for the
compilation phase of the multiplier example appears in the ISPL compiler manual. We

start from the point right afler the MACRO10 assembler has generated the *.REL file.

5.1. Linking the Compiler Quiput with the Simulafor

r link

Amu it
k@ispsim
*#/ssave mult
*/go

EXIT

MULT.REL is the name of the file created by the ISPL compiter. ISPSIM.CMD is
the name of the command file containing the list of files that make up the simulator. It
also contains commands to load the BLISSIO run time library. The use of the SSAVE
switch instead of the SAVE switch creates a shareable version of the program. Thus

the resuit of the LINK10 execution will be named MULT.SHR+MULT.LOW.

15

ISPL Simulator: User’s Manual

5.2. Running the Simulator

Here we run the program that was created in the previous transcript. The
example makes use of a few simple commands that set initial values in the variables,
selects some variables for tracing and then starts the execution at the main entry

point of the description. The example is simple and self explanatory.

ru mult

15P SIMULATOR V3 - NRL RRF STRAGE 2

Thursday 29 Jul 76 23:42:13 NULT. ISP [NG55MB25)
SERIALIZATION COMPLETED

SPRACE RLLOCATED

TYPE HELP FOR HELP

TYPE <ESC> TO INTERRUPT SIMULRTEON LOOPS

»radix octal -
>setval pe2

>setval mpd+«3008 ! #6 on left half of mpd
>trace mpd,p,c

»start 10

alLe +#2 ¢ =410
@ STEP +#¢ P =1
ell +¥ C =

e STEP +#le6 P =#1468
elLl +4 C =#

@ STEP +44 P =588
ell +h4 c =I5

® STEP +#4 P « #3880
elLl +¥§ c =#4
@ STEP +#4 P =#148
e Ll +H4 [=#3

& STEP +#4 p =60
el +14 C =#2

e STEP +#4 P =438
etLl +#4 C =

@ STEP +#4 P =fl4
ell +¥4 C =8
SIMULATION COMPLETED

RUN TIME (18 usec units)=45259
RTH OPS EXECUTED=136

>value p

P =¥14
»value mpd
HPD =#3000
>exit

EXIT

16

ISPL Simulator: User’s Manual

When the simulator starts it performs two preliminary operations: 1) It
transforms the RTM statement table eliminating the DIVERGE/PMERGE operations that
define concurrent operations, and 2) It allocates space for the registers and memories
declared in the RTM symbol table. The simulator then types two messages advising
the user of the existance of the HELP command and of the use of the <ESC> (AltMode)
to break the execution of the simulator from the user’s terminal,

The tracing of variables indicates the place in the ISPL program where an
assignment to the variable has occurred. The location is identified by printing the
nearest ISPL label together with a displacement {in RTM operations) from this label.
The name of the variable affecled by the transter is printed, together with the new
value. The run time printed at the end of the simulation is obtained from a fast 10us.
clock available at CMU. Some instaltlations might now have this feature.

In the above example we initialize the multiplier (P) to 2 and the multiplicand
{MPD} to 6. According to the algorithm, the multiplicand is stored in the left half of the
MPD register. In the current implementation of the simutator we can not specify partial
register initialization, thus, we have to load the right half of MPD with a suitable value
(initialization of variables in the command language implies full register moc'iification,
with zeroes on the left of the value). At the end of the run, the contents of the P
register contains thé result of the multiplication (6%2=12 or #14 given that we set the

type out radix to OCTAL).

17

ISPL Simulator: User’s Manual

5.3. Executing Selected Procedures

In the following example we show a few more commands and features of the

simulator:

ru mult

ISP SIMULATOR V3 - NRL ARF STRGE 2

Thursday 29 Jul 76 23:42:13 NULT. ISP INE5SMB25)
SERIALIZATION COMPLETED

SPACE ALLOCATED

TYPE HELP FOR HELP

TYPE <ESC> TO INTERRUPT SIMULATION LDOPS

>radix octal

>setval ped

>setval mpd-408 ! Multiplicandsl
>utrace all -
>start step

@ STEP +#18 P =#281

RUN TIME(18 usac units)=3081
RTH OPS EXECUTEDs9

The above sequence shows how the simulator can be used to execute selected
procedures from the ISPL description. In fact, the simulator treats ALL labels and
procedure names ‘as potential entry points. It does not assign any special meaning to

the label of the main body of the ISPL description.

18

ISPL Simulator: User’s Manual

5.4. Reading Command Files

The following example shows the use of the READ command. In this particutar
case we are not only initializing the variables and setting trace flags, but we are also
starting the simulation automaticaly from the command file, The number of ">"
character used to prompt the input stream (2 user or a command file) indicates the

level of nesting of the command stream. One ">" is the mark of the top levet.

>»dtrace all

>read ml.sim

>>! this i5s & command file
»>5atval pe2

>>setval mpd-2880
>> I multiplicand=4

»>traca pn

»>start 18

@ STEP +#4 P =¥

@ STEP +218 P =#1808
@ STEP +44 P =4400
@ STEP +#4 P =¥2060
e STEP +#4 P =#188
€ STEP +#4 P =448
e STEP +#4 P =420
@ STEP +#4 P =210
SIMULATION COMPLETED

RUN TIME(1D usec units)=32120
RTM OPS EXECUTED=136

>>'and of command ffle
>>»7 LINES RERD
»>axit

EXIT

19

