NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

L% Introductory User's Manual

Preliminary Cralt

Brian K. Keid
November 10, 1875

i] This is a PRELIMINARY DRAFT e
= It is incomplete and unproofread e
3 and distributed cautiously el
I e

Please report errors constructively

This work was supported in part by the Advanced Research Projects Agency of
the Office of the Secretary of Defense under contract F44620-73-C-0074,
monitored by the Air Force Office of Scientific Research.

November 10, 1975 , Preliminary L* Manual

Part I: The Nature of Ls

1. Introduction

1.1. The history of Ls

1.2. Further information

~ 1.2.1. Reference documentation
1.2.2. Exploring on your own

2. L= design Philosaphy

2.1. General design principles
2.2. Facility-specific design principles

'Part il: The Structure of Ls

3. A systemoverview

3.1. L# in perspective: a comparison with some other systems
3.2. Terminology and notation

3.2.1. Notation conventions

3.2.1.1. Bracket notation to describe routines

3.2.1.2. Parenthesis notation for symbols on Z

3.2.2. Words with a rigorous meaning in L*

3.2.2.1. Symbols

3.2.2.2. Names

3.2.2.3. Name Contexts
3.2.2.4. NIL ‘
3.2.25. Level

3.2.2.6. Signal

3.3. Major system pieces

3.3.1. The central stacks Z and ZX

3.3.2. The type system and the storage manager
3.3.3. Interpreters and program execution

3.3.4. User interface, recognition, debugging, etc.

Page i

B RN =

(7]

B

mummuuu\:mmmmmmmmb B~

November 10, 1975 Preliminary L& Manual : Page il

4. Structures: Le building blocks | | . 1

4.1. . Defining a type and a structure ' i1
4.2. Types and structures supported by the basic system 11
4.21. Programs ' 11
4.2.2. Lists ‘ _ 12
423, Stacks ' 13
4,24, Words and blocks , 13
4.25. Associations and association lists : 13
4.26. Character strings _ 14
5. Program execution and environment 16
5.1. The interpreters B 16
5.1.1. Finding the interpreter for a type ' : 16
5.2. Error detection and recovery : 17
5.2.1. Error checking) ' 17
5.2.2. Error svents o 17
5.2.3. Continuing from an error : : 17
6. The user interface :) 19
6.1. The EXEC ' 19
-6.1.1. Character actions and name assembly 19
6.1.2. Recognition 20
6.1.3. Recognition actions I 21
 6.1.4. Name contexts and context lists ' : - 22
6.2. Building program and data structures 7 - 23

6.3. Reading files o 23

Part III: Programming in L

7. Building and printing structures : 25
7.1. Building programs . o 25
7.1.1. Creating program lists : . 25
7.1.2. Creating machine-code programs .27
7.1.3. Editing list structures o 27
7.2, Building non-program structures . ' 28
7.2.1. Data lists ' ' 28
7.2.2. Associations and association lists 29

7.2.3. Word structures and blocks : 30

November 10, 1975 Preliminary L# Manual

7.3. Storage management

7.3.1. Word storage managerment
7.3.2. Block storage management

7.4, Printing

7.4.1. Printing whole structures
7.4.2. Printing symbols by type

7.4.2. Printing numbers and addresses

8. Program control

8.1. Conditionals

8.1.1. Conditional operators

8.1.2. gGignals and the signal stack
8.2. Iteration

8.2.1. Internal iteration

8.2.2. External iteration

8.3. Special control operators
8.3.1. Symbol quote operators
8.3.2. Execute control actions
8.3.3. Infix operator control

8.4. Address space control (overtays)

8. Data manipulation Operators

9.1. Operations on the central stacks

8.1.1. Operations on Z

9.1.2. Operations on 78

8.1.3. Operations on the scratch stacks

9.2. List facility

9.2.1. Creating, copying, and erasing lists -
9.2.1.1. Creating lists

9.2.1.2. Copying lists

9.2.1.3. Erasing lists

9.2.2. Examining and medifying list structures
9.2.2.1. Examining and searching lists

9.2.2.2. Modifying lists

8.3. Stack facility ,
9.4. Association and Association List facility
8.4.1. Association-list manipulation

9.4.2. Association structure manipulation

9.5. Word facility - :

9.6. Character-string facility’

8.7. Block structures

Page

(AR EA RN R AN

November 10, 1975 Preliminary L* Manual Page iv

10. The Recognition System _ 56
" 10.1. The EXEC in detail . 56
10.1.1. Character actions and name asgembly 56
10.1.2. Recognition actions 56
10.1.3. Modifying the user interface ' 56
10.2, Names and contexts o 56
10.2.1. Creating and using a context , b6
10.2.2. Defining and redefining basic-system names 56
10.2.3. Local names ' . B
10.2.4. Names within blocks . ‘ 56
10.3. Creation type control ' . 56
10.3.1. Type-control operators . 56
10.3.2. The forward-reference problem 56
10.4, Pertinent data structures in the recognition system 57
11, Operating-systeminterface - 57
11.1. Reading and writing files ‘ 57
11.1.1. 1/O interfaces ' o 57
11.1.2. Character stream /O - b7
11.1.3. Binary word [/O o 57
11.2. Time accounting ' o 57
11.3. Sub-johs - ' 57
11.4. Parallel processing A o 57
11.5. Odds and ends : : - - 57
11.5.1. PDP-10 notes : . 57
11.5.2. C.mmp notes _ . 58
12. Bebugging tools - ' B8
_12.1. Breakpoints ' ’ 58
12.2. Tracing execution o - - 58
12.3. Error detection and recovery 7 ' ‘ _ . 59

Part IV: Practical L# hints, tools, and techniques

13. Programming Style o 59
13.1. Source program formatting 59
13.2. Names 59

13.3. Technique . 60

November 10, 1975 ' Preliminary L* Manual Page v

14, Debugging technique - 60
14.1. Finding bugs: some hints and pitfalla 60
142, Bug fixing and patching 60
14.2.1. How to correct it 60
14.2.2, How to maintain an up-to-date source file 60
143. When to give up and recompile . 61
15. A program library: existing code ' 61
15.1. dummy section _ ‘ | 62

INDEX 82

November 10, 1975 ~ Preliminary L* Manual Page 1

Part I: The Nature of L

1. Introduction

L (pronounced ‘L star’) is a complete system for constructing, running, and
debugging software. Its emphasis is on rapid programming and flexibility. L#x was
developed over the past several years by Ailen Newell, Don McCracken, George
Robertson, and others. The current version of L on the PDP-10 is called L#(I),
and the current version of L* on C.mmp is called L#C.(C).

Other implementations of L are similar to L#{I) and L#C.C), but not
sufficiently similar that their users may use this document in its entirety. We will
not attempt to enumerate all differences between current L+ implementations and
previous ones, but in places where that information is either critical or interesting,
some older implementations will be discussed.

1.1. The history of Ls

L+ has evolved from attempts to build a successor to the IPL-V system. In
1968, IPL-V was an old language, and there were certain specific features that
were not considered satisfactory. Motivation to design and implement a new
system was created by CMU's switch to a new machine, a PDP-10, from a 360/67.

By Fall of 1968, the central concepts which begat L* had been worked out
by Allen Newell, and documented in-private working papers. These plans called for
a ‘system of list languages’ called L+. The name Lt comes from the Kleene star: the
closure of all list languages derivable from a bams kernel. (Recall L6: Low Level

Linked List Language).

The first incomplete specification for an implementation of an L+ system was
L#(A), complefed in October of 1968 By July of 1969 the written specifications
- for L#(A} were complete, and plans for an implementation were bhegun by Allen
Newell, Peter Freeman, and Don McCracken. With George Robertson joining the L#
- group, the design went through several more iterations; finally in June of 1970 an
. implementation was completed of L«{D). This implementation was on the PDP-10.

A new implementation and two more design iterations were soon comp]eted;
L*(F) became available in November of 1970. This version, L¥(F), was used to build
a large user system, MERLIN (Moore and Newell),

Several more implementations evolved on several more machines. Currently,
the PDP-10 version is L#({l), and the Cmmp version is LxC{C). A version for
stand-alone PDP-11’s, L#l1l, is similar to L#{(H). Based on L#ll, a version of L% for
the Computer Modules project should be available by the first part of 1976.

November 10, 1975 . Preliminary L* Manual ' Page 2

1.2. Further information

1.2.1 Reference documentation

The ultimate reference documentation for any L# system is the source fils for
that system. This source file is called an M-FILE. The M-FILE for L#(I) can be
found as LSIMI18[Al 10LIC0]. There does not yet {(November 10, 1975) exist an M-
FILE for L#C.(C), but there is a binder in the C.nunp room which contains an up-
to-date listing of the L+C.(C} system.

There is a tutoria) script in L#({I), which s designed to serve as an online
‘programmed instruction’ tutorial It is fairly slow during typical load conditions
on the PDP-10; an interested user might consider trying the script during off-peak
hours. To get at the script, type "R LSIA" to the monitor (which will get you into
L#), then type "HELP" to Ls.

When all else fails, ask George Robertson,

1.2.2 Exploring on your own

Rather than hunting through reference documentation oy asking the experts,
users are encouraged to explore L+ from within. [t is a totally accessible system.
Every address in the system is accessible; thus every piece of code and every data
structure is available and visible There is a print facility which allows one to
print anything in the Ls system in a reasonably readable format. There is a
stepping monitor which will trace the execution of any routine. If you want to
know how something works, go look at it. The print facility, for printing out
Programs, is described in section 7.4 The stepping monitor, which will
allow you to watch the execution of any routine, is described in section
12.2. There should be a sufficient number of data-structure names explained
in this manual to gel you started; they are all alphabetized in the index.

1.1 . INTRO.1CH

November 10, 1975 Preliminary L* Manual Page 3

2. L% design Philosophy

) L* is a highly principled system. By this we mean that it has evolved from

a systematic exploration of the design alternatives available, with decisions being
made on the basis of rigorous principles of design. The design process has taken
the form of a long series of iterations, takirg seven years, vwhich can be thought
of as converging on the ultimate target system.

It is expected that the L# user’s programming philosophy will be similar to
the designers’, which helps to blur the distinction between system implementer and
system user. :

The design principles that shaped L* could be enumerated like so many
commandments on a tablet, and be read as a sort of catechism: almost ail design
principles look sound when stated reverently enough. However, the implementors
of L* take their design principles seriously, and consider that updating of the
design principles to suit new discoveries or new ideas is just as important as
updating the documentation to suit changes to the system

So let us enumerate the design principles, with a minimal amount of
commentary on each ' :

2.1. General design principles

2.2. Facility-specific design principles

TIIFT /M 4

November 10, 1975 Preliminary Lt Manual Page 4

Part II: The Structure of L

3. A system overview

3.1.- L= in perspective: a comparison with same other systems

L is a prograraming system; that is, a means for buildirg and executing
programs, and an environment in which to debug and madify them. Many
"programming systems” exist today, and they tend to have only fleeting similarities.
Since L#* is an unusual system, it would be worthwhile to try to define it with
respect to other avajlable systems,

All programming systems intend to provide a means whereby a programmer
can direct the execution of a computer. An assembler allows the programmer to
generate machine instructions more or less by hand. An assembler and a loader
together form a system for generating and executing machine code, so they may
together rightfully he called a pregramming system. Often, however, there exist
libraries of routines which the programmer may add to his program with a link
editor, and there may exist core-dump programs, macrogenerators, editors,
debuggers, and so forth, Taken in toto, these pieces form a programming system.
Further, they form a complete programming system, since there is no programming
task which cannot be programmed with this programming system,

APL is also a programming system, but unlike the assembler-linker-loader
system described above, it is self-contained: the APL system is a program which,
totally within itself, allows a programmer to enter, display, execute, edit, and debug
programs. Different implementations of APL handle the details in different ways:
some are sirictly interpretive, others compile code for a statement at a time, then
execute the machine code so generated. Nevertheless, all this activity takes place
within APL. APL is a restricted system, in that not all programming tasks are
suitable for APL, or even possible within APL. For example, it would not be
possible to write a special magnetic-tape copy routine with APL, since the APL
system does not provide any primitive functions for the manipulation of magtape,
nor does it provide any mechanism for adding new primitive functions,

‘ Lx is a self-contained system somewhat like APL, but it is not restricted: a
system or program of any sort may be constructed in Ls. Not only is it not
restricted, it is arbitrarily extensible and modifiable: the Lt user may add new
pieces to the system, modify or remove existing pieces, or build up from the "basic
system" without actually modifying it. Ls ig thus a2 complete system: any
programming task which ig suitable for the computer in question may be
programmed in L. |n calling APL a programming system (which it is), we are in a
sengse obligating ourselves to think of a different term for programming systems in

2.2 PHILOS.1CH

November 10, 1975 Preliminary L* Manual Page 5

which other systers may be built. For example, it would be entirely possible to
implement APL in L#, but it would not be possible to implement L* in APL. Hence,
L* is frequently referred to as a system-building system?’, in order to stress its
differences from other programming systems.

3.2. Terminology and notation

Every system has its own terminology which is used to describe and define
the system. Terminoclogy unique to L# is used both inside the Lt system (in the
source file), and in external documentation. The reader should understand Lhe
specific meaning of all of the L+ ‘system terins’, and should keep them in mind
while reading any L* documentation.

3.2.1 Notation conventions

Throughout L# documentation, and to a large extent throughout existing Lx
code, various notational shorthand is used to describe the behavior of Lt routines.

3.2.1.1 Bracket notation to describe routines

Often a routine will have a descriptor in square brackets, as for e'xamp!e
‘[11J or ‘{20F. This notation summarizes the inputs and outputs of the routine. It
works as follows: The full form of the notation is '

' [ABSCDIE
where

is the number of inputs from Z

is the number of outputs to Z

is present if the routine returns a signal
is the number of inputs from 78 '
is the number of outputs to Z$

is a single-quote if the routine is active

monmmb'

Very few‘ routines ever change the contents of Z8, so the 'C' and ‘D’ fields are
hardly ever used. If a routine takes a variable number of inputs, or leaves a
variable number of outputs, then the letter V is used instead of a number.

Here are some samples of this notation:

- P - [121 Push: I input, 2 outputs
U (101 Up: 1 input, no outputs
F [1vsl Find: ! input, variable output, sets signal
usg [008101 Up Z8: no Z in or out; pops Z§
? {101+ Print: 1 input, no outputs, active
C o Left paren: no input, 1 output, active

3.1 ' OVRVUE.2CH

November 10, 1975 Preliminary L* Manual Page 6

3.2.1.2 Parenthesis notation for symbols on 2

When a multi-input or multi-output routine is being described, it is clumsy to
say ‘the symbol on top of Z' or ‘the symbol third from the top of Z°. Ls
documentation uses a notation with a number in parentheses: (0} means the top of
Z, (1) means the next-to-the-top of Z, etc.

3.2.2 Words with a rigarous meaning in Lk
3.2.2.1 Symbols

A program’s Physical existence is implemented in terms of words of computer
memory. Since ‘word’ iz a fairly ambiguous term, many technical terms have been
coined through the years to describe things built out of chunks of computer
memory. At varicus times, the words cell, atom, token, block, word, structure,
packet, recerd, array, and many more, have all been used to describe something
built out of contiguous pieces of computer memory. All of these words have a
history and certain prior connotations. The Lsx implementers chose to use some
and reject others.

The word Symbol has two meanings in L. Primarily, a symbol is an address.
Thus, when we speak of ‘the valus of a symbol’ ¢r ‘printing a symbol', the word
means address. Symbol is also the name of one of the fields of a list cell. Cne
will often see the expression ‘taking the symbol of® something. This does not mean
‘finding the address of’. Taking a symbol means extracting the symbol field of a
list cell. The contents of this symbol field is in fact a symbol in the first sense,
but then so is the contents of the ‘next’ field.

3.2.2.2 Names

A name is a character string used to identify a symbol. The name of a
symbol is available for labeling output, and the name of a symbol is used by the Lt
recognition system to recognize references to symbols. Not all symbols have names,
though all symbols can be given names, ~

3.2.2.3 Name Contexts

A Context is a name table, Frequently one hears the expession ‘symbol]
table’, but since we have pre-empted the meaning of the word symbol, we cannot
unambiguously speak of a symbol table in L+, So we call it a name context. A
hame context is a table associating a character-string external name with a symbol
(ie. with an address). There can be many name contexts; the L* hasic system
provides two: BCX, the base context, fo hold system names, and UCX, the user
context, to hold user names. Additional contexts may be created and used as
needed,

3.2.1 : OVRVUE.2CH

November 10, 1975 Preliminary L* Manual ‘Page 7

3.2.2.4 NIL

NIL is a particular Lt symbol of type list. By convention, a list is
terminated when its next field is NIL; since NIL is a list, its own ‘naxt’ field must
also be NIL. NIL is also used fo represent the value ‘false’ in conditionals, NIL
has no intrinsic special properties other than in the way it is used by the rest of
the system.

3.2.2.5 Level

A level of a list or program is a sublist or subprogram. Consider the list (A
B C (D (E) F} G H). It has three levels. The outermost or highast level is
(A B C something G H). The next lower level is (D something F). The lowest or
innermost level is (E). This is easier to visualize if you think of a 2-dimensional
representation of a list:

(ABC G H)
(D F)
(E) :
The term level is often seen in documeontation of the editor, the interpreter, and
the stepping monitor, and in documentation of control actions.

3.2.2.6 Signal

The word signal in L+ documentation refers 10 a true or false value returned
by a routine. At any given time, the current signal is the value at the top of the
stack Z§. A value of NIL means false; any other valug means true. Many control
actions test the signal ,

3.3. Major system pieces

. There are certain major pieces of L+ which a reader must understand before
L* documentation wiil make much sense. They include:

> The central stacks ‘

> The type system and associated storage manager

> The interpreter and the program control mechanisms
> The recognition and printing system

Each of these pieces will be described in detail in Part III {‘Programming L#’). We
will provide a short description here in order that the pieces and the names not
be a myster as the documentation unfolds, : '

3.22 OVRVUE.2CH

November 10, 1975 Preliminary L* Manua) Page 8

3.3.1 The central stacks 7 and ZX

The L* main data stack is named Z, and the main control stack is named ZX.
Z is used for almost al) argument passing, computation, and temporary storage
inside routines. Most Ls oOperators work on the top one or two elements of Z
For example, the +W operator, which is the addition operator for Type Word,
takes as input the top two elements of the stack, and emits as output their sum,
which it pushes onto Z. This behavior is quite similar to that of the *+ kKey on a
postfix calculator (with which we assume all of our readers are familiar).

The control stack Z¥ is used %o record linkage information for -routine calls.
it is used in much the same way as an ALGOL runtime stack, with one impartant
exceplion: ALGOL stores local variables and arguments on the runtime stack, which
L+ does not. See section 5.1 for a more complete discussion of IX and its
contents. L* supports stacks as a data type; Z and ZX are two specific stacks.
ZX, however, is somewhat special: it is not implemented via the general L* stack
mechanism, rather it is a machine register. For this reason, attermpts to print Z¥X
using the normal print routines described in section 7.4 will fail, since Z¥
has non-standard structure. The L# basic system provides a routine for printing
ZX; its name is 7IX. ?7ZX is an active symbol (see 6.1.3), which means that it
is executed immediately when it is typed.

3.3.2 The type system and the storage manager

Every address known to Lt has a type. The type system is crucial to Lz,
driving the interpreters, the user creation and print routines, and the storage
manager. Storage allocation is organized by type. When a program needs storage,
it calle the storage allocator giving a type and a word count. The storage
allocator will return (on Z, of course) the address of a bilock of storage of the
requested type.

An Lt user does not normally acquire storage by direct calls to the storage
aliocator. Instead, there exist type creation routines which allocate a chunk of
storage of the correct size, and initialize its contents. For example, one seldom
-wants fo create a block of storage of type stack, rather one wants to create a
stack. Instead of calling the storage allocator to get some words of type stack,
one calls the stack creation routine, which in turn cails the storage allocator to get
the storage that it needs. The individual creation routines and their behavior are
described in chapter 7, :

L* does not use a garbage-collection scheme; storage must be explicitly
erased. Although this scheme requires more attention from the programmer than
would a garbage collecticn scheme, it is much simpler, much simpler to implement,
and inherently much faster, When storage is erased, it is returned to the available
space list for its type.

3.3.1 OVRVUE.2CH

Novemwber 10, 1875 Preliminary L* Manual ' Page 9

Storage is organized in units of type bLlocks of 128 words each. In L#C.(C)
storage is further organized in units of pages (Hydra pages) of 4096 words each.
Each type block has a type which is determined by a type map, and all storage
~allocated in that block has the type of the block. Unallocated storage is of type
available space.

3.3.3 Interpreters and program execution

L* is an interpreter-based system. Routines are called by the interpreter,
and when they finish execution, they return to the interpreter. In this sense, the
interpreter can be considered as a dispatcher controlling the sequence of executicn
of various machine-code routines.

Initially the T/P interpreter is in control. This interpreter executes a
program list by taking in turn each symbol of the list and interpreting it by type.
There is a separate interpreter for each type. The T/P interpreter takes each
symbol of a program list, determines its type, and then executes the interpreter
for that type. The interpreter for type machine-code (T/M), for example, merely
calls the machine-code routine as a subroutine. The interpreter for a data list
places the address of that list on Z

The relationship of the interpreter o the type system is more fully
described in section 5.1. The detailed behavior of the interpreter when
applied to a symbol are described in chapter 9 in the section on that

type.

3.3.4 User interface, recognition,‘debugging, efc.

A large chunk of Ls consists of routines which talk to the user and make life
easier for him. These are routines which create programs, execute them, edit them,
create and print data structures, define names, set breakpoints to trap errors, and
go forth. These routines all interact with the user, who is in control at all fimes.

The recognition system stores symbolic names (i.e, character strings) of
internal L* structures, and allows the user to communicate with his system in
terms of these externa! names. The user interface executive routine, called EXEC,
allows the user to execute any L* routine from the terminal. In particular, it
allows him to execute the structure-building operators which create programs, lists,
and the like. The language in which the user communicates with the EXEC is
called EL#, or the external language.

Since the EXEC can be used to execute any Lt routine from the terminal, it
can in particular be used to execute structure-building routines. Structure-building
routines are those which create programs, build lists, define blocks, etc. The
structure-building routines are given suggestive mnemonic names: ‘(' and *) are the
names of the routines which begin and end construction of a list; ‘[’ and ‘J are
the names of the routines which begin and end construction of a stack, etc.

33.2 OVRVUE.2CH

November 10, 1975 Preliminary Lt Manual Page 10

A Print Facility allews a user to print any symbol. The editor and stepping
monitor and other debugging tools combine to form a comprehensive environment in

which to find and fix bugs.

All of these facilities will be discussed in detail in the approprite chaptersg,
consuit the index or table of contents for details,

~ 3.34 OVRVUE.2CH

November 10, 1975 Preliminary Lt Manual - Page 11

4. Structures: L building blocks

4.1. Defining a type and a structure

The L* basic system, ie. the initial system provided to an Ls user, supports
numerous data structures which have been found to be an appropriately small set
of universally usefy] structures. Conceptually more important than the collection of
structures defined in the hasic system, ig the ability to add pProgrammer-defined
structures to the basic system.

L+ data structures are closely tied to types. In particular, there ig usuaily a
separate L type for each kind of data structure, and a set of support routines to
manipulate it Normally, when a type is added to the system, several steps are
involved:

"> Create a type symbol, which is a symbol of type ‘type’ (T /T). This symbol
represents that type,

> For the structure that the new type represents, code a creation routine, an
erasure routine, and a print routime, Enter these routines in various type
" tables under the new type.

> Code service routines as needed to use the new type. If the type is to be
executable, code an interpreter for that type and enter it in the interpreter
type table. : ' .

4.2. Types and structures supported by the basic system

- 4.2.1 Programs

Lx(I) program structures are linked lists, each symbol of the list being a step
of the program. An LK) program list is structurally identical to a data list (see
next section), but because program lists have a different type, they are handled

differently in execution,

L+CAC) program structures are compacted lists, ie. blocks: a program is a
contiguous block of memory with each word treated as a list cell, so that no ‘next’
pointer is needed, because the next cell can be found by indexing to the next
sequential memory address. :

The end of an L) Program list is indicated by a cell on that program list
whose next field is NIL. The symbol part of that cell {called the termination cell)

4 - STRUX.2CH

November 10, 1875 Preliminary L* Manua) Page 12

contains a pointer to the head of the list. This pointer is ucefu] for lcoping back
to re-execute the brogram list. The end of an LxC(C) compacted program lJist ig
indicated by a cell whose address has the low-order bit get. Since Lt symbols are
always word addresses, and word addresses on a PDP-11 are alwaye even, no
symbol will ever normally have its low-order bit turned on.

L* supports type program, or T/P, for program lists., A separate type, Type

machine or T/IM, is supported for machine-code Programs, Machine-coda programs
and their relationship to Program lists are discussed in section 7.1.2.

L+CAC) supports 2 special type called type indirect, or T/l which is a means
for executing a Program in a page that overiavs the cajler, (La. a page which sits
in the same logical address space as the caller) A type-indirect symbol is a two-
word symbal naming a program and an overlay. The interpreter action for T/l is
to load the overlay, call the Program, then return to the previous overiay. _See\

o sec’ltiqn. 8.4 for a desr_:ription of the Lx overlay mechanism,

422 Lists

L* lists are non-executed data structures, as Opposed (for example) tolthe
pProgram structures defined above. A list is normally of tvpe list, or T/L. A list ig
a collection of linked cells, each cell having a contents and a bointer to the next
cell of the list, The last cell of a list is called the termination cell of that list, and
is not normally considersd to be part of the ‘contents’ of the list, A termination
cell is one whose ‘next cell pointer points to NIL. ‘

A list cell must then contain (at least) two addresses. In Lx(I) on the PDP-
10 (a 36-bit machine) a list cel] ig a single word, with an address in the Joft half
-and an address in the right halt. In LaC.(C), running on a 16-bit machine, a list
cell is g contiguous pair of 16-bit words, each of which holds a symbol, -

The two symbols in a Jist cell are called the symbol field and the next field.
The next field is the symbol of the next cell of the [ist or NIL if this is a
termination cell), and the symbol field isg the ‘contents’ of the list cell, and can be
any L* symbol, Note that the contents of the next field is in fact a symbol. (If
that sentence did not make sense, then go back and read section 3.2). As is also
the case with program lists in Lx(I), the symbol field of a termination cel] tontaing

storage is returned to available space, There exist numerous routines for
examining, modifying, copying, searching, and iterating over lists,

4.2.1 STRUX.2CH

November 10, 1975 Preliminary Lt Manual Page 13

4.2.3 Stfacks

A stack, often called a pushdown stack, is a well-known data structure
characterized by its last-in, first-out behavior. in Lt, a stack is implemented as
- two pieces: a block of storage to hold the contents of the stack, and a separate
‘control block’ which holds pointers to the data part of the stack. L% stack
structures are normally of type stack, or T/

7 When an L# stack is initially created, one must specify the size of the stack;
this will be the size of the data portion. Tha ‘control portion of the stack has
three parts: a ‘current position” pointer, a ‘stack full marker, and a ‘stack empty’
marker. If a program attempts to remove (ie, "pop") an entry from an emptiy
stack, the stack manipulation routine will trigger an error event named EJUF {(see
section 5.22). If 3 program attempts to add (ie. “push"} an entry onto a
-stack which is already full, an overflow event named EJOV will occur. Normally
- EJOV contains code to create a new larger stack, copy the contents, erase tha old
stack, and return to the interrupted code, which will then succeed. L# stacks may
thus be considered to have infinite size,

The L# kernel supports stacks both for its own use in the basic system, and
for user convenience in building on top of the kernel, There are several specific
stacks in the basic system which are crucial to the workings of Lf. These
Particular stacks, called Z and ZX, are the main data and control stacks,
respectively. They are described in section 3.3.1. The signal stack 23 js also a
stack, but its being a stack is not central to its behavior: L+ could be made to run
adequately if 28 were merely a word instead of a stack. For this reason, 78 is not
considered here to be a central stack.

" 4.2.4 Words and blocks

L provides support for manipulation of arbitrary words, whose contents and
structure are entirely up to the user. There are operators to perform arithmetic,
bit manipulation, comparisons, etc, on these ‘arbitrary word' symbols. The basic
system supports type word, or T/W for these arbitrary words. "~ words. By
clustering words into contiguous blocks, it is possible to build array structures and
vectors, etc. A block may be built from symbols of any type; blocks are not
restricted to T/W. It just seemed convenient to talk about them here since most
of the blocks in the Lt basic system are T/W. The L* basic system does not
support arrays as a data structure. _

4,25 Ascociations and association ligte

An 'assOCiation, in the most general sense of the term, is a triad of
associated wvalues. Customari!y they are called the attribute, the symbol, and the

value. One speaks of associating a value with a symbol along some attribute.

423 STRUX.2CH

November 10, 1975 Preliminary Ls Manual Page 14

Many systems support associatjon structures to varying degrees of Power and
complexity. A totally general association system, sych as that availakle on an
associative--memory machine like STARAN, allows arbitrary content addressing: j.e.
one may with very little loss of efficiency ask such questions zg “along which
attributes g thg value ‘trye’ associated from something?™ Some software
implementations of association systems, such as LEAP, allow this sort of access to
the association structures, byt at a great loss of efficiency.

L* implements associations as g structure of pajrs, Each structure s an
attribute; an association is stored in the structure as a bair: (symbol value). In
this sort of structure, lookups of the form “what is the valye of symhol XYZ aleng
attribute ARC" are very efficient, but lookups oF the ferm “which attribuies have |

" are exceedingly slow, requiring an exhaustive search of all attribute structures

An association list is a list in which associated pairs of symhols are stored,
It is of type association-ligt (T/AL). Because of different word sizes of the PDp-
10 and the PDP-11, L#() and LxC.(C) use slightly different fine structure in
association lists. Lx(I) stores an association list as alternating pair lists, with
every other ceall containing a symbo} and a value. L+C(C) stores an association list
as a list of Pairs, with two symbols in every list cell Although the service
routines must he slightly different, the net effect is the same, '

An agsociation structure is 3 collection of association lists grouped into g
hash tabla, The hash iable ig in fact a block of T/AL symbols. The symbol of the
association structyre points to the firgt word of the hash table, This symbol ig of
type association (T/A). When an entry is made in an association structure, the
s8ymbol part of the association is hashed into the table to specify which one of the
association lists will receive the pair. Obviously, when there are a large number of
Pairs stored in an association, a large gain in efficiency will be effected by this

Associations and association lists are executable data types. This means that
they have an interpreter action that does something besides push the symbol onto
Z. When the interpretepr executes a symbo] of type association or of type
association list, it performs a lookup of the symbo} on top of Z. Any reference in
2 program to an association iist not intended to be executed ‘should be quoted with
‘the .Q quote symbol,

426 Character strings

Character strings may of course be implemented by the user using lists of
character symbols (as was the case in earlier versions of L+), but to save space a
character string facility was created for LI} on the PDP-10 and L#C.{C) on
C.mmp. These are very ordinary character strings, with the usual collection of
Priiiitive operations to manipulate them, Character strings are of type character-

4.25 STRUX.2CH

November 10, 1875 Preliminary L Manual Page 15

L character strings are stored tightly packed, with a marker indicating the
end of the siring. On the PDP-10, there arc 5 ASCil characters stored per word;
the end of the string is signified by a low-order ‘1® bit. Cn C.mmp there are 2
ASCII characters stored per word, with a zero character marking the end of the
string. '

426 ' "~ STRUX.2CH

November 10, 1975 Preliminary Lt Manual Page 16

8. Program exscution and envirocnment

5.1. Theinterpreters

The L# interpreter is the sequencer, the controller of execution, When each
routine has finished executing, it returns to the interpreter, which then finds the
next routine to he executed and processes it ‘The inter preter’ ig actually a
coliection of interpreters and a type-driven mechanism for determining which ona
to invoke,

5.1.1 Finding the interpreter for g type

At the innermost level there iz a loop which steps down a program list,
taking in turn each symbol and executing it. To ‘execute’ a symbol means to put it
on top of Z, then determine its type, then call the interpreter for that type. Since
the interpreters work off Z (as opposed to some interral registers as they did in
prior versions of L#), an interpreter may be written and debugged as a normal
user program, taking input ih the normal way. There is a type table identifying
the interpreter for each type. When a type is created, one of the responsibilities
of iis creator is to ensure that the interpreter type table has the correct entry
for the new type. On LsC.(C) the type table is in fact a table, named TTI. On
LI}, the type table is an association structure named ATL. Be it a table or an
association, the interpreter type table identifies the interpreter for each type.
Even nonexecutable types like T/W (word) or T/L (data list) must have an entry in
the interpreter type table, The entry for nonexecutable types is simply a NOP.

The T/P (type program) interpreter has a mechanism built into it allowing an
event to be executed at the end of each interpreter cycle. Events are most
frequently used in L+ as error-handling devices; in this context they are described
in ‘section 5.2.2, The interpreter maintains a step event, which can be made
to trigger at the end of every interpreter step. The interpreter step event ig
called ESTEP. If the side signal cell 8STEP is TRUE (ile. if it contains something

diagnostic tools to be written. The stepping monitor (see section 12.2) and
the generalized breakpoint facility (see section 12.1} both use the
interpreter step event,

5.2. Error detection and recovery

5 PROGRM.2CH

Noverrber 10, 1975 Preliminary L* Manual . Page 17

5.2.1 Error checking

A minimal amount of error checking is performed by the Lt basic system;
these error-checks tend in general to be for very severe errors which could if
committed make debugging difficult or impossible. A user may of course modify the
system to irclude error checking wherever so desired,

When an error is detected, an error event is triggered. An error event
contains a subroutine which will be executed by the code that detected the error
Often the error event will print & message and ithen call the EXEC. If you print
the call stack ZX inside an error event, you will see that tha call history shows
the routine that has detected the error calied an error routine in the L# kerrel,
which in turn called the error event routine, which in turn called EXEC.

5.2.2 Error evenis

An error event is a data list, and each cell of the list contains a reference
1o a program. When an error is detected, the kernel error-svent routine uses the
. program at the head of the list as the error routine. I1f a user wiches to take
over .an error event for his own purposes, he mereiy inserts his error routine on
the front of the list, effectively pushing the previous error routina. To return to
using the previcus error routine, just delete the head of the list.

The error events used by the L+ basic systemt are enumerated in section
12.3.

5.2.3 Continuing from an error

Since an error event is a subroutine, it will eventually return to its point of
call and continue from the point where the error was detected. If there is no call
to the EXEC in the bhody of the error routine, them the interrupted program will
resume as soon as the error routine has completed. Normaily, however, an error
eveni routine will break to the EXEC fo await user action. From the EXEC, the
user may examine the call stack to find out how the error occurred, examine
various data structures to determine what caused it, etc.

It may very well be that the user would like to return from the EXEC and
continue executing the interrupted routine where it left off. For example, let us
suppose that the error detected was ‘Undefined Program’ The error event for an
undefined program is cailed EUND/P. It will print a message saying that the user
tried to execute an undefined program, and the name of this program will be
printed. The user may type in a definition of the program and resume execution,

To exit the EXEC and rosume execution of its caller, type a 12 (control-Z),
The character action for 1Z sets a switch that causes EXEC to return to its caller.

5.2.1 PROGRM.2CH

November 10, 1975 Preliminary Lx Manual' Page 18

If you type TZ to ihe ‘bottom level EXEC, ie. the EXEC that was first in contrel
when L+ hegan execution, an interesting sequence of events will take place: The
EXEC will return to its caller, which will discover that there is no prior caller on
ZX for it to return to, thereby triggering 2 ‘ZX underflow’ error, which will
ultimately break to the EXEC. You can’t get away from it

5.2.3 PROGRM.2CH

Novemb_er 10, 1975 Preiininary L# Manual Page 19

ful

6. The user interfac

The L# user interface is the mechanism and language hy which a user
‘communicates with and controls the Lt system in front of him. The extrome
flexibility and generality of the L# user interface accounts for a major part of the
power of L# Via this interface, the user at the terminal plays the role normally
played Ly an executive routine, executing L* operations at will, singly or in groups.

The user interface consists of several picces, each of which will be discussed
in turn. As seen by the user, however, thare ic a single homogeneous interface; ite
structure is not visible at the surface.

6.1. The EXEC

The routine which controls the user interface is called EXEC. It is
conceptuaity very simple: it reads a line of input from the user interface, and then
processes that line from left to right, interpreting the L#* routines whose names
appear and which have the attribute of being active. The EXEC maintains an
association structure mamed ‘AACT’, in which the value ‘TRUE® is associated from
each active symbol,

The process of interpreting z line input by the EXEC consists of three steps,
which are executed repeatedly until the input line is exhausted:

> Assemble a name from input characters.

> Find the L* symbol denoted by that name (by searching one or more namse
contexis) '

> Execute the symbol if it is active, or put it on the data stack Z if it is .

passive,

The process described above is (more or less) what actually happens at the EXEC.
It is not an oversimplification for the purposes of description. That's all: it really

is that simple.

6.1.1 Character actions and nams assembly

An L* name may consist of any combination of characters other than the
format-effector characters like blank, tab, line-feed, etc. For example, "(((" is a
perfectly valid name. To provide a name assembly scheme powerful enocugh to be
able to recognize names consisting of arbitrary strings of characters, and also to
allow arbitrary user medification of the name assembly process, L* employs an
unorthodox character recognition and assembiy scheme centered around character
actions. A character action is a program executed by the EXFC whenever that
character is encountered during the scan. These character-action programs are
normal everyday L# subroutines, normally program lists, and may be modified or

replaced by the user.
6 LUSERIF.2CH

November 10, 1975 Preliminary L+ Manual Page 20

For example, the action associated with lower-case letters is to convert the
letter to upper case, then execute the upper-cose character action. The character
action for upper-case letters is to accumulate the character as part of a name.
The action associated with digit characters is a fairly elaberate program which
checks whether a number or a name is heing accumutated, then adds tha digit
either fo the end of a nama or {o the numbsr,

There are three character actions in the L# basic cystem which are crucial
to the workings of the recognition sysiem. They are the name character action,
rigid boundary character action, and conditicnal houndary character action.
Alphabetlic characters all invoke the name action: the characier is concatenated in
the end ¢f the name being accumulated. Rigid houndary characters like space, tab,
etc,, trigger recognition. Conditional boundary characters, which comprise most of
the punctuation characters, are treated as name characters with one imporfant
exception: ithey can participate in a name, but can also trigger recognition when
appropriate. The details of these character aclions are described in section
10.1.

6.1.2 Recognition

When the EXEC has accumulated a string of characters which could form a
name, it then iries to recognize them as a name. This recegnition process is
slightly more complicated than a simple table-lockup, because of the following ruies
for recognition:

> The recognizer will always recognize the longest possible name in a string of
characters. Thus, if "7 "72" and "?2X" are all defined names, then the string
"7ZX" will be recognized rather than "?* followed by "ZX".

> In the event that the longest possible name is not a name already defined,
then the recognizer will back up to the most recent conditional boundary
character and iry again,

> If there is no conditional boundary character in the unrscognized string, then
the recognition system will define that string as a name, and create a symbol
for it according to the prevailing creation modes (see 10.3),

> The first occurrence of a name is the defining occurrence; its type (and for
L#C.(C) its page) are determined by the creation modes in effect at the first
occurrence.

The alert reader will notice that under the above scheme, there is no way to
define a name which. contains a conditional boundary character (other than the
trivial case of a Il-character name), since an undefined name containing a
conditional boundary character will never be recognized. To solve this problem,
there is a special recognition mode which may be set to temporarily force all

6.1.1 . USERIF.2CH

Novembper 10, 1975 Pretiminary L Manual Page 21

characters other than rigid boundary characiers to be name characters. This
recognition mode is set by the double-quote (") action. Double-quote is an active
sybmol which sets this ‘all characters are name characters’ mode.

It is time for sume examples.

ABC:DEF will be recognized as "ABC’, %, and ‘DIEF*.
"ABC:OCF wil be recognized as ‘ABC:DEF’ because of the "
ABC:DEF will now be reccgnized as ‘AEC:DEF

Once the name ‘ABC:DEF’ was defined in the second case, then in the third case,
even thcugh the double-quote was no lenger present, the entire name including ti.e
eoton will be recognized,

6.1.3 Rccognition sctions

Once 2 name has been recognized as a symbol, the EXEC mow acts upon it
This action is very simple. If the recognized symbol is active (as recerded in the
association structure AACT), then the symbol will be immediately executed by the
EXEC. If the recognized symbol is passive, or if the symbol has heen temporarily
passivated by means of the single-quote operator (see below), then the symbol will
be pushed onto the main data stack Z This aciive/passive distinction for a symbol
is in a sense another dimension of type: a symbol of any type can be made active,

One particular active symbol is noteweworthy: the exclamation point. The
is an active symbol which causes the topmost symbo! of Z to be executed. Thus

Al executes ‘A’
Al B! executss ‘A’ then ‘B
A B ! lexecutes ‘B, then ‘A’

In the third example, each exclamation point executes the topmost symbol on Z, and
B is at the top of Z, so it will be executed first. '

If a name is prefived by a single quote ('), then the recognition system will
assume that the symbol it rames is passive, and will not execute that symbol even
if it is in fact active. This feat is accomplished by having a program whose name
is single-quote which is active. When the single-quote program is executed, it sets
a flag for the recognition system so that the next (and only the next) symbol will

be treated as passive.

One frequent use of the deactivation quote is to allow a symbol to be
printed. For example, here is how to print out the left parenthesis program (‘PR’
is a program which prints programs): :

"¢ PR!

Note the single-quote to deactivate the left parenthesis, and note the exclamation
point o execute ‘PR’

6.1.2 USERIF.2CH

November 10, 1975 Preliminary Ls Manual Pags -2

6.1.34 Name contexlts and conlext lists

A name contevt is a tabls which pairs symbole with names. To recegnize a
name means to find it in a name context. To create a nare means to enter it in a
name context.

A coniext list is a list of coniexts. A context list is used to defire the
order in which contexts will be searched. When the EXEC is searching for a name
during the recognition process, it will search all contexts on the current
recognition context list. If it does not find the name in any of those lists, then it
declares the mame o be undefined ari acts accordingly (see 6.1.2). If it finds tha
name in any of the contexts on the current recognition context list, then it takes

the symbo! {ound there as the symbol for the nane, and continues.

L+ allows users to manipulate the context lists used in recognition and
creation, thereby effecting a kind of dynamic block structure. ZCXRGL is a list of
context lists, the head of which is the ‘current’ context list. BCX, the base
context, is the context in which most of the names in the Lx basic system are
defined. UCX, the user context, is provided for defining user names. Typically,
ZCXRGL is defined as

ZCARGL 1+ C (UCX BCX))

ji.e. it contains a context list which has in it oniy one coniext, namely the base
context BCX. Let us suppose that the user has a context of his own (which is
created with CRCX, see 10.2) and he would like L# to search his context
before it searches BCX, so that he may redefine some names in the basic system
without clobbering their definitions. There are two ways of effecting this. First,
he could add his context at the top of the current recognition context list:

ZCXRGL &+ ¢ (MYCX UEX BCX))
or he could push a whole new context list onte ZCXRGL:
ZCXRGL + ((HYCX) (UCX BCX))

In the first example, the recognition systam will search for a name first in MYCX,
then in UCX, and finally in BCX, In the second example, only MYCX will be
searched. '

There is also a context list used for creation, ZCXCRL, which is used to find
the context in which a name will be created if it is found to be undefined. The
name will always be created in the topmost context of the creation context list;
the lower contexts will be ignored. Thus, in our example above, all creation would
take place in MYCX.

6.1.4 USERIF.2CH

November 10, 1975 Preliminary Lt Manual Page 23

6.2. Building program and data structures

In a compiler-based system, programs are built by the compiler under control
of the source code: a loop statement in the source code, for example, causes the
compiler to generate the necessary object code to execute the loop. In a rewin
system, programs are built dymamically by the interpreter under control of the
command input (whether that input is from a file or direct to the terminal).

In a compiled system, the ‘external’ or ‘source’ language is compiled into an
internal’ or “target’ language. These two langucges tend to be very dissimilar; for
example, a FORTRAN compiler takes FORTRAN ctatemenis as its external language
and produces machine code as its internal Janguage.

. L+, as a growing system, provides a means of building programs under
controi of the command input. This command input is L#’s external language,
referred to as ELt. Although EL* is not a formally specified language, and it is
‘not actually a programming language (it has ne control actions, for example), EL* is
syntactically similar to the internal language PLx. This similarity between the

" internal language and the external language is 20 uniform that Leginning L+ users

have sometimes faited to see that there were in fact two languages, and treated
the two as one. It is better to think of EL# as a command language rather than
as a programming language. The print facility (see section 7.4) prints a
- PL# program (or data siructure) in EL#; most of the time it will produce a faithful
reproduction of the input.

'6.3. Reading files

8o far we have made no mention of program source files; rather we have
always talked about typing in a program at a teletype. Obviously, no program of
any reasonable size will be typed in from the keyboard, so there is a mechanism
for causing the EXEC to take its input from places other than the teletype.

1/0 in L# is performed through 1/O interfaces. The L* kernel ensures that
interfaces are uniform from one device to another: reading a character from a disk
file or from a DECtape or a teletyps is effected at the user level with the same
call. Obviously, more information is required to open a disk file interface than a
teletype interface, but once opened, ali interfaces are accessed in the same way.

To read a source file containing a program, we would then do these things:

> Open an interface for the file, by whatever means appropriate. Usually this
would involve taking the predefined ‘Disk Read’ interface and modifying it %o
read the requested file.

> Push the symbol for this interface onto 7RD, so that future input requests

will be taken from the file.
> Call the EXEC recursively. When it encounters an EOF in the filg, it will exit.

6.1.4 USERIF.2CH

http://lar.gur.ges

November 10, 1975 Preliminary L* Manual Page 24

> Restore ZIRD by popping the eniry we put there.
P &

£t
=3
I.U
=1

In fact, there is in L«(I) a function that does all of the above things. Name
it takes a file name as input and reads it into the core image:

SFILE,Ci4 RDF!
This will perform ali of the correct actions to read the requested file.

Until such time as a file system becomes available on C.mmp, the primary
storage lace for Lt source will be the PEP-10. There is a data link between trc
two machines, and Lt knows how to use it to read files from the PDP-10. A
server job iz logged in on the PDP-10, and a fie transfer protocel is executed to
ship a scurce file over the link to Commp. The L#C{C) end of the file transfer
protocol is called SJEXEC, the sub-job EXEC. Use of the link and ihe fils transfer
server i descriked in section 11.5.2;

6.3 USERIF.2CH

November 10, 1975 Preliminary L# Manual Page 25

Part 11]: Programming in Ls#

7. Buiding and printing structures

L+ systems are not deposited as with a compiler, but are grown from within:
source code processed by the L¥ EXEC causes L to create program and data
structurrs within itself. There are numerous grown systems in existence, and each
has its owi syntax and its own mechanism for directing the system to grow.

The technique used to grow and build L* programs is simplicity itseif: the
user types (or reads from a file) a list of names of L* routines to be executed.
The routines are interpreted if they are active or pushed onto Z if they are
passive, in the order that they are received by the EXEC.

By using appropriate routine names, any surface syntax may be achieved.

Before we delve deeper into the details of the growing process, perhaps an
illuminating example would be in order. Let’s look at the input to L3 which would
cause it to build a list containing three numbers:

(123)

In this case, ‘C, i.e. left parenthesis, is the.name of an active routine which begins
the construction of a list, and) (right parenthesis) is the name of a routine
which compietes the construction of the list and leaves the address of the

completed list on Z.

-7.1. Building programs

A program is a particular data structure. Al L# structures have types; a
program is T/P, or type program. The details of an L# program list's internal
structure are in section 4.2.1.

The L# basic system admits of two program types: T/P for symbolic program
lists, and T/M for machine code. We ghall discuss in turn how each of these

gtructures is built.

7.1.1 Creating program lists
The act of building a program list is begun by a left parenthesis, and the

building of a program list is completed by a right parenthesis. This is equally true
for a data list. When a left parenthesis is encountered, it decides which type of

6.3 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 26

structure to build on ths basis of ihe type which it isg told to create, Types ard
how to control them are discussed in more detail in cection 10.3. For now,
We assunic that the creation type is set UP properly to create g program list
rather than a data list,

As we have said several times, a List jg creatad Ly enclosing the uhjects for
the list in pParentheses. Thus, :

(ABQC) creates a list with AVE, and C

() creates a Jjst containing a nuli list
(XXX WR creates a 2-gloment list

The secorg example above shows the creation of a list within a list, and shows tha
recursive nature of ths Jist—building operators. The second left Parenthasis,
encountered before the first one is closad, simply haging a new structure. The
first right Parenthesis complates the inner structure, which Is left on 2 to be
included as a symbol of the oyuter structure.

When a structure ig ¢reated, we would like to keep a pointer op reference t{o
it, so that we may access it agajn externally. We do this by Eiving a symbol 3
name. To give a symbol a name means making an entry in a name context with
that symbo} and its name, The Ls recognition system krovides an automatic means
of giving names to structures. This is done using the * (coion) operator, which is
Cne of the few Infix operators in Lx,

To build a Jist and give it a hame, we type:
NAME : ¢ 1 2 3) build a list; ca jt "NAME"
N34 : (NaME 3) build a list; caj it "N34"

The colon is 1 fairly compley Program; the details of jte Cperation are left for the
L* reference manual. Since the name {o the left of the colon has already been
defined by the time the colon jg encountered, the colon and the Parentheses muyst
COOperate to create a structure whose head cell is at the address where the
symbol is defined, .

When a right parenthesis finishes building an Unnamed structure {either
Program or data list), it Jeaves the addrass of the structure on Z. When a right
Parenthesis finighes building a structure which will be named (ie. by a colon), then
it does not leave the address on Z, the philosophy being that the address of the
structure may be obtained from the name if s0 desired.

Since the structure-buﬂding Sperators involved in building a 1list are all
activeiy—executed Programs, and since the recognition system doesn’t care about
carriage returns, Spaces, tabs and the like, it is Perfectly legal to take great
liberties with the Physical format of a list as it jg being read in, The following
forms will ail create the same Jigt:

7.1.1 SBUILD.3CH

November 10, 1975 Preliminary L+ Manual ' Page 27

At (XY 2D

Remembering that the semicolon characier when processed by the recognitior
syélem causes the remainder of an input line to be discarded, it is frequentiy
desirable to separate an L program source into several lines, with a comment on
each line preceded by a semicolon,

7.1.2 Creating machine-coda programs

7.1.3 lfdii'ing list structures

L* provides an editor which may be used to edit program and data list
structures. Data lists are linked structures, and in L#(I) so are program lists; in
L#CAC) a program list iz a compacted list. The L# editor can edit both kinds of
structures, though obviously the editing actions that can be performed on a
compacted list are somewhat linited. :

The editor js a PL# program. It takes as input a symbol from Z, and leaves
no output. Its action is to accept commands from the user and medify the list
accordingly. It is totally recursive: if in the middle of an edit one decides to go
edit another structure, he may do so without closing the first edit. In fact, the
editor is an open program; it takes its input from the EXEC. Any Lx program may
be executed while inside the editor, and since the editor iz an Lt program, it may
be executed while inside the editor.

To open an edit, type:
<name> EDIT]
The editor will respond by printing the first symbol of "name" and waiting for
Jinput. The editor maintains a symbol cursor, which points to the ‘current symbol’

in the structure under edit. Initially the editor cursor is on this first symbaot of
the list. The following edit commands are implemented:

'R Replace the symbol at the cursor with the symbol on top of Z

In uge, one would type "<symbol> IR", which puts the symbol on
top of Z and then executes YR, which is active.

7.1.1 SBUILD.3CH

November 10, 1975 Preliminary L Manual Page 28

I Inserts the symbol at the top of Z into the list being edited just
before the - current cursor position. This command is not
permitted when editing compacted lists. One would type
"<gymbol> II". Like all editor commands, !l is an active symbol.

D Deletes the symhol at the current cursor positien. This command
is not permitted when editing comparted lists. 1D takss no input
irom Z; one would type merely “ID"

N Moves the cursor to the next sequential symhol. A linefeed may
be used to accomplish the same effect. IN takes no input from Z,

'B Moves the cursor backwards to the. previous symbal. An altmods
will accomplish the same thing.

IF Searches the list from the current cursor position to the end of
the current list level, for the symbol found on top of Z. One
would type "<symbol> IF", Compare this with YFX’ below.

IFX Searches the list from the current cursor position to the end,
and searches all unnamed sublists as well. Like IF, FX searthes
for the symbol! it finds on top of Z. By comparison, IF will not
find a search target if it js contained in a sublirt of the ligt
being searched.

1S . Step down into a sublist. This causes the editor o save state
information in the list currently under edit and open an edit of
the sublist at the current cursor position,

L8] Pop up from a sublist edit. Reverses the effect of S,

L Terminate editing. Close up the editor and return to the caller.

7.2. Building non-program structures

Other structures besides programs may be built in the EXEC with syntactic
structue-building operators.

7.2.1 Data ligts

The notation used to build a data list is exactly the same as the notation
used to build a program list: left and right parentheses surrounding the symbols to
be included in the list. Whether a program list or a data list is created ie
determined by the creation type set when the left parenthesis is encountered.
Section 10.3 describes the means of controlling creation types.

7.1.3 SBUILD.3CH

November 10, 1975 Preliminary L$ Manual Page 29

7.2.2 Associations and association lists

An associaiion list is structurally similar to a list, and it is created in a
syntactically similar way. In LsC(C), angle brackets { <>) are the structure
building operators for association lists. |In LKD), where angle brackets mean
something =ise (they are part of the assembler), association lists are built with
ordinary parentheses” The Parentheses are directed to build an assccation lst
rather than a normal data list by means of the creation type in effect whan the
left parenthesis s encountercd, Section 10.3 describes ecreation tope
control.

In the examples in thie section we will shaw both notations,

The following are all valid association lists:

<ABC>» association list with 3 elements (L+C.{C)
ALANC A B C) Lx(l)

<> null association list

ALNO

<AB<XY>(Co> rested association lists

AINCABCXY)y>c)

Recall that an association list holds pairs of symbols; each ‘cell’ in an association
list has a symbol and a value associated from that symbol. Qur examples above do
not tfell the whote stery, as they show only one symbol per list cell. The slash ("
7 ") character is used to separate values from symbolg; the valus field comes first:

< l/4 2/8B 3.C > associate 1 from A, 2 from B, ete.
ALNC 1A 2B 3, 3

< NIL/X > associate NIL from X

ALNC NILAX)

The slash character is not an active program, but is only a marker; the actual
Processing of the contents of the association list is performed by the ">" operator

in closing the list,

There are no ‘syntactic’ structure-building operators to build association
structures; that is, there is nothing which corresponds to the parentheses which
build lists and the angle-brackets which build association lists. There is, however,
a routine which will copy an association list into an association and delete the
original list, so that one may use the association-list structure-building operators
- "< >" to build an association. The routine SETA copies an association list into an
association. it takes as input an association list as (1) and an association
structure as (0), copies the association list into the association, then erases the

association list:

- 7.2.2 SBUILD.3CH

November 10, 1375 Preliminary L2 Manual Page 30

ALN< 16 2,8 37 > AN\ATTR SETAL

The association 'ATTR will now have in it the three associations shown, and the
association list will have been erased. The AL\’ and Y are {reatiun type control
eymbels, whose precise meaning is described in section 10.3.

7.2.2 Werd siructures and blooks

Since words are not very complicated structures, no particular structure-
building operaters exist to build them The only kind of "structure~buifcfing’ that
You might want to do with a word is to give it an initial ‘compile-times’ conterts,
Recall that Ls draws no particular distinction betweon ‘compiie® time and
‘execution’ time, 5o that the normal RV (replaz- word) operator may ba used ‘o

give a word a contenis at compile time:
3 H\KORDA R Give “WORDA' the value 3
~15 W\NORDE RN Give “NORDB' the value -15
‘RW* is a word manipulation operalor, detailed in section 9.5,

The ‘{[> and ‘IT" operators are used to create blechs, A block is a contiguous
group of words which aj] have the same type. The symbol for the block is the
addiess of the first word of the block, ‘

When the recognition system encounters a [’ symiol, it begins a block, and

when it encounters a ‘] svmbol it finishes creation of the blozk., The type of the
block is determined by the Prevailing block creation type. The size of the block is
determined by the number of symbols left on 2 between the 10 and the . Ls(n
~and L#C.(C) differ somewhat with respect to the handling, haming, and typing of
blocks; ses section 103 fop a description of type control, LxI} allows one
to name a block with the ", (colon) operater, while L+C{C) does not allow this
construct. Either version allows any word in a block (including the first) to be
named using the :L operator (see section 10.2.4),

By way of example:
(L0000 13 creates a 4-word block of Zeros

LL A 12 ROUTIREY 3 73 block with 3 o more, depending
) on what ‘ROUTINE’ leaves on 7

NAMEDBLK 1 [2 X 11 Ly only: named block
[{ NAME 1L 2 3471 block with first celi named

No mention is made of block type in the examples above; it jg asstmed that they
are all of type word, The second example shows a roytipe call inside the block

7.2.2 SBUILD.3CH

Novermber 10, 1975 Preliminary L* Manual Page 31

creation. Recall that the block is crealed out of those items found on Z by the 1]
operator. If the call to 'ROUTINE® causes anything t0 be left on Z, then the item(s)
will be included as part of the bleck. As an example of this technique carried to
an extreme, thz following exampie creates a 20-word block containing the numbers
101 to 120:

[10Z MN\slI REY P\GRMI CH %M1 1 28 U) 20 KR 1T

That example uses several features thai have not been documented yet. XN is an
iterative control action; see section 82, CW is the copy-word operater,
see section 9.5, sWI is a local name, sce section 10.2.3.

7.3. Storape management

7.3.1 Wlord storage management

The word-lovel storage allocation routine is responsible for allocating and
deallocating chunks of memory of one word or more. The creation routine is called
CREN, and the erasurs routine is called E. CRBN is called with a type and a
word-count as arguments. It finds a block of storage of the requested type and
‘size, and returns the address of that block to the caller by leaving it on Z.

- CRBN first looks at the available-space list for the requested type. This is a
list of blocks of availble space. [t is not structured like normal L# lists, rather its
format is special to the available-space rmachanism. If the available-space list
contains a block of the corract size, or if it contains a block that can be chopped
up giving one of the correct size, then the space is removed from the available-
space list and returned to the user

If CRBN cannot find the requested storage in the existing typed available-
space list, it executes the error event ESPX. Normally ESPX contains a routine
which will request a block of T/AV {block available space} and change its type and
link it into the available-space list, and continue, If, however, there is no block
.available space remaining, then the second call will cause a normal error and break
to the EXEC. It is very rare to run out of space on the PDP-10, and quite
frequent to run out of space on C.oramp.

7.3.2 Block storage management

The largest unit of storage allocation common to L*(I) and L#CAC} is the type
block. Since C.mmp is a page-oriented machine, L+C.(C) also has a mechanism for
allocating whole new pages of storage, but this mechanism is nct integrated into
the storage allocator to the extent that it will create a new page if it runs out of
- gpace on an an okl one.

7.23 L SBUILD.3CH

November 10, 1975 Preliminary L+ Manual Page 232

A type block ie o block Gf 128 consecutive words, <o situated that the high-
order bhits of the address are identical for every word jn the block. Until
specifically allocated, aji unused type blocks are of type ‘availakle space’ (T/AV),
and are in the word available-epace Jist for T/AY. When the word storage
allocator runs out of block space to allocate, it gets a block of T/AV and changes
its typa as needsd. ‘

7.8, Priniing

The L+ print facility is in a sense the inverse of the structura-builiing
facility: U iakes as input an La structure, and produces as output an El=
representation of that structure, The output of the print routines is ysually VEiry
similar to ihe input which createq the struciure; in fact, in most cases it is
identicaj exiept for the formatting characters like spacas and tabs and CRELF's,

7.4.1 Printing whole structurag

The highsst-level Ls print routine is named PR. It takes as its one input a
structure, and descends recursively down that structure, printing out all of the
substructures by type. A ‘structure’ in this sense is really just a symbol, an Lz
datum. A single word is a structure, and so is a program or a list. The printsd
output appzars on the current outpul interface (sce section 11.1.1). PR is a
Passive symbol designed for use inside Programs. Since structure printing iz so
very useful and done so frequently by a user while debugging, there is an activa
symbol, 7, which Ferforms the same action, ? is equivalent to PR L

When PR prints a structure, it Prints each element of the structure
according {0 the type of the elewont, Some structures, such as words, have only
one elemant; others, such as lists, can have any number of elements. When a list is
printed, each symbol of the list will be considered in turn and printed according
to its type. If the symbol has a name, then only the nams of that symkol will be
printed. If the symbol does not have a name, then PR will be called recursively to
print the sub-structure Consider the following example: :

> L (XY (L Y} 2) Define a list with 4 elements
> L PR! Print it
>L (XYL 1y) Z) Note output identical to inpuyt

The list in our example has 4 symbols. The first two, X’ and ‘Y’, are named. The
third, (L 1 Y) ig an unnamed list. The fourth, 2’ is named. When PR printed
this Jist, it Printed the name of X, the name of Y, then cajled itself recursively to
pPrint L 1 Y). This recursive subcall caused the 3-symbol sublist to be printed;
its first and third symbols are named and are printed accordingly. The second
symbol of the syublist jg a number; the number has no name, so its structure was
printed, and ite structure is just jts integer contents.

7.3.2 SBUILD.3CH

November 10, 1975 Preliminary L* Manuaj Page 23

This scheme for printing might sound uritecessarily elaborate, but it yiclds 2
mechanism which can reconstitute the source form of a program from the internal
_representation, a valuable too! indced.

7.4.2 Printing symbols by type

When the high-level print routines print a structwrs, they print cach of iis
elements by type, as described in the previous secticn. This schame of printing by
type is effected by having a collaction of low-level print routines organized by
type, and a pair of type tables which select the routine to use for each typs. in
LI}, a ty=2 table is an atiribile, in L2CAC), o type table ic anh array. DBoth are
usec in the same way: to print a symbol, ite type is determined, then that type is
used to selcct a print routine from the type tabie, and that print routine i used
to effect the printing of the symbel

Of the two type fables mentionsd above, one is used for structure-printing
and ore for symbol-printing. In general, printing a symbol means printing its
address foliowed by a pzrcent sign, the percent sign indicaling addraess rather
than number. Printing the structure of a symbal is the precess performed by PR
as describzed in the previous section, '

The low-level print routimes for each of the basic-cystam types are shown
belowvs:

Type Routine description
T4 PRL& print list structure without CRLF ,
T/W PRH& print & word in current conversion radiy
T/d PRJ& print a stack without CRLF
T/P PRL& (L) only): print program list

PRY& (L+C.{C) only): print compacted pgm list
T/A PRA print association structure
TrAL PRAL print association list structure
T/8Y {none) not a printable type
T/1 PRI& (L#C.C) only): print an indirect symbol

. 7.4.3 Printing numbers and addresses

Often it is useful to print a symbol as an address, or to enter a numeric
address. L% uses a postfix notation to denote an address: a number followed by a
percent sign, as 200727 is an address. The routine PR% (and its companion PRZ&
to print without a CRLF) prints a symbol as an address. The numeric part of the
address is always printed according to the current numeric conversion radix in
ZBN. PR7& is normally the routine entered in the type table TTPRS (describad in
the previous section).

7.4.1 SBUILD.3CH

November 10, 1975 Preliminary Ls *Manual Page 34

8. Program control

L% programs normaily execyte scquenitially; the interpreter roves down a
Program list and execytes each symbol in turn. Certain Cperators, called control
gperators can affect the behavior of the interproter, causing it to change the flow
Cf exccution control,

Thaese control Cperators usually begin with a period as the firgt character of
their name, They fall into thres general categories, each of which wiil ke
documented in dotail in a section Lo follow,

> Condi_t_i_qyﬂ operatars, swhich cause the program io selectively execuie or
bypzss a portion o7 iiself, - '

> lteration Qeerators, which enakls the program to loop,

> Special conirol operators, which perform specialized contro} tacks.

8.1. Conrditicnals

Conditionals are used in any Programming language to effect selective
execution of pieces of 3 Program depending on the results of computation, Like all
pProgramming languages, Lt has the ability to do conditional execution,

L* conditionalg Work by causing the interproter to bypass a portion of a
pregram list. Before delving into a description of conditional Operators, let ug
define some of the refevant terminelogy.

Recall that 3 Program list js a list of symbols o be executed. Any of those
symbols can ke a reference to another program list. When the interpreter jg
interpreting a symbol of a program list and finds that the symbol is in fact
another program list, it calls itself recursively to evaiuate the sub-program. This
recursive call of the interpreter on itself is cailed descending a level, and the
torresponding return back to the previous program list is called ascending a level
The ‘current level’ is the st level being executed by the interpreter at the time
that a conditiona] operator is encountered, and the ‘higher Jevel’ is the program
level which called the current lavel, '

8.1.1 Conditional operators
A conditiona) operator works by causing the interpreter to bypass the
remainder of the current level, and/or to bypass the remainder of tha higher level,

Obviouuly, this bypass must be selective on the basis of a test: conditional
operators have one effect with a TRUE input and another with a FALSE input.

8 B PCNTRL.3CH

Novemker 10, 1975 Preliminary L# Manual Page 35

The simplest conditional operators are = and .« 2 ("got minus®} causes ko
remainder of the current level to he bypassed if the signal is faise (ie, NIL), and
has no effect it the signal is trye {Le. not NIL). ¢4 ("dot plus"y has the OnpnCsita
effect: it causes the remainder of the current ievel to be bypassed if the signal is
true, and has ne effect if the signal is false, The raticnale for the names cemag
from combining the name “* (@ single dot) with ‘4 for TRUE and ‘= for false, "~
iz a singularly useless bregram which causss the remainder of the current lavel to
be bypassed unconditionally, = rzy be read as ‘exit’, and hence " . may be road
as ‘exit if trua’

As an exampla, the following j)rogram will nrint *YES® if the conients of A i
2ero, cthairvise it will print ‘NO*

A0 =l (e S"NO" WRy (- S"YES" Ry 3

Notice that there are two sublists to {he program, one of which will be executed jf
the =y Comparison yislds ‘true’, the other if It is yields “falge’ A mors elegant
control scheme coyld be implemented with more sophisticated contro Operators, and
indeed L# has done so.

“H» ("dot H™) ig an unconditional control Operator which delates the highar
level. This means that whanever H s exectted, the interpreter will bypass one
level of return. It is probably best ta explain by example:

CAB(C ¢(p HIYEF G H) wiI]execute‘ABCDH'.
b CK ¢ L H O HDY M N 0 > will execute JK L

In the first exampile, the ‘N> wij cause the interpreter to delete the remainder of
the higher levei which called the M. The remainder of this higher leve] is ‘EF G,
80 the E, F, and will be bypassed. In the second example, each ‘H* will delete
One level: the first will delete the ‘M, and the second will delete the N 0, 50 that
there will be no remaining levels to execute after the second ‘H’ and only J, K,
and L will e executed, '

“H* by itself is marginally useful, In combination with conditional tests, it
becomes the major L+ conditional operator, These combination contro actions are
“H+H' and ton, They combine ¢-2 or ‘4’ with *H* in the following way: ‘-H' will
exit the current level if the signal is false, else it will delete the higher level (but
-continue the cyrrent level} if the signal ic true, 4H° has the Opposite effect; it
will delete the higher lave) jf the signal is not true.

Using these conditional Operators, our example above becomes:
(A0 =i ¢ (. =H S"YES" WR) S"ND" WRY)

Notice that only one conditional ie required now instead of two, and that it takes

the form of an if[then(else construct.

- 811 ‘ : PCNTRL.3CH

November 10, 1975 Preliminary L* Manual - Page 36

*4H® is a combination of the %+ action and the ‘M’ action. In a similar vein,
there exist conditional operators which are a combination of the .-" action and the
U operator which pops the top of 7: *U+ will exit the current level and pap from
7 in the presence of a ‘true’ signal, and will have no effect in the presence of a
*false’ signal. Similarly, “U-" will exit and pop if the signal is false.

Let us summarize the conditional operators described in this section:

4. exit the current level if signal false
- : exit the current level if signal true
U+ : exit and unstack if signal true
U~ : exit and unstack if signal false

8.1.2 Signals and the signal stack

L+ maintains a stack namd Z8, called the signal stack. It is used to hold
true/false values produced by comparisons. Its value is tested by conditional
operators. Z§ is an ordinary L+ stack, so its contents may Dbe modified or
examined to the satisfaction of the user. :

Two routines exist to set and clear the value of the top of the signal stack.
Routines exist to copy values in and out of it, and to push and pop it. The signal
is defined to be the value of the top of Z3.

8+ ("doliar plus") is the routine which sets the signal TRUE. It accomplishes
this by replacing the top of 13 with the value ‘TRUE. §- ("dollar minus") is the
routine which sets the signal ‘false’. False is represented by NIL. The comparison
operators, such as the =W used in the examples of the previous section, all use 8+
and 8- to signal the result of their test.

Because Z8 is a stack, it can be pushed and popped, and there are even
primitives fo help do so. P§ will push the Z§ stack (pushing a copy of the
provious top), and U3 will pop the old value. Using these primitives, the
programmer may save the value of the signal around calls to routines which might
chiange it, simply by pushing the old value down the stack and letting iie routine
change the copy.

8.2, Iteration

[teration control operators are used to effect iteration in L program lists.
L+ has two kinds of iteration control operators: internal and external. An internal
iteration control operalor is one which appears inside a program, and causes that
program to repeat itself. An external iteration control operator is one which
tgurrounds’ a program like an ALGOL do statement and executes the program

repeatedly.

811 PCNTRL.3CH

November 10, 1975 Preliminary Ls Manual Page 37

8.2.1 Internzl iteration

An internal iteration control operator is one which appears inside the
program being iterated, and causes that program to repeat. The primary internal
{teration control operator is called .R. When R is executed in a program list, it
causes the interpreter to return directly to the head of the list, at the same level
as the R Consider this example: ' :

(ABC(MEF,RGIH

The sequence of ﬁrogram steps executed will be
ABCDEFDEFDEF ., .\

which is an infinite -1oop. Notice that ‘G* and *H' will never get executed.

R is an unconditional repeat operator. There are two operators, R+ and .R-,
which conditionally repeat depending on the signal. R+ will repeat if the signal is
TRUE, and will do nothing if the signal is FALSE. R- has the opposite effect: it
will repeat if the signal is false and do nothing if the signal is true.

Here are some examples of the use of internal iteration control operators:

Delete all elements of input list (O}
DELETEALL: (P F .- D R

Pop from Z all elements down {o ‘FLR’
CLEAN: <(FLR =S ,R~)

=8’ {s a list manipulation operator, described in section 9.2,

5.2.2 External iteration

An external iteration contrcl opperator is one which tsurrounds’ the routine
being iterated, and executes it until cither the iteration terminates or ths routine
stops the iteration. In general, the external iteration operators take as input a
program and a structure, and execute the program ance for each element of the
structure. This is called ‘executing the program over the structure’. For example,
the control operator XL executes a program once for each element of a list. The
program is called with the list element sitting on top of Z:

The sequence
PROG L (1 2 3 4 5) X!

produces the same results as the sequence

8.2.1 PCNTRL.3CH

November 10, 1975 Preliminary L+ Manual -Page 38

1 PROG! 2 PROG! 2 PROG! 4 PROG! 5 PROG!

namely, the program is executed once' for each element of the list, with that
element as its input.

The following external iteration operators are defined in the Lt basic system:

v

+ XN Executes routine (1) through (0) iterations. The routine is called with no
. inputs,
> XL Executes routine (0) once for each element on list (1), with the list
symbol as input {0 the routine, '
> XA Evecutes routine (0) once for each {symbol,value) pair in assoclation (1),
The routine is called with 2 inputs, the symhol as (1) and the vaiue as Q).

- > W XAL (LxCC) only} Executes routine (0) once for each (symbol,valuz) pair in
association-list (1). The routine is called with 2 inputs, the symbol as (1) and
the value as (0),

> +XKS Execute routine {0} once for each character in character-string (1). The
reutine is called with the character as its input.

> W XB (Lx(I) only) Executes routine (0) once for each symbol in block (1), The
- routine is called with the block symbol as input.

Any routine being iterated by one of the above external iteration operators can
escape from the iteration if it sees fjt by executing L. Similarly, L+ will escape
the loop only on a TRUE signal, and L- will escape the loop only on a FALSE
signal. The iteration control operator will return a FALSE signal if the loop was
escaped, and a TRUE signal if the loop ran to completion.

8.3. Special control operators

8.3.1 Symbol quote operalors

Normally the interpreter executes ajl symbels on a program list. If a symbol
is a nonexecutable (j.e. ‘data’) type then ‘executing’ it will mean pushing it on Z. If
the symbol is executable, then it will be interpreted by type. Sometimes we want
to treat executabls types as data, ie. have them Placed on Z instead of executed.

The quote operators Q and QH perform this task. :

Q causes the symbol following it in a program list to be treated as data.
For example, .

(.Q PR PR)

causes the first ‘PR’ to be treated as data, and the second one to execute normaily.
This program when executed will print out the program ‘FR’,

822 PCNTRL.3CH

November 10, 1975 Preliminary L* Manual Page 39

DH quotes the next symbol at the higher level. This is useful for writing
ones’ own quoting routines. For example, , _

XY2: (,GH PR)

P\(XYZ A XYZ B) |
will cause ‘A’ and ‘B’ to be printed out.

Q and QH work by modifying the interpreter’s internal pointere to bypsss
the quoted item, then copying it to Z. The quoting action of .Q is only needed
inside program lists. To print out the program ‘PR’ from the terminal {in ELs), 3re
merely iypes

PR PR!

Since the first ‘PR’ is not active, it will be placed on Z, then the second ‘PR’ will
be executed and print the symbol on iop of Z.

8.3.2 Execute contrcl actions

X is a control action which causes the symbol on fop of Z to be executed.
It performs the same action as does the exclamation point. .X is a combination
control action; it combines ** and ‘X' =X causes the program to exit the current
level and the symbol at the top of Z to be executed at the higher level. Consider
the following example:

(ABC (DE .Q.R.XFPGH
this will loop forever, executing the sequence

ABCDEABCDEAB'CDEABCDE...

8.3.3 Infix operator control

L+ is a postfix language; however, it does provide the ability to delay
operators so that an infix notation may be achieved. There is an operator delay
stack named ZQ, and a series of routines to manipulate it. Most important of the
ZQ routines is .XQ, which executes everything it finds in 2Q down to a floor, then
deletes the floor from Q.

As an example of the use of ZQ, consider the colon operator % used in
defining a name. This colon is an infix operator. When first executed, it puts the
name being defined onto ZQ, then a special postfix name definition routine onto ZQ,
and exits. At one point during its execution, the right parenthesis program pops
- the delayed colon operator from ZQ and executes it, thereby effecting the intended
definition,

83.1 PCNTRL.3CH

November 10, 1975 Preliminary Lt Manual Page 4

8.4. Address space confrol (overlays)

November 10, 1975 ~ Preliminary L+ Manual Page 41

9. Data manipulation Operators

The L# basic system defines and supports several important data types. By
‘supports’, we mean that it provides a full complement of routines to build and
manipulate structures of that type. This chapter is devoted to an enuneration of
the service routines provided by the L* basi: system for the types which it
supports. We shall not attempt any great level of detail in the explanation of
most of these routines, because for the most part they are obvious. If the reader
finds any of these explanations inadequate, he is encouraged to experiment onlire
to determine the behavior of the routines. See section 1.2.2 for a road map to
online cxploration of pieces of the L systsm.

9.1. Operations on the central stacks

8.1.1 Operations on 2

Z is L#’s main data stack It is used for most parameter passing and
temporary storage. See section 3.3.1 for a full description of 7. Since Z 15 a
stack, we would expsct to find available the customary stack-manipulation
operations like ‘push’ and ‘Pop’. Indeed so. The bracket notation ([101), ete,)
used here is defined in section 3.2.1,

P [12] (args: [12] pushes a copy of the top symbol on Z. After executing a P,
the top two symbols on Z will be identical and equal to tha symbol that
was previously there. Thus: :

Z PR! print Z, see what is there
Z: [TEST1 27 (R S T)]
Pl 2 PRI execute a P, then print it again

Zt [TEST1 TEST1 27 (R S T)]

The structure of the symbol is never examined or copied. If the symbo) at
the top of Z is a number, then after executing a P, the top two positions
of Z will both have a symbol for the same number.

u (args: [10]), the "up" operator, pops the top symbol from Z. It does not
erase it or even look at the structure, it only pops. Thus:
Z PR! . print Z, note contents
21 [XY 21 three things on Z
U! 2 PR! execute U, look at Z again
£y [Y 21 "~ two things on 2
Y (args: [22)) exchanges the top two symbols on Z. After executing ¥, the

new (0) is the old (1), and vice versa.

9 DMANIP.3CH

November 10, 1375 Preliminary L* Manual ' Page 42

P1

ui

PP

+5H

'SS%

(args: [23]) push a copy of (1). This is identical to the P operation,
except that it pushes a copy of (1) instead of (0). After executing a P1,
the top of the stack () is unchanged, and (1) and (2) are identical to
what (1) was before. Thus: :

Z PR! print Z

2! [A B C] ‘ :

P1}! 2 PR! execute P1, then print Z again
Z: [ABBC] nole additional B

(args: [21]) pops (1} from Z, leaving (0) unchanged. It works by saving {0)
in a safe place, then executing a normal U operator, then restoring the
saved (0). Thus:

Z PR! print Z

Z: [1 23 4]

Uil 2 pPr! execute U1, print Z

Z: [1 3 4] notice the ‘2’ has been popped.

(args: [24]) push pair: (0} and (1) are pushed in tandem, the new (2) and
(3) being the old (1) and (2). Thus:

Z PRI print existing contents of 2

Z: [-9 ABZC]
PP{ Z PRI execute PP, then look again

Z: [-8 A -8 A B C] notice tandem push of «9 and A

(args: [208)) tests if the top two symbols on Z are equal. If symbol (0)
equals symbol (1), ie. if they are the same address, then =5 will signat
true, else it will signal false. '

{args: {21] increments the address of a symbol. If (0) is a word, and (1)
is any arbitrary L# symbol, then +SWN will add the value of the word to
the symbol. As an example, suppose that BB is a symbol which begins a
20-word block. Assuming that we are on the PDP-10, where adding 1 to
an address gives us the address of the next word, then

BB 4 +SW! gives the address of the 5’th word of the block
BB 8 +SH! gives the address of the 9'th word of the block
ete. :

(args: [21]) decrements the address of a symbol, If (0) is a word and (1)
is any arbitrary L# symbol, then -SH will subtract the value of the word
from the symbol. Compare with +SH above. '

(args: [21810]) selects one of two inputs depending on the signal. If (0)

and (1) are arbitrary L+ symbols, S58 will output (0} is the signal is true
and (1) if the signal is false.

T 8141 DMANIP.3CH

November 10, 1975 Preliminary Lt Manua) Page 43

9.1.2 Operations on 2§

28 is the signal stack. Its topmost symbol is the signal. Many L# routires set the
signal, and the conditional pregram control operators (section 8.1} test it.

8+ (args: {CO811]) sets the signal true, j.e. it sets the topmost symbol of 2§ to
TRUE.

8- (args: [008117) sets the signal false, ie. it sets the topmost symbol of 7@
to ko NIL.

P8 (args: [00812)) pushes the signal stzck It performs exactly the same

operation on 2§ that P performs on 2.

vg (args: [00%107) pops the signal stack. It performs exactly the same
Operation on 2§ that U performs on Z.

Vi (args: [00822]) reverses the top two symbols on the signal stack. V¢
performs exactly the same operation on 28 that V performs on 2.

cez (args: [10810)) copies the signal into a ‘side cell”. A ‘side cell' is in a
sense just a variable, a Place to store information. 3% causes the side
cell at (0) to be changed to equal the current signal at ‘the top of Z4.

cg (args: [10801)) copies a signal in a side cell back into the signal stack.
The top of Z¢ is changed 1o equal the symbol of the side cell.

9.1.3 Operations on the scratch stacks

There are several stacks maintained by the L* basic system for use as
scratch stacks, to be treated somewhat like local variables. These stacks are
named 20, Z1, 72, and 23 They are ordinary stack structures, of the garden
variety, and are noteworthy only in that they are used extensively throughout the
L+ basic system. They are of course avajlable for use by any routine.

120 (args: [10]) pops the top of Z and pushes it onto 70,
PIZO (args: [11]) pushes the top of Z onto 20, but does not pop it from Z

SZ0 (args: [01]) pushes onto Z the symbol which is at the top of 20, without
disturbing Z0.

SDZ0 (args: [01]) pushes onto Z the symbol which is at the top of 20, and at
the same time pops it from the top of Z0, '

DZ0 (args: [00)) pop the symbol from the top of 0. Do not push it on Z or
anywhere else, just pop it from Z0,

9.1.2 S DMANIPACH

November 10, 1375 . Preliminary L+ Manual ‘ Page 44

RZ0 (args: [10] replace‘ the top of Z0 with the symbol at the top of Z, and
pop it from Z.

Obvicusly, there are routines with similar nams: to perform the same
operations on the other scratch stacks. As an example of the use of scratch
stacks, the routine Pl described in the previous section looks like this:

P1: (120 P SDZ0)

8.2. List facility

The Lx basic system list facility includes routins to perform the following
kind of cperations on Z: following kinds of operations on lists:

> Creating, copying, and erasing list structures
> Examining and modification of list structures

> Searching and testing list contents.
> Deletion and insertion of list celis
> Changing the contents of list cells

> Iterating programs over the contents of a list.

In reading these descriptions, keep in mind that all L basic~system routines use
the Z stack (section 3.3.1) as a storage place. All ‘outputs’ are left on Z, and all
‘inputs’ are taken from Z. The structure of a list is described in section 4.2.2.

9.2.1 Creating, copying, and erasing lists
9.2.1.1 Creating lists

We know how to create a list statically, in the recognition system (7.2),
with parentheses. A left parenthesis begins construction of a list, and a right
parenthesis takes everything that it finds on Z after the Jeft parenthesis and
makes a list out of it. The very same method may be used inside a program, too.
Left and right parentheses are perfectly ordinary programs, which may be
referenced in a program list. The only catch is that they are active symbols,
which means that they must be prefixed with the single-quote ‘deactivate’ operator
when they are entered into the program list. Consider the following example:

"TEST2: ¢ '(XY Z '))

Each time ‘TEST2® is executed, it will create a list containing X, Y, and Z. The
address of the list will be left on Z

There is a certain fairly obscure hazard to using ‘(' to create a list during

8.1.3 S ‘ DMANIP.3CH

November 10, 1975 Preliminary L+ Manual . Page 45

the execution of a program. Referring to section 7.2 and its discussion of how the
colon operator works in assigning a name to a structure, recall that the bulk of
the processing of the colon is performed by the left paren. lf one executes a left
parenthesis inside a program while there is a colon outstanding, then the colon
will be ‘eaten up’, quite to the surprise of the user. If that sentence didnt make
sense to you, please don’t worry aboul it right now, it is really quite subtle. The
only reason we mention it at all is to explain why there exist multiple routires to
perform what seems like the same task. Thero is a special routine named ‘\(!'
whose purpose is to begin the creation of lists inside of programs without
disturbing outstanding colons. It takes a type symbol as input, as
(T4 '\NC., , , ') There are several composite routines which call AL
including L\{, P\(, and (Lx(]) only) ALNC. Their action is to begin an uniamed list
of the requested type without disturbing an outstanding colon.

8.2.1,2 Copying lists

There are several routines which copy lists. Which cne to use depends on
what we mean by ‘copying’ a list. Minimally, the act of copying a list means to
‘create another list of the same length, each of whose symbols is the same as that
of the copied list. The routine CL copiss a list:

L\(ABC1223)ctLt
ZCXRGL CL!

The first example will cause a 6-element list to be created, with elements A, B, C,
1, 2, and 3. Since only symbols are being copied, and not the structure of the
‘symbols, the 1, 2, and 3 referenced in the copy list will be the same symbol as in
the source list, Similarly, if we copy a list which has a sublist:

LNAB (XY 2>C) Lt

then the sublist will not be copied: the new list will reference the same (X Y 2)
sublist as did the source.

Sometimes we want to copy the structure of a list, too; that is, copy not
only its symbols, but the data structures which they represent. We probably
don't want to copy all of the named structures, so CLX copy list structure, has
the following behavior: It will copy each symbol on its input list. If the symbol is
unnamed, and is T/M, T/P, T/L, T/W, or T/KS, then the structure of the symbol will
be copied, and the copy list will contain the symbol of the copied structure rather
than the symbol of the original structure. The association ATCLXE associates a
structure copy routine or a NOP from each type. The structure-copy routine for
T/L is CLX, so that it will ‘recursively copy all sublists in copying a structure,

In L#(l), data and program liste have the same structure, so either may be
copied with CL and CLX In L#C.{C), program lists have a ditfferent format, hence
there must exist ditferent copy routines: CY and CYX are the corresponding
routines for L*C.(C) compacted program lists.

8.2.1 DMANIP.3CH

November 10, 1975 Pre]iminary L+ Manual Page 46

Because the CLX routine tests whether symbols are named, it is quite slow,
as this test requires an eiaborate lookup. The same considerations hold for CYX,
ELX, etc. It is not a good idea to use these recursive structure-copy routines in
code that must be fast.

Two special routines exist for copying lists onto Z. They are active symbo!s;
their effect is to place on Z all of the symbols in a list:

«. Empty list (0) onto Z
«Y Empty compacted list (0) onto Z
'9.2,1,3 Erasing lists

In very much the same way that CL and CLX copy a list and a list structure,
the routines EL and ELX erase a list and a list structure. Like CLX, ELX is fairly
slow because it must check cach symbol to see if it is named. As might be
expected, there are separate erase routines for compacted lists in L*¥C.(C); they are
EY to erase a compacted list and EYX to erase a compacted list strusture.

9.2.2 Examining and medifying list structures

Numerous support routines exist to examine and modify the contents of L»
lists. For purposes of description, we will divide them into two categories:
routines {o examine or search a list and routines tc modify a list. The bracket
notation {[11), etc.) used in these descriptions is described in section 3.2.1.

8.2.2.1 Examining and searching lists

'S .(a':r-gs: [11]) gets the symbol of its input list. That means that it accepts
a list symbol as input (from Z}, and outputs to Z the symbol! of the head
-~ of the list. Thus:

L\(A B C)Y §! outputs ‘A’
- LATEHMP @ (NIL) outputs ‘NIL’

N (args: [11]) gets the next of its input list. This means that it accepts a
list symbol as input (from Z), and outputs to Z the symbol of the next cell
in the list. For example:

L\NCA B CY N! . outputs *(B C)!
L\NCA B C) NI S! outputs ‘B!

F (args: [1V8)} tests whether its input list is empiy. If F is given the
symbol of a termination cell of a list (i.e. one whose next is NIL), then it
will signal false and produce no output. If F is given any other list
symbol as input, it will signal true and output its input. Thus:

921 DMANIP.3CH

Nbvember 10, 1975 Preliminary Lt Manual Page 47

L\CA B) Fi outputs (A B C) and sighals true

L\(C) NI Fi outputs nothing, signals falge
LE (args: [118)) locates the end (ie. the last symbol} of its input list, [¢ the

input list is not empty, then LE wil signal true and return the last
symbol in the list (which will look like a I-element list). If the input list
is empty, then LE will output its input and signal false. For example:

L\CA B C) LE! will output (C) and signal true
L\ LE! will cutput () and signal false
LTC (args: [11)) locates the termination 2! of jtg Input list. If a list is ner.-

empty, then the sequence (LE N} is equivalent to LTC.

LST (args: [117) locates the starting cell of jtg input list. The symbol of the
termination cell of of list is the symbol of the head of that list, hence LST
is equivalent to (LTC §).

LSL (args: [218)) Jocates a symbol on a list. Given a list {(0) and a symbo] (1),
it searches the list for a cell containing that symbol. If found, it outputs
the symbol of the list cell and signals true. [If not found, it outputs the
symbol of the termination cel] and signals false. Compare with FSL, below.

FSL (args: [2V8]) tinds a symbol on a list. Given a list {0) and a symbal (1), it
searches the list for a cell containing that symbol. If found, it outputs
the symbol of the list ceil and signals true. Jf not found, it outputs
nothing and signals falge, Compare with LSL, above,

=50 (args: [208)) signals whether a symbol is contained in a list. If symbol (1)
is found on list 0), then it will signal true; otherwise it will signai false.

#L (args: [21] counts the length of a list into a word you provide. If (0) is
a list and (1) is a word, then the word will be set to the number of cells
in the list (exclusive of the termination celll. The word will be cutput on
Z. Thus:

HAHRD L\(1 2) Hl.1 sets NRD to 2 and outputs it
H\WRD L\() &L} sets WRD to 0 and outputs it

8.2,2,2 Modifying lists

R (args: [20)) replaces the symbol of a list cell. [f 0) is a list cell and (1) is
any Lt symbol then R causes (1) to become the new symbol of that list
cell. Thua; ' _

L\LIST: (12) define a list
XY LIST R! LIST PR !will show
LIST: (XY 2 3)

9.2.2 ' DMANIP.3CH

=N

-

Novembgr 10, 1975 Preliminary Lt Manual ~ Page 48

RN

IN

IE

IC

PI

PR
{args: [20)) replaces the next of a list cell. Since it modifies the structire
of a list rather than its contents, RN is to be used with caution. If (V) i
a list cell and (1) s any L* symbol, then RN will set the next of (0) tc be
(1. M (1) is not of type list, then the resulting structure wil be -
formed, :

(args: [20]) inserts a symbol into a list. If (0) is a list and (1) is any Lx
symbol, then I will croate a new list cell, link it into the front of list (0}
and make its symhol be (1) Thus:

LALIST: (A B) : define a list

4?7 LIST I! LIST PR! axecute I, then print the st

LIST: (47 4B) notice our symbol at head of list
- 63 LIST N! NI I move down the list and ingert 63
[LIST PR! : then print the ligt

LIST: (47 A B &3 0) note our symbot in the list

ﬂargs: (20} inserts a symbol in a lst as the next of the head cell,
Essentially this amounts to inserting after the input cell rather than
before. If (0) is a list and (1) is any Lx symbol, then IN wi) create a list
c:ell, link it into (0) after the current head of (0), and make its contents be
(il). Thus:

-l- LALIST: (A 3 o3 define a list
| -8 LIST IN! LIST PR! perform IN, then print the list
iLIST: (A -3 BC) notice our symbol in list after head cel]

{args: [208)) inserts a symbol at the end of a list. If (0) is a list and (1)
is any Ls symbol, then IE will create a list cell, link it in at the end of
!ié't (0), and cause its symbol to become (1). If the list (0} was pPreviously
empty, then IE wil| signal false; if the list (1} had prior contents, then IE
will signal trye.

f

(a;!-gs: {10)} inserts into a list a second copy of the head cell, If (O} is a
list, then IC wilf create a new list cell, link it into the list after the head

Thus
J.\LIST: (AB D define a list
LIST IC! LIST PRy execute IC, then print

LIST: (A ABO) note second copy of head symbol

[)

(arés: [21]) inserts a symbol into a list, and also leaves that symbol on Z.
If (D) is a list and (1) is any L symbol, then PI will behaye exactly like [
with the same inputs, except that it will leave (1} on top of Z as output.

(args: [10)) deletes a cell from a list, If (Q) is a list, then D will cause the
head

cell to be unlinked from that list and erased, The actuai mechanism

- 9.2.2 DMANIP.3CH

file:///LIST

November 10, 1975 Preliminary L* Manual Page 49

sD

D5L

DE

involved in D is both subile and important: the cell that DB operates on is
not the one which is actuaily erased. Rather, the contents of the next cell
are copied into the head cell, then the next cell is unlinked and deleted.
This distinction might seem trivial, but it ensures that the address of the
head of a list never changes. Tricky. By way of example:

L\LIST: (AB D) define a list
LIST D! LIST PR! delete the head and print it
LIST: (B O) notice that the A is gone.

(args: [11]) deletes a celi from a list, but leaves its symbol on Z. 8D is
idertical to D in every way, except it teaves the symbol of the deieted cell
gitting on Z.

(args: [20]) searches a list for a specified symbol, and deletes it if found.
If (O) is a list and {1} is any L#* symbol, then DSL will search list (0} for
symbol (1} and delete it if found. If not found, no signal will be given.
DSL is equivalent to (FSL ,~ D),

(args: [10]) deletes the last cell of its input list. If (0) is a list, then DE
will find the last cell of the list and execute a D {delste) on it. CE is
equivalent to (LE D). It is not a geod idea to execute BE on empty lists,
as it will delete their termination cell, and they will no longer be well-
formed list structures.

9.3. Stack facility

The L* basic system supports the expected collection of stack operations.

They are designed and named in such a way as to be comparable with the list
operations, thereby (hopefully) making both sets easier to remember. The bracket
notation ([11], etc) used in this section is defined in section 3.2.1.

IJ

DJ

SDJ

sJ

(args: {20]) pushes (inserts) a symbol onto a stack. If (0) is a stack and
(1) is any L# symbol, then IJ will push the symbol onto that stack.
Compare with the I operation defined on lists.

(args: [10]) pops (deletes) the top symbol from a stack. If (0} is a stack,
then DJ will pop its topmost symbol. Compare with the D operation
defined on lists.

(args: [11]) pops the top symbol from a stack and pushes that symbol
onto Z. If (0) is a stack, then SDJ will pop its top symbol and push that
symbol onto Z

(args: [11]) pushes onto Z the topmost symbol of a stack without

disturbing that stack. If (0) is a stack, then SJ causes its topmost symbol
to be pushed onto Z. Compare with the S operator defined on lists.

9.2.2 DMANIP.3CH

November 10, 1975 Preliminary L+ Manual Page 50

RJ {args: [20]} replaces the topmoust symilxol of a stack without pushing or
popping that stack. If (0) is a stack and (1) is any L* symbol, then Rd
will cause the topmost symbol of thal stack to be changed to equal symkol
{1). Compare with the R operator defined on lists.

PIJ (args: [21]) pushes a symbol onto a stack and also leaves that symbol on
Z. If {0} is a stack and (1)} is any L# symbol, then PIJ will push the
symbol {1} onto the stack (0}, and also leave the symbol {1) on top of Z
Compare with the PI operator defined on lists.

ICJ (args: [10]} pushes onio a stack a second copy of its topmost symbol It
has ile same action on an arbitrary stack that P has on Z. Compare with
the IC operator defined on lisis.

CLRJ (args: {(10]) clears a stack; ie. resets it to have no contents. All symbols
in the stack are popped. They are not erased, only popped. Compare this
with the CLRL operator defined on lists.

FJ {args: [1V8]} tests to see if a stack is empty. If (0) is a stack, then FJ
will output (0) and signal true if (0) iz non-empty, else it will produce no
output and signal false if (0) is empty. Compare this with the F operator
defined on lists. .

8.4, Association and Association List facility

Service routines exist fo modify and search association list and association
structures. Unlike data types we have discussed thus far, association lists and
associations are executable. This means that they have a non-nuil interpreter
action when executed in a program list. Thus, the interpreter for these types is
an important service routine, and is included in this enumeration of the service

- routines.

9.4.1 Association-list manipulation

Association lists are structures of type T/AL. There aren’t reaily very many
things to do to an association list. One can make entries, delete entries, and
search for entries. Hence these routines exist:

"RAL - (args: [30] replaces an association in an association list, or creates one if
there was none. .If (0) is an association list and (1) and (2} are arbitrary
L+ symbols, then RAL will cause symbol (1) to be given value (2) in the
association lst (0). If there was a previous value for symbol (1), it will be
replaced by the new one. :

DAL (args: [20)) deletes an association from an association list. If (0) is an
association list and (1) is any L* symbol, then DAL will delete from (0} any

9.3 DMANIP.3CH

November 10, 1975 Preliminary .+ Manual Page 51

association from symbel (1), If there was no association from symbol {1},
then DAL wili have no effect.

JI/BL (args: [2V8]) is the interpreter for T/AL Its interpreter action is to
search association-list (0) for symbol (1), If (1) has a value in (0), then
the value will be output on 7 and the signal will be cet trua. If (1) hes
no value in (0}, them nothing will be output and the signal will be set
Talsg.

8.4.2 Association structure manipulation

An association siructure is a collection of association lists with a hash fabls
‘front end’. The symhol of the hash table is of type T/A. When an eniry is mads
in in association structure, the symbol is hashed into the hash table to find out
which of the association lists to use. Similarly, when performing a lookup of a
symbol, it is also hashed into the teble. This technique allows faster searching of
structures in which a jarge number of symbols have an associated value. A set of
service routines exists for T/A structures which is very similar to those for T/AL.

RA (args: [30]) replaces an association an an association structure, or creates
one if none was present. If (0) is a T/A struciure, and (1)} and (Z) are
_arbitrary L# symbols, then RA will cause symbol (1) to be given value (2}
in the association structure (0). If a vaiue previousiy existed for (1} in (0},
it will be replaced with the new value provided as (2).

DA (args: [20]) deletes an entry from an association structure. If (0} is an
association structure and (1) is any L# symbol, then BA will delete from (0)
the association from symbol (1), if any.

I8 (args: [2V8]) is the interpreter for T/A. Its behavior is identical to that
of ,I/AL, described in the previous section, save that it operates on T/A .

rather than T/AL

8.5. Waord facility

The L% basic system supports an ‘arbitrary word facility’ as an escape
mechansim to allow the construction of any data structures with any contents.
Currently the arbitrary word facility is used also for arithmetic computation; this
is clumsy but workable.

There are several scratch words defined in the basic system for temporary
use inside a program. They are callld K0, W1, and K2,

Rd args: [20)) replaces ihe conients of a word. If (0) is a word and (1) is a
word, then RH will copy the contents of (1} into (0). Thus:

3 HWAKORD RH! sets WORD to 3

9.4.1 ' ‘ DMANIP.3CH

November 10, 1975 Preliminary L* Manual ' Page 52

<K

>l

+H

/R

H1 W2 RR! sets W2 « W!

(args: [208]} tests two words for equality. If word (0) is equal to word
(1) then =W wili signal true. If word (0) is not equal to word (1), then
=W will signal false. In neither case will it leave any output on Z,

(args: [208]) tests if word (0) is less than word (1). If word (0} is less
than word (1), then <MW will signal true, otherwise it will signal false. Be
careful when coding calls to <W; a very frequent coding error is to get
the order cof its arguments confused.

{(args: [202]) tesis if word (C) is preater than word (1) If word (0) is
greater than word (1), then >H wiil signal true, otherwise it will signal
falae,

(args: [21]} adds two words and outputs the sum, if (Q) is a word and
(1} is a word, then (1} will be set to the sum of (1) and (0} ie.
1) « (1) + (0. Word (1), containing the sum, will be left on Z

(args: [21]} subtracts two words and outputs the difference. If (0) is a
word and (1) is a word, then (1) will be set to the difference of (1) and
(O} ie. (1) « (1) - (O, Word (1), containing the differance will be left
on Z .

(args: [21]) multiplies fwo words and outputs the preduct, If (0) is a
word and (1) is a word, then (1} will be set to the product of (Q) and (1).
In L#C.(C) this will be an unsigned 16-bit product. Symbol (1) containing
the product will be left on Z

(args: [21]} divides two words and outputs the quotient. If (0} is a word
and (1) is a word, then /N wiil set (1) to the quotient of (1) divided by
{0). Symbol (1), containing the guotient, will be left on Z. On L*C.(C) this

" will be an unsigned 16-bit quotient.

(args: [21]} divides two words and outputs the remainder. If {0) is a
word and (1) is a word, then /RH will set (1) to the remainder of (1)
divided by (0), and output symbol (1) on Z. On L+C.(C) this will be the
remainder from an unsigned 16-bit division.

There are numerous other operations defined on words, they tend io be

analogues of machine instructions available on the host machine. For example, in
L+C.(C) there is a BISH operator which corresponds to the BIS (bit set) machine
instruction. Consull appropriate reference documentation for details.

95 , DMANIP.3CH

November 10, 1975 Preliminary Lx Manual Page 53

9.6. Character~string facility

L#(I} and L+C(C) support a character string type, and both provide a minimai
number of support routines for manipulating character strings. Users desiring
support routines of the level availble in snme other string-oriented languages are
encouraged to code their own; the routines described in this section should form a
basis from which to code suppert routines.

Remember that string ‘constants’, as created by the recognition system, aie
constructed with the §" operator. S" is an active symbol which reads ai
characters up to but not including the next “ character and places them in a
character string, which it leaves on Z Thus, §"Test string” will create a
character siring and output it on Z.

CRAKS (args: [11]) creates a character string of a specified length, If (0) is a
T/W character count, then CR/KS wili return on Z the address of a
character string (0) characters long. Its initial contents will be undefined.

E/KS {args: [10]) erases a éharacter string. If (0) is a character string, then
E/KS will erase it. ‘

&KS (args: [21]) concatenate two character strings. If (0) and (1) are
character strings, then 8KS will concatenate them and output the
concatenated string on Z Neither input string will be erased.

CKS (args: [11])) copies a character string. If (0} is a character string, then
CKS will create a copy and oufput it on Z, without erasing the original.

=KS (args: [208]} tests two character strings for equality. If (0) and (1} are
character strings, then =K§ will sighal true if they are identical and false
if they differ.

CKSW (args: [21]) create a character string from a word in a specified number
base. If (0)is a T/W positive integer less than or equal to 10, and if (1)
-is any L* word, then CKSK will convert word (1) to ASCIl according to
bage (0), and output the created character string on Z

CRKS ~ largs: [21] converts a string of digits into an integer according to a
specified number base. [f (0) is a T/W valid number base and (1) is a
character string, then CHKS will create a word whose contents are the
integer conversion of string (1) in base (0). The word output by CHKS
must be erased when it is no longer needed, as a new word is created for
each call on CHKS.

There is a character accumulator in L#, used extensively by the recognition
system, which a_Hows the assembly of a string from individual character symbols

9.5 DMANIP.3CH

November 10, 1975 Preliminary L+ Manual Page 54

without incurring the overhead of repeated concatenation. The character
accumulator is a block of storage in the L# kernel with enough room to store 1350
characters. The following operations are defined on the character accumulator,
Recall from section 8.2 that the ,XKS Operator will execute a routine over a
character string. It is in conjunction with the character accumulator that , XKS is
most useful,

ACCKS, (args: [C0)) reset the character string accumulator. Whan executed,
ACCKS, clears out the accumulator and prepares it to recejve a character
in its laoftmost character position.

ACCKS (args: {10]) accumulates a character Into the character accumulator, ¢ oy
18 a T/K symbol, then executing ACCKS causes the character represented
by (0) to be concatenated at the right of the character accumulator,

UACCKS (args: [01)) un-accumilates a character from the character accumylator,
When executed, UNACCKS causes the rightmost character in the
accumulator to be removed, and the T/K symbol for that character to be
output on Z

-CACCKS (args: [O1]) creates an L# character string from the current contents of
: the character accumulator, Executing CACCKS will croate a character
string and output it on Z. This string must be explicitly erased when it

is of no further use,

9.7. Block structures

A block is a contiguous group of symbols, The Lt basic system supports
blocks with a small set of support routines. As uses for block structures arise, it
is expected that the user will create his own block manipulation routines from

these.

CRBN (args: [21)) creates a block. If (0) is a word and (1} is a type symbol,
~ then CRBN will return on Z the address of a block of (0) words of type

{1). Thus:

T/H 20 CRBN! creates a 20-word block of T/W
T/P 17 CRBN! creates a 17-word block of T/P

EBN (args: [20)) erases a block. If (1) is the first symbol of a block (i.e. the
symbol returned by CRBN), and (0) is a word count, then EBN will erass
the block. - '

RBN {args: [30]) replaces the confents of a block with that of another. If (1)

and (2) are block symbols, and if (0) is a word count, then RBN will
rewrite the first (0) words of block (1) with the contents of block {2).

9.6 : DMANIP.3CH

Noverber 10, 1975 Preliminary L# Manual Page 55

ABN

CRB

EB

is an attribute {association structure) associating I"".gths from blocks. It
is used only in L#(I). L*C.(C) does not store block lengths, primarily for
reasons of space economy.

(args: [21]) creates a block and records its size in the association
structure ABN. CRB exists only in L#(I); L#C.(C} usere should use CREN
directly.

(args: [10]} erases a block whose size is recorded in AGBN. If (0) is a klock
symbol, then EB will erase it sccording to the size recorded in ADN. If
thera is no entry in ABN for the input b]o”k (0}, then the error event
‘EEB’ will be tripgered.

9.7 DMANIP.3CH

November 10, 1975 Preliminary L# Manual

10. The Recognition System

10.1. The EXEC in detail

1C¢.1.1 Charocter actions and name assembly
'10.1.2 Recognition actions
10.1.3 Modirying the user interface

10.2. Namas and contexts

10.2.1 Creating and using a context

€
a
E
(3]
~art
w1

—
[+]
3
o
o
[13
w

19.2.2 Dafining and redatining haosi
10.2.3 Local names

10.2;4_ Né-mes within blocks

10.3. Creation type control

10.3.1 _Type-control operators

10'.3.2 The forward-reference problem

10.4. Pertinent data structures in the recognition system

10

Page 56

RECOG.3CH

November 10, 1875 | Preliminary L* Manual

11. Opercling-system interface

11.1. Reading and writing files

l‘l.l.i 1/0 interfaces
11.1.2 Charcctar stream IO
11.1.3 Binary word [/O

11.2. Time accounting
11.3. Sub-jcbs

11.4. Paraliel processing
11.5. Odds and ends

11.5.1 PDP-10 notes

11.5.2 C.mmp notes

11

Page 57

OSINTF.3CH

November 10, 1975 Preliminary L* Manual

12. Debugging tools

12.1. Breakpoinis
12.2. Tracing execution

12.3. Error detection and recovery

Page &

November 10, 1975 Preliminary L# Manual Page 6

15. A program library: existing code

15,1, dummy seciilon

November 10, 1975 Prelirinary Lt Manual Page 59

Part IV: Practical L« hints, tools, and téchniques

13. Progremming Style

13.1. Sourca program formatting
13.2. Namesz

13.3. Technigue

November 10, 1975

7, nddrass netation 33

5 colon aporator 26

<W, {est word inequality 52

=KS, test equaiiiy of chr sirings 53
=5, tost symbol oquatity 42

=W, tant word equaliiy 52

>V, test word inequality 52

{[, block creation oporator 30

\(, begin unnemed list 45

JL block craation eperator 30

T2 (conleol 2), charactar action 17

I, 'exocuto’ operater 21
L, edifor command 28
B, edior command 28
ID, aditor command 28
IF, adifor command 28
\FX, editor command 28
11, editor command 28
IN, editor command 28
IR, edior command 27
1S, editor command 28
W, editer command 28

§+, set signal true 43
$-, set signal false 43
$STEP, s{op-control flag 16

&KS, concalenats chr sirings 53
! (single-quote) recognition action 21

{, structure-buikling oporatar 25
(0), (1), otc: defined 6

) structure-buikling aporater 25, 39
W, mulliply word 52

+SW, increment a symbol 42
+W, add word 52

-SW, decremwent a aymbol 42
-W, subtract word 52

+, condilional operetor 35
+H, conditionn! opprater 35

+ control oporator 35

~, cantiifionnsl oporater 35
~H, condilional oporator 35

. X, exscule control sction 38
" H, control oporator 35

/A, intorpretar for T/A 51
A/AL, inferprater for T/AL 51
L, L+, L-: loop escapes 38
Q, symbal quate oparater 14, 38

Preliminary L+ Manual

AQH, gymbol yuole operaior 38
U+, control aperater 36

A}, control aporzter 36

X, axocula control action 29

XA, iteration confrol aperator 38
XAL, iteration control oporator 38
XB, iteration ¢ontrol oporator 23
XKS, iteration controf cperator 38
XL, iteration control oporaior 33
XN, Horation control aperalor 38

JOW, ramainder word 52
[W, divike word 52

iL, block plece naming operator 30

?, structure print operatar 372

© 724, call slack display 8

AACT 21

ABN, altribula for black size 55
ACCKS, accumulaie a character 54
ACCKS, reset character accumulator 54
Aclive symbals 19, 21, 25
Addition of words 52

Address, numeric notaticn 33
AL\(, begin unnamed T/AL list 45
Arbitrary word structures 13
Argument passing 8

Arrays 13

" Agcencling, in program list 24

Associiion lisls, buiding 20
Agsociation structures 13, 14
Associlion-list structures 13
Associations, builing 29

ATCLXE 45

ATI, type attr. for intarprater 16
Altribulo lists 13

Aflribulos |3

Available space §

Avsikable space lisi 8, 31

Base contaxt 22

BCX 22

BCX, base context 6

Biock storage management 31
Biock struclure craation 30
Blocks 13

Boundary character 20
Brackat nofation defined 5

C$Z, copy signal out 43
C.mmp 15

Charactar aceumuiater 53
Charactar actions 19

CKS, copy character siring 53

Page 62

November 10, 1275

CXSW, create KS from word 53
CL, copy a list 45

CLRJ, cirar stack 50

CLX, copy list stevecturs 45

Colon operator 33

Command lnreuaga 23

Compacted liat, adiling consrlerationn 27
Compactod lints |1, 12
Concatanation of pirings 53
Conditional boundary charactsr 20
Conditional sporators 34

Contoxt lirt 22

Contaxl, definition of tarm §
Cuntrol actiens 7

Control operztors 2

Copying o list 44

Copying licis 45 .
CR/KS, create a charactar string 63
CRB, create and registar a block 55
CRBN, bluck crestion routine 54
CRBN, symbol creation rouling 31
CRCX 22

. Creating T/W structures 30
Creation rautine, typed 11
Creation typeo 28

Current lavel 34

Current rocognitian contaxt list 22
CWKS, creste word from 4§ 53
CY, copy campacied tist 45

CYX, capy compacted list struclure 45

D, delete a caif from a fist 48

DA, dolete from association structure 51
Data liats, huikling 28

Data structure buikiing 23

Data structures, huikling 28

Defining a symbei 20

Deleting lovels 35

Descending, in pragram list 34

Design philasophy 3

Division 52

DJ, dolots from stack 49

Doubln-quote charactar, recognition action 21
D20, delota symbol from Z0 43

E, symbol erasure routine 3!
E/KS, arsne characior airing 53
EB, erase a rocorded biock 55
EBN, block arazure routine 54
Editor 10, 27

"EJOV 13

EJUF 13

Els, exlornal language 23, 32
EL, erago a list 48

ELX, srase a list siruclure 48
Erasing a lint 44

Erasing of nlorage 8

Preliminary L Manual

Erasurs rouline, typed 11

Error dotection 17

Error avent 17

Error ovents 17

Error recovery 17

fscape from a loop 28

ESPX, available-space arror avent 3}
ESTEP, intarpreter step cvent 18
EUND/P, undofined program errar 17
Event 16

Examining fista 46

Excuination point 21

EXEC 8, 17, 19, 20, 21, 22, 25
Execulable dala typss 14

Exacutable types 16

External iteration control 37

Exlernal iteration contrel operator 56
External language 9, 23

EY, erace » compacted list 46

EYX, erase a cempacted list struclure 4G

F, test if list empty 4§

FJ, test for stack ompty 50
Floor 39

FSL, tind aymbol an list 47

Garbage callaction 8
Gonoralized breakpoint facility 16

Hagh table 51

Hash table, nsseciation 14
Higher lavel 34

Hislory of the Lt language §

1/0 inferface 23

IC, inseri copy 48

ICJ, inwert copy onfo stack 50
IE, insert symbol at end of list 48
1J, inserl onto stack 48

IN, insert next of list 48
Intarface, user 19

Intarnal iteration control operator 28
Intarnal language 23

Interprater 9, 16

Interpreter action 12, 14
Interpreter action by {ype 9
Interprater, user-coded 11

IPL-V [

Heralion control operstors 38
120, insert on 20 43

- LA{, begin unnamed T/L list 45

L¢, origin of name 1

LE, locate and of list 47
Level 37

Level, dofinition of term 7
Level, of a liet 28

November 10, 1975

Leve), of a program lis§i 34
Liz! manipulalion routines 44
Lists, data 12

Lints, dota, buikfing 28

Lists, description of structure 12
Lists, grogram 11

Local name 31

Locato end of ligt 47

Laop sscape 38

LST, locals start of 2 liat 47
LTC, locaie termunation cali 47

M-FILE 2
MERLIN 1
Modifying liala 47
Mulliplication 52

N, gal next of list 48

Nama amd Symbal, differance dotined 6
Name aspembly, recognition system i9
Name character 20

Name contaxt (8, 22, 26

Narme recognition 20

Naxt «f a ligl, defined 12

NIL 7, i1, 12

NIL, dofinad 7

Nonenaecutable typas 16

Notation, dofinilion of §

Ouliput intarfoce 32
Overflow, stack 13
Quorlaya 12

P\{, begin unramed T/P list 45
P8, pusb signal stack 43
P, puch vperation on Z 41
P1, push oporator on 2 42
Page, C.nmp 12, 31
Parenthesis notation for Z symbols §
Parsive symbols 21, 25
PDP-10 12, 14, 15
PDP-i1 12, 14
Porcent sign, addrese suffix 33
PI, push and inpert 48
P1J, push am! innert on atack 50
PIZ0, push amd inpert on 20 43
PLs 23
Pop, from stack 13
PP, push prir on £ 42
PRZ&, print an addraas 33
PR?Z, print an pddrezn 33
PR, structure print operator 32
PRA 33
PRAL 33
Print facility 2, 23
Print routine, typod i1
Printing & structure 32

Preliminary L* Manual

Printing eddresses 33

Printing by typa 33

PRI& 33

PRLE 33

Program constructian 23
Program lisgl @

Program lisls, description of structure 11
Programmer-defined types 11
Programs, craating 25

PRW& 33

PRVE: &2

Punclualion ne part of namog 20
Pugh, onte sinck 13

Pushilown stack 13

Quots cpcrater 38

R, replace symbol of a st coit 47
RA, replzce in apsaciation atruectura 51
RAL, repiaca in asseciziion list 50
RBN, block replacement routine 54
ROF, input a sourca file 24
Recognilion of names 20
Recegnition syslem 6, 9
Reference dacumeniation 2

Rigid boundary character 20

RJ, replace in stack 50

RN, replace noxt of a list cell 48
RW, rewrite word 51

S, get symbol of a list 46

Scratch stacks 43

Script, infaractive tutorial 2

SD, dekele tist cell and push symbol 49
SDJ, get and daleleta from stack 48
SDZ0, get and delets symbol from 20 43
Searching lis{s 46

Service roulines, for atructure 11
SETA, creats T/A from T/AL 29
Side cell 43

Side aignal 16

Signal 37, 43

Signal stack 36

Signal, definilion of term 7
Single-quate recognition petion 21
SJEXEC, sub-job exac 24

Source filer, reading 23

Stack overflow and underflow 13
Stack puppori primitives 49
Stecks, structurs 13

Step avont 16

Stepping monitor 2, 7, 10, 16
Slarage allacation B

Struciure buikiing oporatore 29
Struclure edilor 27

Structure prinfing 32
Structure-buikding oporators 9

Pzge 64

Novender 10, 1975

Subtraction 52

Symbol 12, 32

Symbal aclionn, recognition aysfem 2}
Symbol el name, differanco defined 6
Symbol of a list, dafinod 12

Symbeol, definirg 20

Symbels 22

SZ0, get symbol from Z0 42

T/A 14, 33, 5]

T/AL 14, 33, 50, &t

- T/AV 32, 33

T/112, 33

T/J) 13, 33

T/KS 14, 45

T/L 12, 33, 45

T/M 9, 12, 45

T/P 12, 186, 33, 45

T/7T 11

- T/W 13, 33, 45
Termination enll 11, 12, 47
Test for list empty 46
TRUE, value defined 7
T71, typo table for interproter 16
Typo npscciation 14
Typo assccntion-tist 14
Typo block 3!

Typo biockr 9

Typo charoctor-gtring 14
Type creation 3§

Typo creation routines 8
Typo indirogt 12

Type it L2

Type machine 12

Typo mep 8

Typo program 12

Typo atack 13

Type system B

Typo table 16

‘Typo tables 11, 33
Typo word 13

Type, block creation 30
Typa, printing by 33

Ug, pop signal atack 43
U, pop top of Z 41
U1, pop operater on 2 42
UACCKS, unaccumulaie character 54
UCX, user contoxt 6
Undorfiow, atack 13
Unexecutable typo 12
" User interface 19

V, reversa top 2 symbols of 2 41
Vaiue field, association list 14

Word manipulaiion operators 51

Preliminary L* Manuai

Word storage allocation 21
Word atructures '3
Worda, crealing 30

Z5, 9, 13 14, 19, 21, 25, 28, 31, 44
2% 5,7

Z2$, cperations on 43

Z%, signal stack 36

Z, main data elseck 8

Z, opealionn on 44

20, suatch stack 43

Z1, scratch siack 43

ZBN 32

ZCXCRL, creation context list 22
ZCYRGL, recognitian contoxt linte 22
ZQ, operator stack 3%

ZX 13, 17,18

ZX, contral stack 8

Zzzzrzzzz: last ifem in the index 62

[10] etc, notation defined 5

«L, emply list onto Z 48

Page 65

