
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

L& Introductory User's Manual

Preliminary Cra"

Brian K. Reid
November 10, 1975

This is a PRELIMINARY DRAFT
It is incomplete and unproofread

and distributed cautiously
-*-»->-» Please report errors constructively

This work was supported in part by the Advanced Research Projects Agency of
the Office of the Secretary of Defense under contract F44620-73-C-0074,
monitored by the Air Force Office of Scientific Research.

November 10, 1975 Preliminary L* Manual

Part I: The Nature of L*

1. Introduction

1.1. The history of L*
1.2. Further information
1.2.1. Reference documentation
1.2.2. Exploring on your own

2. L* design Philosophy

2.1. General design principles
2.2. Facility-specific design principles

Part II: The Structure of L*

3 . A system overview

3.1. L* in perspective: a comparison with some other systems
3.2. Terminology and notation
3.2.1. Notation conventions
3.2.1.1. Bracket notation to describe routines
3.2.1.2. Parenthesis notation for symbols on Z
3.2.2. Words with a rigorous meaning in L*
3.2.2.L Symbols
3.2.2.2. Names
3.2.2.3. Name Contexts
3.2.2 A NIL
3.2.2.5. Level
3.2.2.6. Signal
3.3. Major system pieces
3.3.1. The central stacks Z and ZX
3.3.2. The type system and the storage manager
3.3.3. Interpreters and program execution
3.3.4. User interface, recognition, debugging, etc.

November 10, 1975 Preliminary L* Manual

4. Structures: L* building blocks

4.1. Defining a type and a structure
4.2. Types and structures supported by the basic system
4.2.1. Programs
4.2.2. Lists
4.2.3. Stacks
4.2.4. Words and blocks
4.2.5. Associations and association lists
4.2.6. Character strings

5. Program execution and environment

5.1. The interpreters
5.1.1. Finding the interpreter for a type
5.2. Error detection and recovery
5.2.1. Error checking
5.2.2. Error events
5.2.3. Continuing from an error

6. The user interface

6.1. The EXEC
6.1.1. Character actions and name assembly
6.1.2. Recognition
6.1.3. Recognition actions
6.1.4. Name contexts and context lists
6.2. Building program and data structures
6.3. Reading files

Part III: Programming in L*

7. Building and printing structures

7.1. Building programs
7.1.1. Creating program lists
7.1.2. Creating machine-code programs
7.1.3. Editing list structures
7.2. Building non-program structures
7.2.1. Data lists
7.2.2. Associations and association lists
7.2.3. Word structures and blocks

November 10, 1975 Preliminary L* Manual

7.3. Storage management
7.3.1. Word storage management
7.3.2. Block storage management
7.4. Printing
7.4.1. Printing whole structures
7.4.2. Printing symbols by type
7.4.3. Printing numbers and addresses

8. Program control

8.1. Conditionals
8.1.1. Conditional operators
8.1.2. Signals and the signal stack
8.2. Iteration
8.2.1. Internal iteration
8.2.2. External iteration
8.3. Special control operators
8.3.1. Symbol quote operators
8.3.2. Execute control actions
8.3.3. Infix operator control
8.4. Address space control (overlays)

9. Data manipulation Operators

9.1. Operations on the central stacks
9.1.1. Operations on Z
9.1.2. Operations on ZS
9.1.3. Operations on the scratch stacks
9.2. List facility
9.2.1. Creating, copying, and erasing lists •
9.2Л.1. Creating lists
9.2.1.2. Copying lists
9.2.1.3. Erasing lists
9.2.2. Examining and modifying list structures
9.2.2.1. Examining and searching lists
9.2.2.2. Modifying lists
9.3. Stack facility
9.4. Association and Association List facility
9.4.1. Association-list manipulation
9.4.2. Association structure manipulation
9.5. Word facility
9.6. Character-string facility*
9.7. Block structures

November 10, 1975 Preliminary L* Manual Page iv

10. The Recognition System 56

10.1. The EXEC in detail 56
10.1.1. Character actions and name assembly 56
10.1.2. Recognition actions 56
10.1.3. Modifying the user interface 56
10.2. Names and contexts 56
10.2.1. Creating and using a context 56
10.2.2. Defining and redefining basic-system names 56
10.2.3. Local names . 5 6
10.2.4. Names within blocks 56
10.3. Creation type control 56
10.3.1. Type-control operators 56
10.3.2. The forward-reference problem 56
10.4. Pertinent data structures in the recognition system 57

1 1 . Operating-system interface 57

11.1. Reading and writing files 57
11.1.1. I/O interfaces 57
11.1.2. Character stream I/O 5 7

11.1.3. Binary word I/O 57
11.2. Time accounting 57
11.3. Sub-jobs 57
11.4. Parallel processing 57
11.5. Odds and ends 57
11.5.1. PDP-10 notes 57
11.5.2. C.mmp notes 58

12 . Debugging tools 58

12.1. Breakpoints 58
12.2. Tracing execution 58
12.3. Error detection and recovery 59

Part IV: Practical L*: hints, tools, and techniques

1 3 . Programming Style 59

13.1. Source program formatting 59
13.2. Names 59
13.3. Technique 60

November 10, 1975 Preliminary L* Manual

14 . Debugging technique

14.1. Finding bugs: some hints and pitfalls
14.2. Bug fixing and patching
14.2.1. How to correct it
14.2.2. How to maintain an up-to-date source file
14.3. When to give up and recompile

15. A program library: existing code

15.1. dummy section

INDEX

November 10, 1975 Preliminary L* Manual Page 1

Part I: The Nature of L*

1. Introduction

L* (pronounced *L star') is a complete system for constructing, running, and
debugging software. Its emphasis is on rapid programming and flexibility. L* was
developed over the past,several years by Allen Newell, Don McCracken, George
Robertson, and others. The current version of L* on the PDP-10 is called L*(I),
and the current version of L* on C.mmp is called L*C.(C).

Other implementations of L* are similar to L*(I) and L*C.(C), but not
sufficiently similar that their users may use this document in its entirety. We will
not attempt to enumerate all differences between current L* implementations and
previous ones, but in places where that information is either critical or interesting,
some older implementations will be discussed.

1.1. The history of L*

L* has evolved from attempts to build a successor to the IPL-V system In
1968, IPL-V was an old language, and there were certain specific features that
were not considered satisfactory. Motivation to design and implement a new
system was created by CMlTs switch to a new machine, a PDP-10, from a 360/67.

By Fall of 1968, the central concepts which begat L* had been worked out
by Allen Newell, and documented in private working papers. These plans called for
a ^system of list languages' called L*. The name L* comes from the Kleene star: the
closure of all list languages derivable from a basis kernel. (Recall L6: Low Level
Linked List Language).

The first incomplete specification for an implementation of an L* system was
L*(A), completed in October of 1968. By July of 1969 the written specifications
for L*(A) were complete, and plans for an implementation were begun by Allen
Newell, Peter Freeman, and Don McCracken. With George Robertson joining the L*
group, the design went through several more iterations; finally in June of 1970 an
implementation was completed of L*(D). This implementation was on the PDP-10.

A new implementation and two more design iterations were soon completed;
L*(F) became available in November of 1970. This version, L*(F), was used to build
a large user system, MERLIN (Moore and Newell).

Several more implementations evolved on several more machines. Currently,
the PDP-10 version is L*(I), and the C.mmp version is L*C(C). A version for
stand-alone PDP-lTs, L*ll, is similar to L*(H). Based on L*ll, a version of L* for
the Computer Modules project should be available by the first part of 1976.

November 10, 1975 Preliminary L* Manual Page 2

1.2. Further information

1.2.1 Reference documentation

The ultimate reference documentation for any L* system is the source file for
t ha t system This source file is called an M-FILE The M-FILE for L*(I) can be
found as LSIM18[A110LI00]. There does not yet (November 10, 1975) exist an M-
FILE for L*C.(C), but there is a binder in the C.mmp room which contains an up-
to-date listing of the L*C.(C) system.

There is a tutorial script in L*(I), which is designed to serve as an online
^programmed instruction' tutorial. It is fairly slow during typical load conditions
on the PDP-10; an interested user might consider trying the script during off-peak
hours. To get at the script, type MR LSIA" to the monitor (which will get you into
L*)f then type "HELP" to L*.

When all else fails, ask George Robertson.

1.2.2 Exploring on your own

Rather than hunting through reference documentation or asking the experts,
users are encouraged to explore L* from within. It is a totally accessible system
Every address in the system is accessible; thus every piece of code and every data
structure is available and visible There is a print facility which allows one to
pr in t anything in the L* system in a reasonably readable format. There is a
stepping monitor which will trace the execution of any routine. If you want to
know how something works, go look at it. The print facility, for printing out
programs, is described in section 7.4. The stepping monitor, which will
allow you to watch the execution of any routine, is described in section
12.2. There should be a sufficient number of data-structure names explained
in this manual to get you started; they are all alphabetized in the index.

1.1 INTRO. 1CH

November 10, 1975 Preliminary L* Manual Page 3

2. design Philosophy

L* is a highly principled system. By this we mean that it has evolved from
a systematic exploration of the design alternatives available, with decisions being
made on the basis of rigorous principles of design. The design process has taken
the form of a long series of iterations, taking seven years, which can be thought
of as converging on the ultimate target system.

It is expected that the L* user's programming philosophy will be similar to
the designers', which helps to blur the distinction between system implementer and
system user.

The design principles that shaped L* could be enumerated like so many
commandments on a tablet, and be read as a sort of catechism: almost all design
principles look sound when stated reverently enough. However, the implementors
of L* take their design principles seriously, and consider that updating of the
design principles to suit new discoveries or new ideas is just as important as
updating the documentation to suit changes to the system

So let us enumerate the design principles, with a minimal amount of
commentary on each.

2 . L General design principles

2 .2 . Facility-specific design principles

7

November 10, 1975 Preliminary L* Manual Page 4

Part II: The Structure of L*

3. A system overview

3 . 1 . L# in perspective: a comparison with some other systems

L* is a programming system; that is, a means for building and executing
programs, and an environment in which to debug and modify them Many
"programming systems" exist today, and they tend to have only fleeting similarities.
Since L* is an unusual system, it would be worthwhile to try to define it with
respect to other available systems.

All programming systems intend to provide a means whereby a programmer
can direct the execution of a computer. An assembler allows the programmer to
generate machine instructions more or less by hand. An assembler and a loader
together form a system for generating and executing machine code, so they may
together rightfully be called a programming system. Often, however, there exist
libraries of routines which the programmer may add to his program with a link
editor, and there may exist core-dump programs, macrogenerators, editors,
debuggers, and so forth. Taken in toto, these pieces form a programming system
Further, they form a complete programming system, since there is no programming
task which cannot be programmed with this programming system.

APL is also a programming system, but unlike the assembler-linker-loader
system described above, it is self-contained: the APL system is a program which,
totally within itself, allows a programmer to enter, display, execute, edit, and debug
programs. Different implementations of APL handle the details in different ways:
some are strictly interpretive, others compile code for a statement at a time, then
execute the machine code so generated. Nevertheless, 1̂1 this activity takes place
within APL. APL is a restricted system, in that not all programming tasks are
suitable for APL, or even possible within APL. For example, it would not be
possible to write a special magnetic-tape copy routine with APL, since the APL
system does not provide any primitive functions for the manipulation of magtape,
nor does it provide any mechanism for adding new primitive functions.

L* is a self-contained system somewhat like APL, but it is not restricted: a
system or program of any sort may be constructed in L*. Not only is it not
restricted, it is arbitrarily extensible and modifiable: the L* user may add new
pieces to the system, modify or remove existing pieces, or build up from the "basic
system" without actually modifying it. L* is thus a complete system: any
programming task which is suitable for the computer in question may be
programmed in L*. In calling APL a programming system (which it is), we are in a
sense obligating ourselves to think of a different term for programming systems in

2 , 2 PHILOS. 1CH

November 10, 1975 Preliminary L* Manual Page 5

which other systems may be built. For example, it would be entirely possible to
implement APL in L*, but it would not be possible to implement L* in APL. Hence,
L* is frequently referred to as a 'system-building system', in order to stress its
differences from other programming systems.

3 . 2 . Terminology and notation

Every system has its own terminology which is used to describe and define
the system. Terminology unique to L* is used both inside the L* system (in the
source file), and in external documentation. The reader should understand lh&
specific meaning of all of the L* 'system tenns', and should keep them in mind
while reading any. L* documentation.

3.2.1 Notation conventions

Throughout L* documentation, and to a large extent throughout existing L*
code, various notational shorthand is used to describe the behavior of L* routines.

3.2.1.1 Bracket notation to describe routines

Often a routine will have a descriptor in square brackets, as for example
' [11] ' or '[20]'. This notation summarizes the inputs and outputs of the routine. It
works as follows: The full form of the notation is

[AB8CDIE

where

A is the number of inputs from Z
B is the number of outputs to Z
8 is present if the routine returns a signal
C is the number of inputs from ZS
D is the number of outputs to ZS
E is a single-quote if the routine is active

Very few routines ever change the contents of ZS, so the *C and *D' fields are
hardly ever used. If a routine takes a variable number of inputs, or leaves a
variable number of outputs, then the letter V is used instead of a number.

Here are some samples of this notation:

0_ [12] Push: 1 input, 2 outputs
U CIO] Up: 1 input, no outputs
F C1V83 Find: 1 input, variable output, sets signal
US [008101 Up ZS: no Z in or out; pops ZS
? CIO]' Print: 1 input, no outputs, active
< [0 1] ' Left paren: no input, 1 output, active

3.1 OVRVUE2CH

November 10, 1975 Preliminary L* Manual Page 6

3.2.2 Words with a rigorous meaning in L*

3.2.2.1 Symbols

A program's physical existence is implemented in terms of words of computer
memory. Since 'word' is a fairly ambiguous term, many technical terms have been
coined through the years to describe things built out of chunks of computer
memory. At various times, the words cell, atom, token, block, word, structure,
packet, record, array, and many more, have all been used to describe something
built out of contiguous pieces of computer memory. All of these words have a
history and certain prior connotations. The L* implementers chose to use some
and reject others.

The word Symbol has two meanings in L*. Primarily, a symbol is an address.
Thu3, when we speak of 'the value of a symbol' or 'printing a symbol', the word
means address. Symbol is also the name of one of the fields of a list cell. One
will often see the expression 'taking the symbol of something. This does not mean
'finding the address of. Taking a symbol means extracting the symbol field of a
list cell. The contents of this symbol field is in fact a symbol in the first sense,
but then so is the contents of the 'next' field.

3.2.2.2 Names

recognition system to r ^ S 2 ^ ? ^ Z °\a Syn*°' is used b* the L*
though all symbols can be g^en names h a V e ™™*>

3.2.2.3 .Name Contexts

A Context is A Context is a name table. Frequently one hears the expession 'symbol
table', but since we have pre-empted the meaning of the word symbol we cannot
unambiguously speak of a symbol table in L*. So we call it a name context. A
name context is a table associating a character-string external name with a symbol
(i.e. with an address). There can be many name contexts; the L* basic system
provides two: BCX, the base context, to hold system names, and UCX, the user
context, to hold user names. Additional contexts may be created and used as
needed.

3.2.1 0VRVUE2CH

3 , 2 , 1 , 2 Parenthesis notation for symbols on Z

When a multi-input or multi-output routine is being described, it is clumsy to
say 'the symbol on top of T or 'the symbol third from the top of Z\ L*
documentation uses a notation with a number in parentheses: (02 means the top of
Z, HX means the next-to-the-top of Z, etc.

November 10, 1975 Preliminary L* Manual Page 7

3.2.2.4 NIL

NIL is a particular L* symbol of type list. By convention, a list is
terminated when its next field is NIL; since NIL is a list, its own 'next1 field must
also be NIL. NIL is also used to represent the value 'false' in conditionals. NIL
has no intrinsic special properties other than in the way it is used by the rest of
the system.

3.2.2.5 Level

A level of a list or program is a sublist or subprogram Consider the list (A
B C (D (E) F) G H). It has three levels. The outermost or highest level is
(A B C something G H). The next lower level is (D something F). The lowest or
innermost level is (E). This is easier to visualize if you think of a 2-dimensional
representation of a list:

(A B C G H)
(D F)

(E)
The term level is often seen in documentation of the editor, the interpreter, and
the stepping monitor, and in documentation of control actions.

3.2.2.6 Signal

The word signal in L* documentation refers to a true or false value returned
by a routine. At any given time, the current signal is the value at the top of the
stack ZS. A value of NIL means false; any other value means true. Many control
actions test the signal.

3 . 3 . Major system pieces

There are certain major pieces of L* which a reader must understand before
L* documentation will make much sense. They include:

> The central stacks -
> The type system and associated storage manager
> The interpreter and the program control mechanisms
> The recognition and printing system

Each of these pieces will be described in detail in Part III ('Programming L*'). We
will provide a short description here in order that the pieces and the names not
be a myster as the documentation unfolds.

3.2.2 0VRVUE2CH

November 10, 1975 Preliminary L* Manual P a g e 8

3.3.1 The central stacks Z and ZX

The L* main data stack is named Z, and the main control stack is named ZX.
Z is used for almost all argument passing, computation, and temporary storage
inside routines. Most L* operators work on the top one or two elements of Z.
For example, the +W operator, which is the addition operator for Type Word,
takes as input the top two elements of the stack, and emits as output their sum,
which it pushes onto Z. This behavior is quite similar to that of the V key on a
postfix calculator (with which we assume all of our readers are familiar).

The control stack ZX is used to record linkage information for routine calls.
It is used in much the same way as an ALGOL runtime stack, with one important
exception: ALGOL stores local variables and arguments on the runtime stack, which
L* does not. See section 5.1 for a more complete discussion of ZX and its
contents. L* supports stacks as a data type; Z and ZX are two specific stacks.
ZX, however, is somewhat special: it is not implemented via the general L* stack
mechanism, rather it is a machine register. For this reason, attempts to print ZX
using the normal print routines described in section 7.4 will fail, since ZX
has non-standard structure. The L* basic system provides a routine for printing
ZX; its name is ?ZX. ?ZX is an active symbol (see 6.1.3), which means that it
is executed immediately when it is typed.

3.3.2 The type system and the storage manager

Every address known to L* has a type. The type system is crucial to L*,
driving the interpreters, the user creation and print routines, and the storage
manager. Storage allocation is organized by type. When a program needs storage,
i t calls the storage allocator giving a type and a word count. The storage
allocator will return (on Z, of course) the address of a block of storage of the
requested type.

An L* user does not normally acquire storage by direct calls to the storage
allocator. Instead, there exist type creation routines which allocate a chunk of
storage of the correct size, and initialize its contents. For example, one seldom
wants to create a block of storage of type stack, rather one wants to create a
stack. Instead of calling the storage allocator to get some words of type stack,
one calls the stack creation routine, which in turn calls the storage allocator to get
the storage that it needs. The individual creation routines and their behavior are
described in chapter 7.

L* does not use a garbage-collection scheme; storage must be explicitly
erased. Although this scheme requires more attention from the programmer than
would a garbage collection scheme, it is much simpler, much simpler to implement,
and inherently much faster. When storage is erased, it is returned to the available
space list for its type.

3.3.1 OVRVUE.2CH

November 10, 1975 Preliminary L* Manual Page 9

Storage is organized in units of type blocks of 128 words each. In L*C.(C)
storage is further organized in units of pages (Hydra pages) of 4096 words each.
Each type block has a type which is determined by a type map, and all storage
allocated in that block has the type of the block. Unallocated storage is of type
available space.

3,3.3 Interpreters and program execution

L* is an interpreter-based system. Routines are called by the interpreter,
and when they finish execution, they return to the interpreter. In this sense, the
interpreter can be considered as a dispatcher controlling the sequence of execution
of various machine-code routines.

Initially the T/P interpreter is in rontrol. This interpreter executes a
program list by taking in turn each symbol of the list and interpreting it by type.
There is a separate interpreter for each type. The T/P interpreter takes each
symbol of a program list, determines its type, and then executes the interpreter
for that type. The interpreter for type machine-code (T/M), for example, merely
calls the machine-code routine as a subroutine. The interpreter for a data list
places the address of that list on Z.

The relationship of the interpreter to the type system is more fully
described in section 5.1. The detailed behavior of the interpreter when
applied to a symbol are described in chapter 9 in the section on that
type.

3.3.4 User interface, recognition, debugging, etc.

A large chunk of L* consists of routines which talk to the user and make life
easier for him. These are routines which create programs, execute them, edit them,
create and print data structures, define names, set breakpoints to trap errors, and
so forth. These routines all interact with the user, who is in control at all times.

The recognition system stores symbolic names (i.e. character strings) of
internal L* structures, and allows the user to communicate with his system in
terms of these external names. The user interface executive routine, called EXEC,
allows the user to execute any L* routine from the terminal. In particular, it
allows him to execute the structure-building operators which create programs, lists,
and the like. The language in which the user communicates with the EXEC is
called EL*, or the external language.

Since the EXEC can be used to execute any L* routine from the terminal, it
can in particular be used to execute structure-building routines. Structure-building
routines are those which create programs, build lists, define blocks, etc. The
structure-building routines are given suggestive mnemonic names: T and T are the
names of the routines which begin and end construction of a list; and T are
the names of the routines which begin and end construction of a stack, etc.

3.3.2 0VRVUE2CH

November 10, 1975 Preliminary L* Manual Page 10

- 3.3.4
0VRVUE2CH

A Print Facility allows a user to print any symbol. The editor and stepping
m o n i t o r a n d o t h e r debugging tools combine to form a comprehensive environment in
which to find and fix bugs.

All of these facilities will be discussed in detail in the approprite chapters,
consult the index or table of contents for details.

November 10, 1975 Preliminary L* Manual Page 11

4.2.1 Programs

L*(I) program structures are linked lists, each symbol of the list being a step
of the program An L*<I) program list is structurally identical to a data list (see
next section), but because program lists have a different type, they are handled
differently in execution.

L*C.(C) program structures are compacted lists, i.e. blocks: a program is a
contiguous block of memory with each word treated as a list cell, so that no Viext'
pointer is needed, because the next cell can be found by indexing to the next
sequential memory address.

The end of an L*{I) program list is indicated by a cell on that program list
whose next field is NIL. The symbol part of that cell (called the termination cell)

STRUX.2CH

4. Structures: L& building blocks

4 . 1 . Defining a type and a structure

The L* basic system, i.e. the initial system provided to an L* user, supports
numerous data structures which have been found to be an appropriately small set
of universally useful structures. Conceptually more important than the collection of
structures defined in the basic system, is the ability to add programmer-defined
structures to the basic system.

L* data structures are closely tied to types. In particular, there is usually a
separate L* type for each kind of data structure, and a set of support routines to
manipulate it. Normally, when a type is added to the system, several steps are
involved:

> Create a type symbol, which is a symbol of type *type' (T/T). This symbol represents that type.

> For the structure that the new type represents, code a creation routine, an
erasure routine, and a print routine. Enter these routines in various type

' tables under the new type.

> Code service routines as needed to use the new type. If the type is to be
executable, code an interpreter for that type and enter it in the interpreter
type table.

4 . 2 . Types and structures supported by the basic system

November 10, 1975 Preliminary L* Manual Page 12

4.2.1
STRUX.2CH

contains a pointer to the head of the list. This pointer is useful for looping back
to re-execute the program list. The end of an L*C.(C) compacted program list is
indicated by a cell whose address has the low-order bit set. Since L* symbols are
always word addresses, and word addresses on a PDP-11 are always even, no
symbol will ever normally have its low-order bit turned on.

L* supports type program, or T/P, for program lists. A separate type, Type
machine or T/M, is supported for machine-code programs. Machine-code programs
and their relationship to program lists are discussed in section 7.1.2.

L*C.(C) supports a special type called type indirect or T/[> which is a means
for executing a program in a page that overlays the caller, (i.e. a page which sits
in the same logical address space as the caller). A type-indirect symbol is a two-
word symbol naming a program and an overlay. The interpreter action for T/I is
to load the overlay, call the program, then return to the previous overlay. . See
section. 8.4 for a description of the L* overlay mechanism.

• 4.2.2 Lists

L* lists are non-executed data structures, as opposed (for example) to the
program structures defined above. A list is normally of type list, or T/L. A list is
a collection of linked cells, each cell having a contents and a pointer to the next
cell of the list. The last cell of a list is called the termination cell of that list, and
is not normally considered to be part of the ^contents' of the list. A termination
cell is one whose 'next cell' pointer points to NIL.

A list cell must then contain (at least) two addresses. In L*(I) on the PDP-
10 (a 36-bit machine) a list cell is a single word, with an address in the left half
and an address in the right half. In L*C.(C), running on a 16-bit machine, a list
cell is a contiguous pair of 16-bit words, each of which holds a symbol.

The two symbols in a list cell are called the symbol field and the next field.
The next field is the symbol of the next cell of the list (or NIL if this is a
termination cell), and the symbol field is the 'contents1 of the list cell, and can be
any L* symbol. Note that the contents of the next field is in fact a symbol. (If
t h a t sentence did not make sense, then go back and read section 3.2). As is also
the case with program lists in L*(l), the symbol field of a termination cell contains
the address of the head of the list.

When a cell is added to an L* list, the physical storage for the list cell is
acquired from the L* storage allocator, and the new cell is linked into the list.
When a cell is deleted from an L* list, it is unlinked from the list and then its
storage is returned to available space. There exist numerous routines for
examining, modifying, copying, searching, and iterating over lists.

November 10, 1975 Preliminary It Manual Page 13

4.2.3 Stacks

A stack, often called a pushdown stack, is a well-known data structure
characterized by its last-in, first-out behavior. In L*, a stack is implemented as
two pieces: a block of storage to hold the contents of the stack, and a separate
^control block' which holds pointers to the data part of the stack. L* stack
structures are normally of type stack, or T/J.

When an L* stack is initially created, one must specify the size of the stack;
this will be the size of the data portion. T^e 'control* portion of the stack has
three parts: a 'current position' pointer, a 'stack full' marker, and a 'stack empty'
marker. If a program attempts to remove (i.e. "pop") an entry from an empty
stack, the stack manipulation routine will trigger an error event named EJUF (see
section 5.2.2). If a program . attempts to add (i.e. "push") an entry onto a

. stack which is already full, an overflow event named EJOV will occur. Normally
EJOV contains code to create a new larger stack, copy the contents, erase the old
stack, and return to the interrupted code, which will then succeed. L* stacks may
thus be considered to. have infinite size.

The L* kernel supports stacks both for its own use in the basic system, and
for user convenience in building on top of the kernel. There are several specific
stacks in the basic system which are crucial to the workings of L*. These
particular stacks, called Z and ZX, are the main data and control stacks,
respectively. They are described in section 3.3.1. The signal stack ZS is also a
stack, but its being a stack is not central to its behavior: L* could be made to run
adequately if Z8 were merely a word instead of a stack. For this reason, Z8 is not
considered here to be a central stack.

4.2.4 Words and blocks

L* provides support for manipulation of arbitrary words, whose contents and
structure are entirely up to the user. There are operators to perform arithmetic,
bit manipulation, comparisons, etc., on these 'arbitrary word' symbols. The basic
system supports type word, or T/W for these arbitrary words. * words. By
clustering words into contiguous blocks, it is possible to build array structures and
vectors, etc. A block may be built from symbols of any type; blocks are not
restricted to T/W. It just seemed convenient to talk about them here since most
of the blocks in the L* basic system are T/W. The L* basic system does not
support arrays as a data structure.

4.2.5 Associations and association lists

An association, in the most general sense of the term, is a triad of

value. One speaks of associating a value with a symbol along some attribute.

4 - 2 - 3 STRUX.2CH

November 10, 1975 Preliminary L* Manual Page 14

4.2.5
STRUX.2CH

Many systems support association structures to varying degrees of power and
complexity. A totally general association system, such as that available on an
associative-memory machine like STARAN, allows arbitrary content addressing: i.e.
one may with very little loss of efficiency ask such questions as "along v/hich
attr ibutes is the value 'true' associated from something?" Some software
implementations of association systems, such as LEAP, allow this sort of access to
the association structures, but at a great loss of efficiency.

L* implements associations as a structure of pairs. Each structure is an
attribute; an association is stored in the structure as a pair: (symbol value). In
this sort of structure, lookups of the form "what is the value of symbol XYZ along
at tr ibute ABC" are very efficient, but lookups of the form "which attributes have .
. ." are exceedingly slow, requiring an exhaustive search of all attribute structures
in the system.

An association list is a list in which associated pairs of symbols are stored.
It is of type association-list (T/AL). Because of different word sizes of the PDP-
10 and the PDP-11, L*(I) and L*C.(C) use slightly different fine structure in
association lists. L*(I) stores an association list as alternating pair lists, with
every other cell containing a symbol and a value. L*C.(C) stores an association list
as a list of pairs, with two symbols in every list cell. Although the service
routines must be slightly different, the net effect is the same. •

An association structure is a collection of association lists grouped into a
hash tablo. The hash table is in fact a block of T/AL symbols. The symbol of the
association structure points to the first word of the hash table. This symbol is of
type association (T/A). When an entry is made in an association structure, the
symbol par t of the association is hashed into the table to specify which one of the
association lists will receive the pair. Obviously, when there are a large number of
pairs stored in an association, a large gain in efficiency will be effected by this
technique.

Associations and association lists are executable data types. This means that
they have an interpreter action that does something besides push the symbol onto
Z. When the interpreter executes a symbol of type association or of type
association list, it performs a lookup of the symbol on top of Z. Any reference in
a program to an association list not intended to be executed should be quoted with
the .Q quote symbol.

4.2,6 Character strings

Character strings may of course be implemented by the user using lists of
character symbols (as was the case in earlier versions of L*), but to save space a
character string facility was created for L*(I) on the PDP-10 and L*C.(C) on
C.mmp. These are very ordinary character strings, with the usual collection of
primitive operations to manipulate them. Character strings are of type character-
string (T/KS).

November 10, 1975 Preliminary L* Manual Page 15

L* character strings are stored tightly packed, with a marker indicating the
end of the string. On the PDP-10, there arc 5 ASCII characters stored per word*
the end of the string is signified by a low-order T bit. On C.mmp there are 2
ASCII characters stored per word, with a zero character marking the end of the
string.

4.2.6 STRUX.2CH

Page 16
November 10, 1975 Preliminary L* Manual

5
PROGRM.2CH

5. Program execution and environment

5 . 1 . The interpreters

The L* interpreter is the sequencer, the controller of execution. When each
routine has finished executing, it returns to the interpreter, which then finds the
next routine to be executed and processes it. The interpreter* is actually a
collection of interpreters and a type-driven mechanism for determining which one
to invoke.

5.1.1 Finding the interpreter for a type

At the innermost level there is a loop which steps down a program list,
taking in turn each symbol and executing it. To 'execute' a symbol means to put it
on top of Z, then determine its type, then call the interpreter for that type. Since
the interpreters work off Z (as opposed to some internal registers as they did in
prior versions of L*), an interpreter may be written and debugged as a normal
user program, taking input in the normal way. There is a type table identifying
the interpreter for each type. When a type is created, one of the responsibilities
of its creator is to ensure that the interpreter type table has the correct entry
for the new type. On L*C.(C) the type table is in fact a table, named TTI. On
L*<I), the type table is an association structure named ATI. Be it a table or an
association, the interpreter type table identifies the interpreter for each type.
Even nonexecutable types like T/W (word) or T/L (data list) must have an entry in
the interpreter type table. The entry for nonexecutable types is simply a NOP.

The T/P (type program) interpreter has a mechanism built into it allowing an
event to be executed at the end of each interpreter cycle. Events are most
frequently used in L* as error-handling devices; in this context they are described
in section 5.2.2. The interpreter maintains a step event, which can be made
to trigger a t the end of every interpreter step. The interpreter step event is
called ESTEP. If the side signal cell 8STEP is TRUE (i.e. if it contains something
besides NIL), then the interpreter will execute the topmost symbol of ESTEP at the
end of each interpreter step. This mechanism allows all sorts of debugging and
diagnostic tools to be written. The stepping monitor (see section 12,2) and
the generalized breakpoint facility (see section 12.1) both use the
interpreter step event.

5 .2 . Error detection and recovery

November 10, 1975 Preliminary L* Manual Page 17

5.2.1 Error checking

A minimal amount of error checking is performed by the L* basic system;
these error-checks tend in general to be for very severe errors which could if
committed make debugging difficult or impossible. A user may of course modify the
system to include error checking wherever so desired.

When an error is detected, an error event is triggered. An error event
contains a subroutine which will be executed by the code that detected the error.
Often the error event will print a message and then call the EXEC. If you print
the call stack ZX inside an error event, you will see that the call history shows
the routine that has detected the error called an error routine in the L* kernel,
which in turn called the error event routine, which in turn called EXEC.

5.2.2 Error,events

An error event is a data list, and each cell of the list contains a reference
to a program. When.an error is detected, the kernel error-event routine uses the
program at the head of the list as the error routine. If a user wishes to take
over an error event for his own purposes, he merely inserts his error routine on
the front of the list, effectively pushing the previous error routine. To return to
using the previous error routine, just delete the head of the list

The error events used by the L* basic system are enumerated in section
12.3.

5.2.3 Continuing from an error

Since an error event is a subroutine, it will eventually return to its point of
call and continue from the point where the error was detected. If there is no call
to the EXEC in the body of the error routine, then the interrupted program will
resume as soon as the error routine has completed. Normally, however, an error
event routine will break to the EXEC to await user action. From the EXEC, the
user may examine the call stack to find out how the error occurred, examine
various data structures to determine what caused it, etc.

It may very well be that the user would like to return from the EXEC and
continue executing the interrupted routine where it left off. For example, let us
suppose that the error detected was 'Undefined Program'. The error event for an
undefined program is called EUND/P. It will print a message saying that the user
tried to execute an undefined program, and the name of this program will be
printed. The user may type in a definition of the program and resume execution.

To exit the EXEC and resume execution of its caller, type a TZ (control-Z).
The character action for TZ sets a switch that causes EXEC to return to its caller.

5.2.1 PROGRM.2CH

November 10, 1975 Preliminary L* Manual Page 18

If you type TZ to the 'bottom level' EXEC, i.e. the EXEC that was first in control
when L* began execution, an interesting sequence of events will take place: The
EXEC will return to its caller, which will discover that there is no prior caller on
ZX for it to return to, thereby triggering a *ZX underflow* error, which will
ultimately break to the EXEC. You can't get away from it.

5.2.3 PR0GRM.2CH

November 10, 1975 Preliminary L* Manual Page 19

6. The user interface

The L* user interface is the mechanism and language by which a user
communicates with and controls the L* system in front of him. The extreme
flexibility and generality of the L* user interface accounts for a major part of the
power of L*. Via this interface, the user at the terminal plays the role normally
played by an executive routine, executing L* operations at will, singly or in groups.

The user interface consists of several pieces, each of which will be discussed
in turn. As seen by the user, however, there is a single homogeneous interface; its
structure is not visible at the surface.

6 .1 . The EXEC

The routine which controls the user interface is called EXEC It is
" conceptually very simple: it reads a line of input from the user interface, and then
processes that line from left to right, interpreting the L* routines whose names
appear and which have the attribute of being active. The EXEC maintains an
association structure named 'AACT', in which the value TRUE? is associated from
each active symbol.

The process of interpreting a line input by the EXEC consists of three steps,
which are executed repeatedly until the input line is exhausted:

> Assemble a name from input characters.
> Find the L* symbol denoted by that name (by searching one or more name

contexts)
> Execute the symbol if it is active, or put it on the data stack Z if it is

passive.

The process described above is (more or less) what actually happens at the EXEC.
It is not an oversimplification for the purposes of description. That's all: it really
is tha t simple.

6.1.1 Character actions and name assembly

An L* name may consist of any combination of characters other than the
format-effector characters like blank, tab, line-feed, etc. For example, "(((" is a
perfectly valid name. To provide a name assembly scheme powerful enough to be
able to recognize names consisting of arbitrary strings of characters, and also to
allow arbitrary user modification of the name assembly process, L* employs an
unorthodox character recognition and assembly scheme centered around character
actions. A character action is a program executed by the EXEC whenever that
character is encountered during the scan. These character-action programs are
normal everyday L* subroutines, normally program lists, and may be modified or
replaced by the user.

6 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 20

For example, the action associated with lower-case letters is to convert the
letter to upper case, then execute the upper-case character action. The character
action for upper-case letters is to accumulate the character as part of a name.
The action associated with digit characters is a fairly elaborate program which
checks whether a number or a name is being accumulated, then adds the digit
either to the end of a name or to the number.

There are three character actions in the L* basic system which are crucial
to the workings of the recognition system. They are the name character action,
rigid boundary character action, and conditional boundary character action.
Alphabetic characters all invoke the name action: the character is concatenated t^
the end of the name being accumulated. Rigid boundary characters like space, tab,
etc., trigger recognition. Conditional boundary characters, which comprise most of
the punctuation characters, are treated as name characters with one important
exception: they can participate in a name, but can also trigger recognition when
appropriate. The details of these character actions are described in section
10.1.

6.1.2 Recognition

When the EXEC has accumulated a string of characters which could form a
name, it then tries to recognize them as a name. This recognition process is
slightly more complicated than a simple table-lookup, because of the following rules
for recognition:

> The recognizer will always recognize the longest possible name in a string of
characters. Thus, if "?", "?Z", and M?ZX" are all defined names, then the string
"?ZX,r will be recognized rather than "?" followed by "ZX".

> In the event that the longest possible name is not a name already defined,
then the recognizer will back' up to the most recent conditional boundary
character and try again.

> If there is no conditional boundary character in the unrecognized string, then
the recognition system will define that string as a name, and create a symbol
for it according to the prevailing creation modes (see 10.3).

> The first occurrence of a name is the defining occurrence; its type (and for
L*C.(C) its page) are determined by the creation modes in effect at the first
occurrence.

The alert reader will notice that under the above scheme, there is no way to
define a name which, contains a conditional boundary character (other than the
trivial case of a 1-character name), since an undefined name containing a
conditional boundary character will never be recognized. To solve this problem,
there is a special recognition mode which may be set to temporarily force all

6.1.1 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 21

characters other than rigid boundary characters to be name characters. This
recognition mode is set by the double-quote ("} action. Double-quote is an active
sybmol which sets this 'all characters are name characters' mode.

It is time for some examples.

ABCrDEF will be recognized as 'ABC, V, and <DEF5.
"ABC:DEF will be recognized as <ABC:DEF' because of the "
ABC:DEF will now be recognized as 'AEC.DEF'

Once the name 'ABC.DEF' was defined in the second case, then in the third case,
even though the double-quote was no longer present, the entire name including the
colon will bo recognized.

6.1.3 Recognition actions

Once a name has been recognized as a symbol, the EXEC now acts upon it.
This action is very simple. If the recognized symbol is active (as recorded in the
association structure AACT), then the symbol will be immediately executed by the
EXEC. If the recognized symbol is passive, or if the symbol has been temporarily
passivated by means of the single-quote operator (see below), then the symbol will
be pushed onto the main data stack Z. This active/passive distinction for a symbol
is in a sense another dimension of type: a symbol of any type can be made active.

One particular active symbol is noteweworthy: the exclamation point. The T
is an active symbol which causes the topmost symbol of Z to be executed. Thus

A ! executes W
A J B! executes <A>, then <B'
A B ! ! executes <B', then W

In the third example, each exclamation point executes the topmost symbol on Z, and
B is a t the top of Z, so it will be executed first

If a name is prefixed by a single quote ('), then the recognition system will
assume that the symbol it names is passive, and will not execute that symbol even
if it is in fact active. This feat is accomplished by having a program whose name
is single-quote which is active. When the single-quote program is executed, it sets
a flag for the recognition system so that the next (and only the next) symbol will
be treated as passive.

One frequent use of the deactivation quote is to allow a symbol to be
printed. For example, here is how to print out the left parenthesis program ('PR'
is a program which prints programs):

?< PR!

Note the single-quote to deactivate the left parenthesis, and note the exclamation
point to execute *PR\

6.1.2 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page ,22

6.1.4 Name contexts and context lists

A name context is a table which pairs symbols with names. To recognize a
name means to find it in a name context. To create a name means to enter it in a
name context.

A context list ia a list of contexts. A context list is used to define the
order in which contexts will be searched. When the EXEC is searching for a name
during the recognition process, it will search all contexts on the current
recognition context list. If it does not find the name in any of those lists, then it
declares the name co be undefined and acts accordingly (see 6.1.2). If it finds the
name in any of the contexts on the current recognition context list, then it takes
the symbol found there as the symbol for the name, and continues.

L* allows users to manipulate the context lists used in recognition and
creation, thereby effecting a kind of dynamic block structure. ZCXRGL is a list of
context lists, the head of which is the 'current' context list. BCX, the base
context, is the context in which most of the names in the L* basic system are
defined. UCX, the user context, is provided for defining user names. Typically,
ZCXRGL is defined as

ZCXRGL : ((UCX BCX))

i.e. it contains a context list which has in it only one context, namely the base
context BCX. Let us suppose that the user has a context of his own (which is
created with CRCX, see 10.2) and he would like L* to search h i 3 context
before it searches BCX, so that he may redefine some names in the basic system
without clobbering their definitions. There are two ways of effecting this. First,
he could add his context at the top of the current recognition context list:

or he could push a whole new context list onto ZCXRGL:

ZCXRGL i ((HYCX) (UCX BCX))

In the first example, the recognition system will search for a name first in MYCX,
then in UCX, and finally in BCX. In the second example, only MYCX will be
searched

There is also a context list used for creation, ZCXCRL, which is used to find
the context in which a name will be created if it is found to be undefined. The
name will always be created in the topmost context of the creation context list;
the lower contexts will be ignored. Thus, in our example above, all creation would
take place in MYCX.

ZCXRGL ((HYCX UCX BCX))

6.1.4 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 23

6.2 . Building program and data structures

In a compiler-based system, programs are built by the compiler under control
of the source code: a loop statement in the source code, for example, causes the
compiler to generate the necessary object code to execute the loop. In a growing
system, programs are built dynamically by the interpreter under control of the
command input (whether that input is from a file or direct to the terminal).

In a compiled system, the 'external' or 'source' language is compiled into an
'internal' or 'target' language. These two lar.gur.ges tend to be very dissimilar; for
example, a FORTRAN compiler takes FORTRAN statements as its external language
and produces machine code as its internal language.

L*, as a growing system, provides a means of building programs under
control of the command input. This command input is L*'s external language,
referred to; as EL*. Although EL* is not a formally specified language, and it is

.not actually a programming language (it has no control actions, for example), EL* is
syntactically similar to the internal language PL*. This similarity between the
internal language and the external language is so uniform that beginning L* users
have sometimes failed to see that there were in fact two languages, and treated
the two as one. It is better to think, of EL* as a command language rather than
as a programming language. The print facility (see section 7.4) prints a
PL* program (or data structure) in EL*; most of the time it will produce a faithful
reproduction of the input.

6 .3 . Reading files

So far we have made no mention of program source files; rather we have
always talked about typing in a program at a teletype. Obviously, no program of
any reasonable size will be typed in from the keyboard, so there is a mechanism
for causing the EXEC to take its input from places other than the teletype.

I/O in L* is performed through]J0 interfaces. The L* kernel ensures that
interfaces are uniform from one device to another: reading a character from a disk
file or from a DECtape or a teletype is effected at the user level with the same
call. Obviously, more information is required to open a disk file interface than a
teletype interface, but once opened, all interfaces are accessed in the same way.

To read a source file containing a program, we would then do these things:

> Open an interface for the file, by whatever means appropriate. Usually this
would involve taking the predefined 'Disk Read' interface and modifying it to
read the requested file.

> Push the symbol for this interface onto ZRD, so that future input requests
will be taken from the file.

> Call the EXEC recursively. When it encounters an EOF in the file, it will exit.
6.1.4 USERIF.2CH

http://lar.gur.ges

November 10, 1975 Preliminary L* Manual Page 24

> Restore ZRD by popping the entry we put there.

In fact, there is in L*(I) a function that does all of the above things. Named RDF,
it takes a file name as input and reads it into the core image:

SFILE,C14 RDF!

This will perform all of the correct actions to read the requested file.

Until such time as a file system becomes available on C.mmp, the primary
storage place for L* source will be the PDP-JG. There is a data link between the
two machines, and L* knows how to use it to read files from the PDP-10. A
server job is logged in on the PDP-10, and a file transfer protocol is executed to
ship a source file over the link to C.mmp. The L*C.(C) end of the file transfer
protocol is called SJEXEC, the sub-job EXEC. Use of the link and the file transfer
server is described in section 11.5.2;

6.3 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 25

Part III: Programming in L*

7. Building and printing structures

L* systems are not deposited as with a compiler, but are grown from within:
source code processed by the L* EXEC causes L* to create program and data
structures within itself. There are numerous grown systems in existence, and each
has its own syntax and its own mechanism for directing the system to grow.

The technique used to grow and build L* programs is simplicity itself: the
user types (or reads from a file) a list of names of L* routines to be executed.
The routines are interpreted if they are active or pushed onto Z if they are
passive, in the order that they are received by the EXEC.

By using appropriate routine names, any surface syntax may be achieved.

Before we delve deeper into the details of the growing process, perhaps an
illuminating example would be in order. Let's look at the input to L* which would
cause it to build a list containing three numbers:

(1 2 3)

In this case, i.e. left parenthesis, is the.name of an active routine which begins
the construction of a list, and *)' (right parenthesis) is the name of a routine
which completes the construction of the list and leaves the address of the
completed list on Z.

7 .1 . Building programs

A program is a particular data structure. All L* structures have types; a
program is T/P, or type program The details of an L* program list's internal
structure are in section 4.2.1.

The L* basic system admits of two program types: T/P for symbolic program
lists, and T/M for machine code. We shall discuss in turn how each of these
structures is built.

7.1.1 Creating program lists

The act of building a program list is begun by a left parenthesis, and the
building of a program list is completed by a right parenthesis. This is equally true
for a data list. When a left parenthesis is encountered, it decides which type of

6.3 USERIF.2CH

November 10, 1975 Preliminary L* Manual Page 26

7.1.1

structure to build on the basis of the type which it is told to create. Types and
how to control them are discussed in more detail in section 10.3. For now,
we assume that the creation type is set up properly to create a program list
ra ther than a data list

As we have said several times, a list is created by enclosing the objects for the list in parentheses. Thus,

(A B C) creates a list with A, B, and C

< <) > creates a list containing a null list

(XXX WR) creates a 2-element list

The second example above shows the creation of a list within a list, and shows the
recursive nature of the list-building operators. The second left parenthesis,
encountered before the first one is closed, simply begins a new structure. The
first right parenthesis completes the inner structure, which is left on Z to be
included as a symbol of the outer structure.

When a structure is created, we would like to keep a pointer or reference to
it, so tha t we may access it again externally. We do this by giving a symbol a
name. To give a symbol a name means making an entry in a name context with
tha t symbol and its name. The L* recognition system provides an automatic means
of giving names to structures. This is done using the V (colon) operator, which is
one of the few infix operators in L*.

To build a list and give it a name, we type:

NAME i (1 2 3) build a list; call it "NAME**

N34 : (NAME 3) build a list; call it "N34"

The colon is a fairly complex program; the details of its operation are left for the
L* reference manual. Since the name to the left of the colon has already been
defined by the time the colon is encountered, the colon and the parentheses must
cooperate to create a structure whose head cell is at the address. where the
symbol is defined.

When a right parenthesis finishes building an unnamed structure (either
program or data list), it leaves the address of the structure on Z. When a right
parenthesis finishes building a structure which will be named (i.e. by a colon), then
i t does not leave the address on Z, the philosophy being that the address of the
structure may be obtained from the name if so desired.

Since the structure-building operators involved in building a list are all
actively-executed programs, and since the recognition system doesn't care about
carriage returns, spaces, tabs and the like, it is perfectly legal to take great
liberties with the physical format of a list as it i 3 being read in. The following
forms will all create the same list:

SBUILD.3CH

November 10, 1975 Preliminary U Manual Page 27

A: (X Y Z)

A : (
X Y
2 >

A i <
X
Y
Z
)

Remembering that the semicolon character when processed by the recognition
system causes the remainder of an input line to be discarded, it is frequently
desirable to separate an L* program source into several lines, with a comment on
each line preceded by a semicolon,

7.1.2 Creating machine-code programs

7.1.3 Editing list structures

L* provides an editor which may be used to edit program and data list
structures. Data lists are linked structures, and in L*(I) so are program lists; in
L*C.(C) a program list is a compacted list. The L* editor can edit both kinds of
structures, though obviously the editing actions that can be performed on a
compacted list are somewhat limited.

The editor is a PL* program It takes as input a symbol from Z, and leaves
no output. Its action is to accept commands from the user and modify the list
accordingly. It is totally recursive: if in the middle of an edit one decides to go
edit another structure, he may do so without closing the first edit. In fact, the
editor is an open program; it takes its input from the EXEC Any L* program may
be executed while inside the editor, and since the editor is an L* program, it may
be executed while inside the editor.

To open an edit, type:

<name> EDIT!

The editor will respond by printing the first symbol of "name" and waiting for
input. The editor maintains a symbol cursor, which points to the ^current symbol'
in the structure under edit. Initially the editor cursor is on this first symbol of
the list. The following edit commands are implemented:

!R Replace the symbol at the cursor with the symbol on top of Z.
In use, one would type "<symbol> !R", which puts the symbol on
top of Z and then executes l!R\ which is active.

7.1.1 SBUILD.3CH

November 10, 1975 Preliminary L*. Manual Page 23

!D

m

IB

!F

!FX

Inserts the symbol at the top of Z into the list being edited just
before the • current cursor position. This command is not
permitted when editing compacted lists. One would type
M<symbol> !I". Like all editor commands, !I is an active symbol.

Deletes the symbol at the current cursor position. This command
is not permitted when editing competed lists. !D takes no input
from Zy one would type merely "ID".

Moves the cursor to the next sequential symbol. A linefeed may
be used to accomplish the same effect. !N takes no input from Z.

Moves the cursor backwards to the- previous symbol. An altmoda
will accomplish the same thing.

Searches the list from the current cursor position to the end of
the current list level, for the symbol found on top of Z. One
would type "<symbol> !FM. Compare this with *!FX* below.

Searches the list from the current cursor position to the end,
and searches all unnamed sublists as well. Like !F, !FX searches
for the symbol it finds on top of Z. By comparison, !F will not
find a search target if it is contained in a sublist of the list
being searched.

Step down into a sublist. This causes the editor to save state
information in the list currently under edit and open an edit of
the sublist at the current cursor position.

Pop up from a sublist edit. Reverses the effect of !S.

Terminate editing. Close up the editor and return to the caller.

7.2 . Building non-program structures

Other structures besides programs may be built in the EXEC with syntactic
structue-building operators.

7.2.1 Data lists

The notation used to build a data list is exactly the same as the notation
used to build a program list: left and right parentheses surrounding the symbols to
be included in the list. Whether a program list or a data list is created is
determined by the creation type set when the left parenthesis is encountered.
Section 10.3 describes the means of controlling creation types.

!U

7 ' L 3 SBUILD.3CH

November 10, 1975 Preliminary L* Manual Page 29

7.2.2 Associations and association lists

An association list is structurally similar to a list, and it is created in a
syntactically similar way. In L*C.(C), angle brackets (< >) are the structure
building operators for association lists. In L*(I), where angle brackets mean
something else (they are part of the assembler), association lists are built with
ordinary parentheses. The parentheses are directed to build an assocation list
rather than a normal data list by means of the creation type in effect when the
left parenthesis is encountered. Section 10.3 describes creation type
control.

In the examples in this section we will show both notations.

The following are all valid association lists:

< A B C > association list with 3 elements (L*C(C»
AL\(A B C) L*<I)

<> null association list
AlAO

< A B < X Y > C > nested association lists
AL\(A B (X Y) C)

Recall tha t an association list holds pairs of symbols; each 'cell' in an association
list has a symbol and a value associated from that symbol. Our examples above do
not tell the whole story, as they show only one symbol per list cell. The slash ("
/ ") character is used to separate values from symbols; the value field comes first:

< 1/A 2/B 3/C > associate 1 from A, 2 from B, e tc
AL\(1/A 2/B 3/C)

< NIL/X > associate NIL from X
AL\(NIL/X)

The slash character is not an active program, but is only a marker; the actual
processing of the contents of the association list is performed by the operator
in closing the list.

There are no 'syntactic' structure-building operators to build association
structures; that is, there is nothing which corresponds to the parentheses which
build lists and the angle-brackets which build association lists. There is, however,
a routine which will copy an association list into an association and delete the
original list, so that one may use the association-list structure-building operators
M< >M to build an association. The routine SETA copies an association list into an
association, it takes as input an association list as (1) and an association
structure as (0), copies the association list into the association, then erases the
association list:

7 ' 2 ' 2 SBUILD.3CH

November 10, 1975 Preliminary L* Manual Page 30

7.2.2
SBUILD.3CH

AL\< 1/A 2/B 3/C > AXATTR SETA I

The association 'ATTR' will now have in it the three associations shown, and the
association list will have been erased. The VU.y and 'AY arc- creation type control
symbole, whose precise meaning is described in section 10.3.

7.2.3 Word structures and blocks

Since words are not very complicated structures, no particular structure-
building operators exist to build them. The only kind of 'structure-building' that
you might w?mt to do with a word is to giv* it an initial 'compile-time' contente.
Recall tha t L* draws no particular distinction between 'compile9 time and
^execution' time, so that the normal R\V (replace, word) operator may be used to
give a word a contents at compile time:

3 WM40RDA RW1 Give NW0RDA? the value 3

- 1 5 WXWQRDB RM! Give ^0RDB f the value -15

*RWS is a word manipulation operator, detailed in section 9.5.

The '[[' and ']p operators are used to create blocks. A block is a contiguous
group of words which all have the same type. The symbol for the block is the
address of the first word of the block.

When the recognition system encounters a '[[' symbol, it begins a block, and
when it encounters a ']p symbol it finishes creation of the block. The type of the
block is determined by the prevailing block creation type. The size of the block is
determined by the number of symbols left on Z between the '[[* and the ']] \ L*(I)
and L*C.(C) differ somewhat with respect to the handling, naming, and typing of
blocks; see section 10.3 for a description of type control. L*(I) allows one
to name a block with the ":" (colon) operator, while L*C.(C) does not allow this
construct. Either version allows any word in a block (including the first) to be
named using the d. operator (see section 10.2.4).

By way of example:

C C 0 0 0 0 3] creates a 4-word block of zeros

CC A 12 ROUTINE! 3 31 block with 3 or more, depending

on what 'ROUTINE* leaves on Z

NAMEDBLK i it 2 X 3] L*(I) only: named block

CC NAME JL 2 3 4 31 block with first ceii named

No mention is made of block type in the examples above; it is assumed that they
are all of type word. The second example shows a routine call inside the block

November 10, 1975 Preliminary L* Manual Page 31

creation. Recall that the block is created out of those items found on Z by the]]
operator. If the call to 'ROUTINE* causes anything to be left on Z, then the item(s)
will be included as part of the block. As an example of this technique carried to
an extreme, the following example creates a 20-word block containing the numbers
101 to 120:

CC 101 W*W1 RW! P\<*WI CM *M1 1 +W U) 20 .XN1 31

That example uses'several features that have not been documented yet. .XN is an
iterative control action; see section 8.2. CW is the copy-word operator,
see section 9.5. »W1 is a local name, see section 10.2.3.

7.3. Storage management

7.3.1 Word storage management

The word-level storage allocation routine is responsible for allocating and
deallocating chunks of memory of one word or more. The creation routine is called
CRBN. and the erasure routine is called E. CRBN is called with a type and a
word-count as arguments. It finds a block of storage of the requested type and
size, and returns the address of that block to the caller by leaving it on Z.

CRBN first looks at the available-space list for the requested type. This is a
list of blocks of availble space. It is not structured like normal L* lists, rather its
format is special to the available-space mechanism. If the available-space list
contains a block of the correct size, or if it contains a block that can be chopped
up giving one of the correct size, then the space is removed from the available-
space list and returned to the user.

If CRBN cannot find the requested storage in the existing typed available-
space list, it executes the error event ESPX. Normally ESPX contains a routine
which will request a block of T/AV (block available space) and change its type and
link it into the available-space list, and continue. If, however, there is no block

; available space remaining, then the second call will cause a normal error and break
to the EXEC. It is very rare to run out of space on the PDP-10, and quite
frequent to run out of space on C.mmp.

7.3.2 Block storage management

The largest unit of storage allocation common to L*(I) and L*C.(C) is the type
block. Since C.mmp is a page-oriented machine, L*C(C) also has a mechanism for
allocating whole new pages of storage, but this mechanism is not integrated into
the storage allocator to the extent that it will create a new page if it runs out of
space on an an old one.

7.2.3 SBUILD.3CH

November 10, 1975 Preliminary L* Manual Page 32

A type block is a block of 128 consecutive words, so situated that the high-
order b i t 3 of the address are identical for every word in the block. Until
specifically allocated, all unused type bloqks are of type 'available space' (T/AV),
and are in the word available-space list for T/AV. When the word storage
allocator runs out of block space to allocate, it gets a block of T/AV and changes
its type as needed.

7.4. Priniîng

The L* print facility is in a sense the inverse of the structure-building
facility: It lakes as input an L* structure, and produces as output an EL*
representation of that structure. The output of the print routines is usually very
similar to the input which created the structure; in fact, in most cases it is
identical except for the formatting characters like spaces and tabs and CRLF's.

7 A 1 Printing whole sfructu res

The highest-level L* print routine is named PR. It takes as its one input a
structure, and descends recursively down that structure, printing out all of the
substructures by type. A 'structure' in this sense is really just a symbol, an L*
datum. A single word is a structure, and so is a program or a list. The printed
output appears on the current output interface (see section 11.1.1). PR is a
passive symbol designed for use inside programs. Since structure printing is so
very useful and done so frequently by a user while debugging, there is an active
symbol, ?, which performs the same action. ? is equivalent to PR !.

When PR prints a structure, it prints each element of the structure
according to the type of the element. Some structures, such as words, have only
one element; others, such as lists, can have any number of elements. When a list is
printed, each symbol of the list will be considered in turn and printed according
to its type. If the symbol has a name, then only the name of that symbol will be
printed. If the symbol does not have a name, then PR will be called recursively to
print the sub-structure. Consider the following example:

> L V R ? Y < L 1 Y > Z) ™™ a list with 4 elements
Print it

> L r (X Y C L 1 Y > 2) Note output identical to input

The list in our example has 4 symbols. The first two, 'X' and *Y\ are named. The
third, '(L 1 Y)T is an unnamed list. The fourth, T , is named. When PR printed
this list, it printed the name of X, the name of Y, then called itself recursively to
print '(L 1 Y)\ This recursive subcall caused the 3-symbol sublist to be printed;
i ts first and third symbols are named and are printed accordingly. The second
symbol of the sublist is a number; the number has no name, so its structure was
printed, and its structure is just its integer contents.

7.3.2
SBUILD.3CH

November 10, 1975 Preliminary U Manual Page 33

7.4.2 Printing symbols by type

When the high-level print routines print a structure, they print each of its
elements by type, as described in the previous section. This scheme of printing by
type is effected by having a collection of low-level print routines organized by
type, and a pair of type tables which select the routine to use for each type, in
Lt(I), a tyro table is an attribute, in L*C.(C), a type table is an array. Both are
used in the same way: to print a symbol, its type is determined, then that type is
used to select a print routine from the type table, and that print routine is used
to effect the printing of the symbol.

Of the two type tables mentioned above, one is used for structure-printing
and one for symbol-printing. In general, printing a symbol means printing its
address followed by a percent sign, the percent sign indicating address rather
than number. Printing the structure of a symbol is the process performed by PR
as described in the previous section.

description
print list structure without CRLF
print a word in current conversion radix
print a stack without CRLF
(L*(I) only): print program list
(L*C.(C) only): print compacted pgm list
print association structure
print association list structure
not a printable type
(L*C.(C) only): print an indirect symbol

7.4.3 Printing numbers and addresses

Often it is useful to print a symbol as an address, or to enter a numeric
address. L* uses a postfix notation to denote an address: a number followed by a
percent sign, as 200727 is an address. The routine PR2 (and its companion PRZ&
to print without a CRLF) prints a symbol as an address. The numeric part of the
address i 3 always printed according to the current numeric conversion radix in
ZBN. PRZ& is normally the routine entered in the type table TTPRS (described in
the previous section).

bolow:

Type Rout ine
T/L PRU
TAi PRW&
T/J PRJS
T/P PRU

PRY&
T/A PRA
T/AL PRAL
T/AV (none)
T / I PRI&

7.4.1 SBUILD.3CH

This scheme for printing might sound unnecessarily elaborate, but it yields a
mechanism which can reconstitute the source form of a program from the internal
representation, a valuable tool indeed.

November 10, 1975 Preliminary L* Manual Page 34

8 . L Conditionals

Conditionals are used in any programming language to effect selective
execution of pieces of a program depending on the results of computation. Like all
programming languages, L* has the ability to do conditional execution.

L* conditionals work by causing the interpreter to bypass a portion of a
program list. Before delving into a description of conditional operators, let us
define some of the relevant terminology.

Recall that a program list is a list of symbols to be executed. Any of those
symbols can be a reference to another program list. When the interpreter is
interpreting a symbol of a program list and finds that the symbol is in fact
another program list, it calls itself recursively to evaluate the sub-program. This
recursive call of the interpreter on itself is called descending a level, and the
corresponding return back to the previous program list is called ascending a level.
The 'current level' is the list level being executed by the interpreter at the time
t h a t a conditional operator is encountered, and the 'higher level' is the program
level which called the current level.

8-1.1 Conditional operators

A conditional operator W ^ T ^ U
rematador of the current level 7 t h e '"«••Wt.r to bypass th .
Obviously, , h i 3 b y p a s T ^ s f ^ ~ r of , H E S ' l e e
operator, have „ n e e f f K t w i l h . r ^ t Z ^ o ^ ^ — '

PCNTRL3CH

8. Program control

L* programs normally execute sequentially; the interpreter moves down a
program list and executes each symbol in turn. Certain operators, called control
operators can affect the behavior of the interpreter, causing it to change the flow
of execution control.

These control operators usually begin with a period as the first character of
their name. They fall into three general categories, each of which will be
documented in detail in a section to follow,

> Conditional operators which cause the program to selectively execute or bypass a portion of itself.

> Iteration operators,.which enable the program to loop.

> Special control operators, which perform specialized control tasks.

November 10, 1975 Preliminary L* Manual Page 35

8.1.1
PCNTRL3CH

The simplest conditional operators are and \ - ("dot minus") causes tho
remainder of the current level to be bypassed if the signal is faise (i.e. NIL), and
has no effect if the signal is true (i.e. not NIL). '.+' ("dot plus") has the opposite
effect: it causes the remainder of the current level to be bypassed if the signal is
true, and has no effect if the signal is false. The rationale for the names comes
from combining the name (a single dot) with V for TRUE and '- ' for false.
is a singularly useless program which causes the remainder of the current level to
be bypassed unconditionally. "." may be read as 'exit', and hence may be road
as 'exit if true\

As an example, the following program will print 'YES'' if the contents of A ie zero, otherwise it will print 'NO*:

(A 0 =W (, + S ' W WR) S"YES" WR))

Notice tha t there are two sublists to the program, one of which will be executed if
the ' = W comparison yields 'true', the other if it is yields 'false', A more elegant
control scheme could be implemented with more sophisticated control operators, and
indeed L* has done so.

\H ' ("dot H") is an unconditional control operator which deletes the higher
level. This means that whenever MM' is executed, the interpreter will bypass one
level of return. It is probably best to explain by example:

(A B (C (D ,H) E F G) H) will execute 'A B C D H\

(J (K (L ,H ,H) H) N 0) will execute M K L*.

In the first example, the \H' will cause the interpreter to delete the remainder of
the higher level which called the .H. The remainder of this higher level is 'E F G\
so the E, F, and G will be bypassed. In the second example, each l.H' will delete
one level: the first will delete the 'M\ and the second will delete the 'N 0', so that
there will be no remaining levels to execute after the second *.H\ and only J, K,
and L will be executed.

\H* by itself is marginally useful. In combination with conditional tests, it
becomes the major L* conditional operator. These combination control actions are
\+H' and \-H'. They combine V or '.+' with '.H' in the following way: V-H' will
exit the current level if the signal is false, else it will delete the higher level (but
continue the current level) if the signal is true. C.+H' has the opposite effect; i t
will delete the higher level if the signal is not true.

Using these conditional operators, our example above becomes:

<A 0 =W < (, -H SMYES" WR) S"N0,f WR))

Notice tha t only one conditional is required now instead of two, and that it takes the form of an if/then/else construct.

November 10, 1975 Preliminary L* Manual Page 36

\+H* is a combination of the '.+' action and the '.H' action. In a similar vein,
there exist conditional operators which are a combination of the '.-' action and the
U operator which pops the top of Z: '.U+' will exit the current level and pop from
Z in the presence of a 'true' signal, and will have no effect in the presence of a
'false' signal. Similarly, \U-' will exit and pop if the signal is false.

Let us summarize the conditional operators described in this section:

> ._+,: exit the current level if signal false
> J2 : exit the current level if signal true
> .JJ+ : exit and unstack if signal true
> .J> : exit and unstack if signal false ' . _

8.1.2 Signals and the signal stack

L* maintains a stack namd ZS, called the signal stack. It is used to hold
true/false values produced by comparisons. Its value is tested by conditional
operators. ZS is an ordinary L* stack, so its contents may be modified or
examined to the satisfaction of the user.

Two routines exist to set and clear the value of the top of the signal stack.
Routines exist to copy values in and out of it, and to push and pop it. The signal
is defined to be the value of the top of Z8.

8+ ("dollar plus") is the routine which sets the signal TRUE. It accomplishes
this by replacing the top of Z8 with the value TRUE'. 8^ ("dollar minus") is the
routine which sets the signal 'false'. False is represented by NIL. The comparison
operators, such as the used in the examples of the previous section, all use $+
and 3- to signal the result of their test.

Because ZS is a stack, it can be pushed and popped, and there are even
primitives to help do so. P3 will push the ZS stack (pushing a copy of the
previous top), and U8 will pop the old value. Using these primitives, the
programmer may save the value of the signal around calls to routines which might
change it, simply by pushing the old value down the stack and letting the routine
change the copy.

8.2 . Iteration

Iteration control operators are used to effect iteration in L* program lists.
L* has two kinds of iteration control operators: internal and external. An internal
iteration control operator is one which appears inside a program, and causes that
program to repeat itself. An external iteration control operator is one which
'surrounds' a program like an ALGOL do statement and executes the program
repeatedly.

8.1.1 PCNTRL.3CH

November 10, 1975 Preliminary L* Manual Page 37

8.2.1 Internal iteration

An internal iteration control operator is one which appears inside the
program being iterated, and causes that program to repeat. The primary internal
iteration control operator is called .R. When .R is executed in a program list, it
causes the interpreter to return directly to the head of the list, at the same level
as the jR. Consider this example:

(A B C (D E F ,R G > H)

The sequence of program steps executed will be

A B C D E F D E F D E F . . .

which is an infinite loop. Notice that 'G' and 'H' will never get executed.

JR is an unconditional repeat operator. There are two operators, JR+ and .R^
which conditionally repeat depending on the signal. JR+ will repeat if the signal is
TRUE, and will do nothing if the signal is FALSE .Rz has the opposite effect: it
will repeat if the signal is false and do nothing if the signal is true.

Here are some examples of the use of internal iteration control operators:

Delete all elements of input list (0):
DELETEALL: (P F D .R)

Pop from 2 all elements down to TLR'
CLEAN: <FLR =S .R-)

'=S' is a list manipulation operator, described in section 9.2.

8.2.2 External iteration

An external iteration control operator is one which 'surrounds* the routine
being iterated, and executes it until either the iteration terminates or the routine
stops the iteration. In general, the external iteration operators take as input a
program and a structure, and execute the program once for each element of the
structure. This is called 'executing the program over the structure'. For example,
the control operator .XL executes a program once for each element of a list. The
program is called with the list element sitting on top of Z:

The sequence

PROG L (1 2 3 4 5) .XL!

produces the same results as the sequence

8.2.1 PCNTRL.3CH

November 10, 1975 Preliminary L* Manual Page 38

8.2.2 PCNTRL.3CH

1 PROG! 2 PROG! 3 PROG! 4 PROG! 5 PROG!

namely, the program is executed once for each element of the list, with that element as its input.

The following external iteration operators are defined in the L* basic system:

> tXN Executes routine (1) through (0) iterations. The routine is called with no inputs.

> .XL Executes routine (0) once for each element on list (1), with the list
symbol as input to the routine.

> ,XA Executes routine (0) once for each (symbol,value) pair in association (1).
The routine is called with 2 inputs, the symbol as (1) and the value as (0).

> ,XAL (L*C.(C) only) Executes routine (0) once for each (symbol,value) pair in
association-list (1). The routine is called with 2 inputs, the symbol as (1) and
the value as (0).

> tXKS Execute routine (0) once for each character in character-string (1). The
routine is called with the character as its input.

> «XB (L*(I) only) Executes routine (0) once for each symbol in block (1). The
routine is called with the block symbol as input.

Any routine being iterated by one of the above external iteration operators can
escape from the iteration if it sees fit by executing .L Similarly, .L± will escape
the loop only on a TRUE signal, and .JL̂ will escape the loop only on a FALSE
signal The iteration control operator will return a FALSE signal if the loop was
escaped, and a TRUE signal if the loop ran to completion.

8.3 . Special control operators

8.3.1 Symbol quote operators

Normally the interpreter executes all symbols on a program list. If a symbol
is a nonexecutable (i.e. 'data') type then 'executing' it will mean pushing it on Z. If
the symbol is executable, then it will be interpreted by type. Sometimes we want
to t reat executable types as data, i.e. have them placed on Z instead of executed.
The quote operators £ and .QH perform this task.

causes the symbol following it in a program list to be treated as data. For example,

(. 0 PR PR)

causes the first 'PR' to be treated as data, and the second one to execute normally.
This program when executed will print out the program 'PR'.

November 10, 1975 Preliminary L* Manual Page 39

.QH quotes the next symbol at the higher level. This is useful for writing
ones' own quoting routines. For example,

XYZ: (.QH PR)

PVXYZ A XYZ B) 1
will cause 'A' and 'E' to be printed out.

.Q and .QH work by modifying the interpreter's internal pointers to bypass
the quoted item, then copying it to Z. The quoting action of .Q is only needed
inside program lists. To print out the program 'PR' from the terminal (in EL*), zr,e
merely types

PR PR!

Since the first 'PR' is not active, it will be placed on Z, then the second 'PR' wil!
be executed and print the symbol on top of Z.

8.3.2 Execute control actions

X is a control action which causes the symbol on top of Z to be executed.
It performs the same action as does the exclamation point. J (is a combination
control action; it combines V and \X\ «X causes the program to exit the current
level and the symbol at the top of Z to be executed at the higher level. Consider
the following example:

(A B C (D E ,fl ,R , ,X F) G H) .

this will loop forever, executing the sequence

A B C D E A B C D E A B C D E A B C D E . . f

8.3.3 Infix operator control

L* is a postfix language; however, it does provide the ability to delay
operators so that an infix notation may be achieved. There is an operator delay
stack named ZQ, and a series of routines to manipulate it. Most important of the
ZQ routines is .XQ. which executes everything it finds in ZQ down to a floor, then
deletes the floor from ZQ.

As an example of the use of ZQ, consider the colon operator V used in
defining a name. This colon is an infix operator. When first executed, it puts the
name being defined onto ZQ, then a special postfix name definition routine onto ZQ,
and exits. At one point during its execution, the right parenthesis program pops
the delayed colon operator from ZQ and executes it, thereby effecting the intended
definition.

8.3.1 PCNTRL.3CH

November 10, 1975 Preliminary L* Manual

8 .4 . Address space control (overlays)

November 10, 1975 Preliminary L* Manual Page 41

9. Data manipulation Operator

The
'supports',

The L* basic system defines and supports several important data types. By
t t r t s \ we mean that it provides a full complement of routines to build and

manipulate structures of that type. This chapter is devoted to an enumeration of
the service routines provided by the L* basic system for the types which it
supports. We shall not attempt any great level of detail in the explanation of
most of these routines, because for the most part they are obvious. If the reader
finds any of these explanations inadequate, he is encouraged to experiment online
to determine the behavior of the routines. See section 1.2.2 for a road map to
online exploration of pieces of the L* system

9 .1 . Operations an the central stacks

9.1.1 Operations on Z

Z is L*'s main data stack. It is used for most parameter passing and
temporary storage. See section 3.3.1 for a full description of Z. Since Z is a
stack, we would expect to find available the customary stack-manipulation
operations like 'push' and 'pop'. Indeed so. The bracket notation ([1 0]) , e t c ,)
used here i s def ined in s ec t ion 3 . 2 , 1 ,

P [12] (args: [12]} pushes a copy of the top symbol on Z. After executing a P,
the top two symbols on Z will be identical and equal to the symbol that
was previously there. Thus:

Z P R ! print Z, see what is there
Z : CTEST1 27 (R S T)l
P I Z P R ! execute a P, then print it again
Z : [TEST1 TEST1 27 (R S T)]

The structure of the symbol is never examined or copied. If the symbol at
the top of Z is a number, then after executing a P, the top two positions
of Z will both have a symbol for the same number.

U (args: [10]), the "up" operator, pops the top symbol from Z. It does not
erase it or even look at the structure, it only pops. Thus:

Z P R ! print Z, note contents
Z : [X Y Z I three things on Z
U ! Z P R ! execute U, look at Z again
Z I [Y Z] two things on Z

r (args: [22]) exchanges the top two symbols on Z. After executing V, the
new (0) is the old (1), and vice versa.

9 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 42

Ul (args: [21]) pops (1) from Z, leaving (0) unchanged. It works by saving (0)
in a safe place, then executing a normal U operator, then restoring the
saved (0). Thus:

Z PR! print Z
Z: CI 2 3 41
Ul ! Z PR! execute Ul, print Z
Zi [1 3 43 notice the *2' has been popped,

PP (args: [24]) push pair: (0) and (1) are pushed in tandem, the new (2) and
(3) being the old (1) and (2). Thus:

Z PR! print existing contents of Z
ZJ [-9 A B C3
PP! Z PR! execute PP, then look again
Zi [-9 A -9 A B C3 notice tandem push of -9 and A

=S (args: [208]) tests if the top two symbols on Z are equal. If symbol (0)
equals symbol (1), i.e. if they are the same address, then =S will signal
true, else it will signal false.

+SW (args: [21]) increments the address of a symbol. If (0) is a word, and (1)
is any arbitrary L* symbol, then +SW will add the value of the word to
the symbol As an example, suppose that BB is a symbol which begins a
20-word block. Assuming that we are on the PDP-10, where adding 1 to
an address gives us the address of the next word, then

BB 4 +SW! gives the address of the 5'th word of the block
BB 8 +SU! gives the address of the 9'th word of the block

e tc

-SW (args: [21]) decrements the address of a symbol. If (0) is a word and (1)
is any arbitrary L* symbol, then -SW will subtract the value of the word
from the symbol. Compare with +SM above.

SS8 (args: [21810]) selects one of two inputs depending on the signal. If (0)
and (1) are. arbitrary L* symbols, SS8 will output (0) is the signal is true
and (1) if the signal is false.

* 9.1.1 DMANIP.3CH

PI (args: [23]) push a copy of (1). This is identical to the P operation,
except that it pushes a copy of (1) instead of (0). After executing a PI,
the top of the stack (0) is unchanged, and (1) and (2) are identical to
what (1) was before. Thus:

Z PR! print Z
Zi EA B C3
P I ! Z PR! execute PI, then print Z again
Z: [A B B C] note additional B

November 10, 1975 Preliminary L* Manual Page 43

8+

8 -

Ptf

US

V8

C8Z

9.1.2 Operations on Z$

Z8 is the signal stack. Its topmost symbol is the signal. Many L* routines set the
signal, and the conditional program control operators (section 8.1) test it.

(args: [00311]) sets the signal true, i.e. it sets the topmost symbol of Z8 to TRUE.

(args: [00811]) sets the signal false, i.e. it sets the topmost symbol of Z?
to be NIL.

(args: [00312]) pushes the signal stack. It performs exactly the same
operation on ZS that P performs on Z.

(args: [00310]) pops the signal stack. It performs exactly the same
operation on ZS that U performs on Z.

(args: [00322]) reverses the top two symbols on the signal stack. V8
performs exactly the same operation on ZS that V performs on Z.

(args: [10810]) copies the signal into a 'side cell', A 'side cell' is in a
sense just a variable, a place to store information. C3Z causes the side
cell a t (0) to be changed to equal the current signal at the top of ZS.

C8 (args: [10301]) copies a signal in a side cell back into the signal stack.
The top of ZS is changed to equal the symbol of the side cell.

9.1.3 Operations on the scratch stacks

There are several stacks maintained by the L* basic system for use as
scratch stacks, to be treated somewhat like local variables. These stacks are
named ZO, Zl, Z2, and Z3. They are ordinary stack structures, of the garden
variety, and are noteworthy only in that they are used extensively throughout the
L* basic system. They are of course available for use by any routine.

IZO (args: [10]) pops the top of Z and pushes it onto ZO.

(args: [11]) pushes the top of Z onto ZO, but does not pop it from Z.

(args: [01]) pushes onto Z the symbol which is at the top of ZO, without disturbing ZO.

(args: [01]) pushes onto Z the symbol which is at the top of ZO, and at
the same time pops it from the top of ZO.

(args: [00]) pop the symbol from the top of ZO. Do not push it on Z or
anywhere else, just pop it from ZO.

PIZO

szo

SDZO

DZO

- 9.1.2 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 44

RZO (args: [10]) replace the top of ZO with the symbol at the top of Z, and
pop it from Z.

Obviously, there are routines with similar names to perform the same
operations on the other scratch stacks. As an example of the use of scratch
stacks, the routine PI described in the previous section looks like this:

P i : (IZO P SDZO)

9.2. List facility

The L* basic system list facility includes routins to perform the following
kind of operations on Z: following kinds of operations on lists:

> Creating, copying, and erasing list structures
> Examining and modification of list structures

> Searching and testing list contents.
> Deletion and insertion of list cells
> Changing the contents of list cells

> Iterating programs over the contents of a list.

In reading these descriptions, keep in mind that all L* basic-system routines use
the Z stack (section 3.3.1) as a storage place. All 'outputs' are left on Z, and all
i npu t s ' are taken from Z. The structure of a list is described in section 4.2.2.

9.2.1 Creating, copying, and erasing lists

9.2.1.1 Creating lists

We know how to create a list statically, in the recognition system (7.2),
with parentheses. A left parenthesis begins construction of a list, and a right
parenthesis takes everything that it finds on Z after the left parenthesis and
makes a list out of it. The very same method may be used inside a program, too.
Left and right parentheses are perfectly ordinary programs, which may be
referenced in a program list. The only catch is that they are active symbols,
which means that they must be prefixed with the single-quote ^deactivate' operator
when they are entered into the program list. Consider the following example:

TEST2: < ' (X Y Z ' J)

Each time TEST2' is executed, it will create a list containing X, Y, and Z, The
address of the list will be left on Z.

There is a certain fairly obscure hazard to using M f to create a list during

9.1.3 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 45

the execution of a program. Referring to section 7.2 and its discussion of how the
colon operator works in assigning a name to a structure, recall that the bulk of
the processing of the colon is performed by the left paren. If one executes a left
parenthesis inside a program while there is a colon outstanding, then the colon
will be 'eaten up", quite to the surprise of the user. If that sentence didn't make
sense to you, please don't worry about it right now, it is really quite subtle. The
only reason we mention it at all is to explain why there exist multiple routines to
perform what seems like the same task. There is a special routine named s \ (f

whose purpose is to begin the creation of lists inside of programs without
disturbing outstanding colons. It takes a type symbol as input, as
(T/L f \ (. . • !)). There are several composite routines which call \< 5

including L\<, P \ (, and (L*(I) only) AL\(. Their action is to begin an um.amed list
of the requested type without disturbing an outstanding colon.

3 . 2 , 1 , 2 Copying lists

what wJ ! K 1 1 1 6 8 W H Ì C H C ° P Y] Ì S T S - W H I G H C N E T 0 U S *
 dQP^ds on

create ZoZr list «T* * ^ "* °f C°Pying * Hst «*™ ^
of ih» 1 il h e S a ™ l e n g t h ' e a c h o f w h o s e ^ M the same as that of the copied list. The routine CL copies a list:

L\(A B C 1 2 3) CL!
ZCXRGL CL!

The first example will cause a 6-element list to be created, with elements A, B, C,
1, 2, and 3. Since only symbols are being copied, and not the structure of the
symbols, the 1, 2, and 3 referenced in the copy list will be the same symbol as in
the source list. Similarly, if we copy a list which has a sublist:

L\(A B (X Y Z) C) CL!

then the sublist will not be copied: the new list will reference the same (X Y Z)
sublist as did the source.

Sometimes we want to copy the structure of a list, too; that is, copy not
only its symbols, but the data structures which they represent. We probably
don't want to copy all of the named structures, so CLX, copy list structure, has
the following behavior: It will copy each symbol on its input list. If the sy/nbol is
unnamed, and is T/M, T/P, T/L, T/W, or T/KS, then the structure of the symbol will
be copied, and the copy list will contain the symbol of the copied structure rather
than the symbol of the original structure. The association ATCLXE associates a
structure copy routine or a NOP from each type. The structure-copy routine for
T/L is CLX, so that it will recursively copy all sublists in copying a structure.

In L*(I), data and program lists have the same structure, so either may be
copied with CL and CLX. In L*C.(C), program lists have a different format, hence
there must exist different copy routines: CY and CYX are the corresponding
routines for L*C.(C) compacted program lists.

9 ' 2 - 1 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 45

Because the CLX routine tests whether symbols are named, it is quite slow,
as this test requires an elaborate lookup. The same considerations hold for CYX,
ELX, etc. It is not a good idea to use these recursive structure-copy routines in
code that must be fast.

Two special routines exist for copying lists onto Z. They are active symbols;
their effect is to place on Z all of the symbols in a list:

«4- Empty list (0) onto Z

4-Y Empty compacted list (0) onto Z

3 , 2 , 1 , 3 Erasing lists

In very much the same way that CL and CLX copy a list and a list structure,
the routines EL and ELX erase a list and a list structure. Like CLX, ELX is fairly
slow because it must check each symbol to see if it is named. As might be
expected, there are separate erase routines for compacted lists in L*C(C); they are
EY to erase a compacted list and EYX to erase a compacted list structure.

9.2.2 Examining and modifying list structures

Numerous support routines exist to examine and modify the contents of L*
lists. For purposes of description, we will divide them into two categories:
routines to examine or search a list and routines to modify a list. The bracket
notation ([11], etc.) used in these descriptions is described in section 3.2.1.

9.2.2.1 Examining and searching lists

S (args: [11]) gets the symbol of its input list. That means that it accepts
a list symbol as input (from Z), and outputs to Z the symbol of the head
of the list. Thus:

L\(A B C) S! outputs W
LATEMP : (NIL) outputs 'NIL'

N (args: [11]) gets the next of its input list. This means that it accepts a
list symbol as input (from Z), and outputs to Z the symbol of the next cell
in the list. For example:

L\(A B O N ! - outputs MB C) f

L\(A B C) N! S! outputs N B '

F (args: [1VS]) tests whether its input list is empty. If F is given the
symbol of a termination cell of a list (i.e. one whose next is NIL), then it
will signal false and produce no output. If F is given any other list

• symbol as input, it will signal true and output its input. Thus:

9.2.1 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 47

LSL

FSL

=SL

(args: [218]) locates a symbol on a list. Given a list (0) and a symbol (1),
it searches the list for a cell containing that symbol. If found, it outputs
the symbol of the list cell and signals true. If not found, it outputs the
symbol of the termination cell and signals false. Compare with FSL, below.

(args: [2VS]} finds a symbol on a list. Given a list (0) and a symbol (1), it
searches the list for a cell containing that symbol. If found, it outputs
the symbol of the list cell and signals true. If not found, it outputs
nothing and signals false. Compare with LSL, above.

(args: [208]) signals whether a symbol is contained in a list. If symbol (1)
is found on list (0), then it will signal true; otherwise it will signal false.

(args: [21]) counts the length of a list into a word you provide. If (0) is
a list and (1) is a word, then the word will be set to the number of cells
in the list (exclusive of the termination cell). The word will be output on
Z. Thus:

W\WRD L \ (l 2) #Ll sets WRD to 2 and outputs it
W\WRD L\(> #L! sets WRD to 0 and outputs it ,

9 . 2 . 2 . 2 Modifying lists

(args. [20]) replaces the symbol of a list cell If mi ?o • r . »

any L* symbol, then R causes m to Z * li } * h s t ce" a n d (1> i s

cell. Thus: 3 (1) t 0 h e c o m e t h e ™w symbol of that list
^Vfli ? 3 > R e a l i s t

9.2.2
DMANIP.3CH

L\(A B C) FJ outputs (A B C) and signals true
L\(C) N! F! outputs nothing, signals false

LE (args: [118]) locates the end (i.e. the last symbol) of its input list. If the
input list is not empty, then LE will signal true and return the last
symbol in the list (which will look like a 1-element list). If the input list
is empty, then LE will output its input and signal false. For example:

L\(A B C) LE! will output <C) and signal true
LAO LE! will output <) and signal false

LTC (args: [11]) locates the termination cc!! of its input list If a list is non­
empty, then the sequence (LE N) is equivalent to LTC.

LST (args-: [11]) locates the starting cell of its input list. The symbol of the
termination cell of of list Ì3 the symbol of the head of that list, hence LST
is equivalent to (LTC S>

November 10, 1975

RN

IE

IC

Preliminary L* Manual
Page 48

(args: [20]) replaces the next of a list cell. Since it modifies the structure
of a list rather than its contents, RN is to be used with caution. If (0) is
a list cell and (1) is any L* symbol, then RN will set the next of (0) to be
(1). If (1) is not of type list, then the resulting structure will be ill-
formed.

(args: [20]) inserts a symbol into a list. If (0) is a list and (1) is any L*
symbol, then I will create a new list cell, link it into the front of list (0)
and make its symbol be (1). Thus:

L\LIST: (A B C)
47 LIST I! LIST PR J
LIST: (47 A B C)

N1 U 63 LIST HI
LIST PRJ
LIST: (47 A B 63 C)

I N fergs: [20]) inserts

define a list
execute I, then print the list
notice our symbol at head of list

move down the list and insert 63
then print the list
note our symbol in the list

„. a symbol in a list as the next of the head cell.
Essentially this amounts to inserting after the input cell rather than
before. If (0) is a list and (1) is any L* symbol, then IN will create a list
cell, link it into (0) after the current head of (0), and make its contents be
(JL). Thus:

L\LIST: (A B C) define a list
- 8 LIST INI LIST PR! perform IN, then print the list
LIST: (A -8 B C) notice our symbol in list after head cell

(args: [208]) inserts a symbol at the end of a list. If (0) is a list and (1)
isi any L* symbol, then IE will create a list cell, link it in at the end of
list (0), and cause its symbol to become (1). If the list (0) was previously
empty, then IE will signal false; if the list (1) had prior contents, then IE
wjll signal true.

(args: [10]) inserts into a list a second copy of the head cell. If (0) is a
list, then IC will create a new list cell, link it into the list after the head
cell, and make its symbol be the same as the symbol of the head cell.
ThUs:

1 \LIST: (A B C)
M S T ICj LIST PR!
U S T J (A A B C)

define a list
execute IC, then print
note second copy of head symbol

(args: [21]) inserts a symbol into a list, and also leaves that symbol on Z.
If (0) is a list and (1) is any L* symbol, then PI will behave exactly like I
with the same inputs, except that it will leave (1) on top of Z as output.

(args: [10]) deletes a cell from a list If (0) is a list, then D will cause the
head cell to be unlinked from that list and erased. The actual mechanism

9.2.2
DMAWP.3CH

file:///LIST

November 10, 1975 Preliminary L* Manual Page 49

Involved in D is both subtle and important: the cell that D operates on is
not the one which is actually erased. Rather, the contents of the next cell
are copied into the head cell, then the next cell is unlinked and deleted.
This distinction might seem trivial, but it ensures that the address of the
head of a list never changes. Tricky. By way of example:

L\LIST: (A B C) define a list
LIST D! LIST PR! delete the head and print it
LIST: (B C) notice that the A is gone.

SD (args: [11]) deletes a cell from a list, but leaves its symbol on Z. SD is
identical to D in every way, except it leaves the symbol of the deleted cell
sitting on Z.

DSL (args: [20]) searches a list for a specified symbol, and deletes it if found.
If (0) is a list and (1) is any L* symbol, then DSL will search list (0) for
symbol (1) and delete it if found. If not found, no signal will be given.
DSL is equivalent to (FSL D).

DE (args: [10]) deletes the last cell of its input list If (0) is a list, then DE
will find the last cell of the list and execute a D (delete) on it. DE is
equivalent to CLE D>. It is not a good idea to execute DE on empty lists,
as it will delete their termination cell, and they will no longer be well-
formed list structures.

9 .3 . Stack facility

The L* basic system supports the expected collection of stack operations.
They are designed and named in such a way as to be comparable with the list
operations, thereby (hopefully) making both sets easier to remember. The bracket
notation ([11], etc) used in this section is defined in section 3.2.1.

I J (args: [20]) pushes (inserts) a symbol onto a stack. If (0) is a stack and
(1) is any L* symbol, then IJ will push the symbol onto that stack.
Compare with the I operation defined on lists.

DJ (args: [10]) pops (deletes) the top symbol from a stack. If (0) is a stack,
then DJ will pop its topmost symbol Compare with the D operation
defined on lists.

SDJ (args: [11]) pops the. top symbol from a stack and pushes that symbol
onto Z. If (0) is a stack, then SDJ will pop its top symbol and push that
symbol onto Z.

SJ (args: [11]) pushes onto Z the topmost symbol of a stack without
disturbing that stack. If (0) is a stack, then SJ causes its topmost symbol
to be pushed onto Z. Compare with the S operator defined on lists.

9.2.2 DMANIR3CH

November 10, 1975 Preliminary L* Manual Page 50

RJ (args: [20]} replaces the topmost symbol of a stack without pushing or
popping that stack. If (0) is a stack and (1) is any L* symbol, then RJ
will cause the topmost symbol of that stack to be changed to equal symbol
(1). Compare with the R operator defined on lists.

PI J (args: [21]} pushes a symbol onto a stack and also leaves that symbol on
Z. If (0) is a stack and (1) is any L* symbol, then PI J will push the
symbol (1) onto the stack (0), and also leave the symbol (1) on top of Z.
Compare with the PI operator defined on lists.

ICJ (args: [10]) pushes onto a stack a second copy of its topmost symbol. It
has the same action on an arbitrary stack that P has on Z. Compare with
the IC operator defined on lists.

CLRJ (args: [10]) clears a stack; i.e. resets it to have no contents. All symbols
in the stack are popped. They are not erased, only popped. Compare this
with the CLRL operator defined on lists.

FJ (args: [1V8]> tests to see if a stack is empty. If (0) is a stack, then FJ
will output (0) and signal true if (0) is non-empty, else it will produce no
output and signal false if (0) is empty. Compare this with the F operator
defined on lists.

9.4. Association and Association List facility

Service routines exist to modify and search association list and association
structures. Unlike data types we have discussed thus far, association lists and
associations are executable. This means that they have a non-null interpreter
action when executed in a program list. Thus, the interpreter for these types is
an important service routine, and is included in this enumeration of the service
routines.

9.4.1 Association-list manipulation

Association lists are structures of type T/AL There aren't really very many
things to do to an association list One can make entries, delete entries, and
search for entries. Hence these routines exist:

RAL (args: [30]) replaces an association in an association list, or creates one if
there was none. .If (0) is an association list and (1) and (2) are arbitrary
L* symbols, then RAL will cause symbol (1) to be given value (2) in the
association list (0). If there was a previous value for symbol (1), it will be
replaced by the new one.

DAL (args: [20]) deletes an association from an association list. If (0) is an
association list and (1) is any L* symbol, then DAL will delete from (0) any

9.3 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 51

association from symbol (1). If there was no association from symbol (1),
then DAL will have no effect.

, I /AL (args: [2VS]) is the interpreter for T/AL Its interpreter action is to
search association-list (0) for symbol (1). If (1) has a value in (0), then
the value will be output on Z and the signal will be set true. If (1) has
no value in (0), then nothing will be output and the signal will be set
raise.

9.4.2 Association structure m3nipu!ation

An association structure is a collection of association lists with a hash table
'front end'. The symbol of the hash table is of type T/A. When an entry is made
in in association structure, the symbol is hashed into the hash table to find out
which of the association lists to use. Similarly, when performing a lookup of a
symbol, it is also hashed into the table, This technique allows faster searching of
structures in which a large number of symbols have an associated value. A set of
service routines exists for T/A structures which is very similar to those for T/AL.

RA (args: [30]) replaces an association an an association structure, or creates
one if none was present. If (0) is a T/A structure, and (1) and (2) are
arbitrary L* symbols, then RA will cause symbol (1) to be given value (2)
in the association structure (0). If a value previously existed for (1) in (0),
it will be replaced with the new value provided as (2).

DA (args: [20]) deletes an entry from an association structure. If (0) is an
association structure and (1) is any L* symbol, then DA will delete from (0)
the association from symbol (1), if any.

. I / A (args: [2VS]) is the interpreter for T/A. Its behavior is identical to that
of . I/AL, described in the previous section, save that it operates on T/A
rather than T/AL

9.5. Word facility

The L* basic system supports an 'arbitrary word facility' as an escape
mechansim to allow the construction of any data structures with any contents.
Currently the arbitrary word facility is used also for arithmetic computation; this
is clumsy but workable.

There are several scratch words defined in the basic system for temporary
use inside a program They are callld WO, Wl, and W2.

RW (args: [20]) replaces the contents of a word. If (0) is a word and (1) is a
word, then RW will copy the contents of (1) into (0). Thus:

3 W\W0RD RW! sets WORD to 3

9.4.1 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 52

Wl W2 RH! sets W2 <- Wl

=W (args: [208]) tests two words for equality. If word (0) is equal to word
(1), then =W will signal true. If word (0) is not equal to word (1), then

will signal false. In neither case will it leave any output on Z.

<W (args: [208]) tests if word (0) is less than word (1). If word (0) is less
than word (1), then <W will signal true, otherwise it will signal false. Be
careful when coding calls to <W; a very frequent coding error is to get
the order of its arguments confused.

>W (args: [208]} tests if word (C) is greater than word (1). If word (0) is
greater than word (1), then HI will signal true, otherwise it will signal
false.

+W (args: [21]) adds two words and outputs the sum. If (0) is a word and
(1) is a word, then (1) will be set to the sum of (1) and (0}j i.e.
'(1) *- (1) + (0)'. Word (1), containing the sum, will be left on Z.

-W (args: [21]) subtracts two words and outputs the difference. If (0) is a
word and (1) is a word, then (1) will be set to the difference of (1) and
(0); i.e. <(1) *- (1) - (Or. Word (1), containing the difference will be left
on Z.

*W (args: [21]) multiplies two words and outputs the product. If (0) is a
word and (1) is a word, then (1) will be set to the product of (0) and (1).
In L*C.(C) this will be an unsigned 16-bit product Symbol (1) containing
the product will be left on Z.

/W (args: [21]) divides two words and outputs the quotient If (0) is a word
and (1) is a word, then /W will set (1) to the quotient of (1) divided by
(0). Symbol (1), containing the quotient, will be left on Z. On L*C.(C) this
will be an unsigned 16-bit quotient

/RW (args: [21]) divides two words and outputs the remainder. If (0) is a
word and (1) is a word, then /RH will set (1) to the remainder of (1)

- divided by (0), and output symbol (1) on Z. On L*C.(C) this will be the
remainder from an unsigned 16-bit division.

There are numerous other operations defined on words, they tend to be
analogues of machine instructions available on the host machine. For example, in
L*C.(C) there is a BISW operator which corresponds to the BIS (bit set) machine
instruction. Consult appropriate reference documentation for details.

9.5 DMANIP.3CH

November 10, 1975 Preliminary L. Manual P a g e 5 3

9.6. Character-string facility

L*(I) and L*C(C) support a character string type, and both provide a minimal
number of support routines for manipulating character strings. Users desiring
support routines of the level availble in some other string-oriented languages are
encouraged to code their own; the routines described in this section should form a
basis from which to code support routines.

Remember that string 'constants', as created by the recognition system, ai a
constructed with the S , f operator. SM is an active symbol which reads all
characters up to but not including the next " character and places them in a
character string, which it leaves on Z. Thus, SMTest s t r i n q " will create a
character string and output it on Z.

CR/KS (args: [11]) creates a character string of a specified length. If (0) is a
T/W character count, then CR/KS will return on Z the address of 2
character string (0) characters long. Its initial contents will be undefined.

(args: [10]) erases a character string. If (0) is a character string, then
E/KS will erase it.

(args: [21]) concatenate two character strings. If (0) and (1) are
character strings, then &KS will concatenate them and output the
concatenated string on Z. Neither input string will be erased.

(args: [11]) copies a character string. If (0) is a character string, then
CKS will create a copy and output it on Z, without erasing the original.

(args: [203]) tests two character strings for equality. If (0) and (1) are
character strings, then =KS will signal true if they are identical and false
if they differ.

(args: [21]) create a character string from a word in a specified number
base. If (0) is a T/W positive integer less than or equal to 10, and if (1)

. i s any L* word, then CKSW will convert word (1) to ASCII according to
base (0), and output the created character string on Z.

(args: [21]) converts a string of digits into an integer according to a
specified number base. If (0) is a T/W valid number base and (1) is a
character string, then CWKS will create a word whose contents are the
integer conversion of string (1) in base (0). The word output by CMKS
must be erased when it is no longer needed, as a new word is created for
each call on CWKS.

There is a character accumulator in L*, used extensively by the recognition
system, which allows the assembly of a string from individual character symbols

E/KS

&KS

CKS

=KS

CKSW

CWKS

9.5 DMANIP.3CH

November 10, 1975 Preliminary L* Manual
Page 54

without, incurring the overhead of repeated concatenation. The character
accumulator is a block of storage in the L* kernel with enough room to store 130
characters. The following operations are defined on the character accumulator.
Recall from section 8.2 that the .XKS operator will execute a routine over a
character string. It is in conjunction with the character accumulator that ,XKS is
most useful.

ACCKS. (args: [00]) reset the character string accumulator. When executed,
ACCKS, clears out the accumulator and prepares it to receive a character
in its leftmost character position.

ACCKS (args: [10]) accumulates a character into the character accumulator. If (C)
is a T/K symbol, then executing ACCKS causes the character represented
by (0) to be concatenated at the right of the character accumulator.

UACCKS (args: [01]) un-accumulates a character from the character accumulator.
When executed, UNACCKS causes the rightmost character in the
accumulator to be removed, and the T/K symbol for that character to be
output on Z.

CACCKS (args: [01]) creates an L* character string from the current contents of
the character accumulator. Executing CACCKS will create a character
string and output it on Z. This string must be explicitly erased when it
is of no further use.

9.7. Block structures

A block is a contiguous group of symbols. The L* basic system supports
blocks with a small set of support routines. As uses for block structures arise, it
is expected that the user will create his own block manipulation routines from
these.

CRBN

EBN

RBN

(args: [21]) creates a block. If (0) is a word and (1) is a type symbol,
then CRBN will return on Z the address of a block of (0) words of type
(1). Thus:

T/M 20 CRBN] creates a 20-word block of T/W
T/P 17 CRBN! creates a 17-word block of T/P

(args: [20]) erases a block. If (1) is the first symbol of a block (i.e. the
symbol returned by CRBN), and (0) is a word count, then EBN will erase
the block.

(args: [30]) replaces the contents of a block with that of another. If <1 >
and (2) are block symbol, and if (0) is a word count, then RBN will
rewrite the first (0) words of block (1) with the contents of block (2).

9.6 DMANIP.3CH

Noven*iber 10, 1975 Preliminary L* Manual Page 55

is an attribute (association structure) associating lengths from blocks, It
is used only in L*(I). L*C.(C) does not store block lengths, primarily for
reasons of space economy.

(args: [21]) creates a block and records its size in the association
structure ABN. CRB exists only in L*(I); L*C.(C) users should use CRBN
directly.

(args: [10]) erases a block whose size is recorded in ABN. If (0) is a block
symbol, then EB will erase it according to the size recorded in ABM. If
there is no entry in ABN for the input block (0), then the error ev a nt
<EEB' will be triggered.

9.7 DMANIP.3CH

November 10, 1975 Preliminary L* Manual Page 56

10 REC0G.3CH

10. The Recognition System

1 0 . 1 . The EXEC in detail

10.1.1 Character actions end name assembly

10.1.2 Recognition actions

10.1.3 Modifying the user interface

1 0 . 2 . Names and contexts

10.2.1 Creating and using a context

10.2.2 Defining; and redefining besic-systcm nsmss

10.2.3 Local names

10.2.4 Names within blocks

1 0 . 3 . Creation type control

10.3.1 .Type-control operators

10.3.2 The forward-reference problem

1 0 . 4 . Pertinent data structures in the recognition system

November 10, 1375 Preliminary L* Manual

11 0SINTF.3CH

11. Operating-system interface

I L L Reading and writing files

11.1.1 I/O interfaces

11.1.2 Charnctar stream I/O

11.1.3 Binary word I/O

1 1 . 2 . Time accounting

1 1 . 3 . Sub-jobs

1 1 . 4 . Paratie! processing

1 1 . 5 . Odds and ends

11.5.1 POP-10 notes

11.5.2 C.mmp notes

November 10, 1975 Preliminary L* Manual

12. Debugging tools

1 2 . 1 . Breakpoints

1 2 . 2 . Tracing execution

1 2 . 3 . Error detection and recovery

November 10, 1975 Preliminary L* Manual

15. A program library: existing code

1 5 . 1 . dummy section

November 10, 1975 Preliminary L* Manual

Part IV: Practical L*: hints, tools, and techniques

13. Programming Style

1 3 . 1 . Source program formatting

1 3 . 2 . Names

1 3 . 3 . Technique

November 10, 1975 Preliminary L* Manual Page 62

2, NDDRGBB.NOTATION 33
COLON OPERATOR 26

<W, TEST WORD INEQUALITY 52
«KG, TOOT EQUNIIIY OF CHR STRINGS 53
*S, TOOT SYMBOL EQUALITY 42
»W, TOOT WORD EQUNIIIY 52
>W, TEST WORD INEQUALITY 52
[[, BLOCK CREATION OPORATOR 39
\(, BEGIN UNNR»MED LIST 45
]], BLOCK CREATION OPERATOR 30
TZ (CONTROL Z), CHARACTER ACTION 17

!, 'EXECUTE1 OPERATOR 21
!., EDITOR COMMAND 28
!B, EDITOR COMMAND 28
ID, EDITOR COMMAND 28
IF, EDITOR COMMAND 28
!FK, EDITOR COMMAND 23
!I, EDITOR COMMAND 28
IN, EDITOR COMMAND 28
!R, EDITOR COMMAND 27
IS, EDITOR COMMAND 28
!U, EDITOR COMMAND 28

SET SIGNAL TRUE 43
$-, SET SIGNAL FALSE 43
$STEP, STEP-CONTROL FLAG 16

&KS, CONCATENATE CHR STRINGS 53

1 (SINGLE-QUOTE) RECOGNITION ACTION 21

(, STRUCTURE-BUIKLING OPORATOR 25
(0), (1), ETC: DEFINED 6

), STRUCTURE-BUIKLING OPERATOR 25, 39

*W, MULTIPLY WORD 52

+SW, INCREMENT A SYMBOL 42
•W, ADD WORD 52

- SW , DECREMENT A SYMBOL 42
- W R SUBTRACT WORD 52

.4, CONDITIONAL OPORATOR 35

.•H, CONDITION̂ OPORATOR 35
CONTROL OPORATOR 35

.-, CONDITIONAL OPORATOR 35

.-H, CONDIIIONNL OPORATOR 35
„X, EXECUTE CONTROL ACTION 39
.H, CONTROJ OPORATOR 35
.I/AT irAorpreier FOR T/A 51
.I/AL, INTERPRETER FOR T/AL 51
•U L*-, .L-: LOOP ESCAPES 38
.Q, SYMBOL QUOTE OPORATOR 14, 38

INDEX
.QH, SYMBOL QUOTE OPERATOR 38
.U*-, CONTROL OPORATOR 36
.11-,-CONTROL OPERATOR 35
.X, EXECUTE CONTROL ACTION 39
.XA, ITERATION CONTROL OPERATOR 33
.XAL, ITERATION CONTROL OPERATOR 38
.X£, ITERATION CONTROL OPORATOR 33
.XKS, ITERATION CONTROL OPORATOR 38
.XL, ITERATION CONTROL OPERATOR 33
.XN, ITERATION CONTROL OPERATOR 38

/HV/F REMAINDER WORD 52
/W, DIVIDE WORD 52

•L, BLOCK PIECE NAMING OPERATOR 30

?, STRUCTURE PRINT OPERATOR 32
• ?ZX, CALL STACK DISPLAY 8

AACT 21
ABN, ATTRIBUTE FOR BLOCK SIRE 55
ACCKS, ACCUMULATE A CHARACTER 54
ACCKS., RESET CHARACTER ACCUMULATOR 54
ACTIVE SYMBOLS 19, 21, 25
ADDITION OF WORDS 52
ADDRESS, NUMERIC NOTATION 33
AL\(, BEGIN UNNAMED T/AL LIST 45
ARBITRARY WORD STRUCTURES 13
ARGUMENT PASSING 8
ARRAYS 13
ASCENDING, IN PROGRAM LIST 34
ASSOCIATION }IST3, BUILDING 29
ASSOCIATION STRUCTURES 13, 14
ASSOCIATION-LIST STRUCTURES 13
ASSOCIATIONS, BUIWING 29
ATCLXE 45
ATI, TYPO AFTR. FOR INTERPRETER 16
ATTRIBUTE LISTS 13
ATTRIBUTES 13
AVAILABLE SPACE 9
AVAILABLE SPACE LIST 8, 31

BASE CONTEXT 22
BCX 22
BCX, BASE CONTEXT 6
BLOCK STORAGE MANAGEMENT 31
BLOCK STRUCTURE CREATION 30
BLOCKS 13
BOUNDARY CHARACTER 20
BRACKET NOTATION DEFINED 5

C$Z, COPY SIGNAL OUT 43
C.MMP 15
CHARACTER ACCUMULATOR 53
CHARACTER ACTIONS 19
CKS, COPY CHARACTER STRING 53

November 10, 1975 Preliminary L* Manual Page 63

CKSW, CREATE KS FROM WORD 53
CL, COPY A LIST 45
CLRJ, CLRAR STACK 50
CLX, COPY (IST STRUCTURE 45
COLON OPERATOR 33
COMMAND LANGUAGE 23
COMPACTED HOT, EDITING CONSIDERATIONS 27
COMPACTOD LINFA 1 I, 12
CONCAFONSIION OF STRINGS 53
CONDITIONAL BOUNDARY CHARACTER 20
CONDITIONAL OPORATORS 34
CONTEXT LIRT 22
CONTEXT, DEFINITION OF TERM 6
CONTROL ACTIONS 7
CONTROL OPORCTORS 34
COPYING D LINT 44
COPYING LIETA 45
CR/KS, CREATE A CHARACTER STRING 53
CR8, CREATE AND REGISTER A BLOCK 55
CRBN, BLOCK CREATION ROUTINE 54
CRBN, SYMBOL CREATION ROUTINE 31
CRCX 22
CREATING T/W STRUCTURES 30
CREATION ROUTINE, TYPED 11
CREATION TYPO 28
CURRENT LEVEL 34
CURRENT RECOGNITION CONTEXT LIST 22
CWKS, CREATE WORD FROM KS 53
CY, COPY COMPACTED HOT 45
CYX, COPY COMPACTOD LINT STRUCTURE 45

D, DELETE A CELL FROM A LINT 48
DA, DELETE FROM ASSOCIATION STRUCTURE 51
DATA LISTS, BUIWING 28
DATA STRUCTURE BUIWING 23
DATA STRUCTURES, BUIWING 28
DEFINING A SYMBOL 20
DELETING IOVOJD 35
DESCENDING, IN PROGRAM LIST 34
DESIGN PHILOSOPHY 3
DIVISION 52
DJ, DELETE FROM STACK 49
DOUBVN-QUOTE CHARACTER, RECOGNITION ACTION 21
DZO, DELETE SYMBOL FROM ZO 43

E, SYMBOL ERASURE ROUTINE 31
E/KS, ERASE CHARACTER BTRING 53
EB, ERASE A RECORDED BLOCK 55
EBN, BLOCK BRAEURE ROUTINE 54
EDITOR 10, 27
EJOV 13
EJUF 13
EU, EXTERNAL LANGUAGE 23, .32
EL, ERASE A TINT 46
ELK, ERASE A LIST STRUCTURE 46
ERASING A LIST 44
ERASING OF STORAGE 8

ERASURE ROUTINE, TYPED 11
ERROR DETECTION 17
ErroT EVENT 17
Error EVENTS 17
ERROR RECOVERY 17
ESCAPA FROM A LOOP 38
ESPX, AVAILABLE-SPACE ERROR EVENT 31
ESTEP, INTERPRETER STEP EVENT 16
EUND/P, UNDEFINED PROGRAM ERROR 17
EVENT 16
EXAMINING LISTS 46
EXĈRNATION POINT 21
EXEC 9, 17, 19, 20, 21, 22, 25
EXECUTABLE DATA TYPES 14
EXECUTABLE TYPES 16
EXTERNAL ITERATION CONTROL 37
EXTERNAL ITERATION CONTROL OPERATOR 36
EXTERNAL LANGUAGE 9, 23
EY, ERASE A COMPACTED LIST 46
EYX, ERASE A COMPACTED FIST STRUCTURE 46

F, TEST IF LIST EMPTY 46
FJ, TEST FOR STACK EMPTY 50
FLOOR 39
FSL, FIND SYMBOL ON LIST 47

GARBAGE CCITECTION 8
GENERALISED BREAKPOINT FACILITY 16

HASH TABLE 51
HASH TABLE, ASSOCIATION 14
HIGHER LEVEL 34
HISTORY OF THE L* LANGUAGE 1

I/O INTERFACE 23
IC, INSERT COPY 48
ICJ, INSERT COPY ONTO STACK 50
IE, INSERT SYMBOL AT END OF LIST 48
IJ, INSERT ONTO STACK 49
IN, INSERT NEXT OF LIST 48
INTERFACE, USER 19
INTERNAL ITERATION CONTROL OPERATOR 36
INTERNAL LANGUAGE 23
INTERPRETER 9, 16
INTERPRETER ACTION 12, 14
INTERPRETER ACTION BY TYPE 9
INTERPRETER, USER-CODED 11
IPL-V 1
ITERATION CONTROL OPERATORS 36
IZO, INSERT ON ZO 43

L\(, BEGIN UNNAMED T/L LIST 45
L*, ORIGIN OF NAME 1
LE, LOCATE END OF LIST 47
LEVEL 37
LEVEL, DEFINITION OF TERM 7
LEVEL, OF A LIST 28

November 10, 1975 Preliminary L* Manual Page 64

Level, of a program lisi 34

Lis. manipulation routines 44

Liste, data 12

Lists, dnta, building 28

Lists, description of structure 12

Lists, program 1 i

Local name 31

Locate end of list 47

Loop oscapo 3S

LST, locate start of a list 47

LTC, locate termirv*iion cell 47

M-FILE 2

MERLIN 1

Modifying lieta 47

Multiplication 52

N, get next of list 46

Name and Symbol, difference defined 6

Nam? assembly, recognition system 19

Name character 20

Name contoxt 19, 22, 26

Name recognition 20

Next of a list, defined 12

NIL 7, 11, 12

NIL, defined 7

Nonexecutable typeB 16

Notation, definition of 5

Output interface 32

Overflow, stack 13

Overlays 12

P\(, begin unnamed T/P list 45

PS, push Bignal stack 43

P, push operation on Z 41

PI , push operator on Z 42

Page, C.mmp 12, 31

Parenthesis notation for Z symbols 6

Passive symbols 21, 25

PDP-10 12, 14, 15

PDP-11 12, 14

Percent sign, address suffix 33

PI, push and innert 48

PIJ, push and innert on stack 50

PIZO, pueh and innert on ZO 43

PL* 23 . .

Pop, from stack 13

PP, pueh pair on Z 42

PR2&, print an addroas 33

PR?., print an address 33

PR, structure print oporator 32

PRA 33

PRAL 33

Print facility 2, 23

Print routine, typed 11

Printing a structure 32

Printing addresses 33

Printing by type 33

PRJ& 3 3

PRL& 3 3

Program construction 23

Program lint 9

Program lists, description of structure 11

Programmer-defined types 11

Programs, creating 25

PRW& 3 3

PRY* c?
Punctuation as part of names 20

Push, onto stack 13

PuBhdown stack 13

Quote operator 38

R, replace symbol of a list ceil 47

RA, replace in association otructure 51

RAL, replace in association list 50

RBN, block replacement routine 54

RDF, input a source file 24

Recognition of names 20

Recognition system 6, 9

Reference documentation 2

Rigid boundary character 20

RJ, replace in stack 50

RIM, replace next of a list cell 48

RV7, rewrite word 51

S, get symbol of a list 46

Scratch stacks 43

Script, interactive tutorial 2

SD, delete list cell and push symbol 49

SDJ, get and delelete from stack 49

SDZO, get and delete symbol from ZO 43

Searching lists 46

Service routines, for structure 11

SETA, create T/A from T/AL 29

Side cell 43

Side signal 16

Signal 37, 43

Signal stack 36

Signal, definition of term 7

Single-quote recognition action 21

SJEXEC, sub-job exec 24

Source files, reading 23

Stock overflow and underflow 13

Stack support primitives 49

Stacks, structure 13

Step event 16

Stepping monitor 2, 7, 10, 16

Storage allocation 8

Structure building operatore 29

Structure editor 27

Structure printing 32

Structure-building operators 9

November 10, 1975 Preliminary L* Manual Page 65

Subtraction 52

Symbol 12, 32

Symbol actions, recognition system 21

Symbol ami name, difference dofinod 6

Symbol of a list, defined 12

Symbol, defining 20

Symbols 22

SZO, get symbol from ZO 43

T/A 14, 33, 51

T/AL 14, 33, 50 ; * i

T/AV 32, 33

T/I 12, 33

T/J 13, 33

T/KS 14, 45

T/L 12, 33, 45

T/M 9, 12, 45

T/P 12, 16, 33, 45

T/T 11

T/W 13, 33, 45

Termination coil 11, 12, 47

Test for list empty 46

TRUE, value defined 7

TTI, typo table for interpreter 16

Typo association 14

Typo Bcpcciation-iist 14

Typo block 31

Typo blocks 9

Typo character-string 14

Typo creation 11

Typo creation routines 8

Typo indiroct 12

Typo list 12

Typo mschino 12

Typo map 9

Typo program 12

Typo stack 13

Typo system 8

Typo table 16

Typo tables 11, 33

Typo woPd 13

Typo, block creation 30

Typo, printing by 33

U$, pop signal stack 43

U, pop top of Z 41

U l , pop operator on Z 42

UACCKS, unaccumulate character 54

UCX, user contoxt 6

Undorflow, stack 13

Unexecutabte typo 12

User interface 19

V , reverse top 2 symbols of Z 41

Value field, association list 14

Word storage allocation 31

Word structures 13

Words, creating 30

Z 5, 9, 13, 14, 19, 21, 25, 26, 31, 44

¿1 5, 7

Z$, operations on 43

Z$, signal stack 36

Z, main data stack 8

Z, opeations on 41

ZO, buatch stack 43

Z l , scratch stack 43

ZBN 33

ZCXCRL, creation context list 22

ZCXRGL, recognition context lists 22

ZQ, operator stack 39

ZX 13, 17, 18

ZX, control stack 8

Zzzzzzzzz : last item in the index 62

[10] etc., notation defined 5

empty list onto Z 46

Word manipulation operators 51

