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1. INTRODUCTION 

To understand the performance of parallel computers such as ILLIAC IV 

and C.mmp, we must know the largest speed-up that can be obtained for a 

given task. If there are k processors, the largest speed-up that can be 

achieved is k and we call this optimal speed-up. The speed-ups in general 

depend on the parallel decomposition of a particular computing task and 

the various aspects of the multiprocessing system, including memory con

tention, process communication, operating system overhead, etc. In this 

paper, we concentrate on the issue of decomposing tasks, and assume that 

the multiprocessing system is idealized so that it causes no delays at all. 

We shall show that even under this idealized assumption, there are problems 

for which, because the parallel decompositions are inherently difficult, 

the optimal speed-up cannot be achieved. 

This paper studies bounds on speed-ups for a particular problem, i.e., 

the problem of evaluating (or solving) recurrences, which is defined as 

follows: 

Input: x~,x x and rational function r., i ^ 1. r 0 - 1 -p+1 I 

Output: x , which is defined by x. = r,(x. x ,-) , i ^ 1. 
r n l i i - l -p+1 

Since the x^ are defined iteratively, the problem appears on the surface 

to be highly serial. Hence it is interesting to investigate how parallel 

algorithms can be designed and what are the theoretical limits of using 

parallelism for the problem. We consider the recurrence problem also 

because it is important in practice and is simply stated so that we might 

obtain some insight into the nature of parallel computation by studying 
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it. We shall survey a number of results in connection with bounds on the 

speed-ups of parallel evaluation of various kinds of recurrences, especi

ally when the size n of the problem is large, or when n -> co. For simplicity 

we assume that each arithmetic operation takes one unit of time. Consider 

a k-processor machine. We shall see, for example, that the speed-up for 

the first order linear recurrence problem is at most (2/3)k + (1/3) even 

under the idealized assumption. Of course, the actual speed-up obtained 

from a real k-processor machine wou Id be £ (2/3)k + (l/3). The difference 

between (2/3)k + (1/3) and k is rather significant. For example, if k = 16, 

64, then the speed-up for the problem is at most 11, 43, respectively, no 

matter how efficient the k-processor machine is. The reason that we get 

at most 70 percent of the speed-up we might expect for the problem is the 

inherent dependence of variables in the recurrence. Nonlinear recurrences 

are even worse. It is shown that the speed-ups for a certain class of 

nonlinear recurrence problems are always bounded by a constant no matter 

how many processors are used and how large the size of the problem is. 

Hence the dependency relationships within the variables of these nonlinear 

recurrences are even stronger. We believe that the study of these depen

dency relationships is fundamental for understanding parallel computation. 

The kind of results which are to be presented in the paper could be 

useful in the following two ways. First, the theoretical bounds on speed-ups 

provide grounds for testing the efficiencies of algorithms and the multi

processing system. (For example, it would be very helpful if tight theo

retical bounds on speed-ups are knowi for benchmark tasks.) Second, the 

constructions of the algorithms designed for the idealized machine are in

structive and often lead to useful insights into the nature of design

ing efficient algorithms for real machines. 
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2. DEFINITIONS AND NOTATION 

An algorithm for evaluating is defined to be a directed acyclic graph 

in a natural way. For example, the following graph defines a parallel algor

ithm using three processors for evaluating x^, which is defined by 

xo = V 
xi = Vi-i + a

i +i> 1 = 1'2>3-
(Note that x 3 = ((ajbj+a^bj+a )b 4*^.) 

a 1 b l b 2 b 3 

( a 1 b 1 + a 2 ) b 2 b 3 ^ 

a 3 b 3 + a 4 

Consider the directed graph which defines an algorithm. We define the 

depth of the graph to be the time, define 

T^(x^) = minimum time needed to evaluate x by 
an algorithm using k processors. n 

and define the speed-up of the problem of evaluating by using k processors 
to be 
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„ / \ I n kVV ~ Tf (x ) # 

k n 

(In [9] these definitions ace given in a more rigorous way.) 

By a simple simulation argument, one can easily see that (x^) £ k ^(x^) . 

Hence 

Sf (x ) <, k, Vk,Vn. k n 

k is a trivial upper bound on S^(x n)* Bounds smaller than k are nontrivial. 

We shall show some nontrivial upper bounds on s ^ ( x
n ) *-n the following sections. 

3. FIRST ORDER LINEAR RECURRENCES 

A first order linear recurrence is defined by 

(1) x. = a.x. . + b., i :> 1. l I l-l l 

It is the most fundamental recurrence, in the sense that algorithms for solv

ing it often form basic algorithms for solving other types of recurrences. 

The trivial algorithm which computes x.j,x2,...,xn iteratively according to 

(1) is the optimal sequential algorithm, since it takes time 2n and any al

gorithm has to take time at least 2n for using all the inputs. Hence 

(2) T ^ x ^ = 2n. 

The algorithm, however, is not suitable for parallel computers because it 

does not provide any parallelism. New algorithms are needed for parallel 

computers. Various parallel algorithms have been developed by many people 

[3, 4, 12, 13, 14, 15, 17, 20, 21, 23]. The basic idea of these algorithms 

can be explained as follows: 
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Note that (1) is equivalent to 

* 1. 
L' J L" U L 1 J 

Hence 

which can clearly be computed in parallel. Using the fact that the multi

plication of two matrices of the form takes three operations and re-
I X XI 

suits in a matrix of the same form, while the multiplication of L J and 

Ĵj uses two operations and results in a vector of the form in [11] a 

parallel algorithm based on (3) is derived and establishes that 
(4) W * ¡¿772 + ci l o s k 

for some constant ĉ  > 0. (4) is an improvement over the corresponding re

sult in [23] when n is large and k is fixed. 

In [9] it is shown that if an algorithm computes x^ in time t with w 
operations, then 

(5) w :> 3n - !• 

Suppose that t < ^ ( x ) = 2n. Then by (5) w > 2n. Hence if a parallel 

algorithm is faster than the optimal sequential algorithm, then it must 

perform more operations than the sequential algorithm. This turns out 

to be the basic reason why the optimal speed-up cannot be achieved for 

the problem. Indeed, lower bounds on T, (x ) can be easily derived from 
k n J 

(5) as follows. Suppose that k processors are used. Observe that for 
any algorithm, kt ^ w. Hence by (5) we have 
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<6> W * kTT/T' Vk>Vn' 
Suppose that w 2> 2 ^ l o g k"L (This is true when, say, n :> k.) In [8] it is 

pointed out that in this case by the same argument as used in [18, Theorem 1], 

the bound in (6) can be slightly improved. In fact, we have 

k(t-riog k]) + 2 F l o g k l - 1 £ w, 

which together with (5) yields 

T k(x n) ^ ¡ ^ 7 2 + Ocflog kl + 1 - 2 r i ° 8 k l)/(k+l/2). 

Hence 

<7> Tk ( xn> * k ^ 2 + C2 + c.log k - c„, n s k 

for some constants c 2 > 0 and c 3 > 0. From (4) and (7), we know that the 

bounds are essentially sharp for n 2 k. 

From (2), (4), (6) and (7) we have the following 

Theorem 1 
For the first order linear recurrence defined by (1), 

(8) l j k + J, Vk.Vta 
2 k + 1 £ S, <x ) * c,(1**1/2) log k k n _ _ _ 2 k ± 1 ^ * k . 

(9) 3 + / (c log k-c3)(k+l/2) 
3 + n 

The upper bound in (8) implies that even for the simplest recurrence de

fined by (1), we can get at most 70 percent of the optimal speed-up. 
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The algorithm used to establish the bound in (4) can be extended to 

solve first order vector linear recurrences, defined by 

(10) x± - Ai£i„i + V 1 * ̂  

where the x fs and the b's are p-vectors and the A fs pxp matrices. The 

upper bounds on time for solving these vector recurrences can similarly 

be obtained. 

4. PTH ORDER LINEAR RECURRENCES 

A pth order linear recurrence is defined by 

i-1 
V 

i ^ 1. i l l ) x = ) a . . x . + b. . 
1 j*T-p J i j 

The problem for solving such a recurrence in parallel has been considered 
in [5, 12, 13]. 

The following theorem generalizes the upper bound result in (8). 

Theorem 2 [11]. 

For the pth order linear recurrence defined by (11), 

(12) S k(x n) + c 4, Vp,V k >Vn. 

for some constant c, . 4 

2 
Since 2 p + 1 < 1, the theorem implies that we cannot essentially obtain 

the optimal speed-up ratio for solving pth order linear recurrences for any 
p, when k is large. 
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We now consider parallel algorithms for solving the recurrence defined 

by (11). The idea is to convert it into a first order vector linear recur

rence of the form (10), which can then be solved by algorithms used in the 

preceding section. 

The naive approach for the conversion would be the following way: De

fine vectors 

x. = 

x. I 

x. i-p+1 

I, i * 0 

then (11) is equivalent to 

(13) Xi = A i ^ i . i + i = 1,2,..-,n 

where the A,, are certain companion matrices. Then algorithms for solving first 

order vector linear recurrences can be applied to compute x^ (and hence x^) 

from (13). We shall use another conversion technique, which will lead us 

to p times faster algorithms for the case that k, p are fixed and n -> <». 

The idea is explained in the following for the case of p =* 3. We can 

write a 3rd order linear recurrence as 

i-1 
< = - Y a. .x. + b., i * 1 

where a. . = -a .. Then for computing, say, x from x 0>*_i> x_ 2 we have 
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1 
•1.-2 a1,-l aio! 

- . ! 
"2,-1 320l a21 

- ! 
.a30l 1 ! 

_ 

1 a41 342 a43l 1 
} a„„ a ! a 
\ 52 53! 54 
{ a, 1 a 
! 63 ! 64 
J 

a65 1 

" X-2 V 
X-1 b2 

_ x_o 

Xl b 4 ~ 
X2 b5 

_X3__ _ b6 
X 4 
X5 
X6 

If we partition the matrix and vectors into blocks as indicated above, then 
we have 

Ai Ti o 

O A 2 T2 

Hence 

*i = -ti1aa 

which is a first order vector linear recurrence. Using the same idea, for 
general p, we have 

— - r - -1 

II 

.-2. 

(14) x = ( T ; Y ) X . . + T^b , i = 1 2 m 

where m = Fri/pl T A Y K ^ 
/PI, l., A., x., ^ are of size p, and T. are triangular. We 

shall first compute T - 1A and T~\ • ̂  
P e 1. A ± and T. b. for 1 £ m , and then use algorithms in 

Section 3 to solve the recurrent c- r / -. 
e recurrence (14). Since m = fn/p], the recurrence 
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(14) is shorter than the recurrence (13) by a factor of p. Thus we get 
,-1 

faster algorithms. (It turns out that the cost of computing T^'^i and 

T^tK is not crucial.) From this approach it is immediate to prove that 

Of 
(15) T k(x n) ^ c 5(Jpi + p°log n), 

for some constant c^ > 0, where a = 2 when the usual matrix multiplication 

algorithm is used and a = 1.82 when the Strassen's matrix multiplication algorithm 

[2 2] is used. (In [11] it is shown that the bound in (15) also holds for 

the problem of solving nxn band linear system with bandwidth p.) Since 

T 1 (x n) £ (p+1)n, taking a = 1.82 in (15) we have that for any k and p, 

06) s k(x n) 
5 P 

for the problem of solving pth order linear recurrences. Does S^/k indeed 

decrease as p increases? The question is still open. We only know that by (12) S, is 

always less than k for large k. We believe that as p increases, more depen

dency relationships on the x fs defined by (11) will be introduced and hence 

S. /k will decrease, k 

Conjecture 

Consider the problem of solving pth order linear recurrences defined  

by (11). Let the maximal speed-up ratio achievable by using k processors to 

be 

§ k(p) * max S k(x n). 
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S k(p) * Mp)k, Vk, 
and \(p) -» 0 as p -» «>. 

The following theorem relates our conjecture on speed-ups to the matrix 
multiplication problem. 

Theorem 3 [11] 
2 

If the conjecture is true then 0(n /\(n)) is a lower bound on the number  

of arithmetic operations needed to multiply two nxn matrices. 
Note that the question of whether or not matrix multiplication can be 

2 

done in 0(n ) operations has been open for some years. 

5. GENERAL LINEAR RECURRENCES 

A general linear recurrence is defined by 

i-1 

The problem of solving general linear recurrences is reducible to that of 

solving triangular linear systems. Heller [6] first considered the problem 
2 

of solving (17) in parallel and gave algorithms which take time 0(log n) and 
4 

use 0(n ) processors. It was shown later that the problem in fact could be 
2 3 

done in time 0(log n) with 0(n ) processors by a number of people in at least 

three different ways (see, e.g., [2, 5, 7, 19]. 
For the case of using small parallelism it is shown in [10] that 



2 

c 7n 2 _ rlog n if k - fnrl and 1 < r < |, 

I - 1 ^ 
cfin 3log 2 n if k - Tnrl and - ^ r < 3. 

O 

where c^, c^, Cg are positive constants. 

Since there are n(n+1)/2 inputs for the recurrence (17), we have 

while the trivial sequential algorithm establishes that 

T,(x ) ^ n(n+1). 1 n 

There is a gap between the lower and upper bounds on T^(x^). We believe 

that T,(x ) = n + 0(n). Suppose that is true. Then from (18), we have 
I n 

S,(x ) k as n -» «, i.e., optimal speed-up is achieved asymptotically, 
K. n 

which would be in interesting contrast with pth order linear recurrences, 

where Optimal speed-ups are not asymptotically achieved. 

6. NONLINEAR RECURRENCES 

A nonlinear recurrence is defined by 

(19) x t = co(x i^ 1,x i_ 2,...,x i^ p), 1 * 1 , 

where cp is a nonlinear rational function. Write cp = cp^/cp2 where cp1 and 

are polynomials which are relatively prime. Define the degree of a non

linear recurrence to be 

deg cp = max(deg cp̂  ,deg cp2) • 

(18) T k(x n) ^ 2- + cfin if k * n, 
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Hence, for example, the well known recurrence, 

(20) x 1 + 1 -I(x1 + £->, 
1 

for approximating Jk has degree 2. For linear recurrences in general we 

can have unbounded speed-up when k -> » and n -* °°. For example, by (9) we 

know that if k 5 n the first order linear recurrence can be sped-up by a 

factor of n/log n, which is unbounded as n -» «. The following theorem 

shows that the theory of nonlinear recurrences of degree > 1 is completely 

different from that of linear recurrences. 

Theorem 4 [16] 

For the recurrence defined by (19), if deg cp > 1 , then 

S k(x n) £ c 9, Vk,Vn, 

for some constant c^. 

The theorem implies that, e.g., the recurrence defined by (20) cannot 
essentially be sped up by using parallelism. 

The only nonlinear recurrences which can possibly have unbounded speed
up by using parallelism are of the form 

V 1 \ 
(21) x. - 1 

/ c,,x. + d., 

which is of degree one. Indeed, the recurrence 

b 
(22) x. = a. + l 

1 1 *i-l 
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i.e., a continued fraction, can be sped up. 

Theorem 5 [11, 12, 14, 23] 

For the recurrence defined by (22), 

(23) 4- c 1 Q * S k(x n) * 

c (—2 -) if k ^ n, 

9 
as n -* », Vk. 

for some constants c«|g> c - J I * 

By Theorem 1 and (23) we note that recurrences with division seem 

to be more difficult than those without division in parallel computation. 

The same observation can also be made to the problem of evaluating arithmetic 

expressions (see [4, 23]). 

It is clear that the recurrence 
a.x. , + b. I l-l I 

x i " c.x. . V d. l i-l 

can also be sped up by using parallelism, since it can be transformed into 

a continued fraction. However, by the following theorem we know general 

recurrences defined by (21) cannot essentially be sped up. 

Theorem 6 [11 ] 
For the recurrence defined by (21) if either q > 1 or D > j « then 

S k(x n) ± c 1 2 , Vk,n 

for some constant c^* 
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7. SUMMARY AND CONCLUSIONS 

We have shown a number of results on the theoretical limitation of 

using parallelism for solving recurrences. For pth order linear recur

rences, with k processors the speed-ups are shown to be bounded by ck 4- d for 

some constants c, d, with c < 1, no matter how large the size of the problems. 

The sharp upper bound is obtained for first order linear recurrences. For 

nonlinear recurrences of degree > 1, the speed-ups are shown to be bounded 

by a constant, no matter how many processors are used and how large the  

size of the problems. This is probably the first and may be the only known 

example of a nontrivial problem which cannot be essentially sped up. By 

these results we wish to demonstrate that .the gain from parallelism very 

much depends upon the nature of individual problems, e.g., the dependency 

relationships among the variables of the problems. We believe that to 

identify properties which prevent us from getting good speed-ups is funda

mental for understanding parallel computation. 
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