NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Proposal for Continuation of
Research in
Information Processing

Submitted to
Advanced Research Projects Agency
of the
Department of Defense

Allen Newel
Anita Jones

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania
September 1975

Principal Investigators:

Allen Newell
University Professor

Joseph F. Traub
Professor and Department Head
Department of Computer Science

Duration: July 1975 to June 1976
CMU Proposal Number: 03027
Submitted: March 1975

The research discussed in this proposal is supported by the Defense Advanced Research
Projects Agency of the Office of the Secretary of Defense (contract number
F44620-73-C-0074) and monitored by the Air Force Qffice of Scientific Research.

Abstract

This document is the substantive part of the proposal submitted by the Computer
Science Department of Carnegie-Mellon University to the Advanced Research
Projects Agency of the Department of Defense for continuation of research in
information processing during 1975-76. It contains a description of the major on-
going research projects: Artificial Intelligence; Speech Understanding Systems;
C.mmp, the multi-mini-processor; SMCD, the symbolic manipulation of computer
descriptions; and newly initiated work on multiple microcomputers,

CONTENTS

Abstract
Preface

1. INTRODUCTION
General Scope and Organization of the Research
Overview of Recént Results
Overview of Research Targets
Organization of this Proposal

2. ARTIFICIAL INTELLIGENCE (Al
Introduction
The Scientific Goals of Artificial Intelligence
Production Systems: An organization for intelligent action
Heuristic Search in Complex Spaces
Automatic Programming
Vision
Resources

3. SPEECH UNDERSTANDING SYSTEMS (SUS)
Introduction
Hearsay-1.X
DRAGON
Hearsay-2
Hearsay-2 on C.mmp
The Four Systems in Perspective
Support Common to all the SU Systems
Resources

4. C.MMP: MULTI-MINIPROCESSOR COMPUTER SYSTEM
Introduction
Hardware System
HYDRA: The Operating System
Software Facilities
Application Programs and Performance Analysis
Resources

5. SMCD: SYMBOLIC MANIPULATION OF COMPUTER DESCRIPTIONS
Introduction
Computer Description Languages
Variable Leve! Simulation
Giobal Data Base
Compiler-Compiler
Machine Design with Module Sets
Resources

6. FACILITIES
Introduction
Current State
Plans
Resources

i
vii

oW

11
15
17
18
19

21
21
24
24
26
30
32
34
35

36
36
38
a2
46
50
52

54
54
858
59
60
61
64
66

67
67
67
67
69

vi CMU Proposal to ARPA 75-76

7. COMPLETION OF C.MMP HARDWARE 70
8. RESEARCH INTO MULTIPLE COMPUTER SYSTEMS 72
Introduction 72
Ch4 Machine 72
" The Proposal 73
Scientific Questions 75
Budget 76

9. REFERENCES 78

wii

PREFACE

This document contains the substantive part of the proposal to the Information
Processing Techniques Office of the Department of Defense for the period July 75 to June 76.
We have reproduced it for more general distribution, since it gives a good overview of some
of the current research in the Computer Science Department.

The present version differs from the original in two respects. First, the budget portions
of the proposal have been removed, except the part relating to major equipment, where the
information is of substantive interest. Second, the original proposal was prepared under
considerable time pressure. Thus, the present version has been edited for errors and
infelicities of writing. References to our own publications, which did not make it into the
original version, have been added. However, the proposal was written primarily to describe
our own ongoing projects rather than to provide a discussion of the general state of the art.
There were essentially no references to work outside of CMU; we have not remedied this
since it would have required substantial modification. Our work, like' that of all other
scientists, depends on and grows out of work done elsewhere in the scientific community. Cur
publications, cited herein, give specific credit to these other efforts.

The research going on under APRA is only part of the total research in the Computer
Science Department at CMU. 1t is, in volume terms, a rather large part of it, and thus what is
described in these pages is much in evidence. It is important to realize, however, that the
research done under ARPA represents a particular styte of research: large experimental
projects standing at the center of each area, with well detined mileposts and with scientific
success tied closely to the success of specific systems. Around these major systems there is
much individua! effort, but the dominant Havor is imparted by the large experimental systems.
Though there are oft-noted dangers to this style of research, we believe that it represents an
important style and one that leads to progress on major scientific issues. ‘

However, an inference to the totality of research in computer science at CMU cannot be
made from the sample of this report. For much of the rest of the research follows other
styles. There is work in operating systems that is experimental, but - relatively small
(Habermann); there is work in security and protection that is primarily theoretical (Jones);
there is work in real complexity theory that is primarily theoretical (Kung, Traub); there is
work in the development of programming languages and programming methodology
(Habermann, Jones, Shaw, Wulf); There is work on data base design (Eastman, Schkolnick),
There is all the experimental and theoretical work in Psychology on cognitive processes, which
is closely related to Artificial Intelligence.

We take the trouble here in the Preface to enumerate some of these other research
efforts, with their somewhat contrasting styles, to be sure that the reader understands that
the extensive description of research given in this document is still onty a part of the total
research in our environment and, further, is cast in a particular targe-system experimental
mold.

We would like to acknowledge the many members of the department who helped to
create this document and to improve its accuracy. Especially we would fike to thank Richard
Johnsson and Philip Karlton for assisting with the final document production, and Beverly
Howell and Mildred Black for secretarial help.

1. INTRODUCTION

This proposal is for basic research in computer science by members of the Computer
Science Department of Carnegie-Mellon University for the Information Processing Techniques
Office (IPTO)} ot the Advanced Research Projects Agency (ARPA) of the Department of Defense
under Contfact F44620-73-C-0074, monitored by the Air Force Office of Scientific Research
(AFQSR), :

The proposal covers the eighteen month period from 1 July 75 to 31 December 76. It
is for the third year (and half of the fourth) of the existing contract, and is a continuation of a
long term research program.

This introduction provides a brief description of the scope of the research. It also
provides brief overviews of recent results and our specific research targets for the immediate
future. To fully appreciate these results and our immediate goals requires a more robust
treatment than.the overviews provide. Extended discussion will be found in the sections on
each research area. However, it seems useful to bring the overviews to the front, where they
can act as quick summaries of where our research program has been making progress and
where it is laying its bets.

1.1 General S¢ope and Qrganization of the Research

The research proposed herein may be organized under the following headings:

(1) Artificial Intelligence: To discover the nature of intelligent action and to realize such
action by computers.

Specifically, as a focus for the coming period:
In research on total system organization: To determine whether production
systems are an appropriate organization for realizing intelligent action in a
system designed to operate in a general environment,
In heuristic search: To determine the basic components that make heuristic
search possible in realistic complex situations, especially how knowledge is

used for strategic guidance.

In automatic programming: To automate data base management and access
tasks.

In vision: To determine how to locate and identify semantic objects in large
naturalistic scenes,

(2) Speech Understanding Systems: To recognize by computer freely uttered speech.
Specifically, as a focus for the coming period:
To construct systems capable of understanding connected utterances in a

restricted task domain (and meeting the ARPA Speech Understanding
specifications by Nov76),

2 CMU Proposal to ARPA 75-76

(3) C.mmp (A multi-miniprocessor): To determine effective ways to organize
computations on systems with multipie processors,

Specifically, as a focus for the coming period:

To bring C.mmp to a fully operational state with respect to thé hardware.
configuration, the operating system, the software facilities, and the
accessibility to users.

To investigate a series of benchmark programs to analyze the total-system
characteristics of multiprocessor systems of the C.mmp class.

To flex the operating system with respect to its ability to support
specialized sub-environments, with an emphasis on security and efficiency.

(4) SMCD (Symbolic Manipulation of Computer Descriptions): To describe cbmputer
systems so that the full range of analyses, syntheses, and evaluations of interest to computer
science can be performed on these descriptions.

Specifically, as a focus for the coming period:

To create a basic set of tools for the description of computers, including a
computer description language capable of expressing mixed levels of
abstration, a simulator capable of mixed leve! simulations, and a global data
base,

To analyze the task of a compiler-compiler that works relative to the
description of the target computer; and to design and implement such a
compiter-compiler capable of producting quality code.

To analyze the task of the design of computer systems from sets of
modules; and to design and implement such a computer design system
capable of specifying both contro! and data flow and of working with
arbitrary module sets. :

The research just listed above is relevant to a substantial fraction of modern computer
science: to artificial intelligence, and within that speech understanding, to several areas of
software systems, to computer architecture and to performance analysis. It represents
research interests of ten faculty members in Computer Science, and several programs within
IPTO. From the.viewpoint of diversity and breadth, it has several major thrusts, each focussed
on independently important scientific questions.

The research is also strongly interdependent, despite its breadth. Each of the major
projects represented in the proposal has active ties, and in some cases strong dependencies,
on work going on in the other projects. The major personnel in the program are involved
generally in more than one of the major projects. This is a reflection of the breadth of
research interests and talents of these particular scientists, but it is also a reflection of the
unified nature of the CMU ARPA research effort that it has encouraged and permitted this.
Indeed, it is our contention that we have found a way to bring to bear adequate concerns and
expertise for computer architecture, performance analysis, software systems, and artificial
intelligence on research problems of basic significance to computer science. We believe
strongly that the present’state of computer science, both technologically and conceptually, is

Intreduction 3

such that all of these areas are jointly essential to making progress on many fundamental
scientific problems.

The four projects listed above serve to organize the research environment, with
specific faculty members responsible for each area, continuing research seminars in each area,
etc. However, this organization does not extend to an administrative structure.
Administratively, we consist simply of facully, research associates and graduate students of
the Computer Science Department, with the facilities divided into an Engineering Laboratory
and a Programming Group (which is also responsible for computer operations).

The project-orientation of the various components of the research effort is genuine.
We have formulated what we believe are important scientific goals in terms of systems to be
developed and performances to be obtained. Riding piggy-back on these major goals, of
course, are many scientific issues which can only be addressed given the existence of the main
system and in some cases achievement of system performance goal.

As is well known, all research is not, and cannot be, so organized into projects. Though
computer science lends itself to project formulation (given a certain amount of taste and care
in the selection aof projects so that their accomplishment truly advances the science), much
exploration ‘and individual theorizing and analysis must also go on. Within our environment,
this occurs across all the areas covered by the research described herein, and beyond them.
It is out of such explorations that our new research efforts arise. Indeed, many of the projects
of the present proposal arose in just such a way.

1.2 Overview of Recent Resulls

Each of the four major projects in this proposal has a different maturity and hence a
different standing with respect to its goals. Thus the type of recent results that have been
obtained for each project area have a somewhat different flavor. We list each of the major
results in each area without trying to make their full context clear. A more extensive
treatment will be found in the appropriate section (though not all the particular facts are
necessarily repeated). The resuits are all for 1974, unless specifically noted.

1.2.1 Artificial Intelligence

Production systems: We have several production system languages, exploring different
architectural assumptions, and have coded several tasks ranging up to 250 productions. We
have produced several simple production systems that grew themselves, i.e., learned.

Heuristic Search: New theorems were obtained for optimal search strategies in types of
task environments quite different from those of previous theorems about search.

Vision: Segmentations of 6004800 pixel three-color (24 bits/pixel) natural scenes have
been obtained using a new technigue {region splitting) that has not been much explored.

Automatic Programming: A program has been created within the Buchanan-Luckham
automatic proving system (created at Stanford) that creates relational data bases defined
according to the CODYSYL Data Base Definition.

4 CMU Proposal to ARPA 75-76

1.2.2 Speech Understanding Systems

Hearsay-1.X. The system has not been appreciably improved over its capabilities in the
Nov7?3 mid-course evaluation, though its performance has been analyzed. Current
performance (in words correctly recognized) is 397 for acoustics alone, 707 for
acoustics+syntax, 937 for acoustics+syntax+semantics (Chess task only). Sentence recognition
is correspondingly lower, e.g., 907 for the all three knowledge sources. The figures are for
small vocabularies (20-50 words); the system is insensitive to vocabulary variation at this size,
but degrades appreciably at 250 words (337 word recognition). The recognition runs in about
10 times real fime on a KA10 {(and potentially at real time on a dual processor KL10).

DRAGON <{alternative scheme based on Markov representation of knowledge) became
operational with acoustics+syntax. On same five tasks as Hearsay-1 DRAGON obtained 837
word recognition, in about 50 times real time.

Hearsay-2 became operational and recognized its tirst sentence using 9 knowledge
sources (Nov74). '

Hearsay-2 on C.mmp: L#, the implementation system for Hearsay-2 on C.mmp, became
operational (Jan75). '

SPS-41 High Speed Microprocessor: The first faster-than-real-time program for
analyzing speech signals using the LPC spectra was demonstrated (Apr74).

The full dynamic range 16-bit ADA Conversion device, specially adapted for speech, was
demonsirated (Apr74). It should replace the analog adaptation techniques currently in use.

1.2.3 C.mmp: the Multi-miniprocessor
The 16%16 switch became operational in spring 74

In Dec74: (1) The hardware was operating with & PDP11/20s and 512K primary
memory. (2) The HYDRA kernel was operating routinely, and the initial subsystem was in a
very early operational state. Regular user periods of 3 hours/day were initiated, though total
(hardware + software) mean-time-betwegn-failure became unusably short as the number of
simultaneous non-expert users grows to 3 or 4.

An analysis based on static and dynamic measures of code size and speed on the KA1O
and C.mmp indicated that a full 11/80 version of C.mmp is about 6 Mips (millions of
instructions per second) while a KL10 is about 1.4 Mips; and that the cost-performance of
C.mmp (measured in Mips/Mega8) is about 2-3 times that of a KL1O. (Memory costs and
assumptions about primary memory capacity required to support effective use of processing
power have strong effects)) '

The C.mmp Hardware Monitor designed and constructed at CMU became operational
{Oct74).

The PDP11/40 extended at CMU to include a writeable microstore became operational
(Oct74). This programmable processor is destined to be the the main processor. type on
C.mmp. It was developed with partial support from DEC and NSF.

Introduction 5

1.2.4 SMCD: Symbolic Manipulation of Computer Descriptions
(Research effort initiated in Jul74.)

ALPHARD, a new programming language for structured programming being developed at
CMU, will be the basis for the new computer description language. ALPHARD itself is at an
advanced specification stage, usable for manual analysis,

Related to the Machine-relativé compiler-compiler: A book-length monograph on the
BLISS11 optimizing compiter structure was finished (published Jan75).

Related to Machine Design with Module Sets: EXPL, a system capable of considering
variation in control flow in designhing structures using RTMs (Register Transfer Modules, a
commercially available module set) was completed in early 74 (supported by an NSF grant).
An extension to EXPL that designs structures using macromodules (Washington University’s
module set) is in the advanced debugging stages. EXPL is the nucleus system for the SMCD
effort.

1.3 Overview of Research Targels

We give here the main definite targets for our research efforts for each of the four
projects. In the bndy of the proposal we enunciate for each subproject its own special
targets and the higher scientific context into which it fits. Some targets are strictly means to
our own projects, but most relate to independent scientific issues. We do not reproduce all
this here, for the elements in it are of variable interest and specificity. Rather, we give here
the main targets for which we are prepared to be specific as to accomplishments expected and
dates.

A cautionary note is in order: Such a list favors the scientific targets that can be tied
to the development and completion of systems (e.g., to C.mmp} or that will arise inevitably
from straightforward study (e.g.,, the comparison of two programmable microcoded computers).
That science which we have not yet thought of will not be represented -~ yet we would hope
the latter will account for a significant fraction of our scientific productivity during the coming
period. But assuming the following list is recognized for the truncated representation that it
is, we present it.

1.3.1 Artificial Intelligence

Production systems: By Aug75 we expect to have finished a study that compares
(operational versions of) production systems for many classic Al tasks against the original
implementations within other program organizations.

Production systems: By Aug76 we expect to create a production system with 1000
productions to perform some frontier Al task. (Production systems, computer system, and task
are to be chosen by Aug75.)

Heuristic search in complex tasks: By Dec75 we expect to have a lemma system for
guiding search working in our chess program.

6 CMU Proposal to ARPA 75-76

1.3.2 Speech Understanding Systems

Hearsay-2: By Nov75 we expect.it to be working at 907 word recognition level, and
707 sentence level on the 200 word vocabulary Associated Press News Retrieval Task. We
expect it to be working, but not well, on a 1200 word vocabulary task. By Nov76 we expect it
to meet the APRA B Year Performance Specifications,

DRAGON: By Nov75 we expect to have a fast (SP$41) version working on a 1200 word
vocabulary, but with no performance expectations. By Nov76 we expect it to meet the APRA
5 Year Performance Specifications.

Hearsay-2 on C.mmp: By May75 we expect to make a decision on proceeding with the
current implementation. Given a positive decision, we expect the system to become a faithful
replica of Hearsay-2. By Nov76 we expect to be able to show the computational tradeoffs for
a C.mmp-like multiprocessor implementation,

1.3.3 C.mmp: the Mini-multiprocessor

By Sep75 we expect the total C.mmp system to be in routine and reliable operational
use by multiple non-expert users.

By Dec75 we expect to have in operation a system with 16 processors (4 11/20s and
12 microprogrammable 11/40s) and 1 million words of primary memory. This will be a system
at about seven eighths of the maximum 5.95 Mips possible with sixteen 11/40s. :

By Sep75 we expect to have initial versians of a collection of benchmark tasks on
C.mmp, to be able to assess its computational character.

1.3.4 SMCD: Symbolic Manipulation of Computer Descriptions

By Dec75 we expect to have a first implementation of ALPHARD usable for SMCD
purposes.

By Dec75 we expect to have a first specification of the machine-relative compiler-
compiler, with a possible expectation of a running version by Aug76. This implies the
completion of a series of studies on the components of the compilation processes to abstract
them to work from computer descriptions.

By May75 we expect to have a specification for an register-transfer level computer
aided design system, which works with arbitrary module sets (at the register-transfer level)
and designs over both control and data flow. Its expected date of completion depends on the
specifications.

By Apr75 we expect to have a comparison of the MLP900 and the microprogrammable
11740, to select a path to follow for the high speed portion of the variable leve} simulator
associated with ALPHARD.

1.4 Organization of this Proposal

The proposal consists of eight sections including this introduction as Section 1. Sef:gi?ns
2 through 5 describe each of the four research projects. Section 6 describes the facilities.

http://expect.it

Introduction 7

Sections 7 and 8 describg two supptementaryAprOposals, one for completion of the physical
components of C.mmp, the other for a support in the area of multiple computers.

Thus the main content of the proposal is given in the four research sections. For each
of these we describe the goals of the scientific research, both general computer science goals
and specific objectives of the project. We then give the present state of the research, noting
the accomplishments we have attained within the last year (1974). Finally, we describe our
plans for the research for the coming year and note any specific resources needed.

8 ' ‘ CMU Proposal to ARPA 75-76

2. ARTIFICIAL INTELLIGENCE (Al)

2.1 Introduction

CMU has a long history as a center for research into the nature of intelligence, both in
humans and computers. It is often referred to, along with the laboratories at Stanford, MIT
and SRI, as one of the four ARPA Al Laboratories (though the work under this contract is much
broader than Al, as can be seen from this proposal). The totality of research at CMU that
should be discussed under the rubric of Artificial Intelligence actually occurs in three separate
places: the work on human cognition, going on in the Psychology Department and supported
by other than ARPA funds; the work in Speech Understanding Systems, which is described in a
separate section of this proposal; and the work described in this section, officially labeled
“artificia! intelligence”.

The work described herein has several distinct concrete objectives, representing
approaches to different aspects of the total puzzle of artificial intelligence. [Newell 72a, Simon
71] To put them into perspective we will provide in this introduction a briet discussion on the
general scientific goals of artificial infelligence.

2.2 The Scientific Goals of Artificial Intelligence

Artificial Intelligence is the scientific specialty that attempts to understand the nature of
intelligent action and to construct systems that are capable of intelligent action,

“Intelligent action” is shorthand for describing the capability of some systems to bring
knowledge to bear in the service of ends in an effective way. As is true of any science-
defining term, precise definition is not required. Plentiful examples of intelligent action,
varying in many aspects, are al} that are required. Science, when successful, evolves adequate
theories of its domaini it never starts with them. The behavior of some humans some of the
time, and (by now) the behavior of some computers some of the time, provide the empirical
base on which fo erect the science.

As with all sciences, the goals of Al at a particular historical moment reftect three
sources: (L) the universal questions asked by any science; (2) the state of scientific
knowledge at that time; and (3) the technigues available to answer questions.

Al’s version of the universal scientific questions:

Q1L What are the phenomena: What are the types of intelligent action?

Q2. What gives rise to the phenomena:

Q2.1: What are the characteristics of systems that permit {or enable} them
to show intelligent action?

Q2.2: What are the characteristics of the environments of tasks that require
intelligent action?

Artificial Intelligence (Al) 9

Q3. What is the genesis of the systems that produce the phenomena: How do systems
capable of intelligent action arise?

The following propositions summarize very globally the experience of the last twenty
years of work (which in fact covers essentially the total relevant scientific history). They
induct over investigations in many task environments. Being empirical generalizations, they
make nho claim to be exhaustive or complete.

P1l. An essential condition for intelligent action of any generality is the capability for
the creation and manipulation of symbolic structures.

To be a symbolic structure requires both being an instance of a discrete
" combinational system (lexical and syntactic aspects) and permitting access
to associated arbitrary data and process {desighation, reference or meaning
aspects).

It is this proposition that makes Al a subdomain of Computer Science, since
the computer is most appropriately viewed as that man-made system which
is capable ot symbolic representation and manipulation.

This is perhaps the most profound discovery of Al (and Coi-nputer Science)
That what was implicitly created in digital computers was a physical symbol
system, one which satisfied the fundamental prerequisite for intelligent
action. ‘

P2. Intelligent action requires bringing to bear very large amounts of highly diverse
knowledge.

Stated as an impossibility axiom, there is no way to obtain more than
limited intelfigent action from a limited data base, no matter how much
computation is applied. Therefore, large intelligence requires large amounts
of knowledge.

The problem of representation is fundamental. The problem has many
facets besides simply encoding knowledge: the acquisition of new
knowledge, its assimilation to existing knowledge, the accession to
knowledge that is relevant to the task at hand, the conversion of the
knowledge so accessed to increase knowledge about the immediate task,
and the derivation of new knowledge from the body of knowledge already
acquired.

The representation of knowledge in symbotic structures gives rise to the
fundamental dual nature of information processing systems into a
processing structure and content (i.e., particular symbolic structures).

P3. The fundamental response of a system to uncertainty -- to how to proceed with
task or how to attain a goal -- is to create a space within which a resolution to that
uncertainty must lie, and to search that space.

The problem of search is fundamental, It shows up in many guises and with
many variations. Almost all the basic methods used by inteliigent systems
can be seen as some variation of search, responsive to the particular
knowledge available.

10 CMU Pwoposal to ARPA 75-76

P4. The act of perception -- of the formation of an intelligible representation of an
external environment -- requires knowledge equal in breadth and extent to that invoived in
subsequent use of the resulting representation.

Thus, perception is not to be distinguished from cognition as if it were a
separate preprocessing stage of simpler design. The full knowledge
available in the system must be able to inform the act of perception.

P5. The control of behavior towards ends can be obtained by the use of goals -- i.e.,
symbolic structures that encode the variety of knowledge pertinent to ends: under what
conditions it will be obtained, what aspects of the task environment are relevant, what
methods are relevant and have been used, elc.

Finally, the current art specifies rather strongly the techniques available for obtaining
new scientific knowledge,

T1. Al's major technique for discovering new knowledge and for verifying existing
knowledge is the construction of systems that exhibit intelligent action in specific task
environments,

To discover new forms of intelligent action, specify a previously unexplored
task snvironment and construct an intelligent system to perform its tasks,

To wverify that a collection of mechanisms for intelligence have certain
properties, construct a system embodying these mechanisms and see
whether they produce the intelligent action predicted. '

The constructed systems of Al (in the current art) are accessible for
exhaustive examination and rational analysis. Hence, verification of scientific
knowledge can often be accomplished by detailed examination of a single
instance. This is a striking property vis a vis most sciences, whose systems
are much less accessible.

T2. Humans, as the existing naturally intelligent systems, can be studied to discover the
types of intelligent actions they perform and the mechanisms used to perform them. The
major source of knowledge is. the experimental study of human behavior to discover
mechanisms, followed by construction of simulation systems to verify whether the discovered
mechanisms do indeed have the properties inferred,

Currently, the compiexity of human structure (the anatomy and physiology)
precludes direct insight into the structure of these mechanisms. The human -
system is a prime example of one with inaccessible structure, so that
elaborate experimental technigues and designs are often required to
exclude alternative explanations of phenomena.

T3. The current staté does not provide formal theories of any power that can be used
to structure the main course of scientific development of Al, though formal theories do exist
for fragments of the field. Scientific knowledge is most well developed at the level of specific
mechanisms of intelligent action and their effects in task environments of (partially) specifiable
characteristics.

Artificial Intelligence (Al) 11

Al {and computer science generally) is both constructive in method and basically
concerned with system behavior that attains ends. Thus, unlike natural sciences, there is little
separation between the pure and applied aspects of the science. To produce systems capable
of intelligent action is to produce systems capable of attaining ends, which is to say, systems
that are useful according to somegne’s criteria. The distinction between pure and the applied
aspects rests primarily on the particular task environments studied. Pure scientists choose
task environments according to the requirements of discovery or verification of various
scientific propositions. Applied scientists choose according to the usefulness as determined by
by externally stipulated goals and criteria.

With this overview as a background, we can describe in a succinct way the particular
goals of the research currently being conducted in Al within the present proposal.

23 Prodﬁction Systems: An organization for intelligent action
2.3.1 Scientific goals

What is the appropriate organization for a system capable of general intelligent action?
This is one of the fundamental questions in AL Wé have learned, both in computer science and
in Al, that a system can be divided into a contro! structure, on the one hand, and the content
(i.e, the symbolic structures) that resides within that structure, on the other. The prime
implication of such a division is that, in an important sense, the organizational structure is
contentless, consisting of extremely general processing and encoding mechanisms. As we
observed in the general discussion above, this arises from the essential nature of symbolic
representation itself,

The extraordinary usefulness of programming tanguages rests squarely on this principle,
as does the very organization of computers into an architecture and a program residing within
that architecture. Two of the most important advances in Al have come from taking this view:
the development of list processing at the very beginning of the field, and more recently the
development of the so-called Planner-like languages (Planner, QA-4, Conniver, Poplar}). There
is, of course, no indication that the question of organization has a unique answer, nor is that
important. What is important is that we discover and then understand the basic organization
required for intelligent action.

A candidate organization is that of a production system [Newell 73a] and it is a specific
goal of our current research to determine whether that is the case. We will first describe
briefly this type of organization, and then return to pose the scientific question in sharper
terms.

A basic' production system consists of a set of elements (the productions) and a set of
symbol structures (the working memory). Each production consists of a condition part, which
is sensitive to the contents of the working memory, and an action part, which can modify the
working memory. The basic operation cycle is "recognize and act" -~ namely, recognize which
productions have their conditions true of the current state, select one of these, and then take
the corresponding action. Since the action modifies the working memory, indefinite repetition
of the cycle moves the system through a trajectory of processing behavior,

A production system is thus a parallel recognizer and a serial actor. The conditions are
takgn to be computationally simple enough so that the selection of a production happens in
unit time and independently of how many productions exist in the system (tens, thousands or

12 7 CMU Proposal to ARPA 75-76

millions), The actions are also relatively simple: all conditionality in the system occurs
through the recognizer, so that actions are not complex subprograms capable of executing
arbitrary sequences of conditional subactions.

All programming systems have conditional expressions, often of the form "if Cl is true,
do Al, if C2 is true, do A2 ..", which is similar to the structure of a production system.
Simitarly, the notion of having sets of conditional actions sit around being continuously
sensitive to the body of daba has been receiving considerable attention; they are often called
"demons” after an early organizational scheme of Selfridge’s called Pandemonium, Demons are
a production system like organization. The characteristic feature of production systems is to
take this type of control organization to the Hmit, rather than have it be simply one control
mechanisms amonk many. The recognize-act cycle becomes the most elementary cycle in the
total system, replacing the fetch-execute cycle basic to most other systems. This has
. profound effects on the system and affects how it might solve a number of its basic problems.

Several important characteristics of productions systems should be mentioned. First,
they provide a model of the basic human information processing organization. The production
memory is analogous to the human so-called Long Term Memory; the working memory is
analogous to the human verbal Short Term Memory [Gilmartin 75]; the recognition-act control
cycle corresponds to the human action cycle of 50-100 ms. This model has achieved some
success in describing a variety of human behavior. This correspondence to human organization
is of prime importance and is serving as an important guide to determine additional
organizational details of production systems. :

Production systems provide a homogeneous encoding of knowledge in an active form,
[Newell 72] They represent all control explicitly in terms of the content of the Working
Memory, a feature which may prove to be extremely important to the self programming and
debugging of productions systems. [Waterman 74] Production systems provide an openness to
interruption, to error detection and corrections, and to bringing to bear the total knowledge
available in the system. Other control structures tend to isolate structurally distinct
operational environments, controlling unwanted interactions, but not admitting unplanned but
useful knowledge. Production systems provide a simple mode of growth and augmentation (i.e.,
simply add the production to the set), though no one has yet really capitalized on this
apparent advantage,

The consequences of real success in determining an appropriate organization are very
substantial, both in theoretical and in applied terms. This is true whichever of the various
organizations now being explored (or some new one) turns out to be effective. But we can use
production systems to illustrate the impact, since these are the scheme of interest here.

If production systems prove effective, we will have a standard way within which to
accumulate knowledge in the service of a task. In the construction of applied knowledge-
based Al programs, we will have a standard way to structure them, so that the job of building
such programs can look much more like a knowledge-engineering problem than like a system-
design problem. This is already the approach being taken by others workers in Al (such as
Feigenbaum at Stanford), and their work is beginning to provide a test of this notion. (That
one should be able to begin applying an idea even before it is very thoroughly worked out
should not be a surprise.)

Trading on our preliminary understanding of production systems, one can see that suc,h
an organization might really change the terms on which programs operate, via the system’s
own continuous monitoring and recovery from error and difficulties, by in some sense

Artificial Intelligence (AD 13

understanding the computation it was working on. [Waterman 75] That is, productions
embodying error detection and correction knowledge would continuously be sensitive to the
ongoing computations. Production systems would also lead to a form of programming, which
can be calied “incremental programming", in which one starts by adding productions
corresponding to the main functions of a program and then filling out the rest of the program
{simultaneously debugging it} by adding productions that deal with the tfailure of the partial
program to operate. This is similar to the notions being explored at the MIT Al Laboratory
{by Sussman notably). With production systems, one can see how incremental programming
may well become the standard way of programming. The processing assumptions underlying
productions are sufficiently spectalized that they clearly would lead to machine organizations
that realize them directly {see the subsection below on efficiency).

Productions systems are only one candidate among several currently under intensive
investigation in AL Two other widely investigated organizations are Planner-like systems and
Semantic-Net systems; the most recent scheme is that called frames. All of these explore
important variations in basic organization, which will be tested only by extensive experience
and development of each basic scheme. '

2.3.2 Specific Goals

We can now turn to the specific subgoals that currently drive our attempt to discover
the properties of productions systems and to assess their worth as an organization,

Goal: To discover the appropriate specific form for producltion systems. Although we
can enunciate some interesting and useful features of production systems, the fact that they
seem to model the human organization is of key importance. For the question is how we
should complete the design of the basic architecture -- beyond those few features {such as
the recognize-act cycle) which now seem clear, We would wish to complete it in a way that
captures the flexibility of the human for dealing with partial knowledge and for handling error.
Thus, from a research point of view we wish not simply to pick a specific total design (we
have of course created several operational systems for experimental purposes already), but to
explore the space of production systems and to attempt to find the regions in that space
which correspond most closely to the human system. Though not part of this proposal in
terms of support, the parallel investigations into cognitive psychology going on at CMU are a
requisite part of this stragegy.

Goal: To comstruct production systems for a range of intelligent systems. The main line
of approach is the basic Al experimental strategy of constructing systems and analyzing their
behavior. QOur goal here is one step more analytical than usual, in that we wili construct
versions of many existing systems so that we can do a comparative analysis. We thus wish
not simply to develop production systems pell-mell, so to speak, but to spend substantial
effort in analyzing them. At some point, of course, this goal calis for creating substantial
production systems to accomplish a major task requiring intelligent action.

Goal:- To discover efficient implementations of production systems. A moments
consideration shows that the obvious way to realize production systems on a serial machine is
to iterate through the productions at each recognition cycle. This is not a tolerable {much less
efficient) implementation for large sets of productions. One wants the cycle to be very short
{ultimately at the microsecond level for machines) and the number of productions to be very
targe (in the miilions), Thus, an intensive analysis of how to realize production systems, both
in software on serial computers and in hardware in parallel systems, is a necessity.

14 CMU Proposal to ARPA 75-76

Goal: To discover ,how productions systems can grow themselves. Though we now
know how to get productions to make additions to themselves (i.e., to learn and grow} with
deliberate production-construction actions and for task situations which lead to rather simple
uniform modes of growth, we still do not know how to obtain general growth. This is one of
the major challenges of production systems and one that will be a focus of effort until we
finally soive it. |

2.3.3 Current status and Recent Results

Basic production systems are not difficult to create for exploratory purposes, given
programming systems with adequate facilities (e.g,, Lisp or L#). We have constructed several
to try variations in architectural assumptions {two, PSNLST implemented in LISP, and PSG,
implemented in L%, are essentially public systems, the latter also permitting substantial
variation of the architecture through parametrization).

We now have constructed several production systems in the 200-250 production
category. These include a system that performs essentially identically to STUDENT [Bobrow
68), a program developed some years ago to solve word problems in ninth grade algebra, and
two systems which perform visualization tasks, one in which a person imagines a structure in
his mind’s eye [Moran 73] and the other in which a person describes an object he can see and
scan only through a small peep-hale. [Farley 74] (These latter efforts were attempts to model
the behavior of humans on these tasks.) In addition, we have done a large number of smaller
tasks, such as eiementary psychological experiments, puzzies, parsing, and some learning tasks
(see below). We are in the midst of doing some detailed analysis on some of these program
(especially the ones that perform identically to an existing Al program), but are not finished
yet.

‘ As noted, the question of how production systems learn or grow is an important issue,
especially since some attention has been devoted to it for quite awhile without striking
success. This year we have developed some schemes for growing productions and have
created growing systems: one that mimics EPAM, a system for learning verbal materials that is
a psychological theory of human learning, some that learn simple sequential concepts, and
some that grow a semantic net. These must be seen as exploratory exercises, since the
learning schemes themselves seem much too deliberate in the way they construct new
productions and salt them away in the existing system. But they represent genuine progress
OvVer a year ago.

We have developed several computational schemes for realizing productions systems
efficiently. One scheme {a variant of PSG called PSH) capitalizes on the immense time-
redundancy of the truth of conditions; namely, the features of the working memory that make
a production condition true change only slowly with time. We are currently testing this system
and doing an analysis of its algorithm, '

2.3.4 Plans

The study of the nature of production systems that we have been carrying on for t_he
last year should be completed by Aug75. This study is based partly on a thesis (involving
PSNLST) and should be a fairly substantial analysis of the problem.

Assuming for the moment the general conclusion of the Aug75 study, we will select a
substantial task to use as a major driver for the subsequent work in production systfems. The
key design parameter on the production system itself {and implicitly on the complexity of the

Artificial Intelligence (Al) 15

task demands} is the number of productions. We cannot yet calibrate this measure against
others one might use elsewhere {e.g., code size, or fact size of a data base). We do have, for
the STUDENT production system, a characterization of how many propositions are required to
hold ali the knowledge implicit in the production system itself. The same order of magnitude is
required: 218 propositions vs, 257 productions, though the mapping is many-many with
several productions reflecting each proposition and several propositions required to support a
production, . This, we can take a production to correspond very roughly to a proposition.

We intend to construct a system of about 1000 productions. This should correspond to
a program about the size of Winograd's natural understanding program on the toy blocks
world. The selection of the task and the production system in which to create it should be
accomplished by Aug75. We should have the system itseif up by Summer 76.

Our general plans areA to set goals for increasingly large production systems, since the
issue underlying production systems as an organization {and all other candidates as well) is
how to operate with large amounts of knowledge.

it is important that we be able to run large production systems in real time. Thus along
with the construction of production systems will go the attempt to make them very efficient.
We plan to explore the implementation of production systems on parallel computing structures,
such as C.mmp. These plans are not so advanced that we are able to set targets. We do,
however, expect to have the analyses of the etficient realization of such systems by
programming means on uniprocessor completed by Jul75.

2.4 Hauristic Search in Complex Spaces

Search permeates all atlempts at intelligent action, and the study of search will be a
fundamental area of Al indefinitely. There is no simple single “problem of search", such that
one could hope to solve it, thus putting the matter to rest. For the general question is how to
apply whatéver knowledge one has, however imperfect and obscure, to generating the
directions through which search might proceed and then guiding the choice of path. As the
structure of the task environment and the types of knowledge available change, the "problem
of search” will require distinct scientific treatment. Thus the study of search in Al is a
scientific subfield, in which we can expect a whole body of knowledge to develop that
provides a basis both for understanding the contributions which search makes in any
particular task and for desighing effective search components of total systems which behave
intetligently.

The early work on search (which in fact established Al as a scientific field) did produce
some general notions, which are now embodied in the basic methods of A}, such as Generate
and Test, Hill Climbing, Means-ends Analysis, Heuristic Search, etc. These methods shaw up
repeatedly in all Al programs and applications, and form the basic too! kit of general
techniques. No soconer was heuristic search used in a clear way in the first theorem proving
programs (LT), than it was applied to theorem proving in other areas (geometry), then to
symbolic mathematics (integration), then to some management science problems (assembly line
balancing, and production scheduling), then to a variety of common sense reasoning tasks and
puzzles. The very way these search methods swept through a wide range of tasks indicated
their fundamental nature.

Additional methods are being discovered less frequently, but recent work of Walz at MIT
on a way of manipulating muitiple sets of constraints in a visual scene interpretation task

16 CMU Proposal to ARPA 76-76

appears to be another one. We have called it the Range Restriction method, and have
discovered that it is the method operating in several tasks (where one thought there was only
an ad hoc search scheme).

We are currently working in two areas which are directly addressed to important
general guestions of search. One is how to apply knowledge in a complex situation to control
the search ({the early work, and so also the basic methods, are all bare-bones schemes and do
not touch the problem at all). The other is how to obtain some theoretical basis for
characterizing search situations. We take these up separately.

2.4.1 Guiding Search by Strategic Knowledge

The problem is how, in a task situation of real life complexity, the diverse knowledge
gets brought to bear to guide the search for solutions. Such a question cannot be approached
in the abstract, since one needs to investigate situations where detailed and highly
interrelated knowledge is available o the problem solver, and to discover how such knowledge
might be used -- the very antithesis of an abstract situation. One of course hopes to discover
some of the basic processing that is being used, so that this can be extracted and then used in
other task situations. One approaches such questions in what has become the hali mark of Al
research: selecting a specific task, constructing a program for it, and then analyzing that
program o see why it was able to function. It is often possible (recall the remarks in the
overview of Al goals) to obtain genuine new scientific knowledge from the analysis of such
single cases. (They are never quite single cases, for variation of program structure and of
task structure is always used to help in the analysis.)

We are using chess as our task environment. It has been a scientific intuition of the Al
community that chess is a task situation that will yield a rich harvest of scientific results for
Al. It combines a situation in which the search components are prominent (we all search out
the consquences when choosing a move) with an immense amount of deep knowledge (which is
why the novice often cannot understand why a master moved the way he did). We have not
been disappointed, as the development of alpha-beta shows. Thus, chess has become a
classical task in Al for the study of search, which has by now a background of scientific
results that makes it an exceedingly usefut task. [Berliner 73] [Berliner 75b] [Chase 73]

Let us illustrate the situation by discussing a new mechanism for search, which we call
lemmas.. [Berliner 75a] We are still developing this mechanism, so that our treatment here has
the form of a scientific expectation, not of a verified result,

An acute problem in chess searches is that one repeats the same search over and over
again. The same complex threat and counter threat situation is examined many times
(sometimes hundreds or thousands in actual chess programs), with almost always the same
result (the defender is safe, say). Almost all the total search effort may be devoted to such
redundant analyses. The situation is not actually identical (that would be easy to deal with);
rather, some small variation has occurred (for chess programs, the moving of any piece at all
on the board), and the consequences of this variation must be worked out. The idea of lemmas
is to extract from a situation the characteristics upon which the key action depends (the
threat), to demonstrate that only specific changes in these actions can change the evaluation
of the situation, and then to establish that lemma as a piece of knowledge that can be used in
examining all further search, so that reexamination never takes place until it is necessary.
There is, in effect, no more repetition, though one has paid for this by an act of analysis in
developing the lemma.

Artificial Intelligence (Al) 17

When to re-examine a changing situation is a ubiquitous probiem, not limited to chess or
even to game-like situations. Likewise, the fundamental notion behind lemmas -- to extract a
characterization in a form appropriate to avoiding reexamination -- has equally wide scope. 1t
is of course easy to construct trivial abstract situations in which a notion of lemmas can be
developed, but without solving the problem of lemmas in realistic situations. Chess genuinely
avoids that. It is in fact the case that no non-trivial lemma-like scheme has been developed for
heuristic search. We expect that if we are successful in this attempt to develop lemmas in
search that it will lead the way to the use of the mechanism generally in Al programs.

2.4.2 Theory of Search

Some new theoretical results have been obtained relating to search in structured spaces
for all-or-none goals. [Simon 74] These are quite different search problems than the least-
cost or shortest-path search problems that have received most theoretical attention in
artificial intelligence. The main result is the construction of an evaluation function on the
elements of the space that tells the order in which nodes of the space should be searched.
The given data is the probability of finding a goal at a node and the theorem reflects the
expected value per node taking into account the structure of the space in terms of what nodes

can be reached from what other nodes

This work is an instance of the attempt to construct a theory of search. Theory in Al
as it currently exists, is a patchwork. The fundamental difficulty should already be apparent.
Search occurs in an immense diversity of situations (we have argued in the overview of Al
goals that it occurs in all attempts at intelligent action). It is controlled by knowledge, and
both the details of how it proceeds and its ultimate efficacy depend on the content of the
knowledge. But theory most easily develops by abstracting from all such details to some
general feature of the situation which has a determining effect on the success or speed of
search. Normally this just abstracts away from what is in fact important. Thus, only slowly,
does the A] field find ways to build a theory.

The present work is such a contribution and we cannot tell yet where it will lead to.
We know it has some . applications in some research management situations (for we have
discovered similar formulations being developed there). We shall be searching for others, as
well as trying to extend the formulation. But this is a good example of an area in which
developing concrete expectations for future results is extremely difficult.

2.5 Automatic Programming

The ability to construct programs automatically, i.e., by means of other programs, is an
important technical goal, shared by artificial intelligence and by programming generally, and
leading to the emergence of a field of automatic programming in its own right. Several
systems for constructing programs automatically now exist at varying levels of competence
and taking verying types of initial specifications., We have used one of these systems (the
Buchanan-Luckham system, developed at Stanford in the Al Laboratory) to conduct an
investigation of automatically programming sophisticated forms of data bases for management
information systems. [Gerritson 75]

Explicitly, we have taken the CODASYL modei for a data base with its DDL (Data
Description Language) and DML (Data Manipulation Language) as ways of describing a data
base. These were formulated in terms of the primitives of the automatic program generation
system. It is then possible to generate automatically the programs for various generalized

18 CMU Proposal to ARPA 75-76

retrieval requests within the context of a specified data base system., These queries
constitute in fact the types of programs that data base programmers do write (e.g., in COBOL).
It is also possible to start from the queries themselves and induce the relations that should
form the appropriate data base to answer the queries efficiently. The system is a research
vehicle, not a production program, but it is operational, '

This work has the appearance purely of an application -- of taking some results in Al
(in this case an actual system emboding a set of notions for how to synthesize programs) and
finding an arena in which they might do a task of real world interest. The effort certainly ic
that (or at least a major step in that direction). But it is also more. The critical scientific
questions in Al revolve around how knowledge is brought to bear to get intelligent action. To
investigate the question requires investigating situations of various structures of knowledge --
abstract simplified situations will not do, not because they are not interesting, but because
they simply have different knowledge available. Each so-called application area (here
management data bases) is an arena in which the mechanisms discovered in Al can be tested
against new patterns of knowledge. Thus, we we view this work as making important scientific
contributions as well as having important applications.

Current plans for the continued work at CMU in this topic are in momentary abeyance.
The faculty member involved (Buchanan) will be on leave this coming year, and the graduate
student whose thesis was the development of the system (Gerritson) has joined another
university, where he will continue development of the system.

2.6 Vision

Percepfion must occur whenever there is an external environment that provides a
source of knowledge of interest to a system trying to perform some task. Unity in diversity
operates here, as it does in many other areas of science. Each environment has its own
characteristic structure -~ the rates of information influx, the types of laws that relate one
part of that influx to another, the levels of invariants that can be extracted and the types of
noise that frustrate attempts at extraction. Each environment, then, is diverse and must be
dealt with on its own terms. But equally, perception exhibits a set of common functions that
must be performed and common mechanisms and methods that can perform them (if adapted) in
all perceptual domains. So there is unity, as well, It is the goal of a work in Al in perception
to discover and understand the total collection of perceptual functions and mechanisms.

At CMU, speech has provided the main area for investigating perception {as described in
the section on Speech Understanding Systems). But we have carried along a small effort in
vision as well. By having an active investigation of a similar but different perceptual domain,
we provide ourself with an important perspective on our speech work. It helps to abstract
from the speech work what is fundamental to perception generally, and to avoid attaching the
wrong importance to things which are unigue to speech. That our formulation in speech of the
system and its task is not so embedded in the particularities of knowledge about speech (e.g.,
phonology, co-articulation effects) is attributable in part to our maintaining a small
counterbalancing effort in vision.

The motivation just described justifies having an investigation on vision. 1t also justifies
as a general focus considering the problem of image understanding in direct analog to speech
understanding, namely, how ta bring to bear all the sources of knowledge relevant to a visual
environment to interpret it relative to a task to be performed. (See the discussion ‘in the suUs
section, all of which is refevant to vision as well) However, it does not determine its specific
scientific content, which must arise from the state of the art in visual perception research,

Artificial Intelligence (Al) 19

Research in scene analysis has made its most thorough progress in ptane-bounded
scenes and the time is ripe to move to working with natural scenes, which abound is soft
edges and textures. There is some consensus on this among Al workers in visual perception,
The difficuities are well known: the size of image increases (the input data-rate problem is a
problem of all perceptual systems), edges become much less important, textures, (which are a
class of not well understood visual patterns) become very important. Thus our geoal is to
discover how to interpret natural colored scenes.

2.6.1 Current state and recent results

We have a set of programs for working with images. These are formed into a total
system for image understanding as a man-machine scheme. This allows us to investigate
particular aspects of the processing in the context of a total system,

A major emphasis in our recent work has been the segmentation problem. [Ohtander 75]
Given the raw image, which comes as an array of picture elements (600£800 pixels, each with
24 bits of color and intensity information), the image must be decomposed into regions
corresponding to the entities of interest in the image. In one of the natural scenes we are
using these are, doors, windows, reofs, shrubs, sidewalks, etc. of a photograph of an ordinary a
city house.” Recently we have been able to perform such segmentation with substantial
success using a technigue called region- splitting, which subdivides a given region by looking at
the changes in the histograms of each visual feature taken over the hypothesized subregions.
The scheme requires an hypothesizer, so that it makes sense within the context of a total
image understanding system. By this technique one is able to successively segment an image,
breaking it into a variety of subregions of interest.

2.6.2 Plans

Qur image understanding research has advanced to the place where we think it is
appropriate to undertake a major attempt at an image understanding system. We are
preparing a proposal for such an effort to be presented later this Spring (75). Consequently,
it is not appropriate to describe any plans here.

However, it is appropriate in the context of this proposal to note the issue of scientific
style involved. The vision work has matured over the last several years (about 3) under a
very low head of steam. Now that we have built up a base of expertise, and have
demonstrated it by beginning to produce new research results (e.g., the above segmentation
results), it is time to shift to the project-like mode of operation. We are now ready to specify
distinct scientific goals to.be obtained by creating systems with specific capabilities, within a
reasonable delineated time scale.

2.7 Resources

The Al research involves tour faculty members at differing leveis of effort. Their work
is supported by 25 research associates, one member of our programming staff and six
graduate students. The work in vision requires the equivalent of an additiona! 2 people from
the programming and engineering staffs plus 2 more graduate students.

Though alt of Al is only about 167 of the personnel budget, the very nature of their
large {60-100K) and computationally complex programs consume 377 of the PDP10 facility.
Whereas the vision work will require specialized facilities (separately requested) most of the

20 CMU Proposal to ARPA 75-76

other AI computing is at present adequately served by the current PDP10 facility. Some of
this work would profit from a large virtual memory system and may require paralle! systems
for efficiency, ‘

21

3. SPEECH UNDERSTANDING SYSTEMS (SUS)

3.1 Introduction

A Speech Understanding System (SUS) is a computer system that receives continuous
speech and determines the meaning of the utterance within the context of a given task
environment.

Since 1971 ARPA IPTO has been engaged in a substantial research program to
demonstrate- that SU systems are feasible. This effort comes against a background of
substantial earlier work in speech recognition which led to an assessment that the problem
was extremely difficult, with a general de-emphasis of the field. Continual developments, in
speech science, computer science, and especially in artificial intelligence, made the reopening
of the task a good scientific gamble.

The total SUS program was targeted on a specific 5 year goal of creating a
demonstration system with specified characteristics (reproduced in Figure 3-1). [Newell
73b] The program is at the two thirds point and consists of three major efforts {(at BBN, SDC-
SR, and CMU} plus four supporting efforts, Each of the major efforts is attempting to create a
system meeting the specifications.

Cooperation with the other SUS efforts is fostered by means of frequent workshops,
technical reports, and the coordination provided by a steering committee. However the early
hopes for cooperation through the exchange of programs and data {with the ARPA net acting
as a catalyst) have not been fulfilied. Exceptions are the use of common data for the
segmentation workshops, the exchange of SPS-41 programs with ISI, and the use of Hearsay-2
by UC-Berkeley. The causes for the lack of significant cooperation are: the differences in
approach, programs that are not yet operational to permit use by each other, and the
differences in programming fanguages and systems.

The CMU effort on speech understanding is simultaneously a part of the ARPA SUS
effort and a part of our work in AL Its organization as a project on the same level as the
CMU AI project is appropriate due to its participation in the ARPA SUS effort and due to its
relatively large size,

3.1.1 Goals

Perception is the creation of an intelligible representation of a task environment. It is a
major function of any system capable of intelligent action and can be avoided only in highly
specialized systems whose environments have been simplified to the extreme (e.g., a theorem
prover whose external world gives it only already well-formed axioms and theorems).

Thus to discover the requirements of a system able to perceive is a major standing goal
of Al, one that is to be approached repeatedly at successive levels of specification. As
indicated earlier, it already seems clear that perception involves bringing to bear all relevant
knowledge available in the system, and that there is not a "perceptual front end" that is
isolated from the rest of the system. Since perception does sit logically at the skin of the
system and certainly does contain specialized capabilities to transduce information from the
external world, this has not been an easy lesson to'learn, nor is it completely acceptled.

22

CMU Proposal to ARPA 75-76

Figure 3-1: Final Specification of SUS 5 Year Goals

The system should:

(1)
(2)
(3
(@
(5)
{(6)
(7)
(8)
(9)
(10)

(11}
(12)
(13)

(14)

~ accept continuous speech

from many

conperative speakers of the general American dialect,

in a quiet room

over a good quality microphone

allowing slight tuning of the system per speaker,

but requiring only natural adaptation by the user,
permitting a slightly selected vocabulary of 1,000 words,
with a highly artificial syntax,

and a task like the data management or computer status tasks (but not the
computer consultant task),

with a simple psychological model of the user,
providing graceful interaction,
tolerating less than 107 semantic error,

in a few times real time on a dedicated system.

Speech Understanding Systems (SUS) 23

The main CMU effort is focussed on speech perception. Each perceptual arena offers its
own challenges and opportunities for understanding and each is important in its own right. In
particular there are corresponding problems of vision, i.e., of image understanding. [Reddy
73a]

All of the ARPA SUS efforts have in common the assumption that for a system to
succeed in recognizing speech, it must incorporate in a knowledge base knowledge of many
kinds and from many levels, e.g., phonetic, semantic and syntactic. Furthermore such
knowledge criginates in diverse, perhaps even independent, knowledge sources.

The main substantive hypethesis of the CMU SUS effort, and one shared by the other
ARPA SUS efforts, is to demonstrate in detail the multiple-knowledge-source view for speech.
This is to be done, and in the present art can only be done, by the construction of a system
that both uses diverse sources of knowledge and 'succeeds in understanding speech. Such a
demonstration, again by its nature, is only one sided; it can not guarantee that systems of
different structure cannot understand speech.

The CMU SUS effort has an additional central hypothesis for how to organize such a
multiple knowledge source perceptual system, called the Independent Cooperative Knowledge
Sources. [Erman 75] Its central feature is the association of knowledge sources with distinet
processes, each operating iogwally independent of each other {(hence in paralle! if you wish).
Coordination is based on a common global data base that all can read and write. Hearsay-2,
the main SUS system under construction, is an implementation of this phifosophy and it will be
iltustrated in detail there.

Two important methodological hypotheses about the organization of research are
embedded .in the structure of the current CMU SUS program. The first is that in building large
systems which are at the research stage, one must carry along multiple systems as long as
possible until the uncertainties clear up. This hypothesis guides the total ARPA SUS effort,
where there are three parallel endeavors. It guides our own as well. We have four distinct
variants under development. As we will show, there are reasons for each of the four systems,
and there is gtrong interaction between them in terms of the total development of the
research.

The second mefhodological hypothesis is that one should always carry along a
benchmark program, which has a simple uniform structure and which can provide revealing
comparisons against the main systems. This is particutarly true where the main systems
themselves are highly complex and therefore difficult to analyze. The DRAGON system, one of
our four SUSs, plays this role for us.

3.1.2 Plans

The plans for the SUS etfost are dominated by the overall schedule for the ARPA SUS
program., The critical dates are:

Nov75: A "dress rehersal” demonstration of the SUSs for each of the major contractors.
The actual dates have not been set to within a few months,

Nov76: : The official end of the 5 year program: A final demonstration of a system
meeting the specifications.

A follow-on plan for SUS research is being developed by the SU Research Group

24 CMU Proposal to ARPA 75-76

Steering Committee. Our own plans for additionat SUS work beyond Nov76 must await the
emergence of that plan.

3.2 Hearsay-l.X

Hearsay-1 was the first operational SUS developed by CMU and also the first one within
the ARPA SUS program. [Reddy 73b, 74, Erman 74] It was initially demonstrated in June72,
and again at the Nov’73 mid-course evaluation. It is an early instantiation of the system
organization hypothesis of Independent Gooperating Knowledge Sources. Hearsay-1 has three
components: Acoustics, Syntax and Semantics. It runs currently on five separate tasks: Chess,
Desk calculator, Medical diagnosis, News retrieval and Formant Tracking. Only Chess has a full
semantic component, and the system is now considered to be a so-called "basic® SUS
consisting only of acoustic and syntactic sources of knowledge. (Several SUSs are beginning
to emerge in the literature, almost all with only these two types of knowledge.)

3.2.1 Plans

We have two goals for Hearsay-1. The first is for performance anatysis. As a system
that runs routinely and reliably, it can be studied and parametrically varied with comparative
ease. The stucture is accessible enough so that substantial improvements can be made, for
example in aspects of its search strategy, and can be evaluated, The sequence of systems so-
defined are known as Hearsay-1.1, 1.2, etc., or generically, Hearsay-1.X. This part of the work
in going on in conjunction with the work on DRAGON, described below, so that we are getting
comparative evaluations of two systems.

An important aspect of performance analysis on Hearsay~1.X is as a dry run, so that the
analysis of Hearsay-2 can proceed smoothly and rapidly when Hearsay-2 matures enough to
make performance analysis worthwhile.

The second goal is as a back-up system. Under the influence of the performance
analysis it keeps evolving to a system with higher capabilities. [f Hearsay-2 runs into
insuperable difficulties, then Hearsay-1.X offers an alternative route, one that is substantially
less desirable because of its poorer organizational structure, but one that could be used.

3.3 DRAGON

DRAGON [J. K. Baker 74, J. K. Baker 75] is a SUS that represents the speech utterance
as the product of a probabilistic Markov process. That is, the speaker is represented as being
at any moment in one of a set of possible states (each corresponding to the intention to
convey a certain meaning, to form a given syntactic phrase, to emit a given word of the
lexicon, to emit a given phone, to obey a given phonological rule, etc.). The speaker moves
between states according to a set of probabilities, thus tracing out a particular sequence.
DRAGON finds the Maximum Likelihood solution to what sequence of states might have
produced a received utterance. The meaning of the utterance can be directly understood
knowing that sequence.

DRAGON represents a uniform computational approach to speech understanding. it
stands in sharp contrast to the attempt to encode and deal with the many complex sources of
knowledge, each in its own terms, which constitutes the essence of the main thrust of our
work on intelligent systems. It does encode many sources of knowledge (it is not a pure

Speech Understanding Systems (SUS) 25

acoustic-phonenic recognizer), but they must all be expressed as Markovian networks.
However, an important feature of the scheme is that the total system can be represented as a
hierarchy of networks (corresponding to the usual fevels of the speech hierarchy)} and the
final uniform network can be produced automatically.

3.3.1 Goals

There are two goals for DRAGON. One is to produce a functioning SUS to meet the five
year specifications. DRAGON represents a genuine alternative to the present work, both here
and at the other SUS sites, and it seems important to keep exploring this approach. On the
basis of present evidence (see below) this is an extremely promising path and we currently
expect the system to make it

The second goal is for DRAGON to be a benchmark against which our other systems can
be compared. As we asserted earlier, we believe such computationally simple schemes are
important in order to understand what is being gained by the more complex approaches. To
this end, the work on performance analysis of SUS systems is being conducted jointly with
DRAGON and Hearsay-1.X.

3.3.2 Current State and Recent Accomplishments

DRAGON-1 exists in SAIL on the PDP10 and runs routinely and reliably. It has two
levels of net: Syntax (word level} and Acoustic {phone-level), and works directly from the
basic 10 ms parametrization of the speech signal (into six bands of amplitude and zero-
crossings).

DRAGON-1's performance is shown in Figure 3-2 over the same five tasks as
Hearsay-1.X, the appropriate comparison being with the acoustics-syntax versions. It runs
somewhat better but is substantially more expensive. This expense arises from the uniform
nature of the computational scheme, which examines all possible paths through the Markov
network, (However, the process does not explode combinatorially; it is only bilinear with the
number of states and the number of time intervals.)

DRAGON became operational in Apr74 and the performance measurements were taken
during the fall of 74,

3.3.3 Plans

Improvement of DRAGON to meet the goals of the 5 year program involve improvements
both in speed and accuracy, with concurrent escalation of the tasks on which the system is
measured. The following steps are being taken:

A sequence of recodings are taking place, whose ulitimate aim is to produce an
optimized version, on the PDPL1 ELF system, which has part of the system running on the
SPS-41, a specialized 10 Mips signal processor. DRAGON-1.1, an optimized version in SAIL;
DRAGON-1.2, a recoding of 1.1 in BLISS10; and DRAGON-1.3, a version of 1.2 in BLISS11 for
the PDPL1, are all underway. DRAGON-1.3S, the SPS41 version, is being planned. The
expected date of complefion is Dec75. We may initiate a version, DRAGON-1.4, for C.mmp to
compare with 1.3S5, if comparison seems warranted.

~ We will explore variations of the algorithm and encodings of knowledge that 4tfer major
improvements in efficiency. One path leads to a class of systems, called the HARPY series,

26 CMU Proposal to ARPA 75-76

- Figure 3-2: Dragon [Hearsay-1 Comparison

Accuracy Time
Size of (word level) seconds of CPL
Vocabulary 7 Correct per second of speech
Hearsay-1 Dragon Hearsay-1" Dragon

Chess 29 69 94 14 48
Medical 66 49 88 9 67
Desk

Calculator 37 53 63 16 83
News

Retrieval 28 74 84 11 55
Formant

Tracking 194 _ 33 84 44 174

which do not explore all paths through the state network. These are actually a cross between
Hearsay-1 and DRAGON, and represent explorations at the search strategy level. A second
path leads to using a DRAGON system in conjunction with compenents of a regular SUS, to
have it do only part of the total job. DRAGON-1.5 takes the segment level as input, using the
Hearsay-2 segmenter; the current version in essence does it own segmenting by taking the
acoustic parameters as input directly. DRAGON-1.6 will use a word level net only, taking the
phone labeling. from Hearsay-2. We expect all these variations to be explored prior to
Spring76. They not only provide the basis for selecting an appropriate DRAGON variant to
continue, but they will shed considerable light on the structure and performance of the other
systems,

We -expé.ct to go to a 1200 vocabulary system in time for the Nov75 demostration. The
improvements in speed expected from the above explorations will permit this. However, we
do not expect the performance to be very good at that time.

Ws expect to continue the development of the Nov75 system right through Nov76,
making it an entry for the final evaluation. We do believe we will be able to make rather
definite statements about the trade-offs to be made with this styte of system versus the 5-
year specifications. We also will be able to put some basements on the performance in the
other tasks.

3.4 Haarsay-2

Hearsay-2 is the main SUS system being developed for the SUS effort. [Erman 73,
Lesser 74a] It is our main embodiment of both the general hypothesis about the requirement
for multiple knowledge sources in perception (here, speech), and of the particular
organizational scheme of independent cooperating processes associated with each knowledge
source.

Speech Understanding Systems (SUS) 27

Hearsay-2 has a single common data structure (called the Blackboard), which contains a
set of hypotheses interconnected by relations of which hypothesis supports ancther and
which hypotheses are alternatives. This leads to a lattice data structure which directly
reflects the time-ordered and multi-leveled character of speech. A fragment is shown in
Figure 3-3. In terms of the representational conventions, all levels -- semantic, syntactic,
phonclogical, etc ~- are handied identically.

Each knowledge source is represented by an independent process (as that term is
used in multiprogramming or multiprocessing).

Each process is capable of the same set of basic actions on the Blackboard (taken
of course by virtue of its own special knowledge): to detect when it is relevant
(i.e., has something to contribute); to create hypotheses to add to the Blackboard
{and delete those there); to evaluate hypotheses found in the Blackboard (leaving
evaluations for other processes to read),

Each process can look at as little or as much of the Blackboard as it wishes. From
a programming view, the knowledge processes also satisfy common conventions
about their creation, modification, debugging and user interaction. The number of
knowledge sources is expected to vary between 10 to 100, depending on how
narrowly or broadly they are decomposed. The initial set is shown in Figure
3-4.

To the unwary, the general structure of Hearsay-2 may seem so general as to be
unexceptional. But just out of public view is an important problem, calied the Subroutine
Interaction Problem, which states that (given the current art} there is no way to add
substantial new knowledge to an existing system without having it interact with all the existing
knowledge in the system. Thus the entire system must be modified to make each incremental
addition effective. Systems which do not formally suffer from this (e.g, theorem provers
where knowledge can be added simply by adding propositions), show the effect in the
increased combinatorial explosion of their search, and have not proved effective. Thus, the
Hearsay-2 scheme is an attempt to provide a system that can beat the subroutine interaction
problem, by having each process communicate with the Blackboard and make its contribution
independently of the others. Whether this organizational hypothesis is effective will be
determined by whether Hearsay-2 operates effectively {and for what reasons) and, most
important, whether new sources of knowledge are in fact continually added to the system
during its growthsperiod, without continual readjustment of the other sources.

The subroutine interaction problem affects the development of a system, not the final
structure. " It reveals that the most important aspects of large systems may well be their
development and modification. The Hearsay-2 organization addresses some of the other
properties of development as well: rapid configuration of new systems with arbitrary sets of
knowledge sources and extensive interactive experimentation. Hearsay-2 is programmed in
SAIL on the PDP10, and uses that language’s associative processing {LEAP) and its facilities for
asynchronous processing.

3.4.1 Goals

We have already stated the two main goals for the Hearsay-2 system: To meet the SUS
specifications of Figure 3-1 by Nov76 and to prove out the system’s philosophy, which, if
successful, will make the Hearsay-2 organization an important contender for other intensive
knowledge based intelligent systems.

28 ' CMU Proposal to ARPA 75-76

- Figure 3-3: Example Hearsay-2 Lattice Structure (Fragment in the Blackboard)

‘question’
PHRASAL {SEQ)

‘nmodal guestion’
(SEQ)

—_——— —— — .__..;__.._.___\\L____.__
10
‘would’ ‘you' {11
(SEQ) {0”T)
LEXICAL ‘wili 7] / \
(SEQ) \ .
: 71 ‘youl’ ‘you2’
) {SE0) (SEQ)
S W _/_/X\}\L_______
. -
-
lD‘ / CJI lel
SURFACE- ‘ _
PHONEMIC < \\ N
l.L. (Yl

{ A

Speech Understanding Systems (SUS)

Figure 3-4: A Set of Knowledge Sources for Hearsay-2

- levels - - Knowledge Sources -

CONCEPTUAL —~&2
/V\ _____ —Semantic Word Hypothesizer

PHRASAL
\\ J -Syntaclic Word Hypothesizer
LEXICAL O

o)
A s
\h]i -~ — —Phonzme Hypothesizer
'SYLLABIC

—— \-- — — Word Candidate Ganerator

O —
e
- _\—Synlaclic Parser

\{ Y‘Phono!ogicat Hule Applier
SURFACE-
PHONEMIC

— — —Phone--Phoneme Synchronizer

PHONETIC & X
: —Phore Synthesizer
—_—— —-l— Segment--Phone Synchronizer

SEGMENTAL &)
SN\ Paremeler--Segment
Synchronizer

Py

—~ —Segmeanter-Classifier
'PARAMETRIC

C

29

30 CMU Proposal to ARPA 75-76

3.4.2 Current State and Recent Results

Hearsay-2 currently exists with the knowledge sources shown in Figure 3-4. It
recognized its first sentence in Nov74. Currently it is extremely expensive in both space and
time, taking about 200 times rea!l time and 180K primary memory.

3.43 Plans

All the major systems aspects must undergo extensive work throughout the period from
now until Nov76: developing additional knowledge sources, reducing the space required,
increasing the speed, and generally tuning the system. The following are our current
expectations: '

The system will be running on a 1200 word vocabulary by the Nov75 rehearsal, though
not well {i.e., we have no performance expectations). o

Pertormance on a 200 word vocabulary wiil be 907 at the word level and 707 at the
sentence level on the AP News Retrieval task.

We expect the number of Knowledge Sources to be about 15 for Nov75 and 30 for
Nov76. The semantic and task knowledge sources are currently the most important and they
are both in progress: Semantics will look some like Shank’s Conceptual Dependency model.

The spac'e is expected to grow to about 300-500K words even with efforts at code
compaction. This will require a managed segmentation system {(our KA10 does not run under a
paging system).

We Eurrently expect to get the time down substantially and believe we can keep it to
about 100 times real time for the Nov7% and Nov76 systems.

A critical area, especially for the Hearsay-2 structure, is how to focus attention to avoid
the combinatoriat explosion (which will show up rapidly in both space and time if great care is
not taken). Intensive investigation of this problem is going on, though no precise expectations
can be stated. '

We will initiate performance analysis of Hearsay-2 by Jul75 at about the level at that
for Hearsay-1.X and DRAGON. The system will not be sufficiently stable (in the performance
of its knowledge sources) before then to make evaluation worthwhile. The continuous work on
performance evaluation of DRAGON and Hearsay-1.X prior to that time shdutd provide us with
an appropriate methodology for dealing with Hearsay-2.

3.5 Hearsay~2 on C.mmp

The structure of Hearsay-2, in the independence and multiplicity of its knowledge
sources, lends itself to realization on muitiprocessor organizations. [Lesser 74b, 75] [Fennell
75a,b] However, so little experience exists with multiprocessor realizations of complex
programs, that much remains uncertain. Indeed, we can expect that a multiprocessor version
of Hearsay-2 will reveal much about real-time cooperation of processes in an intelligence-
demanding environment. Communication with the large global data base, for instance, may
impose severe restrictions on the operation of such a system.

Speech Understanding Systems (SUS) 31

From the viewpoint of applications, multiprocessors, especially those composed of small
processors {minis or micros), appear very attractive in terms of processing cost and the mass
production of specialized systems {such as SUSs need to be). Actually, the power argument is
relevant in the present situation, since our multiprocessor, C.mmp, provides more Mips, more
primary memory, and more flexible memory management than our KAlOs (see the C.mmp
section for an analysis of C.mmp and of the SUS). Thus, a successful implementation would
permit much faster evolution of Hearsay. (This again harks back to the proposition that the
most important aspects of systems may be their developmental characteristics and not their
final configurations.)

C.mmp and, in general multiprocessing implementations are highly experimental.
Consequently, we view this as a high risk, high payoff implementation. Under no circumstances
can we permit this version to become the critical path to the Nov76 deadline, at least without
major uncertainties being resolved.

The implementation of Hearsay-2 on C.mmp will be functionally equivalent at the level of
the global data base and its operations, and the knowledge sources. We intend to provide a
form of transliteration of the knowledge sources, so that no new substantive programming for
them will oceur in.the new system,

The system will run under HYDRA, the operating system for C.mmp, and will be
implemented in an interactive implementation system, L+. (See the section on C.mmp for details
on both of these systems.)

3.5.1 Current State and Recent Results

The section on C.mmp gives details on the status of the hardware and operating system
software for C.mmp.

L*C.(B) [Newell 717 is operational on C.mmp, having been brought up within the last six
months of 74. The initial design of Hearsay in L* exists and has been coded. The primary
problems lie in the small address space of the processors (32K 16 bit words), which is forcing
great attention to the problem of memory management. This problem has been anticipated to
be a central one, and it is inherent in the use of a multi-miniprocessor of the C.mmp type {(one
that does not use hardware devices to create a large homogeneous virtual address space).

35.2 Plans

We expect the initial version of the basic Hearsay (without knowledge sources) to be
running sufficiently to test the feasibility of the design by Apr75. Critical decisions to be
made at that juncture are:

Is implementation in L+ feasible? Many changes are being made relative to
the operational style of Hearsay-2 in SAIL. There are basic issues of the
etficiency and the addressing problems, which reflect C.mmp basic structure
as much as the L* implementation system. '

Is implementation under HYDRA feasible? This wiil be a time and overhead
issue, since without doubt HYDRA is logically adequate.

Can 'Know!edge Source and focus of attention mechanisms be feasibly
realized in L* and under HYDRA? Can the implementation capture enough of

32 CMU Proposal to ARPA 75-76

the Mips to be more powerful than the KA10? Are the facilities available,
e.g., a sufficientiy sophisticated file system, flexible scheduling?

Assuming positive answers to these questions we will set perfomance goals for the
Nov75 rehearsal,

3.6 Tha Faur Systems in Parspective

We have now described the current four SUSs: Hearsay-1.X, DRAGON, Hearsay-2 and
Hearsay-2 on. C.mmp. In the introduction we gave some research-strategy reasons for
wanting to work with multiple systems: That one needs aiternatives where there is
uncertainty; and that one needs a pacing horse, i.e, a benchmark program (DRAGON, in this
case). These two principies justify in a general way the course we are taking. Further, most
of the present effort would have been required even if we were building a single SUS. The
fact that we can study all their alterntives by devoting less than 207 of the- resources
(avallable for SUS research) makes it an attractive option.

These principles do not make clear the actual choice of systems (except possibly
DRAGON). The answets are implicit in our discussion of the systems separately; let us make
them explicit,

The four systems represent a concern along three dimensions of system structure: (1)
The simplicity or complexity of the computational structure; (2) the amount of knowledge used
by a system; and (3} the amount of computational power,

One can think of our four systems as occupying regions in a design space, as shown in
Figure 3-5. Hearsay-1, Hearsay-2 and Hearsay-2 on C.mmp all are options for a complex
computational structure; they represent our bet that such a structure is reduired. DRAGON, on
the other hand, has a simple structure. This is why it is our pacing horse system.

Hearsay-1 is located at the low end of the amount of knowledge, Hearsay-2 is at the
high end. One might measure this in number of knowledge sources, 3 for Hearsay-1, 9 (and
rising) for Hearsay-2. Here there is no question of preferences -- one moves from Hearsay-1
to Hearsay-2 as the research develops. From this analysis, the only reason for keeping
Hearsay-1 active is as a back-up in case the organization of Hearsay-2 becomes too complex.
Note that Hearsay-1 is much simpler in computational structure than Hearsay-2, even though
both of them are committed to the "complex" view. In terms of this dimension, DRAGON is
about at the same place on the knowledge scale as Hearsay-1. Any attempt to press it harder
will probably require moving it up in terms of the knowledge it uses.

The final dimension is that of computational power required. As the adequacy of the
system increases, it requires more Mips and more memory. This is just as true of systems
representing the "simple” view as of systems representing the “complex” view. (Each however
deploys its computational resoures differently.} Therefore it is incumbent to address where
the power is going to come from {we should look bath at Mips and Mips/$). Technology makes
clear at the moment that power comes from mini- and micro-processors, combined in
specialized architectures and taken several at a time. Thus, Hearsay-2 on C.mmp is an attempt
to begin this exploration into more efficient computationat processes. In these terms we have
in fact plotted a fifth system, which is DRAGON on the SPS-41, which is an analog of doing
with DRAGON what the use of C.mmp does for Hearsay-2.

33

Speech Understanding Systems (SUS)

Figure 3-5; SUS System Comparison

vo
0
1- AYS UVaH \&%Qva

/57 duwwonNg Al G
L7 2- kvsuvan 2 L \%@
<— \\r\\ e o
S32¥N0S
49T TIMONYA

I7-5dS NO NODYY]

(SdIw)
ADOTONHIIL

(7]
X

CMU Proposal to ARPA 75-76

The four systems we have picked are not the only points in this épace, and indeed our
notions of what the right mix of systems is will change as we get more results of our analyses.

The plane through the 3-D space in Figure 3-5 indicates an idealized notion of a plane
of constant performance. It is an attempt to iHiustrate that similar performance can be
achieved by systems with widely varying characteristics. Combinationat explosion can be
contained by using more knowledge or more processing power. Simple program organization
may have to perform many more unnecessary tests than complex ones but can usually do so
with substantially lower computational overhead. Thus what counts for a system is not its
absolute coordinates, but where it resides relative to the plane of best performance attainable
in & given epoch.

3.7 Support Common to all the SU Systems

Two activities are used in common by all the four systems. One of them, the Data Base,
is a required adjunct to any SUS effort. The other, the parameter-independent segmentation
and labeling, represents an instance of a general philosophy of not committing ourselves to
specific forms of sources of knowledge (here acoustic-phonetic), but wherever possible
considering a range of alternatives, against which we can do some performance analysis within
the context of actual systems.

3.7.1 Data Base

Our goal is to produce a library of segmented, labeled, and cross referenced utterances
which may be used to evaluate the performance of. an SUS as well as for studies to determine
the nature of knowledge sources. These need to be from the main task we are working with
(the AP News Retrieval task) and need to be graded in the size of vocabulary used from small
sizes all the way up to the 1200 vocabulary, which is our current maximum, [Shockey 74]

We expect this to be done by May75.
3.7.2 Parameter-independent Machine Segmentation and Labeling

Our goal is to use a single front-end system for all our systems. Furthermore, we wish
to be able to evaluate different parameterizations -- LPC spectra, PARCOR, 1/3-octave filters
-- and to use whithever seem appropriate with any of the systems.

Our approach has been to use training data (carefully segmented and labeled) and have
automatic determination of label targets and segmenting thresholds. The scheme is speaker
and microphone specific. Our intent is for the system to adapt to the speaker and room
conditions on the fly in any operational system. This constitutes mild training of the system to
the speaker, since, though there will not be any specific extensive training sessions, the
system must acguire some utterances for which it knows the correct interpretation in order to
learn.

The current system has undergone several iterations from its first version (Apr74)
[Goldberg 74] The segmentation scheme is in routine operation, we stil expect more
improvements in labeling, and we have preliminary evaluations of the various
parameterizations.

By May75 we expect to be placing the correct label in the first three choices 957 of

Speech Understanding Systems (SUS) 35

the time, to have less than 17 missing segments from phonetic segmentation, and to less than
107 extra segments from acoustic segmentation. We feel these accuracies are what is
required to produce the results predicted of the Nov75 systems.

3.8 Resources

As the current speech understanding program approaches its Nov76 performance
deadlines, the manpower required to reach them has increased. All of the, efforts with the
exception of Hearsay-1.X are at the implementation level and so require more full and part-
time programming support. We are clearly implementation, not idea, limited,

The entire area directly consumes 297 of the personnel budget exclusive .ot facility and
administrative costs. The overall direction is assumed by one facully member. The
Hearsay-1X system is stable and so has only one graduate student devoted to its operation
and performance measurement, The DRAGON (ELF-SPS-41) effort requires one staff
programmer and some graduate student support. Hearsay-2 efforts occupy 6.5 research
associates whose contributions cross both the PDPL0 and Cmmp versions, with emphasis on
the former. Five members of the programming staff are also allocated to Hearsay-2, three on
the PDP10 version and two on the C.mmp-Lx and speech system. Exclusive of engineering
support, the relative SUS manpower allocation to each of the four systems is as follows:
Hearsay-1 (37), DRAGON (127), Hearsay-2-PDP10 (477), Hearsay-2-C.mmp (217), general (17%).
The overall program is further supporfed by three engineering staff members and seven
graduate students. A large number of part-timers provide basic low leve! support for this
project so a specific allocation of funds for this group is included in this year’s budget.

Facility utilization falls into the two categories of the general facility (PDP10) and the
use of specialized processors, C.mmp being included in that category for this discussion. The .
present effort consumes 467 of the PDP10 facility, virtually one of the two processors. There
is fittle improvement that can be made to this particular configuration. Indeed, the efforts do
require a more powerful processor, of the order of a KL10 with 512K memory and paging.
This would probably be worth about a factor of 10 when running the ultimate system version
with segmentation. Budget constraints did not permit requesting of such an upgrade.

The DRAGON (ELF-SPS-41) system is stable on its dedicated PDP11, and could only.
profit from a higher powered specialized processor available by early 76 to yield improved
performance. The Hearsay-2 effort on C.mmp requires completion of C.mmp, which is dealt
with elsewhere in the C.mmp and Budget sections of this proposal.

36 CMU Proposal to ARPA 75-76

4. CMMP: MULTI-MINIPROCESSOR COMPUTER SYSTEM

4.1 Introduciic::

C.mmp is a multiprocessor system consisting of up to 16 PDP11ls operating through a
16516 crossbar switch into.a primary memory of up to 16 memory modules. Each processor
can lay its 32K 16-bit word address space anywhere within the larger 2V word physical
address. space in 4K-word pages. Figure 4-1 shows the structure of the system. [Wulf 71b]

C.mmp has a flexible capability-based operating system, called HYDRA, which permits the
operation of many distinct specialized suboperating systems simultaneously. Under HYDRA,
C.mmp operates in anarchical mode, which is to say that no physical processors have a
distinguished role (e.g., as master or slave),.

4.1.1 Goals

The fundamental reason for a research group to construct a multiprocessor is the
general computer science goal of advancing our knowledge of multiprocessors.

Why multiprocessors should be studied -- out of all the possible regions of the
computer design space -- lies with some fundamental cost and processing considerations.
Multiprocessors do not offer any end-user or programming advantage over a uniprocessor of
equivalent parameters: of equal Mips, processor-to-primary-memory bandwidth, I/0 bandwidth,
etc. Indeed there must be decrease in flexibility and increase in programming compiexity.
However, for a given state of the art of uniprocessor design, there is no way to obtain the
postulated equivalence on performance parameters for equal cost. This arises for two distinct
reasons. First, for large N, a processor N times as fast as a currently existing fast
uniprocessor exceeds the art. Second, the cost of relatively small processors, if sufficiently
mass produced, becomes much less than N times the cost of feasible but low volume
processors of N times the performance. Thus cost/benefit drives out uniprocessors in favor
of multiprocessors. An entirely independent advantage of multiprocessors is the potential for
high reliability due to the multiplicity of components.

The computing world has known this analysis for years, though the number of
multiprocessors with more than two processors can be counted on the fingers of one hand.
(We do not consider here array or vector processors which have single control stream with a
multiple data stream, e.g., ILLIAC-4, CDC Star, etc.) The amount of generally understood
scientific knowledge that has emanated from this handful is hardly discernible. It is beyond
the bounds of a proposal to develop the fundamental reasons why multiprocessors have not
been explored. The reasons are complex and relate to alternative options, to reliability
considerations, and to the types of processor systems that funding sources have wanted to
see developed. It remains true that we are now moving through a region of technology space
where the cost/benefit arguments for multiprocessors become ever more compelling, but
without benefit of any of the years of exploration in how to live effectively on such systems.

C.mmp is thus our attempt to generate some of that experience. The two most pressing
problems that must be addressed in multiprocessor research are (1) the realization of the
initial favorable cost/benefit ratio; and (2) the realization of effective use without consumption
of all the cost/performance advantage to obtain it.

C.mmp: Multi-Miniprocessor Computer System

Figure 4-1: C.mmp Architecture

Mp- O I
. Smp
.._.—
Mp 715
O ece 15
Pc Dmap Pc Dmap
Mp I Mp I
- K¢ Kci—
— L Jl ™\
T K.clock [,
Kia § — 1. ¢ Kiag

K.innterrupt

37

38 CMU Proposal to ARPA 75-76

The basic cost/performance situation is fundamentally determined by the hardware
structure. Figure 4-2 gives some data for Cmmp, using the KL1O processor as the
comparison machine, The figures are based on actual measurements of code densities and
‘processing rates for equivalent programs on C.mmp(11/20) and the KA10, with extrapolation
to C.mmp(11/40) and to the KL10 as 4+#KA10, Primary memory and processor costs are of the
same order {(and generally more important than switch and I/O channel costs), so that
comparisons depend sensitivity on the assumptions about the amount of primary memory
required per processing rate (Mp-bits per instructions/sec) and about the cost of memory.
The diagram shows Instructions/sec per dollar system cost for C.mmp and KL10 systems, as
the cost of memory varies (along the- horizontal axis) and as the ratio of Mp-bits per
instruction/sec varies {the paralilel family of curves). To the right, as memory dominates in
cost, all systems begin to look alike, purely as a function of amount of memory. To the left, as
memory becomes cheap relative to processing, all variations of amount of memory per
instruction/sec become irrelevant and C.mmp becomes equal to about 4 KL10s in efficiency.
(In absolute power, C.mmp is 5.95 mips to the KL10 at 1.37 mips, a ratio of 4.35.) Several
distinet points are laid out on this curve corresponding to the current KL10 with 256 K words
(1 megabyte) of primary memory at current DEC memory prices and at prices equivalent to
those paid for C.mmp memory; to the projected 16 11/40 C.mmp with 2 megabytes and 4
megabytes of primary memory.

The cost/performance figures of 4-2 are determined by the hardware structure, and are
essentially fixed at design time. The other fundamental question -- using the architecture
without using up all the advantage -- is only determined at the end of a more tortuous path.
It depends on carrying through the design to a functioning computer system of adequate
reliability, providing an operating system, providing software facilities, and bringing the
system to full use on a range of applications, where final usefulness can be demonstrated and
final net advantage can be measured. This list essentially constitutes the intermediate goals of
the C.mmp effort. And in fact the system was realized in conservative technology (e.g., neither -
the processors nor memory modules employ currently available LSI integrated circuit
technology) precisely because all these other steps need to be attained without undue delay,
if the tota! scientific goals are to be realized.

4.1.2 Plans

The general plans for Cmmp are dominated by the point in the life cycle at which we
now find. ourselves. With the system just coming into operational state, all of our concerns are
to make it a system on which a large amount of experience can be gained and to shape that
experience 'so that it illuminates the basic issues of muitiprocessor structure. We are at that
critical juncture where the most important question is the short-term one of how long the
transient will be until effective operation,

The rest of this section takes up each of the subcomponents of the total effort in turn:
The hardware system; the operating system; the software facilities; and application programs
and performance analyses.

4,2 Hardware System

The basic configuration is shown in Figure 4-1. A few additional facts about the system
are given in Figure 4-3. The system was designed for the PDPll processor. Each
processor model requires separately designed relocation registers and modifications (not
extensive), The original processor was the 11/20. We have since decided that 11740, which

INSTRUCTIONS/'SEC

C.mmp: Multi-Miniprocessor Computer System 39

Figure 4-2: Cost Performance of C.mmp

z¢¢~

l¢¢_+:c_‘n_—_rr:f££(o NTEL 308¢%s;est,)

V/

80—~~~ : Z
AN
.

"--.\ ~
\ N ™~ \\ C. mmP., I ?'xEG!\WO?\D
4p— NN N EMORY .
AN
C.mm (1975) \ \ ,\1—-),
(1&1134@‘5) \\ NN \/// Cormmp 2.&:582;@ D>
2~ \ \\ N
T
~ \ /~KLI® , Z5¢K WORDS
b ot 1.35 CENTS/BIT
8| ’ KL1® , 2561 WOR DS
\ ' ot DEC PRICES
61\1_1@(1 57 5) ' \
—‘—if:,—_‘
45_ _‘% .
*m@(mz)
, -

DOLLAR

08—
.6’_-

=

o g
2] 1975 co&zam&mommc&s/ ® &>
—- /4—-— lﬁiﬁ\'ﬂ‘i\q‘v
, AN
/ el
1 T T H 4 T 1

I
P L2 PAEEE 3 2 4 6B 2 4 ¢8I0 20 4]@3;1%9
CENTS PER BIT OF PRIMARY ME MO R

o

40 CMU Proposal to ARPA 75-76

was announced after the original design was frozen, is a more suitable processor. To capitalize
on the 11/80"s speed relative to the trip through the switch, it is necessary to add a cache to
the relocation registers. (Little extra gain is made by using 11/4bs, since the extra high-
speed bus cannot be exploited.) As we describe below, the 11/40s we will utilize will have
dynamically writeable microcode.

Figure 4-3: Added Facts about C.mmp
(1) Up to 16 PDP11/20 or PDP11/40 processors
(2) PDPI"1/40’s may h‘ave writeable microstore
(3) Up to 16 ports each containing up to 108 18 bit words

(4) 16x16 crossbar switch allowing up to 16 simuitaneous processor-memory
connections

(5} 200 nanosecs {roundtrip) delay for going through the switch
(6) Maximum switch bandwidth: 5+108 bits/sec
(7) Each peripheral device associated with a single processor

(8) Non-demand paging to fixed head, zero latency disks; capacity: 512k words
(= 128 pages) per disk; transfer rate: 1 page per 16 ms

{9} Other peripherals: standard PDP11 devices
(10} Communication links t¢ front end terminal processor and PDP10A
(11) Imp host (interface under construction)

{12) Current state; 5 PDP11/20 processors functioning; 700k words memory
avaitabe in 12 ports; 4 IMS paging disks; 2 RPO3 disks (40 megawords)

The 11/40 is realized as a horizontally microprogrammed processor with 256 56-bit
words. Another 1024 words of writeable microcode can be added at any time, without
modification to the 11/40. We have designed and augmented the 11/40 system to convert
what was originally a rather special microprocessor into a generally useful dynamically
microcodable processor.® This has involved adding a general mask-shift unit, a micro-
subroutine facility with stack, an emit field and extended branching capability. With these
additions there is enough micromemory to do extended arithmetic (both 32 and 64 bit data
types), to incorporate many HYDRA kernel functions (with reliability checking), and to form L=
or Lisp specializations,

The design of the IMS fixed head swapping disks should be noted. We achieve zero
latency by mapping the C.mmp page (8K words} exactly onto a single track of the disk. The

*DEC supplied the 11/40 and NSF supplied the writeable microstore.

| |

o

C.mmp: Multi-Miniprocessor Computer System 4]

disk controller has been modified to permit the data transfer to begin immediately, whatever
the initial position of the platter.

4.2.1 Current State and Recent Results

C.mmp has been available to sympathetic users with the 16116 switch since Nov74. It

~currently has 5 11/205, 700K primary memory through 12 ports (512K through 11 ports

routinely functiona!), and 4 IMS paging disks. The system is connected to terminals via the
Communcations Front-end {(see Facilities section), in addition goes directly to the PDP10A via a
4800/300 baud link. :

The design for the 11/40 relocation registers, cache and processor modifications is
complete and the initial version is being implemented. There are 5 11/40s in-house destined
for C.mmp. (No more 11/20s will be put on C.mmp.) These additions and modifications are
independent of whether the 11/40 is equipped wih writeable microstore.

An initial version of the programmable microcoded 11/40 has been operational since
Oct74. We have done a study of its use for the XGP Xerographic Printer. We are currently
studying the amounts of speed up available for C.mmp generally, i.e, for HYDRA and basic

- programming processes. Preliminary results indicate a factor of 4-5 is available in some

sections of HYDRA by rewriting these functions directly in microcode. This leads to an
estimate of as much as a factor of two in overall performance of the system under HYDRA,
These results are very recent (Dec74) and will be checked. They do torm the basis of our
decision (see Plans below) to go ahead with the proposal to put writeable microstores on all
the 11/40s on C.mmp.

[The performance analysis of Figure 4-2 does not take into account that the 11/40s
woulid be microcoded. This would not show up in the raw instructions/sec (which must
actually decrease with the microcoded 11/40 if it spends time in the specially microcoded
functions). It will show up in the equivalence ratios of how much a KL10 instruction is worth,
for a given computation, vs 2 simple 11 instruction (they happen to be nearly equivalent) vs a
microcoded 11/40 instruction (which will increase by some factor large enough to override the
lowered instruction rate and yield a net increase in effectiveness). This will in fact produce a
more favorable picture for C.mmp, but the estimates of the effectiveness of the microcoded
11/40 are still too unreliable to justify plotting it.]

42.2 Plans

By Jul75 we expect to have the total system of components that are in-house in the
system: 4 11/20s (The 5th 11/20 now on C.mmp will be swapped for an 11/40) plus 5
11/40s, 1 of which will have a writeable microstore, 700K words of primary memory, 7 IMS
paging disks, the IMP connections and a 9600 baud connection to the Front-end.

We plan a complete system that consists of 16 microprogrammable 11/40s with 1
Megaword primary mempry, and 9 paging disks (providing a paging ratio of 4-5). The
justification for going to a maximum processor system, balanced with respect to other
characteristics, rests both on the need to investigate a full multiprocessor and the need for
the larger amounts of processing power with respect to applications. (See subsection on
Application Programs and Performance Analysis.) :

To this must be added the secondary memory requirements. Qur current view makes
C.mmp heavily dependent on the PDP10s for secondary storage, i.e., for on-line disk storage

42 CMU Proposal to ARPA 75-76

(the IMS disks are strictly for paging). This requires high speed communication between
C.mmp and the PDPlO fo be achieved by two DA28s {which provide a total of 8+106 bits/sec).
However a minimal amount of secondary storage must be available on C.mmp itself. This
consists of two RPO4s (each 40 Megawords), each with its own controller. The capability for
two separate systems is required so that the two independent partitions of C.mmp can run
simultaneously., (The ability to partition the configuration has already proved to be of major
value in making progress.)

The rate at which C.mmp goes to completion depends mostly on obtaining the funds for
acquisition (see Resources, below). The acquistions asked for in this proposal will bring the
system to 4 11/20s plus 12 microcoded 11/40s, with one million words, and with both RP04
disks. We would expect to have this installed by Dec75. The remainder will come along as fast
as funds are obtained.

The creation of the microprogrammable 11/40 offers the possibility of creating highly
specialized processors (as opposed to the sort of specialization which we will be putting into
most of our "regular” 11/40s to adapt them to HYDRA and general use). We have been
studying possibilities, such as L* processors. Plans are not firm at the moment about
undertaking any particular project of this sort. (We should point out that HYDRA was designed
with an environmeant of non-homogeneous processors in mind.)

4.3 HYDRA: The Operating System

We know litlle about multiprocessors. We know even less about multiprocessing
operating systems, for the problems they pose can only be understood, and the proposed
solutions tested and verified, in the world of routinely running mulhprocessors with a
community of users.

We do know that the demands of a multiprocessor on an operating system are severe.
This follows from the central core functions that operating systems perform: allocation of
resources and the creation of safe and sane computing environments, Diversity of resources
and of concurrency have always been the instigators of our difficulties with operating
systems, both qualitatively and quantitatively, Multiprocessors increase both by a large factor
over uniprocessors.

Thus, an operating system for a multiprocessor must itself be a major piece of research
into all of the classic operating system issues. At least it must be so if the operating system is
not, all by itself, to make it exceedingly difficult to obtain flexible end-use computing without
squandering all the cost/performance gain. This is no idle concern. Experience has repeatedly
shown that an operating system can take a major share of the cycles of a system (the 907
overheads that formed the horror stories of software history).

We stress this point to underline that research on muitiprocessors (and in particular our
own research) is not just research on computer structures. Four links, at least, exist in the
total research chain: the architecture + the operating system + the software facilities + the
task-decomposition and application programs. To these must be added two others: reliability
of total operation and analysis of performance. All six require significant research efforts and,
despite any problems of keeping the whole in focus, none can be assigned to the status of
simply an “auxiliary" or "supportive role”. The point is appropriately made here, when
describing the second link in the chain after the hardware structure. We will add short
reminders as we proceed to the other links,

J
|
i
|

| _,.ar..__._m ..

C.mmp: Multi-Miniprocessor Computer System 43

4.3.1 Goals

Clearly, from the above discussion, the main goal is to create an operating system
adequate to the demands of a genuine multiprocessor environment. These demands seem to
be (1) adequate protection and security; (2) allocation of resources, including guarantees on
the amounts of resources made available in specified time periods; (3) reliability and
recoverability; (4) the creation of specialized operating environments; and (5) the support of a
general user environment. The first three of these are classical operating system functions;
what muitiprocessors add are new forms and complexities in the demands. The last two,
though perhaps familiar, require some explanation,

As an oversimplification, the exploitation of a multiprocessor can take one of two forms.
In one, the operating system effectively creates for the user an uniprocessor system --
except for the performance characteristics (Mips, etc) and charges, he does not know he is on
a mulliprocessor. In the other, the multiprocessor facilities are not masked. In fact, they are
hopefully augmented to be conveniently at the command of the user who is willing to adapt
the structure of his algorithms in order to exploit the full capabilities of the particular
multiprocessor structure. This iatter form is the one intended for C.mmp. It is the one
consistent with the attempt o explore how multiprocessors are used; it is the one that
maximizes the chances of solving the basic problem of not giving up all the cost/performance
advantage to make a multiprocessor system habitable. There must always be a single
operating system on a machine at some level, if only to give the system away to various users
from time to time. This strategy forces the kernel operating system to permit such
specialization by users -- and by different users in different ways. Thus, one arrives at
organization that permits multiple specialized operating systems operating simultaneously.

It is a myth that specialized computing avoids providing all the facilities (and facing all
the problems) of a general user facility. Specialization buys power and economics; it does not
avoid providing facility. To construct and use a complex program on a computer implies the
need for all the software and interactive facitities that we have come to associate with a good
general purpose system. Big systems, though they may be specialized in their final effects,
are general purpose in their demands. Just to make the point we have listed in Figure 4-4 a
large number of system and software facilities, Having all these is what characterizes the
modern general purpose computing facility. They are needed on C.mmp, it systems of any
complexity are to be programmed for if, made to run, and their performance analyzed.

To be sure, the economics may indicate that the general user facilities are not terribly
efficient, since the main computing is whatever the central engine does well. But they must
still be there. Also, it may be possible to provide these facilities in an associated standard
general purpose computer. This is the tactic of systems such as ILLIAC-8, and indeed it is the
strategy adopted for C.mmp in several respects (BLISS11 code is compiled and loaded on the
PDP10; most C.mmp file space will be on the PDP10 systems). But there are limits to this
strategy, for it introduces rigidities which may predispose the use of the specialized system
(here C.mmp) to a narrow preconceived style.

A single illustration might suffice to make the point. C.mmp, we assert, must permit
general time-shared use. Many people should be able to work on it simultaneously, both on
aspects of a single major application sysfem or on many different systems. The classical ploy
to avoid this is to think of C.mmp as a giorified processor (much as ILLIAC-4 is thought of) and
to allot its time in exclusive intervals to a single user. Without going through a detailed
calculation, the rate of utilization of C.mmp under these latter conditions would probably be
less than a twentieth of what it will be under the multiple use time-sharing regime -- maybe
even much less than that, considering how inetficiently a single user employs a computer.

44 CMU Proposal to ARPA 75-76

Figure 4-8: C.mmp Software Facilities

(1) System status reports

(2) User recognition

(3) File manipulation and status reports
(4) File display (terminal and line printer)
(5) - Backup of secondary storage

(6) Process creation, monitoring and debugging
(7) Resource allocation

(8) Space management

(9) Time arld space accounting

(10) tditor

(11} Assembler

(12)- Compilers

(13) Interpreters

(14) Process save and restart

(15) "Intelligent” command interpreter
{16) Network communication

(17} Mail to local and network users

(18) Online documentation

(19) Terminal session recording

(20} Script execution

HYDRA’s design incorporates an extensible capabiiity-based protection structure which
permits implementation of non-hierarchical protection schemes which are essential to attaining
any real diversity of specialized systems. Capability-based operating systems are just coming
into being and HYDRA is therefore in this respect also pushing into new territory. Thus, it is a
major goal of the research on HYDRA to explore the costs and benefits of a full-scale
capability-based system. As will be discussed later, the protection structure of HYDRA
facilitates the simple and flexible construction of operating system components as normal user
programs.

A distinctly separate subgoal is to explore the role of capability-based operating
systems in solving reat security problems.

, Two methodological goals also exist for HYDRA, both related to general computer
science goals of how to produce good software. One is to provide a case example of a large
system that was produced by the using the structured programming methodology. It will
provide some evidence, though not formally, on how well that methodology works. The second
is the goal of constructing operating systems that can be formally verified. This is an
important goal of current operating system research. It is not a primary goal of this research,
since the verification art has not advanced to where it can be insisted upon. But verification
attempts on HYDRA will be made as effort permits.

4,3.2 Structure of HYDRA

HYDRA [Wulf 78, 75a] consists of a Kernel and a collection of Policy Modules and
Subsystems. The Kernel. is structured around the capability-based protection mechanism it
ncorporates. [Jones 73, 74] The Kerne! includes those basic extensions (of the bare hardware
-onfiguration) that will permit muitiple operating systems to coexist on the same shared

C.mmp: Multi-Miniprocessor Computer System 45

hardware. Thus the Kernel includes the protection mechanisms, the lowest level resource
management which distributes resources to the processes execuling under the aegis of
different operating systems, and the primitives to permit controlled communication and
synchronization of processes {and i/o devices.)

In a capability-based operating system, rights to access a resource are associated with
the accessor, not the resource itself as in many second generation operating systems (e.g., the
PDP10 System, DEC’s TOPS TEN). Bscause of the HYDRA protection mechanism design, all
resources can be protected in a homogeneous fashion. Users can create new ’‘abstract’
rescurces; and access to these new resources can be protected using the same basic
protection mechanism with no extension. The advantage of a capability based system is the
fine discriminations it permits with respect to what processes can do to what sorts of things.
There are two new dimensions of freedom. Accesses can be tailored to the resources
involved--as opposed to the crude uniform read-only/write-only/read-write distinctions
allowed in many second generation systems. Capability-based systems also permit non-
hierarchial protection schemes so that there need not be a succession of concentric circles of
uniformly greater access rights.

The Kernel is quite primitive and for it to be conveniently useful requires the addition
“of a policy module and subsystems which make up the bulk of what the user views as his
operating system.

The distinction between the kernel and the policy modules and subsystems corresponds
exactly to the operating system facilities that must always be there and the specializations
that are permissible. Thus the key issue is what facilities reside outside the kernel, hence
may be separately specialized. A Policy Module contains a scheduler and a pager. Hence
these two fundamental aspects are under the complete control of the user. The policy module
is also responsible for administering the resource allocation of the processes which run under
its aegis.

Along with the policy module the user would probably find it convenient to have a
Command Language, a Directory System, and File System. Thus most of the functions one
usually associates with an operating system can be specialized for each user system if
desired. The exceptions are understandable: There must be a protection system that is
primitive to all subsytems -- they must be protected from each other. Specialization of
protection occurs because the design of the capability-based system permit the passage of
arbitrary forms of access rights to a subsystem, which in turn can then become a
- subprotection system and pass out further access rights. The other exception is the primitive
resource allocator, since someone must own the basic physical resoures and distribute them to
the subsystems.

4.3.3 Current State and Recent Results

The Kernel has been operating routinely since early 73 {originally on the 4+4 prototype
hardware system that preceeded the 16x16). The first policy module, PMO, and the first set of
user subsystems have been available to sympathetic users since Nov74. The facilities in these
subsystems are still rather incomplete (e.g., there is no file system, so that all files are kept on
the PDP10). Regular user periods have been scheduted every day since Nov74. Mean-time-to-
failure is still very low (10 minutes with half a dozen relatively unsophisticated users; about
30 minutes with a singie sophisticated user); but is gradually lengthening. Errors are widely
distributed across hardware, software and operations.

a6 CMU Proposal to ARPA 75-76

4.3.4 Plans

The first iteration on HYDRA is complete, but there are a number of improvements and
additions we need to make. Short term plans all revolve around getting an adequate user
environment up and running routinely. There are several primary targets. One is extending
protection to confinement (assuring that no data can leak out of a procedure, especially an
unreliable one} and to revocation (taking back a right of access given to someone earlier).
Another is to time heavily used functions and to recode to reduce critical overheads. This
involves use of the Hardware Monitor (see below). Besides these, the adding of facilities
which will be highly responsive to user demands is important. We expect the critical period,
when the system appears a monster to work with, to last until about Jun75.

Longer term plans must wait until after the transferral to the small C.mmp Software
Group (see below) of the responsibility for satisfying short-term user demands, which are
currently all encompassing (and properly so). At that point, a very large number of
alternative fundamental issues can be tackled, many corresponding to flexing degrees of
freedom in HYDRA that have not yet been touched in the code that is running. Other issues to
be addressed include improving HYDRA’s resiliance to hardware malfunctions, incorporating
resource guarantees and expioiting the 11/40 writeable microcode,

4.4 Software Facilities

There is little question about the need for software in addition to a good operating
system, to make a computer system habitable. Nor is there much question about the effort it
seems {0 take to produce it. This, along with similar statements that hold at the level of the
substantial application systems, provide the ingredients for the so-called software crises. The
problems are especially acute for one-of-a-kind systems, where there are not even the
pleasures of amortization to average frustration down to tolerable levels. C.mmp is a one-of-
a-kind system, for all momentary purposes. The problem of obtaining software facilities,
however, will not go away and it must be faced. Failure to provide adequate software
facilities, supporting all the functions implicit in Figure 4-4, will resuit in failure to- develop 2
user community that can put substantial applications on the system.

It is time to remind the reader that each of the four links {(hardware system, operating
system, software facilities, application systems) is nat only a co-partner in being critical, but is
a co-partner in being subject matter for research. Each link has independent research goals,
that come from domains of Computer Science not tied to multiprocessor research. This is true
of operating sytems. This is perhaps even more true of software facilities, where the software
crisis is seen as pervasive. We see several research challenges in solving the software
problem, as well as it being just a critical link in the total multiprocessor effort than must get

plugged.
44,1 Goais

Thus, the goal is to produce adequate software systems for C.mmp. With respect to
type, we take this to mean essentially the list of Figure 4-4. With respect to quality, we take
this to mean state of the art, which in practice means equivalent to facilities on the PDP10. In
some respects demands are morg stringent than on the PDPL0. With HYDRA we already have
an operating system that is' fundamentally better than those available on the PDP10, and the
software tools must be adequate to support this. For instance, the ability to create schedulers,
pagers, file systems, etc., implies systems implementation facilities. Along another dimension,

C.mmp: Multi-Miniprocessor Computer System 47

the extra -complexity of multiprocessors implies that debugging and program analysis
techniques (e.g, performance monitors). must be better than on a uniprocessor for equivalent
rates of progress. In some respects, the demands are less stringent. The collection of
application programs can. be much smaller, since the range of interests of the C.mmp
programming community will be much narrower than a general user community.,

Against the background of the known gquagmire in constructing substantial software
facilities, the key issue is what approaches we have to obtaining the software and at what
costs. Our present strategy has six distinct strands, which we outline immediately below. The
first four constitute sensible sofiware engineering practice, but do not carry with them any
research impact. The last two essentially contain a research component, so that success or
failure of them is of interest from a wider view point. As noted in the final paragraph of this
subsection, the amount of manpower being devoted directly to the software acquisition is
quite small. Consequently, we do believe that the general success of this entire software
acquisition will have some value as a case example. Certainly, failure in it {i.e., being finally
caught up in the guagmire), will lead to unwillingness on our part to proceed with another
such project without having developed 2 substantially more adequate approach.

The six strands are:

Use of higher leve! implementation languages: The main implementation language is
BLISS11; which is a version of BLISS [Wulf 70, 71a, 72, 75a] (whose original incarnaticn is as
a PDP10 system) for the PDP11, and which produces appropriate code for C.mmp. BLISS (and
with it BLISS11) was of course a research venture, involving goals not only of programming
ease for system building, but also of highly efficient code (more on this in the SMCD section).
But BLISS has been working successfully for severai years, and BLISS11 for over a year, and
the worth of these systems is not in question in the present effort. HYDRA is implemented in
BLISS11 and the code productivity there (26 debugged instructions per man/day for a 56 K
instruction system) are very good with respect to the software production art. It should be
nofed that BLISSL11 was a component of the total C.mmp effort and that the decision to
produce an 11 version of BLISS was specifically made as part of the total C.mmp research
strategy.

Use the PDP10s to avoid building software on C.mmp: In particular, use this strategy to
keep the development of C.mmp itself off the critical path. The prime .example of this is
BLISS11 itself, which resides on the PDP1Q, compiles and [oads there, with only absolute bits
flowing into C.mmp. This has been critical to the development of HYDRA, of course, when
C.mmp was a completely nascent system. An important part of this strand is having the
software exist in both PDP10 and PDP11 forms. Thus, programs can be (often are) coded in
both BLISS10 and BLISS1! (there being minor dialectical differences) and run on both
machines. (See the discussion of DRAGON in the SUS section for another example.)

Reliance on the natural growth of systems: In an advanced computer science user
population, especially one populated by students, systems just naturally grow. This is not a
solution open generally in the development of software, but it is of great importance {(and has
been historically} in the development of software. That it seems managerially untidy is beside
the point. Related to capitalizing on this is the first strand -- namely to have good generally
available system implementation facilities. [Newell 78]

Acquisition of PDP1l systems from elsewhere and their adaptation to C.mmp: A
~significant advantage of having adopted a major minicomputer as the C.mmp processor, is that
an immense amount of software exists and continues to be generated for it (see the discussion

48 CMU Proposal to ARPA 75-76

of algebraic languages, below, for an example). Adaptation comes in two stages. In the first,
one must simply bring the new system up under HYDRA. This is not much different (for ease
and for troubles) to bringing up any program under a new operating system, with the
exception that minicomputer programs tend to assume total occupancy of the computer and
direct command over all system functions. The second stage is to develop multiprocessor
versions of the system that can simultaneously use multiple processors. This task is generally
a creative one and constitutes, from the present vantage point, an exercise in the study of
multiprocessing (see the subsection later on benchmark programs). Consequently, our main
concern in this strand is with the first stage, letting the second stage take place where
someone’s research interests evokes their desire to address this problem.

Right Structure Hypothesis: The fifth strand is built around an hypothesis that if the
structure of the operating system is right, then the production of the middle level software
(i.e, Figure 4-8) will be signficantly easier than under current operating systems.
Operationally, the notion of “right structured” is taken to be the structure of HYDRA, and it is
predicted that the time it takes to produce software facilities on C.mmp will be much shorter
than extrapolations of current experience on systems under second generation operating
systems would predict. To understand this hypothesis it is necessary to note that almost al
the items in Figure 4-4 have significant interaction with the operating system. This interaction
constitutes an important component of the complexities in such systems, though it does not
necessarily account for much code. But often such software facilities must be warped in their
very design in order to fit them into the constraints of the existing operating system. The
type of evidence that will come forth on this will be, naturally, an analysis of cases. Thus, it
will be to some extent mixed with other effects, such as the efficacy of the implementation
systems, and bv the quality of the data on similar software facilities created on other systems.
Still, we are looking for striking results and expect to be able to derive some conclusion about
whether this hypothesis is true and why it failed if indeed the expected ease is not
substantiated.

Adternative implementation system (L#): L# [Newell 71] is an interactive system in which
the user constructs new systems on-line by growing them from the inside, so to speak. The’
facilities available within L% (as an implementation system) are adapted, augmented and
modified to become the facilities of the final application system. L# is itself grown from a small
kernel, the central core of which is a general symbolic list processing facility (e.g., as in Lisp},
so that all of L¥’s facilities are built within the system itself and are open to easy adaptation
and growth. The basic L+ language is interpretive, and efficiency is to be obtained by
selective assembly and compitation (facilities for both being built up within Lx itself). In
operation, L* has the flavor of a good interactive Lisp.

L+ was originally developed on the PDP10, where it has been used for implementing
various Al systems (e.g., PSG, a production system fanguage [Newell 72a}, Merlin {Moore 73]
It has been undergoing an evolutionary design in order to discover the most appropriate
kerne! from which to grow the system. Thus, as with BLISS, the implementation lenguage
exists on both the PDP10 and C.mmp, with the consequent ability to work back and forth and
debug on either machine. '

Lx and BLISS represent different philosophies for what is needed in an implementation
system: L# is interactive, symbolic and grows its target systems; BLISS is compilation-oriented,
algebraic and produces its systems as code entities distinct from itself. While BLISS is in the
main stream of implementation system development, L# is much less accepted as a scientific
hypothesis about how, implementation of systems should be accomplished. [t seems unlikely
that evidence will come forth that one complex set of underlying assumptions (the BLISS set)

C.mmp: Multi-Miniprocessor Computer System 49

dominates or is dominated by another complex set (the Lx set). But we expect C.mmp to be an
arena in which we may find out a good deal about the space of implementation systems.

One special attraction of L* for C.mmp is the solution it offers to where alt the software
tacilities will come from. With L% they all exist in the implementation system itself, as it is
brought up initially, and they become immediately available to the user. Thus, once an L=
system is running at all, al! the tacilities of Figure 4-4 become available (except those which
represent functions outside a particular subsystem).

The implementation of the total strategy outlined above for obtaining software facilities
is distributed among many groups in the C.mmp community. They all complement each other
and can in general proceed along independent developmental paths. (The iinkage to the
PDP10s is perhaps an exception, but this part is already operational and has been a
fundamental component of the C.mmp total system strategy from the beginning.) There is a
small software group associated with C.mmp, whose function it is to provide the required user
systems, especially al the level of adaptations of Policy Modules and Subsystems. Until now
there has been no such group, but with Cmmp developing a community of users, some
resources devoted to day to day smoothing of the way is necessary. We think of this small
group as critical, but not as having anything like the exclusive burden for carrying out the
total strategy. They will, of course, operate to coordinate it, in so far as that is necessary.

4.4.2 Current State and Recent Results

BLISS11, the primary implementation system, has been fully operational since 73. 1t
turns out highly optimized code, namely, as stated, better code for large systems than
professionals produce. (This aspect, by the way, is critical, even early on, for ils use in
HYDRA.)

An Lt system is operational on C.mmp that has most of the faciflities of Figure 4-4. The
first version brought up was a stand-alone version on Cmmp in Apr74, in a month-iong
software experiment to demonstrate the system generation capabilities of L% The curren®
version, LxC.(B), works under HYDRA. !t is being used for the SUS effort {see below}.

443 Plans

The small software group (1 research associate + | programmer + 2 graduate students
+ part-time students) is just being organized. It is expected to be operational in Apr75. This
group is independent of the main continuing work to develop HYDRA. It will be driven by
immediate user needs.

Plans for the exact software facilities to be added and in what order are not yet firm, in
part because the software group does not yet exist and in part because the facilities will be
defined iteratively as a function of need. This is essential in a very small group which is to be
highly user-responsive to a user community which is just forming. The foliowing can be said at
this time:

The SUS group, which is the major application system being put on C.mmp (see
subsection below), is taken care of by L#.

There is a need to make available a regular algebraic language of the Fortran-Algo!
variefy. (BLISS, though an a'gebraic language, is suificiently criented toward implementatior:
issues that it does not serve the required functions; L is not an algebraic language.) To argue

50 CMU Proposal to ARPA 75-76

why a standard algebraic language is absolutely required is essentially to rehearse the
argument about why any substantial specialized computer system must include general user
facilities. For standard languages one adds the ability to import programs from elsewhere. The
decision on which languages is a pragmatic one, depending strongly on the existence of
versions for the PDP11 which can be brought up under HYDRA. Candidates are a CMU version
of ALGOL68 {Kneuven 75], which currently exists in BLISS11, though no run time system exists
yet; FORTRAN, for which interpretive and BLISS11 versions exist, PASCAL, for which
muitiprogramming versions for the PDP11 are being developed by Brinch Hansen at CaliTech;
and SAIL, for which versions for the PDP11 are being developed at Stanford.

45 Application Programs and Performance Analysis

This subsection stems from a special point of view: For an OK system (either in terms of
architecture or operating system) application programs and systems can act as measuring
tools. They reveal the properties of the system. Thus, one wants to deliberately generate a
controllable set of such application programs and systems. This stands in marked contrast
with the normal view about computers, which is that their uses are dictated by the desires and
needs of the user community; one does not deliberately seek "applications".

We expect our user community to make use of C.mmp in a diverse set of ways, and in
fact expect much of the knowledge about whether and how a multiprocessor can successfully
be use to arise from this spontaneous use. However, this section concentrates on our
deliberate plans for obtaining useful performance analyses of C.mmp.

There are several important dimensions of analysis. First, are the possibilities for
parallel decomposition of a particular computing task, and how this maps onto the structure of
a particular multiprocessor under study (here C.mmp). Second is the contribution of the
various aspects of the total multiprocessing system to the computing cost. This includes
memory contention, process evocation, protection, other operating system overheads and
programming efficiencies of various kinds. Third is the degree of processor utilization and
memory utilization. Fourth is the bandwidth requirement for communicating between
processes,

‘ Measurement tools are required in order to determine actual performance and to permit
relating the performance throughout the vertical range of the system -- from hardware
contention through the operating system to the program structure imposed by the
decomposition scheme. The primary tool is a hardware monitor [Swan 75, Fuller 73a, b} that
permits measurements at the ievel of the memory access, but lets them be correlated with the
behavior of the software {the operating system or higher). This more sophisticated
measurement is necessary since the current art of hardware monitoring usually permits only a
low-level analysis with no correlation of gross level statistics with higher level behavior.

With the exception of the physical measurement tools (and of course the requisite
mathematical and statistical technigues), the primary requirement of analyzing the performance
of a complex system are the judicious and inspired selection of tasks to program and analyze,
and the willingness to spend a substantial amount of effort in carrying the analyses through
from task decomposition to programming to measurement to modeling of performance.

C.mmp: Muilti-Miniprocessor Computer System 51

45.1 Current State and Recent Results

We have designed and built a Hardware Performance Monitor with the requisite
properties. It has capabilities as advanced as any monitor in existence or being proposed (and
cost us approximately a fifth of existing high performance monitors). It has been operational
since Oct74 and is beginning to be used to take performance measures on C.mmp (it was used
to obtain some of the C.mmp measures used for Figure 4-2),

Benchmark tasks are small well-understood programs whose behavior can shed light on
aspects of multiprocessor performance. To be really useful, benchmarks must also be
controllable in the sense that they can be readily adjusted to probe or stress varying parts of
the computer system. Wea currently have a collection of four under investigation, though we
are always on the lookout for additional interesting ones:

Technology chess program [Gilfogly 72} This is typical of sophisticated heuristic search
procedures. There are important algorithms {(e.g., the so calied alpha-beta procedure) that
exploit the sequentiality of search. The key question is whether parallel search systems (as is
natural on multiprocessors) can survive this challenge.

FFT (Fast Fourier Transform): This is a classical and important calculation-intensive
task, which appears to be ideal for SIMD machines (Single Instruction stream, Multiple-Data
stream systems), such as ILLIAC-4 and CDC Star. The key question is whether such vector-
oriented task are amenable to effective solution on multiprocessors and how these solutions
compare with those on the SIMD machines.

Pattern recognition: The algorithms in question are the classification procedures being
used in current image processing work that involve essentially nearest-neighbor calculations
in 4-space. The actual procedure being analyzed and programmed is one currently running on
ILLIAC-4 working on satellite photographs. The key guestion is the same as in the FFT: to
analyze multiprocessor performance on problems supposedly ideal for array processors
(SIMD).

Integer programming and related optimization techniques: The key guestion is how a
task area characterized by a sel of simultaneous equations and constraints can be
implemented on a multiprocessor. For instance, will it be necessary to shift to branch-and-
bound search techniques to achieve the desired paralielism.

We can distinguish application systems from application programs on the basis of the
complexity and multiplicity of the functions to be performed (e.g., so that no simple analysis of
the "essential” inner icop of the system can suffice), Since these are total systems, it is a
major decision to actually implement one and study it, a decision that has to be supported by
independent research interest.

The one application system is Hearsay-2, which was described in the SUS section. This
is in fact the major driver for bringing C.mmp into the world as a functioning system, since the
SUS effort is operating under stringent deadlines. The natural correspondence between the
structure of Hearsay-2 and the multiprocessing structure makes it an appealing case. On the
other hand, the total system character of Hearsay-2 (for debugging, interaction,
experimentation, evolution and multi-person development) puts substantial stress on the entire
range of software facilities, and forces them all to be developed simultaneously.

b2 CMU Proposal to ARPA 75-76

- 45,2 Plans'

We expect the FFT benchmark to be implemented and evaluated by Jun75. Of the other
benchmarks listed, we expect to have a first iteration completed by Sep75, which will encode
them in the straightforward way. Later iterations will look for good, as opposed to obvious,
ways 10 decompose the tasks.

~ We expect to start a benchmark in the area of fluid dynamics simulation or in structural
analysis, which deal with numerical solutions to partial diffential equations. These problems
are representative of uses of computers in large government laboratories, and have always
been an important class of computations (in fact they have often been the driver in the
development of new computer systems).

We are considering substantial application systems in several areas. One is image
understanding, for which we have an active interest at the moment as a future research
direction, analagous to our work in SUS. The small benchmark task on pattern recognition has
been chosen in part to shed some light on this for planning purposes.

We have also been considering the possibility of an Experimental Integer Programming
Facility. Our interest stems from an interest by operations research scientists in the Graduate
School of Industrial Administration. :

Neither of the applications systems have advanced to the place where specific plans,
much less dates of accomplishments, are presentable.

4.6 Resources

The C.mmp operating system, HYDRA, and related software development (including
diagnostics) has, to date, been. carried on by one statf programmer and a dedicated group of
13 graduate students under the direction of one faculty member. It is our intent to shift much
of this effort to a programming group whose main responsibility is to be responsive to user
demands as the system matures. To this end, a research associate has recently been added
and a new full-time programmer is being requested in the new budget. There is also a modest
request for part-time programming and operational personnel associated with supporting
C.mmp. The performance analysis task so critical to the measurement of success of this effort
is presently staffed by 4-5 graduate and undergraduate students under the supervision of one
faculty member. No additional manpower is required for this aspect of the project. The
engineering staff provides the equivalent of about one engineer dedicated to C.mmp
development besides what is extracted from the facility costed expenses for maintenance
purposes. This personnel allocation to C.mmp represents 177 of that total budget.

This project does much of its software development compilations on the PDP10 facility,
but its total usage represents only about 67. The greatest facility requirement is in the
completion of C.mmp itself and the ability adequately to partition it into two useable systems
for developmental and maintenance purposes. We have requested enough hardware to
achigve the latter and approach the former.

The funds available in this year’s budget are not sufficient to acquire the total system
described in the previous section. Thus, we have put in this budget the most important $339K
worth of equipment. We have listed in a supplementary section (Section I) the total remaining
equipment that we now see as appropriate for C.mmp. This is done in order of desirability so

C.mmp: Multi-Miniprocessor Computer System h3

that any amount of additional funds can be applied to acquire the appropriate additional
equipment.

54 CMU Proposal to ARPA 75-76

5. 'SMCD: SYMBOLIC MANIPULATION OF COMPUTER DESCRIPTIONS

5.1 Introduction

The SMCD research effort is the attempt to conduct the study and construction of
concrete hardware and software systems at a level that uses a symbolic description of
computer systems. Technigues so developed can be applied to a range of computer systems,
given only that they have bean suitably described,

To understand the force of such a proposal one needs to contemplate that when humans
are given a description of something (necessarily, of course, a description in symbols), they
use it for whatever problems they wish to address. But the situation is quite otherwise with
descriptions destined for use by computers. Here the rule is to use a description for only a
single purpose. A FORTRAN program is certainly a description of an algorithm for solving a
problem. But it is destined to be used by the computer in only one way: to execute the
algorithm, There are many other things that might be done with the algorithm: it might be
simplified, it might be verified, it might be made more efficient, it might be generalized, it might
be understood, it might be used to illustrate a larger class of algorithms, it might be
transformed to yield a counter example to some problem, it might be used to evaluate the
interpreter of the algorithm, and so on. It is necessary to make the list rather long, since
famitiarity with programming languages breeds acceptance of their single purposeness. This is
strongly built into the descriptions themselves, not just into the computers that interpret
them: Note how few things humans will use a FORTRAN program for.

A second feature should be noted: Most descriptions for use on computers lead to
computations (i.e., the computer’s use of them) that are one level more instantiated than the
original description. We write general algebraic expressions in our computer programs, but
they instruct the computer only to make numerical calculations.

There is little caricature in the above, taken generally, though it is wide of the mark in
several areas of computer science. Symbolic mathematical manipulation is done on a
substantial scale; verification of programs, which implies their use symbolically, is an important
fieid; Al in general is committed to exploring symbolic reasoning in ways reflecting the multiple
manipulations carried out by humans,

We are interested in the uses of descriptions of computer systems. Many computer
languages have been developed to describe computers. But here the characterization given
above stands. All these languages are essentially simulators. They take the symbolic
description of a computer system and perform a single calculation, which is instantiated one
leve! more concretely: to compute out a specific behavior path of the system given a
completely specified initial memory state (i.e., the exact bits).

Simulation is in fact a useful thing to do with a description of a computer, but it is not
the only thing to do. One also wants to design, analyze, verify, abstract, maintain, debug,
modify, explore, understand, program, summarize, document, compare, classify, evaluate and so
on.

The task of working with computer descriptions is more important to computer science,
both pure and applied, than even the remarks made so far indicate. Many of our activities,

SMCD: Symbolic Manipulation of Computer Descriptions 55

both intellectual and practical, are performed in the context of specific computer systems, over
and over again. To pick only the most obvious example, repeatedly we program computers, all
of which bear a strong family resemblance but differ in their detailed descriptions. Given the
stream of new architectures, the problem is actually a pressing one. We need generally to
rise above specific computers and deal with them relative to their abstract descriptions. As
human scientists we often do this informally and even formally -- on paper. But, as computer
scientists know full well, the full assimilation of working at such a level ot abstraction requires
that we learn to do it with computers.

These remarks sketch out a research focus, one that is clearly in need of much
exploration and offers many untrod paths, but not one that is totally new by any means. As
mentioned, the thrust to do symbolic calculations and manipulations on computers is a
pervasive aspect of computer science and AL This research area only proposes to carry out
that genera! program in the domain of computer descriptions. Even-the specific goals we
choose below are no! new, for the field has been attempting to do automatic design and
automatic compiler writing for a long time. This research only proposes to take a specific cut
at this general -area commensurate with current art, one that has better chances of success
than prior tries - and no doubt less chances than the attempts that will follow at some later
time.

With this general background we can now describe the particular research program we
have outlined for ourselves in this area.

5.1.1 Goals

The main goal of the SMCD effort is to create symbolic descriptions of computers that
can be used in a wide range of tasks. [Barbacci 74] The approach must meet three
requirements. First, it must be experimental, involving actual construction of programming
systems to carry out the various tasks. Second, the tasks must be ones of actua! importance in
the conduct of computer science. This requirement is motivated as much by the necessity to
face the true sources of complexity and difficulty, as by the possibility for important
application, though this latter feature is not unwelcome. Third, there must be several such
tasks of diverse nature to avoid the pitfall of again producing one-use computer description
schemes.)

The second requirement, that of realistic tasks, implies that the total SMCD effort will
contain subefforts of .substantial magnitude and of a degree of independent importance that
may rival the overall goal of SMCD in scientific and practical importance. It also implies that
though a number of small individual efforts will exist on various tasks for using symbolic
computer descriplions, these larger ones will have to be launched only with due deliberation.
Thus, the number (and hence diversity) of tasks (the third requirement) can grow only slowly.

To give a feeling for the tasks we think potentially satisfy our requirements, we
produce in Figure 5-1 a list of tasks adopted from the 74-75 proposal (which was the initial
proposal for the SMCD research effort). Currently, we are working on just two of these tasks:
the Compiler-compiler (1) and the Design of modular systems (§). These two projects provide,
in effect, two independent subgoals of the total SMCD effort, with their own independent
scientific merit.

A goal of the project is to create the tools, both for analysis and synthesis, to perform
these tasks. It can confidently be expected that these tools, if created with sufficient clarity,
will be major embodiments of what new computer science knowledge is developed by the
research.

56

1

(2)

@)

CMU Proposal to ARPA 75-76

Figure 5-1: Tasks for SMCD
Compiler-compiler. A system that takes as input a description of a language and a
description of a computer and outputs a compiler for that computer. Given the
current art, the language would probably be restricted to be Algol-like.

Machine Relative System Programming. A software production facility that enables

.one to produce system programs such as editors, display programs, command

languages, device handiers, efc. given the description of a machine. (Distinct from
compiler-compiler because the type of program; distinct from automatic
programming because the concern with the computer description, not with how the

-problem is specified.)

Verification of 10 Programs. Given an /O program, such as a deVice handier, and
a description of both the computer and the hardware device controller, verify that
the program works. (A specialization of the general verification problem, both in

' ~ types of machines and types of programs.)

(4)

(5)

(6)

(7)

(8)

Programming of Microcoded Special Computers, The ability to create specialized
computers economically to perform particutar narrow classes of algorithms (e.g.,
signal processing) poses an immense problem in device-dependent one-time
programming of highly optimized and hence difficult machines. The task is to
construct programming systems that operate relative to descriptions of such
machines.

Design of Modular Systems. Given a desired machine in terms of some specification
language, and given a space of machines defined by a class of RT-level modules,
desigh a machine according to various constraints and criterion functions. This is a
classic design situation, and one that would be well worth making progress on, both
in terms of understanding the nature of design and in terms of automating
computer design,

Design to Specification. Given a functional specification for a computer and a
space of computer systems defined by a computer description language, design a
computer that performs to the specification. This is another form of classical
design task, where the starting point in a performance specification, not at higher
level structure (e.g., the instruction set)

Design Verification. Given a specification for a computer and a description of that
computer in the language, verify that the computer satisfies the specification.

Manual Generation. Given a computer defined in a language, create the
documentation for the computer, i.e., an operating manual, a maintenance manual, a
general introduction, etc. This task is quite different from the ones above, but also
involves understanding and manipulating a computer description.

SMCD: Symbolic Manipulation of Computer Descriptions 57

The primary tool of course is the language (or languages) for describing computer
systems (they are generally called CDLs). It is a goal of the effort to design one or more CDLs.
This activity cannot, however, dominate the research effort, despite its seeming "ogical”
priority. Many CDLs have been created (and we ourselves have created some, namely ISP, for
describing instruction sets and PMS, for describing the major hardware configurationa!
structures). Any attempt. to put the design of a COL at the top of the priority list will simply
result in polishing existing tanguages. Instead, the language design effort must be driven by
the major task efforts, i.e.,, by an analysis of the types of uses (other than simulation) that the
CDL must support,

A second tool is that of a good simulation system. Given the historical dominance of
simulation as the unique task to be performed given a symbolic description of a computer
system, simulation cannot be taken as one of the major tasks to be performed (e.g, it does not
appear in Figure 5-1). It is still an important task and must be performed well for any COL
that is developed. A requirement that is relatively new, is that that simulation be possible
with mixed level descriptions, namely, with descriptions of computer systems that are not of a
uniform degree of detail (some parts being described at a gross paranetric level, some at a
programming level, some at a register-transfer level and some at a crude (ie., rise-time)
circuil level),

A final tool-goal is that of providing an appropriate global data base so that many
researchers can get access to the same body of data and techniques. With several somewhat
independent research groups working it is important to find a way of making what one
researcher does available to others, not only as a general facility way, but in terms of
encodings of machines and the programs that manipulate them.

5.1.2 Current State and General Plans

The SMCD effort started only in JUl74, with the overall goals we have just described. It
now has a definite shape, given by the five subsections to follow: three on core tools,
Computer Description Languages, Variable Level Simulation and the Global Data Base; and two
application areas, Compiler-compiler and Machine Design with Module Sets. The specific plans
are given with each subsection.

We do have an overall plan for how the research should develop. The drivers of the
research will be the major application tasks we take on, We have two now; we will seek to
add others as interest and talent offer the opportunities. The list in Figure 51 is suggestive
only, and we would be happy to take on others. We have a predilection, stated earlier, for
moving toward realistically-sized programming and design tasks, but they must be good bets in
terms of the probable light they will throw on basic computer science conceptual issues. We
will iterate the design of CDLs and other basic tools, but we see this as happening in response
to these applications, rather than proceeding in its own right. (Such a statement of research
intent is, of course, somewhat risky, since research is in fact responsive fundamentally to good
ideas.)

The SMCD research makes contact with a large fraction of central computer science,
especially since some of the efforts that occur “within" it, that is, the arenas in which to attain
the goals of SMCD, are within some other domain of computer science, which itself is of
independent and fundamental interest. Thus research efforts supported by other funds are
liely to become affiliated with SMCD, to the mutual benefit of both. This is already true of
the present effort. The work on machine design with module sets is an independent focus of

58 CMU Proposal to ARPA 75-76

an NSF grant,* and part of their interest coincides with the application area described below.
Work on structured programming is the focus of another NSF grant,* for which the central
interest is ALPHARD as a vehicle for exploring structured programming. However ALPHARD
has become a main pillar of our effort to construct a new CDL. In all cases there is a need to
retain an independent focus of each research effort. But even beyond the standard {though
important) assertion that such scientific cooperation is symbiotic, the SMCD project needs such
affiliations if it is to get a sufficient set of substantial diverse applications going and
maintained, each of which needs to be a first rate research effort in its own right.

5.2 Computer Dascription Languages

The goal'is to produce a language that can describe computer systems at alf ievels of
abstraction. This include both varying levels and mixed levels within a singie description. The
language shall be computer manipulable, which provides the essential criteria against which
success and failure can be determined.

Existing CDLs, of which there are a great many, provide an essentially adequate
exploration into the basic representation of fully instantiated computer structures at the logic
and Register-Transfer levels. Current work has not dealt successfully with higher levels nor
with mixed levels of abstraction. And, as we mentioned, the only use for almost all of these
languages has been simulation. (Indeed, many of them are embeddings of descriptive schemes
in standard languagues such as FORTRAN and APL) We ourselves tend to favor a PMS-1SP
type of notation, a language system we introduced for purely descriptive (as opposed to
simulation) purposes several years ago, [Belt 70, 71]

Our candidate CDL is ALPHARD. [Wulf 74} The central focus in ALPHARD is on stating
abstractions of systems, ‘to make possible execution of incompletely defined structures,
verification, and extension and manipulation to more complete definitions of sytems (e,
structured design). The central language construct is the "form”, which is a schema for
detining an abstract component of a system, either process or a data structure.

ALPHARD is semantically extensible, using the form. It also has a primitive control basis,
which permits the description of new control structures. The definition of new control is
perhaps the other greatest lack of existing CDLs (in addition to their being locked to a given
leve! of instantiation). {In fact the two are related, since there is no sense having too much in
the way of variable and mixed level descriptions if diverse control structures cannot be
adequately described.)

To our current way of thinking ALPHARD provides the right ingredients to add to
existing CDL langauge constructs to form the next non-trivial extension of COLs.

*Research on Computer Organization and Large Modules, NSF Grant [GJ32758X], D. Siewiorek,
principal investigator. The research has been going since mid 1972. About 840,000 of the
grant supports work related to the Machine Design with Module Sets section of the SMCD
research.

*Software and Programming Systems, NSF Grant [DCR 74-04187], M. Shaw, W. Wulf and A.
Jones, principal investigators. The grant has just begun in late 1974, About 830,000 of the
grant is expected to support work related to the ALPHARD aspects of the CDL section of the
SMCD research.

SMCD: Symbolic Manipulation of Computer Descriptions 59

5.2.1 Current State and Recent Results

We have a fully operational ISP compiler, with two versions (BLISS10 and BLISSL11). It
compiles into BLISS code of the appropriate type. This will permit experimentation pending an
ALPHARD implementation.

ALPHARD specifications exist. We are using ALPHARD for manual analysis to iterate its
design.

5.2.2 Plans

We expect to construct an initial compiler for ALPHARD by compiling into the common
intersection of BLISS10 and BLISS11 plus POOMAS. (POOMAS is a poor man’s SIMULA on the
PDP10, which was developed at CMU. 1t adds the simulation capabilities that are not part of
BLISS currently.) It will permit running on either the PDPLO or PDP11. This implementation is
a stop-gap solution to obtain a running version of ALPHARD rather quickly. It will, for
example, compile slowly. We will eventually construct the compiler correctly. We expect the
specification to be complete by May75, with implementation to foilow directly. A date for
completion does not make sense until the definition is completed, but the total job should not
take much more than half a man-year,

5.3 Variable Level Simulation

A very good simulator is a requirement for SMCD. The simulator must be capable of
simulating at any level of abstraction possible in the CDL. It must handle a mixed-level
simulation, where a system is described by an arbitrary mixture of levels. It must operate in a
unifom way over all levels. Finally, it must be highly efficient. Efficiency is required not only
because one wants to handle realistically large systems, but because in a mixed-level
simulation it takes many cycles at the lower levels to produce consequences of interest at the
higher levels.

Many simulators have been constructed, so many in fact that we characterized
simulation as the single use of CDLs, and as the contrast point for the initiation of our own
work on SMCD. Thus, we do not count simulation as one of the uses to be made of a CDL in
enumerating our diverse applications. But it remains a critical tool, and one that we must have
meeting the four criteria above,

The task of obtaining a simulator would be strictly a tool building task, except for the
requirements of mixed-level simulation and possibly for the requirement of efficiency. (We
would in any event have to interface a simulator to our CDLs, eg., ALPHARD.) There has been
almost no work in mixed level simulation (though we know of one effort), and this presents
some important problems in how to communicate results across the interfaces between
different levels. Due to their recent availabillty, efficiency today is to be obtained by using a
microcoded computer. So far there have been few such simulators built. However, a plethora
of such simulators over the next few years can be anticipated.

Qur general approach is to translate into BLISS code from the CDL (ALPHARD). Those
aspects where interactive modification is needed will be run interpretively; compiling the
BLISS code will occur where appropriate; and the lowest levels of the simulation will be done
on a programmable microcoded machine to obtain the necessary speed. The simulator will be
able to handie descriptions done to the gate and signal level.

60 CMU Proposal to ARPA 75-76

5.3.1 Current State
The state of ALPHARD was covered in the CDL subsection.

We are currently making a feasibility study of the two microcoded systems to which we
have access. [Oakley 75] The MLPI00 at ISI is used over the ARPANET is easy to generate
code for this vertically microcoded machine which has a wide data-word (36 bits); it is
consfructed in a fast technology and is a one-of-a-kind machine. The programmabie
microcoded PDP11/40, which has been discussed already under C.mmp, is an in-house machine.
It is relatively difficult to generate code for this horizontally microcoded machine, which has a
narrow data-word {16 bits}; it is constructed of a somewhat slower technology, and there are
potentially many copies of the machine (both locally and at large).

5.3.2 Pians

We plan to complete the benchmarks on the MLP900 and the programmable microcoded
11/40 by Apr75. These will serve as the basis for deciding which microcoded system to use.
(We will make this benchmark study generally available.) The microcoded part of the simulator
is not on the critical path for the simulator and we will develop a schedule when we make the
decision. The simulator design will interact heavily with the compiler desigh so that higher
levels of abstraction can be executed directly as compiled code. More detailed levels will be
‘simulated as a primitive sequential machine. Much will depend on the what we find out about
the ease of use of both systems. In any event we do not anticipate that this is more than half
of a man-year of work. ‘

The general plans for the system is described indirectiy in the discussion of the
compilation of ALPHARD.

5.4 Global Data Base

A feature of the SMCD research is the gradual growth of several groups each trying to
do SMCD-related work. There arises then a problem about the common use by these various
groups of the tools and computer descriptions that have been generated.

It is neither possible nor desirable to force all the tools and descriptions to be formed
in a common language, either a common CDL or a common programming language. The diversity
of interests will imply that the groups will use different programming languages (e.g., BLISS,
SAIL, LISP, L# ..}, and indeed these different languages may each tie into uses being made of
them in other research efforts. {Like most other advanced computer laboratories, the CMU
community is multilingual with over a half .dozen languages used substantially.) Even a single
CDL cannot be assumed, though.one is likely to be dominant to begin with (ALPHARD). COLs
are a topic of research and variant CDLs will get generated to try out new representational
- ideas. Though diversity is necessary, so is the need for using each others results. Encoding 2
jarge computer system should only have to be done once, though it might be necessary to
translate and embellish it for new purposes.

The goal of this component of SMCD research, then, is to make the common use of
resuits possible. It is a tool effort. The essential idea is the creation of a common global data
base in which everyone's CDL data structures can reside, and can be operated on by
programs coded in many different languages.

SMCD: Symbolic Manipulation of Computer Descriptions 51

Given the incompatibility of different representations of the same thing, there is no
magic common data structure that can encode information in arbitrarily different languages.
More precisely, a common data structure (e.g, bit arrays) is so elementary that it assures
nothing about inter-usabillty. The best one can do, it seems, is to provide a facility with
common elementary handling and display functions, with the ability to create shared
representational structure to any desirable depth, and with good facilities tor mapping
representations in one structure into another. To this must be added the ability to let
programs in any programming system operate on the data structures of the global data base.
This requirement, again, cannot be guaranteed in advance for unknown programming systems,
but certainly can be for the common programming systems in the environmment.

The conditions set forth above still pose a challenging software puzzle, whose degree of
solution is uncertain. Thus we envision a succession of experimental global data bases, as we
try to obtain as much commonality with ease, as possible.

5.4.1 Plans

We currently are planning a global data base in Lx. An experimental version should be
up and running by Jul75. This effort is not on the critical path for any of the main activities of
SMCD, such as ALPHARD or the substudies for the Compiler-compiler and machine designs with
module sets.

5.5 Compiler-Compiler

The goal is to construct a production-level compiler-compiler that operates from a
description of the target computer. The source language will be a standard algebraic
language. This is the only type of language for which there has been extensive development
of compiter-compiters.

To be more specific, the system shall take as input: language syntax; language axioms
that describe the semantics; a machine description (in a CDL); and machine axioms that
describe the behavior (which also will be expressible in the CDL). It will produce a compiler
that translates source language to the machine language of the target machine. (What machine
the compiler itself runs on is an independent matter, it can be on a third machine itseif or on
the target machine, though the latter clearly takes two cycles of the system.) The code that
the compiler creates shall be production quality, i.e, of the quality of BLISS11 or FORTRAN-H
and better than assembly language programmers produce for tasks of moderate size.

The problem of compiler-compilers is an old problem in the area of programming
languages, active some years ago and not currently receiving much attention. Such translator
writing systems (including variations which are more system generation tools than total
automatic systems) are in routine use, especially for producing compilers for standard
Janguages such as FORTRAN on new machines. The chief limitations are that they work only
on conventional algebraic languages, that the compilers so produced generate low quality
code, and that they are tailor-made for a given target machine. The present work thus
proposes to leave basically untouched the scope of the {anguages accepted, but to push the
ofher two limitations substantially. The code quality issue, in particular, seems a requirement
to make the research resuits of genuine applied interest

62 CMU Proposal to ARPA 75-76

55.1 Current Structure and Recent Results

The BLISS11 compiler provides a statisfactory mode! on which to base a compiler-
compiler effort. As has been mentioned, it does produce highly optimized code and in creating
it we have attended in some detail to the question of how to obtain high quality compilation.
A monograph on BLISS11 has just been published, describing this [Wulf 756] The general
structure of the BLISSL1 compiler is shown in Figure 5-2, Thus, we start the research into
a machine-relative compiler-compiler with what we believe is an adequate position along one
of the critical dimensions, namely how to produce high quality code. This is an extremely
important point with respect to the total chances of success on the total effort.

Figure 5-2: Structure of the BLISS11 compiler

LEXSYNFLO
Inputs sourte program in character string form
Performs lexical analysis
Processes declarations
Analyzes syntax to produce parse tree
Analyzes flow of control and data

DELAY
Determines the features that can be used to simplify code
Estimates the cost of each program segment
Determines the order of evaluation for expressions

TLA, RANK, PACK
Allocates memory locations, both fast registers and memory cells.

CODE
_Produces locally optimal code for each node in parse tree.

FINAL
Analyzes. actual code produced by CODE to eliminate inefficiences
Outputs final listings and code files

As mentioned elsewhere, BLISS11 .became fully operational in 74, and is receiving
extensive use locally {on C.mmp, HDYRA, etc.). BLISS11 is also a DEC supplied and maintained
system, so that it is available to PDPl1 users generally and is receiving wide use. Thus, we
have substantial confidence in this basic component ot the new research effort.

With an overall structure in hand, the impartant problems are to discover how to do
each of the parts of the task, given only a description of the computer, rather than (as in
machine-specific compilers such as BLISS11) having knowledge of the target machine permeate
the compiler.code itself. We are currently considering three of these problems in some detail.

Analysis of the ISP structure of the machine (ie., its instruction set) to discover the
code sequences that provide the potentiality for optimization. Optimization is possible

SMCD: Symbolic Maniputation of Computer Descriptions 63

precisely because there is more than one way tu code a desired function. All instructions
sets, especially richly endowed ones, provide many special ways of doing things and an
important part of "understanding” a specific machine is to know these. The objective here is to
produce a running computer program that carries out the discovery procedure. A thesis on
this topic is complete {Newcomer 75]

The so-called register allocation problem in compiter design is how to use a limited set
of fast registers, minimizing the amount of extra processing that has to be performed to
shuffle data in and out of these registers. The problem for the current research effort is to
do this for arbitrary types of machines, where the limitations on the scarce resources (the
registers) may be of various types. A thesis on this is in mid-stream.

The FINAL pass of the BLISS11 compiler (see Figure 5-2) does what is called "peephole”
optimization, looking at the final code and finding ways to improve it locally. There are a well
known collection of techniques for doing this. The problem for this research effort is how to
do such peephole optimization having only a description of a machine. There is a thesis on
this in mid-stream.

These three subtasks illustrate the paint that, having a framework for the total compiler
organization, we are able to put the major part of our attention into detailed studies of the
various components. Such indepth analysis is an absolute requirement for producing, not just
a machine-relative compiler-compiiler that turns over, but one that produces high quality code.

5.5.2 Plans

One of the three areas (Analysis of ISP structure) is finished. The other two have
expected completion dates of Dec75. These three constitute an important fraction of the
functions in Figure 5-2, but not all. The additional ones, e.g., syntax analysis, must be initiated.
We expect to get the rest of them underway during the spring of 75. Their exact completion
dates cannot be specified in advance, though none of them are more difficult than the ones we
have done, e.g., about a man-year of effort once the problem is structured.

We will design and specify an initial version of the compiler-compiler after the pieces
are pretty much available. We will initiate that during Fall of 75, This could produce a target
date for the first version of the compiler-compiler of Aug76. The style of operation will be to
start with a system with heavy manual intervention and then gradually eliminate the manual
components as the task becomes successively better understood. (This design philosophy of
incremental simulation is being used successtully in many complex systems, e.g.,, in the BBN
SUS.) One effect of this methodology is to make it unclear just when a system becomes
operational.

The first testbed for the compiler-compiler will probably be the re-implementation of
BLISS10. There are several reasons for this choice: (1) We understand both the language and
machine thoroughly; (2) the existing implementation will provide a standard against which the
quality of the resulting code can be compared; (3) the current implementation of BLISS10 is
fairly old, representing our first attempt at a Bliss compiler, and it would be nice to redo it in
any case; and (4) the compiler-compiler will be coded in BLISS, hence it should be seif-
compilable. The last point implies that by altering the machine description it should be
possible to have the compiler-compiler compile itself for another machine. Thus the
implementation should provide both a test of the ideas as well as an exportable system
available for direct use in other environments.

64 CMU Proposal to ARPA 75-76

5.6 Machine Dasign with Module Sefs .

The basic goal of this component of the SMCD research is to design computers
automatically from module sets. [Siewiorek 72, 74] This involves a combination of synthesis,
analysis and housekeepmg techniques applied to a developing computer description.

This is a version of, a classical computer science goal. Its fundamental justification lies,
on the pure side, in the understanding of computer structures that will come through analyzing
their structure to the point of being able to synthesize them. On the applied side, it ties in the
benefits of speed, reliability and cost that can come from successful automation.

The focus on module sets reflects the current state of the art of digita!l technology.
What manufacturers produce today, under the: impress of MS! and LSI technology, are
collections of large functional units. Except in rare cases, the designer of a digital systems is
faced with at most a two stage design process: first, the selection of a module set from among
a small set of alternatives made available by -semiconductor manufacturers; second, the
assembling of these to do the desired task. Thus module sets are the natural givens for the
automatic design tash. :

Much attention has been paid to the automation of computer design and a wide
spectrum of work fits under its rubric. The design problems of interest here can be seen from
enumerating what is given about the design and what is desired, what are the types of
modules that can be employed, and what are the evaluation criteria.

For problems:

(1) Given the ISP description of the final system and the module set, obtain
an implementation of that machine.

(2) Given functional and performance specifications for a task, obtain an ISP
description of the desired machine. The module set may be a conditioning
side factor influencing the ISP indirectly.

For components:

(A) Closed sets of register transfer modules, such as RTM (the DEC PDP16)
or Macromedules.

(B) Open sets of repister-transfer level components, such as the T
Handbook. '

(C) Higher level (PMS level) c... ponents, such as CMs (Computer Modules)
and computers-on-a-chip. Here the units all have programmed control of
some sort.

For evaluation criteria:
(i) Cost (ii) Speed (iii) Reliability {iv} Testability (v} Chargeability
The design task becomes successively more difficult and less well understood as we go
up each scale successively, e.g., a {1)-(A)-(i) problem is the easiest and a (2)~(C)-(v) problem is

hardly understood at all at this stage. We are interested in this entire space of design
problems, though we are working from the better understood end.

SMCD: Symbolic Manipulation of Computer Descriptions 65

From an applied viewpoint, several aspects of the current practical world of computer
design and construction are relevant to the present research. Because of rapid evolution,
there is a great need to attain independence from any specific technology. This is the
hardware analogue of the problem of having to program a succession of new machines. This
same rapid rate of evolution increases the need to shorten the delay time between the
introduction of a technology and its effective use in new computing systems. An effect that
comes from the associated decrease in the cost of technology is the role of ad-hoc and one-
time designs, often for exploratory purposes. These need to be done much more rapidly, if
the potentiality of the improving technology is to be actualized.

In concordance with the attitudes expressed elsewhere in this project, we are
interested in tackling realistic designs. Our motivations are, in part, that only by accepting
real problems does one avoid missing the true difficuities, e.g., as can happen by making a bad
abstraction In part, there is also a desire for our research to have applied consequences.

B.6.1 Current State and Recent Results

We have developed a system, EXPL* in which design specifications for specific register-
transfer module sets can be explored using heuristic goal-oriented technigues. [Barbacci 73]
EXPL engages in modifications of the control flow of the system in order to obtain
optimizations (actually, design is done in terms of trade-offs between cost and performance).
EXPL is fully operational (late 73). It is tied to a specific module set, RTMs.

A study has been completed of variability in data structures (at the register-transfer
level). This is independent of any particular module basis. It has not been implemented in a
system.

5.6.2 Plans

- We are ‘investigating the extension of EXPL to Macromodules, the other main register-
transfer level closed module set. This will force us into a major act of abstraction, and is
important in attaining generality in this approach. We can expect to have such an extension
by May75. That is, it should be capable of producing designs for the same class of problems
as EXPL now produces with RTMs.

A test for well structured control flow (deadlock free, live) that serves to check
candidate descriptions is in the advanced debugging stage and shouid be available by May75.
A simulator, a microcede generator {for an RTM microcode controiler), and an RTM wire-list
generator will be completed by Aug75. A testability measure, which correlates well with
actual test generation effort, has been developed and should be running by Aug7s.

By Dec75 we intend to have a system that incorporates all the above programs. Given
a description in ISP a design, in terms of a wiring list (RTMs or Macromodules) or microcode
(RTM), will be developed according to designer-given trade-offs in cost, speed, and testability.

*EXPL and, in general, the work in this area prior to the initiation of SMCD, have been carried
out under NGF Grant GJ32758X, mentioned earlier. The division of labor between the NSF
Grant and SMCD is that the NSF grant is centrally facussed on understanding computer design
and the structure of module sets; SMCD is centrally focussed on understanding the ways
computer descriptions can be manipulated. Each instance of an application of SMCD, such as
this Machine Design subproject, must be driven mostly by its own problems, not by the
indirect goal of obtaining another diverse use of symbolic computer descriptions.

66 CMU Proposal to ARPA 75-76

A simulation wili be possible and the well structuredness of an algorithm will also be
guaranteed,

We are beginning the design of a second iteration of the total register-transter level
sysfem for computer aided design. This system must show the ability to: (1) work with
variable module sets; (2) optimize over control flow; and (3) to optimize over data flow. We do
not have well grounded expectations yet for how large a system it should be able to design
(measured, say, in terms of number of modules in the final design). EXPL produces designs of
the order of 50 contro! steps and a dozen data modules, which is enough to reach student
exercises in register transfer design (e.g., in [Bell 73]. 1973). An order of magnitude greater
than that exceeds the domain in which special purpose register-transfer module systems are
practical in today’s market. We expect to have an initial specification document by Apr75.

A leading candidate for the structure of this system is the Independent Co-operating
Knowledge Sources structure being developed for Hearsay-2. The same conditions seem to
prevail, namely that there is a large number of types of knowledge each of which must be
represented and handled on its own terms. One desperately wants to be able to build such a
design system and then to add to it new knowledge sourcess whose detailed structure was not
anticipated in advance, and to revise radically existing knowledge sources -- all the while
keeping a system which always does the best with what its got. The data structures
appropriate to computer representation and to speech (in the Hearsay-2 global data base) are
sufficiently different that it seems doubtful that one can capitalize on the actual program
structure. But the design itself may follow very similar lines.

5.7 Resourcaes

This research area draws upon the contributions of four to five faculty members at
various levels of effort. There is one research associate and 13 graduate students assigned
to it. This group totals only about 127 of all budgeted personnel expenses, The largest
subarea is the computer description language devleopment, ALPHARD, which involves three of
the faculty, the research associate and two graduate students. No additional manpower is
required on this effort. The compiler-compiler subproject is supported solely by graduate
students. Should there be a need to produce earlier results here, it would require additional
manpower in the form of a research associate and/or staff programmer. Similarly, the variable
tevel simulation subgoal is presently primarily a graduate student effort. Machine design with
module sets is again supported by a larger, more diverse group including some effort by two
faculty and several of the hardware oriented graduate students.

The individua! efforts applied under this proposal to this area interact but do not
overlap with two NSF grants in the department. Machine design with module sets relates to
efforts under Research on Computer Organization and Large Modules and the ALPHARD group
interact with the efforts of an NSF grant for Software and Programming Systems.

To date, SMCD research has been adequately served by the PDP10 facility, absorbing
about 117 of it.- Its needs shoutd continue {0 be adequately covered except for some possible
requirements for special facilities: large memory for global data base work, network use of
the MLP900, and perhaps additional or alternate mictoprocessors.

67

8. FACILITIES

6.1 iIntroduction

The computationa! facility provides a range of computational resources to the Computer
Science research community. In general, resources are available for whatever research
directions are being pursued. ‘

Figure 6-1 summarizes the current configuration of the facility. It consists of two
large PDP10 KA10 systems, connected to the external world by a communications processor
(C.communication) and by the IMP to the ARPANET. C.mmp is listed to make the picture
compiete, although it does not yet provide generalized computing. Essentially, it is still in a
developmental state though it has user time scheduled.

6.2 Current State

The ‘two PDP10s systems are mature, running 997 of a scheduled 22 hour day, 7 day
week, for a user community of 250. We have just begun to get response measures (as
opposed tc load measures, which have always been available) from our system. Table 6-2
gives a few statistics. The average response times of 2.2 seconds during the peak period
correspond to a fairly high fraction of annoyingly fong delays even when doing trivial things
(waiting for editor response, sending a mail message, etc.), say above 10-15 seconds.

The C.communication is just becoming operational (Jan75) and it stili handles only a part
of its intended function.

In terms of styie of operation, the systems run totally in interactive mode. We use the
printers pretty much for immediate scratch work, all permanent material is produ¢ed on the
XGP printer {(as was this proposal).

6.3 Plans

The existing PDP10 systems are essentially complete, except for additional disk space,
We intend to upgrade our 6 RPO2s to RPO3s, which essentially doubles our amount of space
per disk and adds a total of 30 megawords.

C.communication requires modest upgrading. An IMP interface would relieve the CMU
hosts of Teinet protocol overhead. This would actually be significant since there is heavy net
traffic between the 10A and 10B systems. Also disk storage is needed for
transcription/rollback of terminal ifo scrolled off small-window video terminats. This facility,
we believe, would permit more use of video terminals in offices (where they are essentially
pure soft-copy devices), with a consequent increase in productivity. No funds are included for
this in the current budget, due to the priority of completing C.mmp.

The 10B system contains 5 of the high quality graphics terminals, which are used
primarily for speech and vision research, and are available only incidentally for others. We
need at least one additional high quality graphics terminal for the 10A, to satisfy a strong

68

CMU Proposal to ARPA 75-76

Figure 6-1: Facility configuration

> PDP10O Systems
> PDP10A

>
>
>
>
>
>
>

KA10 Pc

240K Mp ‘
200K Swapping Drum
60 megawords DSK
5 Dectapes

2 Magtapes

IMP-host connection

> PDP10B

>

VVVV VYV Y

>

KALID Pc

256K Mp

BOOK Swapping.Drum

70 megawords DSK

5 Dectapes

2 Magtapes

IMP host connection

Real-time speech devices (ADC, DAC, ZCC, AMS) running at 20kHz
Link to 11.XGP

> User system interface

>

Embeilished TOPS-10 operating system

> Full Telnet and FTP protocol implementation
> CMU graphics support

> Real-time devices and scheduling support

> C.mmp current state (Mar75)
> Processors

v

v

v

>
>

5 PDP11/20s functioning .
Desighing PDP11/40 relocation box, cache and modifications for 5 PDP11/40s

Primary Memory

>

700K available on 12 ports
> B12k on 11 ports functioning Dec74

Qwitch

>

16x16 operating routinely

Secondary Memory

>
>

Paging disk: 4 of 7 IMS disks (2:106 words) operational
Disks for secondary storage: 2 RP0O3s (40 megawords)

Communication

>

2 4800/300 baud links to PDR10A

> Front-end connection via 4800 baud asynchronous lines
> IMP connection under development

Facilities 69

'Figure 6-2: Facility Performance and Capacity

Terminal

Qutput

7 Overhead Response

Jobs 7% Idle & lost time - (millisec)*

10A (open system)

Midday peak period 320 1.2 225 2192
Prime time (1000-2000) 265 29.2 8.6 864
Non-prime (2000-800) 148 71.2 4.1 520

108 (administratively controlled to guarantee availabilty to SUS)

Midday peak period 24.8 5.7 19.2 1449
Prime time (1000-2000) 25.1 36.0 120 1087
Non-prime {2000-800) 15.1 20 5.2 478

*Average time users wait for their jobs to do terminal ouput after either a command is issued
to run a job, or terminal input is given that removes the job from terminal input wait state.

demand for such a terminal from the non-speech part of the user community. Again, no funds
have been included for this.

As far as regular terminals are concerned, we continue to acquire a small number each
year, providing a gradual transition from a purely teletype environment of a few years ago.
The most important terminal at this time is the portable hardcopy terminal, which can be used
at home in the evening. Distributing these to heavy users produces a noticeable shift in their
computing to the late night and early morning hours, with a consequent relief of computing
during the peak daytime and evening periods. .Thus, these terminals actually generate
increased computational efficiency,of the facility. We include a small number of such hardcopy
terminals along with the addition of a few alphanumeric terminals.

6.4 Resources

Operation and maintenance of the facility accounts for 187 of the total personnel
budget. This includes hardware maintenance of all equipment from processors to terminals,
and operations on a 24 hours per day, 365 days per year basis. The composition is the
equivalent of 3.6 members of the programming staff, 5.3 from the engineering group and 2 in
operations, with corresponding part-time budgets in each area.

Approximately 127 of the PDPLO facility is used in maintaining the total facility. This
includes the cost of system modification, generation, accounting, batch and peripheral
processing programs, and ARPA network server functions.

70 CMU Proposal to ARPA 75-76

7. COMPLETION OF C.MMP HARDWARE

The major equipment is concentrated almost exclusively on trying to complete C.mmp.
The items in the budget all meet the needs discussed in the proposal proper (C.mmp
Resources). The size of the acquisition shown below for C.mmp is dictated by the imposed
limit on the size of the total budget and not by the nature of C.mmp itself. We present on the
next page a supplementary budget that gives the remaining items we wouid like to obtain for
C.mmp.

38 8k Memory moaules 1,300 49,400

300 k more, provides IM words

4 PDP11/40%s 11,696 46,784
bring C.mmp level up to 13 processors 4 11/20%, 9 '
11/40%

8 11/40 C.mmp mods | 5,000 40,000

reloc, local clock, proc. mods, cache (4 for above
11/40%, 4 for other 11/40% in house, ocne will be done
on 74-75 budget)

2 writeable control stores 4,800 9,600
simulation shows up to a factor of two performance
increase over standard 11/40 (obviously depending
upon specialized function utilization)

1 full- duplex DRI1B 11 to 11'DMA intf. 5,292 5,292
for Al-11 to C.mmp :

2 full duplex DR11B 11 to 11 DMA intf. 5,292 10,584
for front-end to C.mmp

1 DEC RPO4 disk controller 6,397 6,397

1 DEC RPO4 disk drives . 23,310 23,310

(100 million bytes ea.)

5 Video terminals: 3,160 15,750

Total 207,117

Completion of C.mmp Hardware

71

The supplement below will yield a completed configuration for C.mmp. The conversion
to all PDP11/40s will maximize the capacity and cost effectiveness of the architecture. We
also need to attain a swapping ratio of 4-5 to primary memory. Further expansion of the disk
system and a small increment in allocated video terminals will serve to make C.mmp a more

independently ‘operational system by reducing its reliance on PDP1O facilities.

The itemized list below describes and budgets these items in order of descending

importance to achieve a complete system.

4 PDPL11/40s
Upgrade 11/20’s enables writeabie control stores on
all processors -permitting free distribution' of operating
system functions among them. Aliows cache
implementation on all processors. Reduces maintenance

costs by increasing replication. Upgrades system to 14
11/40%,

4 11/40 C.mmp mods
Reloc, ioca! clock, processor, mods, cache for above,

4 Writeable control stores
For above processors. Simuiation shows up to a factor
of two performance increase over standard 11/40
(obviously depending upon specialized function
utilization).

2 IMS swapping disks
BCOk word disk and controller

1 DEC RPO4 disk drives
(100 million bytes each}

-3 High performance video terminals

Total

11,696

5,000

4,800

12,000

23,310

3,150

46,784

20,000

19,200

24,000

23,310

9,450

142,744

| 72 CMU Proposal to ARPA 756-76

8. RESEARCH INTO MULTIPLE COMPUTER SYSTEMS

8.1 Introduction

We would like to obtain funding for continued explorations into computing with multiple
computer structures.

We need to provide one additional item of background information to add to the view of
our research as seen in the main body of this proposal. Then we will lay out the total
proposal directly, relying on the general background to guarantee that our aims are scientific
and that the quality of our science is to be respected. After that we do provide a list of the
major types of scientific questions to be asked in multiple computer research. Finally we
present a budget.

8.2 CM Machine

We are currently involved in one attempt to move ahead with the investigation of
multiple computer structures. [Fuller 73] We are in the early stages of the design and
construction of a 100 processor system with processors of the size of a PDP11/20 (0.18
MIPS). This is ‘part of the research effort to understand modules for computer structures,
initiated in 1972 by Gordon Bell, Dan Siewiorek and Sam Fuller and supported by a small NSF
grant. The name given to the structures they have investigated are CMs, for Computer
Modules. The efforts under NSF grant GJ-32758X are about equally divided between design
automation and modular computer structures. The current effort is being carried out jointly
with DEC, who is supplying the physical structure, using one of their current LSI
implementations of the PDPL1 {which realizes the computer in five chips).

The structure, which is now undergoing detailed design, essentially consists of two
types of components. First, the computer module: an LSI 11 with 4K to 32K of memory; and
second, a component which acts as the inter-CM switch, mapping memory requests across the
structure. The switch component is being designed around the Intel3000 microcomputer chips
set. The structure permits an arbitrary number of computers to be interconnected in a way
that lets them share an address space, hence be a multiprocessor organization. There will be
a cost associated with more distant communication, so that issues of programming locality will
be of the essence. This is in contrast to the classical multiprocessor architecture in which the
random access character of the address space has to be carefully preserved at the hardware
level, We attach a summary of an initial design exercise as an appendix to this section.
Atthough the current design is slightly different from those in the appendix, we only intend to
create a flavor for CMs sufficient for the remaining discussion,

We expect to come up with a 10 processor version of the system in one year and, if
that goes well, to move to a structure with about 100 processors in another 18 months after
that.

The sorts of tasks that we will be investigating on the CM machine are similar to the
benchmarks and application systems discussed for C.mmp. We do not yet have a major
application as a driver for the structure, in part because the design has remained highly
variable as we have iterated with different technological specifications.

Research into Multiple Computer Systems 73

8.3 The Proposal

We can now express succinctly the essential points of this supplemental proposal. The
main proposal has discussed the basic research issues about multiprocessors in the context of
C.mmp. These issues apply equally to multiple computers generally, The main proposal has
also presented evidence about our way of approaching such research problems.

(1) Multiple small mass-produced LSl computers potentially provide an order of
magnitude improvement in cost-effectiveness over conventional uniprocessor computer
systems.

(2) We know almost nothing about how to realize the gains of such systems. The
technology, which keeps moving ahead, adds to what we know nothing about by creating new
architectural possibifities. What we want to know is how to create usefu! total user systems
which realize the cost-performance gains attainable with LSI memory and microprocessor
components.

(3) What is needed is to obtain substantial amounts of experience with such structures.

(4} To be worthwhile, that experience must atlend to all aspects of the problem -- the
architecture, the operating system, the software facilties, the task decomposition and analysis,
the total system reliability, and the measurement and analysis of performance. By “attend” we
mean "attend scientifically”, which implies taking each aspect as a research concern, and
producing first rate computer science by studying it. We can do no better than to assert
C.mmp as our mode! of what such total attention amounts to. It implies, we assert, the sort of
federated research effort seen there.

(5) To be worthwhile, each proposed computer system must be the focus of an attempt
to do at least one substantial task -- one that represents independent accomplishment, either
scientific or appiied. This provides the guarantee of relevance. With Cmmp the SUS
application plays this role. And in general at CMU other significant computer science tasks are
being formulated and sotved within the same environment in which the new machines are
being being conceived. Currently an image understanding system (IUS) is being considered as
a potential driving application.

(6) There cannot be simply one multiple compuler system built. C.mmp tells us
something about the classic muitiprocessing structure; it is only one point in a design space.
As successive variations and improvements of technology and architecture show up, they pose
quite different limiting aspects and offer quite different possbilities for solution. A single
research organization, such as CMU, must move deliberately in advancing from system ta
sysfem, s0 as to use each system as an occasion for scientific progress, and so as to analyze
the end-product use of each machine. Withal, there must still be a cycte time for permitting
the next system structure to take shape. This period is determined in part by the rate at
which aspects of the technology change.

(7) The current technology implies that substantial experimental systems can be
developed for modest costs in an environment which has the facilities and expertise. This is a
radical change over even a few years ago. A reasonable way to estimate this is probably by
direct hardware costs, from which other costs can be reasonably guessed. We expect the CM
system now being designed fo have a total hardware cost (for the 100 processor system) of
about $36CK. If funded appropriately it might have a total cost (hardware, software, support,
and core research) over its development lifetime of §900K., (These cost estimates are rough,
though more accurate ones could be developed.)

74 CMU Proposal to ARPA 75-76

{7.1} If experimenial systems prove to be interesting and cost effective
then it might be appropriate to initiate an effort to build much larger
systems (e.g. a 1000 processor multiple computer). Such an effort,
naturally, would cost substantially more than indicated here.

{8) We are not tully supported for the investigation of the CM machine. Indeed, given
our goals for the breadth at which such research should be done, we are not even adequately
supported. For instance, we have no resources of our own to purchase the hardware; thus we
cannot make appropriate choices at times of component selection. There are no full time
personnel associated with the project (such as Research Associates, programmers, engineers).

(9) Thus, we propose that we be provided funds sufficient to carry out the present
experimental system at an appropriate level and to prepare for the next investigation. The
essential ingredients seem to us to be:

(9.1) For each system that we wish to attempt, we will develop a detailed
technical proposal that deals with all of the aspects of the problem:
architecture, operating systems, software facilities, task decomposition,
reliabitity and performance measurement and analysis.

(9.2) The presumption is that a suitable proposal can be developed for each
system. Thus, we can proceed with the timing of the design and
development without taking the long lead times that are required for the
approval of a design effort when approaching a funding agency as an initial
contract or grant. However, it will be possible to deflect a particular
project if the proposal is unsuitable.

(8.3) There will be driving tasks associated with each system, to be part of
the proposal, as described above. The tasks for such desighs can be
selected and negotiated to meet a set of mutual goals, (We are currently
beginning a year study for the Defense Communication Agency to explore
the application of muitiple processor systems to digital Communication
networks.)

(9.4) We plan to actively work on the Computer Modute system for at least
three years. Subsequent multiple computer studies may well take us
beyond three years, but a minimum duration of three years is needed in
order to assure we can push the CM machine well beyond the hardware
development stage and into a phase where we can address the problems
and opportunites associated with the end use of the multipie computer
system.

(10) We are proposing here to seriously explore the multiple computer design space; to
only propose to study Computer Module systems (as we now understand them) would limit the
project too much in scope to be assured we are addressing the major issues and alternatives.
Below we list several topics that need to be explored and may well form the core of
experimental systems beyond the Computer Module system proposed here. Items will
certainly be added to this list as we gain more experience with C.mmp and Computer Modules.

(10.1} In both C.mmp and now Computer Modules we have limited the
architecture of the central processor to the PDPL1 instruction set. There
have been good reasons for this: primarily, there exists good software

Research into Multiple Computer Systems 75

development on the PDPll. However, on a number of counts the 11
architecture is too constrained. For example, the 11 really needs a much
larger address space than its current 219 words. Larger integer data-
types and a coherent set of interprocessor communication instructions are
needed. One direction of future efforts may be to consider the design of
the proper central processor architecture for 10 to 100 processor systems,

(10.2) In our discussion with a number of other laboratories specifically, the
Univ. of Hawaii and Intel Corp,; the prospect of very high bandwidth buses
has been discussed. In the current system we are proposing the use of
conventional technology o achieve 1 to 2 Megawords per second on the
interCM bus. Advances in fiber optics and linear integrated circuits suggest
it may be economical to consider systems built around one or two global,
high performance buses.

(10.3) As we have mentioned in the main part part of this proposal, the
cost of primary memory can be a dominant factor in the cost of the system.
A number of interesting technologies are emerging that hold out the
promise of a cost-effective high performance secondary store. CCD’s,
Bubble memories, and eleciron beam memories are currentty attracting the
most atiention. Only CCD's, however, have been incorporated into a
commerical product to date {Intel’s CCD *drum’ based on their 16K bits/chip
packages. The potential to exploit CCD's and Bubble memories seems
particularly attractive on a multiple computer system. The many
processors can be used as 1/Q processors and hence maintain a very high
average bandwidth between these solid state secondary stores and primary
memoery.

8.4 Scientific Questions

We have a strong interest at CMU in exploring the technical problems associated with
multiple processor systems. Qur work on the C.mmp and Computer Modules projects has
helped to clarify some of the major unsolved problems associated with these systems . Several
open problems are listed below:

(1) Capacity of Inter-Processor links. Links between computers (or processors) in any
network can be characterized by three primary performance parameters: bandwidth, ie.,
bits/sec,; latency, ie., time to execute the transfer of a file, packet, or interrupt request
between computers; and the ratio of information bits to control bits. There is currently a
dearth of information on the bandwidth and latency required in muitiple processor networks.
By benchmarking and measuring several applications on both C.mmp and CMs, interprocessor
communication levels can be studied. Based on these studies new and improved analytical
models can be developed.

(2) Deadlocks. Current multicomputer systems are susceptible to deadlocks. In other
words, it is possible for two processors to request links or memories in such a sequence that
they lockup for an indefinite length of time. Measurements of the ARPAnet indicate this in fact
occurs. Other multiple processor structures such as the BBN Pluribus and DEC PDP11 systems
using Unibus Windows also acknowledge the possibility of deadlock. As the next generation of
multiple processor systems are used in applications requiring a closer degree of cooperation
among processors, the deadiock problem will become a much more serious issue, During the

76 CMU Proposal to ARPA 75-76

course of CM design several deadiock prevention techniques were examined. With the scheme
adopted it should be possible to measure deadlock potentials and actua! deadlocks that were
prevented.

(3) Inter-Processor Contro! Mechanisms. There is presently no concensus on how to
effectively pass control among processes in a multiple processor system. C.mmp has a simple
inter-processor interrupt unit; the BBN Pluribus has the PID (pseudo-interrupt device); and
Computer Modules generalize the memory mapping mechanism to include control mappings as
well. Control mechanisms in uniprocessor systems include subroutines, coroutines, goto’s (or
exits in golo-less programs), and interrupts. An analogous set of control mechanisms is
needed for multiple processor systems. Since the initial ten CM testbed will have read/write
control stores, various interprocessor control mechanisms can be implemented, measured, and
evaluated. [Siewiorek 75]

{4) Process to Processor Binding. As the number of processors in a computing system
increases, our current notions and intuition about multiprogramming and processor utilization
must be re-examined. Possibly the concept of muitiprogramming should be discarded in some
multiple processor systems. The simplification in the software could be significant and the
time saved by not having to save and switch processor states would result in higher
performance in some applications. But what are the guidelines for matching processes to
processors and what degree of multiprogramming is appropriate in a particular instance?

(5) Problem Decomposition. In order to take advantage of the potential high reliability,
incremental expandability, and very high throughput of a muitiple processor system, a problem
must be decomposed into parallel, cooperating processes. To date such decomposition has
only been achieved for special purpose tasks by individuals intimately familiar with that task.
A hill climbing exercise based on developing many benchmarks should give us insight into this
and the previous problem,

(6) Addressing Problem. A problem with all multiple processor systems that use 16-bit
mini/microcomputers for their processors is that their immediate name space is limited to 64K.
One important reason for the development of a read/write control store for the PDP11/40 at
CMU is to allow. us to expand the architecture of the PDP11 to get larger address types, in
addition to the standard 16-bit addresses, or to add instructions to manage efficiently the
relocation box. In addition, CMs will have 28 bit network addresses external to the
processers.

The problems of reliability, security, and modularity will take an increasing importance
as our work progresses.

8.5 Budget

The budget for the major equipment is given on the pages immediately following. Major
equipment is divided into a small initial system to test alternative concepts and then the full
100 processor system fo test our design on an operational many processor system. Also
included in the budget is the expected cost of experimental hardware for high speed bus and
memory structures which would permit exploring alternate architectures.

Research into Multiple Computer Systems

MAJOR EQUIPMENT

Initial 10 Processor CM System

10
15
3

1

LSI 11 with 12K words memory 81,500

LSI 11 to Inter-CM bus interfaces 500

Intel 3000 Inter-CM bus controllers 4,000
with writeable control stores

POP11/40 27,000
with 28k memory, 30 cps terminal, DECtape drive, and
link to PDP10A

Power suppljes, cabinets, and cables 8,000

Total

77

$15,000
7,500
12,000

27,000

8,000

$69,500%

*We arc in the final stages of negotiating 2 joint effort with Digital Equipment Corporation on
the initiat 10 processor system and DEC will provide CMU with the needed hardware
components. The 869,500 for the 10 processor system is not included in the hardware costs
of this proposal; the 10 processor CM system is listed here primarily to show what we already
intend to butld,

Additional Hardware to Make a 100 Processor CM System

90
120
10

1
!
5

1

LSI 11 with 12K words of memory $1,300
LSI 11 to Inter-CM bus interfaces 200
Intel 3000 Inter-CM bus controllers 2,000
Power supplies, cabinets and cables

link to PDP10A 5,000
link to C.mmp 5,000
High Speed Drums 3,000

{mechanical or solid state [e.g. CCD's])
3330 equivalent disk storage 40,000

(108 word capacity)
Maintenance and spare parts
Test Equipment
Site Preparation
Total

$117,000
24,000
20,000
40,000
5,000
5,000
40,000

40,000

18,000
6,000

2,000

§317,000

78 CMU Proposal to ARPA 75-76

9. REFERENCES

Baker, James K. (1974), "The DRAGON System - An QOverview", Proc. IEEE Symposium on
Speech Recognition, Pittsburgh, Pa., 22-26.

Baker, James K. (1975), Stochastic Modeling as a Means ot Automatic Speech Recognition, PhD.
Dissertation, Department of Computer Science, Carnegie-Mellon University.

Beker, Janet (1975), A New Time-Domain Analysis of Human Speech and Other Complex
Waveforms, PhD. Dissertation, Department of Computer Science, Carnegie-Mellon
University.

Barbacci, M. R. (1973), The Automatic Exploration of the Design Space for Register Transfer
(RT) Systems, PhD. Dissertation, Computer Science Department, Carnegie-Mellon
University.

Barbacci, M. R. and D. P. Siewiorek (1974), "Some Aspects of the Symbolic Manipulation of
Computer Descriptions”, Technical report, Computer Science Department, Carnegie-
Mellon University.

Bell, C. G. and A. Newell (1970), "The PMS and ISP Descriptive Systems for Computer
Structures”, AFIPS Conference Proceedings, Spring Joint Computer Conference, 351~
374,

Bell, C. G. and A. Newell (1971), Computer Structures: Readings and Examples, McGraw-Hill.

Bell, C. G, J. Grason and A. Newell (1973), Designing Computer and Digital Systems Using
PDP16 Register Transfer Modules, Digital Press, Maynard, Mass.

Berlimer, H. (1973), "Some Necessary Conditions for a Master Chess Program”, Proc. of the
Third International Joint Conference on Artificial Intelligence, Stanford, California.

Berliner, H. (1975a), Chess as Problem Solving: The Development of a Tactics Analyzer, PhD.
Dissertation, Department of Computer Science, Carnegie-Mellon University.

Berliner, H. (1975b), "A Representation and some mechanisms for a Problem Solving Chess
Program”, in Recent Advances in Computer Chess, Edinburgh University Press,
Edinburgh, Scotland.

Bobrow, Daniel 8. (1968), "Natural Language Input for a Computer Problem-Solving System", in
Marvin Minsky (ed.) Semantic Information Processing, The MIT Press, 146-226.

Chase, W. G. and H. A. Simon (1973), "The Mind’s Eye in Chess", in W. G. Chase {ed.) Visual
Information Processing, Academic Press, 215-281.

Erman, L, R. D. Fennell, V. R. Lesser and D. R. Reddy (1973), "System Organizations for Speech
Understanding: Implications of Network and Multiprocessor Computer Architectures for
Al2, Proc. Third International Joint Conference on Artificial Intelligence, Stanford,
California,194-199,

REFERENCES 79

Erman, L. D. (1974}, An Environment and System for Understanding of Connected Speech, PhD.
Dissertation, Stantord University, Stanford, California.

Erman, L. D. and V. R, Lesser (1975), "A Multi-Level QOrganization for Problem Solving Using
Many DivePse Cooperating Sources of Knowledge", Technical Report, Department of
Computer Science,

Farley, A. M. {1974), SIPS: A Visual Imager and Preception System: the Result of a Protocol
Analysis, PhD. Dissertation, Computer Science Department, Carnegie-Mellon University.

Fennell, R. D. (1975a), Mulliprocess Software Architecture for Al Problem Solving, PhD.
Dissertation, Department of Computer Science, Carnegie-Mellon University.

Fennell, R. D. and V. R. Lesser (1975), "Paralleiism in Al Problem Solving", Technical Report,
Department of Computer Science, Carnegie-Mellon University.

Fuller, S, D. Siewiorek and R. J. Swan (1973), "Computer Modules: An Architecture for Large
Digital Modules”, ACM/IEFE First Annual Symposium on Computer Architecture,
Gainesville, Florida, 231-239.

Fuller, S. H, H. J. Swan and W. A. Wulf (1973a), "The Instrumentation of C.mmp: A Multi-Mini-
Processor”, Proceedings COMPCON 73, New York, 173-176.

Fuller, S. H. and K. Stevenson (1973b), "Performance Monitor for C.mmp", Eleventh Annual
Allerton Conference, Urbana, lilinois.

Gerritson, R. (1975), Understanding Data Structures, PhD. Dissertation, Department of Computer
Science, Carnegie-Mellon Unversity.

Gillogty, J. J. (1972), "The Technology Chess Program", Artificial Intelligence 3, 145-163.

Gilmartin, K. J, A. Newell and H. A. Simon (1975), "A Program Modeling Short-Term Memory
Under Strategy Control”, C. N. Cofer (ed.) The Structure of Human Memory, W. H
Freeman, San Francisco {in press). Psychology Department, Carnegie-Mellon University.

Goldberg, H, G, D. R. Reddy and R. L. Suslick (1974}, "Parameter-Independent Machine
Segmentation and Labeling”, Proc. IEEE Symposium on Speech Recognition, Pittsburgh,
Pa, 106-111.

Hedrick, C. L. (1974), A Computer Program to Learn Production Systems Using a Semantic Net,
PhD. Dissertation, Department of Computer Science, Carnegie-Mellon University.

Knueven, Paul (1975), "The Foundation of a Flexible Run-Time System for Algol 685", Proc.
International Conference on Experience with Algol 68, University of Liverpool Press,
Liverpool, UK.

Jones, A. K. (1973), Protection in Programmed Systems, PhD. Dissertation, Department of
Computer Science, Carnegie-Mellon University.

Jones, A. K. and W. A. Wulf (1974), "Towards the Design of Secure Systems", Proc. of the

International Workshop on Protection in Qperating Systems, IRIA, Rocquencourt, France,
121-135.

80 CMU Proposal to ARPA 75-76

Lesser, V. R, R. D. Fennell, L. D. Erman and D. R. Reddy (1974a), "Organization of the HEARSAY
II Speech Understanding System”, Proc. IEEE Symposium on Speech Recognition,
Pittsburgh, Pa. 11-21.

Lesser, V. R. (1974b}, Parallelism in Speech Understanding Systems: A Survey of Design
Problems”, R. Reddy (ed.) Speech Recognition: Invited papers of the IEEE Symposium,
Pittsburgh, Pa,

Lesser, V. R (1975), "HSIi: A Multiprocessor Speech Understanding System”, Interface
Workshop on Interprocess Communication, pp.

Moore, J. and A, Newell (1974), "How can Merlin Understand?", in L. Gregg (ed.) Knowledge and
Cognition, Lawrence Erlbaum Associates, Potomac, Md,, 201-252.

Moran, Thomas P. {1973}, The Symbolic Imagery Hypothesis: A Production System Model, PhD
Dissertation, Department of Computer Science, Carnegie-MeHlon University,

Newcomer, J. M. (1975), Machine-Independent Generation of Optimal Local Code, PhD.
Dissertation, Department of Computer Science, Carnegie-Mellon University.

Newell, A, D. McCracken, G. Robertson and L. DeBenedetti, {1971), L(F) {documentation),
Department of Computer Science, Carnegie-Mellon University.

Newell, A. and H A. Simon {1972a), Human Problem Solving, Prentice-Hall.

Newell, A, (1972b), "A Theoretical Exploration of Mechanisms for Ceding the Stimulus", in A. W.
Melton and E. Martin (eds.) Coding Processes in Human Memory, Winston and Sons,
Washington, D.C,, 373-434.

Newell, A. (1973a), “Production Systems: Models of Control Structures”, in W. C. Chase (ed.)
Visual Information Processing, Academic Press, 463-526.

Newell, A., J. Barnett, J. W. Forgie, C. Green, D. Klatt, JC.R. Licklider, J. Munson, D. R. Reddy and
W. A, Woods (1973b), Speech Understanding Systems: Final Report of a Study Group,
(published for Artificial Inielligence), North-Holland/American Elsevier. (Original
publication, 1971)

Newell, A. and G. Robertson (1975), "Some Issues in Programming Multi-Mini-Processor"®, 1974

Research Methods and Instrumentation, Psychonomic Society, Inc.,, Austin, Texas.

Qakley, J. (1975), "A Comparison of Two Microprogrammable Processors: MLP-900 and
PDP11/40E", Technical Report, Computer Science Department, Carnegie-Mellon
~ University.

Ohlander, R. (1975), Analysis of Natural Scenes, PhD. Dissertation, Department of Computer
Science, Carnegie-Mellon University.

Reddy, D. R. (1973a), "Eyes and Ears for Computers", NTG/GI Fachtagung "Cognitive Verfahran
und Systeme”, Springer-Verlag, Berlin/N.Y,, 1-28.

Reddy, D. R, L. D. Erman and R B. Neely (1973b), "A Model and a System for Machine
Recognition of Speech”, JEEE trans. on Audio and Electroacoustics AU-21 (3), 227-238.

REFERENCES 81

Reddy, D. R. and L. Erman (1974}, "Systems Organizations for Speech Recognition”, R. Reddy
(ed.) Speech Recognition: Invited papers of the IEEE Symposium, Academic Press, N. Y.
(in press)

Shockey, L. and L. D. Erman (1974}, "Sub-Lexical Levels in the HEARSAY II Speech
Understanding System", Proc. IEEE Symposium on Speech Recognition, Carnegie-Mellon
University, Pittsburgh, Pa., 208-210C.

Siewiorek, D. P. and M. B. Barbacci, "Automated Exploration of the Design Space for Register
Transfer (RT) Systems", Proc. First Annual Symposium on Computer Architecture,
Gainesville, Florida, '

Siewiorek, D. P. and M. R. Barbacci (1974), "Some Observations of Modular Design Technology
and the Use of Microprogramming”, Technica! Report, Department of Computer Science,
Carngie~Mellon University.

Siewiorek, D. P. (1975), "Process Coordination in Multi-Microprocessor Systems", Proc. of
Workshop on the Microarchitecture of Computer Systems, Nice, France.

Simon, H A. (1971), "The Theory of Problem Solving", Proceedings of the IFIP Congress,
Ljubljana, Yugoslavia, 249-266.

Simon, K A, and J. B. Kadane (1974), "Optimal Problem-Solving Search: Ail-or-None Solutions",
in Artificial Intelligence, {in press).

Swan, R. J. and S. H Fuller (1975), "K.mon: The C.mmp Hardware Monitor. A Programmer’s
Manual", Department of Computer Science, Carnegie-Mellon University.

Waterman, D. A. (1974), "Adaptive Production Systems", CIP Working Paper, No. 285,
Psychology Department, Carnegie-Mellon University,

Waterman, D. A. (1975), “"Serial Pattern Acquisition: A Production System Approach, CIP
Working Paper, No. 286, Psychology Department, Carnegie-Mellon University.

Wulf, W. (1970), BLISS: A Systems Programming Language, University of Pittsburgh Press.

Wulf, W, A N Habermann and D. Russell (1971a), "BLISS: A tLanguage for Systems
Programming", Communications of the ACM, 780-790.

Wulf, W. and C. G. Bell (1971b), "Cmmp: A Multi-Mini-Processor", AFIPS Conference
Proceedings of the Fall Joint Computer Computer Conference, Anaheim, Caifornia, 765-
778. .

Wulf, W. A, J. L. Apperson, C. M. Geschke, R. K. Johnsson, C. B. Weinstock, D. S. Wile, R. F.
Brender, P. A. Knueven and M. R. Pellegrini (1972), "Bliss 11 Programmers Manual",
Department of Computer Science, Carnegie-Melion University.

Wulf, W. A, £ Cohen, W. Corwin, A, Jones, R. Levin, C. Pierson and F. Poltack (1973), "HYDRA:
The Kerne! of a Multiprocessor Operating System", Communications of the ACM,.

Wuif, W. A, (1974), "ALHARD: Toward a Language to Support Structured Programs", Technical
Report, Department of Computer Science, Carnegie-Melion University.

&2 CMU Proposal to ARPA 75-76

Wulf, W. A, R. K. Johnsson, C. B. Weinstock, $. 0. Hobbs and C. M. Geschke (1975a), The Design
of an Optimizing Compiler, American Elsevier, N.Y.

i

Wulf, W. A. and R Levin (eds.X1975b), "The HYDRA Operating System”, Technica! Report,
Department of Computer Science, Carnegie-Mellon University.

