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Abstract

We apply minimum description length (MDL) principles to evaluate the
merit of relaxing the rigidity of block models of haplotype structure. We
accomplish this by developing an MDL formulation of the more generd
"haplotype motif" haplotype structure smilar to an approach proposed in-
dependently by Koivisto et a. [K+04]. Comparison of equivaent block and
motif MDL models on real and smulated data reved that the more flexible
motif models can yield substantial reductions in data explanations, suggest-
ing that motifs are more accurately capturing the true nature of haplotype
conservation. These benefits are less pronounced in rea than in smulated
data, however, and depend on coverage leve, marker density, and intrinsic
recombination rates of specific data sets.






1 Introduction

The completion of the human genome sequence has given hope that we will
soon be able to understand the molecular bases of a broad range of hu-
man diseases. So far, though, the genetic factors underlying the so-called
“complex diseases,” which likely depend on multiple genetic and environ-
mental factors, have proven difficult to uncover. Single nucleotype polymor-
phism (SNP) association studies, in which one correlates common single-
base genetic variants with disease occurrence in large populations of dis-
eased (case) and healthy (control) individuals, provide a possible avenue for
progress [RM96]. These studies have so far been hampered both by the costs
of sequencing many SNPs in many people and the statistical difficulties of
finding faint but real signals in these large data sets. Both the experimental
and statistical problems can be addressed by exploiting haplotypes, local re-
gions of sequence that take on only a few possible variations in a population.
Haplotype patterns can be used to can reduce the number of genetic sites
that need to be sequenced, through a process known as “haplotype tagging”
SNP (htSNP) selection [J+01]. They can also be built directly into statisti-
cal association tests [MS99, S+99, M+00] and are useful for various related
problems in study design. All such methods depend, either implicitly or
explicitly, on models of how haplotype correlation patterns are structured
in the genome.

There has recently been great interest in “haplotype block” models [D+01],
which assume that sequences can be decomposed into short regions of low
diversity conserved across populations. Block representations are conve-
nient for analysis purposes, as they can be efficiently inferred [Z+02] and
provide a restricted model for subsequent computational inference. De-
spite their advantages, though, evidence suggests haplotype blocks cannot
be robustly inferred and only imperfectly reflect true haplotype conservation
patterns [NT02, S+03, WP03]. Other models of haplotype structure make
no assumptions about conservation of haplotype boundaries between dis-
tinct individuals, including various Markov model representations [M+00,
S+01, S+02] and parsimony models that seek to explain a population with
a minimum number of recombinations [S+02, U02]. Such models have the
advantage of making few prior assumptions about the nature of haplotype
conservation but are too flexible to be fit reliably to realistic sizes of data
sets or to easily yield efficient optimization methods for problems in asso-
ciation study design. The recent “haplotype motif” approach [S03] was an
attempt to fill the gap between these two paradigms by capturing a broader
range of possible conservation patterns than block models while still being
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Figure 1. Figure (@ is one possble partition of a hy-
pothetical haplotype-SNP matrix into blocks. Figure (b)
Is a possble motif partition and figure (c) represents the
DAG/Markov Modd corresponding to Figure (b). In dl the
figures, identical shades on different rows between the same
columns denote the same conserved segment (motif or block

hapl otype)

aufficiently constrained to dlow robust inference and efficent use in down-
stream analysis problems. Motif models assume that haplotype sequences
can be explained as concatenations of conserved DNA segments, much like
in block models, but without the assumption that boundaries between con-
served segments are shared across the population. Figure 1 compares block
and motif approaches using a smal hypothetical haplotype-SNP matrix.

We note that Koivisto et a. [K+04] recently proposed a Markov model
approach identical to that used in haplotype motifs [S03] and developed an
EM algorithm with an MDL objective function. The experimental results of
Koivisto et a. [K+04] do not compare their blocks modd with the haplotype
motifs model. In this paper, we present some preliminary experimental
results using real and smulated data on the description lengths of the two
models.

Even for a particular genera modding framework, various metrics can
be used to fit individual data sets. The minimum description length (MDL)
principle has proven promising with block models as a way to avoid over-
fitting with the sparse data sets currently available [K+03, AnO3]. MDL is
based on Ockham's razor: the best explanation of a data set is the smplest
model that explains it. In MDL, we minimize L(M) + L(E(1)\M), where
L(M) is the length of the encoding of the modd M in terms of a universe
of possible models and L(E(I)\M) is the length of the explanation of in-
put / in terms of M. By accounting for both model and data description
costs, MDL prevents one from producing a concise definition of the data by
using an overly complicated model. Any encoding scheme can be applied
to minimize the objective function. While its impossible to determine if an



encoding scheme is optimal, when comparing any two models care is taken
to make the encoding for both models as fficient as possible.

While much attention in the computational field has been focused on
applications of haplotype correation patterns, comparatively little atten-
tion has been paid to the problem of how best to represent these patterns.
We focus here on the problem of characterizing haplotype structure per se,
rather than its use in any particular downstream application, specificaly
comparing prevailing block models to the more relaxed motif framework.
The MDL principle provides an objective basis for considering whether a
more complicated or a Smpler modd is better able to concisdy capture
the true information content of haploid sequences, which is ultimately what
one requires of a haplotype structure model. We define an MDL variant of
haplotype motifs, develop associated computational optimization methods,
and compare this method to an equivaent block MDL method. We then
analyze a combination of real and smulated data, considering how concisdly
the various data sets can be represented in the two frameworks and how this
depends on characteristics of specific data sets.

2 Definitions and Notations

We firg define a motif model and the block model as a special case of it.
We use the following definitions and notations throughout the paper.
Input: Input | consists of an nx m 'haplotype-SNP' matrix. The set of rows
R = {1, ¢+ n} of / correspond to DNA sequences and the set of columns
C = {1, ra} observations over SNP sites. We assume that dl the SNP
stes are bi-adlelic, yieding a boolean matrix. The notation |;,s,e denotes
the bits of row r of / between columns s and e (both inclusive).
Motif model: A motif model is defined by a st H = {/ii, /i2, ¢ « ¢, "} of
"hapl otype motifs' or smply motifs. Each motif hi isaquadruple (3", €, bi,pi).
The start and end columns of the haplotype motifs w.r.t the input matrix
are defined by ™, t% {s%; e» € C). The bits of a haplotype motif are defined
by h{ {hi E {0, I}e'~"5*+1). Associated with each haplotype motif is a proba-
bility pi. We require that Vj,J2hieH\si=jPi =~ 1? i-> "he probabilities of al
the moatifs that start at location j sum to 1.

We can aso view the motif modd as adirected acyclic graph G = (V, E)
(or a Markov modd) where t\ E V is a specid 'start’ vertex. By definition,
there exists a bijection (j>: W{t\} B> H. Every vertex v E W{ti} such that
</>(v) = hi is annotated with the quadruple (s,e,by,p,) = (st,ei,6t,pi).
Therefore al the properties of a vertex v are identical to the properties of



motif (j)(v). Two vertices u and v are connected by a directed edge (u, v)
if and only if s, = g, + 1. Directed edges (ti,v) are added if and only if
s, = 1. Figure I(c) shows a sample DAG/Markov moded corresponding to
the motif decomposition in Figure I(b).

Exact conformation and explanation of /: A motif mode conforms to
input / if for every row r of /, there exists a directed path V; in G that
produces dl the bits of the row in order. More formdly, the path V, is
defined as an ordered set of vertices Vi = {*i, vi, v, ¢ * ¢, vj}, whereg; = m
and (t"ir+i) GEand by oby, 0... 0 &g = I\ Any row r could have
severad such candidate paths, where each path Vr constitutes an explana-
tion for row r. Our definition for the probabilities pi and the explanation
for the rows of / are mutually dependent. To explan arow r G i£, the
set V; that is most likdly (that minimizes — Y veV, I°S(Pv)) *° selected (ties
are broken arbitrarily). A motif mode exactly conforms to input / if ev-
ery haplotype motif of the model appears in the explanation of at least one
row, \fv G V 3r Gi?, v G V,. We define the probability of a vertex v as
pp= (M, GRwWG V}N)/Mr GRWGP, and g, =s, - 1}|). Although we
could construct a more generd Markov-modd that associates probabilities
with edges instead of nodes, that would complicate association study appli-
cations and might overfit the input.

Block model: A block model can be viewed as a constrained verson of a
motif model in which motif boundaries do not overlap. More formdly, a
block model is defined by aset H = {hi, 112, » » », W} of block haplotypes con-
ssting of quadruples {si,ei,bi,pi) defined identically to motifs. The blocks
of H are contained in an ordered set B of block boundaries sorted by the
start locations, B = {(s,e)|3h = (s,e, _,-) G H}. We further require that
V(g,et), (si+i,g+i) G B, (" +I| = St+i). The definitions of exact conforma:
tion and explanation extend to the block model in the obvious manner. Note:
If ablock model exactly conformsto /, Viz G H,p = \{r G J?|/;»% = 6}|.
In this paper, we are only interested in discovering block and motif models
that exactly conformto I.

3 Haplotype Blocks

We apply here an encoding and algorithm for blocks smilar to that of
Koivisto et a. [K+-03]. A naive encoding of the block haplotypes has cost
Ef-ilog(") +log(e) +((e)-(si) +1) + L(pi), where L(r) = logl{r G
R\l;;i8i,ei — b}\ and k is the total nhumber of motifs. To encode the model
more efficently, the block haplotypes are sorted based on the start (and



therefore end) locations. For any column j of /, let Sj be the number of
block haplotypes that start at location j, sj = \{hi £ H\s{ = j}\. Define
thesat T = {(j, I)\s§ * O} o tuples conssting of start locations with cor-
responding (non-zero) number of block-haplotypes starting at that location.
X is sorted to yield an ordered set of block haplotypes, T = {(ti,Sj)} such
that t{ < tf+i. Encoding the set of start locations makes encoding the end
locations unnecessary. The start locations are difference-encoded with cost
21og(t?) + 2 X112 [°g(*t ~ U-i)> The cot for encoding V,, the ordered st of
block haplotypes corresponding to the explanation of a row r, is computed
as L(E(r)) = — Ylh eVr""p~ A° total “°*~ °f °“" encoding is therefore:

\T\
2 log(*j) + 2\og(sy) + *(2log(«i - ti i) + 210g9«))+

t=2

k L

S (e — s+ 1) + Lp) + Y L(E())

i=l r=|
. This encoding differs from Koivisto et a. [K+03] in our use of difference
encoding and lack of a noise model. These changes dlow fairer comparison
to our motif MDL model, which aso uses difference encoding and lacks a
noise mode!.

We find the least cost solution using the Koivisto et a. [K+03] dy-
namic programming algorithm. Their agorithm uses the recurrence F(b) =
mini<,<b(F(a— 1) + /(a,6)), where F(b) is the cost for the optimal block
partition of the input up to and including column b and /(a, b) is the cost
of a sngle block from columns a to column 6, both inclusve. In practice,
we find that the optimal solution obtained by the above algorithm can be
encoded with dightly lower cost by using the fallowing scheme. Instead of
encoding the start locations and the number of block haplotypes per start
location with cost

\T\
aogfo) + 21og«) + 2"2(\og(U - U-!) + 2109«)),

f=2
we define multi-set

X ={ti} uKju UEL*i - *<i} u«})

. The multi-set \ ”° encoded using entropy such that if x appears in \ for
ny times, then cost for encoding al the x'sin % is —ny log(n/|X[)- The cost
incurred by using the above encoding is referred to in the tables of Figures
3 and 5 as extra cost and the rest of the cost as main cost.
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4 Haplotype Motifs

To encode moatifs efficently, we firg sort them by start locations and then
by end locations (among those that have identical start locations). Let T =
{cE£E C\3v GV, s, = c} bethe st of columnsthat are the starting locations
for a least one moatif. The set T is ordered such that VAN € 1rt» <
ti+1, SO the start locations can be difference encoded with cost 2log(ti) +
QZE ].Og(t.g et t"_.l).

Define an ordered set of tuples T, = {(tt, tic,t)} conssting of an end
index tcj and non-zero number of moatifs starting at ¢ and ending at t». Set
T is ordered such that t* < £i+i- For aspedific start location c, the end lo-
cations can now be difference encoded with cost 21og(tgi) +2 Y\=%|°g*c)j ~
£.,i-1)- The cogt far encoding the bits of the motif and the cost for specifying
the number of motifs within each pair of start and end indices is computed
2 1G=((et—°) *Aet+2log(wgt)). The cost for encoding the probability of
avertex v (motif <f>(v)) iscomputed asL(p,) = 21og([r Gi?%> G P} [)« Note
that this information is enough to determine the probability of avertex, snce
the denominator in the definition of p, is Yluew(e=s) \{' » R" ~ ~r}\-

The cost for encoding the ordered set Vi corresponding to the explana
tion for row r is given by L{E{r)) = — Ylvev, "°&(Pv)- Therefore the total
cost for the motif moddl with explanation is

\T\
2log(ti) + JZ(2 log(tei) + 2 log(ue,i) + (gl - €) X uca) + 2 logfe - *i_i)+

ceT =2
|| n
> S (2log(tei~teim1)+2log(ue i)+ (tei—c) X ucs)+ Y L( L{E(r))
cGTi=2 e\ r=1

An important point to note here is that if none of the motif boundaries
overlap (dl the motifs are block haplotypes), then the term 2 "2, T"°s(ic,i)
would be the extra cost that motif model incurs as compared to the blocks
model." Also, instead of coding the differences in start location, the number
of end locations per start location and the number of motifs within a pair
of (start, end) indices as shown above, we add the values into a multi-set \
and encode them using entropy as with the case of blocks.

"We need to specify end locations in addition to start location of motifs.



4.1 Algorithm

We use a two-step heuristic method to find low-cost motif models. We first
use a two stage maximization heuristic to find a good initial solution. We
then apply a simulated annealing local search method to improve the cost
and find a local minimum of the potential function.

Step 1: Our starting method alternates between two maximization steps.
We initialize a set H of all possible haplotype motifs in I (all possible sub-
strings in I) and construct the DAG corresponding to H as described in the
previous section. The probability p, associated with vertex v is initialized
to reasonable non-zero values. The maximization step finds the least cost
path P, that explains each row r separately, assuming that the probabilities
of the vertices are fixed. After completing the first maximization step on all
rows, the second performs a maximum likelihood estimate by re-normalizing
the probabilities of all the vertices such that the vertices that were used to
explain more rows obtain proportionally higher probabilities. During each
iteration of the algorithm the size of G and therefore the size of H decreases.
See the pseudo-code in Figure 2 for more details. The algorithm requires
O(nm?) space to store all possible motifs and their associated attributes and
the time per iteration is bounded by O(nm?).

Step 2: Our simulated annealing method improves on the solution by con-
sidering two perturbations to the input: merge(j) and split(j) where j € C.
If the current solution is G with cost ¢(G) a merge operation creates a new
solution G’ by merging all the motifs that end at j with motifs that begin
at j + 1. To support split consider the set of motifs that contain bits at
columns j and j +1, S; ={ve G|s, <jand e, > j}. Just as in the case
of blocks we assume that |S;| is bounded by a constant. The split operation
considers all possible subsets of S]" C S; and computes 215l new solutions
G’ corresponding to splitting all the motifs in S} between locations j and
j + 1. If a sequence is explained using a motif u in G, then it is explained
with the motifs u; and u, of G’, where u; and w, are motifs obtained by
splitting u between j and j + 1. Note that after performing the splits, some
motifs become identical w.r.t their start, end locations and the bits they
represent. Consider two motifs u and u’ of G’ that are identical. Let E,
and E, C R be the set of rows that contain the motifs © and «’ in their
explanation respectively. Then a motif v replaces u and v’ in G’ such that
it is identical to u and v’ and E, = E, U E,,. The Markov model where the
states represent current solutions and edges the transitions between states
by performing a split/merge operation is ergodic. The simulated annealing
procedure randomly selects a candidate G’ that is obtained either by a split



or merge. If ¢(G') < ¢(G) +aZ, where Z is an exponential random variable
with mean 1 and a > 0 is the smulated annealing parameter, then G re-
places G as the current solution. The smulated annealing parameter a is
dowly reduced to 0. Note: We use severd additiona heuristics to both
steps to improve the running time, space requirement and accuracy.

5 Experimental Results

We analyze a combination of real and smulated haplotype data. We applied
the ms program of Hudson [HOZ] to smulate samples of a 100 kb region of
DNA under a Wright-Fisher neutral model by the codescent method. We
used a mutation rate of 25 x 10~ per nucleotide per generation to match
that estimated for humans [NCOQ]. We use two different recombination rates
— alow recombination rate of 10~° per pair of sites per generation and a
high recombination rate of 2 x 10"® — to capture the range of variation
estimated between human chromosomes [H04]. The effective population
dgze Mo is st to 10,000, as estimated for modern humans [RY(Q3]. We used
100-800 sequences in our experiments. Prom the ms output we sdlected only
those dites with minor dlde frequency at least 10%, consistent with typical
SNP sdlection guidelines. After this step, we obtain about 200-250 SNPs on
average, giving a frequency of about one SNP per 400-500 bp.

The table in Figure 3 compares the effectiveness of blocks and moatifs in
concisaly describing different smulated data sets. Motifs consistently yield
substantially smaller explanations, with a greater relative reduction for low
recombination rates. Figure 4 shows the dependence of results on data set
Sgze. The advantage of motif models increases with increasing population
gzes. We note that at unrealistically low and high recombination/mutation
rates, block models perform better than motif models (data not shown).

We show results from two real data sources produced by Daly et a. [D+01]
and the HapMap project [HO4]. Large scde phase known haplotype data
is not available and therefore we used the phasing agorithm of Eskin et
a. [E+03] as provided by the HAP webserver. To mimic the data used
for association test, we sdected one per trio of the Daly et a. data set.
For the HagpMap data, we present results for two input matrices of which
one exhibits small blocks and the other longer blocks. Figures 6 and 7 illus-
trates motif and block patterns using the Daly et a. haplotype-SNP matrix,
transposed such that the vertical lines denote haplotype sequences and the
horizontal lines SNPs. We can observe that some boundaries match across
the two modes but motifs dso find overlapping conserved segments that
would be impossible for the blocks modd to discover.



Figure 5 summarizes description length results for the real data sets. The
real data sets are noticeably more favorable to blocks than are smulated data
sets. Blocks yield more concise explanations for the short-block haplotype
map data. Moatifs yidd shorter description lengths when the block szes
are comparatively large. Smdl block Szes in some data sets might result
from either high loca mutation/recombination rates or low SNP sampling
densities. In ether event, the advantage of using haplotypes at al would
be limited for such data sets. We note that in the Gabriel et a. [G+02]
data-set, which is much smaler in both input sze and the average block
length discovered, the motif model was competitive but not better than the
block mode (data not shown).

6 Conclusions

We have presented a novd method for inferring haplotype structure by com-
bining MDL principles with the haplotype motif framework and used this
to evaluate the merits of relaxing assumptions of haplotype block models.
It is currently a matter of debate how much human haplotype structure
has been shaped by recombination hotspots versus random recombinations.
Either would yield data that could be fit to block models [NTOZ2], although
patterns produced predominantly by recombination could likely be much
better fit to more generd haplotype structure models. Our results on Sm-
ulated data lacking hotspots suggest that such data could be much more
parsmonioudy explained by moatif than by block models. Red data shows
a less pronounced and more inconsistent benefit to usng motif models, a-
though the advantage of motif models becomes more pronounced as data
set 9zes and marker dengities grow to levels likely to be desirable for asso-
ciation studies. Together, these results suggest potentially large advantages
to relaxing some of the restrictions of block models if we wish to best char-
acterize the information content of human genetic sequences and apply that
information to solving pressing problems in human medicine.
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function runMotifMinCost

1 create a s of al possble motifs H =
{huhy,--,h}. Initidize a DAG G = (V,E) corre-
sponding to H

2. create a new vertex £2 and add directed edges (*£2)
iff e, = 7A

3. for each v G ~(G) let ¢* := |{r G R\,,s,6, = Ml
4. reNormalizeProbabilities
5. for each iteration of the algorithm

(@ forr:=1,¢¢¢ ra
i. consider subgraph G', st V> G ~(G'),

-Tl_r,s,,e\, Y]

ii. compute a shortest path V, in G' from ti to
ia
(i.e) find P, minimizing - Z"ePr '°g(Pv) 'S
minimized

iii. for each v €V, increment c,
(b) reNormalizeProbabilities

function reNor malizeProbabilities
1. fori:=1,¢°°,ra

(@ sum:=£,ev]s,=;
(b) foralvGVstonr=2
i. £% = Cy/sum

ii.gy=0

Figure 2: Algorithm for haplotype motifs
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#Seqs/ | Num | DL: DL: Blocks
Rcmb SNPs| Motifs main + extra
Rt
100/low | 208 | 4342.48 | 4715.89+81.35 e reieminsanciindl
200/low | 247 | 7028.01 | 9167.05+44.55 mm————
400/low | 231 | 9710.4 13460.37+35 17
800/low | 221 | 133539 | 20218.22+20 L
100/high| 205 (35298.56 | 6953.77+75.35 1
200/hight 276 | 8577.02 | 10892.17+67.0(b T
400/hight 223 | 11640.3 | 14965.19+64.30
800/high] 231 | 23403 [ 29094.79+4655  Figure 4: Ratios of MDL

costs between motif (to-
Figure 3: Results of motif and block tal cost) and block (main
models on simulated data cost) models
Src, Num | Desc Desc Length: | Avg Block
Num Segs SNPs| Length: Blocks - main + | Length

- Motifs | extra cost

[D+01] 258 103 | 6554.93 | 7342.71 + 74.44 11.44
[HO4] Chr22 | 150 | 8349.06 | 9245.28 + 14820 | 8.33
180
[HO4] Chrl 180 | 150 | 101359 | 9868.23 + 199.41 | 5.77

Figure 5. Description lengths of motif and block models using real data

Figure 6. Motifs of Daly et al.
[D+03] as discovered by our
algorithm. Each color repre-
sents a unique motif.

Figure 7: Block haplotypes of
Daly et al. [D+03] as discov-
ered by our implementation of
the algorithm by Koivisto et
al.
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