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1. Introduction 

L* is a sys tem for bui ld ing so f tware systems. It is a tool for the p ro f e s s i ona l 

p r o g r a m m e r , and was or ig ina l ly in tended for use in construct ing art i f ic ial in te l l i gence 

s y s t e m s . Its most important use, however , has been in prov id ing the basic s o f t w a r e 

s u p p o r t fo r exper imenta l computer systems. Under deve lopment at C M U s ince 1969 , 

o p e r a t i o n a l ve r s i ons of L* have ex is ted s ince 1970 and have been in exper imenta l use 

b y a smal l communi ty . However , on ly a short descr ip t ion of the sys tem and the de s i gn 

p h i l o s o p h y that under l ies it has been pub l i shed (Newel l , Freeman, McC r a c k cn , and 

R o b e r t s o n 1971). The sys tem, its ph i losophy, and our exper ience w i th it have n o w 

r e a c h e d a su f f i c i en t l y mature state so that a genera l expos i t ion of it seems use fu l . 

L*'s roo t s lie in the se r i es of IPLs, the original list p rocess ing languages (Newe l l 

and S h a w 1957; Newe l l , Tonge, Fe igenbaum, Green, and Mea ly 1964). As e x p e r i e n c e 

m o u n t e d w i t h I PL -V and w i th LISP about the nature of system bui ld ing in ar t i f i c ia l 

i n t e l l i gence , it s eemed appropr i a te to make a f resh start wi th the emphasis on s y s t em 

imp l emen ta t i on ra ther than on the language aspects. L6 (Knowlton 1966) had s h o w n 

that e f f i c i en t low leve l sys tems could be built using list s t ruc tures as a data t ype . A n 

e a r l y a t tempt to unders tand the lessons 'o f L6 resu l ted in a similar mac ro -based s y s t em 

o n the I B M 3 6 0 ca l led *1 (Newel l , Ear ley, and Haney 1967). An attempt to unde r s t and 

t he na t u r e of a f lex ib le dynamic user inter face resu l ted in a sys tem call BIP (Bas ic 

I n t e r f a c e Package , Newe l l and Freeman 1963), embedded wi th in IPL-V. A l l t he se 

s y s t e m s can be taken as the d i rect p recu r so r s to L*. 

Fami l ia r i ty w i th two basic, albeit informal, notions is assumed th roughout th is 
p a p e r . 

(1) A s o f twa r e sys tem is an integrated co l lect ion of programs and data 

w h i c h p rov ides the d iverse funct ions necessary to an ope ra t i ng 

env i ronment : communicat ion w i th users, resource management, 

debugg i ng aids, behav ior monitor ing aids, archiv ing, communicat ion 

w i t h o ther so f twa re systems, as wel l as the main prob lem so lv ing 

func t ions for the task (though no part icular subset seems to be 

essent ia l ) . Typ i ca l examples are operat ing systems, large AI p rograms, 

and air l ine rese rva t i on systems. 

(2) An implementat ion system is a spec ia l i zed set of so f tware tools 

u sed to c rea te so f tware systems. Typ ica l examples are BCPL 

(R ichards 1969), BLISS (Wuif, Russel, and Habermann 1971), FCL 

(Wegbre i t 1971), and XPOP (Halpern 1964). The concept of an 

implementat ion sys tem has ar isen more or less concur rent ly w i th an 

awa renes s of the sever i t y of so f tware product ion prob lems and w i th 

the d isc ip l ine of so f tware eng ineer ing devoted to cop ing w i th thcr.e 

p rob lems . 

T o unde r s t and the re lat ionship be tween L* and other implementat ion sys tems, it 
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is u s e f u l to look at the basic forms that implementation systems have taken. Rough l y 

s p e a k i n g the re have been th ree paths of development: 

Mac ro sys t ems: The assembly language has a lways been the court of 

last reso r t for c rea t ing any programming st ructure. The addit ion of 

macro fac i l i t ies has been the main vehic le for adding fac i l i ty to 

assemb le rs . Th is has led to the development of systems that take the 

macro fac i l i ty as the centra l dev ice in an implementat ion system, X P O P 

is a good example. 

High leve l language systems: The des i re to use high level languages 

for sy s tem implementat ion has ex is ted for a long time. These 

languages make sys tem implementat ion and maintenance eas ier by 

making sys tem s t ruc tu re more apparent. Until recent ly , their use has 

b e e n l imited because of the re lat ive inef f ic iency of code p r oduced by 

their compi le rs . Th is has changed, w i th severa l languages be ing used 

e f f e c t i ve l y , notab ly BLISS11 (Wulf, Johnsson, Weinstock, Hobbs, and 

Geshchke 1975) and B C P L 

List p ro ces s i ng systems: List p rocess ing systems of fer interact ive and 

symbo l manipulat ion capabi l i t ies not genera l ly found in e i ther 

macrosys tems or tradit ional high level languages. Their use has been 

pr imar i ly in bu i ld ing large artif icial intel l igence systems, wh i ch have 

many of the same p roper t i e s as genera l softv/are systems a l though 

they tend to be exper imenta l in nature. The most commonly used list 

p r o ce s s i ng language is LISP (McCarthy, Abrahams, Edwards , Hart, and 

Lev in 1962). 

Implementat ion sys tems a lways involve a language of some sort and this o f t e n 

s e r v e s as a sho r thand for denot ing the system. But an implementation sys tem is a lway s 

much more; it is the total set of faci l i t ies that are p rov ided to create s o f twa re sy s t ems . 

T h e s e inc lude all the usual funct ions that typ ica l ly show up in a so f twa re sys tem i tse l f 

(e.g., an ope ra t i ng env i ronment and debugg ing faci l it ies). 

W e wi l l assume genera l famil iar ity w i th these notions. Fur ther e labora t i on can be 

f o u n d in F r eeman (1975). 

In Sec t ion 2 w e wi l l p resent the des ign ph i losophy of L*, to make c lear 

w h e r e it s tands in the space of implementation systems. In Sect ion 3 w e wi l l 

d e s c r i b e the s t ruc tu re of the system that makes poss ib le the rea l izat ion of t h e se 

d e s i g n p r inc ip l es . Sect ion 4 d iscusses the results of some exper i ence w i t h L*. 

S e c t i o n 5 conc ludes w i th a genera l d iscuss ion of the open issues and some 

c o m p a r i s o n s w i t h o ther spec i f i c implementation systems. 
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2. Design Philosophy 

In this sec t i on , w e wi l l desc r ibe the des ign character ist ics of L*, and c ompa r e 

t h e m w i t h des i gn charac ter i s t i cs of other implementation systems. The d e s i g n 

p h i l o s o p h y of L* can be desc r i bed in terms of a number of d imensions (or i ssues) o n 

w h i c h imp lementa t ion sys tems must take a stand. For these i ssue-d imens ions t h e r e 

r a r e l y ex i s t s a comp le te charac ter i za t ion of the alternat ives, but only a f ew po in ts that 

h a v e b e e n adop ted by var ious systems. To help place L*, we wil l also ind icate the 

p o s i t i o n a long these d imensions of typical high level language (HLL) sys tems and of 

L ISP . De ta i l ed compar i son of L* w i th speci f ic systems (e.g., BLISS or LISP) w i l l b e 

p o s t p o n e d to the end of the paper , s ince our purpose in this sect ion is to d e s c r i b e L*. 

F i g u r e 1 l ists the issue-d imens ions vert ica l ly, w i th a column for ea ch of t he 
t h r e e sy s t ems . The ent r ies are exp la ined in the subsect ion on each par t i cu la r 
d imens i on . 
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HLL LISP L* 

Symbo l s Ident i f iers Symbols Symbols 

In te rac t i on Batch Interact ive Interact ive 

P r o d u c t i o n M o d e External Internal Internal 

F l ex ib i l i t y 

Da t a - t y pe s 

Con t r o l 

Syn tax 

Con t r a c t i o n 

Some 

Litt le 

Litt le 

None 

None 

None 

None 

None 

Tota l 

Tota l 

Tota l 

Litt le 

A c c e s s i b i l i t y 

A d d r e s s e s 

Part ia l 

No 

Partial 

Yes 

Tota l 

Yes 

E f f i c i e n cy Uni form Select ive Se lect ive 

L anguage Fo rm 

A l g eb r a i c 

O p e r a n d syn tax 

Va r i a b l e s 

Yes 

Inf ix f funct ion 

Yes 

No 

Funct ion 

Yes 

No 

Post f ix 

No 

In teg ra t i on No Complete Complete 

U se r Commun i ty Universa l Dialect Pe rsona l 

Ma in ta inab i l i t y Cent ra l i zed Dispersed LocaKse l f ) 

De s i gn S t r a t egy St ructured Iterative I terat ive 

F igure 1. Design Philosophy Characteristics 
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Symbo l s . What capab i l i t ies exist for symbol iz ing and rep resen t i ng w i th i n t he 

imp lemen ta t i on s y s t em ent i t ies in the object system, and for manipulat ing t hese 

r e p r e s e n t a t i o n s ? L* ab ides by the fo l lowing pr inc ip le: 

Universal symbol system : The re should exist a single homogeneous 

s y s t em of symbo l s wh i ch can be used to represent any aspect of the 

ob j e c t s y s t em. 

Th i s r equ i r ement is a st r ingent one that, in the current art, almost f o r c e s an 

imp lemen ta t i on s y s t em to conta in a symbol manipulation language. Thus , L ISP a lso 

sa t i s f i e s th is p r i nc ip l e . But BLISS does not. Instead, it has l imited ( though p o w e r f u l ) 

s ymbo l i c capab i l i t i e s f i xed in advance by the des ign of the sys tem (e.g., f o r 

i n s t ru c t i ons , f o r b locks of memory space, for addresses and for in tegers) . T h e 

r equ i r emen t fo r a more genera l symbol ic capabi l i ty has been recogn i zed , for i ns tance , 

in A l p h a r d (Wulf 1974), a language scheme under development, wh i ch has as one goa l 

t he ab i l i ty to r ep r e sen t a rb i t ra ry levels of abstract ion. 

I n t e rac t i on . What t y p e of in teract ion occurs be tween the object sys tem des igne r and 

the e v o l v i n g ob j e c t sys tem? A l te rnat ive ly , what is the interact ion ra te b e t w e e n 

d e s i g n e r and ope ra t i ona l ob jec t system? L* abides by the fo l lowing pr inc ip le : 

Fall Interaction : The des igner should operate interact ive ly w i t h the 

imp lementat ion sys tem in all aspects of object system creat ion. 

Mos t imp lementat ion systems, e i ther high level or macro systems, a re comp i l e r s . 

T h e mode of o pe r a t i o n w i th them is essent ia l ly batch: code, compi le, run , d e b u g and 

r e p e a t . . T he l oop is quite long w i th substant ia l coding o f ten taking p lace b e t w e e n 

comp i l i ng s t eps . Some other languages, espec ia l ly LISP, opera te as ful l i n t e ra c t i ve 

l a nguages w h e r e the loop is v e r y short , and many incremental changes are c l o s e l y 

i n t e r w o v e n w i t h small runn ing s teps . 

P r o d u c t i o n Mode . How shou ld the implementat ion system*construct the ob jec t s y s t em? 

S h o u l d the ob j e c t sy s tem be g r own from within the implementat ion s y s t em o r 

d e p o s i t e d (as an ob j e c t f i le is depos i t ed by a compiler)? Should the object s y s t em be 

p r o d u c e d as one ent i ty or as a ser ies of modules? What kind of run time s u p p o r t is 

r e q u i r e d if the ob j e c t sys tem is depos i ted? L* abides by the fo l l ow ing p r inc ip le : 

Growth q£ object systems : The object system should be c r e a t ed 
w i th in the implementat ion system by adapting and adding to the 
ex i s t ing fac i l i t ies. 

T h e r e are t w o bas ic poss ib i l i t ies: deposi t the object system, or g r o w it. It has 

b e e n p rac t i ca l l y taken for g ran ted that the implementation system — the assemb le r , 

c omp i l e r o r macrosystern ~ should p roduce the object system as a body of c o d e 

i n d e p e n d e n t of i tsel f (i.e., as a module). Thus, HLL systems all depos i t their o b j e c t 

s y s t ems . On ly w i t h fu l ly in teract ive systems has the alternative of g r ow i ng the ob j e c t 

s y s t e m eme rged . Thus LISP, as we l l as L*, g rows its systems. The t radeo f f is c l ea r . 
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On the one hand, the ob jec t system may bear little re lat ion to the imp lementat ion 

s y s t em; t he r e is s imp ly no reason why it should be mixed. On the other hand, l a rge 

n u m b e r s of mechan isms can be imported from the implementation sys tem and adap ted ; 

f u r t h e r m o r e , a func t ion ing sys tem can exist at all times. With the cho ice of g r o w i n g the 

ob j e c t s y s t em, the p rob l em of excess mechanism is a real one in many ope r a t i n g 

env i r onmen t s , so that cont rac t ion of the system is an important funct ion. 

F l ex i b i l i t y (Extens ib i l i ty) . What aspects of the system should be f lex ib le (i.e., s hou l d 

b e c a p a b l e of ex t ens i on or contract ion)? The issue appl ies both to the imp lementa t ion 

s y s t e m itse l f and to the objec t systems that are to be cons t ruc ted ( though d i f f e r en t 

po s i t i o n s may be taken for each). L* abides by the fo l lowing pr inc ip le: 

Total flexibility : Al l aspects of a so f tware system should be sub jec t 

to mod i f i ca t ion and extens ion. 

T h e p r i nc i p l e may be stated in another way: 

No designers prerogative : The system des igner shou ld avo id des i gn 

cho i ces that cannot be later modif ied by a user of the sys tem. 

P e r h a p s the issue shou ld have been cal led extensib i l i ty, s ince much of the 

r e l e van t w o r k has o c c u r r e d under that label . But, fo l lowing a sugges t i on of K ru ta r 

( 1976 ) , w e p r e f e r the term f lexibi l i ty s ince we need to be as c on c e r ned w i t h 

c on t r a c t i o n and modi f i cat ion as w i th extension. Thus, when we re fe r to f l ex ing a 

pa r t i cu l a r aspec t of a sys tem, w e re fer to the act of making it d i f fe rent in r e s pon s e to 

s ome demand . 

P r og ramming languages are in essence devices for f lex ing a computer . In so 

do i n g t hey set up a number of convent ions which force the ob jec t s y s t em to b e 

s t r u c t u r e d or to be spec i f i ed in f ixed ways . Attempts to re l ieve these r ig id i t ies can be 

c l a s s i f i e d under a number of headings: syntax, data- types , cont ro l , and name 

c onven t i o n s . In F i gu re 1 w e separa ted out these categor ies, s ince the p r o g r e s s in 

ob t a i n i ng f lex ib i l i ty has moved through them. (Some categor ies , such as f lex ib i l i ty of 

the l ex i con and f lex ib i l i ty of the procedures , are common to all p rogramming s y s t ems 

and n e e d not be l isted.) We have added contract ion as an addit ional ca tego ry , s imply as 

a r em inde r that almost no systems permit easy contract ion, as opposed to ex tens i on . 

L* takes it as cent ra l that f lexibi l i ty should be present in e v e r y aspec t of a 

s y s t e m . Th i s app l i es equa l ly to bo th implementation and object sys tem s ince in L* t h ey 

a re o n e and the same. 

A c ce s s i b i l i t y . What pa r t s of the programming system and the under ly ing machine a re 

a c ce s s i b l e f rom w i th in the sys tem for purposes of modif icat ion and exp lo i ta t ion? L* 

ab i d e s b y the fo l l ow ing pr inc ip le: 

Total accessibility : Al l aspects of the system and the machine shou ld 

be ava i lab le for manipulat ion. 
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Desp i t e the appa ren t des i rab i l i ty of such notions as total access ib i l i ty , t he re a re 

a l t e r na t i v e v i e w s that have equal plausibi l i ty. The main one is that a s o f twa r e s y s t e m 

( e spec i a l l y an ope r a t i n g system) takes a machine and conver ts it to another more 

su i t ab l e mach ine , w h i c h is then what the user sees. The user is not s u p p o s e d to have 

a c c e s s to the unde r l y i n g machine. This v iew, wh ich is essent ia l ly that a dop t ed b y 

s y s t e m s s u ch as LISP, as we l l as by most operat ing systems, p r oduces a s h a r p 

d i s t i n c t i on b e t w e e n use r s of a sys tem and system des igner-mainta iners . On ly the la t ter 

d ea l w i t h the guts of a sys tem, wh i ch is a d i f ferent wo r l d in terms of its c onven t i on s 

and f l ex ib i l i t i es f r o m that wh i ch the user exper iences . 

Th i s a l t e rna t i ve v i ew p roduces two distinct issues of access ib i l i ty: (1) tota l 

a c ce s s i b i l i t y of the unde r l y i ng machine and (2) accessibi l i ty wi th in the shel l p r o v i d e d 

b y the unde r l y i n g s y s t em. Thus, LISP has complete accessib i l i ty w i th in the s y s t em, but 

not to the bas i c machine. L*, on the other hand, attempts to p rov i de c omp l e t e 

a c ce s s i b i l i t y to the unde r l y i ng machine, whi le at the same time prov id ing a w o r l d of the 

same i n t e ra c t i ve c onven i en ce as LISP. 

E f f i c i e n cy . What is the e f f i c i ency of the system wi th respec t to the va r i ous v i ta l 

r e s o u r c e s : p r o c e s s o r cyc l e s , memory space, and i/o channels? E f f i c iency i ssues a r i se 

i n d e p e n d e n t l y fo r the ob jec t sys tem and for the implementat ion sys tem, and w i t h 

r e s p e c t to the la t ter f o r init ial construct ion and for modif icat ion. L* ab ides b y the 

f o l l o w i n g p r i n c i p l e : 

Selective optimization ; Ef f ic iency is to be ach ieved by the de te c t i on 
of the c r i t i ca l const ra in ts in a running vers ion and their se l ec t i ve 
r emova l . 

T h e p rog ramming languages initially used in L* are in te rp re t i ve , thus t rad ing 
t ime e f f i c i e n c y for f lex ib i l i ty . This contrasts wi th comp i l e r -based imp lementa t ion 
s y s t ems , w h i c h e n d e a v o r to p roduce re lat ive ly eff ic ient code. In the limit, as v/ith 
B L I S S 1 1 , v e r y e f f i c i en t code is p roduced at once for an ent i re ob jec t sys tem. S ince 
e f f i c i en t s y s t ems a re ul t imately requ i red, L* has to obtain the e f f i c i ency s omehow . It 
a t t empts to do this b y se lec t ive compilat ion, reorgan izat ion, data compac t i on , and 
m i c r o c od i ng . 

L anguage Fo rm. What l inguist ic forms does the des igner use to communicate w i t h the 
imp l emen ta t i on sys tem? Th is perta ins only to the implementation sys tem; p r e s u m a b l y 
it is p o s s i b l e to cons t ru c t ob jec t systems w i th any des i red l inguist ic charac te r i s t i c s . L* 
ab i d e s b y the f o l l ow i ng pr inc ip le : 

Dynamic interface : The l inguistic interface w i th the user shou ld be 
dynamica l l y adaptab le . 

T h e r e are two ' normal forms for implementation languages. The f i rst is that of a 

h i ghe r l eve l l anguage, namely, an Algol- l ike language w i th express ions , p r o c e d u r e s , 

f un c t i on s , and inf ix ope ra t o r s . The second g rows out of the form of a s semb l y 

l anguage; namely , a s equence of operator-argument forms that reta ins some sequen t i a l 
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c o r r e s p o n d e n c e to the internal memory space (this carr ies over to most of the macro 

l anguages ) . L ISP r ep r e s en t s yet another path, retaining the exp ress i on fo rm comb ined 

w i t h a' un i f o rm p re f i x notat ion. As we wil l sc:e, the form of L*'s language (wh i ch is 

p o s t f i x w i t h no syn tac t i c s t ruc ture at all) g rows out of its in te rpre ta t ion p r i nc i p l e , 

w h i c h is d e t e rm ined on independent grounds. 

I n t eg r a t i on . How is the total set of faci l it ies used by the des igner o rgan i zed? L* 

a b i d e s b y the f o l l ow ing pr inc ip le: 

Complete Integration : Al l of the facil it ies to be used in cons t ruc t i ng 

a s y s t em are to be avai lable as subparts of a single un i form wo r l d . 

T h e s i tua t ion normal ly faced by the designer of a sys tem is that he has a set of 

d i s t i n c t fac i l i t ies — such as languages, editors, debuggers , timing packages, and c r o s s -

r e f e r e n c e p rog rams . Each of these is c reated with a separa te set of l inguist ic and 

i n t e r a c t i v e conven t i ons . The re is integrat ion only at the level of the unde r l y i ng 

o p e r a t i n g sy s t em, s een by the user-des igner as a single uni form command language. 

O n the o t he r hand, genera l interact ive systems from JOSS (Shaw 1965) o n w a r d have 

a d o p t e d the o the r pos i t ion by integrat ing all the faci l i t ies w i th the main l anguage 

s y s t e m . LISP, A P L and L* be long in this latter category, along w i th a less w e l l - k n o w n 

s y s t e m ca l l ed LCC (Per l i s , Mi tche l l , and VanZoeren 1968). Though at heart a JOSS- l i ke 

s y s t e m , L C C has many of the features of a standard HLL, and thus r ep r e sen t s a ra the r 

un i que mar r i age of HLL const ruc ts w i th the phi losophy of complete in tegrat ion. 

U se r Commun i ty . What is the community over which the object sys tem is to be f i xed? 

L* ab i d e s by the f o l l ow ing pr inc ip le: 

Personalization : The system is to be adapted to the part i cu lar 

c i r cumstances of machine, system builder, and task. 

Th i s i ssue poses a genu ine tradeoff. Fixing the p roper t i e s of a p rog ramming 

s y s t e m (e i ther an implementat ion or an object system) increases the communicab i l i ty 

and po r t ab i l i t y of wha t eve r programs are created with in it. On the o ther hand , 

f e a t u r e s of the par t i cu lar computer or pre fe rences and insights of part icu lar de s i gne r s 

and u s e r s cannot be fu l ly exp lo i ted . The need for complete adaptat ion is g rea te r w h e n 

the ava i l ab l e r e s ou r c e s must be exp lo i ted to the limit, less when tasks do not p r e s s the 

ar t o r the r e sou r c e s . Adapta t ion , and thus id iosyncracy, is more acceptab le w h e n the 

s y s t e m s or tasks are un ique in other ways , so that there is l ittle to be ga ined f r om 

s t anda r d i z a t i o n in any event . 

Ma in ta i nab i l i t y . How is a sys tem to be maintained, meaning both the removal of bugs 

and t he g radua l evo lu t i on towards increased capabi l i ty? This appl ies bo th to the 

imp l emen ta t i on s y s t em and to the object systems produced. L* abides by the f o l l ow ing 

p r i n c i p l e : 
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Local maintenance : Maintenance should be total ly w i th in the 

p u r v i e w of the users of the system (and hence their respons ib i l i ty) . 

D e s i g n S t r a t egy . How shal l the des igner p roceed in creat ing a new objec t sys tem? L* 
a b i d e s b y the f o l l ow ing pr inc ip le: 

Iterative design : A system should be c rea ted by a se r i es of 

s u c c e s s i v e approx imat ions in the form of operat iona l systems. 

Th i s i ssue of des ign s t ra tegy is usually r e f e r r ed to as "des ign ph i l o sophy" , but 

w e n e e d to d i s t ingu i sh it f rom the des ign ph i losophy of L*, wh i ch w e are in the midst 

o f d e s c r i b i n g . I terat ive des ign is to be contrasted w i th a t o p - down , s t r u c t u r ed 

p r o g r a m m i n g des i gn ph i l osophy , in wh ich a high premium is put o n p roduc ing ca re fu l 

s p e c i f i c a t i o n s , and e v e n in p rov ing that the algorithm being programmed is co r re c t . It 

must b e no t ed that none of the systems in F igure 1 actual ly d ic tate a de s i gn 

p h i l o s o p h y a long the d imens ion of concern here. They on ly p red i spose t owa rds one o r 

t he o the r . Implementat ion systems such as BLISS are consonant w i th the s t r u c t u r ed 

a p p r o a c h . 

T h e r e is a subs id i a ry pr inc ip le that we use wi th L* as a guide in des i gn ing 
o b j e c t s y s t ems : 

No excess generality : No parameter izat ions shou ld be c r ea t ed 

w i t hou t c on c r e t e ev idence that var iat ion wi l l actual ly be exe r c i sed . 

E x c e s s gene ra l i t y ex ists in almost all large systems and o f t en in immense 

quan t i t i e s . Such genera l i t y a lways costs time and memory and is a pr ime con t r i bu to r to 

w h a t o n e might cal l " sys tem bloat". The above pr inc ip le can be adhered to, of c ou r s e , 

o n l y if it is e a s y to in t roduce new genera l i ty whenever it becomes appropr i a te . 
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3. Mechanisms 

Hav ing in the pr ior sect ion laid out a set of design pr inc ip les that c ha r a c t e r i z e 

L*, in th is s e c t i on w e desc r ibe the main structural mechanisms that permit the i r 

r e a l i z a t i o n . Mos t of the pr inc ip les permeate the s t ruc ture of the en t i re s y s t em . 

D r a w i n g the mapp ing expl ic i t ly be tween pr inc ip les and mechanisms leads to much 

r e d u n d a n t expos i t i on and wi l l not be attemptrd. The way these mechanisms dove ta i l 

w i t h t he p r i n c i p l e s is qu i te apparent at a sur face level . The deepe r eva luat ion of wha t 

u n a n t i c i p a t e d consequences the mechanisms br ing wi th them, and whe the r the 

p r i n c i p l e s themse l ves y ie ld good system implementations cannot be seen f r om a 

d e s c r i p t i o n of mechanisms alone. Some of these issues wi l l be addressed in Sec t i on 4 

o n e x p e r i e n c e w i t h L*. 

3.1. Facilities 

W e d e s c r i b e f i rst the scheme whe reby an I* system is o rgan i zed . This is not a 

c r i t i c a l mechan i sm, but wi l l permit the descr ipt ion of the mechanisms to fall into p lace . 

W e w i l l r e t u r n to the overa l l organizat ion later. 

L* is o r g a n i z e d as a co l lect ion of faci l it ies. A faci l i ty is an increment of code and 

d a t a that p r o v i d e s a co l lect ion of interre lated funct ional capabi l i t ies to the s y s t em. 

S i n c e t he bas i c s ty l e is that of g row ing a system, a faci l i ty is not a s e l f - c on ta i ned 

modu l e , bu t makes use of faci l i t ies exist ing at the time of its addit ion to the s y s t em . 

T h u s , t h e r e is a g r a p h of dependenc ies among faci l it ies, s ince any fac i l i ty r equ i r e s that 

c e r t a i n o t h e r s a l r eady exist in the system for it to opera te success fu l ly . 

T h e fac i l i ty as an organizat ional unit is respons ive to the pr inc ip le of no 

d e s i g n e r ' s p r e r oga t i v e . The concept of module (Parnas 1972) impl ies in ex i s t i ng 

mach i ne a r ch i t e c tu re s that a base be prov ided to suppor t the module s t ruc tu re . Th i s 

d e s i g n e r - p o s i t e d base is not itself a module and cannot be modi f ied w i thout d e s t r o y i n g 

t he s y s t e m . No such base exists for L*; we envis ion L* systems be ing r e g r o w n f r om 

s c r a t c h w i t h a r b i t r a r y modif icat ion and redes ign. 

3.2. Symbol System 

T h e no t i on of a symbol system is w idespread, a l though se ldom fo rma l i zed . It 

c o n s i s t s of a set of symbo ls and a set of data- types (symbol ic s t ruc tu res) in w h i c h 

t o k e n s of t he se symbo l s can occur. Besides the usual operat ions on the d a t a - t y p e s 

( w h i c h c r e a t e , manipulate and modify them), the essent ia l ope ra t i on is that of an 

a s s o c i a t i o n be tv/een symbo l tokens and entit ies cal led their re ferents .* The assoc ia t i ve 

[1 ] With in the symbolic system these are always to data structures which represent in some %e 

the entities actually referred to. 
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r e l a t i o n is one of access: g iven the symbol token, access is had to its r e f e r en t 

( r e p r e s en t a t i o n ) . Somet imes there is a single such assoc iat ion (o f ten ca l l ed 

a s s i gnmen t ) , but sys tems can permit many such associat ions. 

T h e dec i s i on to admit a uni form class of symbol so that any sor t of ent i ty cou l d 
b e r e f e r r e d to, c oup l ed w i th the requirement for total access ib i l i ty , led to the 
f o l l o w i n g : 

Symbo l s in L* are ident i f ied w i th addresses: Al l symbols are addresses 
and all add res ses are symbols. 

Th i s has f a r - r ea ch i ng consequences. On the* pos i t ive s ide, w i th in the symbo l 

s t r u c t u r e s that a re bas ic to L*, any address can occur wi thout caus ing some ope r a t i o n 

( s u ch as p r i n t i ng , e ras i ng or searching) to misbehave. One can bui ld s t ruc tu res that 

r e f e r to o b j e c t s such as opera t ing stacks, basic machine code, and e v en the r eg i s t e r s 

o f t h e unde r l y i n g machine.^ Fur thermore, simplicity wil l be f o s te red , s ince the symbo l i c 

s t r u c t u r e s in the s y s t em wi l l be as simply const ructed as poss ib le . 

O n the nega t i ve s ide, there is a limit to the number of symbo ls in the s y s t em, 

name l y the s i ze of the address space. But much more important, the mapp ing of a 

s y m b o l to its r e f e r en t is f ixed by the hardware (i.e., a symbol r e f e r s to a f i xed loca t ion 

in t h e a dd r e s s space , whe the r physica l or virtual). Thus the f r eedom to ass ign 

s y m b o l s to r e f e r en t s , and espec ia l ly to reass ign them, becomes res t r i c ted . Th is is a 

g e n u i n e r e s t r i c t i on , and one we wil l re turn to at severa l points; it has been a c c ep t ed 

as the p r i c e fo r the bene f i t s above. 

No t i ce that symbo l s are internal to the computer. They can just as eas i ly be 

c r e a t e d i n te rna l l y as by a user external ly; in fact many are de f ined a pr ior i .^ For the 

u s e r to w o r k w i t h any of these symbols he must attach an externa l name (e.g., in 

ASCI I ) . W e wi l l t reat this at length be low, but it is important to note the d i f f e r en ce 

b e t w e e n names and symbo ls : names are external character str ings assoc ia ted w i t h 

pa r t i c u l a r in te rna l symbo ls . 

A Symbo l Fac i l i ty prov ides the basic capabi l i t ies for c reat ing and 

e r a s i ng symbo ls , and for doing the primit ive operat ions that can be 

d e f i n ed for symbo ls independent of what they re fe r to. These 

ope r a t i o n s are tests of equal i ty and inequal ity, and increment ing and 

dec rement ing .^ 

[ 2 ] If they are within the user's address space, as they are on the PDP10. 

[ 3 ] E.g., in the P D P 1 0 the registers and the so-callod job data area (whore tho monitor stores uGor job-

dependent information) are both within the user's address space. 

[ 4 ] The latter exist because symbols are addresses, and would not bo meaningful if symbols had been defined 

as an abstract set. 
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A comp le te capab i l i ty for symbol manipulation requ i res also a f lex ib le d a t a - t y p e 

f o r s ymbo l i c exp ress i ons . Not all da ta- types in a system wil l a l low symbo l i c 

e x p r e s s i o n s , but the re must be one such, and it wil l play a fundamental ro le in the 

s y s t e m . It wi l l be the medium used for all representat iona l tasks wh i ch cannot be 

a c c omp l i s h ed by o ther more spec ia l i zed means. In L* this basic da ta - type is the l inked 

l ist of s ymbo l s . 

A List Fac i l i ty p rov ides the processes p rope r to manipulat ing l ists: 

ge t t i ng the next ce l l , get t ing the symbol in a ce l l , insert ing, de le t ing , 

c opy i ng , and eras ing. 

A s ing le des ignat ive re lat ion (here, be tween • addresses and the add r e s s ed 

m e m o r y locat ions) is suf f ic ient for all purposes , but quite cumbersome. L* thus 

p r o v i d e s a gene ra l mechanism for at t r ibute-va lue associat ions. G iven any two symbo l s , 

s a y X and Y, it is poss ib le to c reate an associat ion (along some attr ibute symbo l , say A) 

f r o m X to Y. T h e n g i ven X and A one can d i rect ly re t r ieve the symbol Y. T he r e can be 

as many assoc ia t ions (and as many d i f ferent attr ibute symbols) as des i red . Th is is an 

e x a m p l e of the pos i t i ve benef i t of choos ing symbols to be addresses . Assoc ia t ions a re 

p e r m i t t e d on any symbo ls , hence on any addresses. 

As soc i a t i ons are rea l i zed by a hashing scheme. A no tewor thy fea ture is that 

e a c h a t t r i bu te has its o w n hashing table, thus a l lowing the s izes of these tab les to be 

i n d e p e n d e n t l y de te rm ined and dynamical ly adjusted. This a l lows cont ro l ove r the 

s p a c e - t i m e t radeo f f . For example, if access is rare for some part icular a t t r ibute , its 

h a s h tab le can be made small result ing in s lower access but reduc ing the was t e of 

e m p t y tab le s lo ts . 

A n Assoc i a t i on System Faci l i ty prov ides the capabi l i t ies for c rea t ing 

assoc ia t i on symbols , creat ing, ret r iev ing and de let ing associat ions, and 

o t h e r w i s e manipulat ing the associat ion s t ructures . 

3.3. Universal Type System 

Al l the data w i th in L* is of some type and there is a symbol that des ignates e a ch 

d a t a - t y p e (ca l led the type symbol). Given a symbol , the type of the data s t r u c tu re it 

d e s i g n a t e s can be de te rmined . Similarly, when a symbol is de f ined, its da t a - t ype must 

b e s p e c i f i e d ( though this can be done by the system rather than the user). New d a t a ­

t y p e s c an be c r ea t ed at wi l l . F igure 2 lists the data- types that are de f ined in the 

in i t ia l s y s t em, w i t h the externa l names of their type symbols. This initial set is ne i ther 

a c omp l e t e set nor a minimal set; rather, it is what is necessary and suf f ic ient for the 

se t of in it ia l fac i l i t ies. 
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T / T 

T / M 

T/W 

T A 
T / P 

T / J 

T / K 

T A S 

T / A 

T / A L 

T y p e t ype 

T y p e machine (code) 

T y p e w o r d (also integer) 

T y p e list 

T y p e program list 

T y p e stack 

T y p e character 

T y p e character str ing 

T y p e attr ibute (hash table) 

T y p e attr ibute list (confl ict list) 

F igure 2. Initial data-typos 

D a t a - t y p e s s e r v e th ree important funct ions. First, they permit t ype d ependen t 

p r o c e s s e s . A pr int rout ine can print any input s t ruc ture appropr i a te l y by f i r s t 

a c c e s s i n g its t ype , thus re l iev ing the user of a lways knowing what t ype of s t r u c tu re is 

b e i n g p r i n t ed . Second , space can be managed by da ta - type (and the initial s y s t em 

d o e s so). Thus the re may be severa l da ta- types wh ich are identical in s t ruc tu re but 

a r e d i s t i ngu i shed in o rde r to manage the space they occupy (e.g., severa l areas all w i t h 

l i s ts , but of s epa ra t e types , T / L l , T / L 2 , to keep them segregated) . Th i s 

management can be seen as just more t ype-dependen t p rocess ing (copy ing and 

e r a s i n g ) , and the implementat ion does in fact opera te that way , but space management 

b y d a t a - t y p e is sti l l wo r t h y of specia l note. Th i rd, the in terpretat ion of p rog rams is 

t o t a l l y t y p e - d e p e n d e n t . This fact has v e r y w idesp read ramif icat ions for the bas ic 

p r o g r a m m i n g language used wi th in L*, wh ich we treat in the next sect ion. 

F ou r r equ i r ements on the t ype system have emerged f rom the d iscuss ion so far: 

(1) E v e r y symbo l , hence eve r y address, must have a t ype (thus a 

p r o c e s s must exist wh ich , for e ve r y symbol , de l ivers its type). 

(2) T y p e s must be dynamical ly creatab le. 

(3) T y p e s are to be used in the in terpretat ion of the programming 

language (thus the p rocess for f inding types must be ve r y fast). 

(4) T y p e s of symbols must be dynamical ly changeab le . 

W e have not ind i ca ted the re lat ive f requenc ies of execut ing type dependent p r o c e s s e s 

( su ch as pr int , e rase , copy) , of new type creat ion, and of changing the t ype of an 

e x i s t i n g s ymbo l . It is c lear, however , that all these wil l be ve r y much less f r equen t 

t h an t y p e i n te rp re ta t i on , and thus they do not dictate the des ign of the t ype sys tem. 

HUNT LIBRARY 

UftRNtGlt ' M t L L D N UNIVERSITY 
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Th i s is an exceed ing ly hard set of requirements to meet on a p r ede t e rm i ned 

a r c h i t e c t u r e (e.g., PDP10 , PDP11 , IBM 360). For instance, s tor ing a t ype symbo l fo r 

e a c h s y m b o l (i.e., address) in the address spacr takes on the order of half the memory . 

F u r t h e r , making the t ype access fast requ i res a simple algorithm. Since the t y pe must 

b e f o u n d g i v en on ly the symbol (address), the type must be either a s imple func t i on of 

t he a d d r e s s or e lse s to red at a place accessed via the address. Extract ing the t y p e 

f r o m the add res s makes type creat ion dif f icult, and-changing types near ly imposs ib le . 

A l t h o u g h the t y pe may be cons ide red as just an associat ion f rom the symbo l , th is is 

not a po s s i b l e implementat ion s ince all symbols in the associat ion s t ruc tu re must 

t h e m s e l v e s have t ypes ; nor is it c lear that a hash table scheme is fast e nough fo r 

r e q u i r e m e n t (2). 

In the cu r ren t ve r s i on we compromise requirement (4) on chang ing t ypes , but 

not the o the r th ree . We assign t ypes in cont iguous b locks (128 locat ions on the 

P D P 1 0 ) b y us ing a t ype table w i th one ent ry for each block (2048 ent r i es on the 

P D P 1 0 ) . A c c e s s to this table can be made d irect ly f rom the symbol (address) in t w o 

P D P 1 0 ins t ruc t i ons , wh i ch becomes the basic type access time. Chang ing t y pe s is 

e f f e c t i v e l y s t ym ied because the t ypes of a who le block of symbols are t ied t oge the r 

and canno t be changed independent ly . 

A c tua l l y , w e have c rea ted a faci l i ty for dynamic types by except ion , in w h i c h a 

b l o c k c an be dec l a red dynamic to al low each symbol in the block its o w n t y p e . 

H o w e v e r , e xpe r i e n ce has shown that such faci l i t ies are not much used, p r o b a b l y 

b e c a u s e of their h igh cost rather than a lack of desirabi l i ty.^ 

A T y p e Fac i l i ty p rov ides p rocesses for gett ing the type and test ing 

t y pe s of symbols . It contains subfaci l i t ies for creat ing new types and 

fo r c rea t ing dynamic types . 

3.4. PL*: The Programming Language 

O f t en the p r e f e r r e d s t ra tegy for creat ing a complex program is to c r ea t e a 

s pe c i a l p r ob l em-o r i e n t ed language whose s t ructure ref lects the unique assumpt ions 

abou t the task. To maximize the number of appl icat ion areas, L* ant ic ipates the 

e x i s t e n c e of many programming languages wi th in it. The initial L* sys tem, h o w e v e r , 

c on t a i n s just two languages: a form of machine language (cal led ML*) and a gene ra l l ist 

p r o c e s s i n g language for manipulat ing the symbol ic express ions (PL*). PL* is, in some 

s e n s e , the L* language, but w e emphasize that other languages and sys tems g r o w n 

w i t h i n L* are not necessar i l y built on top of PL*. Often, they beg in that w a y and a re 

c o n v e r t e d to ML* under the p ress of se lect ive opt imizat ion. ML* and PL* (and o the r 

l a nguage s l ike them) are to be d ist inguished from the language through wh i ch the use r 

[5 ] The cost is high; extra space for each symbol whose type is an exception to the block's typo, and extra 

time for accessing the typo of every symbol in the block. 
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at a te rmina l in teracts w i th the system. This latter is cal led EL*, and wil l be d i s cu s sed 

la te r . 

P L* was des i gned to be the simplest poss ib le list process ing- language. T h e 

bas i c d a t a - t y p e is the list. Normal ly, in the des ign of a programming language, the 

l a nguage itsel f is a un ique and complex data- type , radical ly d i f ferent f rom the t y p e s of 

t he da t a s t r u c t u r e s on wh i ch it opera tes . List p rocess ing languages, on the o ther hand , 

h a v e b e e n ab le to use a s ingle da ta - type for both program and data, thus p r ov i d i ng a 

un i f i c a t i on not poss ib l e in s tandard languages. This unif icat ion has quite rea l e f f e c t s 

w h e n it comes to p rograms that c reate programs. 

Coa l e s c i ng of data and program is not ach ieved simply by dec id ing to do so. The 

most fundamenta l p r o p e r t y of a programming language- is that it determines what da ta 

and o p e r a t i o n s are to be brought together, and when (and if) they v/ill be e xe cu t ed . 

A l l p r og ramming languages must the re fo re have some way of d ist inguishing o p e r a n d s 

f r o m o p e r a t o r s (or funct ions). In a s tandard programming language this d i s t inc t ion has 

no c o u n t e r p a r t in the data s t ructures . Thus, the program data- type , in terms of its 

most bas i c requ i rements , threatens to be unmappable in any natural way into the o the r 

d a t a - t y p e s . A list, for instance, is a homogeneous sequence of symbo ls w i t hou t 

a n y t h i n g to d i s t ingu ish ope ra t o r s f rom operands. 

T h e so lu t ion adop ted by LISP is to employ one of the natural features of the list 

( that it has a f i rst symbo l ) to make the dist inct ion be tween opera tor and o p e r a n d : the 

f i r s t s ymbo l in a list is to be the opera to r and all o thers the operands . This makes the 

p r o g r a m da t a - t y p e d i f f e ren t , but eas i ly assimilable into the genera l list d a t a - t y p e . 

I n deed , it f i ts w i t h a common encod ing of data in wh ich the f irst symbol on the list is 

taken, as a " t ag " or data ident i f ier , w i th the remaining symbols in the list f i t t ing the 

c o n v e n t i o n s de te rm ined by the tag. 

T h e so lu t ion adop ted by L* is to reta in the homogeneous character of the list, so 

that the i n t e rp re ta t i on of e v e r y symbol is to be the same. Then the d i s t inc t ion 

b e t w e e n o p e r a n d and ope ra to r cannot be g iven by the s t ructure of the p rog ram (the 

syn tax ) ; it must be g i ven b y the nature of the symbols themselves (the semant ics). Th i s 

d i s t i n c t i on is taken to res ide in the type of the symbol . Thus for each t ype the re is an 

i n t e r p r e t e r wh i ch is to be execu ted whenever a symbol of its t ype is en coun t e r ed . W e 

c a n e x p r e s s this in a pr inc ip le: 

PL* i n te rp re ta t i on by type: A list of symbols ( S I S 2 ... ) is to be 

i n t e r p r e t ed by success ive ly interpret ing each of its symbols , S I , S2, 

and so on. A symbo l Si is to be in terpre ted by execut ing the 

i n t e rp re t e r assoc ia ted wi th the type of Si. 

W i t h this i n te rp re ta t i on rule there is a distinct da ta- type for PL* (cal led T / P , f o r 

t y p e p r o g r a m list), but it is s t ructura l ly identical to the list da ta - type ( T / L ) . T he 

d i f f e r e n c e in the two res ts in their assoc iated in terpreters; the T / P i n te rp re te r t r ea t s 

the list as a p rog ram, whi le the T / L in terpreter treats the list as data. The r e wi l l , of 

c o u r s e , be i n t e r p r e t e r s assoc ia ted w i th each of the types of F igure 2, and i ndeed w i t h 

all t y p e s that are c r ea ted . 
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The i n te rp re ta t i on pr inc ip le does not complete ly determine the charac ter of the 

l anguage; it d epends int imately on the detai ls of the individual in terpreters .^ G iven that 

an i n t e r p r e t e r has access to the data s t ructures of the operat ing env i ronment and to 

the p r o g r a m s t ruc tu re itself, there is w ide f reedom to spec i fy fur ther the cha rac te r of 

t he l anguage t h r ough the act ions of the in terpreters . 

T h e i n t e rp re t e r set for PL* abides in so far as poss ib le by the f o l l ow ing 

p r i n c i p l e : 

Contex t i ndependence: The interpretat ion of a symbol in a p rogram list 

does not d epend on the part of the program list not yet i n te rp re ted . 

Th i s p r inc ip le , in conjunct ion w i th the one above, almost complete ly de te rm ines 

the cha ra c t e r of the language. It has three genera l e f fec ts: (1) the re a re no 

i n comp l e t e exp ress i ons ; (2) symbols establ ish a state wi th in wh i ch the f o l l ow ing 

s y m b o l s can be i n t e rp re ted ; and (3) operator- l i ke symbols cannon be taken as 

o p e r a n d - l i k e symbo l s (for if they had to be in te rpre ted in isolat ion, their i n t e rp re ta t i on 

w o u l d have b e e n opera to r - l i ke ) . These imply the fo l lowing structura l f ea tu res of the 

P L * l anguage: 

Pos t - f i x : Operand- l i ke symbols must come be fo re ope ra to r - l i ke 

symbo ls . 

Stack communicat ion: Operand- l ike symbols must have somewhere to 

wait unti l the opera to r - l i ke symbols come along, and they must do this 

w i thout know ledge about the operator- l i ke symbol . 

Go to - l e ss cont ro l s t ruc ture: Goto opera to rs take opera tor - l i ke symbo l s 

as ope rands , wh i ch v io lates the rule. 

Cond i t i on s ignal: A test must occur be fo re condit ional act ion based on 

it is poss ib le ; hence the ef fect of the test must be stat is ized. 

Expl ic i t quo te: The re must be some way of obtain ing an ope ra to r - l i ke 

symbo l as ope rand . Thus, some violat ion of the context i ndependence 

p r inc ip l e must occur. A quote operator local izes this as much as 

poss ib le .^ 

T h e fundamenta l r eason for adopt ing the context independence p r inc ip le is to 

make PL* s imple to unders tand in terms of its under ly ing mechanism. The re can be no 

c o m p l e x act ions that cannot be reso lved into a sequence of simple ones. Equa l ly , in 

[6 ] The interpreiation principle does, however, essentially determine the interpreter for T/P. 

[7 ] I.e., the quote operator is a symbol that is interpreted prior to its operand and which acquires i 

operand without interpretation. 
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t e rms of in te rac t ion , the in te rpre ta t ion of the language can be b roken at any point and 

add i t i ona l p r o c e s s e s i n se r t ed or executed.^ 

In terms of language des ign, we have long been interested in unders tand ing the 

e x t en t to wh i c h a s t r ong context independence assumption is compat ib le w i t h a 

l a nguage w h o s e su r f a ce appearance is still v e r y much that of a higher leve l l anguage . 

T h e PL* Fac i l i ty p rov ides the opera t ing environment for PL* a long 

w i t h the con t ro l p rocesses to be used in PL* programs. 

T h e r e is a lso an Interpreter Faci l i ty wh i ch p rov ides the set of 

i n t e r p r e t e r s used in PL*. 

Some examp les of PL* cod ing wil l tie down these var ious des ign dec i s i ons and 

a l so r e v ea l the su r f a ce fo rm of the language. F igure 3 shows a list named L I d e f i n ed 

to have t h r ee e lements A, B and C In terms of the under ly ing l inked list 

r e p r e s e n t a t i o n , t he re are th ree memory cel ls L I , L 2 and L3 , each of wh i ch ho lds a 

s y m b o l (A, B or C r e spec t i ve l y ) and a link to the next cel l . We cons ider a p r og r am , 

c a l l e d TBL , wh i ch tes ts if the symbol B is in the list. This program has a s ing le input ( 

t he l ist to be searched) , but is spec i f ic to the symbol B. The var ious componen t 

p r o c e s s e s are l i s ted in the f igure. Vert ica l ly be low the program list we have s h o w n 

g r a p h i c a l l y the data stack (cal led Z); we have wr i t ten a * at the bottom to ind icate an 

i nde f i n i t e number of other symbols that wil l not enter into the p rocess ing of T B L 

D i r e c t l y above the stack w e indicate the condit ion signal (+ if true or suc ceed , - if 

f a l s e or fai l). 

[8 ] The explicit quote is an exception. 
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T D L ~ Tes t if symbo l B is in list 

T B L : <<P S B =S ,+ N F .R+) t - U) 

Example list input on stack: L i s (A B C) 

In terna l ly : L l : [ A | L 2 ] L2:[ B | L3 ] L3:[ C | N I L ] 

P r o c e s s e s used in TB L (all T /M — machine code rout ines) 

P Push top symbo l on data stack (2) 

S Get f i rst symbo l in list 

=S Tes t if two symbols are identical 

. + Exit if s ignal + 

N Get next locat ion in list (tail) 

F F ind list (set + if cont inues, else - and pop) 

. R+ Repeat if s ignal +, else no-op 

, - Exit if s ignal -

U P op data stack (Z) 

T B L : ( ( P S B = S t + N F ,R+ ) U ) 

+ + + + - - -
L I L I L I A B L I L I L 2 L 2 

* * L I L I 

* 

A 

L I 

* 

* * * 

+ + + + + + + 

L 2 L 2 B B L 2 L 2 L 2 

* L 2 

* 
L 2 B 

L 2 

* 

* 

F igure 3. Example of a simple P L* routine 
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Z o r ig ina l l y ho lds L I , the ope rand for TBL. TBL is a T / P list of three e lements , 

t he f i r s t be i ng of T / P itself and g iven in extens ion as the sequence ( P ... # R + ) . 

I n t e r p r e t a t i o n of this list leads to in terpret ing each of its e lements. ' The f irst s ymbo l is 

P. Th i s is a T / M symbo l , wh i ch is to say machine code, and the T /M i n te rp re te r s imp ly 

makes a s ub r ou t i n e cal l to the machine code rout ine. The ef fect of this is to pu sh Z, 

r e su l t i n g in t w o ins tances of L I . The interpretat ion proceeds sequent ia l ly . S ge ts the 

s y m b o l in the ce l l L I (i.e., A); B is a data symbol and its in terpreter pushes it on to t he 

s tack; =S is the test for symbo l equal i ty, wh ich sets the condit ion signal - s ince A and 

B a re not the same (note that p rocesses in genera l consume their inputs); , + is a 

c ond i t i ona l exit , w h i c h is a no -op here since the signal is N gets the next cel l a f te r 

L I (i.e., L2 ) ; F se t s the s ignal + to indicate the list actually cont inues (N might have 

p r o d u c e d the end of a list); , R+ is a condit ional repea-t, wh ich moves cont ro l back to 

t he f r on t of the list if the s ignal is +. 

T h e s e c ond l oop th rough the sublist cont inues as be fo re (the s e cond l ine of 

t r a c e in F i gu r e 3). Th is time =S gets a posit ive result, s ince it has found the s ymbo l , so 

that the exit is taken . Hence, the next symbol in terpreted is . - (a no -op he re s ince 

the s igna l is +). T h e f inal symbo l is U, wh i ch pops the stack remov ing the t e m p o r a r y 

w o r k i n g s ymbo l L 2 (the moving pointer into the list). 

T h e pos t - f i x cha rac te r of PL* is evident. P rocesses s imply ope r a t e on the 

o p e r a n d s that have b e e n deve l oped in the stack. To use TBL on a d i f f e rent list, s ay 

L 7 , one w o u l d w r i t e : 

... L 7 T B L ... 

L 7 , be i ng a data symbo l , wou ld be pushed on the Z stack and then TBL , b e i ng 

T / P , w o u l d be e x e cu t ed on it, just as above. The goto- less character is ev ident in the 

c o n t r o l o p e r a t o r s , . + , and ,R+. Note in part icular that looping is hand led in a w a y 

that is symbo l i ca l l y not much d i f ferent from giving a superord ina te command (e.g., 

( R E P E A T ... ) ), but con fo rms to the requirement that it be a context i n dependen t 

a c t i on . It is appa ren t f rom the example that the language is a mixture of h igh l eve l 

and l ow leve l cons t ruc t s . For instance, stack management is exp l i c i t l y the 

r e s pon s i b i l i t y of the p rog ram. 

Some var ia t i ons on this simple rout ine wil l convey some addit ional aspec ts of the 

l anguage . One w o u l d l ike to wr i t e TBL simply as: 

T B L : ( P S B =S ,+ N F . R+) 

T h e add i t iona l # - and U are requ i red for c leaning up the stack, wh i ch is d one 

au tomat i ca l l y by F at the end of the list, but not by .+ on the pos i t ive exit. T h e 

f o l l o w i n g add i t iona l con t rp l pr imit ive is def ined in PL* (and is indeed r equ i r ed fo r 

c omp l e t ene s s ) : 

, - H — Exit o n - , e lse remove the next higher level 
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A p r im i t i ve such as , - H is requ i red because it must be poss ib le to con t ro l fo r a 

g i v e n p r og r am leve l the cont inuat ion of levels above.^ Using , - H one can r e code T B L 

as: 

TBLs ( P S B =S ( . - H U) N F f R + ) 

Thu s w e have loca l i zed the code for exit ing and c leaning up the stack. If w e 

w i s h w e can i n t r oduce a new contro l rout ine: 

, U + : ( , - H U) — Exit if +, popp ing stack 

W i t h th is w e can r ew r i t e T B L once more as: 

T B L : ( P S B =S ,U+ N F ,R+) 

Ac tua l l y , the rout ine is incorrect in its handling of empty l ists, s ince it g o e s 

t h r o u g h the mot ions of test ing the "f irst symbo l " of the empty list b e f o r e q u i t t i n g . ^ 

A n o t h e r va r i a t i on c an be wr i t t en that handles this cor rect ly by moving F to the s tar t : 

T B L : ( F P S B =S ,U+ N , R ) 

T h e language also admits recurs ion, so that yet another a l ternat ive f o rm for T B L 

is: 

T B L : ( F P S B =S .11+ N T B L ) 

T B L has b e e n w r i t t en w i th a single argument, the list. It is more app r op r i a t e l y 

w r i t t e n w i t h t w o arguments . Let us then def ine another program: 

T S L ~ Tes t if symbol (0) is on list (1) 

w h e r e (0) (1) ... des igna te pos i t ion on the Z stack. Then we obta in: 

T S L : (ZO I ( F P S 20 S =S ,U+ N . . R ) ZO D) 

w h e r e I i n se r t s (1) into list (0), and D deletes the top of list (0). 

W e have u sed a cel l ZO ( T A ) to hold the symbol to be tes ted . Thus w e must 

i n se r t the symbo l f r om the Z stack onto ZO at the beginning, and again de le te it f r om 

ZO at the end . T o access the symbol from ZO for the test, we input ZO to the s tack and 

[9] Besides .-H, there also exist >H, and H (unconditional removal of the next higher level); similarly thore 

exist .R, .R* and .R-, and .- . 

[ 1 0 ] The routine works correctly on empty lists because S on an empty list morely delivers the symbol NIL 

as output. 
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t h en e / c c u t e S on it. O the rw i se TSL is just the same as T B L We can co l l apse these 

o p e r a t i o n s on ZO by de f in ing some additional rout ines: 

I Z O : (ZO I ) SZO: (ZO S) DZO: (ZO 0 ) 

T S L : ( I Z O ( F P S SZO =S t U + N , R ) DZO) 

If w e w a n t e d to genera l i ze TSL further to take as input a gene ra l i z ed test , 

r a t h e r than just s ymbo l equal i ty, we might def ine: 

T X L — Tes t if there is a symbol on list (1) sat is fy ing test (0) 

T X L : ( I Z O ( F P S SZO . X .U+ N , R ) DZO) 

w h e r e . X e xe cu t e s (0). 

One of T X L ' s inputs is now a process; to use T X L w e must use the quo t e 

p r o c e s s . W e can i l lust rate this by reconstruct ing TBL from TXL: 

T B L : ( . Q ( B =S) T X L ) 

T h e quo te , ,Q , is a T /M rout ine that puts the next symbol in the p r og ram list 

( he r e the s u b p r o g r a m ( B =S) ) into the stack and advances in te rp re ta t i on past it. 

T h u s T X L wi l l be the next symbo l in terpre ted after the , Q. 

T h e examp les above i l lustrate the simplicity of the PL* language. To summar i ze , 

P L* is i n t e r p r e t e d b y type , maintains context independence (no syntact ic s t ruc tu re ) , is 

p o s t - f i x , and uses a stack for ope rand communication. Let us now examine the o the r 

in i t ia l p r og ramming langu-age embedded in L*, the ML* machine language. 

3.5. ML*, the Machine Language, and Stacks 

3.5.1 M L * : Mach ine Language 

T h e use of machine language must remain integral to L*, s ince it is the means 

t h r o u g h wh i c h the machine is ult imately contro l led. One shields the imp l emcn t c r - u se r 

f r o m access to machine language only by committing a major act of de s i gne r ' s 

p r e r o g a t i v e — of dec id ing that the forms of access determined by the o r ig ina l 

s o f t w a r e d e s i g ne r s (here the L* des igners) const itute the only means by wh i c h the 

mach ine wi l l be ut i l i zed. But time and space ef f ic ienc ies are of the e s sence — that 

c ompu ta t i ona l comp le teness remains available to the user does not su f f i ce . Th is is 

e s p e c i a l l y t rue for an implementat ion system, whose users wi l l c r ea te sti l l 

u n d e t e r m i n e d ob j e c t sys tems. 
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A c c e s s to the machine language does not imply that an initial component of L* 

must b e an assembler of some form. In fact, L* adopts a spec i f i c pr inc ip le: 

Mach ine access: Access to the basic machine is to be ob ta ined v ia 

symbo l i c s t ruc tu res c reated with in the system itself. 

T hu s , though the re are assemblers and compi lers in L*, they are not ava i lab le as 

p r im i t i v e fac i l i t ies , but are const ructed by means of PL* programs and data s t r u c tu re s . 

W h a t must be gua ran teed (though it is not diff icult) is the poss ib i l i ty of ob ta in ing fu l l 

c o n t r o l of the machine ult imately. This occurs by having the w o r d be a basic d a t a ­

t y p e (T/W) w i t h pr imit ive operat ions that include the s tandard arithmetic, boo lean , and 

s h i f t i n g ope ra t i on s . G iven that wo rds wi th arb i t rary bit content can be eas i l y 

f a s h i o n e d , it is s t r a i gh t f o rwa rd to construct, wi th in PL*, s imple assemblers , macro 

a s s e m b l e r s and compi le rs . 

Th i s p r inc ip le , w i th the implied delay in obtain ing faci l i t ies for assembl ing and 

c omp i l i n g , r e s t s so l id ly on the des ign goals of L*. To make such faci l i t ies par t of the 

in i t ia l s y s t e m poses an almost impossible tradeoff b e tween initial s impl ic i ty and 

u l t imate fac i l i ty and f lex ib i l i ty. Assemblers , as a genre, are def ic ient in the fac i l i t ies 

t h e y p r o v i d e ( compared to, say* LISP or PL/1) prec i se ly because they are " in i t ia l " 

s y s t e m s . Such sys tems are not pnly lean, they are inf lexible. HLLs so lve this p r ob l em 

b y c r e a t i n g a- la rge initial sys tem (the HLL itself, e.g., PL/1) . This at least ob ta ins 

f a c i l i t y , t hough it doesn ' t obta in f lexibi l i ty. 

Bas i ca l l y , the computer itself dictates the machine language. However , us ing 

mach i ne language w i th in a system requires var ious convent ions that const i tu te , in 

e s s e n c e , a par t i cu lar sub language. Thus, ML* is the machine language p lus a set of 

c o n v e n t i o n s : 

T h e ope ra t i ng environment consists of three stacks: (1) a cont ro l 

stack, ho ld ing the current instruction; (2) an ope rand stack; and (3) a 

test cond i t i on stack. 

A l l l anguage systems wil l use a common opera t ing env i ronment , if 

poss ib l e . In part icular, ML*, PL*, EL* use the same ope ra t i ng 

env i ronment . 

T h e t h ree - s t a ck opera t ing environment is d ictated by the requ i rements of 

c o m m o n machine language and PL* use, these being the initial language sys tems . 

H o w e v e r , it is also an app rop r i a t e environment for real iz ing a w ide va r i e ty of h igher 

l e v e l l anguages (like LISP or Algol). The major restra ints on the machine language 

p r o g r a m m i n g are: (1) A l l argument-pass ing must use the ope rand stack (spec i f i ca l ly , 

r e g i s t e r s may not be used); (2) Signal communication must use the test cond i t ion s tack 

(e.g., no sk ip r e tu rns may be used to return a signal); (3) Work ing reg is ter usage -is 

l im i ted to t hose not r equ i r ed to prov ide the three-stack opera t ing env i ronment . 
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T h e communa l i ty of use over language systems is pr imari ly an e f f i c i ency i ssue. 

W i t h o u t th is, pas sage of cont ro l across a language boundary also requ i res shu f f l i ng of 

d a t a , in add i t i on to the t rans fe rs requ i red by the basic mechanics of the ca l l ing 

s e q u e n c e . The cos t s i nvo lved are substant ia l . In the initial PDP10 sys tems t h r ough 

L*(G) w e e x p l o r e d a number of var iat ions on mechanisms that kept the ope r a t i n g 

e n v i r o n m e n t s s epa ra t e , and the t radeof fs are quite c lear ly in favor of communal i ty o n 

s t a n d a r d c ompu te r a rch i tec tu res . 

A n impor tant consequence of these convent ions is that there is on ly a s ing le 

r o u t i n e f o r a s ing le funct ion . For example, consider the funct ion of inser t ing a s ymbo l 

in a l ist; th is is n e e d e d in bo th language environments, PL* and ML* (and o the r s as we l l 

p e r h a p s ) . T h e r e is a p rocess named I (itself wr i t ten in ML*) wh i ch is to be u sed 

w i t h i n b o t h ML* and PL* programs to ca r ry out the i nse r t i on funct ion. Thus , t he re 

d o e s not have to be any dup l i cat ion of funct ion across the two language env i ronments . 

T h i s is in fact an ex t reme ly s t rong contr ibutor to simplicity in the L* s t ruc tu re . A s fo r 

e x e c u t i n g PL* p rog rams f rom wi th in ML*, designer 's p re roga t i ve by the h a r d w a r e 

a r c h i t e c t s p r oh i b i t e d this f rom happening as it should. The PL* cal l must be 

s u r r o u n d e d w i t h a small machine language c l i c h e .^ Except for this, the s i tuat ion is 

s ymme t r i c a l . Mos t i n t e r p r e t ed language systems are h ierarch ica l , w i th the i n t e r p r e t e d 

c o d e l y i ng " a b o v e " a machine code base. The L* language s t ruc ture is not h i e ra r ch i ca l . 

M a n y P L* rou t i nes are ca l led f rom with in ML*. 

3.5.2 Stacks 

T h e abs t rac t da t a - t ype cal led a stack is an extremely usefu l data s t r u c tu re in 

s o f t w a r e s y s t ems , w h e r e v e r there is interrupt ion and re turn in the use of r e s o u r c e s 

( v i e w e d qu i te abs t rac t l y ) . Ph rase-s t ruc tu red languages, interrupt se rv i ce , s ub r ou t i n e 

h i e r a r c h i e s , and va r i ab l e -b ind ing h ierarchies are only a f ew examples. Thus an 

imp l emen ta t i on s y s t em needs a stack data- type, both for its internal use and to emp l oy 

in o b j e c t s y s t ems . T h e r e are l i teral ly dozens of stacks in use in a typ ica l L* sy s t em, at 

all l e v e l s of s y s t em organ iza t ion . 

S tacks can be implemented in many ways . The most familiar is a sequent ia l s tack 

o c c u p y i n g a con t inuous interva l of the address space, in wh i ch push and pop a re 

a c c o m p l i s h e d b y inc rement ing and decrement ing addresses. But in a sys tem w h i c h 

a l r e a d y has list p ro ces s i ng , a quite natural choice is to map stacks onto l ists — a 

s u b s e t of the list pr imi t ives are isomorphic to the standard stack opera t ions . Us ing the 

n o t a t i o n in PL*: 

[ 1 1 ] Which puts the PL* symbol on the Z stack and thon calls tho PL* interpreter. 
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S Get symbo l in cel l 

R Rep lace symbo l in cel l 

I Insert symbo l at f ront 

I C Insert c o p y at f ront 

D De le te 

List Stack 

Read top symbol 

Replace top symbol 

Push new symbol on top 

Push (double top symbol) 

Pop 

Gene ra l advantages o f . l i s t stacks include the immunity to ove r f l ow (since t h ey 

a r e not con t i guous b locks) and the avai labi l i ty of the more power fu l list ope r a t i on s 

w h e n n e e d e d ( inser t ion, de le t ion and reading other than the top ent ry) . When u sed fo r 

t h e o p e r a t i n g env i ronment of PL*, list stacks al low easy exp lo ra t ion and modi f i cat ion of 

that env i r onmen t (e.g., in the coding of new contro l opera t ions wh i ch d i r e c t l y 

man i pu l a t e ope ra t i ng stacks). In the PL* environment stacks hold symbo l s (i.e., 

a d d r e s s e s , wh i c h o c cupy ha l f -words on the PDP10); hence space and time cos ts a re 

a bou t equa l b e t w e e n list stacks and sequent ia l stacks (usual ly cons i de red the most 

e f f i c i e n t implementat ion). A l l of our initial vers ions of L* ( through L*(G)) u sed l ist 

s t a c k s * 2. 

T h e machine language operat ing environment must be rea l i zed w i th sequent ia l 

s t a c k s in cu r r en t s tandard archi tecture. Designer 's p re rogat i ve by the h a r d w a r e 

a r c h i t e c t s has b e e n exe r c i sed in the subrout ine call and re tu rn funct ions to make all 

o t h e r cho i c e s for s tack implementat ion prohib i t ive. Thus, a choice of list s tacks for PL* 

( p r o d u c i n g homogene i ty there) produces a split be tween the opera t ing env i r onmen t s 

o f P L * and ML*, w i t h the negat ive consequences d iscussed above. 

T h e cu r r en t L* sys tems have adopted the other choice. Stacks are rea l i zed as a 

d i s t i n c t d a t a - t y p e , T / J * ^ . Then the PL* operat ing environment is ident i f ied w i t h the 

M L * env i r onmen t , as above , w i th the consequent simplicity and speed increase. 

S tacks are now a genera l data- type prov id ing funct ions wh i ch part ia l ly dup l i ca te 

l ist f unc t i ons . Co r r e spond i ng to the processes on lists (S N R I D F ...) t he re are 

p r o c e s s e s on s tacks ( S J N J R J I J D J F J ...). Stacks are rea l i zed w i th a po in te r 

s t r u c t u r e that k eeps l ower and upper stack bounds plus the actual po inter . The s tack 

m e m o r y a r ea is a sepa ra te block, wh ich can be re located in memory to p r o v i d e 

e x p a n d e d or con t r a c t ed memory space. An important advantage in hav ing s tacks is 

t he i r p r e f e r r e d use in ob jec t systems which do not w ish to import list p rocess i ng . 

B y p rov i d i ng an ef f ic ient stack data- type and a machine language (ML*) 

i n t e g r a t e d w i t h the rest of the L* system, we have p rov ided mechanisms for ach iev ing 

t o ta l a ccess ib i l i t y to the under ly ing machine and for aiding se lect ive opt imizat ion. ML* 

a n d P L* are the two initial programming languages prov ided in L*, but nei ther has any 

[ 1 2 ] Note that the examples in this paper use list stacks (e.g., for 2 0 and ZQ); they could ha 

sequential stacks-' 

[ 1 3 ] J for nothing, but think of the stem of the J as the stack and the cup as the overflow tost. 
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p r i v i l e g e d status. Other programming languages may be added at the same " l e ve l " as 

M L * o r PL*. Now, let us desc r i be the language used to communicate b e tween the user 

at a te rmina l and the L* sys tem, EL*. 

3.6. EL*: The External Language 

L* t rea t s PL* as an internal language ~ a set of data s t ruc tures in memory that 

c a n c on t r o l p r o ce s s i ng . It wou l d treat similarly any number of other languages, such as 

L ISP . T h e human user , of cou r se , res ides outs ide the computer sys tem at a termina l , 

a nd he communica tes w i t h L* through some other language, or at least th rough some 

no t a t i o n for the in terna l languages. We call this externa l language EL*. 

EL* must meet severa l requirements that separate it sha rp ly f rom the set of 
i n t e r na l l anguages: 

Names vs . symbo ls: EL* is wr i t t en as a sequence of cha rac te r s 

(assuming text, not graphic, input devices). Hence co r r e spondences 

must be made be tween sequences of characters and internal symbo ls . 

W e use the term name for a character sequence that maps into an 

in terna l symbo l . { 

Externa l f ide l i ty: It should be poss ib le to make the externa l language 

i somorph i c to any g iven internal system (this fo l lows f rom the 

requ i rement for simplic ity). 

Tota l access ib i l i ty: Al l internal symbols and s t ruc ture must be 

r e p r e s en t ab l e wi th in EL* (i.e., ML*, PL*, and all languages to be 

sub sequen t l y c reated) . 

G r o w t h into object systems: It must be poss ib le to t rans form EL* into 

a p r ob l em-o r i en t ed language for an object system, w i th an ope ra t i ng 

env i ronment sea led off f rom the total L* env i ronment. (The full range 

of s t anda rd notat ional and linguistic dev ices must be eas i ly c r ea t ed 

w i th in EL*.) 

Dynamic modi f icat ion and simplicity: EL* must be capab le of be ing 

mod i f i ed in terac t ive ly by someone work ing wi th in EL*. (This also 

impl ies a s imple mapping be tween EL* and internal structures.) 

T h e requ i r ements for f idel i ty and total accessib i l i ty for all internal l anguages 

imp ly that EL* cannot s imply be another language, analogous to PL*, w i th a par t i cu la r 

d a t a - t y p e and set of i n te rp re te rs . Thus EL*, though a language funct ional ly , must be 

c o n c e p t u a l l y o r t hogona l to the other languages in the system. 

W e f i rst d i s cuss EL* cons ide red as a sequence of symbols, assuming the mapp ing 
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f r o m cha ra c t e r s t r ings to names to symbols has a l ready taken place. This is the leve l 

o f s yn t ax , but also inc ludes the higher levels of semantics and act ion. Then w e wi l l 

r e t u r n to cons ide r the lexical p rocess ing that produces the symbols. 

3.6.1 Syntax, Semantics, and Act ion 

S t anda rd syntax schemes imply the ex is tence of a grammar and a parser 

b e t w e e n the user (i.e., the c reator of EL* sur face s t ructure) and the c o r r e spond i ng 

i n t e rna l da ta s t ruc tu re . G iven the requirements for syntact ic power , such a s cheme 

w o u l d s eem to i n te rpose a ve i l of complexi ty at odds w i th the des i r ed f ide l i ty and 

s imp l i c i t y of the total sys tem. 

T h e cen t ra l f ea tu re of a so lut ion to these multiple requ i rements l ies in tak ing a 

" p r o c e s s - v i e w " of syntact i c in terpretat ion (Newel l and Freeman 1968). Namely, the 

i n t e r p r e t a t i o n of an EL* sequence of names is to be car r i ed out as a sequent ia l 

p r o c e s s . Some names wi l l c o r r e spond to processes whose immediate execu t i on wi l l 

c a r r y out the ana lys is of the input stream, to conver t it into a sequence of in terna l 

a c t i ons or s t ru c tu res . Other names wil l co r respond to lexical items and wi l l become the 

i n t e rna l symbo l i c data. 

Let us cap tu re this in a def in i t ion: 

Sequent ia l P rocess Grammar: A linear sequence of symbols , each of 

wh i c h is e i ther act ive or pass ive; act ive symbols are i n t e rp re ted 

immediate ly in an opera t ing environment that includes access to the_ 

language st ream. The act ive symbols are cal led syntax act ions. 

F o r EL*, the s t ream of characters must be conver ted into a sequence of names, 

and t h e s e names must be mapped into their co r respond ing internal symbo ls . T h e n 

i n t e r p r e t a t i o n impl ies, as usual, execut ion of the assoc iated in te rpre ter accord ing to 

t y p e . Of neces s i t y , . then, the opera t ing environment wil l be the same ope ra t i ng 

e n v i r o n m e n t used by these in te rpre ters . 

It remains to s how the extent to wh ich such a scheme can rea l i ze app r op r i a t e 

s u r f a c e s t r u c tu re . Though w e do not know of any other programming language that 

t a ke s exac t l y this course , the scheme is c losely re lated to the or ig inal f o rmu la 

t r an s l a t i o n s chemes in t roduced long ago by Samelson and Bauer (1960), and to the 

p u s h d o w n schemes of F l oyd and Evans (Evans 1964). EL*, however , does not f o rm a 

c l o s e d s y s t em, but ope ra tes wi th in the environment of internal computat ion. 

EL* is to be used for rea l iz ing context dependent sur face syntax of all k inds; in 

d o i n g so t he r e is no reason to adhere to the context independence pr inc ip le adop t ed 

f o r PL*. On the other hand, a sequent ia l process grammar, w i th its execu t i on of 

i n d e p e n d e n t syn tax act ions, lends itself to a str ict adherence to the pr inc ip le . -Th i s is 

• important in rea l i z ing an externa l i somorph of PL*, but is also usefu l more w i de l y in 

i n t e r a c t i v e p rogramming. 
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Some simple examples wil l make the scheme concrete . F igure 4 lays out a 

s c h e m e to de f i ne a s imple list, ( A B C ) . Each of the f ive character st r ings, " ( " , H A M , 

a nd so on , is a name. The re is no dist inct ion be tween ident i f iers and syntac t i c marks. 

M o r e accu ra te l y , the d ist inct ion is encoded into whether a symbol is act ive or pass i ve 

(as i nd i ca ted in the f igure by a and Q). However , as we shall see, any symbo l can be 

a c t i v e or pass i ve and this state can be changed dynamical ly. 

T h e f i rst symbo l ( is active; being a PL* program it is executed . The resul t is to 

pu t a s ymbo l into the stack to act as a f loor. This symbol should be f o reve r unnamed, 

s o it is s imp ly he ld in cel l ca l led FLR. We call the symbol address 97, just to cal l it 

s ome th i ng . The next name A maps into a pass ive symbol; it is pushed onto the stack, 

w h i c h is the fate of all pass ive symbols. Thus, the symbols co r respond ing to the 

names B and C also end up in the stack. Final ly ) co r responds to an act ive s ymbo l 

w h i c h a lso des igna tes a PL* program. It c reates a new symbol (via the CR p r o ce s s ) 

and g o e s into a loop t rans fe r r ing symbols from the stack onto the list, wh i l e l ook ing 

f o r the f l oor in the stack as a signal that it has f in ished. The symbol for the list is he ld 

in ce l l ZO and all the inserts are made to the front (by I ) , so that the o rde r is the 

s ame as that init ia l ly wr i t t en . The symbol for the list (called here 632) is output to the 

s tack . 

T y p e d at the terminal: (A B C) 

( A B C ) 

a p p p a a = act ive, p = pass ive 

37 A B C 632 

* 37 A m
 

9 7 A 

* 97 

* 

" ( : ( F L R S ) 

" ) : < T / L CR IZO ( P FLR S =S .U+ SZO I , R ) SZO DZO) 

F igure 4. Defining list structures 
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The scheme of F igure 4 suff ices for any list s t ructure. T rac ing t h rough the 

examp le b e l o w wi l l s how how each list is c reated as a symbol and becomes part of its 

e m b e d d i n g l ist: 

( A ( D ( ( C ) D ( E F ) G H ) ) ) 

T o add the syntax for assigning the symbol for a list (i) we can p r o c e e d as 

s h o w n in F i gu re 5. The s is a b inary operator and cannot complete its o w n ope r a t i o n 

unt i l b o t h of its ope rands are complete. In particular, : must de lay unti l its r ight 

o p e r a n d is comp le te , wh i ch wi l l not happen until after it has itself b een i n t e rp r e t ed . A 

na tura l d ev i c e for this is to create a de layed process that f i res w h e n the o p e r a n d is 

c omp le t e . In the p resen t context, only ) wil l know this, so it must be g i ven the 

r e spons i b i l i t y for execut ing the de layed process. As Figure 5 shows , s leaves L I in 

the s tack and puts a p rocess on another stack, ZQ. ) is modif ied to execu te what is o n 

the ZQ s tack a f ter bui ld ing the list. It does this by a rout ine , XQ, wh i ch w e d i s cuss 

b e l ow . T h e d e l a y ed act ion exchanges the first cell of the list to be that assoc ia ted w i t h 

the s pe c i f i e d f i rst symbo l , L I , rather than the created symbol used by ) (us ing RW). 

T h e s tack manipu lat ions shown (V is reverse , P I is push second e lement) are to 

p r e s e r v e 6 3 2 (the un-named list structure) until the end so it can be e r a s ed (e ras ing is 

d o n e exp l i c i t l y in the basic L* system). 
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L I ( A B 

L I L I 9 7 A B C 

* * L I 9 7 A 

C
O

 
* L I 97 A 

* L I 97 

* L I 

• • ( . Q ( V P I RW E ) I Q ) 

" ( : ( F L R S) 

" ) : ( T / L CR IZO ( P FLR S =S .11+ SZO I . R ) SZO DZO . X Q ) 

.XQ : (SQ . X DQ) 

SQ J (ZQ S ) IQ : <ZQ I ) DQ : <ZQ D) 

F igure 5. Defining a named list 

Our pu r po s e of p resen t ing this much detai l is to show how syntax can be bui l t 

up w i t h l i tt le e f fo r t . In the ZQ stack and ,XQ we have essent ia l ly all that is n eeded to 

add the ful l complement of b inary operat ions (e.g., re lat ions and arithmetic). In the 

ac tua l s y s t em, matters are somewhat more compl icated, because one must hand le 

mu l t i p l e t y p e s and rede f in i t i on of structures. 

L* is a fu l ly in terac t ive language, so that there is the poss ib i l i ty of a r b i t r a r y 

immed ia te execu t i on as we l l as de layed execution. The analys is of the EL* input 

s t r e a m a l ready impl ies immediate execut ion of active symbols; to ob ta in immediate 

e x e c u t i o n of pass ive symbo ls there exists a process cal led ! (itself act ive, of cou r se ) . 

T h e p r o c e s s ! is actual ly ident ical to the execute process . X (except that , X is not 

ac t i ve) ; .! i n te rp re t s (executes) the symbol on the top of the Z stack. Hence, in the 

f o l l o w i n g t y p e d in sequence , the f irst two names put L I and TSL respec t i ve l y on the 

s t a c k and J execu tes TSL on input L I , just as we saw in F igure 3. 

L I T S L 1 
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Th i s examp le shou ld help emphas ize that not all (or even most) PL* p rog rams 

a r e ac t i ve . Mos t are pass ive and are t reated in EL* simply as addit ional data to be put 

a w a y in n e w l y cons t ru c t ed programs. 

EL* uses the same p rocesses as are used in PL* (or whatever language is b e i ng 

w o r k e d w i th) . It ach ieves the des i red isomorphism prov ided that the externa l syn tac t i c 

s t r u c t u r e can be rea l i zed by means of syntax actions that bui ld isomorphic s t r u c tu re s , 

w h i c h in gene r a l is poss ib le . Conve rse l y all of the p rocesses that are avai lab le in EL* 

must a l so be ava i lab le internal ly. This can be apprec ia ted, for example, in c o p y i n g a 

l ist . S u p p o s e w e wan t ed to c opy a known list, L I : 

C L 1 ~ C o p y list L I 

T h e n an obv i ous way to do this, in analogy to the way lists are built ex te rna l l y , 

w o u l d be (schemat ica l ly): 

C L 1 : ( <contents of L l > ) 

S ince ( and ) are s imply symbols that des ignate PL* programs, w e can use 

t h e s e i n te rna l l y as we l l as externa l ly . Al l we need to do is treat ( and ) pass ive ly . A n 

ac tua l r ou t i ne a long these l ines is: 

C L l : ( f ( L I f * L f ) ) 

T h e quo te 1 is an act ive symbol that pass ivates the fo l lowing EL* symbo l . Thus 

t h e ou t e r ( ) de f i ne the list C L l , just as a lways. The inner 1 ( ... f ) are the same 

t w o p r o c e s s e s , but they exist internal ly as part of the p rocess C L l . The p ro ce s s +-L 

d u m p s the con ten t s of a list into the stack; s ince it happens to be act ive as we l l as ( 

a nd ) , it must a lso be pass ivated wi th f .*^ 

W e can p rov i de one last i l lustrat ion by wr i t ing the code for H . , as it might have 

b e e n d e f i n e d : 

"<-L : ( F P S V N , R ) *-L ACT ! 

T h e cha rac te r <- happens to a lready exist as a name, so it is necessa ry to use 

b e f o r e the name H . to prevent it f rom being mis- recogn ized as <- f o l l owed by L.*^ 

T h e n f o l l o w s the PL* program, made up of the usual pr imit ives. This de f ines <-L, w h i c h 

is n o w s imp ly a rout ine, like TSL. To make it active we input it, input the act ivat ing 

p r o c e s s ACT and do an immediate execut ion wi th J. From that point on H . is act ive. 

[ 1 4 ] 

[ 1 5 ] 

H is of course possible to passivate 1 itself by writing ' * . 

The operation of " will be explained more fully in the following section. 
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3.6.2 Lexical Recognit ion System 

W e have assumed above that EL* can be rep resen ted as a sequence of s ymbo l s . 

In o n e r e spe c t this a l ready d i f fers from standard pract ice, in that all syntact i c marks 

(e.g., ( or i ) c o r r e s p o n d to symbols in the same way as what are usual ly t e rmed 

" i den t i f i e r s " . We now need to show how the character stream is segmented and 

c o n v e r t e d into a sequence of names, wh ich then become assoc iated w i t h in te rna l 

s y m b o l s . 

T w o requ i rements are part icu lar ly press ing for a lexical recogn i t ion sys t em: 

F lex ib i l i ty : It must be able to encode a great var ie ty of segmentat ion 

and c lass i f i cat ion rules, to suppor t the g rowth of object sys tems f rom 

w i th in . (In part icular, it must handle punctuat ion and syntact ic marks 

in a w a y homogeneous w i th other lexical items.) 

E f f i c i ency : It must be highly ef f ic ient — time eff ic ient s ince it sits in 

the bas ic interact ive loop of the system, and space ef f i c ient s ince 

use r s can be expec ted to use many names. (Systems wi th thousands 

of names must be practicable.) 

T h e cen t ra l recogn i t ion system is composed of two -way symbol tab les , ca l l ed 

d i c t i ona r i e s (i.e., name-symbo l and symbol-name cor respondences) . A d i c t i ona ry 

s c h e m e r equ i r e s fu r ther spec i f i cat ion. (1) What class of names wil l be admit ted to a 

d i c t i o na r y ? F i rst , call a lexical recogni t ion point a point in the character s t ream such 

that the p r io r sequence of characters has. been complete ly segmented and r e c ogn i z e d 

and the f o l l ow ing sequence is unana iyzed. (2) What d ict ionary appl ies at a point (if 

s e v e r a l exist)? (3) What candidate names get submitted to the d i c t i ona ry fo r 

r e c ogn i t i o n at a point? (4) Given-that more than one d ict ionary entry is sa t i s f i ed at a 

po in t , h ow is the ambiguity reso lved? Standard pract ice is to do r u l e - b a s e d 

s egmen t a t i o n of the character stream to determine a single candidate, such that 

amb igu i t y cannot ar ise, admitting to the dict ionaries only such names as are cons i s ten t 

w i t h the segmenta t i on rules. Mult ip le d ict ionar ies in the form of nested b lock s t r u c t u r e 

a r e a lso s tanda rd . 

The f lex ib i l i ty requ i rements imply a d i f ferent approach. EL* adopts the f o l l ow ing 

p r i n c i p l e : 

Longes t - r e cogn i zab l e : That name will be recogn ized wh ich is the 

longest name that matches, start ing at a recogni t ion point (from w i th in 

the app l i cab le d ict ionar ies). 

Some examples wi l l c lar i fy the pr inc ip les (v/here we a lways take the r e cogn i t i on 
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po in t to be at the far left). Under Text are example inputs, each resu l t ing in the 

r e c o g n i t i o n under Reco£ni?e when the names under Entr ies a l ready exist in the 

d i c t i o n a r y : 

InDut Text Dict ionary Entr ies Recognize 

,+H .+ ,+H .+H 

L \ A B C ABC L\ L\ 

( B ( B ( ( B 

<= <= < <= 

T h e p r inc ip l e of the longest- recogn izab le is a semantic segmentat ion scheme 

w h i c h c oup l e s segmentat ion to the contents of the appl icable names. It permits one to 

h a v e o v e r l a p p i n g notat ions, not rest r i c ted by a set of art i f ic ial segmentat ion ru les . 

T h e p h r a s e "ar t i f i c ia l " is used advisedly, since it appears to informal ob se r va t i on that 

humans o p e r a t e percep tua l l y c loser to the longest- recogn izab le pr inc ip le than to any 

o t h e r s egmen ta t i on scheme in common use. 

A typ i ca l example of the use of this pr inc ip le v/ithin L* can be s een in the 

p r o b l e m of bu i ld ing l ists of d i f fe rent types. Parentheses, ( ... ) , wi l l bui ld a list, but do 

not s p e c i f y its t ype (e.g., T / L , T / P ). This is done by default , p r ope r l y enough . 

H o w e v e r , a nota t ion is requ i red to dec lare the type spec i f ica l ly: 

( ... ) Bui ld a list of default type 

L \ ( ... ) Bui ld a list of T / L 

P\< ... ) Bui ld a list of T / P 

T h e l onges t - recogn i zab l e pr inc ip le recognizes L \ ( as a who le in p r e f e r en c e to 

s e g m e n t i n g b e f o r e the (. G iven that we had def ined a new list t ype , say T /Q , w e 

w o u l d of c o u r s e face the prob lem of gett ing Q\ ( into the d ic t ionary in the f irst p lace. 

T h i s is a ccomp l i shed by the doub le quote: 

" Q \ ( : ( T /Q f \ ( ) 

Doub l e - quo t e is a symbol just like any other; it exists in the d i c t ionary and is 

a c t i ve . It s igna ls the recogn i t ion system to recognize all charac ters up to the next 

s p a c e as a n e w name. Notice in this that the general rout ine \ ( also exists wh i ch wi l l 

t ake any t y p e symbo l as input and start a list structure of that type; it is normal ly 

a c t i ve , so it had to be pass ivated to get it incorporated into the rout ine. In fact, w e 

c o u l d have not bo the red to def ine Q\ ( and instead simply wr i t t en: 

T / Q \ ( ... ) 

T h e l onge s t - r e cogn i z ab l e pr inc ip le wou ld have segmented T /Q (which is in the 
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d i c t i o na r y ) , and then \ ( . i b 

The ques t i on of putt ing new names into I he dict ionary requ i res addit ional des i gn 

d e c i s i o n s . In genera l , EL* avoids declarat ions (a design dec is ion genera l l y f a vo r ed by 

i n t e r a c t i v e languages and not by batch languages). In cases of ambiguity, as above , a 

d e c l a r a t i o n (via ") is unavo idab le . But general ly if a symbol is ment ioned and not 

r e c o g n i z e d , then it is an implicit dec larat ion of a new entity. 

Implicit dec la ra t ion poses a prob lem for a semantic segmentat ion scheme. A t 

w h a t po int is a new ly input name complete? To ident i fy terminat ion po ints for 

r e c o g n i z a b l e input names, the character set is div ided into severa l c lasses: name 

c h a r a c t e r s , digit charac te rs , boundary characters, and par t i c ipat ing b ounda r y 

c h a r a c t e r s . The name charac ters genera l ly include all a lphabetic cha rac te r s and some 

of t he spec i a l charac te rs . Boundary characters act as rigid boundar ies for recogn i t i on , 

a nd inc lude cha rac te r s like space, tab, car r iage-return and line feed . Names do not 

c o n t a i n r ig id bounda ry characters . Part ic ipat ing boundary characters act as cond i t iona l 

b o u n d a r i e s for name recogn i t ion and can be part of names. They gene ra l l y inc lude 

most of the spec ia l charac ters . For example, if :, (, and ) are par t i c ipat ing bounda r y 

c h a r a c t e r s and space is a r ig id boundary, then: 

A B C : ( A B CD) 

w o u l d be p a r s ed so that recogn i t ion wou ld be attempted on A B C : ( A B , ABC: (, ABC : , 

and f ina l l y ABC. If none of these poss ib le names is found in any of the re levant 

d i c t i o na r i e s , then the last wi l l be implicitly declared. The class ass ignments for 

c h a r a c t e r s is under contro l of the programmer to allow maximum f lex ib i l i ty. 

T he f inal dec is ion at this level in the recognit ion system is what sort of name 

c o n t e x t s a re avai lab le. EL* permits an indefinite set of d ict ionar ies. An o r d e r e d list of 

t h e s e is ava i lab le at a g iven recogni t ion point. Normally this is b lock s t r u c tu red , but 

c a n as eas i l y p rov ide sea led off lower contexts which do not have access to h igher 

o n e s . Th i s latter scheme se rves the g rowth of object systems wh i ch shou ld exist in an 

i s o l a t ed w o r l d as far as the user is concerned. 

3.6.3 The Dict ionary Mechanisms 

T h e desc r i p t i on so far does not prov ide the fundamental mechanisms out of 

w h i c h the d i c t i onary shall be built. Pr inc ip les, such as l onges t - recogn i zab le , are of 

c o u r s e on l y a part icu lar (useful) des ign choice. The fundamental scheme must permit 

the c r e a t i o n of name segmentat ion and dict ionary schemes of a rb i t ra ry va r i e ty . 

[ 1 6 ] This ansumos that T/0\ and T/0\( are not dofincd (i.o., segmentation dcponds on the semantics, which is 

to say on the actual set of names beinfc used). 
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T h e p r ob l em is analogous to that faced by EL* for the higher leve l syntax , and -

the so l u t i on adop t ed is fundamental ly the same — namely, to take a "p rocess v i e w " of 

r e c ogn i t i o n : 

Sequent ia l P rocess Recognizer: A linear sequence of charac te rs , each 

of w h i c h des ignates a symbol , wh ich is in terpreted immediately in an 

o pe r a t i n g env i ronment that includes access to the charac ter s t ream. 

(The symbo l s are ca l led character actions.) 

T h e f unc t i on of access ing a d ict ionary is d is t r ibuted to the co l lec t ive act ions of 

t he c h a r a c t e r s s ta r t ing st the recogni t ion point. The in terpretat ion of syntax act ions 

o c c u r s immediate ly as they bacome recogn ized. From one point of v i ew the re is on l y 

the i n t e r p r e t a t i o n of a sequence of character actions. In genera l , t he re cannot be 

s e p a r a t e l eve l s of p rocess ing that create f irst a representa t ion of a cha rac t e r 

s e q u e n c e , t hen a r ep resen ta t i on of a name sequence, then a r ep resen ta t i on an EL* 

s ymbo l s equence , then an internal parsed structure, wh i ch ' is then execu t ed . 

S u b s e q u e n t p r o ce s s i ng at all levels (including that of characters) can d e p e n d on the 

p r o c e s s i n g at all h igher levels. 

It remains to be shown how to real ize var ious d ict ionary schemes by such a 

mechan i sm. Such deta i l is beyond this paper. We have const ruc ted by these means 

mul t ip le l inear tab le d ict ionar ies, discr imination net d ict ionar ies, hash ing tab le 

d i c t i ona r i e s , and o the r s — represent ing a wide var iat ion of space and time t r adeo f f s . 

T h e r e is no th ing inherent in the Sequential Process Recogn izer that res t r i c t s it 

to d i c t i o na r y l ookups . For instance, it is used for convers ion of digit s equences to 

numbe r s . M o r e genera l l y , a user interface where all the syntax is c o n v e y e d b y 

punc t ua t i o n marks cou ld be rea l ized by character actions rather than by syn tax 

ac t i ons . Indeed the same actions could be used, simply assoc iat ing them to the 

c h a r a c t e r s ra the r than to the names. ' EL* renounces this poss ib i l i ty in o r de r to 

p r o v i d e the ab i l i ty fo r syntax to res ide in arb i t rary character str ings (e.g., <=). 

3.7. The L* Kernel 

L* is g r o w n f rom a kerne l . That is, there is a small body of code and data wh i c h 

c ons t i t u t e s a s y s t em that is suff ic ient to run. From that point on, all of the addi t ional 

fac i l i t i es a re added to the system using its own mechanisms. 

T h e ke rne l of L* is usual ly measured by the amount of machine language it 

r e qu i r e s , for this somehow measures how much basic mechanism has been de f i ned . The 

s i z e of the ke rne l , measured this way, is g iven for severa l implementat ions in F i gu re 

[17 ] In fact, various command actions (e.g., in the editor) are associated with standard control characters 

such as carriage-return, line-feed, or altmode. 
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6. It is about 1600 wo rd s on the PDP10 and 2500 wo rds on the PDP11 s tanda lone 

( e i t he r a s imp le PDP11 or C.mmp, a mult iprocessor (Wulf and Bell 1972)). The t y p e s 

w h i c h a re r e p r e s e n t e d in F igure 6 account for most cf the space in each sys tem. The 

M L * l anguage is composed of machine code, or t ype T /M . The PL* language is 

c o m p o s e d of i n t e r p r e t ed programs of t ype T / P . The T/W data inc lude bu f f e r s , tab les , 

s t a c k w o r k space , and s ing le w o r d constants and var iab les . The T / L , T /A , and T / A L 

d a t a a r e symbo l i c l ists and associat ions. The T / K S data are character s t r ings for the 

n a m e s in the sys t em. The L*A (A- leve l) system is the complete basic L* sy s t em that 

mos t u s e r s use. Note that the 8080 vers ion is desc r i bed in terms of 16 bit w o r d s 

i n s t e a d of 8 bit by t e s . 

T h e s i zes for the systems are fa ir ly constant (in terms of bits) except for two 

c a s e s : L*(I) is b r o ken into two segments, w i th the h igh segment (the numbers in 

p a r e n t h e s e s ) on ly loaded on demand; and L*C.(D), wh i ch conta ins fac i l i t ies fo r 

m u l t i p r o c e s s i n g and for deal ing w i th ove r l ayed pages in its address space . It is 

i n t e r e s t i n g to note that the ex is tence of an under ly ing opera t ing sys tem does not 

g r e a t l y a f f ec t h o w much machine code is requ i red in the kerne l . 

M a c h i n e 

W o r d s i z e (bits)  

O p e r a t i n g Svs 

L* V e r s i o n 

P D P 1 0 PDP10 

36 36 

T O P S - 1 0 TENEX 

L*(I) L*(I)X 

PDP11 C.mmp 

16 16 

None Hydra 

L*11(H) L*C.(D) 

A LTO 8080 

16 16 

None None 

L*ALT0 L*80S0 

K e r n e l 

M a c h i n e c ode 1.6 1.6 1.8 5.7 2.5 2.5 
T / P 6.6(1.6) 7.8 4.0 6.7 6.0 5.0 

T /W da ta 6.1(1.2) 7.2 5.0 10.0 5.8 4.2 
T / L 4.1(0.4) 4.5 1.0 1.1 0.7 0.6 
T / A , T / A L 1.0 0.9 • 0.3 0.6 0.8 1.1 
T / K S 1.5(0.4) 1.9 - 4.8 2.3 2.3 

t=A (A - l e ve l ) 25(+10) 32 13 32 18 16 

F i gu re 6. Sizes of various L* versions in thousands of words 

T h e machine code in the kernel alone does not p roduce a se l f -su f f i c ient s y s t em. 

Some PL* p r og r ams and data are requ i red as wel l to make a minimal se l f - su f f i c i en t 

s y s t e m . In the A - l e v e l sys tem, the PL* programs account for about f ive t imes the s i ze 
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o f t he mach ine code , and the data accounts for about nine times. The large p r o p o r t i o n 

o f d a t a is l a rge ly due to the space needed for names (character s t r ings) and 

a s so c i a t i o n s b e t w e e n names and symbols. 

T h e r e are important reasons for L* to have a small kerne l . F irst, it l imits the 

amount of bas i c s y s t em that must be unders tood by a user (i.e., a sys tem implementer) . 

T h u s , it c on t r i bu t e s substant ia l ly to the total access ib i l i ty of the sys tem. Size a lone 

d o e s not de te rm ine how access ib le the kerne l is ~ if it w e r e a s ingle ent i ty, then e v e n 

1 6 0 0 w o r d s cou ld be formidable. In fact, the kernel cons ists of a h ighly ra t iona l i zed set 

o f r ou t i n e s , all bui l t around the same operat ing environment. Thus in a typ ica l ke rne l 

t h e r e a re about 130 rout ines, most of wh ich are small, independent l anguage 

o p e r a t i o n s (e.g., S, N, . + ). The re are about 15 rout ines larger than 20 ins t ruc t ions , 

a nd the la rges t is about 80 instruct ions. The h ie rarchy among these rou t ines is 

s h a l l o w , w i t h cal ls that nest deeper than two be ing rare. 

T h e fact that there is only a single rout ine for accompl ish ing any func t ion , as 

d e s c r i b e d in Sec t i on 3.5 on ML*, is an important cont r ibutor to the s impl ic i ty of the 

k e r n e l . A l t h o u g h the re are rout ines that the user does not normal ly look at (e.g., t hose 

in the s p a c e management or inter face faci l it ies), there is no spec ia l s ubsy s t em of 

i n t e r na l h ou sekeep i ng rout ines. The re is nothing h idden under the f loor and i ndeed 

no f l o o r at all. 

A s e c o n d r eason for having a small kernel is that L* is cons t ruc ted to be 

r e p e a t e d l y g r o w n into an object system. Such a g r ow th p rocess is not just 

augmen ta t i on , but can involve modif icat ion and replacement of ex ist ing faci l i t ies. (For 

e x a m p l e , a n e w d i c t i onary scheme, or a type system w i th added features) . R e g r o w t h is 

o f t e n the s t r a t egy of choice in such cases, backing down to a minimal sys tem and 

pu t t i n g the n e w ve r s i on together from scratch. The smaller the kerne l , the eas ie r su ch 

a p r o c e s s wi l l be . Indeed if the kernel is small enough and simple enough (as w e 

b e l i e v e the L* ke rne l s are), e ven revis ions of the kerne l are poss ib le wi thout too much 

d i f f i c u l t y . 

T h i r d , w i t h a small and simple kernel it is much easier to p roduce a comp le te l y 

d e b u g g e d bas ic sys tem, such that most e r ro r s encounte red can be assumed to r e s i de 

in n e w l y - a d d e d code . This has indeed p roved to be case — L* itself is h ighly s tab le . 

F o u r t h , po r tab i l i t y f rom one environment to another and f rom one machine to 

a n o t h e r is made much eas ier . We did not have portab i l i ty expl ic i t ly among the major 

d e s i g n goa l s of L*, but it is c lear ly important. And indeed, we have brought up ve r s i on s 

o f L* o n s e ve r a l d i f f e ren t computer systems. 

Add i t i ona l bene f i t s der ive f rom the small kernel , but they af fect most ly the bas ic 

s y s t e m de s i gne r s themselves. Thus, it has been poss ib le to ca r ry out a subs tant ia l 

n u m b e r of i te ra t ions of the basic L* system. Each of the i terat ions has expe r imen ted 

w i t h rad i ca l l y d i f f e ren t solut ions to the var ious basic sys tem prob lems. This w o u l d 

s u r e l y not have b e e n poss ib le if the system itself we re as large, say, as a compi ler for 

a h i g h e r - l e v e l language. 
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3.8. Complete Facilities 

In Sec t i on 3.1 w e sa id that L* was organ ized by faci l i ty. Throughout the sec t i on 

w e h a v e no t ed that the var ious mechanisms we have d iscussed w e r e inc luded in such 

a n d s u c h a fac i l i ty . 

T h e de s i gn goa l of p roduc ing a complete operat ing env i ronment is to be r ea l i z ed 

b y p r o v i d i n g a comp le te set of faci l i t ies. In creat ing an object sys tem the user shou l d 

f i n d ava i l ab l e as fac i l i t ies all the so f tware tools of whatever kind that he needs . S ince 

al l f a c i l i t i e s ex ist w i th in the same system, and since this also inc ludes the ob j e c t 

s y s t e m as we l l , s e ve r a l consequences fo l low: 

A l l s o f t w a r e tools wi l l be evoked and used wi th in the same set of 

c onven t i ons . 

A l l s o f t w a r e tools can be modif ied, examined and debugged (for e ven 

much -u s ed sys tems exper ience an occasional bug) in a common way . 

T o the extent that new tools are requ i red, they can be added w i th in 

the same f r amework and in real time. 

T o make this conc re te , F igure 7 lists all of the faci l i t ies in the so ca l led A - l e ve l 

s y s t e m . Th i s is a s tage of g rowth (starting from the kernel) whe r e enough fac i l i t ies 

h a v e b e e n added to p rov i de what any beginning impiementer wants . It is the v e r s i o n 

n o r m a l l y e v o k e d at the monitor level on the PDP10 ~ what y o u f ind in the s t anda rd 

d o c u m e n t a t i o n . 
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Sys t em. suppo r t faci l i t ies 

I n t e r p r e t e r 

I n t e rp re te r . s t ep 

Fas t . i n te rp re te r 

T y p e (J/1) 

Dynamic . type 

New . t y p e 

Symbo l 

Space.management 

B lock.space.management 

Ex te rna l . i n te r face 

Ex tended . sys t em 

System. in i t ia l i zat ion 

Save 

High.segment 

Da ta . s t ruc tu re faci l i t ies 

L ist ( T / L , T / P ) 

L i s t . s t ruc tu re 

Pair . l is t ( T / A L ) 

B lock 

Stack ( T / J ) 

Cha ra c t e r . s t r i ng (T/KS) 

S t r i ng . convers i on 

By te . s t r i ng 

W o r d (T/W) 

Assoc i a t i on . sys tem 

Assoc iat ion. l i s t ( T /AL ) 

A t t r i b u t e (T /A ) 

Language.environment faci l i t ies 

ML* (T/M) 
System.macro 

PL* (T/P) 
Opera t ing .s ta te 

C o n t r o l 

I terat ive.contro l 

Lanf,uo? x c .environment (cent.) 

EL*" 

Recognit ion 

Character.act ion (T/K) 

Executive 

Name.context 

Local.name 

Fast.name 

Type.recogni t ion 

Undef ined.symbol 

Name.assignment 

Print 

Print.machine.code 

Util ity facil ities 

Debugging 

Error.detect ion.and.recovery 

Undef ined.T/P 

Tracing 

PL*.step 

PL*.breakpoint 

ML*.breakpoint 

General .breakpoint 

Symbol.monitor 

File 

Fi le.read 

Fi le.write 

File.ppns 

List.edit 

Assembly 

Machine.opcodes 

Machine. instruct ion.assembly 

Macro.assembly 

General .word.assembly 

Machine.opcodes.complete 

Translat ion 

Translat ion.update 

Space.accounting 

Time.accounting 

F igure 7. Facil ities of the A- lovo l L*(I) system 
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W e do not enumera te the contents of these faci l it ies because they are the 

fac i l i t i e s to be e xpe c t ed in any total programming environment: ed i tors , d ebugge r s , 

c omp i l e r s , assemblers , account ing systems. The r? is nothing sacred about Ihe exact set. 

It r e f l e c t s a un ip rocesso r w i th a non-L* operat ing system — other faci l i t ies show up in 

s t a nd - a l o ne ve rs i ons of L*. L ikewise var ious mult iprocessing and over l ay management 

fac i l i t i e s s h ow up in L*s that inhabit C.mmp. There are some notable omiss ions f r om 

the set of fac i l i t ies in F igure 7, re f lect ing pr ior i t ies and exist ing a l ternat ive sys tems in 

ou r C M U env i ronment . For instance, no documentation faci l i ty appears , nor does a 

t e x t - e d i t o r fac i l i ty (wh ich does exist in other vers ions), a s t ruc tu red p rogramming 

fac i l i t y , or an opt imizat ion subfac i l i ty of the translat ion (compiler) fac i l i ty. These are 

not miss ing as matters of pr inc ip le; all should be there, and wil l be eventua l ly . 

A s no ted ear l ier , fac i l i t ies are not se l f-conta ined modules. An important r e a son 

f o r this is the v e r y la rge amount of funct ion that is r ep resen ted in Figure 7. Each 

f ac i l i t y shou ld add on ly a minimal amount of coding to accompl ish the incrementa l 

f un c t i o n . In pract i ce , this means there are strong dependenc ies b e tween fac i l i t ies: 

f ac i l i t y Y requ i res the ex i s tence of facil it ies X I , X2, ... in o rder to ope ra te . Normal ly , 

th is takes the fo rm s imply of the g rowth order from the kernel — assuming, of c ou r se , 

that any fac i l i ty can use any pre-ex i s t ing facil ity. 

A n important charac ter i s t i c of the facil ity organizat ion is its avo idance of 

d e s i g n e r ' s p re roga t i ve . The re is no artif icial boundary in the system b e t w e e n wha t 

the L* des i gne r s p rov i ded , and what is prov ided by users (or even by a set of 

a d v a n c e d sys tem des i gne r -u se r s who might provide more tools, or by ob j e c t - s y s t em 

imp l emen te r s d o w n the line). A l though the kernel consists of a part icu lar set of 

fac i l i t i es , and o thprs get added to produce the A- leve l system, there is no w a y of 

d i s t i ngu i sh ing such faci l i t ies f rom others added later except in terms of the subs tan t i ve 

d e p e n d e n c i e s . The ob j e c t - sy s t em implementer can regrow the sys tem wi th a l te rnat ive 

fac i l i t i es , or rep lace a basic faci l i ty that underl ies much else (say the Space 

Managemen t faci l i ty). 

A n important ex tens ion of this character ist ic occurs because the object s y s t ems 

a re g r o w n wi th in the implementat ion system. Thus, it is not necessary to d i s t ingu i sh 

imp lementa t i on tools f rom so f twa re that is seen as part of the object sys tem (say for 

mon i t o r i ng of the runn ing object system). Because all of the tools res ide in one 

env i r onmen t , augmentat ions of the implementation system and augmentat ions of the 

o b j e c t s y s t em merge to become a single activity. 
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4. Experience 

A n y p r opo s ed implementat ion system, certa in ly including L*, requ i res eva lua t i on 

of h o w we l l it meets its des ign goais, and indeed of how wel l these des ign goals atta in 

t he u l t imate goal of p roduc ing good so f tware systems. Evaluat ion of such comp lex 

s y s t e m s is not eas i ly accompl ished, a fact genera l ly acknowledged, and we have no 

s p e c i a l mirac les to make it easy . Furthermore, systems such as L* are not stat ic but 

c o n t i n u e to adapt. Thus L* prov ides a moving target that tends to o v e r c o m e 

de f i c i e n c i e s r evea l ed in ear ly evaluat ions. This is espec ia l ly t rue of a language w i t h 

t h e f lex ib i l i t i es of L*. 

A n immense number of aspects need to be assessed. How fast can software be 

p r o d u c e d w i th L*? How ef f ic ient are the systems so produced, in space and in t ime? 

H o w mainta inable and modif iable? How portable? How long does it take to b r i ng up a 

n e w L* sys tem on a new machine? What is the perfor-nance of L* w i l h var ia t ion in s i ze 

a nd comp lex i t y of ob jec t system? With variat ions in the exper ience and qua l i ty of 

p r o g r a m m e r s ? How long does it take to learn L*? As laid out in F igure 1, L* embod i e s 

many spec i f i c e lements of des ign phi losophy: their spec i f ic cont r ibut ion to t hese 

e v a l u a t i v e d imens ions must be assayed. The mechanisms in L* that rea l i ze these 

e l emen t s must be ana lyzed in their own right, s ince fa i lures in L* per fo rmance may be 

d u e to imper fec t mechanisms rather than inappropr ia te ph i losophy. Mechan isms wi l l 

a l so ex is t in L* that do not seem to serve any stated des ign ph i losophy, and these 

n e e d to be ident i f ied and their contr ibut ion (posit ive or negat ive) determined. 

Rec i ta t ion of this l i tany is not meant to overwhe lm, or to let ou rse l ves of f the 

hook . W e do be l i eve that answers to such quest ions should be act ive ly sought , bo th 

f o r L* and for o ther implementat ion systems. (And we be l ieve that the lack of such 

d a t a o n ex is t ing implementat ion systems approaches the scandalous.) We p rov i de he r e 

t h e f e w facts w e cu r ren t l y have; the issues d iscussed in the next sect ion g ive some 

i nd i c a t i on of what our fu ture data-gather ing will focus on. 

A f ew of the facts r equ i red for an assessment can come from measurement of 

s t a t i c sys tems — of the amounts of code and data that make up L* or L* -p roduced 

o b j e c t * sys tems. Most , howeve r , must come from data on per fo rmance . W e have 

e n d e a v o r e d to ob ta in some data by means of what we call s o f twa re expe r imen t s 

( R o b e r t s o n , Newe l l , and McCracken 1974). A so f tware exper iment invo lves the 

r e c o r d i n g of at least ce r ta in minimal data on a actual so f twa re -p roduc ing even t . That 

min imum inc ludes ob jec t i ve times on the total ef fort involved and the amounts d e v o t e d 

to v a r i ou s act iv i t ies, v/ith ob jec t i ve measurements on the amount and type of ou tpu t s 

p r o d u c e d (usual ly code and data). It includes some minimal desc r ip t i on of the 

p r og r amming talent invo lved and the computing environment wi th in wh i ch the even t 

o c c u r r e d . 

T h e sc ient i f ic y i e l d of such so f tware exper iments is c rude indeed. V i e w e d f r om 

the h i l l top of good exper imentat ion , such exper iments are wi ld ly out of con t ro l . But 

t h e numbe r s are not t h e r eby devo id of s ignif icance. They are inf in i te ly supe r i o r to 

h a v i n g no ob jec t i ve numbers at all, however much they need to be qua l i f i ed b y 

s u b s e q u e n t analys is. 
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4.1. General Use 

L* has b e en in use for severa l years , but by a ve ry small user community. One 

s t y l e of use, the or ig ina l one envis ioned, has been to construct one-man exper imenta l 

A I p r og r ams (F reeman 1970; Newel l 1972; Moore 1971). These sys tems range 

a n y w h e r e f r om 50K 36-b i t wo rds to the maximum capac i ty of the target machine, are 

r u n l a rge l y in i n te rp re t i ve mode, are modif ied repeated ly , and become h igh ly 

p e r s o n a l i z e d . Most such systems, of wh ich there are probab ly a f ew hundred per yea r 

p r o d u c e d in the U.S., are cur rent ly p roduced in LISP. No hard facts are ava i lab le on 

any of t hese sys tems. A compar ison of the funct ional design features of LISP and L* in 

F i g u r e 1 sugges t s that they wou ld not d i f fer s ignif icantly in their su i tabi l i ty for this 

task; casua l o b se r va t i o n suppor t s this. 

L* has b e en used for a var ie ty of interact ive systems. For instance, it has b e e n 

u s e d fo r a s equence of product ion systems cal led PSG (Newell 1972; Newe l l and 

McDe rmo t t 1975) and OPS (Forgy and McDermott 1976), wh ich can be v i e w e d as 

p r og r amming languages, f rom the v iewpoint of L* appl icat ion. Some of these 

app l i c a t i ons have a substant ia l component of low- leve l system programming. For 

e xamp l e , ZOG (Newe l l , Simon, Hayes, and Gregg 1972), a system to aquaint use r s na ive 

to the P D P 1 0 w i th a co l lect ion of large AI programs and to guide them in their use of 

t h e s e p rog rams , i n t e rposed itself be tween the users and the PDP10 opera t i ng sys tem, 

hand l i ng many of the command level funct ions for the users. A second gene ra t i on ZOG 

(Robe r t s on , Newe l l , and Ramakrishna 1977) is exp lor ing man-machine communica t ion 

i s sues , and is also be ing implemented in L*. 

L* has begun to be used as an implementation system on exper imenta l compu te r 

s y s t ems . A good example is its use on an exper imental vers ion of Hearsay-II , a s p e e c h 

unde r s t and i ng sys tem, brought up on C.mmp. Hearsay-II is coded in SAIL on the 

P D P 1 0 . SAIL was not avai lable on C.mmp, though BL ISS i 1 was (and was Ihe bas ic 

imp lementa t i on system). The se lect ion of L* (over BLISS 11 or br inging up SAIL) r e s t e d 

s t r o n g l y on the claim of prov id ing a complete operat ing environment. C.mmp, be i ng a 

o n e - o f - a - k i n d exper imenta l system just beginning its operat ional l i fe, o f f e r e d a lean 

s o f t w a r e env i ronment . This was a matter of great concern to the Hearsay d e ve l o p e r s . 

Tha t L* w o u l d p r ov i de essent ia l ly all the tools and facil it ies of a complete s o f t w a r e 

env i r onmen t as soon as it became operat iona l on C.mmp made it a qui te a t t rac t i ve 

a l t e rna t i ve . 

T w o o ther tr ia ls of this same type are cur rent ly in progress . L* has b e e n made 

ava i l ab l e as the sy s t em on a standalone minicomputer (with graphics) to s uppo r t an 

e xpe r imen t a l psycho log i ca l laboratory, to be used for stimulus d i sp lay and 

e xpe r imen t a l con t ro l . Again, one reason for its attract iveness is the total env i ronment 

it p r e s en t s . L* is also to be used on a microcomputer based system (a ne two rk of Intel 

8 080 ' s ) . A s ain, a s t r ong component of the appeal is the need to obta in a f r i end ly user 

s o f t w a r e env i ronment on a system that is exper imental and one-o f -a -k ind , and w h i c h 

p o s e s st i f f ba r r i e r s to obtain ing that environment in the usual way th rough the 
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a c c r e t i o n of many individual programs. Even the fact that C.mmp uses PDP11 

p r o c e s s o r s , hence has access to exist ing PDP11 programs, only helps a l itt le, s ince the 

i m p o s e d mu l t i p rocesso r s t ructure makes the importation of such programs non- t r i v ia l . 

B o t h these tr ia l c a ses are still in an ear ly stage. 

4.2. Software Experiments 

A br ie f de s c r i p t i on of some of the sof tware exper iments we have pe r f o rmed 

w i t h L* wi l l g i ve some further indication of its use. Comments on some of the data 

f r o m these expe r imen t s appears after the descr ipt ions. 

W I LE . T h e bas i s of the f irst exper iment was an exper imental programming language 

d e s i g n e d b y Wi le (1974) . The language was explor ing some novel cont ro l s t ruc tu res , 

but w a s not imp lemented. Taking famil iarity with Wile's s tudy as a s tar t ing cond i t i on , 

w e imp lemen ted it w i th in L*. This invo lved design, coding , debugg ing and test ing. We 

kep t a r e c o r d of p rog res s along the way, the amounts of code p roduced , and 

d i f f i cu l t i e s e n c o u n t e r e d — from bugs to design er rors . The total e f fo r t was done by 

t h r e e e x p e r t p rog rammers (the present authors) in a single 17 hour sess ion , w i t h 

ano the r d o z e n hou r s of f o l l ow-up maintenance. The sur face s t ruc ture of the language 

w a s e s sen t i a l l y ident ica l to the notat ion used in the original s tudy. The language was 

f u l l y i n t e ra c t i ve w i t h d isp lays of part ial computations, so that conven ient exp lo ra t i on 

w a s pos s i b l e . We sought to make the point that it was poss ib le to c rea te exper imenta l 

l anguages in r e a sonab l y short order . 

A P R 7 4 . A v e r s i o n of L* (L*C.(A)) was brought up on an ear l y ve r s i on of C.mmp to 

p r o v i d e a demons t ra t i on of real-t ime speech signal acquisit ion, segmentat ion, labe l l ing 

and d i sp l ay for an IEEE Speech Recognit ion Conference (CMU Speech Group 1974). 

T h e L* s o f t w a r e exper iment invo lved creat ing the L* system on C.mmp, p rov id ing the 

o p e r a t i n g s y s t em and mult iprocess ing features necessary for the s tanda lone 

app l i c a t i on , and in tegrat ing the pieces into a running system. The spee ch p rog rams 

w e r e c o d e d in BLISS 11, so this invo lved embedding BLISS11 into L*. C.mmp was at a 

v e r y ea r l y s tage of deve lopment at the time', so the environment was ex t reme ly r aw in 

t e rms of re l i ab i l i t y and so f tware faci l i ty. The entire exper iment took 30 ca lendar day s 

aga ins t the ha rd dead l ine of the conference, and produced a runn ing sys tem that wa s 

d e m o n s t r a b l e but imper fect (it ran ful ly the next day). The point of the L* exper iment 

w a s that tota l s y s t em faci l i ty was made available on a r aw machine, w i th ex t reme 

f l ex ib i l i t y to meet the unexpected demands of such a complex sys tem programming 

s i t ua t i on . 

SQS. T h e s t anda rd line editor for the PDP10 is cal led SOS. An L* so f twa re exper iment 

w a s p e r f o r m e d to p roduce a vers ion for C.mmp. This was a s l ight ly l imited v e r s i on^no 

jus t i f i c a t i on or contextua l search ing commands), but was to be total ly to spec i f i ca t ions , 

s i n ce it w a s i n tended for product ion use by programmers who use SOS dai ly on the 

P D P 1 0 . T h e exper iment took 30 man days. 
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L *ALTQ and L*8080. T w o so f twa re exper iments we r e pe r fo rmed to test the 

t r a n s p o r t a b i l i t y of L*. The f irst was the construct ion of an L* for the ALTO, a 16 bit 

m in i compute r . Th is took 70 man days to complete (for one man). The task i n vo l ved 

s o m e g r aph i c s suppo r t and microcode suppor t not found in other L* sys tems. T h e 

s e c o n d w a s the cons t ruc t i on of an L* for the Intel 8080 , an 8 bit m ic rocomputer . 

L * 8 0 8 0 is much c loser to the other L* systems, and took 28 man days (for one man). 

Mos t of our exper imenta l data concerns programmer product iv i ty w h e n w o r k i n g 

w i t h L*. A s no ted , this is not the only important quantitat ive measure of the w o r t h of 

an imp lementa t i on sys tem, but it is a cr it ical one. 

F i gu r e 8 g ives severa l product iv i ty measurements for L*, w i th a f e w 

mea su r emen t s f rom the l i terature (Wolver ton 1974) for ca l ibrat ion. For the s o f t w a r e 

e x p e r i m e n t s ment ioned above, the numbers are accurate, s ince we have p rec i se c ode 

c o u n t s and numbers of hours wo rked . For the other L* situations, the code counts a re 

a c cu r a t e , but the time est imates are somewhat less exact. For the measurements f r om 

the l i t e r a tu re , the in format ion does not seem ve ry rel iable. 

T h e measure used is number of debugged instruct ions per rnan-day, w h e r e a 

d a y is t aken as an 8 hour pe r i od (work ing round the clock produces 3 man-days pe r 

c a l enda r day , as in the WILE exper iment). The instruct ion count is taken on the f ina l 

s y s t e m at the end of the pe r i od . The number of instruct ions is measured by the c ode 

and a s so c i a t ed data in the computer, it is not measured in the source l anguage . 

C o u n t i n g assoc ia ted data (not input data) p roper l y handles some p r og r am/da t a 

t r a d e o f f s , but ca re must be taken w i th programs that use large simple tab les . Th i s 

pu t s all l anguages on one common foot ing, but leaves open the re lat ion of s o u r c e 

l a nguage to ult imate machine code s ize. It is wel l known that poor compi lers p r odu ce a 

l a r g e r code+data s i ze than do opt imiz ing compi lers, thus making the poor ones appea r 

mo r e p r oduc t i v e . Th is has to be handled through addit ional measurements of t hese 

r a t i o s . W i t h L*, each symbo l res ides in one cel l, so that in ef fect one can count 

i n s t r u c t i on s in the memory by count ing symbols (code+data) in the l ist ing. 
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S y s t e m Lansuase Size Instruct ions/man/day 

L*(I) Assemb ly + L* 30K 375 

SOS-C .mmp L* 5K 310 

I ndu s t r y ave rage - v e r y s imple task 167 

L*ALTO Assemb ly + L* + BCPL 9K 136 

L*8080 Assemb ly + L* 3K 107 

W I L E L* 0.8K 96 

A P R 7 4 L* + Bliss 11 + Assembly 3.7K 51 

I ndus t r y ave rage - s imple task 50 

L* Assemb ly + L* 50K 30 

SL* L* 2K 25 

H e a r s a y - C . L* 5K 21 

I ndus t r y ave rage - moderate ly complex 16.7 

I ndu s t r y ave rage - complex 8.3 

F igure 8. Productivity data for L* 

T h e r e are severa l important points to notice about the L* data. T h e 

p r o g r a m m e r s w e r e ail e xpe r i enced programmers, but not ail we r e expe r i en ced in the 

u se of L* (par t i cu lar ly in the case of SL* and Hearsay-C) . These f igures are all b a s e d 

o n l y o n n e w code genera ted (e.g., L*8080 is an 1SK system, but only 3K of it had to b e 

w r i t t e n f r om scratch). 

W i t h all the caveats s tated, the product iv i ty numbers are v e r y high. Some 

th i ngs c an be sa id about spec i f i c numbers. The SOS numbers are poss ib ly high b e c a u s e 

o f t he pecu l ia r decompos i t ion of an editor (i.e., a large number of commands, each w i t h 

an i so l a ted bit of code). The re lat ive ly low f igures for Hearsay-C. almost s u r e l y 

e x p r e s s p rogrammer d i f f e rences , plus losses inherent in the t ransfer of the i ncomp le te 

s y s t e m f r om one programmer to another. This data suggests that programming w i t h L* 

i n c r e a s e s programmer product iv i ty . More so f tware exper iments are needed to f u r t he r 

s ub s t an t i a t e that claim. 
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5. Issues 

Not all that can be said about L* is posit ive. We have faced up to many p r ob l ems 

t h r oughpu t the long se r i es of des ign iterations; but there still remain ser ious un so l v ed 

p r o b l e m s at the f ron t i e r s , some of which have sur faced only wi th ex tended e x p e r i e n c e . 

W e w i l l now d i scuss seve ra l of the negative issues, and at the same time take the 

o p p o r t u n i t y to d r a w some contrasts be tween L* and two spec i f ic a l ternat ive s y s t ems : 

BL ISS and LISP. 

5.1. Sufficient efficiency 

Almost w i thout except ion , e f f i c iency (both of time and space) is a p r ime 

r equ i r emen t for ob jec t systems. Even one-o f -a-k ind exper imental systems, wh i c h wi l l 

n e v e r r each w i d e - s p r e a d usage, cannot ignore e f f i c iency altogether. Thus , it is 

unden i ab l e that L* must permit f lexibi l i ty to be cashed in for e f f i c iency w h e n e v e r it 

b e c o m e s app rop r i a t e , and to whatever degree is necessary. If an L* ob jec t s y s t e m 

canno t match c lose ly the per fo rmance of an equivalent BLISS s y s t e m 1 0 , then all the 

advan t ages of .L* may large ly go by the boards. On the other hand, v e r y h igh 

e f f i c i e n c y is not a lways necessary , especia l ly dur ing the per iod a system is u nde r go i n g 

d eve l opmen t and exper imentat ion . Thus implementation systems wh ich are ab le to 

d e l a y the opt imiza t ion unti l it becomes crucial (i.e., systems such as LISP, ECL and L*) 

c a n e n j o y the bene f i t s of f lexib i l i ty when they are most needed. 

A T ime.account ing Faci l i ty exists in L* to help f ind the bott lenecks in a runn ing 

s y s t e m . Once they have been located, it is usually poss ib le to obta in some init ia l 

s p e e d u p mere ly by minor reorgan izat ion and recoding. The re are severa l d o c u m e n t e d 

c a s e s w h e r e large fac to rs (e.g., ten to twenty) we re obta ined in subcomponen t s of a 

s y s t e m in this manner. 

A T rans la t i on Fac i l i ty in L* compiles PL* programs into ML* code , w h i c h 

e s sen t i a l l y e l iminates the t ype-access and PL* in terpreter cyc le for each symbo l in the 

p r o g r a m . ^ u A Cyc le .account ing Faci l i ty enables one to monitor a running s y s t em to 

o b t a i n a list of e v e r y PL* rout ine that was cal led, ranked by the total number of 

i n t e r p r e t e r c y c l e s spent just inside each. A typical result might show twen t y r ou t i ne s 

a b o v e the 17, rank (i.e., each of the twenty claimed more than 17 of the tota l 

i n t e r p r e t e r cyc l es ) and these rout ines would then be an appropr ia te cho i ce fo r 

[IS] Wi th B U S S the offic iency is premeditated, and thus virtually ensured. 

[ 19 ] Mos t often the recoding takes the form of specializing the use of an operation which was over ly 

general for the particular case. 

[ 2 0 ] To maintain some flexibility, the PL* version of a compiled program is saved so that it may later be 

edited and recompiled if necessary. 
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comp i l a t i on . The cyc l e - coun t ing and compilation process can then be r epea ted , but w i t h 

s i gn i f i c an t l y d imin ished gain since the d is t r ihu l ion f lattens out quick ly. Since an 

un comp i l e d L* sys tem typ ica l ly spends half to two-th i rds of its time ins ide the PL* 

i n t e r p r e t e r , s p e e d u p fac tors of up to two or three can be rea l i zed by compi lat ion. 

A t yp i ca l next phase in the opt imizat ion process is the hand-cod ing in ML* of 

c e r t a i n c r i t i ca l rout ines . (Again, the Time.accounting faci l ity is a va luab le aid to intu i t ion 

f o r i d en t i f y i ng the cr i t ica l rout ines). A complete ly integrated Assemb ly fac i l i ty w i th in 

L* a l l ows the ML* code to be loaded and inter faced wi th other ML* and PL* rout ines 

v e r y c onven i en t l y . Hand-cod ing can achieve signif icant improvements by remov ing the 

o v e r h e a d of ca l ls to small subrout ines (both in terms of contro l and a rgument -pass ing 

o n the Z stack), and through more extens ive use of the machine reg i s te r s for 

t e m p o r a r y s to rage . Speedup factors of two to three can be expec t ed for typ i ca l 

r ou t i n e s . 

One f inal opt imizat ion s tep is microcoding, although it is poss ib le on on ly two 

ex i s t i ng L* sys tems , and has actually been accomplished on on ly one of them (L*ALTO). 

T h e m i c r o c oded ve r s i on of L*ALTO used 900 words of microcode to recocle 51 L* 

k e r ne l r ou t i nes (e.g., the PL* interpreter , type access, stack operat ions) , and ach ieved 

a f a c t o r of 3.2 s p e e d u p over the non-microcoded vers ion. 

A l t h o u g h the app roach to se lect ive optimizat ion just out l ined seems r ight to us, 

t he mechan isms to suppor t that approach have never been ful ly d eve l oped . A l so , 

t h e r e are a reas w h e r e the approach breaks down; most notably, when dea l ing w i th the 

t r a deo f f b e t w e e n genera l i ty and ef f ic iency. The most o f ten c i ted case is the f i le 

r e a d i n g mechan ism in L*, wh ich is about six times s lower than the c o r r e spond i ng 

mechan i sm in LISP. About half of that d i f ference is due to code wh i ch is i n t e r p r e t ed in 

L* v e r s u s hand w r i t t en machine code in LISP. That part of the d i f f e r ence can be 

a p p r o a c h e d w i t h se lec t ive opt imizat ion. However, the other half of the d i f f e r ence is 

due to the ex tens ib l e nature of the L* mechanism, and cannot be eas i ly r emoved by 

s e l e c t i v e opt im iza t ion . Whether or not the select ive opt imizat ion app roach wi l l s u c ceed 

in L* is st i l l an o p e n quest ion. 

5.2. Contraction 

A l t h ough cont rac t ion could have been d iscussed in the p rev ious subsec t i on (i.e., 

c o n t r a c t i o n = se lec t i ve space ef f ic iency), it is important enough to rate a subsec t i on of 

its o w n . In fact, its importance is great ly magnif ied for L* due to the in tegra t ion of 

imp lemen ta t i on sys tem and object system. Without a contract ion capab i l i ty , an L* 

o b j e c t s y s t em wou l d of necess i ty contain all the implementation tools used to cons t ruc t 

it — a qu i te unwo rkab l e situation. 

One common paradigm for contract ion is to somehow mark the unwan ted 

s t r u c t u r e s (e.g., in L* by eras ing them — putt ing them on the avai lable space list) and 

t h e n r e l o ca te s t ruc tu res wi th in the address space in such a way that a str ict par t i t i on 

is c r e a t e d , w i t h all unwanted st ructures at the high end of the address space . It is then 
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no rma l l y a s imple matter to el iminate the unwanted structures by chopp ing off the t op 

o f the space . Howeve r , this app roach has s r c m c d to !;><=. ba r red for L* due to the 

a p p a r e n t imposs ib i l i ty of bui ld ing a foo lproof s t ructure re locator. Wi th the g rea t 

f l ex i b i l i t y and access ib i l i ty that an L* user exerc ises, it is all too easy to imagine w a y s 

in w h i c h a re loca t ing p rog ram cou ld be inadvertant ly foo led in its memory s e a r c h fo r 

r e f e r e n c e s to a s y m b o l . ^ 

It is e a sy e nough in L* to e rase s t ruc tures that are no longer needed , but the 

r e su l t i n g ava i lab le space wi l l almost sure ly be scat tered throughout memory; thus the 

s y s t e m wi l l have a g rea te r capac i ty for g rowth with in its current memory s i ze , but it 

c a nno t be t ru ly con t r a c t ed wi thout re locat ion. 

In L*(I) w e have deve l oped a part ia l solut ion to the contract ion p r ob l em b y 

t ak i ng advan tage of a f ea tu re of the DEC TOPS-10 monitor wh ich al lows i ndependen t 

c o n t r o l o ve r the two ha lves of the users 256K address space (called the low and h igh 

s egmen t s ) . W i th in 1*0), ava i lab le space lists are maintained independent ly for the t w o 

s e g m e n t s so that the user may contro l the segment in wh ich new s t ruc tures are to be 

c r e a t e d . By conven t i on , the high segment is used for uti l it ies (e.g., the ed i to r , 

d e b u g g i n g tools, compi le r ) and other faci l i t ies that are expec ted to be used re l a t i ve l y 

i n f r e quen t l y . Th is means that the system can normally run wi th just the low segment , 

a n d on l y load the h igh segment (which is read into memory f rom a drum) w h e n access 

is n e e d e d to the fac i l i t ies t h e r e . ^ 

Th i s scheme is reasonab ly e f fec t ive , al lowing the A- leve l L*(l) s y s tem to b e 

c o n t r a c t e d f rom a total s i ze of 35K to a low segment s ize of 25K wi th no no t i ceab le 

d e g r a d a t i o n in r e spon se due to high segment swapp ing. The main d i f f icu l t ies w i t h the 

s c h e m e a re : ( i ) the cho i ce of the segment in wh ich to place a s t ructure must be made 

in advance , and is then for all pract ica l purposes f ixed; and (2) knowledge about c r o s s -

s e g m e n t r e f e r en c e s must be expl ic i t ly represented , and thus bugs c aused b y 

r e f e r e n c e s to an un loaded high segment are a prob lem. Given a bet ter unde r l y i n g 

o p e r a t i n g sys tem, this basic idea could be more e f fect ive ly exp lo i ted. 

5.3. Higher order language 

Some user f eedback has sugges ted that L* is a low or medium level language. In 

f a c t , t h e r e are f ea tu res found in most high level languages wh i ch are not f ound in I*, 

a nd v i c e - v e r s a . In this sect ion, w e wi l l examine those d i f fe rences . It shou ld be 

p o i n t e d out that L* is a h igh level language in terms of express ive power (i.e., the s i z e 

o f an L* p r og r am to pe r f o rm a part icular task is as small as a program wr i t t en in o t he r 

h i g h l eve l l anguages to pe r f o rm the same task). 

[ 2 1 ] This same technical difficulty is probably responsible for the fact that no garbage-collection facility has 

yet been built for L*. 

[ 2 2 ] Loading of thr high segment is not automatic — thus tho systom must anticipate all accencrs to the 

high segment with an explicit load operation. 
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The most obv i ous d i f f e rence be tween L* and other high level languages is that 

L* is ne i ther an a lgebra ic nor an express ion language. In an algebraic or e x p r e s s i o n 

l anguage , what one wr i t e s are express ions which evaiudte to a local ised va lue (except 

in the case of s ide e f fec ts , wh ich are rare). These languages are also ph ra se 

s t r u c t u r e d (i.e., a symbo l may be rep laced by an express ion) for operands in g ene r a l , 

w h i l e most are not phrase s t ruc tured for operators . PL* does permit ph r a se 

s t r u c t u r i n g of bo th ope rands and operators . However, values are not loca l i zed and are 

not the result of eva luat ion of express ions. Instead, values are genera l ly p l a ced in the 

c en t r a l da ta stack. 

A s e cond d i f f e r ence is that L* has no var iables. This came about f r om a 

c on s c i ou s cho ice to a lways deal w i th symbols, and not their values. T h e r e are 

mechan isms in L* that a l low var iab les to be easi ly implemented, but var iab les are not 

pa r t of the basic sys tem. 

Th i r d , L* does not p rov ide symbol contexts (i.e., there are no local va r i ab l e s , 

e v e r y t h i n g is g lobal) . L* does prov ide name contexts wh ich can be used to ga in the 

same k ind of p ro te c t i on that local var iables of fer, but at the name level ins tead of the 

s y m b o l leve l . 

Fou r th , L* is post f ix , whi le most languages prov ide infix for ar i thmet ic and' 

b o o l e a n exp res s i ons . This is not cons idered a major problem, however , s ince inf ix 

s yn t ax can be eas i ly cons t ruc ted in L* (a one page program can p rov ide inf ix and 

f un c t i o n notat ion). 

A n d f inal ly, L* uses the machine as the model instead of external e xp r e s s i o n s . 

Th i s w a s ne ce s sa r y in L* to prov ide the kind of accessibi l i ty to the under ly ing mach ine 

that w e des i r ed . Because of it, L* may be thought of as a high o rde r mach ine 

l anguage , a l though its exp res s i ve power argues that it is more than just that. 

5.4. Habitability 

One of the negat ive aspects of our exper ience v/ith L* has been the s l o w n e s s 

w i t h w h i c h its usage has sp read , even within the local environment. Some of th is is no 

doub t due to our casual att i tude toward promotion, but there is neve r t he l e s s an 

accumula t ing body of exper i ence with new L* users that s t rong ly sugges t s a 

hab i tab i l i t y p rob l em w i th L*. Whi le we do not yet have a good unders tand ing of the 

r e a s o n s for this p rob l em, w e have formed a few plausible conjec tures w i th the he lp of 

u se r f eedback . 

The f irst con jec tu re is that total accessibi l i ty produces apparent comp lex i t y f r om 

the re la t i ve s impl ic i ty of the L* system by expos ing large masses of deta i l w h i c h a re 

i r r e l evan t to a beg inn ing user. An A- leve l L* system has around 900 names (wh i ch is 

s i gn i f i can t l y more than a new LISP or BLISS user sees; e.g., LISP 1.5 p r e sen t s about 

150 names to a new user), w i th no good way to d i f ferent iate the re levant f r om the 

( for the time be ing) i r re levant . One possible simple solut ion (but one wh i ch w e have 



L* Issues 4 9 

not y e t t r ied) wou l d be to introduce into the system a discr iminat ion of the small 

s u b s e t of essent ia l names f rom the great masses. For example, two sepa ra te name 

c o n t e x t s might be used to prov ide the discrimination, "i his approach looks p romis i ng 

s i n c e u se r s tend to ope ra te most e f fec t ive ly in small wor lds that they know and 

c o n t r o l . 

A n o t h e r con jec tu re for the cause of the habitabi i i ty prob lem is the use of 

c o n c i s e names. Short names (e.g., S, N, I , and D for the common list ope ra t i ons ) have 

t h e advan tage of economy of express ion , which is espec ia l ly important for a h igh ly 

i n t e r a c t i v e sys tem. However , feedback from new L* users indicates that the sho r t 

names f o rm a rea l stumbl ing b lock to learning the language. This p r ob l em is 

a g g r a v a t e d by the fa i lure to p roduce a se l f -document ing system (a feature e x p l o r e d in 

L*(H) but r e j e c t ed because of high space costs). A cons iderab le amount of i t e ra t i on 

has g o n e into the des ign of the names, which are based on a set of s t anda rd 

a b b r e v i a t i o n s w i t h fa i r ly cons istent convent ions. Users repor t that after t hey l ea rn 

th i s set of convent ions , the short names do prov ide the intended economy of 

e x p r e s s i o n . 

5.5. Symbols and addresses 

A s d i s cus sed ear l ier , one of the essent ia l des ign pr inc ip les of L* is the un i ve r sa l 

s y m b o l s y s t em. A l though that pr inc ip le has never been in quest ion, the mechanism of 

e q u a t i n g symbo l s and addresses to achieve a universal symbol system has. As no t ed 

ea r l i e r , this mechanism has distinct advantages. It assures that all addresses wi l l be 

va l i d in symbo l i c express ions . It also simplif ies the des ign by equat ing add re s s 

a r i t hmet i c and symbo l ar ithmetic. 

Howeve r , equat ing symbols and addresses has ser ious d isadvantages. F i rs t , it 

l imits the number of symbo ls to the address space of the under ly ing machine. W i t h 

most h a r d w a r e arch i tec ture , this poses no problem. But if the address space is smal ler 

t h an the phys i ca l memory and some kind of re locat ion or over lay mechanism is 

ava i l ab l e to take advantage of that additional memory (as on C.mmp), then the limit 

b e c o m e s rea l and ser ious . 

Se cond , b ind ing symbols to addresses makes reassignment of symbols d i f f i cu l t . 

If all r e f e r e n c e s to a symbo l cannot be located, then the symbol cannot be moved; it 

must rema in as a p lace holder and pointer to the new symbol . This prob lem, c omb i ned 

w i t h the fact that symbo ls can and are s tored in arb i t rary s t ructures, makes general 

r e l o c a t i o n essent ia l l y imposs ib le. This in turn makes contract ion and automatic g a r b a g e 

c o l l e c t i o n d i f f icu l t to implement. 

F ina l ly , a long the same lines, reassignment of the type of a symbo l ir; more 

d i f f i cu l t if s ymbo l s are equated w i th addresses. If symbols we re separa te s t r u c tu r e s , 

t he i r t y p e wou l d be part of that s t ructure and there fore easi ly changed. The on ly w a y 

to a ch i e ve the same f lexib i l i ty w i th types in the current system is to use half of the 
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m e m o r y to ho ld t ypes for the other half (a scheme that was actual ly used in an ea r l y 

v e r s i o n of L*). 

C r e a t i n g a new variant of L* in which symbols are not ident i f ied w i th add res ses 

s e ems c l ea r l y ind icated. However , it is unclear where the balance of t radeof f wi l l lie 

w h e n s u c h a sy s t em is completed. 
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6. Conclusions 

In th is paper , w e have d iscussed the des ign, implementat ion, and some 

e x p e r i e n c e w i t h L*. The key d i f ference be tween L* and other implementat ion sys tems 

( l ike BL ISS or ECL) is that L* is an interact ive symbol manipulation sys tem ( fea tu res 

s h a r e d w i t h LISP). It also prov ides a total operat ing environment (like LISP) wh i c h has 

all t he n e c e s s a r y tools for program development from with in (e.g., ed i to r s and 

d e b u g g e r s ) . The sys tem also s t resses se lect ive rather than global opt imizat ion. The 

k e y d i f f e r e n c e s b e t w e e n L* and LISP are that L* is highly extens ib le and a l lows tota l 

a c ce s s i b i l i t y . 

T h e key mechanisms used to implement L* include a universal symbo l and t y p e 

s y s t e m , a s imple i n t e rp re ted list process ing language, a f lexible external language, and 

a k e r n e l a p p r o a c h to bui ld ing the system. 

T h e expe r i en ce to date has been wi th a small user community and has b e e n 

g e n e r a l l y pos i t i ve . A ser ies of so f tware exper iments has been init iated, and the data 

g a t h e r e d sugges t s that programmer product iv i ty is high. Areas of cont inu ing c o n c e r n 

i n c l ude t ime and space e f f i c iency, the low level nature of parts of the sys tem, and the 

d i f f i c u l t y n ew users exper ience in learning to use the system. Mo r e s o f t w a r e 

e x p e r i m e n t s are needed to analyze and cor rec t these problems. The on ly de s i gn 

p r i n c i p l e that has been brought into ser ious quest ion by the exper ience has b e en tota l 

a c ce s s i b i l i t y . A l though total accessibi l i ty has been used to advantage in a number of 

s o f t w a r e p ro j e c t s , it seems to be a real contr ibutor to the habitabi l i ty p rob l em. 

S e v e r a l mechanisms used to implement the L* ph i losophy have been b rought into 

q u e s t i o n b y our exper i ence . Perhaps the most crit ical is the real izat ion of a un ive rsa l 

s y m b o l s y s t em by equat ing symbols and addresses. On the whole , howeve r , the 

e x p e r i e n c e has ind icated that the basic des ign ph i losophy is an interest ing and v i ab l e 

a l t e r na t i v e to that of more tradit ional implementation systems. 



5 2 References L* 

References 

C M U Compute r Sc ience Speech Group, "Working Papers in Speech Recogn i t i on" , 

Ca r neg i e -Me l l o n Un ivers i ty Technical Report, 1974. 

A. Evans , "An ALGOL 60 Compi ler", in R. Goodman (Ed.), Annual Rev iew of Au tomat i c  

P r o g r a m m i n g v4, Pergamon, 1964, pp. 87-124 . 

C. F o r g y and J. McDermott , "OPS Reference Manual", Ca rneg ie -Me l l on Un i ve r s i t y 

Techn i ca l Repor t , 1976. 

P. F r e eman , "Sourcebook for OSD - An Operat ing System Designer", Ph.D. thes i s , 

Ca rneg i e -Me l l o n Un ivers i ty , 1970. 

P. F r eeman , "So f twa re Systems Pr inciples", Science Research Assoc ia tes . Ch i cago , 

197b . 

M. Ha lpe rn , "XPOP: A Meta-Language without Metaphys ics" , Proc . FJCC, vo l . 26, pa r t 1, 

1964, pp . 5 7 - 6 8 . 

K. Know l t on , "A Programmer ' s Descr ipt ion of L6", Comm. ACM , August 1966. 

R. Krutar , "F lexors (Modi f i cat ion Mechanisms)", Ph.D. thesis, Computer Sc ience Dept., 

C a r neg i e -Me l l o n Univ., 1976. 

J . M c C a r t h y , P. Abrahams, D. Edwards, T. Hart, and M. Levin, "LISP 1.5 P r og r ammer ' s 

Manua l " , MIT P ress , Cambr idge, 1962. 

J . M o o r e , "The Des ign and Evaluat ion of a Knowledge Net for MERLIN", Ph.D. thes i s , 

Ca rneg i e -Me l l o n Un ivers i ty , 1971. 

A . Newe l l , "A Theore t i ca l Exp lorat ion of Mechanisms for Coding the Stimulus", in A. 

Me l t on and E. Mart in (Eds.), Coding Processes in Human Memory , W i n s t on , 

Wash ing ton D.C., 1972. 

A. Newe l l , J . Ear ley, and F. Haney, "*1 Manual", Carnegie Institute of T e c h n o l o g y 

Techn i ca l Repor t , 1967. 

A . Newe l l and. P. F reeman, "BIP: Basic Interface Package", unpub l i shed wo rk i ng pape r , 

1968 . 

A . Newe l l , P. F reeman, D. McCracken, and G. Robertson, "The Kernel A p p r o a c h to 

Bu i l d ing So f twa re Systems", 1970-71 Computer Sc ience Research Rev i ew , 

Ca rneg i e -Me l l o n Un ivers i ty . 

A. Newe l l and J . McDermott , "PSG Manual", Carneg ie-Mel ton Un ivers i ty Te chn i c a l 

Repor t , 1975. 



L* References 5 3 

A. Nev/c i l and J . Shaw, "Programming the Logic Theory Machine", P roc . We s t e r n Jo int 

C ompu t e r Con f e r en ce , IRE (now IEEE), 1957, pp. 230-240 . 

A. N e w e l l , H. S imon, R. Hayes, and L Gregg, "Report on a Workshop in New Techn iques 

in Cogn i t i v e Research" , Carneg ie-Me l lon Univers i ty Technicat Repor t , 1972. 

A. Newe l l , F. T onge , E. Fe igenbaum, B. Green, and G. Mealy, "Informat ion P r o ce s s i ng 

L a n g u a g e - V Manua l " , Prent ice Hall, 1964. 

D. P a r na s , "On the C r i t e r i a to be used in Decomposing Systems into Modu les" , Comm.  

A C M , vo l . 15, no. 12, December 1972. 

A. P c r l i s , . J . M i t che l l , and H. VanZoeren, " L C 2 : A Language for Conve r sa t i ona l 

Compu t i ng " , Interact ive Systems for Experimental App l i ed Mathemat ics ,  

P r o c e e d i n g s o f the A C M Symposium, M. K lc rcr and J. Re infe ld (eds.), Academic 

P r e s s , 1968. 

M. R i cha rds , "BCPL" , P roc . SJCC, vol'. 34, 1969, p. 577. 

G. R o b e r t s o n , A. Newe l l , and D. McCracken, "On Doing Sof tware Exper iments" , 1 9 7 3 - 7 4 

Compu t e r Sc ience Research Review, Carneg ie-Me l lon Univers i ty . 

G. R o b e r t s o n , A. Newe l l , and K. Ramakrishna, "ZOG: A Man-Mach ine Communicat ion 

Ph i l o s ophy " , Ca rneg ie -Me l l on Univers i ty Technical Report, 1977. 

K. Same l son and F. Bauer , "Sequential Formula Translat ion", Comm. A C M , vo l . 3, no. 2, 

1960 , pp . 7 6 - 8 2 . 

J . Shaw , " JOSS: A Des igner 's V iew of an Experimental On-L ine Comput ing Sys tem" , 

P r o c . S JCC, vo l . 26, 1965, p. 455. 

B. W e g b r e i t , "The ECL Programming System", Proc. FJCC, vol . 39 , 1971, pp . 2 5 3 - 2 6 2 . 

D. W i l e , "A Gene ra t i ve , Nested Sequential Basis for General Pu rpose P rogramming 

Languages " , Ph.D. thesis, Carneg ie-Me l lon Univers ity, 1974. 

R. W o i v e r t o n , "The Cost of Developing Large-Scale Sof tware", IEEE T ransac t i ons on  

Compu t e r s , vo l . c -23 , no. 6, June 1974. 

W. Wul f , D. Russe l , and A. Habermann, "BLISS: A Language for Systems Programming" , 

Comm. A C M , vo l . 14, no. 12, December 1971. 

W. Wu l f and C.G. Be l l , "C.mmp: A Mul t i -Min i -Processor" , Proc. FJCC, 1972, pp. 7 6 5 - 7 7 8 . 

W. Wul f , " A LPHARD: T o w a r d a Language to Support Structured Programs" , C a r n e g i e -

Me l l o n Un i ve r s i t y Technical Report, 1974. 

W. Wul f , R. J ohnsson , C. Weinstock, S. Hobbs, and C. Geshchke, "The Des ign of an 

Opt im iz ing Compi ler" , American Elsevier, NY, 1975. 


