
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

L*: An Interactive,
Symbolic Implementation System

A. Newel l , D. McCracken, and G. Rober tson

Department of Computer Science

Carneg ie -Me l l on Univers i ty

October 3, 1977

f

L* is a s y s t em for bui ld ing so f tware systems. The des ign of L* s t resses f e a t u r e s

no t f o u n d in many other implementat ion languages or systems: it is in teract ive ra the r

t h a n comp i l e r based , it has a symbol manipulation language embedded in it, it is h igh ly

e x t e n s i b l e , and it a l lows for total accessibi l i ty to both the under ly ing ha rdware and the

L* s y s t e m itself. TTHS paper desc r ibes the des ign ph i losophy of L*, the mechanisms

u s e d to implement it, the exper ience we have had utiing it, and some un reso l ved i s sues

it s t i l l p r e s en t s .

Th i s w o r k was suppo r t ed by the Defense Advanced Research P ro jec t s A g e n c y

u n d e r con t rac t no. F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 and monitored by the Air Fo r ce Of f i ce of

Sc i en t i f i c Resea r ch .

HUNT LIBRARY

{ARNEBIE-MELLON UNIVERSITY

L* Introduct ion 1

1. Introduction

L* is a sys tem for bui ld ing so f tware systems. It is a tool for the p ro f e s s i ona l

p r o g r a m m e r , and was or ig ina l ly in tended for use in construct ing art i f ic ial in te l l i gence

s y s t e m s . Its most important use, however , has been in prov id ing the basic s o f t w a r e

s u p p o r t fo r exper imenta l computer systems. Under deve lopment at C M U s ince 1969 ,

o p e r a t i o n a l ve r s i ons of L* have ex is ted s ince 1970 and have been in exper imenta l use

b y a smal l communi ty . However , on ly a short descr ip t ion of the sys tem and the de s i gn

p h i l o s o p h y that under l ies it has been pub l i shed (Newel l , Freeman, McC r a c k cn , and

R o b e r t s o n 1971). The sys tem, its ph i losophy, and our exper ience w i th it have n o w

r e a c h e d a su f f i c i en t l y mature state so that a genera l expos i t ion of it seems use fu l .

L*'s roo t s lie in the se r i es of IPLs, the original list p rocess ing languages (Newe l l

and S h a w 1957; Newe l l , Tonge, Fe igenbaum, Green, and Mea ly 1964). As e x p e r i e n c e

m o u n t e d w i t h I PL -V and w i th LISP about the nature of system bui ld ing in ar t i f i c ia l

i n t e l l i gence , it s eemed appropr i a te to make a f resh start wi th the emphasis on s y s t em

imp l emen ta t i on ra ther than on the language aspects. L6 (Knowlton 1966) had s h o w n

that e f f i c i en t low leve l sys tems could be built using list s t ruc tures as a data t ype . A n

e a r l y a t tempt to unders tand the lessons 'o f L6 resu l ted in a similar mac ro -based s y s t em

o n the I B M 3 6 0 ca l led *1 (Newel l , Ear ley, and Haney 1967). An attempt to unde r s t and

t he na t u r e of a f lex ib le dynamic user inter face resu l ted in a sys tem call BIP (Bas ic

I n t e r f a c e Package , Newe l l and Freeman 1963), embedded wi th in IPL-V. A l l t he se

s y s t e m s can be taken as the d i rect p recu r so r s to L*.

Fami l ia r i ty w i th two basic, albeit informal, notions is assumed th roughout th is
p a p e r .

(1) A s o f twa r e sys tem is an integrated co l lect ion of programs and data

w h i c h p rov ides the d iverse funct ions necessary to an ope ra t i ng

env i ronment : communicat ion w i th users, resource management,

debugg i ng aids, behav ior monitor ing aids, archiv ing, communicat ion

w i t h o ther so f twa re systems, as wel l as the main prob lem so lv ing

func t ions for the task (though no part icular subset seems to be

essent ia l) . Typ i ca l examples are operat ing systems, large AI p rograms,

and air l ine rese rva t i on systems.

(2) An implementat ion system is a spec ia l i zed set of so f tware tools

u sed to c rea te so f tware systems. Typ ica l examples are BCPL

(R ichards 1969), BLISS (Wuif, Russel, and Habermann 1971), FCL

(Wegbre i t 1971), and XPOP (Halpern 1964). The concept of an

implementat ion sys tem has ar isen more or less concur rent ly w i th an

awa renes s of the sever i t y of so f tware product ion prob lems and w i th

the d isc ip l ine of so f tware eng ineer ing devoted to cop ing w i th thcr.e

p rob lems .

T o unde r s t and the re lat ionship be tween L* and other implementat ion sys tems, it

2 Introduct ion L*

is u s e f u l to look at the basic forms that implementation systems have taken. Rough l y

s p e a k i n g the re have been th ree paths of development:

Mac ro sys t ems: The assembly language has a lways been the court of

last reso r t for c rea t ing any programming st ructure. The addit ion of

macro fac i l i t ies has been the main vehic le for adding fac i l i ty to

assemb le rs . Th is has led to the development of systems that take the

macro fac i l i ty as the centra l dev ice in an implementat ion system, X P O P

is a good example.

High leve l language systems: The des i re to use high level languages

for sy s tem implementat ion has ex is ted for a long time. These

languages make sys tem implementat ion and maintenance eas ier by

making sys tem s t ruc tu re more apparent. Until recent ly , their use has

b e e n l imited because of the re lat ive inef f ic iency of code p r oduced by

their compi le rs . Th is has changed, w i th severa l languages be ing used

e f f e c t i ve l y , notab ly BLISS11 (Wulf, Johnsson, Weinstock, Hobbs, and

Geshchke 1975) and B C P L

List p ro ces s i ng systems: List p rocess ing systems of fer interact ive and

symbo l manipulat ion capabi l i t ies not genera l ly found in e i ther

macrosys tems or tradit ional high level languages. Their use has been

pr imar i ly in bu i ld ing large artif icial intel l igence systems, wh i ch have

many of the same p roper t i e s as genera l softv/are systems a l though

they tend to be exper imenta l in nature. The most commonly used list

p r o ce s s i ng language is LISP (McCarthy, Abrahams, Edwards , Hart, and

Lev in 1962).

Implementat ion sys tems a lways involve a language of some sort and this o f t e n

s e r v e s as a sho r thand for denot ing the system. But an implementation sys tem is a lway s

much more; it is the total set of faci l i t ies that are p rov ided to create s o f twa re sy s t ems .

T h e s e inc lude all the usual funct ions that typ ica l ly show up in a so f twa re sys tem i tse l f

(e.g., an ope ra t i ng env i ronment and debugg ing faci l it ies).

W e wi l l assume genera l famil iar ity w i th these notions. Fur ther e labora t i on can be

f o u n d in F r eeman (1975).

In Sec t ion 2 w e wi l l p resent the des ign ph i losophy of L*, to make c lear

w h e r e it s tands in the space of implementation systems. In Sect ion 3 w e wi l l

d e s c r i b e the s t ruc tu re of the system that makes poss ib le the rea l izat ion of t h e se

d e s i g n p r inc ip l es . Sect ion 4 d iscusses the results of some exper i ence w i t h L*.

S e c t i o n 5 conc ludes w i th a genera l d iscuss ion of the open issues and some

c o m p a r i s o n s w i t h o ther spec i f i c implementation systems.

L* Design Ph i losophy 3

2. Design Philosophy

In this sec t i on , w e wi l l desc r ibe the des ign character ist ics of L*, and c ompa r e

t h e m w i t h des i gn charac ter i s t i cs of other implementation systems. The d e s i g n

p h i l o s o p h y of L* can be desc r i bed in terms of a number of d imensions (or i ssues) o n

w h i c h imp lementa t ion sys tems must take a stand. For these i ssue-d imens ions t h e r e

r a r e l y ex i s t s a comp le te charac ter i za t ion of the alternat ives, but only a f ew po in ts that

h a v e b e e n adop ted by var ious systems. To help place L*, we wil l also ind icate the

p o s i t i o n a long these d imensions of typical high level language (HLL) sys tems and of

L ISP . De ta i l ed compar i son of L* w i th speci f ic systems (e.g., BLISS or LISP) w i l l b e

p o s t p o n e d to the end of the paper , s ince our purpose in this sect ion is to d e s c r i b e L*.

F i g u r e 1 l ists the issue-d imens ions vert ica l ly, w i th a column for ea ch of t he
t h r e e sy s t ems . The ent r ies are exp la ined in the subsect ion on each par t i cu la r
d imens i on .

4 Design Ph i losophy L*

HLL LISP L*

Symbo l s Ident i f iers Symbols Symbols

In te rac t i on Batch Interact ive Interact ive

P r o d u c t i o n M o d e External Internal Internal

F l ex ib i l i t y

Da t a - t y pe s

Con t r o l

Syn tax

Con t r a c t i o n

Some

Litt le

Litt le

None

None

None

None

None

Tota l

Tota l

Tota l

Litt le

A c c e s s i b i l i t y

A d d r e s s e s

Part ia l

No

Partial

Yes

Tota l

Yes

E f f i c i e n cy Uni form Select ive Se lect ive

L anguage Fo rm

A l g eb r a i c

O p e r a n d syn tax

Va r i a b l e s

Yes

Inf ix f funct ion

Yes

No

Funct ion

Yes

No

Post f ix

No

In teg ra t i on No Complete Complete

U se r Commun i ty Universa l Dialect Pe rsona l

Ma in ta inab i l i t y Cent ra l i zed Dispersed LocaKse l f)

De s i gn S t r a t egy St ructured Iterative I terat ive

F igure 1. Design Philosophy Characteristics

L* Design Ph i losophy 5

Symbo l s . What capab i l i t ies exist for symbol iz ing and rep resen t i ng w i th i n t he

imp lemen ta t i on s y s t em ent i t ies in the object system, and for manipulat ing t hese

r e p r e s e n t a t i o n s ? L* ab ides by the fo l lowing pr inc ip le:

Universal symbol system : The re should exist a single homogeneous

s y s t em of symbo l s wh i ch can be used to represent any aspect of the

ob j e c t s y s t em.

Th i s r equ i r ement is a st r ingent one that, in the current art, almost f o r c e s an

imp lemen ta t i on s y s t em to conta in a symbol manipulation language. Thus , L ISP a lso

sa t i s f i e s th is p r i nc ip l e . But BLISS does not. Instead, it has l imited (though p o w e r f u l)

s ymbo l i c capab i l i t i e s f i xed in advance by the des ign of the sys tem (e.g., f o r

i n s t ru c t i ons , f o r b locks of memory space, for addresses and for in tegers) . T h e

r equ i r emen t fo r a more genera l symbol ic capabi l i ty has been recogn i zed , for i ns tance ,

in A l p h a r d (Wulf 1974), a language scheme under development, wh i ch has as one goa l

t he ab i l i ty to r ep r e sen t a rb i t ra ry levels of abstract ion.

I n t e rac t i on . What t y p e of in teract ion occurs be tween the object sys tem des igne r and

the e v o l v i n g ob j e c t sys tem? A l te rnat ive ly , what is the interact ion ra te b e t w e e n

d e s i g n e r and ope ra t i ona l ob jec t system? L* abides by the fo l lowing pr inc ip le :

Fall Interaction : The des igner should operate interact ive ly w i t h the

imp lementat ion sys tem in all aspects of object system creat ion.

Mos t imp lementat ion systems, e i ther high level or macro systems, a re comp i l e r s .

T h e mode of o pe r a t i o n w i th them is essent ia l ly batch: code, compi le, run , d e b u g and

r e p e a t . . T he l oop is quite long w i th substant ia l coding o f ten taking p lace b e t w e e n

comp i l i ng s t eps . Some other languages, espec ia l ly LISP, opera te as ful l i n t e ra c t i ve

l a nguages w h e r e the loop is v e r y short , and many incremental changes are c l o s e l y

i n t e r w o v e n w i t h small runn ing s teps .

P r o d u c t i o n Mode . How shou ld the implementat ion system*construct the ob jec t s y s t em?

S h o u l d the ob j e c t sy s tem be g r own from within the implementat ion s y s t em o r

d e p o s i t e d (as an ob j e c t f i le is depos i t ed by a compiler)? Should the object s y s t em be

p r o d u c e d as one ent i ty or as a ser ies of modules? What kind of run time s u p p o r t is

r e q u i r e d if the ob j e c t sys tem is depos i ted? L* abides by the fo l l ow ing p r inc ip le :

Growth q£ object systems : The object system should be c r e a t ed
w i th in the implementat ion system by adapting and adding to the
ex i s t ing fac i l i t ies.

T h e r e are t w o bas ic poss ib i l i t ies: deposi t the object system, or g r o w it. It has

b e e n p rac t i ca l l y taken for g ran ted that the implementation system — the assemb le r ,

c omp i l e r o r macrosystern ~ should p roduce the object system as a body of c o d e

i n d e p e n d e n t of i tsel f (i.e., as a module). Thus, HLL systems all depos i t their o b j e c t

s y s t ems . On ly w i t h fu l ly in teract ive systems has the alternative of g r ow i ng the ob j e c t

s y s t e m eme rged . Thus LISP, as we l l as L*, g rows its systems. The t radeo f f is c l ea r .

6 Design Ph i losophy L*

On the one hand, the ob jec t system may bear little re lat ion to the imp lementat ion

s y s t em; t he r e is s imp ly no reason why it should be mixed. On the other hand, l a rge

n u m b e r s of mechan isms can be imported from the implementation sys tem and adap ted ;

f u r t h e r m o r e , a func t ion ing sys tem can exist at all times. With the cho ice of g r o w i n g the

ob j e c t s y s t em, the p rob l em of excess mechanism is a real one in many ope r a t i n g

env i r onmen t s , so that cont rac t ion of the system is an important funct ion.

F l ex i b i l i t y (Extens ib i l i ty) . What aspects of the system should be f lex ib le (i.e., s hou l d

b e c a p a b l e of ex t ens i on or contract ion)? The issue appl ies both to the imp lementa t ion

s y s t e m itse l f and to the objec t systems that are to be cons t ruc ted (though d i f f e r en t

po s i t i o n s may be taken for each). L* abides by the fo l lowing pr inc ip le:

Total flexibility : Al l aspects of a so f tware system should be sub jec t

to mod i f i ca t ion and extens ion.

T h e p r i nc i p l e may be stated in another way:

No designers prerogative : The system des igner shou ld avo id des i gn

cho i ces that cannot be later modif ied by a user of the sys tem.

P e r h a p s the issue shou ld have been cal led extensib i l i ty, s ince much of the

r e l e van t w o r k has o c c u r r e d under that label . But, fo l lowing a sugges t i on of K ru ta r

(1976) , w e p r e f e r the term f lexibi l i ty s ince we need to be as c on c e r ned w i t h

c on t r a c t i o n and modi f i cat ion as w i th extension. Thus, when we re fe r to f l ex ing a

pa r t i cu l a r aspec t of a sys tem, w e re fer to the act of making it d i f fe rent in r e s pon s e to

s ome demand .

P r og ramming languages are in essence devices for f lex ing a computer . In so

do i n g t hey set up a number of convent ions which force the ob jec t s y s t em to b e

s t r u c t u r e d or to be spec i f i ed in f ixed ways . Attempts to re l ieve these r ig id i t ies can be

c l a s s i f i e d under a number of headings: syntax, data- types , cont ro l , and name

c onven t i o n s . In F i gu re 1 w e separa ted out these categor ies, s ince the p r o g r e s s in

ob t a i n i ng f lex ib i l i ty has moved through them. (Some categor ies , such as f lex ib i l i ty of

the l ex i con and f lex ib i l i ty of the procedures , are common to all p rogramming s y s t ems

and n e e d not be l isted.) We have added contract ion as an addit ional ca tego ry , s imply as

a r em inde r that almost no systems permit easy contract ion, as opposed to ex tens i on .

L* takes it as cent ra l that f lexibi l i ty should be present in e v e r y aspec t of a

s y s t e m . Th i s app l i es equa l ly to bo th implementation and object sys tem s ince in L* t h ey

a re o n e and the same.

A c ce s s i b i l i t y . What pa r t s of the programming system and the under ly ing machine a re

a c ce s s i b l e f rom w i th in the sys tem for purposes of modif icat ion and exp lo i ta t ion? L*

ab i d e s b y the fo l l ow ing pr inc ip le:

Total accessibility : Al l aspects of the system and the machine shou ld

be ava i lab le for manipulat ion.

L* Design Ph i losophy 7

Desp i t e the appa ren t des i rab i l i ty of such notions as total access ib i l i ty , t he re a re

a l t e r na t i v e v i e w s that have equal plausibi l i ty. The main one is that a s o f twa r e s y s t e m

(e spec i a l l y an ope r a t i n g system) takes a machine and conver ts it to another more

su i t ab l e mach ine , w h i c h is then what the user sees. The user is not s u p p o s e d to have

a c c e s s to the unde r l y i n g machine. This v iew, wh ich is essent ia l ly that a dop t ed b y

s y s t e m s s u ch as LISP, as we l l as by most operat ing systems, p r oduces a s h a r p

d i s t i n c t i on b e t w e e n use r s of a sys tem and system des igner-mainta iners . On ly the la t ter

d ea l w i t h the guts of a sys tem, wh i ch is a d i f ferent wo r l d in terms of its c onven t i on s

and f l ex ib i l i t i es f r o m that wh i ch the user exper iences .

Th i s a l t e rna t i ve v i ew p roduces two distinct issues of access ib i l i ty: (1) tota l

a c ce s s i b i l i t y of the unde r l y i ng machine and (2) accessibi l i ty wi th in the shel l p r o v i d e d

b y the unde r l y i n g s y s t em. Thus, LISP has complete accessib i l i ty w i th in the s y s t em, but

not to the bas i c machine. L*, on the other hand, attempts to p rov i de c omp l e t e

a c ce s s i b i l i t y to the unde r l y i ng machine, whi le at the same time prov id ing a w o r l d of the

same i n t e ra c t i ve c onven i en ce as LISP.

E f f i c i e n cy . What is the e f f i c i ency of the system wi th respec t to the va r i ous v i ta l

r e s o u r c e s : p r o c e s s o r cyc l e s , memory space, and i/o channels? E f f i c iency i ssues a r i se

i n d e p e n d e n t l y fo r the ob jec t sys tem and for the implementat ion sys tem, and w i t h

r e s p e c t to the la t ter f o r init ial construct ion and for modif icat ion. L* ab ides b y the

f o l l o w i n g p r i n c i p l e :

Selective optimization ; Ef f ic iency is to be ach ieved by the de te c t i on
of the c r i t i ca l const ra in ts in a running vers ion and their se l ec t i ve
r emova l .

T h e p rog ramming languages initially used in L* are in te rp re t i ve , thus t rad ing
t ime e f f i c i e n c y for f lex ib i l i ty . This contrasts wi th comp i l e r -based imp lementa t ion
s y s t ems , w h i c h e n d e a v o r to p roduce re lat ive ly eff ic ient code. In the limit, as v/ith
B L I S S 1 1 , v e r y e f f i c i en t code is p roduced at once for an ent i re ob jec t sys tem. S ince
e f f i c i en t s y s t ems a re ul t imately requ i red, L* has to obtain the e f f i c i ency s omehow . It
a t t empts to do this b y se lec t ive compilat ion, reorgan izat ion, data compac t i on , and
m i c r o c od i ng .

L anguage Fo rm. What l inguist ic forms does the des igner use to communicate w i t h the
imp l emen ta t i on sys tem? Th is perta ins only to the implementation sys tem; p r e s u m a b l y
it is p o s s i b l e to cons t ru c t ob jec t systems w i th any des i red l inguist ic charac te r i s t i c s . L*
ab i d e s b y the f o l l ow i ng pr inc ip le :

Dynamic interface : The l inguistic interface w i th the user shou ld be
dynamica l l y adaptab le .

T h e r e are two ' normal forms for implementation languages. The f i rst is that of a

h i ghe r l eve l l anguage, namely, an Algol- l ike language w i th express ions , p r o c e d u r e s ,

f un c t i on s , and inf ix ope ra t o r s . The second g rows out of the form of a s semb l y

l anguage; namely , a s equence of operator-argument forms that reta ins some sequen t i a l

8 Design Ph i losophy L*

c o r r e s p o n d e n c e to the internal memory space (this carr ies over to most of the macro

l anguages) . L ISP r ep r e s en t s yet another path, retaining the exp ress i on fo rm comb ined

w i t h a' un i f o rm p re f i x notat ion. As we wil l sc:e, the form of L*'s language (wh i ch is

p o s t f i x w i t h no syn tac t i c s t ruc ture at all) g rows out of its in te rpre ta t ion p r i nc i p l e ,

w h i c h is d e t e rm ined on independent grounds.

I n t eg r a t i on . How is the total set of faci l it ies used by the des igner o rgan i zed? L*

a b i d e s b y the f o l l ow ing pr inc ip le:

Complete Integration : Al l of the facil it ies to be used in cons t ruc t i ng

a s y s t em are to be avai lable as subparts of a single un i form wo r l d .

T h e s i tua t ion normal ly faced by the designer of a sys tem is that he has a set of

d i s t i n c t fac i l i t ies — such as languages, editors, debuggers , timing packages, and c r o s s -

r e f e r e n c e p rog rams . Each of these is c reated with a separa te set of l inguist ic and

i n t e r a c t i v e conven t i ons . The re is integrat ion only at the level of the unde r l y i ng

o p e r a t i n g sy s t em, s een by the user-des igner as a single uni form command language.

O n the o t he r hand, genera l interact ive systems from JOSS (Shaw 1965) o n w a r d have

a d o p t e d the o the r pos i t ion by integrat ing all the faci l i t ies w i th the main l anguage

s y s t e m . LISP, A P L and L* be long in this latter category, along w i th a less w e l l - k n o w n

s y s t e m ca l l ed LCC (Per l i s , Mi tche l l , and VanZoeren 1968). Though at heart a JOSS- l i ke

s y s t e m , L C C has many of the features of a standard HLL, and thus r ep r e sen t s a ra the r

un i que mar r i age of HLL const ruc ts w i th the phi losophy of complete in tegrat ion.

U se r Commun i ty . What is the community over which the object sys tem is to be f i xed?

L* ab i d e s by the f o l l ow ing pr inc ip le:

Personalization : The system is to be adapted to the part i cu lar

c i r cumstances of machine, system builder, and task.

Th i s i ssue poses a genu ine tradeoff. Fixing the p roper t i e s of a p rog ramming

s y s t e m (e i ther an implementat ion or an object system) increases the communicab i l i ty

and po r t ab i l i t y of wha t eve r programs are created with in it. On the o ther hand ,

f e a t u r e s of the par t i cu lar computer or pre fe rences and insights of part icu lar de s i gne r s

and u s e r s cannot be fu l ly exp lo i ted . The need for complete adaptat ion is g rea te r w h e n

the ava i l ab l e r e s ou r c e s must be exp lo i ted to the limit, less when tasks do not p r e s s the

ar t o r the r e sou r c e s . Adapta t ion , and thus id iosyncracy, is more acceptab le w h e n the

s y s t e m s or tasks are un ique in other ways , so that there is l ittle to be ga ined f r om

s t anda r d i z a t i o n in any event .

Ma in ta i nab i l i t y . How is a sys tem to be maintained, meaning both the removal of bugs

and t he g radua l evo lu t i on towards increased capabi l i ty? This appl ies bo th to the

imp l emen ta t i on s y s t em and to the object systems produced. L* abides by the f o l l ow ing

p r i n c i p l e :

L* Design Phi losophy. v. 9

Local maintenance : Maintenance should be total ly w i th in the

p u r v i e w of the users of the system (and hence their respons ib i l i ty) .

D e s i g n S t r a t egy . How shal l the des igner p roceed in creat ing a new objec t sys tem? L*
a b i d e s b y the f o l l ow ing pr inc ip le:

Iterative design : A system should be c rea ted by a se r i es of

s u c c e s s i v e approx imat ions in the form of operat iona l systems.

Th i s i ssue of des ign s t ra tegy is usually r e f e r r ed to as "des ign ph i l o sophy" , but

w e n e e d to d i s t ingu i sh it f rom the des ign ph i losophy of L*, wh i ch w e are in the midst

o f d e s c r i b i n g . I terat ive des ign is to be contrasted w i th a t o p - down , s t r u c t u r ed

p r o g r a m m i n g des i gn ph i l osophy , in wh ich a high premium is put o n p roduc ing ca re fu l

s p e c i f i c a t i o n s , and e v e n in p rov ing that the algorithm being programmed is co r re c t . It

must b e no t ed that none of the systems in F igure 1 actual ly d ic tate a de s i gn

p h i l o s o p h y a long the d imens ion of concern here. They on ly p red i spose t owa rds one o r

t he o the r . Implementat ion systems such as BLISS are consonant w i th the s t r u c t u r ed

a p p r o a c h .

T h e r e is a subs id i a ry pr inc ip le that we use wi th L* as a guide in des i gn ing
o b j e c t s y s t ems :

No excess generality : No parameter izat ions shou ld be c r ea t ed

w i t hou t c on c r e t e ev idence that var iat ion wi l l actual ly be exe r c i sed .

E x c e s s gene ra l i t y ex ists in almost all large systems and o f t en in immense

quan t i t i e s . Such genera l i t y a lways costs time and memory and is a pr ime con t r i bu to r to

w h a t o n e might cal l " sys tem bloat". The above pr inc ip le can be adhered to, of c ou r s e ,

o n l y if it is e a s y to in t roduce new genera l i ty whenever it becomes appropr i a te .

10 Mechanisms L*

3. Mechanisms

Hav ing in the pr ior sect ion laid out a set of design pr inc ip les that c ha r a c t e r i z e

L*, in th is s e c t i on w e desc r ibe the main structural mechanisms that permit the i r

r e a l i z a t i o n . Mos t of the pr inc ip les permeate the s t ruc ture of the en t i re s y s t em .

D r a w i n g the mapp ing expl ic i t ly be tween pr inc ip les and mechanisms leads to much

r e d u n d a n t expos i t i on and wi l l not be attemptrd. The way these mechanisms dove ta i l

w i t h t he p r i n c i p l e s is qu i te apparent at a sur face level . The deepe r eva luat ion of wha t

u n a n t i c i p a t e d consequences the mechanisms br ing wi th them, and whe the r the

p r i n c i p l e s themse l ves y ie ld good system implementations cannot be seen f r om a

d e s c r i p t i o n of mechanisms alone. Some of these issues wi l l be addressed in Sec t i on 4

o n e x p e r i e n c e w i t h L*.

3.1. Facilities

W e d e s c r i b e f i rst the scheme whe reby an I* system is o rgan i zed . This is not a

c r i t i c a l mechan i sm, but wi l l permit the descr ipt ion of the mechanisms to fall into p lace .

W e w i l l r e t u r n to the overa l l organizat ion later.

L* is o r g a n i z e d as a co l lect ion of faci l it ies. A faci l i ty is an increment of code and

d a t a that p r o v i d e s a co l lect ion of interre lated funct ional capabi l i t ies to the s y s t em.

S i n c e t he bas i c s ty l e is that of g row ing a system, a faci l i ty is not a s e l f - c on ta i ned

modu l e , bu t makes use of faci l i t ies exist ing at the time of its addit ion to the s y s t em .

T h u s , t h e r e is a g r a p h of dependenc ies among faci l it ies, s ince any fac i l i ty r equ i r e s that

c e r t a i n o t h e r s a l r eady exist in the system for it to opera te success fu l ly .

T h e fac i l i ty as an organizat ional unit is respons ive to the pr inc ip le of no

d e s i g n e r ' s p r e r oga t i v e . The concept of module (Parnas 1972) impl ies in ex i s t i ng

mach i ne a r ch i t e c tu re s that a base be prov ided to suppor t the module s t ruc tu re . Th i s

d e s i g n e r - p o s i t e d base is not itself a module and cannot be modi f ied w i thout d e s t r o y i n g

t he s y s t e m . No such base exists for L*; we envis ion L* systems be ing r e g r o w n f r om

s c r a t c h w i t h a r b i t r a r y modif icat ion and redes ign.

3.2. Symbol System

T h e no t i on of a symbol system is w idespread, a l though se ldom fo rma l i zed . It

c o n s i s t s of a set of symbo ls and a set of data- types (symbol ic s t ruc tu res) in w h i c h

t o k e n s of t he se symbo l s can occur. Besides the usual operat ions on the d a t a - t y p e s

(w h i c h c r e a t e , manipulate and modify them), the essent ia l ope ra t i on is that of an

a s s o c i a t i o n be tv/een symbo l tokens and entit ies cal led their re ferents .* The assoc ia t i ve

[1] With in the symbolic system these are always to data structures which represent in some %e

the entities actually referred to.

L* Mechanisms 11

r e l a t i o n is one of access: g iven the symbol token, access is had to its r e f e r en t

(r e p r e s en t a t i o n) . Somet imes there is a single such assoc iat ion (o f ten ca l l ed

a s s i gnmen t) , but sys tems can permit many such associat ions.

T h e dec i s i on to admit a uni form class of symbol so that any sor t of ent i ty cou l d
b e r e f e r r e d to, c oup l ed w i th the requirement for total access ib i l i ty , led to the
f o l l o w i n g :

Symbo l s in L* are ident i f ied w i th addresses: Al l symbols are addresses
and all add res ses are symbols.

Th i s has f a r - r ea ch i ng consequences. On the* pos i t ive s ide, w i th in the symbo l

s t r u c t u r e s that a re bas ic to L*, any address can occur wi thout caus ing some ope r a t i o n

(s u ch as p r i n t i ng , e ras i ng or searching) to misbehave. One can bui ld s t ruc tu res that

r e f e r to o b j e c t s such as opera t ing stacks, basic machine code, and e v en the r eg i s t e r s

o f t h e unde r l y i n g machine.^ Fur thermore, simplicity wil l be f o s te red , s ince the symbo l i c

s t r u c t u r e s in the s y s t em wi l l be as simply const ructed as poss ib le .

O n the nega t i ve s ide, there is a limit to the number of symbo ls in the s y s t em,

name l y the s i ze of the address space. But much more important, the mapp ing of a

s y m b o l to its r e f e r en t is f ixed by the hardware (i.e., a symbol r e f e r s to a f i xed loca t ion

in t h e a dd r e s s space , whe the r physica l or virtual). Thus the f r eedom to ass ign

s y m b o l s to r e f e r en t s , and espec ia l ly to reass ign them, becomes res t r i c ted . Th is is a

g e n u i n e r e s t r i c t i on , and one we wil l re turn to at severa l points; it has been a c c ep t ed

as the p r i c e fo r the bene f i t s above.

No t i ce that symbo l s are internal to the computer. They can just as eas i ly be

c r e a t e d i n te rna l l y as by a user external ly; in fact many are de f ined a pr ior i .^ For the

u s e r to w o r k w i t h any of these symbols he must attach an externa l name (e.g., in

ASCI I) . W e wi l l t reat this at length be low, but it is important to note the d i f f e r en ce

b e t w e e n names and symbo ls : names are external character str ings assoc ia ted w i t h

pa r t i c u l a r in te rna l symbo ls .

A Symbo l Fac i l i ty prov ides the basic capabi l i t ies for c reat ing and

e r a s i ng symbo ls , and for doing the primit ive operat ions that can be

d e f i n ed for symbo ls independent of what they re fe r to. These

ope r a t i o n s are tests of equal i ty and inequal ity, and increment ing and

dec rement ing .^

[2] If they are within the user's address space, as they are on the PDP10.

[3] E.g., in the P D P 1 0 the registers and the so-callod job data area (whore tho monitor stores uGor job-

dependent information) are both within the user's address space.

[4] The latter exist because symbols are addresses, and would not bo meaningful if symbols had been defined

as an abstract set.

12 Mechanisms L*

A comp le te capab i l i ty for symbol manipulation requ i res also a f lex ib le d a t a - t y p e

f o r s ymbo l i c exp ress i ons . Not all da ta- types in a system wil l a l low symbo l i c

e x p r e s s i o n s , but the re must be one such, and it wil l play a fundamental ro le in the

s y s t e m . It wi l l be the medium used for all representat iona l tasks wh i ch cannot be

a c c omp l i s h ed by o ther more spec ia l i zed means. In L* this basic da ta - type is the l inked

l ist of s ymbo l s .

A List Fac i l i ty p rov ides the processes p rope r to manipulat ing l ists:

ge t t i ng the next ce l l , get t ing the symbol in a ce l l , insert ing, de le t ing ,

c opy i ng , and eras ing.

A s ing le des ignat ive re lat ion (here, be tween • addresses and the add r e s s ed

m e m o r y locat ions) is suf f ic ient for all purposes , but quite cumbersome. L* thus

p r o v i d e s a gene ra l mechanism for at t r ibute-va lue associat ions. G iven any two symbo l s ,

s a y X and Y, it is poss ib le to c reate an associat ion (along some attr ibute symbo l , say A)

f r o m X to Y. T h e n g i ven X and A one can d i rect ly re t r ieve the symbol Y. T he r e can be

as many assoc ia t ions (and as many d i f ferent attr ibute symbols) as des i red . Th is is an

e x a m p l e of the pos i t i ve benef i t of choos ing symbols to be addresses . Assoc ia t ions a re

p e r m i t t e d on any symbo ls , hence on any addresses.

As soc i a t i ons are rea l i zed by a hashing scheme. A no tewor thy fea ture is that

e a c h a t t r i bu te has its o w n hashing table, thus a l lowing the s izes of these tab les to be

i n d e p e n d e n t l y de te rm ined and dynamical ly adjusted. This a l lows cont ro l ove r the

s p a c e - t i m e t radeo f f . For example, if access is rare for some part icular a t t r ibute , its

h a s h tab le can be made small result ing in s lower access but reduc ing the was t e of

e m p t y tab le s lo ts .

A n Assoc i a t i on System Faci l i ty prov ides the capabi l i t ies for c rea t ing

assoc ia t i on symbols , creat ing, ret r iev ing and de let ing associat ions, and

o t h e r w i s e manipulat ing the associat ion s t ructures .

3.3. Universal Type System

Al l the data w i th in L* is of some type and there is a symbol that des ignates e a ch

d a t a - t y p e (ca l led the type symbol). Given a symbol , the type of the data s t r u c tu re it

d e s i g n a t e s can be de te rmined . Similarly, when a symbol is de f ined, its da t a - t ype must

b e s p e c i f i e d (though this can be done by the system rather than the user). New d a t a

t y p e s c an be c r ea t ed at wi l l . F igure 2 lists the data- types that are de f ined in the

in i t ia l s y s t em, w i t h the externa l names of their type symbols. This initial set is ne i ther

a c omp l e t e set nor a minimal set; rather, it is what is necessary and suf f ic ient for the

se t of in it ia l fac i l i t ies.

L* Mechanisms 13

T / T

T / M

T/W

T A
T / P

T / J

T / K

T A S

T / A

T / A L

T y p e t ype

T y p e machine (code)

T y p e w o r d (also integer)

T y p e list

T y p e program list

T y p e stack

T y p e character

T y p e character str ing

T y p e attr ibute (hash table)

T y p e attr ibute list (confl ict list)

F igure 2. Initial data-typos

D a t a - t y p e s s e r v e th ree important funct ions. First, they permit t ype d ependen t

p r o c e s s e s . A pr int rout ine can print any input s t ruc ture appropr i a te l y by f i r s t

a c c e s s i n g its t ype , thus re l iev ing the user of a lways knowing what t ype of s t r u c tu re is

b e i n g p r i n t ed . Second , space can be managed by da ta - type (and the initial s y s t em

d o e s so). Thus the re may be severa l da ta- types wh ich are identical in s t ruc tu re but

a r e d i s t i ngu i shed in o rde r to manage the space they occupy (e.g., severa l areas all w i t h

l i s ts , but of s epa ra t e types , T / L l , T / L 2 , to keep them segregated) . Th i s

management can be seen as just more t ype-dependen t p rocess ing (copy ing and

e r a s i n g) , and the implementat ion does in fact opera te that way , but space management

b y d a t a - t y p e is sti l l wo r t h y of specia l note. Th i rd, the in terpretat ion of p rog rams is

t o t a l l y t y p e - d e p e n d e n t . This fact has v e r y w idesp read ramif icat ions for the bas ic

p r o g r a m m i n g language used wi th in L*, wh ich we treat in the next sect ion.

F ou r r equ i r ements on the t ype system have emerged f rom the d iscuss ion so far:

(1) E v e r y symbo l , hence eve r y address, must have a t ype (thus a

p r o c e s s must exist wh ich , for e ve r y symbol , de l ivers its type).

(2) T y p e s must be dynamical ly creatab le.

(3) T y p e s are to be used in the in terpretat ion of the programming

language (thus the p rocess for f inding types must be ve r y fast).

(4) T y p e s of symbols must be dynamical ly changeab le .

W e have not ind i ca ted the re lat ive f requenc ies of execut ing type dependent p r o c e s s e s

(su ch as pr int , e rase , copy) , of new type creat ion, and of changing the t ype of an

e x i s t i n g s ymbo l . It is c lear, however , that all these wil l be ve r y much less f r equen t

t h an t y p e i n te rp re ta t i on , and thus they do not dictate the des ign of the t ype sys tem.

HUNT LIBRARY

UftRNtGlt ' M t L L D N UNIVERSITY

14 Mechanisms L*

Th i s is an exceed ing ly hard set of requirements to meet on a p r ede t e rm i ned

a r c h i t e c t u r e (e.g., PDP10 , PDP11 , IBM 360). For instance, s tor ing a t ype symbo l fo r

e a c h s y m b o l (i.e., address) in the address spacr takes on the order of half the memory .

F u r t h e r , making the t ype access fast requ i res a simple algorithm. Since the t y pe must

b e f o u n d g i v en on ly the symbol (address), the type must be either a s imple func t i on of

t he a d d r e s s or e lse s to red at a place accessed via the address. Extract ing the t y p e

f r o m the add res s makes type creat ion dif f icult, and-changing types near ly imposs ib le .

A l t h o u g h the t y pe may be cons ide red as just an associat ion f rom the symbo l , th is is

not a po s s i b l e implementat ion s ince all symbols in the associat ion s t ruc tu re must

t h e m s e l v e s have t ypes ; nor is it c lear that a hash table scheme is fast e nough fo r

r e q u i r e m e n t (2).

In the cu r ren t ve r s i on we compromise requirement (4) on chang ing t ypes , but

not the o the r th ree . We assign t ypes in cont iguous b locks (128 locat ions on the

P D P 1 0) b y us ing a t ype table w i th one ent ry for each block (2048 ent r i es on the

P D P 1 0) . A c c e s s to this table can be made d irect ly f rom the symbol (address) in t w o

P D P 1 0 ins t ruc t i ons , wh i ch becomes the basic type access time. Chang ing t y pe s is

e f f e c t i v e l y s t ym ied because the t ypes of a who le block of symbols are t ied t oge the r

and canno t be changed independent ly .

A c tua l l y , w e have c rea ted a faci l i ty for dynamic types by except ion , in w h i c h a

b l o c k c an be dec l a red dynamic to al low each symbol in the block its o w n t y p e .

H o w e v e r , e xpe r i e n ce has shown that such faci l i t ies are not much used, p r o b a b l y

b e c a u s e of their h igh cost rather than a lack of desirabi l i ty.^

A T y p e Fac i l i ty p rov ides p rocesses for gett ing the type and test ing

t y pe s of symbols . It contains subfaci l i t ies for creat ing new types and

fo r c rea t ing dynamic types .

3.4. PL*: The Programming Language

O f t en the p r e f e r r e d s t ra tegy for creat ing a complex program is to c r ea t e a

s pe c i a l p r ob l em-o r i e n t ed language whose s t ructure ref lects the unique assumpt ions

abou t the task. To maximize the number of appl icat ion areas, L* ant ic ipates the

e x i s t e n c e of many programming languages wi th in it. The initial L* sys tem, h o w e v e r ,

c on t a i n s just two languages: a form of machine language (cal led ML*) and a gene ra l l ist

p r o c e s s i n g language for manipulat ing the symbol ic express ions (PL*). PL* is, in some

s e n s e , the L* language, but w e emphasize that other languages and sys tems g r o w n

w i t h i n L* are not necessar i l y built on top of PL*. Often, they beg in that w a y and a re

c o n v e r t e d to ML* under the p ress of se lect ive opt imizat ion. ML* and PL* (and o the r

l a nguage s l ike them) are to be d ist inguished from the language through wh i ch the use r

[5] The cost is high; extra space for each symbol whose type is an exception to the block's typo, and extra

time for accessing the typo of every symbol in the block.

L* Mechanisms 15

at a te rmina l in teracts w i th the system. This latter is cal led EL*, and wil l be d i s cu s sed

la te r .

P L* was des i gned to be the simplest poss ib le list process ing- language. T h e

bas i c d a t a - t y p e is the list. Normal ly, in the des ign of a programming language, the

l a nguage itsel f is a un ique and complex data- type , radical ly d i f ferent f rom the t y p e s of

t he da t a s t r u c t u r e s on wh i ch it opera tes . List p rocess ing languages, on the o ther hand ,

h a v e b e e n ab le to use a s ingle da ta - type for both program and data, thus p r ov i d i ng a

un i f i c a t i on not poss ib l e in s tandard languages. This unif icat ion has quite rea l e f f e c t s

w h e n it comes to p rograms that c reate programs.

Coa l e s c i ng of data and program is not ach ieved simply by dec id ing to do so. The

most fundamenta l p r o p e r t y of a programming language- is that it determines what da ta

and o p e r a t i o n s are to be brought together, and when (and if) they v/ill be e xe cu t ed .

A l l p r og ramming languages must the re fo re have some way of d ist inguishing o p e r a n d s

f r o m o p e r a t o r s (or funct ions). In a s tandard programming language this d i s t inc t ion has

no c o u n t e r p a r t in the data s t ructures . Thus, the program data- type , in terms of its

most bas i c requ i rements , threatens to be unmappable in any natural way into the o the r

d a t a - t y p e s . A list, for instance, is a homogeneous sequence of symbo ls w i t hou t

a n y t h i n g to d i s t ingu ish ope ra t o r s f rom operands.

T h e so lu t ion adop ted by LISP is to employ one of the natural features of the list

(that it has a f i rst symbo l) to make the dist inct ion be tween opera tor and o p e r a n d : the

f i r s t s ymbo l in a list is to be the opera to r and all o thers the operands . This makes the

p r o g r a m da t a - t y p e d i f f e ren t , but eas i ly assimilable into the genera l list d a t a - t y p e .

I n deed , it f i ts w i t h a common encod ing of data in wh ich the f irst symbol on the list is

taken, as a " t ag " or data ident i f ier , w i th the remaining symbols in the list f i t t ing the

c o n v e n t i o n s de te rm ined by the tag.

T h e so lu t ion adop ted by L* is to reta in the homogeneous character of the list, so

that the i n t e rp re ta t i on of e v e r y symbol is to be the same. Then the d i s t inc t ion

b e t w e e n o p e r a n d and ope ra to r cannot be g iven by the s t ructure of the p rog ram (the

syn tax) ; it must be g i ven b y the nature of the symbols themselves (the semant ics). Th i s

d i s t i n c t i on is taken to res ide in the type of the symbol . Thus for each t ype the re is an

i n t e r p r e t e r wh i ch is to be execu ted whenever a symbol of its t ype is en coun t e r ed . W e

c a n e x p r e s s this in a pr inc ip le:

PL* i n te rp re ta t i on by type: A list of symbols (S I S 2 ...) is to be

i n t e r p r e t ed by success ive ly interpret ing each of its symbols , S I , S2,

and so on. A symbo l Si is to be in terpre ted by execut ing the

i n t e rp re t e r assoc ia ted wi th the type of Si.

W i t h this i n te rp re ta t i on rule there is a distinct da ta- type for PL* (cal led T / P , f o r

t y p e p r o g r a m list), but it is s t ructura l ly identical to the list da ta - type (T / L) . T he

d i f f e r e n c e in the two res ts in their assoc iated in terpreters; the T / P i n te rp re te r t r ea t s

the list as a p rog ram, whi le the T / L in terpreter treats the list as data. The r e wi l l , of

c o u r s e , be i n t e r p r e t e r s assoc ia ted w i th each of the types of F igure 2, and i ndeed w i t h

all t y p e s that are c r ea ted .

16 Mechanisms L*

The i n te rp re ta t i on pr inc ip le does not complete ly determine the charac ter of the

l anguage; it d epends int imately on the detai ls of the individual in terpreters .^ G iven that

an i n t e r p r e t e r has access to the data s t ructures of the operat ing env i ronment and to

the p r o g r a m s t ruc tu re itself, there is w ide f reedom to spec i fy fur ther the cha rac te r of

t he l anguage t h r ough the act ions of the in terpreters .

T h e i n t e rp re t e r set for PL* abides in so far as poss ib le by the f o l l ow ing

p r i n c i p l e :

Contex t i ndependence: The interpretat ion of a symbol in a p rogram list

does not d epend on the part of the program list not yet i n te rp re ted .

Th i s p r inc ip le , in conjunct ion w i th the one above, almost complete ly de te rm ines

the cha ra c t e r of the language. It has three genera l e f fec ts: (1) the re a re no

i n comp l e t e exp ress i ons ; (2) symbols establ ish a state wi th in wh i ch the f o l l ow ing

s y m b o l s can be i n t e rp re ted ; and (3) operator- l i ke symbols cannon be taken as

o p e r a n d - l i k e symbo l s (for if they had to be in te rpre ted in isolat ion, their i n t e rp re ta t i on

w o u l d have b e e n opera to r - l i ke) . These imply the fo l lowing structura l f ea tu res of the

P L * l anguage:

Pos t - f i x : Operand- l i ke symbols must come be fo re ope ra to r - l i ke

symbo ls .

Stack communicat ion: Operand- l ike symbols must have somewhere to

wait unti l the opera to r - l i ke symbols come along, and they must do this

w i thout know ledge about the operator- l i ke symbol .

Go to - l e ss cont ro l s t ruc ture: Goto opera to rs take opera tor - l i ke symbo l s

as ope rands , wh i ch v io lates the rule.

Cond i t i on s ignal: A test must occur be fo re condit ional act ion based on

it is poss ib le ; hence the ef fect of the test must be stat is ized.

Expl ic i t quo te: The re must be some way of obtain ing an ope ra to r - l i ke

symbo l as ope rand . Thus, some violat ion of the context i ndependence

p r inc ip l e must occur. A quote operator local izes this as much as

poss ib le .^

T h e fundamenta l r eason for adopt ing the context independence p r inc ip le is to

make PL* s imple to unders tand in terms of its under ly ing mechanism. The re can be no

c o m p l e x act ions that cannot be reso lved into a sequence of simple ones. Equa l ly , in

[6] The interpreiation principle does, however, essentially determine the interpreter for T/P.

[7] I.e., the quote operator is a symbol that is interpreted prior to its operand and which acquires i

operand without interpretation.

L* Mechanisms 17

t e rms of in te rac t ion , the in te rpre ta t ion of the language can be b roken at any point and

add i t i ona l p r o c e s s e s i n se r t ed or executed.^

In terms of language des ign, we have long been interested in unders tand ing the

e x t en t to wh i c h a s t r ong context independence assumption is compat ib le w i t h a

l a nguage w h o s e su r f a ce appearance is still v e r y much that of a higher leve l l anguage .

T h e PL* Fac i l i ty p rov ides the opera t ing environment for PL* a long

w i t h the con t ro l p rocesses to be used in PL* programs.

T h e r e is a lso an Interpreter Faci l i ty wh i ch p rov ides the set of

i n t e r p r e t e r s used in PL*.

Some examp les of PL* cod ing wil l tie down these var ious des ign dec i s i ons and

a l so r e v ea l the su r f a ce fo rm of the language. F igure 3 shows a list named L I d e f i n ed

to have t h r ee e lements A, B and C In terms of the under ly ing l inked list

r e p r e s e n t a t i o n , t he re are th ree memory cel ls L I , L 2 and L3 , each of wh i ch ho lds a

s y m b o l (A, B or C r e spec t i ve l y) and a link to the next cel l . We cons ider a p r og r am ,

c a l l e d TBL , wh i ch tes ts if the symbol B is in the list. This program has a s ing le input (

t he l ist to be searched) , but is spec i f ic to the symbol B. The var ious componen t

p r o c e s s e s are l i s ted in the f igure. Vert ica l ly be low the program list we have s h o w n

g r a p h i c a l l y the data stack (cal led Z); we have wr i t ten a * at the bottom to ind icate an

i nde f i n i t e number of other symbols that wil l not enter into the p rocess ing of T B L

D i r e c t l y above the stack w e indicate the condit ion signal (+ if true or suc ceed , - if

f a l s e or fai l).

[8] The explicit quote is an exception.

18 Mechanisms

T D L ~ Tes t if symbo l B is in list

T B L : <<P S B =S ,+ N F .R+) t - U)

Example list input on stack: L i s (A B C)

In terna l ly : L l : [A | L 2] L2:[B | L3] L3:[C | N I L]

P r o c e s s e s used in TB L (all T /M — machine code rout ines)

P Push top symbo l on data stack (2)

S Get f i rst symbo l in list

=S Tes t if two symbols are identical

. + Exit if s ignal +

N Get next locat ion in list (tail)

F F ind list (set + if cont inues, else - and pop)

. R+ Repeat if s ignal +, else no-op

, - Exit if s ignal -

U P op data stack (Z)

T B L : ((P S B = S t + N F ,R+) U)

+ + + + - - -
L I L I L I A B L I L I L 2 L 2

* * L I L I

*

A

L I

*

* * *

+ + + + + + +

L 2 L 2 B B L 2 L 2 L 2

* L 2

*
L 2 B

L 2

*

*

F igure 3. Example of a simple P L* routine

L* Mechanisms 19

Z o r ig ina l l y ho lds L I , the ope rand for TBL. TBL is a T / P list of three e lements ,

t he f i r s t be i ng of T / P itself and g iven in extens ion as the sequence (P ... # R +) .

I n t e r p r e t a t i o n of this list leads to in terpret ing each of its e lements. ' The f irst s ymbo l is

P. Th i s is a T / M symbo l , wh i ch is to say machine code, and the T /M i n te rp re te r s imp ly

makes a s ub r ou t i n e cal l to the machine code rout ine. The ef fect of this is to pu sh Z,

r e su l t i n g in t w o ins tances of L I . The interpretat ion proceeds sequent ia l ly . S ge ts the

s y m b o l in the ce l l L I (i.e., A); B is a data symbol and its in terpreter pushes it on to t he

s tack; =S is the test for symbo l equal i ty, wh ich sets the condit ion signal - s ince A and

B a re not the same (note that p rocesses in genera l consume their inputs); , + is a

c ond i t i ona l exit , w h i c h is a no -op here since the signal is N gets the next cel l a f te r

L I (i.e., L2) ; F se t s the s ignal + to indicate the list actually cont inues (N might have

p r o d u c e d the end of a list); , R+ is a condit ional repea-t, wh ich moves cont ro l back to

t he f r on t of the list if the s ignal is +.

T h e s e c ond l oop th rough the sublist cont inues as be fo re (the s e cond l ine of

t r a c e in F i gu r e 3). Th is time =S gets a posit ive result, s ince it has found the s ymbo l , so

that the exit is taken . Hence, the next symbol in terpreted is . - (a no -op he re s ince

the s igna l is +). T h e f inal symbo l is U, wh i ch pops the stack remov ing the t e m p o r a r y

w o r k i n g s ymbo l L 2 (the moving pointer into the list).

T h e pos t - f i x cha rac te r of PL* is evident. P rocesses s imply ope r a t e on the

o p e r a n d s that have b e e n deve l oped in the stack. To use TBL on a d i f f e rent list, s ay

L 7 , one w o u l d w r i t e :

... L 7 T B L ...

L 7 , be i ng a data symbo l , wou ld be pushed on the Z stack and then TBL , b e i ng

T / P , w o u l d be e x e cu t ed on it, just as above. The goto- less character is ev ident in the

c o n t r o l o p e r a t o r s , . + , and ,R+. Note in part icular that looping is hand led in a w a y

that is symbo l i ca l l y not much d i f ferent from giving a superord ina te command (e.g.,

(R E P E A T ...)), but con fo rms to the requirement that it be a context i n dependen t

a c t i on . It is appa ren t f rom the example that the language is a mixture of h igh l eve l

and l ow leve l cons t ruc t s . For instance, stack management is exp l i c i t l y the

r e s pon s i b i l i t y of the p rog ram.

Some var ia t i ons on this simple rout ine wil l convey some addit ional aspec ts of the

l anguage . One w o u l d l ike to wr i t e TBL simply as:

T B L : (P S B =S ,+ N F . R+)

T h e add i t iona l # - and U are requ i red for c leaning up the stack, wh i ch is d one

au tomat i ca l l y by F at the end of the list, but not by .+ on the pos i t ive exit. T h e

f o l l o w i n g add i t iona l con t rp l pr imit ive is def ined in PL* (and is indeed r equ i r ed fo r

c omp l e t ene s s) :

, - H — Exit o n - , e lse remove the next higher level

2 0 Mechanisms L*

A p r im i t i ve such as , - H is requ i red because it must be poss ib le to con t ro l fo r a

g i v e n p r og r am leve l the cont inuat ion of levels above.^ Using , - H one can r e code T B L

as:

TBLs (P S B =S (. - H U) N F f R +)

Thu s w e have loca l i zed the code for exit ing and c leaning up the stack. If w e

w i s h w e can i n t r oduce a new contro l rout ine:

, U + : (, - H U) — Exit if +, popp ing stack

W i t h th is w e can r ew r i t e T B L once more as:

T B L : (P S B =S ,U+ N F ,R+)

Ac tua l l y , the rout ine is incorrect in its handling of empty l ists, s ince it g o e s

t h r o u g h the mot ions of test ing the "f irst symbo l " of the empty list b e f o r e q u i t t i n g . ^

A n o t h e r va r i a t i on c an be wr i t t en that handles this cor rect ly by moving F to the s tar t :

T B L : (F P S B =S ,U+ N , R)

T h e language also admits recurs ion, so that yet another a l ternat ive f o rm for T B L

is:

T B L : (F P S B =S .11+ N T B L)

T B L has b e e n w r i t t en w i th a single argument, the list. It is more app r op r i a t e l y

w r i t t e n w i t h t w o arguments . Let us then def ine another program:

T S L ~ Tes t if symbol (0) is on list (1)

w h e r e (0) (1) ... des igna te pos i t ion on the Z stack. Then we obta in:

T S L : (ZO I (F P S 20 S =S ,U+ N . . R) ZO D)

w h e r e I i n se r t s (1) into list (0), and D deletes the top of list (0).

W e have u sed a cel l ZO (T A) to hold the symbol to be tes ted . Thus w e must

i n se r t the symbo l f r om the Z stack onto ZO at the beginning, and again de le te it f r om

ZO at the end . T o access the symbol from ZO for the test, we input ZO to the s tack and

[9] Besides .-H, there also exist >H, and H (unconditional removal of the next higher level); similarly thore

exist .R, .R* and .R-, and .- .

[1 0] The routine works correctly on empty lists because S on an empty list morely delivers the symbol NIL

as output.

L* Mechanisms 21

t h en e / c c u t e S on it. O the rw i se TSL is just the same as T B L We can co l l apse these

o p e r a t i o n s on ZO by de f in ing some additional rout ines:

I Z O : (ZO I) SZO: (ZO S) DZO: (ZO 0)

T S L : (I Z O (F P S SZO =S t U + N , R) DZO)

If w e w a n t e d to genera l i ze TSL further to take as input a gene ra l i z ed test ,

r a t h e r than just s ymbo l equal i ty, we might def ine:

T X L — Tes t if there is a symbol on list (1) sat is fy ing test (0)

T X L : (I Z O (F P S SZO . X .U+ N , R) DZO)

w h e r e . X e xe cu t e s (0).

One of T X L ' s inputs is now a process; to use T X L w e must use the quo t e

p r o c e s s . W e can i l lust rate this by reconstruct ing TBL from TXL:

T B L : (. Q (B =S) T X L)

T h e quo te , ,Q , is a T /M rout ine that puts the next symbol in the p r og ram list

(he r e the s u b p r o g r a m (B =S)) into the stack and advances in te rp re ta t i on past it.

T h u s T X L wi l l be the next symbo l in terpre ted after the , Q.

T h e examp les above i l lustrate the simplicity of the PL* language. To summar i ze ,

P L* is i n t e r p r e t e d b y type , maintains context independence (no syntact ic s t ruc tu re) , is

p o s t - f i x , and uses a stack for ope rand communication. Let us now examine the o the r

in i t ia l p r og ramming langu-age embedded in L*, the ML* machine language.

3.5. ML*, the Machine Language, and Stacks

3.5.1 M L * : Mach ine Language

T h e use of machine language must remain integral to L*, s ince it is the means

t h r o u g h wh i c h the machine is ult imately contro l led. One shields the imp l emcn t c r - u se r

f r o m access to machine language only by committing a major act of de s i gne r ' s

p r e r o g a t i v e — of dec id ing that the forms of access determined by the o r ig ina l

s o f t w a r e d e s i g ne r s (here the L* des igners) const itute the only means by wh i c h the

mach ine wi l l be ut i l i zed. But time and space ef f ic ienc ies are of the e s sence — that

c ompu ta t i ona l comp le teness remains available to the user does not su f f i ce . Th is is

e s p e c i a l l y t rue for an implementat ion system, whose users wi l l c r ea te sti l l

u n d e t e r m i n e d ob j e c t sys tems.

2 2 Mechanisms L*

A c c e s s to the machine language does not imply that an initial component of L*

must b e an assembler of some form. In fact, L* adopts a spec i f i c pr inc ip le:

Mach ine access: Access to the basic machine is to be ob ta ined v ia

symbo l i c s t ruc tu res c reated with in the system itself.

T hu s , though the re are assemblers and compi lers in L*, they are not ava i lab le as

p r im i t i v e fac i l i t ies , but are const ructed by means of PL* programs and data s t r u c tu re s .

W h a t must be gua ran teed (though it is not diff icult) is the poss ib i l i ty of ob ta in ing fu l l

c o n t r o l of the machine ult imately. This occurs by having the w o r d be a basic d a t a

t y p e (T/W) w i t h pr imit ive operat ions that include the s tandard arithmetic, boo lean , and

s h i f t i n g ope ra t i on s . G iven that wo rds wi th arb i t rary bit content can be eas i l y

f a s h i o n e d , it is s t r a i gh t f o rwa rd to construct, wi th in PL*, s imple assemblers , macro

a s s e m b l e r s and compi le rs .

Th i s p r inc ip le , w i th the implied delay in obtain ing faci l i t ies for assembl ing and

c omp i l i n g , r e s t s so l id ly on the des ign goals of L*. To make such faci l i t ies par t of the

in i t ia l s y s t e m poses an almost impossible tradeoff b e tween initial s impl ic i ty and

u l t imate fac i l i ty and f lex ib i l i ty. Assemblers , as a genre, are def ic ient in the fac i l i t ies

t h e y p r o v i d e (compared to, say* LISP or PL/1) prec i se ly because they are " in i t ia l "

s y s t e m s . Such sys tems are not pnly lean, they are inf lexible. HLLs so lve this p r ob l em

b y c r e a t i n g a- la rge initial sys tem (the HLL itself, e.g., PL/1) . This at least ob ta ins

f a c i l i t y , t hough it doesn ' t obta in f lexibi l i ty.

Bas i ca l l y , the computer itself dictates the machine language. However , us ing

mach i ne language w i th in a system requires var ious convent ions that const i tu te , in

e s s e n c e , a par t i cu lar sub language. Thus, ML* is the machine language p lus a set of

c o n v e n t i o n s :

T h e ope ra t i ng environment consists of three stacks: (1) a cont ro l

stack, ho ld ing the current instruction; (2) an ope rand stack; and (3) a

test cond i t i on stack.

A l l l anguage systems wil l use a common opera t ing env i ronment , if

poss ib l e . In part icular, ML*, PL*, EL* use the same ope ra t i ng

env i ronment .

T h e t h ree - s t a ck opera t ing environment is d ictated by the requ i rements of

c o m m o n machine language and PL* use, these being the initial language sys tems .

H o w e v e r , it is also an app rop r i a t e environment for real iz ing a w ide va r i e ty of h igher

l e v e l l anguages (like LISP or Algol). The major restra ints on the machine language

p r o g r a m m i n g are: (1) A l l argument-pass ing must use the ope rand stack (spec i f i ca l ly ,

r e g i s t e r s may not be used); (2) Signal communication must use the test cond i t ion s tack

(e.g., no sk ip r e tu rns may be used to return a signal); (3) Work ing reg is ter usage -is

l im i ted to t hose not r equ i r ed to prov ide the three-stack opera t ing env i ronment .

L* Mechanisms 23

T h e communa l i ty of use over language systems is pr imari ly an e f f i c i ency i ssue.

W i t h o u t th is, pas sage of cont ro l across a language boundary also requ i res shu f f l i ng of

d a t a , in add i t i on to the t rans fe rs requ i red by the basic mechanics of the ca l l ing

s e q u e n c e . The cos t s i nvo lved are substant ia l . In the initial PDP10 sys tems t h r ough

L*(G) w e e x p l o r e d a number of var iat ions on mechanisms that kept the ope r a t i n g

e n v i r o n m e n t s s epa ra t e , and the t radeof fs are quite c lear ly in favor of communal i ty o n

s t a n d a r d c ompu te r a rch i tec tu res .

A n impor tant consequence of these convent ions is that there is on ly a s ing le

r o u t i n e f o r a s ing le funct ion . For example, consider the funct ion of inser t ing a s ymbo l

in a l ist; th is is n e e d e d in bo th language environments, PL* and ML* (and o the r s as we l l

p e r h a p s) . T h e r e is a p rocess named I (itself wr i t ten in ML*) wh i ch is to be u sed

w i t h i n b o t h ML* and PL* programs to ca r ry out the i nse r t i on funct ion. Thus , t he re

d o e s not have to be any dup l i cat ion of funct ion across the two language env i ronments .

T h i s is in fact an ex t reme ly s t rong contr ibutor to simplicity in the L* s t ruc tu re . A s fo r

e x e c u t i n g PL* p rog rams f rom wi th in ML*, designer 's p re roga t i ve by the h a r d w a r e

a r c h i t e c t s p r oh i b i t e d this f rom happening as it should. The PL* cal l must be

s u r r o u n d e d w i t h a small machine language c l i c h e .^ Except for this, the s i tuat ion is

s ymme t r i c a l . Mos t i n t e r p r e t ed language systems are h ierarch ica l , w i th the i n t e r p r e t e d

c o d e l y i ng " a b o v e " a machine code base. The L* language s t ruc ture is not h i e ra r ch i ca l .

M a n y P L* rou t i nes are ca l led f rom with in ML*.

3.5.2 Stacks

T h e abs t rac t da t a - t ype cal led a stack is an extremely usefu l data s t r u c tu re in

s o f t w a r e s y s t ems , w h e r e v e r there is interrupt ion and re turn in the use of r e s o u r c e s

(v i e w e d qu i te abs t rac t l y) . Ph rase-s t ruc tu red languages, interrupt se rv i ce , s ub r ou t i n e

h i e r a r c h i e s , and va r i ab l e -b ind ing h ierarchies are only a f ew examples. Thus an

imp l emen ta t i on s y s t em needs a stack data- type, both for its internal use and to emp l oy

in o b j e c t s y s t ems . T h e r e are l i teral ly dozens of stacks in use in a typ ica l L* sy s t em, at

all l e v e l s of s y s t em organ iza t ion .

S tacks can be implemented in many ways . The most familiar is a sequent ia l s tack

o c c u p y i n g a con t inuous interva l of the address space, in wh i ch push and pop a re

a c c o m p l i s h e d b y inc rement ing and decrement ing addresses. But in a sys tem w h i c h

a l r e a d y has list p ro ces s i ng , a quite natural choice is to map stacks onto l ists — a

s u b s e t of the list pr imi t ives are isomorphic to the standard stack opera t ions . Us ing the

n o t a t i o n in PL*:

[1 1] Which puts the PL* symbol on the Z stack and thon calls tho PL* interpreter.

2 4 Mechanisms L*

S Get symbo l in cel l

R Rep lace symbo l in cel l

I Insert symbo l at f ront

I C Insert c o p y at f ront

D De le te

List Stack

Read top symbol

Replace top symbol

Push new symbol on top

Push (double top symbol)

Pop

Gene ra l advantages o f . l i s t stacks include the immunity to ove r f l ow (since t h ey

a r e not con t i guous b locks) and the avai labi l i ty of the more power fu l list ope r a t i on s

w h e n n e e d e d (inser t ion, de le t ion and reading other than the top ent ry) . When u sed fo r

t h e o p e r a t i n g env i ronment of PL*, list stacks al low easy exp lo ra t ion and modi f i cat ion of

that env i r onmen t (e.g., in the coding of new contro l opera t ions wh i ch d i r e c t l y

man i pu l a t e ope ra t i ng stacks). In the PL* environment stacks hold symbo l s (i.e.,

a d d r e s s e s , wh i c h o c cupy ha l f -words on the PDP10); hence space and time cos ts a re

a bou t equa l b e t w e e n list stacks and sequent ia l stacks (usual ly cons i de red the most

e f f i c i e n t implementat ion). A l l of our initial vers ions of L* (through L*(G)) u sed l ist

s t a c k s * 2.

T h e machine language operat ing environment must be rea l i zed w i th sequent ia l

s t a c k s in cu r r en t s tandard archi tecture. Designer 's p re rogat i ve by the h a r d w a r e

a r c h i t e c t s has b e e n exe r c i sed in the subrout ine call and re tu rn funct ions to make all

o t h e r cho i c e s for s tack implementat ion prohib i t ive. Thus, a choice of list s tacks for PL*

(p r o d u c i n g homogene i ty there) produces a split be tween the opera t ing env i r onmen t s

o f P L * and ML*, w i t h the negat ive consequences d iscussed above.

T h e cu r r en t L* sys tems have adopted the other choice. Stacks are rea l i zed as a

d i s t i n c t d a t a - t y p e , T / J * ^ . Then the PL* operat ing environment is ident i f ied w i t h the

M L * env i r onmen t , as above , w i th the consequent simplicity and speed increase.

S tacks are now a genera l data- type prov id ing funct ions wh i ch part ia l ly dup l i ca te

l ist f unc t i ons . Co r r e spond i ng to the processes on lists (S N R I D F ...) t he re are

p r o c e s s e s on s tacks (S J N J R J I J D J F J ...). Stacks are rea l i zed w i th a po in te r

s t r u c t u r e that k eeps l ower and upper stack bounds plus the actual po inter . The s tack

m e m o r y a r ea is a sepa ra te block, wh ich can be re located in memory to p r o v i d e

e x p a n d e d or con t r a c t ed memory space. An important advantage in hav ing s tacks is

t he i r p r e f e r r e d use in ob jec t systems which do not w ish to import list p rocess i ng .

B y p rov i d i ng an ef f ic ient stack data- type and a machine language (ML*)

i n t e g r a t e d w i t h the rest of the L* system, we have p rov ided mechanisms for ach iev ing

t o ta l a ccess ib i l i t y to the under ly ing machine and for aiding se lect ive opt imizat ion. ML*

a n d P L* are the two initial programming languages prov ided in L*, but nei ther has any

[1 2] Note that the examples in this paper use list stacks (e.g., for 2 0 and ZQ); they could ha

sequential stacks-'

[1 3] J for nothing, but think of the stem of the J as the stack and the cup as the overflow tost.

L* Mechanisms 25

p r i v i l e g e d status. Other programming languages may be added at the same " l e ve l " as

M L * o r PL*. Now, let us desc r i be the language used to communicate b e tween the user

at a te rmina l and the L* sys tem, EL*.

3.6. EL*: The External Language

L* t rea t s PL* as an internal language ~ a set of data s t ruc tures in memory that

c a n c on t r o l p r o ce s s i ng . It wou l d treat similarly any number of other languages, such as

L ISP . T h e human user , of cou r se , res ides outs ide the computer sys tem at a termina l ,

a nd he communica tes w i t h L* through some other language, or at least th rough some

no t a t i o n for the in terna l languages. We call this externa l language EL*.

EL* must meet severa l requirements that separate it sha rp ly f rom the set of
i n t e r na l l anguages:

Names vs . symbo ls: EL* is wr i t t en as a sequence of cha rac te r s

(assuming text, not graphic, input devices). Hence co r r e spondences

must be made be tween sequences of characters and internal symbo ls .

W e use the term name for a character sequence that maps into an

in terna l symbo l . {

Externa l f ide l i ty: It should be poss ib le to make the externa l language

i somorph i c to any g iven internal system (this fo l lows f rom the

requ i rement for simplic ity).

Tota l access ib i l i ty: Al l internal symbols and s t ruc ture must be

r e p r e s en t ab l e wi th in EL* (i.e., ML*, PL*, and all languages to be

sub sequen t l y c reated) .

G r o w t h into object systems: It must be poss ib le to t rans form EL* into

a p r ob l em-o r i en t ed language for an object system, w i th an ope ra t i ng

env i ronment sea led off f rom the total L* env i ronment. (The full range

of s t anda rd notat ional and linguistic dev ices must be eas i ly c r ea t ed

w i th in EL*.)

Dynamic modi f icat ion and simplicity: EL* must be capab le of be ing

mod i f i ed in terac t ive ly by someone work ing wi th in EL*. (This also

impl ies a s imple mapping be tween EL* and internal structures.)

T h e requ i r ements for f idel i ty and total accessib i l i ty for all internal l anguages

imp ly that EL* cannot s imply be another language, analogous to PL*, w i th a par t i cu la r

d a t a - t y p e and set of i n te rp re te rs . Thus EL*, though a language funct ional ly , must be

c o n c e p t u a l l y o r t hogona l to the other languages in the system.

W e f i rst d i s cuss EL* cons ide red as a sequence of symbols, assuming the mapp ing

2 6 Mechanisms L*

f r o m cha ra c t e r s t r ings to names to symbols has a l ready taken place. This is the leve l

o f s yn t ax , but also inc ludes the higher levels of semantics and act ion. Then w e wi l l

r e t u r n to cons ide r the lexical p rocess ing that produces the symbols.

3.6.1 Syntax, Semantics, and Act ion

S t anda rd syntax schemes imply the ex is tence of a grammar and a parser

b e t w e e n the user (i.e., the c reator of EL* sur face s t ructure) and the c o r r e spond i ng

i n t e rna l da ta s t ruc tu re . G iven the requirements for syntact ic power , such a s cheme

w o u l d s eem to i n te rpose a ve i l of complexi ty at odds w i th the des i r ed f ide l i ty and

s imp l i c i t y of the total sys tem.

T h e cen t ra l f ea tu re of a so lut ion to these multiple requ i rements l ies in tak ing a

" p r o c e s s - v i e w " of syntact i c in terpretat ion (Newel l and Freeman 1968). Namely, the

i n t e r p r e t a t i o n of an EL* sequence of names is to be car r i ed out as a sequent ia l

p r o c e s s . Some names wi l l c o r r e spond to processes whose immediate execu t i on wi l l

c a r r y out the ana lys is of the input stream, to conver t it into a sequence of in terna l

a c t i ons or s t ru c tu res . Other names wil l co r respond to lexical items and wi l l become the

i n t e rna l symbo l i c data.

Let us cap tu re this in a def in i t ion:

Sequent ia l P rocess Grammar: A linear sequence of symbols , each of

wh i c h is e i ther act ive or pass ive; act ive symbols are i n t e rp re ted

immediate ly in an opera t ing environment that includes access to the_

language st ream. The act ive symbols are cal led syntax act ions.

F o r EL*, the s t ream of characters must be conver ted into a sequence of names,

and t h e s e names must be mapped into their co r respond ing internal symbo ls . T h e n

i n t e r p r e t a t i o n impl ies, as usual, execut ion of the assoc iated in te rpre ter accord ing to

t y p e . Of neces s i t y , . then, the opera t ing environment wil l be the same ope ra t i ng

e n v i r o n m e n t used by these in te rpre ters .

It remains to s how the extent to wh ich such a scheme can rea l i ze app r op r i a t e

s u r f a c e s t r u c tu re . Though w e do not know of any other programming language that

t a ke s exac t l y this course , the scheme is c losely re lated to the or ig inal f o rmu la

t r an s l a t i o n s chemes in t roduced long ago by Samelson and Bauer (1960), and to the

p u s h d o w n schemes of F l oyd and Evans (Evans 1964). EL*, however , does not f o rm a

c l o s e d s y s t em, but ope ra tes wi th in the environment of internal computat ion.

EL* is to be used for rea l iz ing context dependent sur face syntax of all k inds; in

d o i n g so t he r e is no reason to adhere to the context independence pr inc ip le adop t ed

f o r PL*. On the other hand, a sequent ia l process grammar, w i th its execu t i on of

i n d e p e n d e n t syn tax act ions, lends itself to a str ict adherence to the pr inc ip le . -Th i s is

• important in rea l i z ing an externa l i somorph of PL*, but is also usefu l more w i de l y in

i n t e r a c t i v e p rogramming.

I* Mechanisms 27

Some simple examples wil l make the scheme concrete . F igure 4 lays out a

s c h e m e to de f i ne a s imple list, (A B C) . Each of the f ive character st r ings, " (" , H A M ,

a nd so on , is a name. The re is no dist inct ion be tween ident i f iers and syntac t i c marks.

M o r e accu ra te l y , the d ist inct ion is encoded into whether a symbol is act ive or pass i ve

(as i nd i ca ted in the f igure by a and Q). However , as we shall see, any symbo l can be

a c t i v e or pass i ve and this state can be changed dynamical ly.

T h e f i rst symbo l (is active; being a PL* program it is executed . The resul t is to

pu t a s ymbo l into the stack to act as a f loor. This symbol should be f o reve r unnamed,

s o it is s imp ly he ld in cel l ca l led FLR. We call the symbol address 97, just to cal l it

s ome th i ng . The next name A maps into a pass ive symbol; it is pushed onto the stack,

w h i c h is the fate of all pass ive symbols. Thus, the symbols co r respond ing to the

names B and C also end up in the stack. Final ly) co r responds to an act ive s ymbo l

w h i c h a lso des igna tes a PL* program. It c reates a new symbol (via the CR p r o ce s s)

and g o e s into a loop t rans fe r r ing symbols from the stack onto the list, wh i l e l ook ing

f o r the f l oor in the stack as a signal that it has f in ished. The symbol for the list is he ld

in ce l l ZO and all the inserts are made to the front (by I) , so that the o rde r is the

s ame as that init ia l ly wr i t t en . The symbol for the list (called here 632) is output to the

s tack .

T y p e d at the terminal: (A B C)

(A B C)

a p p p a a = act ive, p = pass ive

37 A B C 632

* 37 A m

9 7 A

* 97

*

" (: (F L R S)

") : < T / L CR IZO (P FLR S =S .U+ SZO I , R) SZO DZO)

F igure 4. Defining list structures

2 8 Mechanisms L*

The scheme of F igure 4 suff ices for any list s t ructure. T rac ing t h rough the

examp le b e l o w wi l l s how how each list is c reated as a symbol and becomes part of its

e m b e d d i n g l ist:

(A (D ((C) D (E F) G H)))

T o add the syntax for assigning the symbol for a list (i) we can p r o c e e d as

s h o w n in F i gu re 5. The s is a b inary operator and cannot complete its o w n ope r a t i o n

unt i l b o t h of its ope rands are complete. In particular, : must de lay unti l its r ight

o p e r a n d is comp le te , wh i ch wi l l not happen until after it has itself b een i n t e rp r e t ed . A

na tura l d ev i c e for this is to create a de layed process that f i res w h e n the o p e r a n d is

c omp le t e . In the p resen t context, only) wil l know this, so it must be g i ven the

r e spons i b i l i t y for execut ing the de layed process. As Figure 5 shows , s leaves L I in

the s tack and puts a p rocess on another stack, ZQ.) is modif ied to execu te what is o n

the ZQ s tack a f ter bui ld ing the list. It does this by a rout ine , XQ, wh i ch w e d i s cuss

b e l ow . T h e d e l a y ed act ion exchanges the first cell of the list to be that assoc ia ted w i t h

the s pe c i f i e d f i rst symbo l , L I , rather than the created symbol used by) (us ing RW).

T h e s tack manipu lat ions shown (V is reverse , P I is push second e lement) are to

p r e s e r v e 6 3 2 (the un-named list structure) until the end so it can be e r a s ed (e ras ing is

d o n e exp l i c i t l y in the basic L* system).

L*
Mechanisms "

L I (A B

L I L I 9 7 A B C

* * L I 9 7 A

C
O

* L I 97 A

* L I 97

* L I

• • (. Q (V P I RW E) I Q)

" (: (F L R S)

") : (T / L CR IZO (P FLR S =S .11+ SZO I . R) SZO DZO . X Q)

.XQ : (SQ . X DQ)

SQ J (ZQ S) IQ : <ZQ I) DQ : <ZQ D)

F igure 5. Defining a named list

Our pu r po s e of p resen t ing this much detai l is to show how syntax can be bui l t

up w i t h l i tt le e f fo r t . In the ZQ stack and ,XQ we have essent ia l ly all that is n eeded to

add the ful l complement of b inary operat ions (e.g., re lat ions and arithmetic). In the

ac tua l s y s t em, matters are somewhat more compl icated, because one must hand le

mu l t i p l e t y p e s and rede f in i t i on of structures.

L* is a fu l ly in terac t ive language, so that there is the poss ib i l i ty of a r b i t r a r y

immed ia te execu t i on as we l l as de layed execution. The analys is of the EL* input

s t r e a m a l ready impl ies immediate execut ion of active symbols; to ob ta in immediate

e x e c u t i o n of pass ive symbo ls there exists a process cal led ! (itself act ive, of cou r se) .

T h e p r o c e s s ! is actual ly ident ical to the execute process . X (except that , X is not

ac t i ve) ; .! i n te rp re t s (executes) the symbol on the top of the Z stack. Hence, in the

f o l l o w i n g t y p e d in sequence , the f irst two names put L I and TSL respec t i ve l y on the

s t a c k and J execu tes TSL on input L I , just as we saw in F igure 3.

L I T S L 1

3 0 Mechanisms L*

Th i s examp le shou ld help emphas ize that not all (or even most) PL* p rog rams

a r e ac t i ve . Mos t are pass ive and are t reated in EL* simply as addit ional data to be put

a w a y in n e w l y cons t ru c t ed programs.

EL* uses the same p rocesses as are used in PL* (or whatever language is b e i ng

w o r k e d w i th) . It ach ieves the des i red isomorphism prov ided that the externa l syn tac t i c

s t r u c t u r e can be rea l i zed by means of syntax actions that bui ld isomorphic s t r u c tu re s ,

w h i c h in gene r a l is poss ib le . Conve rse l y all of the p rocesses that are avai lab le in EL*

must a l so be ava i lab le internal ly. This can be apprec ia ted, for example, in c o p y i n g a

l ist . S u p p o s e w e wan t ed to c opy a known list, L I :

C L 1 ~ C o p y list L I

T h e n an obv i ous way to do this, in analogy to the way lists are built ex te rna l l y ,

w o u l d be (schemat ica l ly):

C L 1 : (<contents of L l >)

S ince (and) are s imply symbols that des ignate PL* programs, w e can use

t h e s e i n te rna l l y as we l l as externa l ly . Al l we need to do is treat (and) pass ive ly . A n

ac tua l r ou t i ne a long these l ines is:

C L l : (f (L I f * L f))

T h e quo te 1 is an act ive symbol that pass ivates the fo l lowing EL* symbo l . Thus

t h e ou t e r () de f i ne the list C L l , just as a lways. The inner 1 (... f) are the same

t w o p r o c e s s e s , but they exist internal ly as part of the p rocess C L l . The p ro ce s s +-L

d u m p s the con ten t s of a list into the stack; s ince it happens to be act ive as we l l as (

a nd) , it must a lso be pass ivated wi th f .*^

W e can p rov i de one last i l lustrat ion by wr i t ing the code for H . , as it might have

b e e n d e f i n e d :

"<-L : (F P S V N , R) *-L ACT !

T h e cha rac te r <- happens to a lready exist as a name, so it is necessa ry to use

b e f o r e the name H . to prevent it f rom being mis- recogn ized as <- f o l l owed by L.*^

T h e n f o l l o w s the PL* program, made up of the usual pr imit ives. This de f ines <-L, w h i c h

is n o w s imp ly a rout ine, like TSL. To make it active we input it, input the act ivat ing

p r o c e s s ACT and do an immediate execut ion wi th J. From that point on H . is act ive.

[1 4]

[1 5]

H is of course possible to passivate 1 itself by writing ' * .

The operation of " will be explained more fully in the following section.

L* Mechanisms 31

3.6.2 Lexical Recognit ion System

W e have assumed above that EL* can be rep resen ted as a sequence of s ymbo l s .

In o n e r e spe c t this a l ready d i f fers from standard pract ice, in that all syntact i c marks

(e.g., (or i) c o r r e s p o n d to symbols in the same way as what are usual ly t e rmed

" i den t i f i e r s " . We now need to show how the character stream is segmented and

c o n v e r t e d into a sequence of names, wh ich then become assoc iated w i t h in te rna l

s y m b o l s .

T w o requ i rements are part icu lar ly press ing for a lexical recogn i t ion sys t em:

F lex ib i l i ty : It must be able to encode a great var ie ty of segmentat ion

and c lass i f i cat ion rules, to suppor t the g rowth of object sys tems f rom

w i th in . (In part icular, it must handle punctuat ion and syntact ic marks

in a w a y homogeneous w i th other lexical items.)

E f f i c i ency : It must be highly ef f ic ient — time eff ic ient s ince it sits in

the bas ic interact ive loop of the system, and space ef f i c ient s ince

use r s can be expec ted to use many names. (Systems wi th thousands

of names must be practicable.)

T h e cen t ra l recogn i t ion system is composed of two -way symbol tab les , ca l l ed

d i c t i ona r i e s (i.e., name-symbo l and symbol-name cor respondences) . A d i c t i ona ry

s c h e m e r equ i r e s fu r ther spec i f i cat ion. (1) What class of names wil l be admit ted to a

d i c t i o na r y ? F i rst , call a lexical recogni t ion point a point in the character s t ream such

that the p r io r sequence of characters has. been complete ly segmented and r e c ogn i z e d

and the f o l l ow ing sequence is unana iyzed. (2) What d ict ionary appl ies at a point (if

s e v e r a l exist)? (3) What candidate names get submitted to the d i c t i ona ry fo r

r e c ogn i t i o n at a point? (4) Given-that more than one d ict ionary entry is sa t i s f i ed at a

po in t , h ow is the ambiguity reso lved? Standard pract ice is to do r u l e - b a s e d

s egmen t a t i o n of the character stream to determine a single candidate, such that

amb igu i t y cannot ar ise, admitting to the dict ionaries only such names as are cons i s ten t

w i t h the segmenta t i on rules. Mult ip le d ict ionar ies in the form of nested b lock s t r u c t u r e

a r e a lso s tanda rd .

The f lex ib i l i ty requ i rements imply a d i f ferent approach. EL* adopts the f o l l ow ing

p r i n c i p l e :

Longes t - r e cogn i zab l e : That name will be recogn ized wh ich is the

longest name that matches, start ing at a recogni t ion point (from w i th in

the app l i cab le d ict ionar ies).

Some examples wi l l c lar i fy the pr inc ip les (v/here we a lways take the r e cogn i t i on

3 2 Mechanisms L*

po in t to be at the far left). Under Text are example inputs, each resu l t ing in the

r e c o g n i t i o n under Reco£ni?e when the names under Entr ies a l ready exist in the

d i c t i o n a r y :

InDut Text Dict ionary Entr ies Recognize

,+H .+ ,+H .+H

L \ A B C ABC L\ L\

(B (B ((B

<= <= < <=

T h e p r inc ip l e of the longest- recogn izab le is a semantic segmentat ion scheme

w h i c h c oup l e s segmentat ion to the contents of the appl icable names. It permits one to

h a v e o v e r l a p p i n g notat ions, not rest r i c ted by a set of art i f ic ial segmentat ion ru les .

T h e p h r a s e "ar t i f i c ia l " is used advisedly, since it appears to informal ob se r va t i on that

humans o p e r a t e percep tua l l y c loser to the longest- recogn izab le pr inc ip le than to any

o t h e r s egmen ta t i on scheme in common use.

A typ i ca l example of the use of this pr inc ip le v/ithin L* can be s een in the

p r o b l e m of bu i ld ing l ists of d i f fe rent types. Parentheses, (...) , wi l l bui ld a list, but do

not s p e c i f y its t ype (e.g., T / L , T / P). This is done by default , p r ope r l y enough .

H o w e v e r , a nota t ion is requ i red to dec lare the type spec i f ica l ly:

(...) Bui ld a list of default type

L \ (...) Bui ld a list of T / L

P\< ...) Bui ld a list of T / P

T h e l onges t - recogn i zab l e pr inc ip le recognizes L \ (as a who le in p r e f e r en c e to

s e g m e n t i n g b e f o r e the (. G iven that we had def ined a new list t ype , say T /Q , w e

w o u l d of c o u r s e face the prob lem of gett ing Q\ (into the d ic t ionary in the f irst p lace.

T h i s is a ccomp l i shed by the doub le quote:

" Q \ (: (T /Q f \ ()

Doub l e - quo t e is a symbol just like any other; it exists in the d i c t ionary and is

a c t i ve . It s igna ls the recogn i t ion system to recognize all charac ters up to the next

s p a c e as a n e w name. Notice in this that the general rout ine \ (also exists wh i ch wi l l

t ake any t y p e symbo l as input and start a list structure of that type; it is normal ly

a c t i ve , so it had to be pass ivated to get it incorporated into the rout ine. In fact, w e

c o u l d have not bo the red to def ine Q\ (and instead simply wr i t t en:

T / Q \ (...)

T h e l onge s t - r e cogn i z ab l e pr inc ip le wou ld have segmented T /Q (which is in the

L* Mechanisms 3 3

d i c t i o na r y) , and then \ (. i b

The ques t i on of putt ing new names into I he dict ionary requ i res addit ional des i gn

d e c i s i o n s . In genera l , EL* avoids declarat ions (a design dec is ion genera l l y f a vo r ed by

i n t e r a c t i v e languages and not by batch languages). In cases of ambiguity, as above , a

d e c l a r a t i o n (via ") is unavo idab le . But general ly if a symbol is ment ioned and not

r e c o g n i z e d , then it is an implicit dec larat ion of a new entity.

Implicit dec la ra t ion poses a prob lem for a semantic segmentat ion scheme. A t

w h a t po int is a new ly input name complete? To ident i fy terminat ion po ints for

r e c o g n i z a b l e input names, the character set is div ided into severa l c lasses: name

c h a r a c t e r s , digit charac te rs , boundary characters, and par t i c ipat ing b ounda r y

c h a r a c t e r s . The name charac ters genera l ly include all a lphabetic cha rac te r s and some

of t he spec i a l charac te rs . Boundary characters act as rigid boundar ies for recogn i t i on ,

a nd inc lude cha rac te r s like space, tab, car r iage-return and line feed . Names do not

c o n t a i n r ig id bounda ry characters . Part ic ipat ing boundary characters act as cond i t iona l

b o u n d a r i e s for name recogn i t ion and can be part of names. They gene ra l l y inc lude

most of the spec ia l charac ters . For example, if :, (, and) are par t i c ipat ing bounda r y

c h a r a c t e r s and space is a r ig id boundary, then:

A B C : (A B CD)

w o u l d be p a r s ed so that recogn i t ion wou ld be attempted on A B C : (A B , ABC: (, ABC : ,

and f ina l l y ABC. If none of these poss ib le names is found in any of the re levant

d i c t i o na r i e s , then the last wi l l be implicitly declared. The class ass ignments for

c h a r a c t e r s is under contro l of the programmer to allow maximum f lex ib i l i ty.

T he f inal dec is ion at this level in the recognit ion system is what sort of name

c o n t e x t s a re avai lab le. EL* permits an indefinite set of d ict ionar ies. An o r d e r e d list of

t h e s e is ava i lab le at a g iven recogni t ion point. Normally this is b lock s t r u c tu red , but

c a n as eas i l y p rov ide sea led off lower contexts which do not have access to h igher

o n e s . Th i s latter scheme se rves the g rowth of object systems wh i ch shou ld exist in an

i s o l a t ed w o r l d as far as the user is concerned.

3.6.3 The Dict ionary Mechanisms

T h e desc r i p t i on so far does not prov ide the fundamental mechanisms out of

w h i c h the d i c t i onary shall be built. Pr inc ip les, such as l onges t - recogn i zab le , are of

c o u r s e on l y a part icu lar (useful) des ign choice. The fundamental scheme must permit

the c r e a t i o n of name segmentat ion and dict ionary schemes of a rb i t ra ry va r i e ty .

[1 6] This ansumos that T/0\ and T/0\(are not dofincd (i.o., segmentation dcponds on the semantics, which is

to say on the actual set of names beinfc used).

3 4 Mechanisms L*

T h e p r ob l em is analogous to that faced by EL* for the higher leve l syntax , and -

the so l u t i on adop t ed is fundamental ly the same — namely, to take a "p rocess v i e w " of

r e c ogn i t i o n :

Sequent ia l P rocess Recognizer: A linear sequence of charac te rs , each

of w h i c h des ignates a symbol , wh ich is in terpreted immediately in an

o pe r a t i n g env i ronment that includes access to the charac ter s t ream.

(The symbo l s are ca l led character actions.)

T h e f unc t i on of access ing a d ict ionary is d is t r ibuted to the co l lec t ive act ions of

t he c h a r a c t e r s s ta r t ing st the recogni t ion point. The in terpretat ion of syntax act ions

o c c u r s immediate ly as they bacome recogn ized. From one point of v i ew the re is on l y

the i n t e r p r e t a t i o n of a sequence of character actions. In genera l , t he re cannot be

s e p a r a t e l eve l s of p rocess ing that create f irst a representa t ion of a cha rac t e r

s e q u e n c e , t hen a r ep resen ta t i on of a name sequence, then a r ep resen ta t i on an EL*

s ymbo l s equence , then an internal parsed structure, wh i ch ' is then execu t ed .

S u b s e q u e n t p r o ce s s i ng at all levels (including that of characters) can d e p e n d on the

p r o c e s s i n g at all h igher levels.

It remains to be shown how to real ize var ious d ict ionary schemes by such a

mechan i sm. Such deta i l is beyond this paper. We have const ruc ted by these means

mul t ip le l inear tab le d ict ionar ies, discr imination net d ict ionar ies, hash ing tab le

d i c t i ona r i e s , and o the r s — represent ing a wide var iat ion of space and time t r adeo f f s .

T h e r e is no th ing inherent in the Sequential Process Recogn izer that res t r i c t s it

to d i c t i o na r y l ookups . For instance, it is used for convers ion of digit s equences to

numbe r s . M o r e genera l l y , a user interface where all the syntax is c o n v e y e d b y

punc t ua t i o n marks cou ld be rea l ized by character actions rather than by syn tax

ac t i ons . Indeed the same actions could be used, simply assoc iat ing them to the

c h a r a c t e r s ra the r than to the names. ' EL* renounces this poss ib i l i ty in o r de r to

p r o v i d e the ab i l i ty fo r syntax to res ide in arb i t rary character str ings (e.g., <=).

3.7. The L* Kernel

L* is g r o w n f rom a kerne l . That is, there is a small body of code and data wh i c h

c ons t i t u t e s a s y s t em that is suff ic ient to run. From that point on, all of the addi t ional

fac i l i t i es a re added to the system using its own mechanisms.

T h e ke rne l of L* is usual ly measured by the amount of machine language it

r e qu i r e s , for this somehow measures how much basic mechanism has been de f i ned . The

s i z e of the ke rne l , measured this way, is g iven for severa l implementat ions in F i gu re

[17] In fact, various command actions (e.g., in the editor) are associated with standard control characters

such as carriage-return, line-feed, or altmode.

L* Mechanisms 3 5

6. It is about 1600 wo rd s on the PDP10 and 2500 wo rds on the PDP11 s tanda lone

(e i t he r a s imp le PDP11 or C.mmp, a mult iprocessor (Wulf and Bell 1972)). The t y p e s

w h i c h a re r e p r e s e n t e d in F igure 6 account for most cf the space in each sys tem. The

M L * l anguage is composed of machine code, or t ype T /M . The PL* language is

c o m p o s e d of i n t e r p r e t ed programs of t ype T / P . The T/W data inc lude bu f f e r s , tab les ,

s t a c k w o r k space , and s ing le w o r d constants and var iab les . The T / L , T /A , and T / A L

d a t a a r e symbo l i c l ists and associat ions. The T / K S data are character s t r ings for the

n a m e s in the sys t em. The L*A (A- leve l) system is the complete basic L* sy s t em that

mos t u s e r s use. Note that the 8080 vers ion is desc r i bed in terms of 16 bit w o r d s

i n s t e a d of 8 bit by t e s .

T h e s i zes for the systems are fa ir ly constant (in terms of bits) except for two

c a s e s : L*(I) is b r o ken into two segments, w i th the h igh segment (the numbers in

p a r e n t h e s e s) on ly loaded on demand; and L*C.(D), wh i ch conta ins fac i l i t ies fo r

m u l t i p r o c e s s i n g and for deal ing w i th ove r l ayed pages in its address space . It is

i n t e r e s t i n g to note that the ex is tence of an under ly ing opera t ing sys tem does not

g r e a t l y a f f ec t h o w much machine code is requ i red in the kerne l .

M a c h i n e

W o r d s i z e (bits)

O p e r a t i n g Svs

L* V e r s i o n

P D P 1 0 PDP10

36 36

T O P S - 1 0 TENEX

L*(I) L*(I)X

PDP11 C.mmp

16 16

None Hydra

L*11(H) L*C.(D)

A LTO 8080

16 16

None None

L*ALT0 L*80S0

K e r n e l

M a c h i n e c ode 1.6 1.6 1.8 5.7 2.5 2.5
T / P 6.6(1.6) 7.8 4.0 6.7 6.0 5.0

T /W da ta 6.1(1.2) 7.2 5.0 10.0 5.8 4.2
T / L 4.1(0.4) 4.5 1.0 1.1 0.7 0.6
T / A , T / A L 1.0 0.9 • 0.3 0.6 0.8 1.1
T / K S 1.5(0.4) 1.9 - 4.8 2.3 2.3

t=A (A - l e ve l) 25(+10) 32 13 32 18 16

F i gu re 6. Sizes of various L* versions in thousands of words

T h e machine code in the kernel alone does not p roduce a se l f -su f f i c ient s y s t em.

Some PL* p r og r ams and data are requ i red as wel l to make a minimal se l f - su f f i c i en t

s y s t e m . In the A - l e v e l sys tem, the PL* programs account for about f ive t imes the s i ze

3 6 Mechanisms L*

o f t he mach ine code , and the data accounts for about nine times. The large p r o p o r t i o n

o f d a t a is l a rge ly due to the space needed for names (character s t r ings) and

a s so c i a t i o n s b e t w e e n names and symbols.

T h e r e are important reasons for L* to have a small kerne l . F irst, it l imits the

amount of bas i c s y s t em that must be unders tood by a user (i.e., a sys tem implementer) .

T h u s , it c on t r i bu t e s substant ia l ly to the total access ib i l i ty of the sys tem. Size a lone

d o e s not de te rm ine how access ib le the kerne l is ~ if it w e r e a s ingle ent i ty, then e v e n

1 6 0 0 w o r d s cou ld be formidable. In fact, the kernel cons ists of a h ighly ra t iona l i zed set

o f r ou t i n e s , all bui l t around the same operat ing environment. Thus in a typ ica l ke rne l

t h e r e a re about 130 rout ines, most of wh ich are small, independent l anguage

o p e r a t i o n s (e.g., S, N, . +). The re are about 15 rout ines larger than 20 ins t ruc t ions ,

a nd the la rges t is about 80 instruct ions. The h ie rarchy among these rou t ines is

s h a l l o w , w i t h cal ls that nest deeper than two be ing rare.

T h e fact that there is only a single rout ine for accompl ish ing any func t ion , as

d e s c r i b e d in Sec t i on 3.5 on ML*, is an important cont r ibutor to the s impl ic i ty of the

k e r n e l . A l t h o u g h the re are rout ines that the user does not normal ly look at (e.g., t hose

in the s p a c e management or inter face faci l it ies), there is no spec ia l s ubsy s t em of

i n t e r na l h ou sekeep i ng rout ines. The re is nothing h idden under the f loor and i ndeed

no f l o o r at all.

A s e c o n d r eason for having a small kernel is that L* is cons t ruc ted to be

r e p e a t e d l y g r o w n into an object system. Such a g r ow th p rocess is not just

augmen ta t i on , but can involve modif icat ion and replacement of ex ist ing faci l i t ies. (For

e x a m p l e , a n e w d i c t i onary scheme, or a type system w i th added features) . R e g r o w t h is

o f t e n the s t r a t egy of choice in such cases, backing down to a minimal sys tem and

pu t t i n g the n e w ve r s i on together from scratch. The smaller the kerne l , the eas ie r su ch

a p r o c e s s wi l l be . Indeed if the kernel is small enough and simple enough (as w e

b e l i e v e the L* ke rne l s are), e ven revis ions of the kerne l are poss ib le wi thout too much

d i f f i c u l t y .

T h i r d , w i t h a small and simple kernel it is much easier to p roduce a comp le te l y

d e b u g g e d bas ic sys tem, such that most e r ro r s encounte red can be assumed to r e s i de

in n e w l y - a d d e d code . This has indeed p roved to be case — L* itself is h ighly s tab le .

F o u r t h , po r tab i l i t y f rom one environment to another and f rom one machine to

a n o t h e r is made much eas ier . We did not have portab i l i ty expl ic i t ly among the major

d e s i g n goa l s of L*, but it is c lear ly important. And indeed, we have brought up ve r s i on s

o f L* o n s e ve r a l d i f f e ren t computer systems.

Add i t i ona l bene f i t s der ive f rom the small kernel , but they af fect most ly the bas ic

s y s t e m de s i gne r s themselves. Thus, it has been poss ib le to ca r ry out a subs tant ia l

n u m b e r of i te ra t ions of the basic L* system. Each of the i terat ions has expe r imen ted

w i t h rad i ca l l y d i f f e ren t solut ions to the var ious basic sys tem prob lems. This w o u l d

s u r e l y not have b e e n poss ib le if the system itself we re as large, say, as a compi ler for

a h i g h e r - l e v e l language.

L* Mechanisms 3 7

3.8. Complete Facilities

In Sec t i on 3.1 w e sa id that L* was organ ized by faci l i ty. Throughout the sec t i on

w e h a v e no t ed that the var ious mechanisms we have d iscussed w e r e inc luded in such

a n d s u c h a fac i l i ty .

T h e de s i gn goa l of p roduc ing a complete operat ing env i ronment is to be r ea l i z ed

b y p r o v i d i n g a comp le te set of faci l i t ies. In creat ing an object sys tem the user shou l d

f i n d ava i l ab l e as fac i l i t ies all the so f tware tools of whatever kind that he needs . S ince

al l f a c i l i t i e s ex ist w i th in the same system, and since this also inc ludes the ob j e c t

s y s t e m as we l l , s e ve r a l consequences fo l low:

A l l s o f t w a r e tools wi l l be evoked and used wi th in the same set of

c onven t i ons .

A l l s o f t w a r e tools can be modif ied, examined and debugged (for e ven

much -u s ed sys tems exper ience an occasional bug) in a common way .

T o the extent that new tools are requ i red, they can be added w i th in

the same f r amework and in real time.

T o make this conc re te , F igure 7 lists all of the faci l i t ies in the so ca l led A - l e ve l

s y s t e m . Th i s is a s tage of g rowth (starting from the kernel) whe r e enough fac i l i t ies

h a v e b e e n added to p rov i de what any beginning impiementer wants . It is the v e r s i o n

n o r m a l l y e v o k e d at the monitor level on the PDP10 ~ what y o u f ind in the s t anda rd

d o c u m e n t a t i o n .

3 8 Mechanisms L*

Sys t em. suppo r t faci l i t ies

I n t e r p r e t e r

I n t e rp re te r . s t ep

Fas t . i n te rp re te r

T y p e (J/1)

Dynamic . type

New . t y p e

Symbo l

Space.management

B lock.space.management

Ex te rna l . i n te r face

Ex tended . sys t em

System. in i t ia l i zat ion

Save

High.segment

Da ta . s t ruc tu re faci l i t ies

L ist (T / L , T / P)

L i s t . s t ruc tu re

Pair . l is t (T / A L)

B lock

Stack (T / J)

Cha ra c t e r . s t r i ng (T/KS)

S t r i ng . convers i on

By te . s t r i ng

W o r d (T/W)

Assoc i a t i on . sys tem

Assoc iat ion. l i s t (T /AL)

A t t r i b u t e (T /A)

Language.environment faci l i t ies

ML* (T/M)
System.macro

PL* (T/P)
Opera t ing .s ta te

C o n t r o l

I terat ive.contro l

Lanf,uo? x c .environment (cent.)

EL*"

Recognit ion

Character.act ion (T/K)

Executive

Name.context

Local.name

Fast.name

Type.recogni t ion

Undef ined.symbol

Name.assignment

Print

Print.machine.code

Util ity facil ities

Debugging

Error.detect ion.and.recovery

Undef ined.T/P

Tracing

PL*.step

PL*.breakpoint

ML*.breakpoint

General .breakpoint

Symbol.monitor

File

Fi le.read

Fi le.write

File.ppns

List.edit

Assembly

Machine.opcodes

Machine. instruct ion.assembly

Macro.assembly

General .word.assembly

Machine.opcodes.complete

Translat ion

Translat ion.update

Space.accounting

Time.accounting

F igure 7. Facil ities of the A- lovo l L*(I) system

L* Mechanisms 3 9

W e do not enumera te the contents of these faci l it ies because they are the

fac i l i t i e s to be e xpe c t ed in any total programming environment: ed i tors , d ebugge r s ,

c omp i l e r s , assemblers , account ing systems. The r? is nothing sacred about Ihe exact set.

It r e f l e c t s a un ip rocesso r w i th a non-L* operat ing system — other faci l i t ies show up in

s t a nd - a l o ne ve rs i ons of L*. L ikewise var ious mult iprocessing and over l ay management

fac i l i t i e s s h ow up in L*s that inhabit C.mmp. There are some notable omiss ions f r om

the set of fac i l i t ies in F igure 7, re f lect ing pr ior i t ies and exist ing a l ternat ive sys tems in

ou r C M U env i ronment . For instance, no documentation faci l i ty appears , nor does a

t e x t - e d i t o r fac i l i ty (wh ich does exist in other vers ions), a s t ruc tu red p rogramming

fac i l i t y , or an opt imizat ion subfac i l i ty of the translat ion (compiler) fac i l i ty. These are

not miss ing as matters of pr inc ip le; all should be there, and wil l be eventua l ly .

A s no ted ear l ier , fac i l i t ies are not se l f-conta ined modules. An important r e a son

f o r this is the v e r y la rge amount of funct ion that is r ep resen ted in Figure 7. Each

f ac i l i t y shou ld add on ly a minimal amount of coding to accompl ish the incrementa l

f un c t i o n . In pract i ce , this means there are strong dependenc ies b e tween fac i l i t ies:

f ac i l i t y Y requ i res the ex i s tence of facil it ies X I , X2, ... in o rder to ope ra te . Normal ly ,

th is takes the fo rm s imply of the g rowth order from the kernel — assuming, of c ou r se ,

that any fac i l i ty can use any pre-ex i s t ing facil ity.

A n important charac ter i s t i c of the facil ity organizat ion is its avo idance of

d e s i g n e r ' s p re roga t i ve . The re is no artif icial boundary in the system b e t w e e n wha t

the L* des i gne r s p rov i ded , and what is prov ided by users (or even by a set of

a d v a n c e d sys tem des i gne r -u se r s who might provide more tools, or by ob j e c t - s y s t em

imp l emen te r s d o w n the line). A l though the kernel consists of a part icu lar set of

fac i l i t i es , and o thprs get added to produce the A- leve l system, there is no w a y of

d i s t i ngu i sh ing such faci l i t ies f rom others added later except in terms of the subs tan t i ve

d e p e n d e n c i e s . The ob j e c t - sy s t em implementer can regrow the sys tem wi th a l te rnat ive

fac i l i t i es , or rep lace a basic faci l i ty that underl ies much else (say the Space

Managemen t faci l i ty).

A n important ex tens ion of this character ist ic occurs because the object s y s t ems

a re g r o w n wi th in the implementat ion system. Thus, it is not necessary to d i s t ingu i sh

imp lementa t i on tools f rom so f twa re that is seen as part of the object sys tem (say for

mon i t o r i ng of the runn ing object system). Because all of the tools res ide in one

env i r onmen t , augmentat ions of the implementation system and augmentat ions of the

o b j e c t s y s t em merge to become a single activity.

4 0 Exper ience L*

4. Experience

A n y p r opo s ed implementat ion system, certa in ly including L*, requ i res eva lua t i on

of h o w we l l it meets its des ign goais, and indeed of how wel l these des ign goals atta in

t he u l t imate goal of p roduc ing good so f tware systems. Evaluat ion of such comp lex

s y s t e m s is not eas i ly accompl ished, a fact genera l ly acknowledged, and we have no

s p e c i a l mirac les to make it easy . Furthermore, systems such as L* are not stat ic but

c o n t i n u e to adapt. Thus L* prov ides a moving target that tends to o v e r c o m e

de f i c i e n c i e s r evea l ed in ear ly evaluat ions. This is espec ia l ly t rue of a language w i t h

t h e f lex ib i l i t i es of L*.

A n immense number of aspects need to be assessed. How fast can software be

p r o d u c e d w i th L*? How ef f ic ient are the systems so produced, in space and in t ime?

H o w mainta inable and modif iable? How portable? How long does it take to b r i ng up a

n e w L* sys tem on a new machine? What is the perfor-nance of L* w i l h var ia t ion in s i ze

a nd comp lex i t y of ob jec t system? With variat ions in the exper ience and qua l i ty of

p r o g r a m m e r s ? How long does it take to learn L*? As laid out in F igure 1, L* embod i e s

many spec i f i c e lements of des ign phi losophy: their spec i f ic cont r ibut ion to t hese

e v a l u a t i v e d imens ions must be assayed. The mechanisms in L* that rea l i ze these

e l emen t s must be ana lyzed in their own right, s ince fa i lures in L* per fo rmance may be

d u e to imper fec t mechanisms rather than inappropr ia te ph i losophy. Mechan isms wi l l

a l so ex is t in L* that do not seem to serve any stated des ign ph i losophy, and these

n e e d to be ident i f ied and their contr ibut ion (posit ive or negat ive) determined.

Rec i ta t ion of this l i tany is not meant to overwhe lm, or to let ou rse l ves of f the

hook . W e do be l i eve that answers to such quest ions should be act ive ly sought , bo th

f o r L* and for o ther implementat ion systems. (And we be l ieve that the lack of such

d a t a o n ex is t ing implementat ion systems approaches the scandalous.) We p rov i de he r e

t h e f e w facts w e cu r ren t l y have; the issues d iscussed in the next sect ion g ive some

i nd i c a t i on of what our fu ture data-gather ing will focus on.

A f ew of the facts r equ i red for an assessment can come from measurement of

s t a t i c sys tems — of the amounts of code and data that make up L* or L* -p roduced

o b j e c t * sys tems. Most , howeve r , must come from data on per fo rmance . W e have

e n d e a v o r e d to ob ta in some data by means of what we call s o f twa re expe r imen t s

(R o b e r t s o n , Newe l l , and McCracken 1974). A so f tware exper iment invo lves the

r e c o r d i n g of at least ce r ta in minimal data on a actual so f twa re -p roduc ing even t . That

min imum inc ludes ob jec t i ve times on the total ef fort involved and the amounts d e v o t e d

to v a r i ou s act iv i t ies, v/ith ob jec t i ve measurements on the amount and type of ou tpu t s

p r o d u c e d (usual ly code and data). It includes some minimal desc r ip t i on of the

p r og r amming talent invo lved and the computing environment wi th in wh i ch the even t

o c c u r r e d .

T h e sc ient i f ic y i e l d of such so f tware exper iments is c rude indeed. V i e w e d f r om

the h i l l top of good exper imentat ion , such exper iments are wi ld ly out of con t ro l . But

t h e numbe r s are not t h e r eby devo id of s ignif icance. They are inf in i te ly supe r i o r to

h a v i n g no ob jec t i ve numbers at all, however much they need to be qua l i f i ed b y

s u b s e q u e n t analys is.

L* Exper ience 41

4.1. General Use

L* has b e en in use for severa l years , but by a ve ry small user community. One

s t y l e of use, the or ig ina l one envis ioned, has been to construct one-man exper imenta l

A I p r og r ams (F reeman 1970; Newel l 1972; Moore 1971). These sys tems range

a n y w h e r e f r om 50K 36-b i t wo rds to the maximum capac i ty of the target machine, are

r u n l a rge l y in i n te rp re t i ve mode, are modif ied repeated ly , and become h igh ly

p e r s o n a l i z e d . Most such systems, of wh ich there are probab ly a f ew hundred per yea r

p r o d u c e d in the U.S., are cur rent ly p roduced in LISP. No hard facts are ava i lab le on

any of t hese sys tems. A compar ison of the funct ional design features of LISP and L* in

F i g u r e 1 sugges t s that they wou ld not d i f fer s ignif icantly in their su i tabi l i ty for this

task; casua l o b se r va t i o n suppor t s this.

L* has b e en used for a var ie ty of interact ive systems. For instance, it has b e e n

u s e d fo r a s equence of product ion systems cal led PSG (Newell 1972; Newe l l and

McDe rmo t t 1975) and OPS (Forgy and McDermott 1976), wh ich can be v i e w e d as

p r og r amming languages, f rom the v iewpoint of L* appl icat ion. Some of these

app l i c a t i ons have a substant ia l component of low- leve l system programming. For

e xamp l e , ZOG (Newe l l , Simon, Hayes, and Gregg 1972), a system to aquaint use r s na ive

to the P D P 1 0 w i th a co l lect ion of large AI programs and to guide them in their use of

t h e s e p rog rams , i n t e rposed itself be tween the users and the PDP10 opera t i ng sys tem,

hand l i ng many of the command level funct ions for the users. A second gene ra t i on ZOG

(Robe r t s on , Newe l l , and Ramakrishna 1977) is exp lor ing man-machine communica t ion

i s sues , and is also be ing implemented in L*.

L* has begun to be used as an implementation system on exper imenta l compu te r

s y s t ems . A good example is its use on an exper imental vers ion of Hearsay-II , a s p e e c h

unde r s t and i ng sys tem, brought up on C.mmp. Hearsay-II is coded in SAIL on the

P D P 1 0 . SAIL was not avai lable on C.mmp, though BL ISS i 1 was (and was Ihe bas ic

imp lementa t i on system). The se lect ion of L* (over BLISS 11 or br inging up SAIL) r e s t e d

s t r o n g l y on the claim of prov id ing a complete operat ing environment. C.mmp, be i ng a

o n e - o f - a - k i n d exper imenta l system just beginning its operat ional l i fe, o f f e r e d a lean

s o f t w a r e env i ronment . This was a matter of great concern to the Hearsay d e ve l o p e r s .

Tha t L* w o u l d p r ov i de essent ia l ly all the tools and facil it ies of a complete s o f t w a r e

env i r onmen t as soon as it became operat iona l on C.mmp made it a qui te a t t rac t i ve

a l t e rna t i ve .

T w o o ther tr ia ls of this same type are cur rent ly in progress . L* has b e e n made

ava i l ab l e as the sy s t em on a standalone minicomputer (with graphics) to s uppo r t an

e xpe r imen t a l psycho log i ca l laboratory, to be used for stimulus d i sp lay and

e xpe r imen t a l con t ro l . Again, one reason for its attract iveness is the total env i ronment

it p r e s en t s . L* is also to be used on a microcomputer based system (a ne two rk of Intel

8 080 ' s) . A s ain, a s t r ong component of the appeal is the need to obta in a f r i end ly user

s o f t w a r e env i ronment on a system that is exper imental and one-o f -a -k ind , and w h i c h

p o s e s st i f f ba r r i e r s to obtain ing that environment in the usual way th rough the

4 2 Exper ience L*

a c c r e t i o n of many individual programs. Even the fact that C.mmp uses PDP11

p r o c e s s o r s , hence has access to exist ing PDP11 programs, only helps a l itt le, s ince the

i m p o s e d mu l t i p rocesso r s t ructure makes the importation of such programs non- t r i v ia l .

B o t h these tr ia l c a ses are still in an ear ly stage.

4.2. Software Experiments

A br ie f de s c r i p t i on of some of the sof tware exper iments we have pe r f o rmed

w i t h L* wi l l g i ve some further indication of its use. Comments on some of the data

f r o m these expe r imen t s appears after the descr ipt ions.

W I LE . T h e bas i s of the f irst exper iment was an exper imental programming language

d e s i g n e d b y Wi le (1974) . The language was explor ing some novel cont ro l s t ruc tu res ,

but w a s not imp lemented. Taking famil iarity with Wile's s tudy as a s tar t ing cond i t i on ,

w e imp lemen ted it w i th in L*. This invo lved design, coding , debugg ing and test ing. We

kep t a r e c o r d of p rog res s along the way, the amounts of code p roduced , and

d i f f i cu l t i e s e n c o u n t e r e d — from bugs to design er rors . The total e f fo r t was done by

t h r e e e x p e r t p rog rammers (the present authors) in a single 17 hour sess ion , w i t h

ano the r d o z e n hou r s of f o l l ow-up maintenance. The sur face s t ruc ture of the language

w a s e s sen t i a l l y ident ica l to the notat ion used in the original s tudy. The language was

f u l l y i n t e ra c t i ve w i t h d isp lays of part ial computations, so that conven ient exp lo ra t i on

w a s pos s i b l e . We sought to make the point that it was poss ib le to c rea te exper imenta l

l anguages in r e a sonab l y short order .

A P R 7 4 . A v e r s i o n of L* (L*C.(A)) was brought up on an ear l y ve r s i on of C.mmp to

p r o v i d e a demons t ra t i on of real-t ime speech signal acquisit ion, segmentat ion, labe l l ing

and d i sp l ay for an IEEE Speech Recognit ion Conference (CMU Speech Group 1974).

T h e L* s o f t w a r e exper iment invo lved creat ing the L* system on C.mmp, p rov id ing the

o p e r a t i n g s y s t em and mult iprocess ing features necessary for the s tanda lone

app l i c a t i on , and in tegrat ing the pieces into a running system. The spee ch p rog rams

w e r e c o d e d in BLISS 11, so this invo lved embedding BLISS11 into L*. C.mmp was at a

v e r y ea r l y s tage of deve lopment at the time', so the environment was ex t reme ly r aw in

t e rms of re l i ab i l i t y and so f tware faci l i ty. The entire exper iment took 30 ca lendar day s

aga ins t the ha rd dead l ine of the conference, and produced a runn ing sys tem that wa s

d e m o n s t r a b l e but imper fect (it ran ful ly the next day). The point of the L* exper iment

w a s that tota l s y s t em faci l i ty was made available on a r aw machine, w i th ex t reme

f l ex ib i l i t y to meet the unexpected demands of such a complex sys tem programming

s i t ua t i on .

SQS. T h e s t anda rd line editor for the PDP10 is cal led SOS. An L* so f twa re exper iment

w a s p e r f o r m e d to p roduce a vers ion for C.mmp. This was a s l ight ly l imited v e r s i on^no

jus t i f i c a t i on or contextua l search ing commands), but was to be total ly to spec i f i ca t ions ,

s i n ce it w a s i n tended for product ion use by programmers who use SOS dai ly on the

P D P 1 0 . T h e exper iment took 30 man days.

L* Exper ience 43

L *ALTQ and L*8080. T w o so f twa re exper iments we r e pe r fo rmed to test the

t r a n s p o r t a b i l i t y of L*. The f irst was the construct ion of an L* for the ALTO, a 16 bit

m in i compute r . Th is took 70 man days to complete (for one man). The task i n vo l ved

s o m e g r aph i c s suppo r t and microcode suppor t not found in other L* sys tems. T h e

s e c o n d w a s the cons t ruc t i on of an L* for the Intel 8080 , an 8 bit m ic rocomputer .

L * 8 0 8 0 is much c loser to the other L* systems, and took 28 man days (for one man).

Mos t of our exper imenta l data concerns programmer product iv i ty w h e n w o r k i n g

w i t h L*. A s no ted , this is not the only important quantitat ive measure of the w o r t h of

an imp lementa t i on sys tem, but it is a cr it ical one.

F i gu r e 8 g ives severa l product iv i ty measurements for L*, w i th a f e w

mea su r emen t s f rom the l i terature (Wolver ton 1974) for ca l ibrat ion. For the s o f t w a r e

e x p e r i m e n t s ment ioned above, the numbers are accurate, s ince we have p rec i se c ode

c o u n t s and numbers of hours wo rked . For the other L* situations, the code counts a re

a c cu r a t e , but the time est imates are somewhat less exact. For the measurements f r om

the l i t e r a tu re , the in format ion does not seem ve ry rel iable.

T h e measure used is number of debugged instruct ions per rnan-day, w h e r e a

d a y is t aken as an 8 hour pe r i od (work ing round the clock produces 3 man-days pe r

c a l enda r day , as in the WILE exper iment). The instruct ion count is taken on the f ina l

s y s t e m at the end of the pe r i od . The number of instruct ions is measured by the c ode

and a s so c i a t ed data in the computer, it is not measured in the source l anguage .

C o u n t i n g assoc ia ted data (not input data) p roper l y handles some p r og r am/da t a

t r a d e o f f s , but ca re must be taken w i th programs that use large simple tab les . Th i s

pu t s all l anguages on one common foot ing, but leaves open the re lat ion of s o u r c e

l a nguage to ult imate machine code s ize. It is wel l known that poor compi lers p r odu ce a

l a r g e r code+data s i ze than do opt imiz ing compi lers, thus making the poor ones appea r

mo r e p r oduc t i v e . Th is has to be handled through addit ional measurements of t hese

r a t i o s . W i t h L*, each symbo l res ides in one cel l, so that in ef fect one can count

i n s t r u c t i on s in the memory by count ing symbols (code+data) in the l ist ing.

4 4 Exper ience L*

S y s t e m Lansuase Size Instruct ions/man/day

L*(I) Assemb ly + L* 30K 375

SOS-C .mmp L* 5K 310

I ndu s t r y ave rage - v e r y s imple task 167

L*ALTO Assemb ly + L* + BCPL 9K 136

L*8080 Assemb ly + L* 3K 107

W I L E L* 0.8K 96

A P R 7 4 L* + Bliss 11 + Assembly 3.7K 51

I ndus t r y ave rage - s imple task 50

L* Assemb ly + L* 50K 30

SL* L* 2K 25

H e a r s a y - C . L* 5K 21

I ndus t r y ave rage - moderate ly complex 16.7

I ndu s t r y ave rage - complex 8.3

F igure 8. Productivity data for L*

T h e r e are severa l important points to notice about the L* data. T h e

p r o g r a m m e r s w e r e ail e xpe r i enced programmers, but not ail we r e expe r i en ced in the

u se of L* (par t i cu lar ly in the case of SL* and Hearsay-C) . These f igures are all b a s e d

o n l y o n n e w code genera ted (e.g., L*8080 is an 1SK system, but only 3K of it had to b e

w r i t t e n f r om scratch).

W i t h all the caveats s tated, the product iv i ty numbers are v e r y high. Some

th i ngs c an be sa id about spec i f i c numbers. The SOS numbers are poss ib ly high b e c a u s e

o f t he pecu l ia r decompos i t ion of an editor (i.e., a large number of commands, each w i t h

an i so l a ted bit of code). The re lat ive ly low f igures for Hearsay-C. almost s u r e l y

e x p r e s s p rogrammer d i f f e rences , plus losses inherent in the t ransfer of the i ncomp le te

s y s t e m f r om one programmer to another. This data suggests that programming w i t h L*

i n c r e a s e s programmer product iv i ty . More so f tware exper iments are needed to f u r t he r

s ub s t an t i a t e that claim.

L* Issues 4 5

5. Issues

Not all that can be said about L* is posit ive. We have faced up to many p r ob l ems

t h r oughpu t the long se r i es of des ign iterations; but there still remain ser ious un so l v ed

p r o b l e m s at the f ron t i e r s , some of which have sur faced only wi th ex tended e x p e r i e n c e .

W e w i l l now d i scuss seve ra l of the negative issues, and at the same time take the

o p p o r t u n i t y to d r a w some contrasts be tween L* and two spec i f ic a l ternat ive s y s t ems :

BL ISS and LISP.

5.1. Sufficient efficiency

Almost w i thout except ion , e f f i c iency (both of time and space) is a p r ime

r equ i r emen t for ob jec t systems. Even one-o f -a-k ind exper imental systems, wh i c h wi l l

n e v e r r each w i d e - s p r e a d usage, cannot ignore e f f i c iency altogether. Thus , it is

unden i ab l e that L* must permit f lexibi l i ty to be cashed in for e f f i c iency w h e n e v e r it

b e c o m e s app rop r i a t e , and to whatever degree is necessary. If an L* ob jec t s y s t e m

canno t match c lose ly the per fo rmance of an equivalent BLISS s y s t e m 1 0 , then all the

advan t ages of .L* may large ly go by the boards. On the other hand, v e r y h igh

e f f i c i e n c y is not a lways necessary , especia l ly dur ing the per iod a system is u nde r go i n g

d eve l opmen t and exper imentat ion . Thus implementation systems wh ich are ab le to

d e l a y the opt imiza t ion unti l it becomes crucial (i.e., systems such as LISP, ECL and L*)

c a n e n j o y the bene f i t s of f lexib i l i ty when they are most needed.

A T ime.account ing Faci l i ty exists in L* to help f ind the bott lenecks in a runn ing

s y s t e m . Once they have been located, it is usually poss ib le to obta in some init ia l

s p e e d u p mere ly by minor reorgan izat ion and recoding. The re are severa l d o c u m e n t e d

c a s e s w h e r e large fac to rs (e.g., ten to twenty) we re obta ined in subcomponen t s of a

s y s t e m in this manner.

A T rans la t i on Fac i l i ty in L* compiles PL* programs into ML* code , w h i c h

e s sen t i a l l y e l iminates the t ype-access and PL* in terpreter cyc le for each symbo l in the

p r o g r a m . ^ u A Cyc le .account ing Faci l i ty enables one to monitor a running s y s t em to

o b t a i n a list of e v e r y PL* rout ine that was cal led, ranked by the total number of

i n t e r p r e t e r c y c l e s spent just inside each. A typical result might show twen t y r ou t i ne s

a b o v e the 17, rank (i.e., each of the twenty claimed more than 17 of the tota l

i n t e r p r e t e r cyc l es) and these rout ines would then be an appropr ia te cho i ce fo r

[IS] Wi th B U S S the offic iency is premeditated, and thus virtually ensured.

[19] Mos t often the recoding takes the form of specializing the use of an operation which was over ly

general for the particular case.

[2 0] To maintain some flexibility, the PL* version of a compiled program is saved so that it may later be

edited and recompiled if necessary.

4 6 Issues L*

comp i l a t i on . The cyc l e - coun t ing and compilation process can then be r epea ted , but w i t h

s i gn i f i c an t l y d imin ished gain since the d is t r ihu l ion f lattens out quick ly. Since an

un comp i l e d L* sys tem typ ica l ly spends half to two-th i rds of its time ins ide the PL*

i n t e r p r e t e r , s p e e d u p fac tors of up to two or three can be rea l i zed by compi lat ion.

A t yp i ca l next phase in the opt imizat ion process is the hand-cod ing in ML* of

c e r t a i n c r i t i ca l rout ines . (Again, the Time.accounting faci l ity is a va luab le aid to intu i t ion

f o r i d en t i f y i ng the cr i t ica l rout ines). A complete ly integrated Assemb ly fac i l i ty w i th in

L* a l l ows the ML* code to be loaded and inter faced wi th other ML* and PL* rout ines

v e r y c onven i en t l y . Hand-cod ing can achieve signif icant improvements by remov ing the

o v e r h e a d of ca l ls to small subrout ines (both in terms of contro l and a rgument -pass ing

o n the Z stack), and through more extens ive use of the machine reg i s te r s for

t e m p o r a r y s to rage . Speedup factors of two to three can be expec t ed for typ i ca l

r ou t i n e s .

One f inal opt imizat ion s tep is microcoding, although it is poss ib le on on ly two

ex i s t i ng L* sys tems , and has actually been accomplished on on ly one of them (L*ALTO).

T h e m i c r o c oded ve r s i on of L*ALTO used 900 words of microcode to recocle 51 L*

k e r ne l r ou t i nes (e.g., the PL* interpreter , type access, stack operat ions) , and ach ieved

a f a c t o r of 3.2 s p e e d u p over the non-microcoded vers ion.

A l t h o u g h the app roach to se lect ive optimizat ion just out l ined seems r ight to us,

t he mechan isms to suppor t that approach have never been ful ly d eve l oped . A l so ,

t h e r e are a reas w h e r e the approach breaks down; most notably, when dea l ing w i th the

t r a deo f f b e t w e e n genera l i ty and ef f ic iency. The most o f ten c i ted case is the f i le

r e a d i n g mechan ism in L*, wh ich is about six times s lower than the c o r r e spond i ng

mechan i sm in LISP. About half of that d i f ference is due to code wh i ch is i n t e r p r e t ed in

L* v e r s u s hand w r i t t en machine code in LISP. That part of the d i f f e r ence can be

a p p r o a c h e d w i t h se lec t ive opt imizat ion. However, the other half of the d i f f e r ence is

due to the ex tens ib l e nature of the L* mechanism, and cannot be eas i ly r emoved by

s e l e c t i v e opt im iza t ion . Whether or not the select ive opt imizat ion app roach wi l l s u c ceed

in L* is st i l l an o p e n quest ion.

5.2. Contraction

A l t h ough cont rac t ion could have been d iscussed in the p rev ious subsec t i on (i.e.,

c o n t r a c t i o n = se lec t i ve space ef f ic iency), it is important enough to rate a subsec t i on of

its o w n . In fact, its importance is great ly magnif ied for L* due to the in tegra t ion of

imp lemen ta t i on sys tem and object system. Without a contract ion capab i l i ty , an L*

o b j e c t s y s t em wou l d of necess i ty contain all the implementation tools used to cons t ruc t

it — a qu i te unwo rkab l e situation.

One common paradigm for contract ion is to somehow mark the unwan ted

s t r u c t u r e s (e.g., in L* by eras ing them — putt ing them on the avai lable space list) and

t h e n r e l o ca te s t ruc tu res wi th in the address space in such a way that a str ict par t i t i on

is c r e a t e d , w i t h all unwanted st ructures at the high end of the address space . It is then

L* Issues 47

no rma l l y a s imple matter to el iminate the unwanted structures by chopp ing off the t op

o f the space . Howeve r , this app roach has s r c m c d to !;><=. ba r red for L* due to the

a p p a r e n t imposs ib i l i ty of bui ld ing a foo lproof s t ructure re locator. Wi th the g rea t

f l ex i b i l i t y and access ib i l i ty that an L* user exerc ises, it is all too easy to imagine w a y s

in w h i c h a re loca t ing p rog ram cou ld be inadvertant ly foo led in its memory s e a r c h fo r

r e f e r e n c e s to a s y m b o l . ^

It is e a sy e nough in L* to e rase s t ruc tures that are no longer needed , but the

r e su l t i n g ava i lab le space wi l l almost sure ly be scat tered throughout memory; thus the

s y s t e m wi l l have a g rea te r capac i ty for g rowth with in its current memory s i ze , but it

c a nno t be t ru ly con t r a c t ed wi thout re locat ion.

In L*(I) w e have deve l oped a part ia l solut ion to the contract ion p r ob l em b y

t ak i ng advan tage of a f ea tu re of the DEC TOPS-10 monitor wh ich al lows i ndependen t

c o n t r o l o ve r the two ha lves of the users 256K address space (called the low and h igh

s egmen t s) . W i th in 1*0), ava i lab le space lists are maintained independent ly for the t w o

s e g m e n t s so that the user may contro l the segment in wh ich new s t ruc tures are to be

c r e a t e d . By conven t i on , the high segment is used for uti l it ies (e.g., the ed i to r ,

d e b u g g i n g tools, compi le r) and other faci l i t ies that are expec ted to be used re l a t i ve l y

i n f r e quen t l y . Th is means that the system can normally run wi th just the low segment ,

a n d on l y load the h igh segment (which is read into memory f rom a drum) w h e n access

is n e e d e d to the fac i l i t ies t h e r e . ^

Th i s scheme is reasonab ly e f fec t ive , al lowing the A- leve l L*(l) s y s tem to b e

c o n t r a c t e d f rom a total s i ze of 35K to a low segment s ize of 25K wi th no no t i ceab le

d e g r a d a t i o n in r e spon se due to high segment swapp ing. The main d i f f icu l t ies w i t h the

s c h e m e a re : (i) the cho i ce of the segment in wh ich to place a s t ructure must be made

in advance , and is then for all pract ica l purposes f ixed; and (2) knowledge about c r o s s -

s e g m e n t r e f e r en c e s must be expl ic i t ly represented , and thus bugs c aused b y

r e f e r e n c e s to an un loaded high segment are a prob lem. Given a bet ter unde r l y i n g

o p e r a t i n g sys tem, this basic idea could be more e f fect ive ly exp lo i ted.

5.3. Higher order language

Some user f eedback has sugges ted that L* is a low or medium level language. In

f a c t , t h e r e are f ea tu res found in most high level languages wh i ch are not f ound in I*,

a nd v i c e - v e r s a . In this sect ion, w e wi l l examine those d i f fe rences . It shou ld be

p o i n t e d out that L* is a h igh level language in terms of express ive power (i.e., the s i z e

o f an L* p r og r am to pe r f o rm a part icular task is as small as a program wr i t t en in o t he r

h i g h l eve l l anguages to pe r f o rm the same task).

[2 1] This same technical difficulty is probably responsible for the fact that no garbage-collection facility has

yet been built for L*.

[2 2] Loading of thr high segment is not automatic — thus tho systom must anticipate all accencrs to the

high segment with an explicit load operation.

4 8 Issues L*

The most obv i ous d i f f e rence be tween L* and other high level languages is that

L* is ne i ther an a lgebra ic nor an express ion language. In an algebraic or e x p r e s s i o n

l anguage , what one wr i t e s are express ions which evaiudte to a local ised va lue (except

in the case of s ide e f fec ts , wh ich are rare). These languages are also ph ra se

s t r u c t u r e d (i.e., a symbo l may be rep laced by an express ion) for operands in g ene r a l ,

w h i l e most are not phrase s t ruc tured for operators . PL* does permit ph r a se

s t r u c t u r i n g of bo th ope rands and operators . However, values are not loca l i zed and are

not the result of eva luat ion of express ions. Instead, values are genera l ly p l a ced in the

c en t r a l da ta stack.

A s e cond d i f f e r ence is that L* has no var iables. This came about f r om a

c on s c i ou s cho ice to a lways deal w i th symbols, and not their values. T h e r e are

mechan isms in L* that a l low var iab les to be easi ly implemented, but var iab les are not

pa r t of the basic sys tem.

Th i r d , L* does not p rov ide symbol contexts (i.e., there are no local va r i ab l e s ,

e v e r y t h i n g is g lobal) . L* does prov ide name contexts wh ich can be used to ga in the

same k ind of p ro te c t i on that local var iables of fer, but at the name level ins tead of the

s y m b o l leve l .

Fou r th , L* is post f ix , whi le most languages prov ide infix for ar i thmet ic and'

b o o l e a n exp res s i ons . This is not cons idered a major problem, however , s ince inf ix

s yn t ax can be eas i ly cons t ruc ted in L* (a one page program can p rov ide inf ix and

f un c t i o n notat ion).

A n d f inal ly, L* uses the machine as the model instead of external e xp r e s s i o n s .

Th i s w a s ne ce s sa r y in L* to prov ide the kind of accessibi l i ty to the under ly ing mach ine

that w e des i r ed . Because of it, L* may be thought of as a high o rde r mach ine

l anguage , a l though its exp res s i ve power argues that it is more than just that.

5.4. Habitability

One of the negat ive aspects of our exper ience v/ith L* has been the s l o w n e s s

w i t h w h i c h its usage has sp read , even within the local environment. Some of th is is no

doub t due to our casual att i tude toward promotion, but there is neve r t he l e s s an

accumula t ing body of exper i ence with new L* users that s t rong ly sugges t s a

hab i tab i l i t y p rob l em w i th L*. Whi le we do not yet have a good unders tand ing of the

r e a s o n s for this p rob l em, w e have formed a few plausible conjec tures w i th the he lp of

u se r f eedback .

The f irst con jec tu re is that total accessibi l i ty produces apparent comp lex i t y f r om

the re la t i ve s impl ic i ty of the L* system by expos ing large masses of deta i l w h i c h a re

i r r e l evan t to a beg inn ing user. An A- leve l L* system has around 900 names (wh i ch is

s i gn i f i can t l y more than a new LISP or BLISS user sees; e.g., LISP 1.5 p r e sen t s about

150 names to a new user), w i th no good way to d i f ferent iate the re levant f r om the

(for the time be ing) i r re levant . One possible simple solut ion (but one wh i ch w e have

L* Issues 4 9

not y e t t r ied) wou l d be to introduce into the system a discr iminat ion of the small

s u b s e t of essent ia l names f rom the great masses. For example, two sepa ra te name

c o n t e x t s might be used to prov ide the discrimination, "i his approach looks p romis i ng

s i n c e u se r s tend to ope ra te most e f fec t ive ly in small wor lds that they know and

c o n t r o l .

A n o t h e r con jec tu re for the cause of the habitabi i i ty prob lem is the use of

c o n c i s e names. Short names (e.g., S, N, I , and D for the common list ope ra t i ons) have

t h e advan tage of economy of express ion , which is espec ia l ly important for a h igh ly

i n t e r a c t i v e sys tem. However , feedback from new L* users indicates that the sho r t

names f o rm a rea l stumbl ing b lock to learning the language. This p r ob l em is

a g g r a v a t e d by the fa i lure to p roduce a se l f -document ing system (a feature e x p l o r e d in

L*(H) but r e j e c t ed because of high space costs). A cons iderab le amount of i t e ra t i on

has g o n e into the des ign of the names, which are based on a set of s t anda rd

a b b r e v i a t i o n s w i t h fa i r ly cons istent convent ions. Users repor t that after t hey l ea rn

th i s set of convent ions , the short names do prov ide the intended economy of

e x p r e s s i o n .

5.5. Symbols and addresses

A s d i s cus sed ear l ier , one of the essent ia l des ign pr inc ip les of L* is the un i ve r sa l

s y m b o l s y s t em. A l though that pr inc ip le has never been in quest ion, the mechanism of

e q u a t i n g symbo l s and addresses to achieve a universal symbol system has. As no t ed

ea r l i e r , this mechanism has distinct advantages. It assures that all addresses wi l l be

va l i d in symbo l i c express ions . It also simplif ies the des ign by equat ing add re s s

a r i t hmet i c and symbo l ar ithmetic.

Howeve r , equat ing symbols and addresses has ser ious d isadvantages. F i rs t , it

l imits the number of symbo ls to the address space of the under ly ing machine. W i t h

most h a r d w a r e arch i tec ture , this poses no problem. But if the address space is smal ler

t h an the phys i ca l memory and some kind of re locat ion or over lay mechanism is

ava i l ab l e to take advantage of that additional memory (as on C.mmp), then the limit

b e c o m e s rea l and ser ious .

Se cond , b ind ing symbols to addresses makes reassignment of symbols d i f f i cu l t .

If all r e f e r e n c e s to a symbo l cannot be located, then the symbol cannot be moved; it

must rema in as a p lace holder and pointer to the new symbol . This prob lem, c omb i ned

w i t h the fact that symbo ls can and are s tored in arb i t rary s t ructures, makes general

r e l o c a t i o n essent ia l l y imposs ib le. This in turn makes contract ion and automatic g a r b a g e

c o l l e c t i o n d i f f icu l t to implement.

F ina l ly , a long the same lines, reassignment of the type of a symbo l ir; more

d i f f i cu l t if s ymbo l s are equated w i th addresses. If symbols we re separa te s t r u c tu r e s ,

t he i r t y p e wou l d be part of that s t ructure and there fore easi ly changed. The on ly w a y

to a ch i e ve the same f lexib i l i ty w i th types in the current system is to use half of the

5 0 Issues L*

m e m o r y to ho ld t ypes for the other half (a scheme that was actual ly used in an ea r l y

v e r s i o n of L*).

C r e a t i n g a new variant of L* in which symbols are not ident i f ied w i th add res ses

s e ems c l ea r l y ind icated. However , it is unclear where the balance of t radeof f wi l l lie

w h e n s u c h a sy s t em is completed.

L* Conclus ions 51

6. Conclusions

In th is paper , w e have d iscussed the des ign, implementat ion, and some

e x p e r i e n c e w i t h L*. The key d i f ference be tween L* and other implementat ion sys tems

(l ike BL ISS or ECL) is that L* is an interact ive symbol manipulation sys tem (fea tu res

s h a r e d w i t h LISP). It also prov ides a total operat ing environment (like LISP) wh i c h has

all t he n e c e s s a r y tools for program development from with in (e.g., ed i to r s and

d e b u g g e r s) . The sys tem also s t resses se lect ive rather than global opt imizat ion. The

k e y d i f f e r e n c e s b e t w e e n L* and LISP are that L* is highly extens ib le and a l lows tota l

a c ce s s i b i l i t y .

T h e key mechanisms used to implement L* include a universal symbo l and t y p e

s y s t e m , a s imple i n t e rp re ted list process ing language, a f lexible external language, and

a k e r n e l a p p r o a c h to bui ld ing the system.

T h e expe r i en ce to date has been wi th a small user community and has b e e n

g e n e r a l l y pos i t i ve . A ser ies of so f tware exper iments has been init iated, and the data

g a t h e r e d sugges t s that programmer product iv i ty is high. Areas of cont inu ing c o n c e r n

i n c l ude t ime and space e f f i c iency, the low level nature of parts of the sys tem, and the

d i f f i c u l t y n ew users exper ience in learning to use the system. Mo r e s o f t w a r e

e x p e r i m e n t s are needed to analyze and cor rec t these problems. The on ly de s i gn

p r i n c i p l e that has been brought into ser ious quest ion by the exper ience has b e en tota l

a c ce s s i b i l i t y . A l though total accessibi l i ty has been used to advantage in a number of

s o f t w a r e p ro j e c t s , it seems to be a real contr ibutor to the habitabi l i ty p rob l em.

S e v e r a l mechanisms used to implement the L* ph i losophy have been b rought into

q u e s t i o n b y our exper i ence . Perhaps the most crit ical is the real izat ion of a un ive rsa l

s y m b o l s y s t em by equat ing symbols and addresses. On the whole , howeve r , the

e x p e r i e n c e has ind icated that the basic des ign ph i losophy is an interest ing and v i ab l e

a l t e r na t i v e to that of more tradit ional implementation systems.

5 2 References L*

References

C M U Compute r Sc ience Speech Group, "Working Papers in Speech Recogn i t i on" ,

Ca r neg i e -Me l l o n Un ivers i ty Technical Report, 1974.

A. Evans , "An ALGOL 60 Compi ler", in R. Goodman (Ed.), Annual Rev iew of Au tomat i c

P r o g r a m m i n g v4, Pergamon, 1964, pp. 87-124 .

C. F o r g y and J. McDermott , "OPS Reference Manual", Ca rneg ie -Me l l on Un i ve r s i t y

Techn i ca l Repor t , 1976.

P. F r e eman , "Sourcebook for OSD - An Operat ing System Designer", Ph.D. thes i s ,

Ca rneg i e -Me l l o n Un ivers i ty , 1970.

P. F r eeman , "So f twa re Systems Pr inciples", Science Research Assoc ia tes . Ch i cago ,

197b .

M. Ha lpe rn , "XPOP: A Meta-Language without Metaphys ics" , Proc . FJCC, vo l . 26, pa r t 1,

1964, pp . 5 7 - 6 8 .

K. Know l t on , "A Programmer ' s Descr ipt ion of L6", Comm. ACM , August 1966.

R. Krutar , "F lexors (Modi f i cat ion Mechanisms)", Ph.D. thesis, Computer Sc ience Dept.,

C a r neg i e -Me l l o n Univ., 1976.

J . M c C a r t h y , P. Abrahams, D. Edwards, T. Hart, and M. Levin, "LISP 1.5 P r og r ammer ' s

Manua l " , MIT P ress , Cambr idge, 1962.

J . M o o r e , "The Des ign and Evaluat ion of a Knowledge Net for MERLIN", Ph.D. thes i s ,

Ca rneg i e -Me l l o n Un ivers i ty , 1971.

A . Newe l l , "A Theore t i ca l Exp lorat ion of Mechanisms for Coding the Stimulus", in A.

Me l t on and E. Mart in (Eds.), Coding Processes in Human Memory , W i n s t on ,

Wash ing ton D.C., 1972.

A. Newe l l , J . Ear ley, and F. Haney, "*1 Manual", Carnegie Institute of T e c h n o l o g y

Techn i ca l Repor t , 1967.

A . Newe l l and. P. F reeman, "BIP: Basic Interface Package", unpub l i shed wo rk i ng pape r ,

1968 .

A . Newe l l , P. F reeman, D. McCracken, and G. Robertson, "The Kernel A p p r o a c h to

Bu i l d ing So f twa re Systems", 1970-71 Computer Sc ience Research Rev i ew ,

Ca rneg i e -Me l l o n Un ivers i ty .

A. Newe l l and J . McDermott , "PSG Manual", Carneg ie-Mel ton Un ivers i ty Te chn i c a l

Repor t , 1975.

L* References 5 3

A. Nev/c i l and J . Shaw, "Programming the Logic Theory Machine", P roc . We s t e r n Jo int

C ompu t e r Con f e r en ce , IRE (now IEEE), 1957, pp. 230-240 .

A. N e w e l l , H. S imon, R. Hayes, and L Gregg, "Report on a Workshop in New Techn iques

in Cogn i t i v e Research" , Carneg ie-Me l lon Univers i ty Technicat Repor t , 1972.

A. Newe l l , F. T onge , E. Fe igenbaum, B. Green, and G. Mealy, "Informat ion P r o ce s s i ng

L a n g u a g e - V Manua l " , Prent ice Hall, 1964.

D. P a r na s , "On the C r i t e r i a to be used in Decomposing Systems into Modu les" , Comm.

A C M , vo l . 15, no. 12, December 1972.

A. P c r l i s , . J . M i t che l l , and H. VanZoeren, " L C 2 : A Language for Conve r sa t i ona l

Compu t i ng " , Interact ive Systems for Experimental App l i ed Mathemat ics ,

P r o c e e d i n g s o f the A C M Symposium, M. K lc rcr and J. Re infe ld (eds.), Academic

P r e s s , 1968.

M. R i cha rds , "BCPL" , P roc . SJCC, vol'. 34, 1969, p. 577.

G. R o b e r t s o n , A. Newe l l , and D. McCracken, "On Doing Sof tware Exper iments" , 1 9 7 3 - 7 4

Compu t e r Sc ience Research Review, Carneg ie-Me l lon Univers i ty .

G. R o b e r t s o n , A. Newe l l , and K. Ramakrishna, "ZOG: A Man-Mach ine Communicat ion

Ph i l o s ophy " , Ca rneg ie -Me l l on Univers i ty Technical Report, 1977.

K. Same l son and F. Bauer , "Sequential Formula Translat ion", Comm. A C M , vo l . 3, no. 2,

1960 , pp . 7 6 - 8 2 .

J . Shaw , " JOSS: A Des igner 's V iew of an Experimental On-L ine Comput ing Sys tem" ,

P r o c . S JCC, vo l . 26, 1965, p. 455.

B. W e g b r e i t , "The ECL Programming System", Proc. FJCC, vol . 39 , 1971, pp . 2 5 3 - 2 6 2 .

D. W i l e , "A Gene ra t i ve , Nested Sequential Basis for General Pu rpose P rogramming

Languages " , Ph.D. thesis, Carneg ie-Me l lon Univers ity, 1974.

R. W o i v e r t o n , "The Cost of Developing Large-Scale Sof tware", IEEE T ransac t i ons on

Compu t e r s , vo l . c -23 , no. 6, June 1974.

W. Wul f , D. Russe l , and A. Habermann, "BLISS: A Language for Systems Programming" ,

Comm. A C M , vo l . 14, no. 12, December 1971.

W. Wu l f and C.G. Be l l , "C.mmp: A Mul t i -Min i -Processor" , Proc. FJCC, 1972, pp. 7 6 5 - 7 7 8 .

W. Wul f , " A LPHARD: T o w a r d a Language to Support Structured Programs" , C a r n e g i e -

Me l l o n Un i ve r s i t y Technical Report, 1974.

W. Wul f , R. J ohnsson , C. Weinstock, S. Hobbs, and C. Geshchke, "The Des ign of an

Opt im iz ing Compi ler" , American Elsevier, NY, 1975.

