NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Nov 21 T

GENERALIZED CONNECTION NETWORKS FOR
PARALLEL PROCESSOR INTERCOMMUNICATION

C. D. Thompson

May, 1977

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

. This research was supported in

part by the National Science Foundation under Grant
MCS 75-222-55 and the Office o

f Naval Re

search under Contract NO0014-76-C-0370,
NR 044-422. The author is an NSF fellow,

HUNT LIBRARY
CARNEGIE-MELLUN UNIVERSITY

Abstract

A generalized connection network (GCN) is a switching network with N inputs and N
outputs that can be set to pass any of the NN mappings of inputs onto outputs. This
paper demonstrates an intimate connection between the problems of GCN construction,
message routing on SIMD computers, and “resource partitioning.” A GCN due to Ofman
[1965] is here improved to use less than 8N log N contact pairs, making it the minimal
known construction,

Any GCN construction leads to a new algorithm for the broadcast of messages among
processing elements of an SIMD computer, when each processing element is to receive
one message. Previous approaches to message broadcasting have not handled the
problem in |ts full generality. The algorithm arising from this paper’s GCN takes 8 log
N {(or 13 N 1/2) routing steps on an N element processor of the perfect shuffle (or
mesh-type) variety.

If each resource in a multiprocessing environment is assighed one output of a GCN,
private buses may be provided for any number of disjoint subsets of the resources.
The partitioning construction derived from this paper’s GCN has 6N log N switches,
providing an alternative to "banyan networks" with O(N log N} switches but incomplete
functionality.

1. Introduction

A generalized connection netwark (GCN) is a switching network with N inputs
and N outputs capabte of implementing any mapping of inputs onto outputs. In other
words, each cutput may be connected to any one of the inputs, far a total of NN
different connection patterns. Thus a GCN is more powerful than the connection
networks of Benes [1965] et al, for a connection network handles only one-to-one
mappings of inputs onto outputs (N! settings). An important paramater of any GCN is
its delay, that is, the maximum number of switches that separate any input-output pair.
For example, an NxN crosspoint switch is a GCN with N2 contact pairs and unit delay.
Ofman’s [1965] construction has 5 log N delay and 10N log N contact pairs {all
logarithms in this paper are base 2). Ofman’s construction is here improved to 4 log N
delay and 8N log N contact pairs. Other GCN results are a construction with 8N log N
contact pajrs but ON log N) delay (Pippenger [1973]), a construction with 0(N5/3)
contact pairs (Masson and Jordan [1972]), and a non-constructive proof (Pippenger
[1977] that GCNs need only O(N) more switches than connection networks. (The best
connection network construction has {6/log 3N log N = 3.8 N log N cantact pairs--
Benes [1965].)

Any GCN construction leads to an algorithm for the transfer of data among
processing elements of an SIMD (Single Instruction stream Multiple Data stream: Flynn
[1966]) computer. This data transfer is modeled as the routing of messages, each
originating at a processing element and destined for some subset of the other
processing elements. There have been .many papers treating particular message
routing patterns on particular networks (Stone [1971], Siegel [1976], Orcutt
[1976],...) The algorithm based on the GCN of this paper performs near-optimally
on any message distribution pattern in which each processing element receives at most
one message, on several popular SIMD interconnection networks. For an N element
computer, the algorithm requires lSNl/2 routing steps on a square mesh-type array, 8
log N routing steps on the perfect shuffie, PM2], and WPM2I networks, and 4 log N
routing steps on the Cube (see Section 3 for descriptions of these networks). Al
other known GCN constructions lead o slower routing algorithms, -

Finally, any GCN construction applies to the partitioning of multiprocessor
systems in the sense of Goke and Lipovski [1973) If each resource is assigned one
output of a GCN, proper switch settings provide a private conductive path for each of
any number of disjoint subsystems. The banyan networks originally proposed for this
task do not implement all partitions when O(N log N) switches are employed. When
used for partitioning, 1/4 of this paper’s GCN can be omitted, so that unrestricted
partitioning may be oblained with less than 6N log N switches. No other known GCN
construction leads to smaller partitioners.

The new GCN construction is described in Section 2, its application to message
routing is elaborated in Section 3, and ils related partitioning network is derived in
Section 4,

2. A GCN Construction

A GCN may be represented as a graph with two ordered sets of N vertices each
("inputs"” and “outputs”), such that for any sequence jj,jo,..jp (12jkSN) there exists a
subgraph in which input vertex i is connected with output vertex k iff j, =i In this
madel, vertices are wires and edges are switches; edges included in the subgraph for a
particular j;,..jy are precisely those switches that must be closed to connect the ith
input to those outputs k for which j, = i. A trivial GCN construction is the compiete
bipartite graph on 2N nodes, which corresponds to the NxN crasspoint switch. Since
there are NN different ways of choosing the j, sequence, at least Ig(NN) N log N
contact pairs {edges) are required in any GCN.

A GCN construction may be obtained from the following schema (Ofman [1965]).

. T
o {N,N)- o {N,N)- o
o generalizer o connector o
o] o 0

Figure 1. Schema for a GCN construction.

The lett-hand network produces the correct number of copies of each of the
inputs, which are then permuted to the proper outputs by the right-hand network. It
is now necessary to examine connection and generalization networks in more detail.

2a. Connection Networks

An {(N,N)-connection network is a switching network with N inputs and N outputs
capable of passing any of the N! one-to-one mappings (permutations of inputs onto
outputs). This is of course strictly less powerful than a GCN, in which the same input
may be connected to more than one output at a time. Benes [1965] published the
following 4N log N construction in which an N-input connection network is synthesized
from 2 N/2-input connectors and 4N additional contact pairs.

(Nf2,N/2)- (N/2N/2)-
connector connector

(N,N}-connector (2,2)-connector

Figure 2. Benes’ connection network.

The proper switch settings for any desired connection pattern may be found by
the method of Waksman [1968] in O(N log N) time on a serial computer, the best result
known. The author has developed a divide-and-conquer approach that would run on
many N element SIMD computers in O(N) time, but does not know how to reduce this to
an acceptable (sublinear) figure. Thus it would seem that lengthy preprocessing time
will be required for each GCN setting. In some cases, it may be feasible to tabulate
precomputed GCN settings, aithough it would seem necessary to store O(N log N) bits
for each setting.

It should be noted that this connector construction is symmetric about a
horizontal axis. In fact, the top log N layers and the bottom log N layers comprise
Omega networks (see Lawrie (1973]) that share a common ievel of switches.

“b. Generalization Networks

An (N,N}-generalizer passes input i to m, ditferent outputs, where X m; = N
and m;20. Thus it provides a particular number of copies of each input somewhere
among the outputs. The existence of (N,N)-generalizers with O(N) switches has been
demonstrated non-constructively by Pippenger [1977] Construction of a generalizer
can be accomplished by the following schema, due to Ofman [1965]

) k

2 (N,N)- - (NN [2
o ' o A o)
o hypercon- o mfra‘- o

‘ o centralor o generalizer o

J |

Figure 3. Schema for a generatizer construction.

The left-hand network routes all important inputs to its uppermost output lines.
More precisely, if m of the inputs will not appear on any output of the generalizer, the
other N-m inputs must appear on lines ky through ky_p, of the hyperconcentrator.
Ihe right-hand network is responsible for producing the correct number of copies of
each of its inputs, but there must exist some integer p such that kl,kz,...,kp'wi-!l. appear

in the output at least once, while kp+1,kp+2,...,kN will be ignored. Ofman demonstrates
that the following network is an infrageneralizer. ‘

N
o
(N/2,N/2)- (Nf2,N/2}-
infrageneralizer infrageneralizer
666 —— ——=a— ——0—0 ;c-
SRFE N |
' (N,N)-infrageneralizer (2,2)-infragencralizer _

Figure 4. Ofman’s infrageneralizer.

A more complete specification of Ofman’s network is required. The leftmost Mg
output lines will bear copies of input kq, the next Mg+ 1 outputs bear input kQ+1, R
and the rightmost Mg outputs bear input kp, where m>0 for lsqgsicpzN, mi=0 for i<q or
i*p, and 2 m;=N. 1}f q is chosen to be I, this specification can be seen to satisfy the
requirements for an infrageneralizer. The proper switch settings for Ofman’s network
may be obtained recursively by using the ‘upper switches to give each half-sized
infrageneralizer half the input sipnals. It should be noted that the signals required by

each half-sized infrageneralizer form a consecutive subsequence of the original inputs
(if the leftmost input is considered to "follow" the rightmost one). :

An (N,N)-connection network could be used for hyperconcentration, since a
hyperconcentrator merely permutes its inputs. This is in fact Qfman’s approach,
yielding an (N,N)-generalizer with 6N log N contact pairs. Ofman’s construction can be
improved by using fewer switches in the hyperconcentrator portion. Somewhat
surprisingly, Ofman’s infrageneralizer is an “upside down" hyperconcentrator--the
direction of signal flow through the network is reversed by turning inputs into outputs
and vice versa. This equivalence will be verified by the‘ demonstration of a
correspondence between any desired hyperconcentration function and an
infrageneralizer function. A hyperconcentration setting may be specified by a list of p
integers, NEN2eeny with 15n1<n2<..,<npSN, corresponding to the indices of the inputs
whose signals are to appear in the first p output lines. The corresponding
infrageneralizer function is that input i should appear on m; output lines, where m; =
N - My, ng =0, and Mo+l = Ppi2 = =Ny =N Ofman’s infrageneralizer will connect
input i to outputs ni-1*1 through n;i if switches are opened to disconnect all but
output number ni for ls<isp, then the required hyperconcentration function is
implemented by the reversed infrageneralizer. '

An example should clarify matters. A (8,8)-hyperconcentrator setting for Ny =
(2,3,6,7,8) corresponds to. a (8,8)-infrageneralizer setting for m, ={2,1,3,1,1,0,0,0). In
other words, the problem of finding the proper switch settings to bring inputs 2, 3, 6,
7, and 8 to outputs 1, 2,3, 4, and 5 (a hyperconcentration) may be solved by setting
Ofman’s infrageneralizer to route input 1 to outputs | and 2; input 2 to output 3; input
3 to outputs 4, 5, and 6; input 4 to output 7; and input & to output 8.

outputs | 2 3 4 5 6 7 8
Q@
¢
q
O
inputs ! 2 3 4 _ 5. 6 7 8

Figure 5. An upside-down hyperconcentrator set for (2,3,8,7,8).

inputs i 2 3 4 5 6 7 8

@
)]
q o
o
outputs |} 2 3 4 5 6 7 8

Figure 6. An infrageneralizer set for (2,1,3,1,1,0,0,0).

Since Ofman’s (N,N)-infrageneralizer has 2N log N contact pairs, an (N,N)-
generalizer can be built with 4N log N contact pairs by attaching a infrageneralizer to
a reversed infrageneralizer (a hyperconcentrator). Since the last stage of the
hyperconcentrator is identical to the first stage of the infrageneralizer, the combined
functionality of these two levels of switches may be obtained with a single one,

eliminating 2N contact pairs. The (8,8)-generalizer obtained in this way is illustrated
below. |

X

\V/

\
\

WV
A

,.
=
=3

Figure 7. An (8,8)-generalizer,

2c. The complete GCN construction

The astute reader will have noticed that the (N,N)-generalizer of Subsection 2b
is quite similar to the (N,N)-cannection network of Subsection 2a. In fact, one merely
needs to "unshuffle” the inputs and outputs of this (N,N)-connection network to make
the two networks identical. Then, when concatenating the generalization and
connection networks to obtain a GCN, the first stage of the latter can be combined
with the last stage of the former to yield (for N=8)

Figure 8 An (8,8)-GCN.

_ As it stands, there are 8N log N - 6N contact pairs in this GCN (N a power of 2).
However, O(N) contacts may be stripped from the cannector (see Waksman [1968)) and
the generalizer leaving 8N log N - 105N + 11 contact pairs. These GCN constructions
have 4 log N ~ 3 delay. An alternative construction based on three-way branching
yields (N,N)-GCNs with (12/log 3N logg N - (71/6)N + 13.5 contacl pairs (N a power of
3), the author’s best result (note: 12/lcg 3 = 7.6). This three-way branching
construction has delay (4/log 3Mog N - 3, which makes it the fastest known GCN.

3. Message Broadcssting

An SIMD computer may be considered to cansist of three major parts: a central
control unit, the processing elements, and an interconnection network. Each PE
(processing element) operates on data in its own local memory -according to the
dictates of the ceniral control unit. Data enters and leaves this local memory via the
interconnection network, which typically connects each PE to one of several
neighboring PEs. For example, in a mesh-type computer each PE has at most four
neighbors. The situation may be depicted as fallows, where the boxes are PEs and the
lines are possible connections.

R Y — —

Figure 9. A mesh-connecled computer.

Note that PEs on the edges have fewer than four neighbors. Given the strongly
local nature of the connection pattern, efficient intercommunication algorithms would
seem necessary for effective use of such a computer,

The message broadcasting problem may now be broadly stated, Initially, each
PE has generated a message of interest to same (possibly empty) subset of the other
PEs. Each PE is to receive exaclly one interesting message. How long does it take to
deliver all the messages, as a function of the total number of PEs and their
interconnection paltern? Time is measured in the number of (parallel) unit-distance
message routings, i.e., if the mesh-type interconnection network is set to "up”, in one
time unit each of the PEs may receive a copy of the message sent by its downward-
adjacent PE. for simplicity, assume that no time is spent on selecting which message
{of possibly several) will be sent from each PE. This assumption is valid on a computer
with a sufficiently powerful control unit (each PE .is explicitly told which message to
send}, and is nearly valid when routing decisions are made locally (for example, by
examination of "routing tags” on the messages). The algorithms of this paper will place
at most two messages in a PE at a time, so these routing decisions should not be time-
consuming. As mentioned in Subsection 2a, substantial preprocessing time will be
required for each distribution patiern, but will not be included in message delivery
time. : ‘

The next three Subseclions will solve the message broadcasting problem for
severat different interconnection networks.

3

3a. Message broadcasting o

the mesh-connected computer

Referring to the N element mesh-connected computer of Figure 9, it may be
seen that 4(N1/2-1) time units may be needed hy some message broadcasting
patterns. It would take a message 2(NU2—1) time to travei from the upper-leftmost
PE to the lower-rightmost PE. During all that time the interconnection network has
been set to "left" and "down", so ancther 2(N1/2—1) time units would be required to
send a message along the reverse route. It is not known whether more complicated
-broadcasting patterns require more routing time.. However, a large number of patterns
can be completed in aN1/2-1) time -- the so-called Omega permutations
(Orcutt[1976]). Also, any one-to-one patlern (each message goes to exactly one PE)
can be accomplished in about 6N1/2 .t‘ime, when N is very large (Thompson and Kung
[1977)). When N is small, 7(N1/2-1) time is sufficient, as indicated later in this
Subsection. The main algorithm of this Subsection demonstrates that no broadcast
pattern need take more than 13N1/2-time units. Vs

A relationship between a GCN construction and a message routing algorithm may
be drawn in the following way. Each node of a GCN corresponds to a PE, and each arc
to a message routing. 'If each of the N input nodes of a GCN corresponds to a
different PE, and if the same condition holds for the output nodes, then any GCN
setting indicates how to perform the corresponding message broadcast. Careful choice
of the node-PE numberings will result in a fast message broadcasting algorithm. For
example, on a 4x4 processor, the following indexing scheme seems natural.

r
12*-—-13-—-*14-—[15

Figure 10. Natural indexing of a 4x4 mesh-connected processor.

If the 16 nodes on each level of the (167,16)-GCN built according to Section 2
are numbered from left(0) to right (15), then the corresponding routing algorithm may

be drawn as follows.

0O 1 4 5 6 7 8 9 10 11 12 13 14 15
34 ;4)’4)’4 [@i
WNL VN AN LN ,‘4,’ ’
>>‘4< :.:‘ a‘ (L 2R 2)
enﬁ %ggg -_ ' %i (D 2,U 2)
= St | | =& = i (0 LU D
Q‘“ s:‘:z :0:5 e:da (L 2R 2)
(L LR 1)

IR KN KR
>:’:> g‘ {L 2,R2)
== =T o
% ‘d ;i 0 2,U 2)
,',‘,:,-_-i Ww ; 4i (D LU 1)
SR] o
“)‘ }{ }{ L IR 1)
(16,16)-GCN Routing

instructions
Figure 11. Routing on a 4x4 mesh-connected computer.

In general, this approach on an N element computer- would require 3 (L 1,R 1)
routings, 4 (L 2,R 2) routings, 4 (L 4,R 4) routings, ... 4 (L N1/2/2,R’ N1/2/2) routings,
4 (D 1,U 1) routings, 4 (D 2,U 2) routings, . . ., & (D N1/2744 N1/2/8) routings, and 2 (D
Nl/2/2,U N1/2/2} routings. Note that there are four routings of every type in the list
except the first and the last. This list sums to 14N1/2-18 time units. 'However, the
result can be improved to 13NH/2 46 by renumbering the nodes of the GCN. Since
the first routing type in the list above only occurs 3 times, it should be a relatively
tong one, freeing a quick unit-distance routing for a step that is repeated 4 times. For
example, the GCN nodes may be indexed from left to right as
(0,2,1,3,4,6,5,7,8,10,9,11,12,14,13,15) on each level. This sequence was obtained from.
the binary representation of the natural sequence by exchanging the least significant
bit with the (log N)/2 th least significant bit. '

10

If a particular message distribution pattern happens to be one-to-one (each
message goes to exactly one PE), then the full power of a GCN simulation is not
required. Instead, a simulation of the connection network imbedded in the last half of
the GCN can be accomplished in 7N1/2—8 time units, using the natural correspondence
scheme, :

The author cannot resist noting that Balcher’s hitonic sorting network is a GCN
when run "backwards"” {proof supplied upon request). This leads to an alternative
algorithm for message distribulion: that runs in time bounded by 1ani/e {Thompson
and Kung [1977]).

3b. Message broadcasting on a perfect shuffle computer

The perfect shuffle interconnection {(Stone [1971)) is nicely suited for message
broadcasting. A GCN may be simulated in 8 log N - 7 time units, giving a
correspondingly low upper bound for the time required by any message distribution
pattern. ‘ .

Let the PEs of a perfect shuffle computer be numbered from O to N-1. Each
index can be represented in log N = m binary bits, bpbr-q- - dbgbobi. The perfect
shuffle interconnection network has just three settings, so that PE byy-by is connected
to bmbm—l"~b2E1 {("exchange"), to bn1—lb;n‘2"-b2b1bm - ("shuffle"), and to
blbmbm-l"'bSbZ ("unshuffle").

An optimal numbering of the nodes of Section 2’s GCN constriction is easily
derived. Let the input nodes be labeled 0 (ieft) through N-1 (right). The labelings of
the next log N - | rows of GON hodes are obtained by unshuffling the binary
representation of the labels of the previous raw. For exampie, if N = 8 the first row
s (0,1,2,3,4,5,6,7), the second row s (0,4,1,5,26,3,7), and the third row s
(0,2,4,6,1,35,7). The (log N)th through the (2 log N - IMh rows are labeled by
shuffling the indices in the previous row. In the present example, the fourth row is
(0,4,1,5,2,6,3,7) and the fifth row is (0,1,2,3,45,6,7). The (2 log N - 1)th through the (4
log N - 3)th rows are labeled identically to the st through the (2 log N - 1)th rows,
while the output row (the (4 log N - 2)th) is numbered naturatly.

This GCN numbering may be molivated: by considering the corresponding perfect
shuffle network settings. In the example above, the first two rows are (0,1,2,3,4,5,6,7)
and (0,4,1,5,2,6,3,7). Thus, after the first stage of GCN simulation, each of PE O and PE
4 has one of t'e messages originaily in PE 0 and PE 1; PE | and PE 5 have messages
from either PE 2 or PE 3; PEs 2 and 6 have messages from PEs 4 and 5; and PEs 3 and
7 have messages from PEs 6 and 7. This result may be obtained with only two unit-
distance routing steps: an exchange and an unshuffle. The exchange transmits
messages between PEs 0 and 1, PEs 2 and 3, PEs 4 and 5, and PEs 6 and 7. At this
point each PE has two messages, one of which is selected to be sent out on the
Unshuffle connection, while the other is ighored (destroyed). The message received by
each PE during the unshuffle operalion is in. lhe desired place, ready for the next
stage of GCN simulation. Succeeding stages of the GCN simulation are handled

il

- similarlv. The complete GCN simulation consists of (log N - 1) repetitions of (exchange,
unshuffle), (log N - 1) repetitions of (exchange, shuffle), (log N - ‘1) repetitions of -
(exchange, unshuffle), (log N - 1) repetitions of (exchange, shuffle), and one final
exchange; for a total of 8 log N - 7 time units.

The optimality of this GCN numbering follows from the following considerations.
Fach stage of the GCN consists of N/4 complete bipartite graphs on 4 nodes. The
shuffle and unshuffle network connections are not in themselves sufficient to simulate
any slage of the GCN since, for example, PE 0 is only connected to itself. Thus at least
one exchange step must be executed during the simulation of each GCN stage.
Howevert, a shuffle or an unshufile must occur between consecutive exchange steps (if
not, the second exchange is superfluous). Since there are 4 log N - 3 stages in this
paper’s GCN construction, a simulation requires 4 log N - 3 exchanges interlarded with
4 log N - 4 shuffles or unshuffles. This Subsection’s numbering and associated routing
algorithm realizes this lower hound. ' '

For the special case of one-fo-one message distribution'patterns, 4 Idg N -3
time units are sufficient to simate the last haif of the GCN (a connection network).

3c. Messapge broadcasting on Cube, PM21, and WPMZI computers

The nomenciature of this section is due to Siegel [1976]. The Cube network is
similar to the one implemented in Staran, the PM2] network is similar to Feng’s Data
Manipulator, while the WPM21 is Siegel’s brainchild.

As bhefore, let the PEs be numbered from 0 to N-1 in m = log N bits:
b Pmy--bpbp. The cube has m settings, where setting i connects b,..b; to
byybiy1bibi-p-by. Using the natural left (0) to right {N-1) numbering far the nodes -
on each level of the GCN, it should be clear thaf simufation of any stage of the GCN
takes only one time unit, so that al most 4 log N - 3 time units are required by any
message distribution pattern on the Cube.

The PMZI network has 2 log N = 2m selttings, corresponding to the addition or
subtraction mod N of 2' for O<i<m. The WPM21 connections are similar to those of the
PMZ2] network, except any "carry” or "borrow™ will "wrap around” to the b;_oth bit.
Either network can simulate a naturally numbered GCN jn two time units per stage,
giving a total of 8 log N - 6 time units for worst-case message broadcasting.

Of course, these bounds are cut almost in half for the special case of one-to-one
message distribution patterns. Only 2 log N - 2 time units are required for a Cube
simulation of a connection network (4 log N - 4 time units on the PM2I or WPMZ2D),
using the natural numbering scheme. '

4. Partitioning

The use of switching networks in the partitioning of a multiprocessing system is
treated in Goke and Lipovski [1973] They propose connecting N resources to a
network flexible enough to provide private buses for disjoint "subsytems” of the

sources. For example, if a particular terminal, processing unit, and memory device
are to be formed into an independent subsystem, the partitioning network is instructed
to form a private connection between their respective [0 ports. The partitioning
networks considered in this paper will merely connect appropriate [/O ports;
tnanagement of the bus thereby created for each subsystem will- be the responsibility
of 'the member resources. The most straightforward partitioning network is based on
an N by N/2 crosspoint swilch: each of the N resources can be independently
connected to any of N/2 internal huses. Whlie this nelwork is simple to configure and
has only constant delay, it requires O(N2) switches. Another network considered by
Goke and Lipovski ts an (N,N}-connector whose inputs are connected to its outputs.
Although this device has only O(N log N) switches, its delay may be O(N log N). Goke
and Lipovski settled on "banyan networks” with Q(N log N) switches and Olleg N) delay,
but incomplete functionality {not all partitions could be achieved). It should be clear
that an (N,N)-GCN provides unrestricted freedom of connection between any of its N
outputs. This paper’s GCN construction thus immediately gives a complete parhhomng
network with O(N log N) switches and Otlog N} delay.

Actually, a GCN is an unnecessarily complex partitioning network. The resources
will only be connected to the oulputs of the GCN, so that the ordering of the inputs is
completely arbitrary. In terms of Section 2's construction, this implies that the
hyperconcentrator “front end” is superfluous and may be removed. Since at most N/2
subsystems can have more than onc resource, half of Lhe inputs ta the infrageneralizer
may be deleted. This and similar optimizations ta the infrageneralizer, coupled with
connector optimizations (Waksman [1968]), yield a partitioning network with 6N iog N -
85N + 8 switches. For exampte, the following is an {&)-partitioner.

13 H"‘ \T UIP'“

EARNEGIT AL NG

a.sﬂ‘f

i
/

frageneralizer

o

A
N
I
i
/

/

<
=

(8,8)-connector

\

X

— N
3 4 5 6 7 &

%]

Resources: 1

Figure 12. An (8)-partttioner.

Set-up algorithms for this network are relatively time-consuming, limiting its
practicality {(banyan networks can be essentially self-configuring, in O(log N} time).
When a new subsystem with k resources (k>1) comes into existence, it is assigned the
leftmost unused infrageneralizer input and the k leftmost unused connector inputs.
The infrageneralizer can be configured in Oflog N) time, since it is a banyan. However,
the connector setting may need radical changes for which the best known algorithm
{Waksman [1968]) requires O(N log N} time on a-serial computer.

The three-way branching consiructions mentioned in Section 2 lead to anqther
partitioner with (9/log 3)N log' N ~ (59/6)N + 10.5 switches, the best construction
known to the author (note: 9/log 3 = 5.7).

The author is indebted to Nicholas Pippenger for several stimulating discussions,

14

References

Benes, V. E. [1965] Mathematical Theory af Connecting Networks and Telephone
Traffic, Academic Press, New York.

Flynn, M. J. [1966] "Very High-Speed Computing Systems," Proc. IEEE, Vol. B4, pp.
1901-1909.

Goke, L. R. and Lipovski, G. J [1973] ‘"Banyan Networks for Partitioning
Multiprocessor Systems,” First Annual Compuler Architecture Conference,
Gainsville, Florida, pp. 21-28.

Lawrie, D. E. [1973]. Memory-Processor Connection Networks, Ph. D. Dissertation,
Dept. Computer. Sci, Univ. lilinois, Urbana, Report 557. '

Masson, G. M. and Jordan, B. W. J. [1972] "Generalized Multistage Connection
Metworks,” Networks, Vol. 2, pp. 191-209, ‘

Otman, J. P. [1965] "A Universal Automaton,” Trans. Moscow Math. Soc., Vol. 14
{translation published by American Math. Soc,, Providence, R. I, 1967, pp. 200-
215).

Orcutt, S. E. [1976] "Implementation of Permutation Functions on lliiac IV-Type
Computers,” IEEE Trans. on Computers, C-25, pp. 929-936.

FPippenger, N. J. [1973] The Complexity Theory of Switching Networks, Tech. Rep.
487, Res. Lab. of Electronics, MIT.

Pippenger, N. J. [1977] "Superconcentrators,” SIAM J. Comput. Vol. 6, pp. 298-304.

Siegel, H. J. [1976] SIMD Machine Interconnection Network Design, Tech. Rep. 198,
Computer Sci. Lab., Dept. of EE, Princeton Univ.

Stone, H. S. [1971] "Parallel Processing with the Perfect Shuffle,” IEEE Trans. on
Computers, C-20, pp. 153-161.

Thompson, C. D. and Kung, H 7. [1977] "Sorting on a Mesh-Connected Parallel
Computer," CACM, Vol. 20, pp. 263-271.

Waksman, A, [1968). "A Permutation Network,” JACM, Vol. 15, pp. 159-163.

15

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE {Whan Data Entered)
AD INSTRUCTL
REPORT DOCUMENTATION PAGE BEFORE COMPE O RM

1. REPQORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
4. TITLE {and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

GENERALIZED CONNECTION NETWORKS FOR

PARALLEL PROCESSOR INTERCOMMUNICATION Interim
&. PERFORMING ORG. REPORT NUMBER

7. AUTHOQA(s) 8. CONTRACT OR GRANT NUMBER(a)

C. D. Thompson NO0014-76-C-0370

MCS 75-222-55

9. PERFORMING DRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

. . + AREA & WORK UNIT NUMBERS
Carnegie-Mellon University

Computer Science Dept.
Pittsburgh, PA 15213

13, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
May 1977
Office of Naval Research 13. NUMBER OF PAGES
Arlington, VA 22217 19

14

MONITORING AGENCY NAME & ADDRESS(if ditferant Irom Controlling Oflice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

182, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Raport)

Approved for public release; distribution unlimited,

- DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

. SUPPLEMENTARY NOTES

- KEY WORDS {Continue on reverse eide if necessary and identify by block number)

20,

ABSTRACT (Continus on roverae alde If necessary and identity by black numbar)

A generalized connection network (GCN) is a switching network with N inputs and N

outputs that can be set to pass any of the NN mappings of inputs onto outputs. This

paper demonstrates an intimate connection between the problems of GCN construction,

message routing on SIMD computers, and "resource partitioning.” A GCN due to Ofman

[1965] is here improved to use less than 8N log N contact pairs, making it the minimal

known construction. '
{continued)

DD ,%5n'ys 1473 €DiTion oF 1 NOV €515 OBSOLETE UNCLASSTFIED

S/N 0102-014- 6601 |

SECURITY CLASSIFICATION OF THI|S PAGE (When Data Entered)

UNCLASSIFIED

vk LURITY CLASSIFICAYTION OF THIS PAGE(When Dats Entered)

20, abstract (Continued)

Any GCN construction leads to a new algorithm for the broadcast of messages among
processing elements of an SIMD computer, when each pracessing element is to receive
one message. Previous approaches to message broadcasting have not handled the
problem in its full generality. The algorithm arising from this paper’s GCN takes 8 log

N {or 13 N”z) routing steps on an N element processor of the perfect shuffie {or
‘mesh-type) variety. ' '

If each resource in a multiprocessing environment is assigned one output of a GCN,
private buses may be provided for any number of disjoint subsets of the resources.
The partitioning construction derived from this paper’s GCN has 6N log N switches,
providing an alternative to "banyan networks" with O(N log N) switches but incomplete
functionality,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

