NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ey - e

Analysis of Asynchronous Multiprocessor Algorithms
with Applications to Sorling

John T. Robinson
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

July 1977

Abstract - Efficient algorithms for asynchronous multiprocessor systems must achieve
a balance between low process communication and high adaptability to variations in
process speed. Algorithms which employ problem decomposition can be classified as
static and dynamic. Static and dynamic. algorithms are particularly suited for low
process communication and high adaptability, respectively. In order to find the "best"
method, something about mean execution times must be known. Techniques for the
analysis of the mean execution time are developed for each type of algorithm, inctuding
aprlications of order statistics and queueing theory. These techniques are applisd in
detail to (1) static generalizations of quicksort, (2) static generalizations of merge sorf,
and (3) a dynamic generalization of quicksort.

This research was supported in part by the National Science Foundation under grant
MCS75-222-55 and the Office of Naval Research under contract N00014-76-C-0370,
NRO44-422,

HUNT LIGRARY

CARNEGIE-MELLUN UNIVERGITY



1 - Introduction

We consider the design and analysis of Kk-process algorithms for an
asynchronous multiprocessor system, which consists of k or more processors sharing a
common memory by means of a switch or connecting network. In addition there is an ‘
operating system providing such functions as process creation, scheduling of
processes, allocation of memory, synchronization, etc. A real example of such a system
is described in [7], and a general discussion of asynchronous perallel algorithms is
presented in [5] A k-process algorithm will be presented by giving the procedure
each process executes when assigned a processor. We will assums that a processor is
always available for any of the k processes that is runnable.

Given a task we wish to execute on such a system, in order to exploit parailelism
we must decompose the task into a set of subtasks. Some subtasks cannot begin until
others which they depend upon finish; this establishes a precedence relation between
tasks. Inefficiency in an algorithm arises when some process must spend too much
time waiting for other processes to complete subtasks, and again towards the end of
execution when there are fewer than k subtasks. Attempts to remedy this by "evenly"”
dividing the original task are hopeless, since task execution time will vary due to
variations in the input, the effects of other users, properties of the operating system,
processor-memory interference, and many other causes. Any efficient aigorithm must
adapt to these variations. However, this adaptation is expensive, in that It requires
process communication. Thus the trade-off between adaptability and process
communication must be considered in the design of multiprocessor algorithms. In the
algorithms considered in this paper, process communication takes place by means of
global data accessible by all processes. Since in many cases access to this global data
must be confined to a critical section, one cause of process communication overhead is
the interference between processes seeking access to this global data.

Two methods of decomposition naturally arise: (1) static decomposition, in which
the set of subtasks and their precedence relations are known before exacution, and (2)
dynamic decomposition, in which the set of subtasks changes during execution. Static
decomposition algorithms offer the possibility of vary low process communication,
providing there are not too many tasks; however, their adaptability is limited. Dynamic



decomposition algorithms can adapt to variations in task execution time very well, but
only at the expense of high process cammunication. '

Given a problem which can be decomposed into subproblems, which method is
best? Is the extra expense necessary for fast process communication (thus supporting
efficient dynamic algorithms) justified? If a dynamic Slgorithm is used, how far should
decompaosition proceed? In order to answer these questions we need techniques for
finding mean execution times for these types of algorithms.

In section 2 algorithms employing static decomposition are considered, We
develop techniques for finding the probability distribution of total execution time in
terms of the distributions of individual task execution times, and when these are not
khown, techniques for finding bounds on the mean execution time. In section 3, the
mean execution time for a simple model of a dynamic algorithm is found, assuming
exponentially distributed task execution times. In sections 4 and 5 the results of
section 2 are applied to static generalizations of quicksort and merge sort. Certain
partitioning strategies are shown to be unsuitable for a static decomposition version of
quicksort. In addition, a parallel merging algorithm is presented and analyzed. In
section 6 a dynamic generalization of quicksort is presented. Using a result of section
3, the mean execution time is found, and an expression for the optimal degree of
decomposition is derived. Section 7 contains a summary of the main results.

2 - Static Decomposition Algorithms

Given a set of tasks T,,T5,..T, partially ordered by a precedence relation <, we
call T; a predecessor of T; (T; a successor of T;) if Ti<Tj. If there is no task U such
that Ti<U<Tj, T; is said to be an immediate predecessor of Tj (Tj an immediste
successor of T,). Tasks with no predecessors are called initial, and tasks with no
successors are called final. In the execution of the static algorithm, each process does
the following: :

(1) Select either an initial task or a task all of whose predecessors have
been completed, which has not already been selected. Check in the order

T TomThe



(2) If no task can be selected, go to sleep, unless all tasks have already
been selected, in which case terminate. When awakened go to (1).

(3) Execute the selected task.

(4) For each immediate successor of the task, record that an immediate
predecessor has completed, and wake up a sleeping process if possible,
(5) Repeat from (1).

For the purposes of analysis we assume that steps (1),(2),(4), and (5) take zero
time, and that the execution time of task T; is given by the random variable t,, with
cumulative distribution function (¢c.d.f.) Fi- .

Definition ~ The task-graph G associated with T1:V2r. T and < is a directed graph with
nodes Tl,Tz,...T,,1 and arrows from T, to Tj if T; is an immediate predecsssor of Tj.

Note that there is a one-to-one correspondence between partially ordered sets
of tasks and task-graphs.

Definition - G is a chain if the tasks are totally ordered.

The length of a chain is the number of tasks in the chain. If in a chain the Initlél
task is T; and the final task is Tj we say it is a chain from T, to T} A sub-graph of a
task-graph G which is a chain is said to be a chain in G.

Definition - The level of a task T in a task-graph G is the maximum Ieng.th of any chain
in G from an initial task to T. The depth of G is the maximum level of any task.

Definition - A set of tasks is independent it for any tasks L T in the set neither T, <'l“j
nor TJ<T The width of a task-graph is the maximum size of any independent subset
of tasks,

Given a task-graph G, let tg be the random variable representing total execution
time (the time from when all processes are started until the last process terminates).
Assume tg; has cdf. Fo In the following definition a class of task-graphs is defined
for which Fg can be expressed simply in terms of the Fi

Definition - Let C1.Cp,..C,, be all chains from initial to final tasks in G. For each chain
C; containing tasks T 1Ti e let E; be the expression (x;,%;,, "), where X 11X 2y Xy are
polynomial variables. Then G is said to be simpte if the polynomial E +Ex+., +Em can
be factored so that each variable appears exactly once (see figure 2.1).

-3-



Figure 2.1

T1 T2
T3 T4 TIXT T1 \1?
5 13 T4 13 Té
Simple Simple Non-simple
xl >(3X5+>(2>(3><5+><4X5 x1x3+xlx4+x2x3+x2x4 XlX3-} X3V ixz)(a
=((><l+><2)><3+>(4]>(5 -(xl+>(2] ()<3+><4)

Theorem - If kzwidth(G), then tg can be expressed in terms of the t; using anly + and
max. Furthermore, if G is simple and the t; are independent, then F; can be expressed
in terms of the F, using only - {multiplication) and * (convolution).

Proof: Note that since k2width(G) each task begins immediately afler its last
predecessor completes. Let C},Cy,..C,, be all chains from initial to tinal task<. Then

tG = max [ Z tj} .

1<i<m T,(C'
Next note that + and max are commutative and associative operations, ond that +
distributes over max (i.e., max{ab)+c=max{a+c.b+c)). Thus if G is simple the oxpression
for tG above can be factored in terms of max and + so that each randomn var_iable

appears only once. Then, if the t; are independent, the expression for I (,"may be
found by substituting F; for t, x for +, and - for max in the expression fn tg (see
figure 2.2).

Figure 2.2

T T

1\/2
T3 T
W

Ts

4

tG=max(max(t 1,(2)+13,t4)+t5 FGE(((F 1 F2)*F3 )Fq)*r5

-4-



Thus in the proof of this theorem we trave a method for calculating tive c.d.f. of
total execution time for simple task-graphs with independent task execution times,
providing we know the c.d.f. of the execution time of each task. When the « dfs of
each task’s execution time are not known, the best we can do is derive haunds on
mean execution time, such as those of the following theorem. The expected vajue of a
random variable x is denoted by E(x).

Theorem - Given a task-graph G with k2width{G) and with the t; independent, let
C1.Co,..C,, be all chains in G from initial to final tasks. Also let H: be the -nt of all
tasks of level i, for 1<i<l where t=depth(G). Then

max z E(t;)) < Eltg) < z EC max t;)
1<izm TJ(C| lsigli T_](Hi (2.1)

Proof: From above,

tG = max { z tj]

l<i<m Tj(Ci

The lower bound then follows from E(max{x;}) = max{E(x;}} for any random vaiiables X;.
For the upper bound, let tOEO and define £(i,j)=0 if CinHj is empty, otherwi<e {iij) is the
index of the single task in CinHj. Then

tG = max | Z tf(l,])) z (max(tf(llj)})

<
I<ism l<jsi lsj<t 1<igm
from which the result follows,

The upper bound in equation 2.1 is useful only if something can be -.aid about
E(max{tj}). An applicable result from order statistics (see [2]} is that if the

independent random variables X1XppXpy are identically distributed with rean u and

m
standard deviation s, then

E( max fx;1) < u + —M—s (2,2}

'\] Z2m-1

Hence the following corollary:



Corollary - If kzwidth(G), the t; are independent, depth(G)=l, and the m; tasks on level j
have identically distributed execution times with mean uj and standard deviation 8
then

u; s E{tp) = u, + 0=l g
Z J 6 Z(J &j?]) (2.3)
mj=

lgj<l 15jsl

Let w=width(G). When w>k, F; cannot in general be expressed simply in terms of
the F;, even when G is simple and the t; are independent. For example, let G consist of
T ToTg  with  the set ({T,,T,Tq} independent, and let k=2. Then
tGemax(min(t1,t2)+t3,max(t1,t2)), and tg cannot be simplified further.

When w>k, the lower bounds for E(tg) given above still hold. For an upper
bound we take the following approach. It is assumed that w processes are created,
and each process has a processor available at least k/w of the time. For example, the
bound given in the corollary becomes

§ u: < E{tp) s X E (u + M-l ) (2.4)
j G Q:?
m =

1gjsl 1gjsi

Finally, when the t; are dependent, in general special techniques must be used,
such as those in the analysis of partitioning strategies (section 4) or parallel merging
{section B) .

3 - A Dynamic Decomposition Algorithm

Given a task T and a procedure which decomposes a task into two tasks which
may be executed concurrently, we consider the following dynamic algorithm: First,
there is a decomposition phase, in which each process repeatediy removes tasks from
the task-queue TQ (which initially contains only T), decomposes the task and inserts
the two new tasks in TQ, until there is a total of M tasks. Next, there is an execution
phase, in which each process repeatedly removes tasks from TQ and executes the task.

-6-



We analyze this algorithm under the following assumptions:

(1) In this section the time to access TQ is assumed to be O.

(2) The time to decompose a task is assumed to be exponentially
distributed with mean di'l, where i is the current total number of tasks.
(3) The time to execute a task is assumed to be exponentially distributed
with mean eM'I.

We use standard queueing theory techniques in the analysis (see for example
[3]). Adopting as a state variable the total number of tasks in TQ or currently being
executed or decomposed, the state-transition-rate diagram is given by figure 3.1,

Figure 3.1
O o X
Kay
o) 2-" 3.H k'ﬂ keﬂ klﬂ
The mean execution time is found to be:
T = _1(ﬂ:_'+Hk) + Z I (3.1)
ey k min(i.k)di

isisM-1

where Hk = (1 +1/2 + /3 + ..+ 1/K).



4 - Static Quicksort

We consider a static generalization of ;micksort as given by the task-graph of
figure 4.1 (see [6] for a complete discussion of sequential quicksort):

Figure 4.1

PL-1,1 ‘/F’L-l,z'-'2
Sy Sy Sol-1_;  Spt-1

The tasks may be described as follows:

(1) Py is a partition of the file to be sorted.

{2) Pi,j (j odd) is a partition of the teft subfile produced by Pi-l,{j+1)/2'
(3) Pi,j (j even) is a partition of the right subfile produced by Pi-l,j/2'
(4) Sj (j odd) is a quicksort of the left subfile produced by PL-I,(j+1)I2'
{5) Sj (} even) is a quicksort of the right subfile produced by pL-l,j/Z'

First consider the simplest case, where k is a power of 2 and L=1+lg(k) (where
Ig is logp). In this case the width of the task graph is k. The question arises as to
what partitioning strategy to use, that is, how should the partitioning element be
selected in the P tasks? First a definition of asysmptotic mean speedup:

Definition - Given an algorithm for k processes, let the mean total execution time be



Tk(N), where N is the size of the input. Then the asymptotic mean speedup Sy is
defined to be

S = Iim 11

We would prefer a partitioning strategy which gives asymptotic mean speedup of k
even in the simplest case; strategies which depend on large L for speedup are -
unsuitable since the number of tasks increases exponentially with L, and one of the
main advantages of static algorithms is low overhead.

It is now necessary to make some‘assum‘ptions about the execution times of
tasks. In the sequential analysis of quicksort it is found that partitioning a file of size
N takes O(N) time with standard devistion O(N), and that sorting a file- of size N takes
O(N Ig(N)} time with standard deviation O(N) (see [6D. Thus in analyzing asymptotic
méan speedup it is only necessary to consider the sorting task times.

(1) When the partitioning element for a partition of a file of size M is selected at
random, it is natural to assume that either subfite size is uniformly distributed between
0 and M. This, together with the fact that the sum of the subfile sizes is M, gives an
expected maximum subfile size of 3M/4. Using this, it is easy to show that of the k
subfiles to be sorted in the sorting tasks, the expected maximum subfile size is at least
(3/4)'8N, which implies 5, <k/8(4/3)

(2) 1If the median of three method is used to select the partitioning element, and
if it is assumed that the final position of each of the three eiements in the subfile is
uniformly distributed between 0 and M, then the probability density function for the
size of either subfile is: :

£ (x) -_5.(1 -_*)5
M M/ M

This gives an expected maximum subfile size of 11M/16. As in (1), it can be shown
that the expected maximum size of the subfiles to be sorted is larger than
(11/16)80IN. 1t follows 5, skl8(16/11)

(3) If the partitioning elements for all partitioning tasks are found using the



method of samplesort {first pick k-1 elements randomly, sort, and use these for the k-
1 P tasks), and if the final position of each of the k-1 elements is assumed to be
uniformly distributed between O and N, then the probability density function for the
size of the largest subfile to be sorted is:

fhd = Z (-1)i-1k(k-1}(“-1)(1 - 11)""2
j-1

15js[N/x] N

(See the discussion on the random division of an interval in [2]). It follows the
expected maximum size of the subfiles to be sorted is:

N wfix)dx = N Z(—llj‘l(k)l - _’jJs_N.
P K i-1 K

l<jsk

Hence S) = k/H,.

(4) Finally we turn to the partitioning strategy of first finding the median (in
O(M) time, where M is the size of the subfile) in each P task, and using the median as
the partitioning element. This does give Sy=k, but it should be noted that median
finding represents a large overhead. Unless process communication is extremsly
expensive, a dynamic generalization of quicksort (such as the one presented in section
6) is probably better,

If the mean and standard deviation of the time to quicksort a file of size M are
aqM lg(M) and qu, and the mean and standard deviation of the time to find the median
of a file of size M and partition the file using the median as partitioning element are
apM and bpM, then from equation 2.3 we find that the mean total execution time is less '
than

N N 1\, k-1 b 2i-1 b ]
q(k) (k) PV k) &k #Zk1 21 o1+l
1gjsigik) -1

When L is greater than 1+ig(k) a similar result may be found using equation 2.4,

-10-



5 - Static Merge Sort

Consider a static generalization of merge sort as given by figure 5.1 (see [4] for
a discussion of sequential merge sort):

Figure 5.1
S Sp Spl-1_;  Spol-1
N

MZ,I M2,2L-2

ML-21 ;L-Z,Z M-23 ML.24
Ny
ML—l\,i M_-1,2

M1

The tasks may be described as follows, assuming the file to be sorted consists of
records 1 through N:

(1) S; is a merge sort of all the records between (i—l)(N/ZL'l) and
i(N/2L 1y,

(2) Mz  is a merge of the two sorted files produced by Sp;_1 and Sy

(3) Mi,j (i>2) is a merge of the two sorted files produced by Mi-l,2j—1 and

Mi-1,2j

When k is a power of 2 and L=1+g{k), the width of the task graph is k and
equation 2.3 may be applied. Assuming the time to merge sort a file of size N has
mean a.N Ig(N) and standard deviation bgﬁ, and that the time to merge two files of
sizes M and N has mean a,,(M+N) and standard deviation by, (see [4]), we find that the
mean total execution time is less than

-11-



as(ﬁl) .g(ﬂ)+2am (1- 1)~+ (k-1) batM . S (ai)
k/ Ak k 2k -k Wi+l |

lsjstgik) -1 :
When L is larger than 1+ig(k) a similar result holds, using equation 2.4.

In the remainder of this section we consider one possible improvement:
replacing the merging tasks with parallel merges. A two task merge of two files is
possible by letting each task be an instance of the usual sequential two-way merge
(see [4]), except that in one task merging begins with the two smallest items of the
two files (a merge from the left), and in the other task merging begins with the two
largest items (a merge from the right). In addition the two tasks are interlinked as
foliows: in sequential two-way merge, the pointers to the files are compared to the
ends of the files; in a two task merge, the pointers of one task are compared to the
pointers of the other task. Because of this, the two tasks finish together almost
exactly, providing one has not already finished before the othar starts. We now
assume a sequential two-way merge of two files each of size N takes time 2a,N.
Hence a two process merge using the above method would take time 2N

Next consider the merging algorithm given by fig.ure 5.2, for k=4:

Figure 5.2
hL Iz
N4
Z

TN

Ly L Ry Rg

J

Ry L

Assume the elements to be merged are x;<xp<xg<..<xy and y{<yo<ygz<..ypn- The tasks
are:

-12-



11: Insert XLNIZJ into the yi’s.

I5: Insert Y|N/2) into the x;’s.

Z: The results of the insertions determine three pairs of subfiles, as
shown in figure 53. 7 determines the subfile pairs and initializes the L
and R; tasks.

L;j: Merge from the left of the i’th subfile pair.

R;: Merge from the right of the i’th subfile pair.

Figure 5.3
t ,li = /
1,7 2/ 3
} <

b

If process 1 executes L; end process 2 executes Lo and then R;, process 17_
finishes before or with process 2. Let the sizes of the subfiles in the second subfile
pair be X and Y. The execution time for process 2, starting at the completion of 2, Is:

2 2 2 //2 2 4

since (X+Y)/2sN/2. The same result holds for the process executing Ry and Ly. In
order to find the distribution of |X-Y|, it is assumed all elements x;, y; are distinct, and
that all permutations are equally likely. Then the probability of inserting XoN N
position i is:

(i + oN ~1) (N(Z—al - i)
Pluj<egyed; g} = aN - 1 (1-c)N
(alv i+l (ZN)
N
(3 (%)
= i oN

(i+aN) ( 2N )
i +aN

-13-

" HUNT LinnAny

EIDNIEELLON LNIVERSITY



s 2N -(i-aNIZ/N
(i +oNW N

using the normal approximation to the binomial distribution. This distribution is again
approximately normal, with mean oN end standard deviation{/N/2. Assuming X and Y
are actually distributed normally, the mean of |X-Y| can be calculated to beA/2N/n.

Hence,
E(tg) s a, (_N_+ My atgnn
’ k 8n

where the O(lg(N)) term is from the insertion tasks.

Other merging algorithms for k=4 and for higher k can be devised by using
various element insertion strategies. Similar techniques may be used in their analysis.

6 - Dynamic Quicksort

We may use the dynamic algorithm of section 3 for sorting, where tasks are
considered to be subfiles, the decomposition of a task is a partition of the subfile into
two subfiles, and the execution of a task is a sort of the subfile. In analyzing this
algorithm we make the following assumptions, where the file to be sorted contains N
records:

(1) 1f M is the total number of subfiles to be produced during the
decomposition stage, the totel number of task-queue accesses is 3M-2,
and each process makes an approximate average of 3M/k such accesses.
We therefore assume the overhead due ta process communication is linear
in M, and is given by w(kYM.

(2) When there are i subfiles, the mean subfile size is N/i. It is assumed
the time needed to partition a subfife is exponentially distributed, and that
when there is a total of i subfiles the mean time is aN/i.

-14-



(3) During the task execution phase, the average subfile size is N/M. It is
assumed the time to sort one of the M subfiles produced by
decomposijtioning is exponentially distributed, with mean b{N/M)In(N/M).

From equation 3.1, the mean execution time T(MN,k) is:

TMNK) = wikIM 4 b(!i)ln(_N_) (I‘-_k N Hk) .
m A\ Tk

N N
a——+ D —
:E: i2 ZE: ki

isisgk-1 k<isM-1

=ukM+N o inN - aH_; +aHyy - b In M
k

N N) (2)
+ oMV infMVH, - 1) 4 aNH,
(n) (n k k-1

Given N and k, we seek to find M so as to minimize T(MN,k). If we approximate Hy,_{
by In(M), then M must satisfy

31w k) + Nlab) |,y -1) ('" M- InN -1 )
,

oM kM M
= B .
Let A= _HK a4 B __la-b) _
- bN(H, - 1) bk (H-1)

then the optimal value of M is the solution of

Mo (AMZ4BM-1) _ .

A short table of the optimal integer vaiue of M for various values of w{k)/b follows,
for the case k=4, a=b, N=106;

-15-



nwi4)/b M

10 930
182 313
183 165
184 35
18° 11

Thus, given a,b,N, and k, the optimal degree of decomposition is determined by w(k),
the process communication overhead.

7 - Summary

We have classified asynchronous multiprocessor algorithms which employ
problem decomposition as static and dynamic. Static decomposition algorithms require
little process communication and would be well-suited for systems where process
communication is expensive, 8.g., "loosely-coupled” computer networks.

A static decomposition algorithm is described by a task-graph. Simple task-
graphs have the property that there is a simple expression for the probability
distribution of total execution time in terms of the probability distributions of each
task, providing the result of one task does not affect the execution time of another. If
the probability distributions of each task’s execution time are unknown, it is still
possible to bound mean total exscution times providing the means and variances of
task execution times are known.

Regarding the upper bound given by equation 2.3, the bound is tight in that
task-graphs and task execution time probability distributions may be constructed so
that equality holds, using distributions derived in {2] Any improved bound would
require either more detailed information about the partial ordering of the tasks in the
expression of the bound, or additional assumptions about the probability distributions
of task execution times, '

-16-



When process communication is inexpensive, dynamic decomposition algorithms
are suitable. One technique for analyzing these algorithms is by means of a queueing
model. Queueing models may be used in analyzing other types of asynchronous
parallel algorithms as well (e.g, in [1] & queueing model is used to analyze
asynchronous iterative methods).

For some static decomposition algorithms the bounds derived in section 2 may
be directly applied, such as static quicksort with median finding and static mergs sort.
In other cases where task execution times are dependent other techniques must be
used. This is the case for static quicksort when median finding is not used and in the
parallel merging algorithm presented. These aigorithms have dependent task execution
times since there are tasks where the input size depends on the result of a previous
task.

The assumption that process communication overhead is negligible in static
decomposition algorithms is valid only if the total number of tasks is not very large.
For this reason we have given bounds on mean execution time only for those
algorithms in which the width of the task-graph is k (although a technique for greater
width task-graphs has also been presented). These bounds give an indication of the
performance that can be expected when process communication overhead is high
enough to warrant the use of static decomposition. However, in dynamic decomposition
algorithms we may choose the degree of decomposition, which should ideally be chosen
so as to balance process communcication overhead and adaptability to variations in the
execution times of tasks. For example, by applying a queueing model to a dynamic
generalization of quicksort, we have derived an expression relating process
communication overhead and the optimal degree of decomposition. ‘

-17-



[1]

[2]
(3]

(4]

(5]

(6]

7]

LR

3 46482 00572 2554

References

Baudet, Gerard  “"Numerical Computation on Asynchronous Multiprocessors”,
Thesis Proposal, Department of Computer Science, Carnegie-Mellon
University, 1976

David, Herbert A.  Order Statistics, Wiley, 1970

Kleinrock, Leonard  Queueing Systems, vol. 1, Wiley-Interscience, 1975

Knuth, Donald The Art of Computer Programming, vol. 3, Addison-Wesley,
1972

Kung, H T. "Synchronized and Asynchronous Parallel Algorithms for
Multiprocessors”, Algorithms end Complexity - New Directions and Recent

Results, ed. J. F. Traub, pp. 153-200, Academic Press, 1976

Sedgewick, Robert  Quicksort, Ph.D. Thesis, Computer Science Department,
Stanford University, 1975

Wulf, W. A,, and C.G. Bell "C.mmp - A Multi-Mini-Processor”, Proceedings of
the AFIPS 1972 Fall Joint Computer Conference, vol. 41, pp. 765-777, 1972

-18-



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPCRT NUMBER 2. GOVYT ACCESSION NO.] 3. RECIPIENT'S CATALDOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ANALYSTS OF ASYNCHRONOUS MULTIPROCESSOR )

ALGORITHMS WITH APPLICATIONS TO SORTING Interim

6. PERFORMING ORG. REFORT NUMBER

7. AUTHOR(3) 8. CONTRACT OR GRANT NUMBER(a)

John T. Robinson N00014-76-C-0370;

NR 044-422

9. PERFORMING DRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, FROJECT, TASK

. . . AREA & WORK UNIT NUMBERS
Carnegie-Mellon University

Computer Science Dept. ‘ \
_Pittsburgh, PA 15213

11. CONTROLLING OFF(CE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research July 1977
Arlington, VA 22217 | 13. NUMBER OF PAGES
20
14. MONITORING AGENCY NAME & ADDRESS(i! different from Controliing Office) 15. SECURLITY CLASS. (of thia report)
UNCLASSIFIED

184, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diftsrent from Report)

18. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue on reverse side If necessary and {dentily by block number)

20. ABSTRACT (Continue on revarse side if necesasary and identify by bfack number) Efficient algorithms for a-
ynchronous multiprocessor systems must achieve a balance between low process
Eommunication and high adaptability to variations in process speed. Algorithms
hich employ problem decomposition can be classified as static and dynamic.
Static and dgnamic algorithms are particularly suited for low process communica-
tion and high adaptability, respectively. In order to find the "best" method,
something about mean execution times must be known, Techniques for the analysis
of the mean execution time are developed for each type of algorithm, including
agplications of order statistics ,and queueing theory. These techniques are ap-
ied in detail to (1) statj eneralizations of, quigksor 2) static generali-
atfons og merge so£t? and %g)ga Jnante generaflga%fon OE'q&lngOIE. &
DD . 5n'5; 1473 EDITION OF 1 NOV 6515 CBSOLETE
. S5/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterad)



