NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

13g

Paging Behavior of Knowledge Networks

Roberto Hisiani
Department of Computer Science
Carnegie-Mellon University, Pittsburgh, Pa. 15213

August 10, 1977

Abstract

The problem of efficiently storing and retrieving a special class of knowledge data
bases, namely state space networks, is tackled, This problem has many similarities with
the storage and retrieval of program code and data in virtual memory systems,
therefore special attention is paid to the already existing techniques for virtual
memory systems. Differences and similarities are examined and a few techniques for
storing and retrieving networks are presented. All the proposed “software” strategies
fail to attain a very fast retrieval, as desired in real time applications, therefore a
solution using a bubble memory system is examined. Finally a few experimental results,
obtained both with simulation and with measurement of real systems, are presented.

1 Introduction

Several problem areas in artificial intelligence (Al) require the use of large
knowledge data bases. Typical of such tasks are speech, vision, natural language, and
s0 on. One of the commonly used representational structures is the network, that is an
oriented graph. In this graph, depending on the application, a certain amount of data is
associated with the nodes, often called states, and the arcs. The retrieval of the
information stored in the network is directed by a procedure called "search" that
follows certain “paths” (sequences of adjacent and distinct arcs) according to particular
rules. The search process terminates when either a certain state is reached or:a
certain value of a given function, that defines the problem, is obtained. There are
many ways in which a program can search a network; we are interested in a search
where:

the searching strategy does not fully define the path;

many different paths can be active at the same time.

A A FYRE P A B ko . .

Moreover we will consider the nelwork as a read-only data base. That is, we will
not allow any dynamic modification of the graph structure or of the data associated
with nodes and arcs. This resiriction is ccnsistent with the behavior of many Al
programs if we can store the data generated during the search in a separate structure.
This is a reasonable assumption since only the dynamic information relative to a limited
number of nodes and arcs must usually be known at a certain time.

The size of networks usually ranges from many thousands to millions of states
{precise numbers for a speech understanding system will be given in 3). This
obviously implies the use of cheap secondary storage media. Moreover the number of
states accessed for the solution of a single problem is usually very high: it is not
uncommon to.access 507 or more of the total number of states.

We identify two main situations which require high performance storage and
retrieval techniques of Al networks:

the network is very big and therefore the number of states searched is so high
that a considerable amount of time is spent retrieving information from the
secondary storage;

the solution of the problem must be found in a bounded time (e.g. real time
speech recognition).

In order to reduce the search time we can either use specialized storsge and
retrieval techniques (that minimize the number of secondary memory accesses), or rely
on some specialized hardware (that minimizes the time required for a sacondary
memory access).

We will first take into consideration the commonly used storage and retrieval
techniques; at first sight there is a strong similarity between the problem of storing
and retrieving programs and data in virtual memory systems and the problem of
storing and retrieving networks. Unfortunately this turns out to be false for two mein
reasons:

the behavior of a common program, in terms of sequences of references, is
usually different from the behavior of the searching process ot an Al network;

the performance figures, in terms of number of secondary memory accesses,
needed for a good behavior of programs are less limiting than the ones needed
for Al tasks.

In the following chapters we will first discuss the commonly used storing and
retrieving techniques and explain to what extent they can be applied to the storage
and retrieval of networks. Then we will briefly analyze, as a case study, the behavior
of a speech recognition system developed at Carnegie-Mellon University. This system
will be used in the remaining of the paper to evaluate a few different storing and
retrieving techniques. The experimental data that will be presented have been
obtained both with simulation and with measurement of real systems.

2 Commonly Used Techniques

We are interested in the following techriques:
clustering the information into secondary memory blocks (pages);

managing the main memory.

2.1 Clustering proceduras

In paged virtual memory systems the program code must be partitioned into fixed
length pages so that it can be stored efficiently on the block oriented mass storage
media currently available. The layout of the program in its virtual space, generally
decided by the linker, is influenced by the order in which the programmer inputs the
instruction blocks and declares the data blocks. Since the earfy applications of virtual
memory systems it was recognized [Comeau, 67] that the performance, obtained by
simply committing to the linker or to the compiter the task of partitioning the program,
could be improved with a careful reordering of the code into the pages. Manual
rearrangements made by experienced programmers gave good results but, especially
as far as complex programs are concerned, computer aided rearrangements gave
better results [Ferrari, 76].

Since those early studies, many important results have been achieved in the field
of automatic program restructuring. Three different kinds of procedures have been
investigated:

static procedures that base their decisions on purely static information about
the program, thal is, on its text. These procedures can be applied at compiling
or loading time [Ramamoorthy, 66; Lowe, 70; Ver Hoef, 71; Baier, 72}

dynamic a priori procedures that utilize information about the behavior of the
program gathered during one, or a few, of its runs [Hatfield and Gerald, 71;
Ferrari, 74);

dynamic a posteriori procedures that partially rearrange the program during
every. run using information gathered during the run itself [Baier and Sager,
76]

The currently used procedures are the dynamic a priori ones. The static
procedures have been outperformed by the dynamic a priori ones and the dynamic a
posteriori ones seem to be still beyond the state of the art. Both static and dynamic a
priori procedures perform the restructuring in three steps:

first the code is devided into "atomic” blocks smaller than the secondary
memory blocks (blocks);

then the cost of not grouping together two blocks in one page is computed;

finally the blocks are clustered into sccondary memory pages by an algorithm
that minimizes the infer-page cost.

The crucial step is obviously the computation of the cost; the kind of information
it uses and the phase in which this information is collected fully characterize the
restructuring procedures.

There are a few difficulties in using the outlined procedures for Al networks:

there is no straightforward way of partitioning the net in atomic blocks in
order to cluster them in pages. Program references are mostly sequential if we
observe them through a small time window (10-100 references). It is
obviously correct to cluster the sequential parts of a program into blocks. The
network structure does not suggest any pre-clustering: it is like a program

containing only branches.

the cost-compuling procedures are based on program structure, completely
new cost computing algorithms must be found in order to use them for Al
networks;

the dynamic procedures can be used only if the reference behavior is mostly
data independent. While this is true for many, but not all, programs, the search
process is strongly data dependent (under the assumptions made in 1).

In Fig. 1 we show part of a network and some of the possible state reference
strings. Suppose to keep a list of "active states” the system uses the following search
process;

all the sons of the states in the current active list are examined at the same
time;

a new active list is generated selecting a subset of examined sons.

The reference string is simply a sequence of active lists (active list at time t1,
active list at time t2,.). Every state in the active list at a certain time locates a
possible path in the network. The behavior of the search of a given single path is
reasonably predictable, e.g. while state A will never be directly followed (in the
reference string) by state M, states O and P will probably be accessed after state M.
Unfortunately many paths are active at the same time and there is. no fixed relation
between the behavior ot different paths. Every subset of the states in the network
can be a valid "active list" and the sequence of active lists during a certain search is
critically dependent on the input data. Therefore we cannot apply any behavioral
consideration based on data collected in a certain run to other runs. A dynamic a
priori restructuring procedure based on data collected during the run modeled by
string 1 would probably cluster M and P in the same page (they are referenced one
after the other in string 1). This choice would be wrong in the case of string 2.

string 1: ... |ABD JEHL |MFN |MR |OPR |...

string 2: ... |ABD |EHL [|MF |OFD oML |...

string 3: ...|ABD |ABF | EMH |EMOPF|...

string 4: ... |ABD }ED | MHL [MFN |MDR ...
I t1 | t2 | t3 | ta | t5 |

Fig.1 Part of a Network and Possible Reference Strings
2.2 Managing the main memory
Most of the efforts made to improve the performance of memory hierarchies have
been spent in devising main memory managing strategies that could minimize the

number of secondary memory accesses. These strategies can be divided into:

fetching policies that decide when a given page will be transferred into the
main memory and

replacement policies that decide where in the main memory a given page wil!
be transferred (that is what page currently in memory it will replace).

In the case of Al networks we have the following restrictions:
the main memory has a fixed size,

the network is a read only data base, therefore no write-back to secondary
memory of a page selected for replacement is necessary.

Fetching policies can be divided into demand policies and preloading policies.
Demand policies simply load a page when it is needed, preloading policies try to load a
page before it is needed.

Block preloading policies cannot reduce the number of secondary memory
accesses but only reduce the number of program interruptions due to secondary
memory accesses. Therefore they can be useful in the managemsnt of-
multiprogrammed systems but have little influence in the case of Al networks under
our assumptions. It should also be noted that preloading can be useful when the
tentative preload can be overlapped by the search process. This requires that part of
the availble main memory be devoted to the tentative loading, while the other part still
contains the pages currently used by the search. Therefore there is a trade-off
between the speed improvement attainable with preloading and the higher number of
faults due to the smaller working memory. Moreover the preloading strategles now
available [Joseph, 70; Madnick, 73; Joseph, 70] only have a limited accuracy.

It is an open question if very accurate preloading strategies can be devised in the
case of problem oriented management policies, where the future behavior of the
reference string is also dependent on some external real-time signal.

Preloading strategies will not be considared any further in this study since the
main goal is to lower the number of secondary memory accesses. We will therefore
always refer to demand policies in the following.

Replacement policies have been widely investigated because they deeply
influence performance. These policies usually exploit the locality of programs, that is
the tendency of making the same reference again in a short time. Unlike restructuring
policies, replacement policies are executed during the run of the program and
therefore, at least with today’s computer architectures, their computational needs must
be bounded. Moreover these policies use information gathered during the run:
collecting this information usually requires specialized hardware. Thus the policies
commonly investigated and used are limited ¢ the very simple ones.

The possibility of using the classical replacement policies in the case of Al
networks is therefore limited by the amount of locality that the search process
presents. The experimental data presented in 3 show that, in terms of locality and in
the specific - case, the search process references resemble common programs
references. This means that the classical main memory management policies can still
be efficiently used. Of course the knowledge of the particular process and the
availability of a specialized computer architecture can encourage the development of
specialized strategies that use some internal data of the search program and require a
more complex computation than the classical strategies.

3 A Case Sludy

3.1 Description of the task

The practical problem that triggered this study on Al nets restructuring was the
need of running Harpy [Lowerre, 76), a connected speech understanding system
developed at Carnegie-Mellon University, requiring very large networks. Harpy uses a
network to represent all the syntatic, lexical, and phonetic knowledge needed for
recognition. The live input is sampled, preprocessed and segmented in such a way that
about every 40 ms the search process receives a full set of input data representing
the last 40 ms of speech. Harpy’s word accuracy is now about 987 Harpy’s speed, on
a general purpose single processor (Decsystem 10, KL-10) is, for many non-trivial
tasks, just a few times real time and could probably reach real time if a specialized
processor were used.

Current networks sizes are a few thousand states and a few ten thousand arcs;
every state uses about 45 bits of local information plus a variable number of bits to
identify the successors of the state (e.g. a state with three successors needs 93 (45
+48) bits of main memory). The number of states and the complexity (in terms of
interconnections) of the network is expected to grow when more and more complex
grammars and larger dictionaries are used.

Unless otherwise noted, the data presented in the following sections is averaged
over 30 typical utterances. Two different networks were used, both representing. a
256 words dictionary; one {AISO5) has a low branching factor {average number of
successors of states) and the other (AISF) a high branching factor. A high branching
factor usually implies a very complex syntax. The biggest network used so far with
HARPY is a low branching factor network using a 1011 words dictionary. Searching this
network requires fewer secondary memory accesses than ‘required by a high
branching factor network representing a 256 words dictionary (AISF). The branching
factor of the network, rather than the dictionary size, seems to be the driving figure in
characterizing the complexity of a given Harpy task. In fact, searching AISF is the
most demanding task from the point of paging and therefore, no results are presented
for the 1011 network.

The input data for the various runs was not live data but either a file containing
the preprocessed input data (for the two implementations) or a non-reduced trace of
the search process (for the simulations). This assures the congruence between the
data collected in different experiments.

3.2 Empirical behavior analysis

Some data has been collected to analyze the behavior of the Harpy search (Fig.2).

number AISF AISOS

number
of StatesA Of States

1700 7 800 +—

time o ti >
‘ me
a) number of states checked vs. time
percentage of percentage of
A checked states checked states
1007 | 1007 L
507 1. 507
} | o + : —>
5 10 15 5 10 15
number of consecutive segments number of consecutive segments
b) cumulative distribution of the number of states checked for
a certain consecutive amount of time

wT,h 4 w4

_-1..- s
1200 700

i o .

—b >
1000 2000 3000 T 1000 2000 3000 T

¢) working set size vs. window size
{in number of checked states)

Fig.2 Behavior of the Harpy Search

Number of states searched. Fig. 2a shows the number of states searched vs. time
during a utterance. Typical of Harpy search are the high peaks that represent a
relative “"confusion® of the search process. These peaks are responsible for most of
the secondary memory accesses.

Cumulative distribution of the number of states that are checked for a certain
amount of consecutive time (Fig.2b). The curve shows that 507 of the states are

checked for just one or two consecutive segments,

Average working set size (in number of checked states) (Fig.2c). The average
working set size is a good measure of the average locality of references. Typical
working set size vs. window size curves have been published for both program and
data references [Denning, 68; Rodriguez-Rosell, 76]. The working set of programs
shows a rapid decrease in slope beyond a window size value while the the working set
size of data references is almost a linear function of the window. The Harpy search
shows, in terms of locality, a behavior very similar to the behavior of programs; this
allows the use of classical replacement policies.

4 Classical Techniques: Static Reordering

A static reordering of the network has been attempted and the Harpy search has
been simulated with this network in order to find the average number of secondary
memory accesses in one second of speech (Fig. 4).

As described in Seclion 2 the key problem for static reordering is the definition
of the cost of not clustering together two blocks of information. We chose the state as
the unit information element and defined the cost of not clustering together two
arbitrary states A and B (where B is a successor of A) as

1

{number of successors of A)
2

{The cost of clustering together two states, that are not connected by an ar¢, is
considered to be infinite). Roughly, this means that only the states with a small
number of successors will be clustered together with their successors. This "is
consistent with the tendency of the search to follow just a few of the successors of a
high branching factor state. In order to provide some idea of the effectiveness of the
proposed cost function, a random reordering was produced and used in the
experiments under the same conditions of the other reordering. Both reordering
policies have been applied with different frame sizes. AISF was run only with 1K
frames since, because of its high branching factor, some of its states do not fit into a
single page, smaller than 1K, with their successors. (This constraint was requested by
the physical storage scheme used and has been released for the experiments
presented in Section 4).

Different memory sizes have been simulated, including an infinite memory. The
replacement policy used was a slightly modified LRU. The algorithm imptementing this

pf/sec

450

300

150

pf/sec
3000

1500

policy

a frame 1024
size
1 / ™ bl2 \ RANDOM
256 25 reordering
| 512
1024
| 256 «
1028 N
512 ™.
"clever" cost
reordering
] -+t ---------
2 4 8 12 16 0
main memory size
a) AISO5 {in K of 16 bits words)
T 1024

"clever” cost reordering

T 1024 “~._
-+

e |

16 24 32 64 o

main memory size
LRU (in K of 16 bits words)
b) AISF
————— MIN

Fig.3 Page Faults/Second of Speech vs. Memory Size (Static Reordering)

uses a table that contains, for every page in the main memory, the time of the

last access to the page and the time the page entered the memory. The search
algorithm processes the slates in bursts of time (segments) and all the states
processed during a cerlain segment must be considered as accessed at the same time,
This fact creates the problem of selecting the page to be replaced among all the least
recently used ones. In this case our moditied policy selects the page that teast

10

recently entered the memory among the least recently used ones. Again, if more than
one page is eligible for replacement, one among them is randomly selected.

Since we assume to be using a fixed size main memory we can use Belady's MIN
algorithm [Belady, 66] to find the minimum number of faults with the given reordering.
The MIN algorithm is also a good tool for measuring the effectiveness of a certain
replacement policy. The replacement policy efficiency, defined as the ratio between
the number of faults obtained with MIN and the number of faults obtained with a given
policy, is a frequently used number. In our case the efficiency of LRU is averags .6,
this value is similar to the value of LRU efficiency in managing program references
[Belady, 66). '

Surprisingly enough the curves obtained do not present the characteristic knee
generally observed in program behavior plots. This seems to imply that the search
process is issuing references in a random way. This is not true at the state level since,
given a set of states in the active list, only the successors of these states will be
accessed in the next segment. Therefore we must conclude that the attempted
reordering, though considerably better than a random reordering (see Fig.3), is not
able to reproduce, at the page level, the locality of references that the search
presents at the state level. As outlined in 2.1 this problem arises from the
unpredictable behavior of the many different paths searched at the same time. We
believe that this characteristic makes any stalic reordering unable to give a very good
performance.

5 Proposed Techniques

The experimental resulls, obtained with the simulation of the secondary memory
management policies previously described, show poor performance both in terms of
number of page faults and in amount of main memory needed to obtain a given
performance.

The main problem seems to be the impossibility of clustering the states in pages
in order to take advantage of the block oriented structure of data on a secondary
storage media. A lot of unuseful states are fetched along with the needed states not
only increasing the secondary memory activity but, above all, wasting a lot of main
memory space.

We tried to overcome this problem storing and retrieving in main memory variable
length records’ containing all the information needed to process a state instead of fixed
size blocks containing many different states. As outlined before (2.1), for the kind of
networks we are considering, "to process a state" means to examine all the possible
transitions from that state to its successors. Since each state has a variable number of
successors, the record containing all the information needed to process a state is of
variabile length. _

Managing variable length records instead of fixed length bidcks requires a

11

significant processing overhead and this approach can be useful only if there is a
substantial saving in terms of secondary memory accesses, in the case of a real time
search, or in terms of main memory size, in the case of very large networks.

The secondary storage media currently available are block oriented. This implies
that we will still have to cluster states in blocks in order to store and retrieve them
from secondary memory. Moreover every time we need to retrieve a given state from
secondary memory we are forced to read at least one full block that usually contains
other states besides the state we are interested in; therefore we can choose to store
in main memory all the states that are contained in the fetched block or just the
currently needed state. As a matter of fact many different approaches are possible.

With regard to the problem of clustering states into blocks we have the following
possible recrdering policy:

- one block contains just one state;
- one block contains more states {as in the usual clustering policies)

- one block contains more than one state and a given state can be contsined in
more than one block (redundant reordering).

With regard to the problem of storing in main memory the states contained in the
retrieved block we have the following fetching policies:

- the needed state is stored in main memory, the additional states retrieved are
discarded;

- all the states in the retrieved block are stored in main memory;

- only the needed state is stored in main memory but the retrieved block is
checked and any possible other useful state contained in that block is
fetched,

The reordering policies and the fetching policies presented above can be
combined to obtain many different strategies cach characterized by a different number
of secondary memory accesses and a different computational overhead. The following
sections deal with a few simulation and implementation experiments that have been
performed in order to analyze the behavior of the Harpy search under diffarent
secondary memory management strategies.

5.1 Single state fetch

The simplest fetching policy is to retrieve one state per block. The states can be
stored one per block and the state names made to correspond with the block numbers,
or they can be contiguously stored in blocks and their names made to correspond to
the block number and the offset in the block. The simulation results for this approach
are presenied in Fig.4.

12

AISF AISO5

number of main memory slots b f number of main mamary slots
b f number o
gluonc.'kearcgesses 4000 8000 12000 block accesses1000 2000 3000
% # ; i i ;
6000
300
5000_| network size if network size if
fully stored in fully stored in
main memory=42K main memory=18K
4000 60(_)
3000 |
400
2000 _|.
200
1000
T | ! !
14K 26K 40K 3K 7K 11K

memory size memory size

Fig.4 Performance of Harpy with the Single State Management Strategy

The number of page faults per second of speech is plotted against the number of
"state slots" available in main memory. Each "state record" needs one slot for every
successor of the state plus one slot for the state itself. Every time a state Is needed
and there are not enough free slots in main memory, sufficient least recently used
states are replaced until the state record can be stored in main memory.

As explained in 3.1 the number of bits required for each state is 45. The
effective number of bils required in a real implementation is actually more than 45
since, for the sake of efficiency, each slot must occupy an integer number of memory
words. Moreover, supposing to store the records in contiguous locations, the “free
slots” would be quickly scattered all over the memory, making it impossible to store a
big state (fragmentation). To avoid fragmentation, slots can be linked together in a list,
this list can also be useful to keep track of the recently used states. Of course we can
trade space for computation time, i.e. fragmentation can be avoided with a periodic
garbage collection. In a conventional single processor computer architecture this
overhead must be avoided because the computational needs of the search algorithm
are already high.

13

Ll

To ease the comparison between the "single state management policy” and the
“static reordering policy" a possible memory size is indicated along with the number of
slots. The memory size has been computed zssuming to store each slot in two 16 bits
words and to use one word for each slot to link it in a list; moreover we assumed to
use a hash table containing one entry for each three slots (i.e. the state record is
considered to need an average of three slots). This table is used to find the location of
a state in main memory. '

The curves preseni the "knee” that is typical of program behavior. The minimum
number of page faults is reached for a memory size that is 807 of the network size (if
fully stored in main memory) in the case of AISF, and 307 in the case of AISO5.
Remember that, when the network is fully stored in main memory, the space it needs
can be minimized.

The minimum number of block accesses is very high and does not allow a real
time search. None of our goals is satisfied by this approach, but the overall behavior
shows a better sensitivity to an increase in the size of main memory. A comparison
between Fig.3 and Fig.4 shows that both AISF and AISO5 behave better with a static
reordering.

The main drawback of the single stale policy is the high number of block
accesses. The advantage of this policy is its good sensitivity to the locality of search
behavior,

5.2 A PDP-10 implementation

This experiment involved the implemenlation of a secondary memory retrieval
mechanism for the Harpy speech recognition system, currently working on a Decsystem
10 (KA-10 and KL-10). The experiment consisted in an extensive modification of the
original system that uses a main memory resident network. Reading a block of
secondary memory in a time sharing system requires a long time because of the high
system overhead. Therefore the number of block acceses must be minimized at all
costs, even if more main memory and more processing time are needed.

The nelwork was clustred in a redundant way: each state was stored at the
beginning of a different block and the block was filled with all the successors of the
first state. Therefore each block contained a2 subtree of the network and each state
could appear in many different blocks as successor of different states.

The fetching policy that was used in this experiment stores not only the
requested state in main memory, but also all the additional states contained in the

retrieved block.

These reordering and fetching policies try to take advantage of the following
characteristics of the search:

- due to the rich interconnectivity of the network some of the successors of
the state just fetched can be needed in the same segment as parts of a
different path;

14

- the successors of a state in the aclive list, if the state is not discarded, will
be used in the next segment.

The performance of the system has been evaluated with the same data used
for the simulations; the performance data is presented in Table |, it is not possible to
make a direct comparison between Fig.3 and Table | because of the different size of
memory words,

The number of block accesses is reasonably low, but the cpu overhead is high:
the system requires about three times more cpu than the parent system that uses a
main memory resident network. Moreover the amount -of main memory used for each
stot is very high, this is not a problem with the currently available networks, but could
impare the use of the system in the case of extremely big networks.

5.3 Small locality strategy: A PDP-11 implementation

All the previous experiments show how difficult it is to exploit the locality of
the search process. Both the static reordering and the single state management
strategy need a high amount of memory and cpu time to give reasonable results.
These strategies behave well enough for the current networks (although they are far
from real time), but would probably be inefficient if applied to bigger networks.

The "small locality strategy”, that we will describe in this section, was devised
to reduce both the main memory and the cpu requirements. Actually the performance
obtained with this strategy, measured on a real system, turned out to be superior to
the more sophisticated strategies previously described.

The underlying idea is very simple: since the states in the current active list
are all successors of the states in the previcus active list, grouping together the
successors of the same state creates small "clusters” that contain states having & high
probability to be processed during the same segment. No assumption is made on the
relationship between different clusters. Thercfore this strategy only partially exploits
the locality of the search process.

The "small locality reordering” can be obtained with a very simple algorithm:

a) the initial state is stored in a list called “next states list™

b) all the states in the next state list are stored in the secondary memory;

¢} the successors of the states being stored on the secondary memory are
saved, if they have not been clustrred already, in the next states list;

d) steps b and ¢ are repeated until the next states list is emptly.

For example, the reordering generated for the partial network of Fig.1, assuming
that the next states list contains ABCD when this part of the network is examined,
would be ABCDOEFHLMPNR,

15

During the reordering the states are renamed with the block number and offset in
the block of their physical location, this allows a quick and efficient retrieval since no
mapping table is needed.

During the search the states in the actiVe list are sorted at the beginning of sach
segment. States are not kept in main memory but are retrieved each time they are
needed.

Every time the disk is accessed, more than one block is retrieved (the retrieval of
a limited number of conseculive blocks from a disk does not require much more time
than the retrieval of a single block).

The reordering and retrieval strategies described limit the number of block
accesses required because, for each disk access, more than one state is processed.

This strategy has been implemented on a PDP-11/40 running under the UNIX time
sharing system, the disk was an RP06. The use of a minicomputer gives the possibility
of easily and efficiently implementing the required access of multiple sequential btocks
with only one disk seek. The c¢pu time required for the secondary memory access
management is about 107 of the time spent in executing the search algorithm (as
opposed to 2007 in the PDP-10 experiment). The number of block accesses is highly
reduced by this strategy.

Fig. 5 shows the number of block accesses per second of speech vs. the number
of contiguous 256 words blocks retrieved with each disk access {or the number of
memory buffers required). Using only one buffer gives already an improvement of
about 507 over the single state fetching policy (Fig.4). Every time the number of
buffers is doubled the number of disk accesses decreases of about 307. The other
curves in Fig. 5 represent the time spent by the system in reading the disk, this time
also decreases as the number of buffers increases. The percentage of improvement of
the disk access time decreases as the number of buffers increases, because the time
required to read the blocks partially balances the improvement obtained reducing the
number of disk accesses. It was not possible to examine the behavior of the system
with more than 16 buffers because the memory required was not available.

5.4 A solution using bubble memories

Al the previously presented results fail to attain a real time retrieval of the
network information. This is partially due to the limited speed of the available rotating
media and partially to the difficulty in efficiently managing the states in fixed size
blocks {(as required by the currently available secondary memory systems).

A few technological alternatives are possible or will be possible in the next few
years, namely: charge coupled devices (CCD), electron beam memories (EBAM) and

bubble memories (BM). CCDs are fast enough but their price at present is not too far
from the price of random access memories, this makes them too expensive for big

16

number of buffers

[+ 1]
v
g'U L »
-~ E..U
w O = €
2o =~ 0
o @ w O
S e 23
| o4 (7]
o = Q
T9) Q £
&l m...'.ol C")J
w) T T w
— I —
»
3]
» v '
7 v !
A v]
© 2 I
S [
o -~
© [a] 1
-— | . I
o " O '
. e a 1
E S w dE’g !
g E T% 3 = E T
Lo, O
o | E 3 a)
< |7 ° 5 < |
' ; :
| e t
I +< E “+<
1 2
[=
e —+ o
4 - bt
; | i }
u— oy o
e, ©O) 5, 8 o
Q (o] 13
[} L M
o w I N TR -
" N — nwu
'QU Q
EU EU
= 30
cC @ cC

Fig.5 Performance of Harpy with the Small Locality Strategy on a PDP-11/40

networks. EBAMs probably represent the ripht solution but must be very big (more
than 108 bits) to have a favourable price, they are therefore useful only for extremely
large networks. The price performance ratio of BMs meets very well the needs of
today’s speech recognition systems. Moreover BMs present a few unique
characteristics that enhance their performance in the particular case we are
considering: they are cyclic memories that can be stopped and (not in all
implementations} made to rotate bidirectionally. At some future date, CCDs may be
equally as attractive as BMs.

Moreover they are usually produced in chips that can be conveniently paralleled
to increase the bandwidth.

We simulated the behavior of one of the few currently available bubble memory
chips, the Texas Instruments TBMO101 {Texas, 77). This chip presents a few
drawbacks for our application:

- its architecture makes it impossible 1o shift the bubbles backwards;

- the speed at which the bubbles circulate is not very high.

17

number of secondary
memory accesses - 101 69 -
AISO5 secondary memory
access time — — 3 .79
cpu time _ _ 7.8 —
for every elapsed time -
second of 10.1 146 10.6
speech number of secondar
memory accesses Y - 850 339 -
secandary memor
AISF access tir%e Y - - 7 51
cpu time _ _ 43,2 _
elapsed time 40.4 196 50.2 —
HARPY HARPY HARPY Bubble
with with with memory
network network network system
in core in sec. in sec.
l memory | memory I
POP-10 (KA-10) PDP-11/40

Table 1 Performance Comparison of the Different Harpy Systems Described

The architecture that has been simulated uses 45 bubble chips (one for every bit
of the state information) circulating in parallel. This organization allows a very high
transfer rate (2.25 Mbits/sec) so that a state with three successors can be transferred
in 80 microseconds. The theoretical average and maximum access times are,
respectively, 4 ms and 7.2 ms. Therefere, supposing to read 5500 state records for
every second of speech (Fig.4), the retrieval time would be 22 seconds per second of
speech. If we take into account the possibility ‘to stop the bubbles after each access
the retrieval time drops to 5.1 seconds per second of speech (Table 1). Although this is
not real time yet, it is reasonable to assume that, with the technological improvement
that is foreseen in the field of bubble memories, it will soon be possible to implement a
secondary memory architecture that allows a real time retrieval of an Al network,

6 Conclusions

The problem of efficiently storing and retrieving a special class of knowledge data
bases, namely knowledge networks, has been tackled. The analysis of the search
process and a few experiments show that the reference patterns generated are
different both from usual data bases references and from program references.

18

Networks references show a good locality and therefore the main memory cah be
efficiently managed with the usual replacement policies. On the other hand knowledge
networks are not suitable for dynamic restructuring techniques because of the data
dependence of their reference patterns. A static reordering has been simulated, the
performance data obtained show that it is very difficult to cluster the states in blocks
in a way that exploits the locality of the search process references. This problem can
be partially overcome by retrieving from secondary memory single states instead of
fixed size blocks. This strategy, called "state level memory management”, lowers the
number of secondary memory accesses but also requires a high amount of processing
time. This is shown by the measurement of the performance of the Harpy speech
recognition system implemented on a Decsystem 10.

To overcome these problems a different strategy, called "small locality strategy”,
was implemented on a PDP-11/40 running under the UNIX time sharing system. This
strategy makes use of a very simple network reordering algorithm that tries to cluster
the successors of the same state together. The states are not stored in main memory
but are processed as they are retrieved. Although the required amount of main
memory and cpu time are very low this strategy outperforms the previously described
strategies.

All the described experiments fail to attain a real time retrieval of the network
information, this is partially due to the hardware limitations of the currently available
secondary memory syslems. Thus the technalogical alternative of bubble memories
has been investigated. The simulalion of a secondary memory system using one of the
few currently available bubble memory chips gave good results. It is believed that,
with the technological improvement that is foreseen in the field of bubble memories, it
will soon be possible a real time retrieval of an Al network.

Acknowliedgements
Many of the ideas presented in this paper have been influenced by discussions with
Raj Reddy, Bruce Lowerre and Ken Greer. Bruce Lowerre implemented the modified

version of the Harpy system on the Decsystem 10. Ken Greer implemented the PDP-
11/40 version of the Harpy system.

i9

7 References

[Baier and Sager, 76] JL. Baier and G.R. Sagcr "Dynamic Improvement of Locality in
Virtual Memory Systems" IEEE Trans. on Soft. Eng. Vol.SE-2, no. 1,
March 1976.

[Belady, 66) L.A. Belady "A Study of Replacement Algorithms for a Virtual Storege
Computer” IBM Systems Journal 5,2 1966.

[Comeau, 67] LW. Comeau "A Study of the Effect of User Program Optimization in a
Paging System” ACM Symp. on Operating System Principles 1967.

[Denning, 68] P.J. Denning "The Working Set Model of Program Behavior™ CACM Vol.11
No.5 May 1968.

(Ferrari, 74] D. Ferrari “Improving Locality by Critical Working Sets” CACM Vol. 17
no. 11 November 1974,

[Ferrari, 76]) D. Ferrari "The Improvement of Program Behavior" Computer November
1976.

[Hatfield and Gerald, 71] D.J. Hatfield and J. Gerald “Program Restructuring for Virtuat
Memory" IBM System Journal Vol 10 1971,

[Lowe, 70] T.C. Lowe "Automatic Segmentation of Cyclic Program Structures Based on
Conneclivity and Processor Timing" CACM Vol. 13 No. 1 January
1970.

[Lowerre, 76] B. Lowerre "The HARPY Speech Recognition System" PhD Thesis
Computer Science Department, Carnegie-Mellon University, 1976.

[Ramamoorthy, 66] C.V. Ramamoorthy "The Analytic Design of a Dynamic Look-Ahead
and Program Segmenting System for Multiprogrammed Computers™
Proc. ACM National Conference 1966.

[Texas, 77] Magnetic Bubble Memories and System Interface Circuits from Texas
Instruments. February 1977.

[Ver Hoef, 71] EW. Ver Hoef "Automatic Program Segmentation Based on Boolean
Connectivity” Proc. AFIPS 1971 SJCC.

20

