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REGULARITY OF STOCHASTIC DELAY EQUATIONS
UNDER P* ORDER DEGENERACY

Denis R. Bell and Salah—Eldin A. Mohammed

The purpose of this note is to present an extension of a theorem proved by the authors

in [1]. Let ft denote the space of all continuous paths u : R -* Rn, ô O) = 0, with the

topology of uniform convergence on compact subsets of R . Suppose (ft^jP) is the complete

probability space with & = Borel ft and P Wiener measure on ft.

Theorem 1

Suppose that g : R -+ R xn denotes a Cm map from R into the space R o / d a

matrices, with bounded derivatives of all orders. Assume that there is a positive integer p and

positive constants X and 6 such that

g(v)g(v)*>Amin(|v|2P,£)I (C)

for all v G R , where | |, I, and denote respectively the Euclidean norm on R , the d * d

identity matrix, and matrix transposition. Let x denote the solution of the follwoing stochastic

differential delay equation:

dx(t) = g(x(t-r))dW(t), t > 0 ,

( ) , - r < t < 0
(I)

where W is normalized n—dimensional Brownian motion on ( f t ^ P ) and i is a strictly

positive time delay. Suppose the initial path rj 6 L0D([—r,0],R ) and is such that

|r/(s)|2ds > 0. Define sQ e [-r,0] by



 



sQ := sup{s : s e [-1,0], J | rfa) 12du = 0}.

Then for each t > sQ + r, the random variable x(t) has a distribution which is absolutely

continuous and has a C00 density with respect to Lebesgue measure on R .

Remark:

We proved the theorem in [1] in the special case p = 1 using the methodology of the

Malliavin calculus. The significance of the result lies in the fact that in view of the time delay

r the solution of equation (I) is a non-Markov R—valued process and is therefore not

amenable to analysis via classical PDE techniques. Indeed prior to [1] the only existing

regularity result for non—Markov diffusions was a theorem of Kusuoka and Stroock [2], which

requires the assumption that the diffusion coefficient g be bounded away from 0.

The proof of Theorem 1 relies on the following result, which we give in its most general

form as we feel it may also be of interest in its own right.

Theorem 2

Suppose that y is a process in R defined by an Itb integral of the type

r*
y(t) = z + A(s)dW(s), t > 0

where z e R and A : [O,ao) x fl -» R xn is a bounded measurable process, adapted to the

filtration of W. Let h : R -> R be a measurable function satisfying the condition

|h(v)| > Amin{|v|p, 6) v G Rd (D)

Let 0 < a < b and suppose that



 



P[f lly(s)H2ds < e] = o(ek) as e -»o+, for all k > 1. (E)
J a.

P[f (h(y(s))2 ds < e] = o(ek) 05 e -> o+, /or ofl k > 1 •

.B . || • || denotes any norm on the space 4R *n o / d ^ n matrices.

Proof:

Note that we proved this theorem in [1, Lemma 3] for the case p = 1. Define

f(v) = ^ (v ) ! 1 / 5 , v € Rd. Then f satisfies the condition

v e Rd

Condition (E) together with Jensen's inequality and Lemma 3 of [1] now imply

h(y(s))2 ds < eP] < P[[b f(y(s))2 ds < c]

= o(ek) for all k> 1

from which the result clearly follows.

Following [1] we define

, v € Rd

Then (C) implies that h satisfies (D); thus h satisfies the conclusion of Theorem 2. We



 



observe that this step is the only part of the argument in [1] in which the lower bound

condition on g is used. Hence the argument in [1] suffices to complete the proof of

Theorem 1.

In conclusion we remark that Theorem 1 is a significant extension of the main result in

[1]. For example in the one dimensional situation vanishing to some finite order at 0 occurs

for any analytic function not identically zero in some neighborhood of 0, whereas in the

previous version of the theorem the hypotheses imply that g has essentially linear behavior

at 0.
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