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ABSTRACT

The field of algorithm design is concerned with the development of efficient methods
for solving computational problems. Although the field traces ils roots to theoretical
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two ways: first by the study of a few problems in detail, and then by a systematic view of
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field and a feeling for "what it can do for me"
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1. INTRODUCTION

"Algorithm design--that’s the field where people talk about programs and prove
theorems about programs inslead of writing and debugging programs. Statements along
those lines have been uttered by applicalions programmers and academicians alike. But
there are also some who say, "No! Proper algorithm design has heiped us to save kilobucks
at our installation every month.” In this paper we will investigate the field of algorithm
design {(which also is known as "Analysis of Aigorithms” and “Concrete Computational
Complexity”, among other names) and better equip the reader to judge the field for himself.

The author trusts that anyone who has even the slightest love for mathematics
burning somewhere inside his heart (however deeply), will continue to read this paper to see
how mathematical tools can be applied to the problems of programming. But for the rest of
the readers {whose inferest in mathematics was probably squelched in freshman caiculus) I
would like to offer the same bait that drew me into this field. 1 can trace my interest in the
design of efficient algorithms to the time when | was a Business Data Processing programmer
and had just finished reading an introductory text on "Data Structures™ A colleague of mine
had just had his program canceiled--the operators had estimated (by counting the turning
rate of the tapes) thal it would take about three hours to process his one reel of data. The
program itself was fairly short and a quick glance told us that all of the time was spent in
scanning a one thousand element table. 1 suggested that instead of scanning we try a
new-fangled technique- 1 had just read about--binary search. We did, and the modified
program processed the reel of tape in five minutes (and spent almost all of its time waiting
for the lape!). Around that same lime | was asked to help another programmer who had
already spent one month of time and produced over a thousand cards of code for a particular
program. A simple change in dalta structure and a few day’s work (starting over from
scralch) allowed us lto redo the program in less than two hundred lines of code. The
resulting program was faster than the original would have been, used far less code, and was
much easier to understand. So even if you have no aesthelic interest in algorithm design
(yet), please read on--the practical benefits alone can sometimes be rewarding enough!

Throughout this paper we will refer only to the discrete aspects of algorithm design.
‘We will not mention numeric problems such as stability, truncation error, error propagation
and other issues that are in the domain of numerical anaiysts. Even with this restriction, we
still include some very numeric problems, such as the manipulalion of sparse matrices (in
which almost all elements are zero) and the Fast Fourier Transform. ‘

A number of survey papers on the field of discrete algorithm design have appeared
recently. Hopcroft [1974] and Tarjan [1977] both give a broad and thorough picture of the
field. Weide’s [1977] survey concentrales on the techniques used for analyzing discrete
atgorithms, and accomplishes thal lask expertly. For those who are skeptical of sweeping
surveys and prefer to see a couple of problems examined in detail, Knuth’s introductions
{1971, 1977] will prove enlightening and fascinating. And if one is ready to become a
serious student of the field, the standard texts are provided by Aho, Hopcroft and Uliman
{1974] (a one-semester, graduate level introduction) and Knuth [1968, 1969, 1373] who has
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completed three volumes of his seven volume definitive work on computer algorithms. This
paper attempts to supplement those works by providing a broad survey for the novice, The
bibliography has been kept exceplionally shorl; both Tarjan [1977] and Weide [1977] contain
excellient bibliographies for those interested.

This paper is divided into five sections. In Section 2 we will examine five problems
and some algorithms for solving them. Having examined those concrete examples we turn to
a systematic view of the field in Seclion 3. In Seclion 4 we will mention some of the current
directions in which the field is now moving. Finally, we tie together the main points of this
paper ir Seclion 5.

2. EXAMPLES OF FAST ALGORITHMS

Sweeping generalizalions without supporting examples are often content-free, so
before we go on to sweeping generalizations in Section 3 we will study a few examples of
fast algorithms. For each example we will specify a problem, mention some of its real-world
applicalions, give an algorithm to solve the problem, analyze the efficiency of the algorithm,
and then discuss interesling issues which have surfaced. We will study the "subset testing”
problem of Section 2.1 in a fair amount of depth and then treat the other four problems at a
more superficial level. After discussing these examples, and before we move on to the
stalements aboul the field of algorithm design in Section 3, we will summarize what all of our
work bought us in Section 2.6.

, But first a word on why we are examining these particutar problems. The subset
lesting problem of Section 2.1 will raise a number of familiar issues and should cover some
old ground for many; It also gives us a nice illustration of the tremendous time savings -
achievable with proper algorithms. The substring searching problem of Section 2.2 provides
an exiremely interesting blend of theory and practice. The Fast Fourier Transform of
Section 2.3 is known to many, uses some imporlant algorithmic techniques, and is eminently
practical. In Section 2.4 we examine a very old problem {matrix multiplication} and a recent
and remarkably counter-intuitive solulion; we will also see some mysterious relations among
very dissimilar problems. In Section 25 we will investigate algorithmic aspects of a
public-key cryptosystem that has recently revolutionized the world of cryptography, and
promises to have a subsiantial impact on "secure” computing.

2.1 Subset Testing

Given a set A {of size n) and a set B (of size m < n),is B a._.subset of A?l This "subset
testing” problem can be stated as a programmiing exercise: given an array A[l:n] and B{1:m),

1 This problem is discussed by Knuth (1973, p. 390}
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both of (say) 32-bit words, is every word in B also in A? Disguised versions of this problem
arise in many contexts: A could be an employee master file, B a list of weekly transactions,
and we want to find whether a masler-file record exists for each weekly transaction. Or A
migh! be a table of real numbers x and have an associaled table § which contains sine x, then
B would be a sel of x values at which the sine function is to be evaluated. Although this
problem does have some practical application, that is not our main motivation for examining it
here. We will see that it leads to many of the basic issues in sorting and searching, and
points lo inler-relationships between those problems. We will also get an exposure to some
of the common methods of algorithm design.

_ We will examine three ways of solving this problem. In order to compare the
methods we will find the running time of each by counting the number of comparisons
between elements. The following enlicement mighl encourage the reader as he labors
through the different methods: following our discussion of the methods we will see an
application in which our first algorihm would require over six days of CPU time, while our
final algorithm can solve it in four seconds. '

Brute Force

The simpiest way to accomplish this task is to compare every element in B to each of
the elements of A until either its equal is found or we have examined ail of A and delermined
that it has no equal in A (in which case B is nol A’s subsel); this approach gives a simple,
two-lcop program. If B is indeed contained in A, then each scan for an element that is B's
mate in A takes n/2 comparisons on the average {you have to look halfway down the list),
Since there are m such scans made, the totai number of comparisons made by this program is
about m(n/2). So if m is very close to the size of n, then we will make about n2/2
comparisons on the averagez. Although this algorithm is exceplionally simple to understand
and to code, its slow running time might prohibit its use in certain applications. We will now
turn our altention to a faster algorithm.

Sorting

It you were given a randomly ordered list of phone numbers B (say a list of phone
numbers in a town) and another randomly ordered list A (say all phone numbers in the
county) and you were asked to check whether B was a subset of A (make sure every town
phone number is included in the counly lisl), then you might use the brute-force algorithm
just discussed. If, however, you were handed a town phone book and a county phone book
and asked to perform the same task, then your job would be much easier. Since the two
phone books are already sorted (by name) we can just scan through the two books together,
insuring that the county book contains all the town names. This of course immediately gives
us another algorithm for subset testing: sort A, sort B, then sequentially scan through the
two, checking for matches. To analyze the run time of this strategy we observe that the

2 We won't try to analyze the case that B is not a subset of A; to do so we would have to
say exactly how it is not a subset, and that is very dependent on the particular problem.
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scan will take about m+n comparisons, and we heard somewhere that you can sort a list of
size n in about n logy n comparisons, so the total running time is (n logy n) + (mlogp m) +
m+n comparisons.

We could pull a sorling routine out of thin air, but it is not much more difficult to
describe one called Mergesort. The basic operation of Mergesort is merging two sarted lists
of numbers, say X and Y (the lists could either be slored as arrays or linked together with
pointers). To do this we compare the first element of X with the first element of ¥ and give
the smallest as the first elemenl of the new lisl, deleting it from ils source. We repeat this
remove-the-smallest step until both X and Y are empty. Since we used one comparison for
each step, if there were a lolal of m elements in X and Y, we will have used about m
comparisons. We can now use this tool of merging to Mergesort a set S of n elements. We
start by viewing S as a set of n sorted one-element lisis. We then merge adjacen! pairs of
one-element lists, giving n/2 2-element sorled lists. The next step is to merge adjacent pairs
of those lists giving n/4 4-element lists, and the process continues. After logy n iterations
we have one sorted n-element list, and our lask is complete. To analyze this we note that
we use about n comparisons for the merges at each of the log, n iterations, so the fotal
number of comparisons used is the promised n log, n. :

We have thus shown how to solve the subset problem with. n{logon + 1) +
m{logom + 1) comparisons. 1f m is about the same size as n then our algorithm takes
approximately 2n logy n comparisons. Can we do better?

Hashing

Introspection as to how we would solve the phone book problem led to an inleresting
sorting approach to the subset problem; if we rephrase the phane book problem then the
"human" approach will lead to an even faster subset algorithm. Suppose that the county
phone book (A) was sorted and the town phone list (B) was not; to ensure that A contains B
we can "look up” in A each number in B by the name of the subscriber. For each of the m
elements in B we would do a "binary search™ among the n elements of A. 1t is not hard to
see thal a binary search in an n-element sorted lable takes at most logo n comparisons, sO
this algorithm is easily analyzed: it takes nlogy n + m log, m comparisons, or approximately
2n logp n if m is the same size as n. We therefore have a searching solution to the subset
problem: store the elements of A in a table, then for each element of B ensure that it is in
the table.

Although binary search is the best searching method for many problems, there is
another searching strategy even more appropriate for this problem: hashing. Using hashing
we can slore an element in a table or check to see If an eiement is already in a table in

3 A binary search for a name in a phone book first compares that name to the middle name
in the book. If that name is less than the middle we restrict our search to the first half of
the book, otherwise we search the last half, and so on,
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about two comparisons, on the averageq. Wilh this approach we will be able to do subset
festing in 2n + 2m comparisons--2n to slore A and then 2m to look up each element of B. To
store the n elements of A we will have to allocate a hash table which is an array of length
(1.5)n.° We then store the elemenis of A in the table one-by-one by the use of a hash
function. This funclion maps a data value inlo an inleger in the bounds of the hash table. If
that posilion in the hash lable is empty, fine: insert the element. I the position was
occupied, however, we have a collision, and must employ a collision resoliition strategy, such.
as scal{ning up the elements af the array unlil a free position is found. Analysis has shown
that a proper collision resolution sirategy allows one lo find an empty spot very quickly {say,
in two comparisons). When an emply spot is finally found the element is inserted. After
inserting all of A’s elements into the table we then look up all of B's elements. For any
particular element we calculate its hash function and look in that position. If that position is
emply then it is not in A; if the element is in the position then we have found it; otherwise
we must employ the same collision resolution stralegy to see where it should be. The
technique of hashing is something that a human would never use in searching (humans are
much belter at comparing things and then looking in one of {wo directions than at calculating
weird hash functions), but it leads lo a very efficient algorithm. If m is about the same size
as n then the hashing approach uses only about 4n comparisons {on the average) to do
subset testing.

Summary

The subset testing problem is stated very simply but has led us straight to some of
the fundamental issues in aigorithm design. We very quickly arrived at searching--the scan
of the brute force algorithm is just a naive search. From there we moved to sorling, then to
binary search, and finally to hashing, which introduced us to a non-obvious data structure
(the hash table).® The approaches thal we used to solve these problems are some of the
fundamental tools of algorithm designers. We have aiso touched on a number of interesting
aspects of algorithmic problems such as time and space analyses and worst-case versus
expected-time analysis. We will sludy these issues further in Section 3.

But whal has all this gained us? We certainly have a more definite understanding of
some of the fundamenlal computational issues involved, but does it make any difference in
praclice? To answer this question let’s assume that we are wriling a program for subset
testing where A and B both confain one million elemenls, and for the sake of argument
assume that one comparison takes one microsecond of compuler time. By these assumptions,
the n2/2 comparisons required by brule force translates to 138 hours (or a little shy of six
days) of machine lime; the 2n logy n for sorting will give 40 seconds; and the 4n of hashing

4 For pessimists, however, we nole that The worst case of hashl-ng ls as bad as brute
force--we might have to look at all of the elements in the table,

5 We can even use a smaller array; (1.1)n would probably work almost as well,

6 A more thorough examination of searching is conlained in Knuth's [1977] survey.
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will yield 4 seconds. Although we haven't calculated all the costs of implementation, this
example shows how sometimes a simple analysis is all one needs to make an informed choice.

2.2 Substring Searching

Does a given string contain a specified substring pattern, and if so, where? This is the
substring searching problem. This problem is familiar to most who have used computer text
editors; as the author sal down to type this paragraph he told the editor to find the
substring "2.2" in his texl file so he would know where to insert this textt/ This same
operation is used by information retrieval systems as they identify abslracts which contain
cerfain keywords. Similar problems are encountered in many text formatting and macro
processing programs.

It is not hard to write a program lo solve this problem. We first hold pattern’s
leftmast character under string’s ieftmos! character and start comparing. If all the characters
of pattern malch the characters above them, fine--we have found the substring in position 1.
If we find a mismatch then we slide pattern over one and do the same thing again. This
continues until we either find a match or come to the end of the string. The worst-case
behavior of this algorithm is very slow--for each of the n positions of string we might have
to compare all m posilions of pattern. Thus in the worst case we might have to make mn
comparisons. Strings and patterns that realize this worst-case behavior are fairly
pathological and the performance of this algorithm in practice is fairly good, but the question
still haunts us--can we give an algorithm that will always do better?

Knuth, Morris and Pratt [1977] give an algorithm that beats the mn performance.
They preprocess pattern into a dala siructure that represents a program; that program then
looks for pattern in string. Preprocessing pattern by their algorithm lakes only m operations
(where m is the length of pattern} and the "program” they praduce looks at each character of
string only once, so the total running time of their algorithm is proportional to m+n, instead
of mn. (Of course if the patiern is in the siring in position i, then their algorithm takes time
proportional 1o i+m.) This result is exceptionally interesting from a theoretical viewpoint, and
also provides a faster subsiring searching algorithm in practice.

Boyer and Moore [1977] recently used the basic idea of the Knuth, Morris and Pratt
algorithm fo give an even fasler method of substring searching. Their method has the same
worst-case performance (proporiional o m+n), but is somewhat faster on the average. They
accomplish this by making it unnecessary to examine every element of string. They have
implemented their algorithm on a PDP-10 so efficiently that when string contains typical
English lext and pattern is a five lelter word in string, the number of POP-10 instructions
execuled is less than i+n. This is at least an order of magnitude faster than the naive
" atgorithm. : -

7 The lext editor he uses looks at his file as one Ibng string of text, sprinkled with special
characters representing "carriage return”,



7

The history of the subslring searching problem provides an interesting insight into
the relation of theory and praclice in Computer Gcience. Knuth relates that he was led to his
discovery of the algorithm by the use of a machine from automata theory called the
"two-way deterministic pushdown aulomaton”. The easies! way to understand the fast
algorithms is through the use of finile state automata, which are commonly used in digital
systems design. It is noleworthy thal in this one problem we talk about such diverse ideas
as abstract automata and PDP-10 instructions, with a lot of combinatorial analysis in between!

' 2.3 The Fast Fourier Transform

The Fourier Transform is oflen sludied in mathematics and engineering. It can be
viewed in 2 number of ways, such as lransforming a function from the "lime domain” inlo the
"frequency domain” or as the decomposition of a funclion into its "sinusgidal components™.
The continuous Fourier Transform has a discrete counlerpart, which calls for applying an
operalion to one sel of n reals yielding a "lransformed” set of n reals. This problem has
applications in signal processing, interpolation methods, and many discrete problems.

The naive algorithm for compuling the Fourier Transform of n reals requires
approximately n2 arithmetic operations (adds and multipiies). The Fast Fourier Transform of
Cooley and Tukey [1965] accomplishes this lask in approximately n logp n arithmetics. It
achieves this by doing about n arithmelics on each.of logy n levels; in this sense it is quite
similar to the Mergesort algorithm of Section 2.1. There are many different expositions of
the algorithm; see Aho, Hopcroft and Ullman [1974] or Borodin and Munro [1975]) (It is
interesling to note that in addition to being faster to compute, many of the numeric
properties of the FFT are better than thase of the naive transform.)

The Fast Fourier Transform has had a substantial impact on computing. It forms the
backbone of many "numeric” programs. The FFT has been used in diverse fields to find
hidden periodicities of a stationary time series. In signal processing it is used in fillers to
remove neise from signals and eradicate biurring in digital piclures. It is used in numerical
analysis for the interpolation and convolution of functions. Applications of the FFT in such
diverse areas as eleclrical engineering, acoustics, geophysics, medicine, economics, and
psychology are listed by Brillinger [1975, Section 1.5]. Many special-purpose processors
have been buill which implement this algorithm; some of those are multiprocessors which
operate in parallel. The FFT is also widely used in the design of "discrete” algorithms. It is
the primary tool in many algorithms which operate on polynomials, performing such
operations as mulliplicalion, division, evaluation and interpolation. Not surprisingly, it is also
employed in some of the fastes} known algorithms for operating on very long integers (such

as multiplying two one-thousand bit integers; we will see an application of this problem in
Section 2.5). '



2.4 Matriz Multiplication

One of the most common ways of representing many different kinds of data is in a
malrix, and one of the most common operations on matrices ls multiplication. How hard is it
- to multiply two n x n matrices? Using the standard high school method takes about 2n
arithmetic operalions to calculate each of the nZ elements of the product matrix, so the total
amount of time required by thal algorithm is proportional to nS. People have been
mulliplying malrices by this method for a century. Surely this must be the best possible way
fo multiply matrices--our intuition lells us thal we just can’t do any better.

The high school algorithm for multiplying two-by-fwo matrices uses 8 multiplications
and 4 additions. It is fairly counter-iniuilive to learn that the product can be computed using
only 7 multiplicalions at the cost of an increase to 15 additions. But if that is
counter-intuitive, then it is absolutely mind-boggling to find that this fact alone allows us to
construct an algorithm for multiplying n x n matrices thal runs in less than n3 time! This
algorithm is due fo Strassen [1969] and works by decomposing each n x n matrix into four
(n/2) x (n/2) matrices. To find the producl of the original malrices it does seven
multiplications of (n/2) x {n/2) matrices and then fifleen additions on matrices of that size,
Notice, however, that the cosl of those additions is proportional to n2, 1 we let T(n) be the
time required to multiply n x n malrices, then T(n) satisfies the recurrence

T(n) = 7T(n/2) + O(n?),
T(1) = 1

which has the solution T(n) = 0(n2-81) (where 2.81 is an approximation to logy 7). Using the
naive implementation of this algorithm proves less efficient than the high school algorithm
until n is in the thousands; recent work, however, has shown that it can be practicai when n
is as small as 40. But practice aside, who can help but be amazed by the fact that we can
multiply matrices faster than we thought we couid? '

The fast matrix mulliplication algorithm provided the basis for one of the all-time
great revolutions in the history of "theorelical” algorithm design, during which a number of
"best™ known algorithms were toppied from their reign. Many of these were nd matrix
algorithms which we can now do in 0(n2'81) lime; among these are matrix inversion, LU
decompaosition, solving systems of linear equalions, and calculating determinants. A number
of problems which seemed 1o be lolally unrelated to matrices were phrased in that language
and O(n2-81) algorithms foliowed for such diverse problems as finding the transitive closure
of a graph, parsing conlext-free languages (an important problem In compilers) and finding
distances between n points in Euclidean n-space. All of these algorithms stem from the fact
that two-by-~two matrices can be multiplied with seven multipiications!

2.5 Public-Key Cryptography

Communicalions syéiems which deal with the problem of transmitting a message from
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a sender 10 a receiver across an insecure {possibly bugged) channel while protecting the
privacy of the message are known as cryptosystems. Such coding problems arise often in
military applications, and they promise o play an ever increasing role in compuler systems
such as electronic mail and electronic banking, among others. A cryptosystem Is usually
implemented by encoding and decoding algorithms which transform their inputs according to
the keys they are given. To send person X message M we use the encoding algorithm and
key to produce message M' and transmit M' across the (insecure) channel to X. When X
receives M he can use lhe decoding algorithm and key to determine M, and any
"eavesdropper” on the line will be left with only M'. One difficulty with this system is that
the appropriate keys must somehow be given to the various parlies, and this must usually be
accomplished by the use of expensive secure channels such as human couriers.

An allernalive 10 such a system was recently invented by Hellman and Diffie and is
called a public-key cryplosystem. In a public-key system each person has an encoding key
and a decoding key, as before; io send a message to person X we encode it with his encoding
key, and then he can decode it with his decoding key. The novel aspect of this system is
that the encoding key can be made public without revealing the corresponding decoding key.
The encoding key can then be viewed as the address of person X's mail box, and anyone can
put mail into that box simply by encoding it. To actually unlock the box, however, requires
the decoding key, which only X possesses. Such a syslem solves almost ail of the difficulties
of previous cryptosystems, but there is one major obstacle yet to overcome: for most codes,
knowledge of the encryplion key immediately reveals the decryption key. Thus all we need
to complele our public-key cryptosystem is an appropriate encoding/decoding algorithm, but
is it possible for such a function to exisl?

A suitable encoding/decdding method was recgéntty developed by Rivest, Shamir, and
Adieman [1978). Their method is based on algorithmic issues in the theory of numbers.
They view messages as multiprecision (long) inlegers, of (for example) 200 decimal digits.
The coding procedure then transforms these messages by sophisticated use of modular
arithmelic and prime number theory. The transtormations require many sophisticated
algorithms.  For instance, the process of key selection is based on fast algorithms for
multiplying multiprecision inlegers and tesling such inlegers for primality; encoding and
decoding is then performed by fast multiprecision exponentiatian algorithms. The security of
the system is indicated by the fact that any method that "breaks” the system must
{essenlially) find the faclors of a very large number. Although no one knows precisely how
difficult this is, mathematicians have been working on this problem for many cenlturias, and no
one yel knows of a fast method. To put this in perspective, if we deal with 200 decimai digit
integers, then the key selection, encoding, and decoding algorithms require only a few
seconds ot CPU time, while the best known method for breaking the system would require

ten million centuries of CPU time. This method thus appears to be reasgnably secure against
code breakers!

We have only scratched the surface of the fascinating field of public-key
cryplography. In addilion to use in cryptosystems, these methods can also be used to
provide “electronic signatures®, or verificalions of Identity. This cryptosystem is another
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interesting example of the inferactions between theory and practice. The system is based on
number theory (perhaps the puresl of the areas of pure mathemalics) and complexity theory
(an area of theorelical compuler science), yet it promises to revoiutionize the practice of
cryplography. The inleresied reader should refer fo the article by Rivest, Shamir, and
Adleman [1978] or the exposition in Gardner [1977] Although the algorithms we have
mentioned did not really solve existing computational prablems, they soive & problem in a
totally different area by casting it in a compulationat light.

2.6 So What?

We have now examined five cases in which proper algorithm design has led to a
sophisticated algorithm which is much faster than a naive algorithm. A lot of work has been
invested in developing these algorithms; what difference will all this work make in practice?

To be honest, mosl of the time a fas! algorithm makes no difference at all. Knuth has
gathered empirical evidence which shows thal most of the run lime of a program is spent in
just three percent of the code (a similar resull is often mentioned by statisticians: twenty
percent of the populalion accounts for eighly percent of the beer consumed). If the problem
to be solved is not in the critical three percent of the code {(as about 97 percent of the
problems are) then it makes little difference if that algorithm is fast or not. A more
complicaled algorithm can often be a liability rather than an asset. It will usually mean more
coding and more debugging time, and can sometimes even increase the run time {(when the
overhead of "slarting.up" a fancy algorithm costs more than the lime It saves).

Sometimes, however, a fas! algorithm can make all the ditference in the worid. If the
computation being performed is indeed the boitleneck in the system flow, then an algorithm
of half the running time almost doubies system throughput. In many text editors the vast
majority of the time is spent in string searching; the fast algorithm of Section 2.2 can speed
up many text editors by a faclor of five. The author’s experience with the searching
program mentioned in the iniroduction (when the running time of a program was reduced
from three hours to five minutes) is another classic example of an appropriate use for a fast
algorithm. In the inner loops of many programs, proper algorithm design is critical.

An analogy will perhaps clarify these issues. It is fairly easy to walk, it is more
complex to drive, and it is even more complex yet to learn to fly a modern jet airplane.
Walking is the best way to gel from one room of a house to another, driving is superior for .
getting from one town to anolher, and flying is hard to beat for getting from one part of the
country lo another. There is no "best” mode of transportation--the best mode in a particular
case depends strongly on that case. For most of us the time we spend travelling in jet
airplanes Is very small compared to the time we spend walking--but it sure is nice to know
about jets when we need them! |

Although the effort of fast algorithm design only occasionally gives us large financial
savings, it always gives us something of a different value--a fundamental understanding of
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our compulational problems, This is usually reflected in cleaner programs, but even more
important is the underslanding of how difficult it is to compule something. Afler a student
has spent a month or two investigating the problem of searching, he not only knows how to
search fast bul also why he can do it that fast and why he can’t do It any faster. Such a
student has learned something of the foundations of his field.

3. A SYSTEMATIC VIEW

In Section 2 we saw a number of specific problems and a number of specific
solutions; in this section we will show lhat there is more to the field than isolated examples.
In Seclion 3.1 we will discuss the concepts one needs to define a computational problem, and
in Seclion 3.2 we will use those concepts to describe the kinds of problems for which fast
algorithms have been designed. In Section 3.3 we will peek into the algorithm designer’s tool
bag.

3.! Dimensions of a Problem--A Microscopic View

The subset tesling probiem of Section 2.1 showed that there can be many different
algorithms for solving a particular problem. In order to say which one is best in a particular
application we have lo know certain dimensions along which to measure properties of the
algorithm. For example, in one application we may need a subset algorithm that must be very
space-efficient and have good worst-case running time; in another conlext we might have a
lot of available space and only reguire good expecied running time, not caring if we
infrequently must take a lot of time. We have thus identified three dimensions of a
compulational problem: time analysis, space analysis, and expected vs. worst-case analysis.
In this subsection we will discuss these and other dimensions of computational problems.

Time and Space Analysis

The two most imporiant resources in real computational systems are time (CPU
cycles) and space {memory words) used, and these are therefore the two dimensions of a
problem most frequently studied. The running time was the primary subject we examined in
the exampies of Section 2. Most of the algorithms we examined use very little extra space
after storing the inputs and oulpuls; the hashing algorithm of Section 2.1 was the only
exception. In farge compuler systems huge quantities of extra space {megawords) can be
had for the asking and the paying; for thal reason the space requirements of algorithms have
ofien been ignored. With the rise in popularily of mini- and microprocessors with very smalil
memories, however, space analysis is once again an extremely important issue.
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Model of Computation

Throughout Seclion 2 we were able to make reference to the time and space
requirements of wvarious algorithms withoul reference to their implementation on any
particular computer. Qur intuilive notions were robust enough to lead to sophislicated
algorithms that will certainly beal {heir naive competitors on any existing machine. But to
analyze an algorithm in detail we must have a precise mathematical model of the machine on
which the atgorithm will run.

We could choose as our model a particular computer, such as an IBM 650 or a DEC
PDP-10, and then ask how many microseconds of time or bits of storage a particular
algorithm requires. There are two problems with this approach. First, we will probably be
analyzing lhe expertise of the impiementor of the algoritlhm more than the algorithm’s
intrinsic merit, and second, once we have completed such an analysis using the 1BM 650 we
still know very little about the algorithm’s behavior on a PDP-10. One way of dealing with
this difficulty is to invent a representative computer and then compare the performances of
competing algorithms on that machine. Knuth [1968] has described one such machine which
he named the MIX computer; il has much in common with most existing machines without
many idiosyncracies of its own. If algorithm A is faster than algorithm B when implemenied
on MIX, then it is very likely to be fasier on most real machines, too.

‘Another solution to the model of computation problem is not to analyze the
implementation of the algorithm on any particular machine at all, but to count only the
number of times some critical operation is performed. For the analysis of the FFT and matrix
multplication we chose to count the number of arithmetic operations. We know that the FFT
uses exactly nlog, n multiplications; to estimate its running time for a given implementation
we can look up the execution speeds of the instructions around the multiptication instruction,
sum those, and then mulliply by nlog, n to get an eslimate for the running time. It'is
usually easy to determine the running time of a particular program if we know the number of
times the critical operation is to be performedg. Once we have chosen a critical operation o
count it is very easy }o specify a model of compulation. To count arithmetic operations we
usually employ the "straight-line program” model in which an algorithm for a particular vaiue
of the prob!em size (n) is represented by a sequence of slatemenls of the form
where OP is add subtraci multiply, or divide. If the sequence for a particular value of n is m

nstructions long then we say that the execulion time of our program is T(n) = m. If our
crmcal operation were comparison, then we waould probably choose the "decision iree”
model. These and other models are described by Aho, Hopcroft, and Ullman [1974,
Chapter 1]

The above models aliow us to analyze algorithms for their suitability as “in-core®
programs on single-processor machines. If a program has very little main memory available

8 Though we must be careful nol to ignore certain "bookkeeping” operations that may
"become critical in implementations.
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and must store most of its data on tape, lhen some tape-oriented model such as the "Turing
machine” is the mos! accurale model of the compulation. If a program is to be run on a
mulliprocessor machine then one's model must express this fact; the particular model
employed will vary with the multiprocessor architecture’. Many other models of computation
have been proposed to describe diverse compuling devices. The two important things in
choosing 2 model are that il be realistic, so the resulis will apply to the situation it purports
to model, and that it be mathematically tractable, 50 we can derive those results.

Ezact or Approximate Analysis

Once we have chosen a model of computation we can analyze the performance of an
‘algorithm by couniing the resources (time or space) it uses as a function of n, the problem
size. How accurately should we do tha! counting? We could be very precise, calculating the
answer exaclly, or we might setlle for an approximate answer. There are levels of
approximation, all the way fram the first two lerms of the answer to rough upper and lower
bounds. 1t is certainly desirable to ge! the exact answer, but this is somelimes very difficult.
The first one or two terms of the cost function are adequate for most purposes, and in many
cases only the asymplotic growth rate of the functions is needed. We saw in the subset
testing problem an example in which the run time for one program for a lask was 138 hours
while another program took just 4 seconds. Even il our analysis had missed a factor of ten,
that could not affect our choice for large problems..

We often use the "big-oh" notation to describe the complexity of a problem. No
matter what the respective constants are, an QO(n logo n} algorithm will be faster than an
O{n2) algorithm for large enough n. As larger and !arger problems are being soclved by
computer ‘we are more and more frequenily in lhe domain of "arge enough n"
Asymptotically fast algorithms aiso have another advantage. If we gel a new machine one
hundred times faster than our current, using an Q(n logp n) algorithm will ailow us to solve a
problem almost one hundred times larger in the same period of time. Using an 0(n2)
algorithm we will only be able tc increase the problem size by a factor of ten. Thus the

asymptotic growth raite of a function alone is usually enough to lell us how much an increase
in problem size will cost.

Average or Worst-Case Analysis

Many algorithms perform a sequence of operalions independent of their Input data;
the: FFT and malrix multiplication algorithms of Seclion 2 are both data-independent. The
analysis of a data-independent aigorithm is straightforward--we simply count the number of
operations used. The operation of other algorithms (such as the sorting and substring
algorithms) are dependent on their inpul dala; ane algorithm can have very different running

9 The interested reader should refer to Kung [1976] for a discussion of some of these issues
from an algorithmic viewpaint.
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fimes for two inpuls of the same size. How do we describe the running time of such an
algoritlhm? Pessimisls would like to know the worsl-case of the running time over all inputs
and realists would like o know the average running lime. (We are rarely concerned with the
best-case running time, for there are very few oplimisls involved with computing.)

Most of the mathemalical analysis of algorithms has been done for the worst case.
‘Even in data-dependent algorithms it usually easy to identify the worst possible occurrence,
and then analyze thal as in a data-independent algorithm. In certain applications (Air Tratfic
Control is oflen cited) it is very important o have an algorithm with which we are never
surprised by a very slow case. For most applications, however, we are more interesled in
what will usually happen; expecled-lime analysis provides us with this information.
Relatively little work has been done on expected-time analysis. The two major stumbling
blocks appear to be in the choice of a realistic and tractable probability model of the inputs
and the insirinsic difficulty of dealing with expectalions instead of single cases. It would be
very desirable to have a single algorithm that is very efficient In both expected and
worst-case performances.

Upper and Lower Bounds

Most naive sorting algorithms (such as "Bubble Sort") require O(nz) comparisons in
the worst case; in Section 2.1 we investigaled Mergesort, which never uses more than
O(n fogy n} comparisons. Should we continue our search, hoping to find an algorithm that
uses perhaps only O(n) comparisons? The answer to thig queslion is no, for it can be shown
that every sorting algorithm must take at least O(n logy n) comparisons in the worst case. The
proof of this theorem uses the "decision tree"” model of computation and is described nicely
by Aho, Hopcroft, and Ullman [1978]} The Mergesort algorithm gave us an upper bound of
O(n logy n) on the complexily of sorting; this theorem gives us a lower bound. Since the two
have the same growth rate, we can say that Mergesort is optimal to within a constant tactor,
under the decision iree model of compulation. Notice that we have now made the important
jump from speaking of the complexity of an algorithm to speaking of the complexity of a
problem.

Lower bound results are usually much more difficult to oblain than upper bounds. To
find an upper bound on a problem cne need only give a particular algorithm and then analyze
it. For a lower bound, however, one must show that in the set of all algorithms for solving
‘the preblem, there are none which are more efficient than the lower bound. There are some
trivial lower bounds which can be achieved easily: most problems require examination of all
their inpuls so we usually have an easy lower bound of the input size. The number of
nontrivial lower bounds discavered to date is very small.

In proving: lower bounds it is imporlant lo be very precise about the model of
computation. In Section 2.1 we gave three algorithms that can be used for testing set
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equaiilylo: brute force, sorting, and hashing. The imporlance of computational model
becomes clear when we learn thal each of those algorithms can be proved optimal under
different computalional models! The O(n?) performance of brute force is optimal if only
equal /not-equal comparisons can be made belween elements of the two sets. If the model of
computation infudes only less-than/not-less-than comparisons then the O(n logy n)
comparisons of sorting are optimal. If the model is a random access computer (such as MIX),
then the average-case linear performance of hashing is provably best.

Exact and Approximation Algorithms

There are many problems for which the best-known algorithms are quite siow,
requiring (say) O(2") time. A very few of these problems have actually been proved to have
exponential lower bounds. Others belong te a fascinaling class called the NP-complete
problems which are either all solvable in polynomial time or all of exponential
complexity--unfortunalely nobody yel knows which (but most of the money is on
exponential). Examples of MNP-complete prohlems include the Travelling Salesman Problem
{finding a minimal-length tour through a set of cities), Bin Packing, and the Knapsack Problem;
literally hundreds of problems are kmown to be NP-complete. There are other problems
which have not been proved o be hard, ye! no one has been able to design fast algorithms
for-them. When we have a problem which we do not know how to solve efficiently, what can
we do?

The answer is amazingly simple: don't solve it. Solve a related problem instead.
Instead of designing an aigorithm to produce the exact answer, one can build an algorithm
that will produce an approximation to the exact answer. So instead of finding a minimal tour
for the Travelling Salesman, we might provide him with a tour which we know to be no more
than fifty percent ionger than the true minimum. Or if someone asks us to determine if a
number is prime or composile, instead of providing the true answer we might respond "I
don’t know, but 'm 99.999999 percent sure that it’s prime.” Examples abound in which the
best known exact algorithms for a problem require exponential time, bul approximate
solutions can be found very quickly. Garey and Johnson [1976] examine these issues.

Summary

These problem dimensions are the categories in which algorithm designers think.
When someone brings a problem lo an algorithm designer, the algorithm designer's first task
is to understand the absliract problem. His second task is to understand what kind of solution
the person wanis, and he uses lhese dimensions to describe the desired solution. Using the
vocabulary of this section it is easy to describe concepts such as a "fast expected time and
fow worst-case storage approximation algorithm for task X which is to be run on a

10 We gave them originally for subset testing, bul recall that iwo sets are equal if and only if
each is a subset of the ather.
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multi-processor machine™. There -are other infrequently used dimensions which we have not
covered (such as code complexity--how long is the shorteslt program to solve this problem?)
but these dimensions are adequale lo describe most algorithmic resulls.

3.2 Problem Areas--A Macroscopic View

In Section 3.! we developed a vocabulary which we can use to describe a particular
algorithmic problem at a very precise level of delail. In this section we will change our
perspective and examine large classes of problems, using the terminociogy of the last section.
We will describe each area by a briel summary and one or two illustrative problems.

Ordered Sets

There are many problems on sels that depend only on a "“less than" relatlonship
being defined between the elemenis of the sel. In many cases the set contains integers or
real numbers; in other cases we define a "less than” relation between character sirings
(JONES is less than SMITH). The problems which arose in Section 2.1 are ail problems on
ordered sels--these include soriing, searching, merging, and subset testing. The algorithms
of that seclion are appropriate if the elements of the sets lo be processed are numbers,
character strings, or any other type of "orderahie” object. .Knuth [1973] provides an
excellent introduction to the applicalions of and algorithms for ordered sets.

The “"median problem” is another problem defined for ordered sels: given an
n-element sel we are to find an element which is less than half the elements and not less
than the other half. A naive algorithm would count for each element the number of elements
less than it, and then report the median as the element with exactly half the others less than
it. This algorithm makes approximately n2 comparisons. An O(n log, n) algorithm is given by
sorting the elements and then reporting the middle of the sorted list. A median algorithm
with linear expecled time was first described by C. A. R. Hoare in 1962. For over ten years
it was nhot known if there was an algorilhm that had linear worst-case time; one was finally
given by Blum et al. [1973] Much additional work has been done on this problem, exploring
such facels as minimal storage, delailed analysis of worst-case and expected running times
(both upper and lower bounds), and approximation algorithms,

Algebraic and Numeric Problems

Many aspecls of algebraic and numeric problems have a discrete flavor, and discrete
algorilhm design can play a significanl role in such problems. Matrix muitiplication is perhaps
the clearest example of such a problem; lhe fast algorithm can be described (and
apprecialed) without reference to any of its numeric properties. The FFT can also be viewed
"non-numerically”. Anather example of a numeric problem thal can assume a purely discrete
characler is the manipulation of sparse malrices {matrices in which almost all elements are
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zero); we return to this problem in our discussion of graph problems. Borodin and Munro
[1975] give many applications of fhe principles of discrete algorithm design to numeric
pfoblems such as polynomial manipulation, exiended precision arithmetic, and multiprocessor
implementations of numeric problems.

Graphs

Graphs are used (o represent many different kinds of relations, from the
interconnections of an airline syslem to the configuration of a computer system. Tarjan's
[1977] survey discusses many computalional problems on graphs. One important problem
calls for determining if a given graph can be imbedded in the plane without any edges
crossing. This might be used lo check if the conneclions of a given circuit could be imbedded
on a printed circuit board or integrated circuit. The first algorithms for testing planarity ran
in O(n3) time on n-node graphs; after much effort on the part of many researchers had been
spenl on the problem, Hopcroft and Tarjan finally gave a linear-time planarity algorithm in
1974. Another graph problem is to construct the minimal spanning tree of a weighled graph,
which is a minimal-weight sel of edges connecling all nodes. A wide variety of algorithms
have been proposed and analyzed for this praoblem; some are superior for very dense
graphs, others for relatively sparse graphs, and stiil others for graphs which are planar.
Efficient graph algorithms have been given for problems such as the flow analysis of
computer programs and finding maximal flows in networks. A sparse matrix is usually
represented by a graph; the algorithms for manipulating matrices are then graph algorithms.

Geometry

Shamos’ [1975] paper is an outstanding introduction to the field of Computational
Geometry, which is concerned with developing optimal algorithms for geometric problems.
Many applications are inherently of a geometric nalure (such as laying out circuits on a
board) and other problems can be viewed geomelrically (such as looking at a set of
multivariate observalions as points in a multidimensional space). Shamos has described an
impartant structure called the Voronoi diagram which allows many geometric problems
dealing with n points in the plane to be solved in O(n logy n) time. Among these problems
are delermining the neares! neighbor of every poinl and constructing the minimal spanning
tree of the point sets {both of these are important tasks of many data analysis procedures,
and previously required O(nz) time). Many other impaortanl problems have been solved after
being cast in a geometric fra_mework.' One resull obtained by this effort is that the standard
Simplex Method of linear programming is not optimai for two and three variable programs
with n constraints. The simplex method has worst-case running times in the two problems of
0(n2) and O(n3), respectively; an O(n logy n} method has been given and proved optimal for
both the two- and three-variable case.
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Other Areas

In this section we have glimpsed a few fields that have been studied by algorithm
designers. The results in many other areas must go unmentioned; these include algorithms
for compilers, operations research problems, dala base management, statistics, and problems
on character sirings. These resulls have led to both fast algorithms for solving real
problems and (o a new, algorilbmic, understanding of the various fields.

3.3 Fundamental Struetures

Wandering through a computer room one can nol help but be impressed by the
complexily of a large-scale computing syslem, and the novice might find it hard to believe
that a human mind could design anylthing so complicated. The novice is not too far from the
truth, ye! many undergraduales are able to understand the basics of the organization of a
compuler after only one or two semesters. They are able to comprehend the complexity not
by sheer force of concentration, bul rather by understanding the "building blocks" of which
compulers are made. A similar experience awaits the novice algoritlhm designer. The
algorithms mentioned in Seclion 3.2 deal with many probiem areas, but are rather simple to
comprehend once one understands the "building blocks” of aigorithm design. In this section
we will describe three important classes of these fundamental structures.

Data Structures

Algorithms deal with dala, and data struclures are the tools the algorithm designer
uses to organize his dala. In Seclion 2 we saw simple data structures such as arrays and
matrices, and a fairly complex dala structure, the hash table. There are many more exotic
types of dala structures, such as finked lists, stacks, queues, priority queves, and trees, to
name a few. Each of these provides an appropriate way to structure data for a particular
task. Tarjan [1977] gives a brief descriplion of many of these structures; a detailed
description of a large number of interesting structures is provided by Knuth [1368]

Algorithmic Techniques

Structured programming demands that a programmer express a complicated sequence
of commands as a series of refinements by which the program can be understood at different
levels. In each of these refinements a basic, well understood method is applied to a well
defined problem. Good programmers used this technique long before it was vocalized; good
algorilthm designers use a similar stralegy even though they infrequently discuss it. The
constructs available to the algorithm designer are similar to those in struclured programming
languages, {hough somewhat more powerful. We will describe some of these constructs very
briefly; more detail can be found in Tarjan [1977] and Aho, Hopcroft, and Ullman [1974,
Chapter 2] L e '
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_We have already seen many common algorithmic techniques in Section 2. Most of the
algorithms we described used iteration in one form ar another--this siralegy says "do x over
and over until the task is accomplished”. lHeration is present in almost all programming
languages as do and while loops. A more powerful construct is recursion, which gives'us a
way {0 express recursive prohbiem solving in programming languages. To define a recursive
solution to a problem one says {essenlially), "lo solve a problem of a certain size, solve the
same problem of a smaller size.," We used recursion to describe binary search: to binary
search a table of size n we binary searched a table of size n/2. A particular application af
recursion is usually called divide-and-conguer, and says, "lo solve a problem of size n, 1)
divide it into subproblems each of size only a fraction of n, 2) solve those subproblems
recursively, and 3) combine the subsolutions to yield a solution to the original probiem.”
Mergesort can be viewed as a texlbook example of divide-and-conquer: to sort a list of n
elemenis we 1) break the list into two sublists each of n/2 elements, 2) sort those
recuksive!y, and 3) merge lhose logether. The Fast Fourier Transform and the 0(n2-81)
matrix multiplication algorithms are olher application of the divide-and-conquer technique.
Once one understands the fundamenlal principles of divide-and-conquer aigorithms, each of
these instances becomes ralher easy to grasp.

Many other algorithmic lechniques have been identified and studied. Dynamic
programming is a lechnique from operalions research that has found many applications in
algorithm design. Search stralegies such as breadth-first search and depth-first search have
been used lo yieid efficient graph algorithms. Transformation allows us fo turn an instance
of one problem info another; we saw in Seclion 2.4 that there are many lransformations to
turn aimost tolally unrelated problems into instances of matrix multiplication. Perhaps the
single most imporiant algorithmic technique is to use optimal tools to solve the subproblems
~we create for ourselves in designing a pew algorithm. To do so an algorithm designer must
keep abreast of the current results in his fiefd.

Proof Techniques

Once an algorithm designer has given an algorithm and "knows in his heart” that it
has certain properlies, he must prove that it does. (Perhaps it is this step whith separates
practitioner from theorist.) His first task is to prove that his algorithm indeed computes what
it purports fo; he will use many of the tools of program verification in this slep. Next he
must analyze the resource requirements of his algorithm, during which he will use:many
different mathemalical tools. Finally he can prove his algorithm optimal by giving a lower
bound proof. The different methods of analysis used in these various steps are discussed by
Weide [1977]
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4. CURRENT DIRECTIONS

The field of algorithm design has experienced a meteoric rise in the past decade.
Essentially unknown as a field ten years ago, it is now one of lhe most active areas in.
theoretical computer science and has seen widespread use in applications. Although the fiefd
has come a long way, it has much further to go. In this seclion we wlill examine some of the
directions in which the field is currently moving.

One constant direction of lhe field has been from "toy” problems to "real” problems.
This involves many detailed analyses and expected-resource analyses, for in applications we
are often seriously concerned about twenty percent differences in average running time.
Along with these efforts much has beecn done recently on approximation atgorithms, since
many applications do not require exact answers. On the more theoretical side, the
outstanding question is the complexity of the NP-complete problems--are they exponential or
not? Another important theoretical problem is the search for some underlying theory of
algorithm design. Though many individual results have been achieved to date, we still have
no theoretical explanalion for what makes a class of problems easy or hard. Tarjan has
mentioned the need for a "caiculus of data siruclures”--a set of rules that will allow us to
develop the {provably) best possible structure for a given situation.

An important outgrowth of this work will be the development of "Algorithmic
Engineering”. This field will supply the programmer with tools similar to those Electrical
Enginecring gives the circuil designer. Before Algorithm Design turns into Algorithmic
Engineering we will need lo develop many more pariicular results and give a theoretical
basis for the field. We will know that the field has become an engineering discipline as soon
as theoretical computer scientisis assert thal designing algorithms is no longer bona fide
research because "it's such a well understood process.” '

5. CONCLUSIONS

In this paper we have looked at the field of algorithm design from a number of
different viewpoints. In Seclion 2 we invesligated particular computational problems and
their algorithmic sotulions. We saw inleresting techniques used to solve the problems,
learned of many counter-intuilive results, and glimpsed some of the practical benefits of
algorithm design. We turned from "war stories” to a systematic view of the field in Section 3.
In Section 3.1 we developed a set of terms which can be used to define a computational
problem, in Section 3.2 we used those lerms lo skelch some of the results achieved in the
field to date, and In Section 3.3 we menlioned some of the fools used to achieve the results.
Having looked at what has already been done in Sections 2 and 3, we turred to the
dangerous task of prophecy in Seclion 4.

In summary | would like 1o describe what algorithm design has to offer to various
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individuals., The mathematician and theoretical compuler scientisl can view the field as a rich
source of problems that need precise mathematical treatment; these problems are
mathematically fascinating and require the use of some of the most powerful tools of discrete
mathematics. The applications programmer with liltle interest in beautiful theorems can also
benefit from this work, for the proper application of its products can occasionally. be very
rewarding financially. Finally, I feel thal anyone involved with computing, regardless of his
pasition on the practical-io-lheoretical continuum, should be at least somewhat familiar with
this field. The study of algorithms is the study of compuling, and lhrough it we gain a
fundamental understanding of what compulers are all aboul.
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