
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CriU-CS-78-121

AN INTRODUCTION TO ALGORITHM DESIGN

Jon Louis Bentley
Departments of Computer Science and Mathematics

Carnegie-Mel lon University
Pi t tsburgh, Pennsylvania 15213

ABSTRACT

The f ie ld of algori thm design is concerned wi th the development of e f f ic ient methods
f o r so l v i ng computat ional problems. Although the f ield traces its roo ts to theore t i ca l
c o m p u t e r science, recent algorithmic advances have drastical ly reduced the costs of rea l
c o m p u t a t i o n s . For this reason it is important that anyone involved w i th comput ing have at
leas t a c u r s o r y knowledge of the area. This paper surveys the f ield of a lgor i thm des ign in
t w o w a y s : f i rs t by the study of a few problems in detai l , and then by a systemat ic v i ew of
t h e f i e l d . The or ien ta t ion of this paper is towards the pract i t ioner of comput ing (in e i t he r
s o f t w a r e or hardware) ; the goals of the paper are to provide both an unders tand ing of t he
f i e l d and a fee l ing for "what it can do for me H .

An ear l ie r vers ion of this paper was given as an inv i ted paper at the Compute r
Sc ience and Stat is t ics: Eleventh Annual Symposium on the Inter face, and appears in t he
p r o c e e d i n g s thereof .

This research was suppor ted in part by the Office of Naval Research under con t rac t
N 0 0 0 1 4 - 7 6 - C - 0 3 7 0

1

1. INTRODUCTION

"A lgo r i t hm design—that 's the f ield where people talk about programs and prove
theorems about programs instead of writing and debugging programs." Statements a long
t h o s e l ines have been u t te red by applications programmers and academicians al ike. But
t h e r e are also some who say, "No! Proper algorithm design has helped us to save k i lobucks
at o u r ins ta l la t ion eve ry month." In this paper we wil l invest igate the f ie ld of a lgor i thm
d e s i g n (wh i ch also is known as "Analysis of Algor i thms" and "Concrete Computat iona l
C o m p l e x i t y " , among other names) and bet ter equip the reader to judge the f ie ld for himself .

The author t rus ts that anyone who has even the sl ightest love for mathemat ics
b u r n i n g somewhere inside his heart (however deeply) , wi l l continue to read this paper to see
h o w mathemat ica l tools can be appl ied to the problems of programming. But for the res t of
t he r e a d e r s (whose interest in mathematics was probably squelched in f reshman calculus) I
w o u l d l ike to o f fe r the same bait that drew me into this f ield. I can t race my in te res t in the
des i gn of e f f i c ien t algori thms to the time when I was a Business Data Processing p rog rammer
and had jus t f in ished reading an in t roductory text on "Data Structures" . A col league of mine
had jus t had his p rogram cancelled—the operators had estimated (by count ing the t u r n i n g
r a t e of the tapes) that it would take about three hours to process his one ree l of data. The
p r o g r a m i tsel f was fa i r ly short and a quick glance told us that all of the t ime was spent in
scann ing a one thousand element table. I suggested that instead of scanning we t r y a
n e w - f a n g l e d technique- I had just read about—binary search. We d id , and the mod i f ied
p r o g r a m p rocessed the reel of tape in five minutes (and spent almost all of i ts t ime wa i t i ng
f o r t he tape!) . A round that same time I was asked to help another programmer w h o had
a l r e a d y spent one month of time and produced over a thousand cards of code for a par t i cu la r
p r o g r a m . A simple change in data s t ructure and a few day's wo rk (s ta r t ing over f r o m
s c r a t c h) a l lowed us to redo the program in less than two hundred lines of code. The
r e s u l t i n g p r o g r a m was faster than the original would have been, used far less code, and was
much eas ier to understand. So even if you have no aesthetic in terest in a lgor i thm des ign
(y e t) , p lease read on—the pract ical benef i ts alone can sometimes be reward ing enough!

Th roughou t this paper we wil l refer only to the discrete aspects of a lgor i thm des ign .
We w i l l not ment ion numeric problems such as stabi l i ty , t runcat ion e r ro r , e r r o r p ropaga t i on
and o t h e r issues that are in the domain of numerical analysts. Even w i t h this r es t r i c t i on , w e
s t i l l inc lude some v e r y numeric problems, such as the manipulation of sparse matr ices (in
w h i c h almost all elements are zero) and the Fast Fourier Transform.

A number of survey papers on the field of discrete algori thm design have appea red
r e c e n t l y . Hopcro f t [1 9 7 4] and Tarjan [1977] both give a broad and tho rough p ic tu re of the
f i e l d . Weide 's [1 9 7 7] survey concentrates on the techniques used for analyz ing d i sc re te
a l go r i t hms , and accomplishes that task exper t ly . For those who are skept ica l of sweep ing
s u r v e y s and p re fe r to see a couple of problems examined in detai l , Knuth 's in t roduc t ions
[1 9 7 1 , 1 9 7 7] w i l l p rove enl ightening and fascinating. And if one is ready to become a
s e r i o u s s tudent of the f ie ld, the standard texts are prov ided by Aho, Hopcrof t and Ullman
[1 9 7 4] (a one-semeste r , graduate level introduct ion) and Knuth [1968 , 1969, 1 9 7 3] w h o has

; University Libraries
Carnegie Mellon Unive

Pittsburgh, Pennsylvania

2

c o m p l e t e d t h ree volumes of his seven volume definitive work on computer a lgor i thms. This
p a p e r a t tempts to supplement those works by providing a broad su rvey for the novice. The
b i b l i o g r a p h y has been kept exceptional ly short ; both Tarjan [1 9 7 7] and Weide [1 9 7 7] con ta in
exce l len t b ib l iog raph ies for those interested.

This paper is d iv ided into f ive sections. In Section 2 we wi l l examine f i ve p rob lems
and some a lgor i thms for solving them. Having examined those concrete examples we t u r n to
a sys temat i c v i ew of the f ie ld in Section 3. In Section 4 we wi l l ment ion some of the c u r r e n t
d i r e c t i o n s in wh ich the f ield is now moving. Finally, we tie together the main points of th is
p a p e r in* Sect ion 5.

2. EXAMPLES OF FAST ALGORITHMS

Sweep ing general izat ions without support ing examples are o f ten c o n t e n t - f r e e , so
b e f o r e w e go on to sweeping generalizations in Section 3 we wi l l s tudy a few examples of
fas t a lgor i thms. For each example we wil l specify a problem, mention some of i ts r e a l - w o r l d
app l i ca t ions , g ive an algori thm to solve the problem, analyze the ef f ic iency of the a lgo r i thm,
and t h e n discuss in teres t ing issues which have surfaced. We wi l l s tudy the "subset t e s t i n g "
p r o b l e m of Sect ion 2.1 in a fair amount of depth and then treat the o ther four p rob lems at a
m o r e super f i c ia l leve l . Af ter discussing these examples, and be fore we move on to t he
s t a t e m e n t s about the f ie ld of algorithm design in Section 3, we wil l summarize what all of ou r
w o r k bought us in Sect ion 2.6.

But f i rs t a w o r d on why we are examining these part icular prob lems. The subset
t e s t i n g p rob lem of Sect ion 2.1 wil l raise a number of familiar issues and should cover some
o ld g r o u n d for many; it also gives us a nice i l lustrat ion of the t remendous t ime sav ings
ach ievab le w i t h p r o p e r algorithms. The substr ing searching problem of Sect ion 2.2 p rov ides
an e x t r e m e l y in te res t ing blend of theory and practice. The Fast Four ier T rans fo rm of
Sec t i on 2.3 is k n o w n to many, uses some important algorithmic techniques, and is eminen t l y
p rac t i ca l . In Sect ion 2.4 we examine a very old problem (matrix mul t ip l icat ion) and a recen t
and remarkab l y coun te r - in tu i t i ve solut ion; we wil l also see some myster ious re la t ions among
v e r y dissimi lar prob lems. In Section 2.5 we wil l investigate algor i thmic aspects of a
p u b l i c - k e y c r y p t o s y s t e m that has recent ly revolut ionized the wo r l d of c r y p t o g r a p h y , and
p rom ises to have a substant ial impact on "secure" computing.

2.1 Subset Testing

Given a set A (of size n) and a set B (of size m < n), is B a subset of A ? 1 This "subset
t e s t i n g " p rob lem can be stated as a programming exercise: given ^n a r ray A [L : n] and B [l : m] ,

1 This p rob lem is discussed by Knuth [1973, p. 3 9 f] .

3

b o t h of (say) 3 2 - b i t wo rds , is eve ry wo rd in B also In A? Disguised vers ions of th is p r o b l e m
ar ise in many con tex ts : A could be an employee master fi le, B a list of week l y t ransac t ions ,
and w e wan t to f ind whether a master- f i le record exists for each week l y t ransac t ion . Or A
mfght be a tab le of real numbers x and have an associated table S wh ich contains sine x, t hen
B w o u l d be a set of x values at which the sine function is to be eva luated. A l t hough th is
p r o b l e m does have some pract ical appl icat ion, that is not our main mot iva t ion fo r examin ing it
h e r e . We w i l l see that it leads to many of the basic issues in so r t ing and search ing , and
po in t s to i n te r - re la t i onsh ips be tween those problems. We wil l also get an exposure to some
of the common methods of algori thm design.

We w i l l examine th ree ways of solving this problem. In o rde r to compare the
methods w e wi l l f ind the running time of each by counting the number of compar isons
b e t w e e n e lements . The fo l lowing enticement might encourage the reader as he l abo rs
t h r o u g h the d i f f e ren t methods: fo l lowing our discussion of the methods we wi l l see an
app l i ca t i on in wh i ch our f i rs t algorihm would require over six days of CPU t ime, wh i le ou r
f ina l a lgo r i thm can solve it in four seconds.

Brute Force

The simplest way to accomplish this task is to compare e v e r y element in B to each of
t he e lements of A unt i l e i ther its equal is found or we have examined all of A and d e t e r m i n e d
that it has no equal in A (in which case B is not A's subset); this approach gives a s imple ,
t w o - l o o p p r o g r a m . If B is indeed contained in A, then each scan for an element that is B's
mate in A takes n /2 comparisons on the average (you have to look ha l fway d o w n the l is t) .
Since t h e r e are m such scans made, the total number of comparisons made by this p r o g r a m is
abou t m(n /2) . So if m is ve r y close to the size of n, then we wi l l make about n ^ / 2
compar i sons on the average^ . Al though this algorithm is except ional ly simple to u n d e r s t a n d
and to code , i ts s low running time might prohib i t its use in cer ta in appl icat ions. We wi l l now
t u r n our a t t en t i on to a faster algori thm.

Sorting

If y o u w e r e g iven a randomly o rdered list of phone numbers B (say a l ist of phone
n u m b e r s in a t o w n) and another randomly ordered list A (say all phone numbers in the
c o u n t y) and y o u w e r e asked to check whether B was a subset of A (make sure e v e r y t o w n
p h o n e number is included in the county l ist), then you might use the b r u t e - f o r c e a lgo r i t hm
jus t d iscussed. If, however , you were handed a town phone book and a coun ty phone book
and asked to p e r f o r m the same task, then your job would be much easier. Since the t w o
p h o n e books are a l ready sor ted (by name) we can just scan th rough the t w o bojoks t o g e t h e r ,
i nsu r i ng tha t the coun ty book contains ail the town names. This of course immediate ly g i ves
us ano ther a lgor i thm for subset tes t ing: sor t A, sort B, then sequent ia l ly scan t h r o u g h the
t w o , check ing fo r matches. To analyze the run time of this s t ra tegy we obse rve tha t t he

2 We w o n ' t t r y to analyze the case that B is not a subset of A; to do so w e wou ld have to
say exac t l y how it is not a subset, and that is ve ry dependent on the par t icu lar p rob lem.

scan w i l l take about m+n comparisons, and we heard somewhere that y o u can sor t a l ist of
s i ze n in about n log2 n comparisons, so the total running time is (n log2 n) + (m log2 m) +
m+n compar isons .

We could pull a sor t ing rout ine out of thin air, but it is not much more d i f f i cu l t t o
d e s c r i b e one cal led Mergesor t . The basic operat ion of Mergesort is merging t w o s o r t e d l is ts
of n u m b e r s , say X and Y (the l ists could either be s tored as arrays or l inked t oge the r w i t h
p o i n t e r s) . To do this we compare the f irst element of X w i th the f i rst element of Y and g i ve
t he smal lest as the f i rst element of the new list, delet ing it f rom its source. We repea t th is
r e m o v e - t h e - s m a l l e s t step unt i l bo th X and Y are empty. Since we used one compar ison fo r
each s t e p , if the re were a to ta l of m elements in X and Y, we wi l l have used about m
compar i sons . We can now use this tool of merging to Mergesort a set S of n e lements . We
s t a r t b y v i ew ing S as a set of n sor ted one-element l ists. We then merge adjacent pa i rs of
o n e - e l e m e n t l ists, g iv ing n /2 2-element sor ted lists. The next step is to merge adjacent pa i rs
of t hose l ists g iv ing n/4 4-e lement l ists, and the process continues. A f te r log2 n i t e ra t i ons
w e have one so r ted n-element l ist, and our task is complete. To analyze this we no te tha t
w e use about n comparisons for the merges at each of the log2 n i te ra t ions , so the to ta l
n u m b e r of comparisons used is the promised n log2 n.

We have thus shown how to solve the subset problem wi th . n (log2n + 1) +
m(log2m • 1) comparisons. If m is about the same size as n then our a lgor i thm takes
a p p r o x i m a t e l y 2n log2 n comparisons. Can we do bet ter?

Hashing

I n t rospec t ion as to how we would solve the phone book problem led to an i n t e r e s t i n g
s o r t i n g approach to the subset prob lem; if we rephrase the phone book p rob lem then the
" h u m a n " approach wi l l lead to an even faster subset algori thm. Suppose that the c o u n t y
p h o n e book (A) was sor ted and the town phone list (B) was not; to ensure that A conta ins B
w e can " look u p " in A each number in B by the name of the subscr iber. For each of the m
e lemen ts in B we would do a "b inary search"^ among the n elements of A. It is not ha rd to
see tha t a b ina ry search in an n-element sor ted table takes at most log2 n compar isons , so
th i s a lgo r i t hm is easi ly analyzed: it takes n log2 n + m log2 m comparisons, or app rox ima te l y
2 n l og2 n if m is the same size as n. We therefore have a searching solut ion to the subse t
p r o b l e m : s to re the elements of A in a table, then for each element of B ensure that it is in
t h e t ab le .

A l t hough b inary search is the best searching method for many p rob lems, t h e r e is
a n o t h e r search ing s t ra tegy even more appropr iate for this prob lem: hashing. Using hash ing
w e can s t o r e an element in a table or check to see if an element is a l ready in a tab le in

3 A b i n a r y search for a n.ame in a phone book f i rst compares that name to the middle name
in t he book. If that name is less than the middle we restr ic t our search to the f i r s t half of
t h e book , o therw ise we search the last half, and so on.

abou t t w o compar isons, on the average 4 4 . With this approach we wi l l be able to do subse t
t e s t i n g in 2n + 2m compar isons—2n to store A and then 2m to look up each element of B. To
s t o r e the n e lements of A we wi l l have to allocate a hash table wh ich is an a r ray of l e n g t h
(1 . 5) n . ^ We t hen s tore the elements of A in the table o n e - b y - o n e by the use of a hash
function. This func t ion maps a data value into an integer in the bounds of the hash tab le . If
tha t pos i t i on in the hash table is empty, f ine: insert the element. If the pos i t ion w a s
o c c u p i e d , h o w e v e r , we have a collision, and must employ a collision resolution strategy, such
as scann ing up the elements of the array unti l a free posit ion is found. Analysis has s h o w n
tha t a p r o p e r col l is ion resolut ion s t ra tegy allows one to f ind an empty spot v e r y qu ick ly (say ,
in t w o compar isons) . When an empty spot is finally found the element is inser ted . A f t e r
i n s e r t i n g all of A 's elements into the table we then look up all of B's e lements. For any
pa r t i cu l a r e lement we calculate its hash funct ion and look in that pos i t ion. If that pos i t i on is
e m p t y t h e n it is not in A; if the element is in the posit ion then we have found i t ; o t h e r w i s e
w e must emp loy the same coll ision resolut ion strategy to see whe re it should be . The
techn ique of hashing is something that a human would never use in searching (humans a re
much b e t t e r at compar ing things and then looking in one of two d i rect ions than at ca lcu la t ing
w e i r d hash funct ions) , but it leads to a ve ry eff icient algori thm. If m is about the same s ize
as n then the hashing approach uses only about 4n comparisons (on the average) to do
subse t tes t i ng .

Summary

The subset test ing problem is stated very simply but has led us s t ra ight to some of
t h e fundamenta l issues in algor i thm design. We very quickly a r r i ved at search ing—the scan
of the b r u t e fo rce algor i thm is just a naive search. From there we moved to so r t i ng , t h e n to
b i n a r y search , and f inal ly to hashing, which introduced us to a non-obv ious data s t r u c t u r e
(the hash table).** The approaches that we used to solve these problems are some of t he
f undamen ta l tools of algor i thm designers. We have also touched on a number of i n t e r e s t i n g
aspec ts of a lgor i thmic problems such as time and space analyses and wors t - case v e r s u s
e x p e c t e d - t i m e analysis. We wi l l s tudy these issues fur ther in Section 3.

But what has all this gained us? We certainly have a more def in i te unders tand ing of
some of the fundamental computat ional issues involved, but does it make any d i f f e rence in
p rac t i ce? To answer this quest ion let 's assume that we are w r i t i ng a p rogram for subse t
t e s t i n g w h e r e A and B both contain one million elements, and for the sake of a rgument
assume that one compar ison takes one microsecond of computer t ime. By these assumpt ions ,
t h e n ^ / 2 compar isons requ i red by b ru te force translates to 138 hours (or a l i t t le shy of six
d a y s) of machine t ime; the 2n l o g 2 n for sort ing wil l give 40 seconds; and the 4n of hash ing

4 For pess imis ts , however , we note that the worst case of hashing is as bad as b r u t e
f o r c e — w e might have to look at all of the elements in the table.

5 We can even use a smaller array; (Ll)n would probably work almost as welL

6 A more t h o r o u g h examinat ion of searching is contained in Knuthfs [1977] su rvey .

6

w i l l y i e l d 4 seconds. A l though we haven't calculated all the costs of Imp lementa t ion , th is
examp le shows how sometimes a simple analysis is all one needs to make an i n fo rmed choice.

2.2 Substring Searching

Does a g i ven string contain a specif ied substr ing pattern, and if so, where? This is the
s u b s t r i n g search ing prob lem. This problem is familiar to most who have used compu te r tex t
e d i t o r s ; as the author sat down to type this paragraph he told the ed i tor to f i nd t he
s u b s t r i n g " 2 . 2 " in his text f i le so he would know where to inser t this t e x t ! 7 This same
o p e r a t i o n is used by in format ion ret r ieval systems as they ident i fy abstracts wh i ch con ta in
c e r t a i n k e y w o r d s . Similar problems are encountered in many text fo rmat t ing and macro
p rocess ing p rograms.

It is not hard to w r i t e a program to solve this problem. We f i rs t ho ld p a t t e r n ' s
le f tmost charac ter under string's leftmost character and start comparing. If all the cha rac te rs
of pattern match the characters above them, f ine—we have found the subst r ing in pos i t i on 1.
If w e f ind a mismatch then we slide pattern over one and do the same th ing again. This
con t i nues unt i l we e i ther f ind a match or come to the end of the string. The w o r s t - c a s e
behav io r of this a lgor i thm is v e r y slow—for each of the n positions of string we might have
to compare all m posi t ions of pattern. Thus in the wors t case we might have to make mn
compar isons . Strings and patterns that realize this worst -case behav ior are f a i r l y
pa tho log ica l and the per formance of this algorithm in pract ice is fa i r ly good, but the ques t i on
s t i l l haunts us—can we g ive an algorithm that wil l a lways do better?

Knuth , Mor r i s and Pratt [1977] give an algori thm that beats the mn p e r f o r m a n c e .
T h e y p rep rocess pattern in to a data st ructure that represents a program; that p r o g r a m t h e n
looks for pattern in string. Preprocessing pattern by their algorithm takes only m o p e r a t i o n s
(w h e r e m is the leng th of pattern) and the "p rogram" they produce looks at each cha rac te r of
string on ly once, so the tota l running time of their algori thm is p ropor t iona l to m+n, i ns tead
of mn. (Of course if the pa t t e rn is in the str ing in posi t ion i, then their a lgor i thm takes t ime
p r o p o r t i o n a l to i+m.) This result is exceptionally in terest ing from a theoret ica l v i e w p o i n t , and
also p rov ides a fas ter subst r ing searching algorithm in pract ice.

Boyer and Moore [1 9 7 7] recent ly used the basic idea of the Knuth, Mor r i s and Pra t t
a l go r i t hm to g ive an even faster method of substr ing searching. Their method has the same
w o r s t - c a s e per fo rmance (propor t iona l to m+n), but is somewhat faster on the ave rage . T h e y
accompl ish th is by making it unnecessary. to examine every element of string. They have
imp lemen ted the i r a lgor i thm on a PDP-10 so ef f ic ient ly that when string conta ins t yp i ca l
Engl ish text and pattern is a f ive letter word in string, the number of PDP-10 i ns t ruc t i ons
e x e c u t e d is less than i+n. This is at least an o rde r of magnitude faster than the na ive
a lgo r i t hm.

7 The tex t ed i to r he uses looks at his fi le as one long st r ing of text , sp r ink led w i t h spec ia l
cha rac te rs rep resen t i ng "carr iage re turn" .

7

The h i s t o r y of the subst r ing searching problem provides an in te res t ing ins ight i n to
t he re la t i on of t h e o r y and pract ice in Computer Science. Knuth relates that he was led to his
d i s c o v e r y of the a lgor i thm by the use of a machine f rom automata t heo ry ca l led the
" t w o - w a y de termin is t i c pushdown automaton". The easiest way to unders tand the fas t
a lgo r i t hms is t h r o u g h the use of f in i te state automata, which are commonly used in d ig i ta l
s y s t e m s des ign. It is no tewor thy that in this one problem we talk about such d i ve rse ideas
as abs t rac t automata and PDP-10 instruct ions, w i th a lot of combinator ial analysis in b e t w e e n !

2.3 The Fast Fourier Transform

The Four ie r T rans fo rm is o f ten studied in mathematics and eng ineer ing. It can be
v i e w e d in a number of ways , such as transforming a funct ion f rom the "t ime domain" in to t he
" f r e q u e n c y doma in " or as the decomposit ion of a funct ion into fts "sinusoidal componen ts " .
The con t inuous Four ie r Transform has a discrete counterpar t , which calls for app l y i ng an
o p e r a t i o n to one set of n reals y ielding a " t ransformed" set of n reals. This p r o b l e m has
app l i ca t ions in signal processing, in terpolat ion methods, and many discrete prob lems.

The naive a lgor i thm for computing the Fourier Transform of n reals r e q u i r e s
a p p r o x i m a t e l y n^ ar i thmet ic operat ions (adds and multiplies). The Fast Four ier T r a n s f o r m of
C o o l e y and Tukey [1 9 6 5] accomplishes this task in approximately n log2 n ar i thmet ics . It
ach ieves this by do ing about n ari thmetics on each of log2 n levels; in this sense it is qu i t e
s imi lar to the Mergesor t algor i thm of Section 2 .1 . There are many d i f fe ren t expos i t i ons of
t he a lgo r i thm; see Aho, Hopcroft and Ullman [1 9 7 4] or Borodin and Munro [1 9 7 5] . (I t is
i n t e r e s t i n g to no te that in addit ion to being faster to compute, many of the numer i c
p r o p e r t i e s of the FFT are bet ter than those of the naive transform.)

The Fast Four ier Transform has had a substantial impact on comput ing. It f o rms the
b a c k b o n e of many "numer ic" programs. The FFT has been used in d iverse f ie lds to f i n d
h i dden per iod ic i t i es of a s ta t ionary time series. In signal processing it is used in f i l t e r s t o
r e m o v e noise f r o m signals and eradicate b lur r ing in digital p ic tures. It is used in numer ica l
ana lys is fo r the in te rpo la t ion and convolut ion of functions. Appl icat ions of the FFT in such
d i v e r s e areas as e lectr ical engineer ing, acoustics, geophysics, medicine, economics, and
p s y c h o l o g y are l i s ted by Bri l l inger [1975 , Section 1.5]. Many spec ia l -purpose p r o c e s s o r s
have been bui l t wh ich implement this algorithm; some of those are mul t ip rocessors w h i c h
o p e r a t e in para l le l . The FFT is also widely used in the design of "d isc re te" a lgor i thms. It is
the p r i m a r y too l in many algorithms which operate on polynomials, pe r f o rm ing such
o p e r a t i o n s as mul t ip l ica t ion, div is ion, evaluation and interpolat ion. Not su rp r i s ing ly , it is also
e m p l o y e d in some of the fastest known algorithms for operat ing on v e r y long i n tege rs (such
as mu l t i p l y i ng t w o one- thousand bit integers; we wi l l see an appl icat ion of this p r o b l e m in
Sec t i on 2.5).

8

2.4 Matrix Multiplication

One of the most common ways of represent ing many di f ferent kinds of data is in a
ma t r i x , and one of the most common operat ions on matrices is mult ip l icat ion. How hard is it
to mu l t i p l y t w o n x n matrices? Using the standard high school method takes about 2n
a r i t hmet i c opera t ions to calculate each of the n 2 elements of the product matr ix , so the to ta l
amount of t ime requ i red by that algorithm is propor t ional to n^. People have b e e n
m u l t i p l y i n g matr ices by this method for a century. Surely this must be the best poss ib le w a y
t o mu l t i p l y mat r ices—our intu i t ion tells us that we just can't do any bet te r .

The h igh school algor i thm for mult iplying t w o - b y - t w o matrices uses 8 mul t ip l i ca t ions
and 4 addi t ions. It is fa i r ly counter - in tu i t ive to learn that the product can be computed us ing
o n l y 7 mul t ip l icat ions at the cost of an increase to 15 addit ions. But if that is
c o u n t e r - i n t u i t i v e , then it is absolutely mind-boggl ing to f ind that this fact alone a l lows us to
cons t ruc t an a lgor i thm for mult ip ly ing n x n matrices that runs in less than n ^ t ime! This
a lgo r i t hm is due to Strassen [1969] and works by decomposing each n x n matr ix in to f ou r
(n / 2) x (n / 2) matr ices. To f ind the product of the original matr ices it does seven
mu l t ip l i ca t ions of (n /2) x (n /2) matrices and then f i f teen additions on matr ices of that s ize.
No t i ce , h o w e v e r , that the cost of those additions is propor t ional to n 2 . If we let T(n) be the
t ime r e q u i r e d to mul t ip ly n x n matrices, then T(n) satisfies the recurrence

T(n) = 7T(n /2) + 0 (n 2) ,
T (l) = 1

w h i c h has the so lu t ion T(n) » 0 (n 2 - 8 *) (where 2.81 is an approximation to log2 7). Using the
na ive imp lementa t ion of this algorithm proves less eff ic ient than the high school a lgo r i thm
un t i l n is in the thousands; recent work , however, has shown that it can be pract ica l w h e n n
is as small as 40 . But pract ice aside, who can help but be amazed by the fact that w e can
mu l t i p l y mat r ices fas ter than we thought we could?

The fast matr ix mult ipl icat ion algorithm prov ided the basis for one of the a l l - t ime
g rea t revo lu t i ons in the h is tory of " theoret ica l " algorithm design, dur ing wh ich a number of
" b e s t " k n o w n algor i thms were toppled from their re ign. Many of these w e r e n ^ mat r i x
a lgo r i thms wh i ch we can now do in 0 (n 2 , 8 1) t ime; among these are matr ix i nve rs ion , LU
decompos i t i on , so lv ing systems of linear equations, and calculating determinants. A number
of p rob lems wh ich seemed to be total ly unrelated to matrices were phrased in that language
and 0 (n 2 * 8 1) a lgor i thms fo l lowed for such diverse problems as f inding the t rans i t i ve c losure
of a g r a p h , pars ing con tex t - f ree languages (an important problem in compi lers) and f i nd ing
d is tances b e t w e e n n points in Euclidean n-space. All of these algorithms stem f r o m the fact
tha t t w o - b y - t w o matr ices can be mult ipl ied w i th seven mult ipl ications!

2.5 Public-Key Cryptography

Communicat ions systems which deal w i th the problem of t ransmi t t ing a message f r o m

9

a sender to a receiver across an insecure (possibly bugged) channel whi le p r o t e c t i n g the
p r i v a c y of the message are known as cryptosystems. Such coding problems ar ise o f t e n in
m i l i t a r y app l ica t ions, and they promise fo play an ever increasing role in computer sys tems
such as e lec t ron ic mail and electronic banking, among others. A c r yp tosys tem is usua l ly
imp lemen ted b y encoding and decoding algorithms which t ransform their inputs accord ing to
t h e keys t hey are g iven. To send person X message M we use the encoding a lgo r i thm and
k e y to p roduce message M' and transmit M' across the (insecure) channel to X. When X
r e c e i v e s fvT he can use the decoding algorithm and key to determine M, and any
" e a v e s d r o p p e r " on the line wi l l be left w i th only M\ One di f f icu l ty w i t h this sys tem is that
t h e a p p r o p r i a t e keys must somehow be given to the var ious par t ies, and this must usua l ly be
accompl ished by the use of expensive secure channels such as human cour iers .

An a l te rna t i ve to such a system was recent ly invented by Hellman and Di f f ie and is
ca l led a public-key c r yp tosys tem. In a publ ic-key system each person has an encod ing key
and a decod ing key , as be fo re ; to send a message to person X we encode it w i t h his encod ing
k e y , and then he can decode it w i th his decoding key. The novel aspect of this sys tem is
tha t the encoding key can be made public without reveal ing the cor responding decod ing key .
The encod ing key can then be v iewed as the address of person X's mail box, and anyone can
pu t mail in to that box simply by encoding it. To actually unlock the box, howeve r , r e q u i r e s
t he decod ing key , wh ich only X possesses. Such a system solves almost all of the d i f f i cu l t i es
of p rev i ous c r yp tosys tems , but there is one major obstacle yet to overcome: for most codes ,
k n o w l e d g e of the enc ryp t i on key immediately reveals the decryp t ion key. Thus all w e need
to comp le te our pub l i c - key c ryp tosys tem is an appropr ia te encoding/decoding a lgo r i thm, bu t
is it poss ib le for such a funct ion to exist?

A su i tab le encod ing/decod ing method was recent ly developed by Rivest, Shamir, and
Ad leman [1 9 7 8] . Their method is based on algorithmic issues in the t heo ry of numbe rs .
T h e y v i ew messages as mult iprecis ion (long) integers, of (for example) 200 decimal d ig i t s .
The cod ing p rocedu re then t ransforms these messages by sophist icated use of modular
a r i t hmet i c and pr ime number theory . The transformat ions requi re many soph i s t i ca ted
a lgor i thms. For instance, the process of key selection is based on fast a lgor i thms f o r
mu l t i p l y i ng mul t ip rec is ion integers and testing such integers for pr imal i ty ; encod ing and
decod ing is t hen pe r f o rmed by fast mult iprecision exponent iat ion algori thms. The s e c u r i t y of
t he sys tem is ind icated by the fact that any method that "b reaks" the sys tem must
(essen t ia l l y) f ind the factors of a ve ry large number. Al though no one knows p rec i se l y how
d i f f i cu l t th is is, mathematicians have been working on this problem for many cen tu r ies , and no
one y e t knows of a fast method. To put this in perspect ive, if we deal w i t h 200 decimal d ig i t
i n t e g e r s , then the key select ion, encoding, and decoding algorithms requ i re on ly a f e w
seconds of CPU t ime, whi le the best known method for breaking the sys tem w o u l d r e q u i r e
ten million centuries of CPU time. This method thus appears to be reasonably secure against
code b r e a k e r s !

We have on ly scratched the surface of the fascinating f ie ld of p u b l i c - k e y
c r y p t o g r a p h y . In addi t ion to use in cryptosystems, these methods can also be used to
p r o v i d e "e lec t ron ic s ignatures" , or veri f icat ions of ident i ty . This c r yp tosys tem is ano the r

10

i n t e r e s t i n g example of the interact ions between theory and pract ice. The sys tem is based on
n u m b e r t h e o r y (perhaps the purest of the areas of pure mathematics) and complex i t y t h e o r y
(an area of theoret ica l computer science), yet it promises to revolut ion ize the p rac t i ce of
c r y p t o g r a p h y . The in te res ted reader should re fer to the art icle by Rivest, Shamir , and
Ad leman [1 9 7 8] or the exposi t ion in Gardner [1977] . Al though the a lgor i thms w e have
m e n t i o n e d d id not rea l ly solve exist ing computational problems, they solve a p r o b l e m in a
t o t a l l y d i f f e ren t area by cast ing it in a computational l ight.

2.6 So What?

We have now examined f ive cases in which proper algori thm design has led to a
soph i s t i ca ted a lgor i thm which is much faster than a naive algorithm. A lot of w o r k has b e e n
i n v e s t e d in deve lop ing these algorithms; what d i f ference wi l l all this wo rk make in prac t ice?

To be honest , most of the time a fast algorithm makes no d i f ference at al l . Knu th has
g a t h e r e d empir ica l ev idence which shows that most of the run time of a p rog ram is spen t in
j us t t h r e e percent of the code (a similar result is o f ten mentioned by s ta t is t ic ians: t w e n t y
p e r c e n t of the popu la t ion accounts for eighty percent of the beer consumed). If the p r o b l e m
to be so lved is not in the cri t ical three percent of the code (as about 97 percen t of t he
p r o b l e m s are) then it makes l i t t le di f ference if that algorithm is fast or not . A more
comp l i ca ted a lgor i thm can o f ten be a l iabil i ty rather than an asset. It wi l l usual ly mean more
c o d i n g and more debugging t ime, and can sometimes even increase the run t ime (w h e n the
o v e r h e a d of "s ta r t ing u p " a fancy algorithm costs more than the time It saves).

Sometimes, however , a fast algorithm can make all the di f ference in the w o r l d . If t he
c o m p u t a t i o n be ing pe r fo rmed is indeed the bott leneck in the system f low, then an a lgo r i t hm
of hal f the runn ing time almost doubles system throughput . In many text ed i to rs the vas t
m a j o r i t y of the time is spent in s t r ing searching; the fast algorithm of Sect ion 2.2 can s p e e d
u p many tex t ed i to rs by a factor of f ive. The author's exper ience w i t h the search ing
p r o g r a m ment ioned in the int roduct ion (when the running time of a p rogram was r e d u c e d
f r o m t h r e e hours to f ive minutes) is another classic example of an appropr ia te use fo r a fast
a l go r i t hm . In the inner loops of many programs, proper algori thm design is c r i t i ca l .

An analogy wi l l perhaps clar i fy these issues. It is fa i r ly easy to wa lk , it is more
comp lex to d r i ve , and it is even more complex yet to learn to f ly a modern je t a i rp lane .
Wa lk ing is the best way to get f rom one room of a house to another, d r i v ing is supe r i o r f o r .
g e t t i n g f r o m one t o w n to another, and f ly ing is hard to beat for get t ing f rom one par t of the
c o u n t r y to another . There is no "best " mode of t ranspor ta t ion—the best mode in a pa r t i cu la r
case depends s t rong ly on that case. For most of us the time we spend t rave l l i ng in j e t
a i rp lanes is v e r y small compared to the time we spend walking—but it sure Is nice to k n o w
abou t j e t s w h e n we need them!

A l though the e f fo r t of fast algorithm design only occasionally g ives us la rge f inanc ia l
sav ings , it a lways gives us something of a d i f ferent value—a fundamental unde rs tand ing of

11

o u r computa t iona l prob lems. This is usually re f lected in cleaner programs, but e v e n more
i m p o r t a n t is the unders tand ing of how diff icult it is to compute something. A f t e r a s tuden t
has spen t a month or two invest igat ing the problem of searching, he not only knows how to
s e a r c h fast but also w h y he can do it that fast and why he can't do It any fas te r . Such a
s t u d e n t has learned something of the foundations of his f ie ld.

3. A SYSTEMATIC VIEW

In Sect ion 2 we saw a number of specif ic problems and a number of spec i f i c
so lu t i ons ; in this sect ion we wi l l show that there is more to the f ield than iso lated examples .
In Sec t ion 3.1 we wi l l discuss the concepts one needs to def ine a computat ional p r o b l e m , and
in Sec t ion 3.2 we wi l l use those concepts to descr ibe the kinds of problems for w h i c h fas t
a l go r i t hms have been designed. In Section 3.3 we wi l l peek into the algor i thm des igner ' s too l
b a g .

3.1 Dimensions of a Problem—A Microscopic View

The subset test ing prob lem of Section 2.1 showed that there can be many d i f f e r e n t
a l go r i t hms for so lv ing a par t icu lar problem. In order to say which one is best in a pa r t i cu la r
app l i ca t i on we have to know cer ta in dimensions along which to measure p r o p e r t i e s of the
a l go r i t hm . For example, in one application we may need a subset algori thm that must be v e r y
s p a c e - e f f i c i e n t and have good wors t -case running t ime; in another context we might have a
lo t of avai lable space and only require good expected running t ime, not ca r ing if w e
i n f r e q u e n t l y must take a lot of time. We have thus ident i f ied three d imensions of a
compu ta t i ona l p rob lem: time analysis, space analysis, and expected vs. wo rs t - case ana lys is .
In th is subsec t ion we wi l l discuss these and other dimensions of computat ional p rob lems .

Time and Space Analysis

The two most important resources in real computational systems are t ime (CPU
c y c l e s) and space (memory words) used, and these are there fore the two d imensions of a
p r o b l e m most f r equen t l y s tudied. The running time was the pr imary subject we examined in
t h e examples of Sect ion 2. Most of the algorithms we examined use ve ry l i t t le e x t r a space
a f t e r s to r i ng the inputs and outputs ; the hashing algori thm of Section 2.1 was the on l y
e x c e p t i o n . In large computer systems huge quant i t ies of ex t ra space (megawords) can be
h a d fo r the asking and the pay ing ; for that reason the space requirements of a lgor i thms have
o f t e n been ignored . Wi th the r ise in popular i ty of m in i - and microprocessors w i t h v e r y small
memor i es , howeve r , space analysis is once again an ext remely important issue.

12

Model of Computation

Throughou t Sect ion 2 we were able to make reference to the t ime and space
requ i r emen ts of var ious algorithms without reference to their implementat ion on any
pa r t i cu la r computer . Our intui t ive notions were robust enough to lead to soph is t i ca ted
a lgor i thms that w i l l cer ta in ly beat their naive competi tors on any exist ing machine. But to
ana lyze an a lgor i thm in detai l we must have a precise mathematical model of the machine on
w h i c h the a lgor i thm wi l l run .

We could choose as our model a part icular computer, such as an IBM 650 or a DEC
P D P - 1 0 , and then ask how many microseconds of time or bits of s torage a pa r t i cu l a r
a lgo r i t hm requ i res . There are two problems w i th this approach. First, we wi l l p r o b a b l y be
ana lyz ing the expe r t i se of the implementor of the algorithm more than the a lgo r i thm 's
in t r ins ic mer i t , and second, once we have completed such an analysis using the IBM 6 5 0 w e
st i l l know v e r y l i t t le about the algorithm's behavior on a PDP-10. One way of deal ing w i t h
th is d i f f i cu l t y is to invent a representat ive computer and then compare the pe r fo rmances of
compe t ing a lgor i thms on that machine. Knuth [1 9 6 8] has descr ibed one such machine w h i c h
he named the MIX computer ; it has much in common wi th most exist ing machines w i t h o u t
many id iosyncrac ies of its own. If algorithm A is faster than algori thm B when imp lemen ted
o n MIX, then it is v e r y l ikely to be faster on most real machines, too.

Ano the r so lu t ion to the model of computat ion problem is not to analyze, the
imp lemen ta t i on of the algori thm on any part icular machine at all, but to count on ly t he
number of t imes some critical operation is per formed. For the analysis of the FFT and mat r i x
mu l tp l i ca t ion we chose to count the number of arithmetic operat ions. We know that the FFT
uses exac t ly n log2 n mult ipl icat ions; to estimate its running time for a g iven imp lementa t ion
w e can look up the execut ion speeds of the instruct ions around the mult ip l icat ion i n s t r u c t i o n ,
sum those, and then mult ip ly by n log2 n to get an estimate for the running t ime. It is
usua l ly easy to de te rm ine the running time of a part icular program if we know the number of
t imes the cr i t ica l ope ra t i on is to be p e r f o r m e d 8 . Once we have chosen a cr i t ical o p e r a t i o n t o
coun t it is v e r y easy to speci fy a model of computat ion. To count ar i thmetic ope ra t i ons w e
usua l ly employ the "s t ra igh t - l ine program" model in which an algori thm for a par t icu lar va lue
of the p rob lem size (n) is represented by a sequence of statements of the fo rm

Xj <- Xj OP x k

w h e r e OP is add, sub t rac t , mult iply, or divide. If the sequence for a part icular value of n is m
i ns t ruc t i ons long then we say that the execution time of our program is T(n) = m. If o u r
c r i t i ca l ope ra t i on w e r e comparison, then we would probably choose the "decis ion t r e e "
mode l . These and o ther models are descr ibed by Aho, Hopcrof t , and Ullman [1 9 7 4 ,
Chap te r 1].

The above models allow us to analyze algorithms for their su i tab i l i ty as " i n - c o r e "
p r o g r a m s on s ing le -p rocessor machines. If a program has ve ry l i t t le main memory ava i lab le

8 Though w e must be careful not to ignore certa in "bookkeeping" opera t ions that may
become cr i t ica l in implementat ions.

13

and must s to re most of its data on tape, then some tape-or ien ted model such as the " T u r i n g
mach ine " is the most accurate model of the computation. If a program is to be r u n on a
mu l t i p rocesso r machine then one's model must express this fact; the par t icu lar model
e m p l o y e d wi l l v a r y w i th the mult iprocessor archi tecture^. Many other models of compu ta t i on
have b e e n p roposed to descr ibe diverse computing devices. The two impor tant th ings in
choos ing a model are that it be realistic, so the results wi l l apply to the s i tuat ion it p u r p o r t s
to mode l , and that it be mathematically tractable, so we can der ive those resul ts .

Exact or Approximate Analysis

Once we have chosen a model of computation we can analyze the per fo rmance of an
a lgo r i t hm by count ing the resources (time or space) it uses as a funct ion of n, the p r o b l e m
s ize. How accura te ly should we do that counting? We could be .very, precise, ca lcu lat ing the
answer exac t l y , o r we might sett le for an approximate answer. There are leve ls of
app rox ima t i on , all the way f rom the f irst two terms of the answer to rough upper and l owe r
bounds . It is ce r ta in ly desirable to get the exact answer, but this is sometimes v e r y d i f f i cu l t .
The f i r s t one or t w o terms of the cost function are adequate for most purposes, and in many
cases on ly the asymptot ic g r o w t h rate of the functions is needed. We saw in the subse t
t e s t i n g p rob lem an example in which the run time for one program for a task was 138 hours
wh i l e another p rog ram took just 4 seconds. Even if our analysis had missed a fac tor of t e n ,
tha t cou ld not af fect our choice for large problems..

We o f t e n use the " b i g - o h " notat ion to describe the complexi ty of a p rob lem. No
ma t te r what the respect ive constants are, an 0(n log? n) algor i thm wil l be fas ter than an
O(n^) a lgor i thm for large enough n. As larger and larger problems are being so l ved b y
c o m p u t e r we are more and more f requent ly in the domain of " large enough n".
A s y m p t o t i c a l l y fast algori thms also have another advantage. If we get a new machine one
h u n d r e d t imes fas ter than our cur rent , using an 0(n log? n) algor i thm wil l allow us to so lve a
p r o b l e m almost one hundred times larger in the same per iod of t ime. Using an O(n^)
a lgo r i t hm w e wi l l on ly be able to increase the problem size by a factor of ten . Thus the
asymp to t i c g r o w t h ra te of a funct ion alone is usually enough to tel l us how much an inc rease
in p r o b l e m size wi l l cost.

Average or Worst-Case Analysis

Many a lgor i thms per fo rm a sequence of operat ions independent of thei r Input da ta ;
t he FFT and matr ix mult ip l icat ion algorithms of Section 2 are bo th da ta - independent . The
analys is of a data- independent algori thm is s t ra igh t fo rward—we simply count the number of
o p e r a t i o n s used. The operat ion of other algorithms (such as the sor t ing and s u b s t r i n g
a lgo r i t hms) are dependent on their input data; one algori thm can have ve ry d i f f e ren t r u n n i n g

9 The i n t e r e s t e d reader should re fer to Kung [1976] for a discussion of some of these issues
f r o m an a lgor i thmic v iewpoin t .

14

t imes fo r t w o inputs of the same size. How do we describe the running t ime of such an
a lgor i thm? Pessimists would like to know the worst-case of the running time ove r all i npu t s
and rea l is ts wou ld like to know the average running time. (We are ra re ly concerned w i t h the
b e s t - c a s e runn ing t ime, for there are very few optimists involved w i th computing.)

Most of the mathematical analysis of algorithms has been done for the w o r s t case.
Even in da ta -dependent algori thms it usually easy to ident i fy the worst possible o c c u r r e n c e ,
and then analyze that as in a data-independent algorithm. In cer ta in appl icat ions (Air T ra f f i c
C o n t r o l is o f ten c i ted) it is ve r y important to have an algorithm w i th which we are n e v e r
s u r p r i s e d by a v e r y slow case. For most applications, however , we are more i n t e r e s t e d in
w h a t w i l l usual ly happen; expec lcd- t ime analysis provides us w i th this i n f o r m a t i o n .
Re la t i ve ly l i t t le w o r k has been done on expected-t ime analysis. The two major s tumb l i ng
b locks appear to be in the choice of a realistic and tractable probabi l i ty model of the i npu ts
and the inst r ins ic d i f f i cu l ty of dealing wi th expectations instead of single cases. It w o u l d be
v e r y des i rab le to have a single algorithm that is ve ry eff ic ient in bo th e x p e c t e d and
w o r s t - c a s e per formances.

Upper and Lower Bounds

Most naive sor t ing algori thms (such as "Bubble Sort") requi re 0 (n 2) compar isons in
the w o r s t case; in Section 2.1 we investigated Mergesort , which never uses more t han
0 (n log2 n) compar isons. Should we continue our search, hoping to f ind an a lgor i thm that
uses pe rhaps on ly 0(n) comparisons? The answer to this, quest ion is no, for it can be s h o w n
tha t every sorting algorithm must take at least 0(n log2 n) comparisons in the worst case. The
p r o o f of th is theorem uses the "decision t ree" model of computat ion and is desc r ibed n ice ly
b y Aho , Hopcro f t , and Ullman [1974] . The Mergesort algorithm gave us an upper bound of
0 (n log2 n) on the complex i ty of sor t ing; this theorem gives us a lower bound. Since the t w o
have the same g r o w t h ra te , we can say that Mergesort is optimal to w i th in a constant f ac to r ,
under the decis ion t ree model of computation. Notice that we have now made the impo r t an t
j ump f rom speaking of the complexi ty of an algorithm to speaking of the comp lex i t y of a
p r o b l e m .

Lower bound resul ts are usually much more diff icult to obtain than upper bounds . To
f i nd an upper bound on a prob lem one need only give a part icular algori thm and then ana lyze
i t . For a lower bound, however , one must show that in the set of all algorithms for solving
the problem, t he re are none which are more efficient than the lower bound. There are some
t r i v i a l l ower bounds which can be achieved easily: most problems requi re examinat ion of all
t he i r inputs so we usually have an easy lower bound of the input size. The number of
non t r i v i a l lower bounds d iscovered to date is very small.

In p rov i ng lower bounds it is important to be ve ry precise about the model of
compu ta t i on . In Sect ion 2.1 we gave three algorithms that can be used for t es t i ng set

15

e q u a l i t y 1 0 : b r u t e fo rce, sor t ing, and hashing. The importance of computat ional model
becomes c lear w h e n we learn that each of those algorithms can be p roved opt imal under
d i f f e r e n t computa t iona l models! The O(n^) performance of b ru te force is opt imal if o n l y
e q u a l / n o t - e q u a l comparisons can be made between elements of the two sets. If the model of
c o m p u t a t i o n inludes only less- than/not - less- than comparisons then the 0 (n log2 n)
compar i sons of so r t ing are opt imal. If the model is a random access computer (such as MIX),
t h e n the average-case linear performance of hashing is provably best .

Exact and Approximation Algorithms

The re are many problems for which the bes t -known algor i thms are qu i te s l ow ,
r e q u i r i n g (say) 0 (2 n) t ime. A ve ry few of these problems have actual ly been p r o v e d to have
e x p o n e n t i a l l ower bounds. Others belong to a fascinating class cal led the NP-comple te
p r o b l e m s wh ich are ei ther all solvable in polynomial time or all of exponen t i a l
c o m p l e x i t y — u n f o r t u n a t e l y nobody yet knows which (but most of the money is on
exponen t i a l) . Examples of NP-complete problems include the Travel l ing Salesman P rob lem
(f i nd ing a min imal - length tour through a set of cities), Bin Packing, and the Knapsack P rob lem;
l i t e ra l l y hundreds of problems are known to be NP-complete. There are o ther p rob lems
w h i c h have not been p roved to be hard, yet no one has been able to design fast a lgor i thms
fo r them. When we have a problem which we do not know how to solve e f f i c ien t l y , what can
w e do?

The answer is amazingly simple: don't solve it. Solve a re la ted p rob lem ins tead .
I ns tead of des ign ing an algor i thm to produce the exact answer, one can bui ld an a lgo r i thm
tha t w i l l p roduce an approximat ion to the exact answer. So instead of f inding a minimal t ou r
f o r the T rave l l i ng Salesman, we might provide him wi th a tour which we know to be no more
t han f i f t y pe rcen t longer than the t rue minimum. Or if someone asks us to de te rm ine if a
number is pr ime or composi te, instead of providing the t rue answer we might r e s p o n d " I
don ' t k n o w , but Fm 99 .999999 percent sure that it's prime." Examples abound in wh i ch the
best k n o w n exact algori thms for a problem require exponent ial t ime, but app rox ima te
so lu t ions can be found v e r y quickly. Garey and Johnson [1 9 7 6] examine these issues.

Summary

These p rob lem dimensions are the categories in which a lgor i thm des igners th ink .
W h e n someone br ings a prob lem to an algorithm designer, the a lgor i thm des igner 's f i r s t task
is to unde rs tand the abstract problem. His second task is to unders tand what k ind of so lu t i on
the p e r s o n wan ts , and he uses these dimensions to describe the des i red so lu t ion. Using the
v o c a b u l a r y of this sect ion it is easy to describe concepts such as a "fast expec ted t ime and
low w o r s t - c a s e s torage approximat ion algorithm for task X wh ich is to be r u n o n a

10 We gave them or ig ina l ly for subset test ing, but recall that two sets are equal if and o n l y if
each is a subset of the other .

16

m u l t i - p r o c e s s o r machine". There are other infrequent ly used dimensions which we have not
c o v e r e d (such as code complex i ty—how long is the shortest program to solve this p rob lem?)
b u t these dimensions are adequate to describe most algorithmic resul ts .

3.2 Problem Areas—A Macroscopic View

In Sect ion 3.1 we developed a vocabulary which we can use to descr ibe a pa r t i cu la r
a lgo r i t hm ic p rob lem at a v e r y precise level of detail . In this sect ion we wi l l change our
p e r s p e c t i v e and examine large classes of problems, using the terminology of the last sec t ion .
We w i l l descr ibe each area by a br ief summary and one or two i l lus t ra t ive problems.

Ordered Sets

There are many problems on sets that depend only on a "less than" re la t i onsh ip
b e i n g de f i ned be tween the elements of the set. In many cases the set contains i n tege rs o r
rea l numbers ; in o ther cases we define a "less than" re lat ion be tween character s t r i ngs
(JONES is less than SMITH). The problems which arose in Section 2.1 are all p rob lems on
o r d e r e d se ts—these include sor t ing, searching, merging, and subset test ing. The a lgor i thms
of tha t sect ion are appropr ia te if the elements of the sets to be processed are numbe rs ,
c h a r a c t e r s t r ings , or any other type of "orderable" object . J<nuth [1 9 7 3] p rov ides an
exce l l en t i n t roduc t ion to the applications of and algorithms for o rde red sets.

The "median p rob lem" is another problem def ined for o rde red sets: g i v e n an
n -e lemen t set we are to f ind an element which is less than half the elements and not less
t h a n the o ther half. A naive algori thm would count for each element the number of e lements
less t han i t , and then repo r t the median as the element w i th exact ly half the o thers less t h a n
i t . Th is a lgor i thm makes approximately n 2 comparisons. An 0(n log2 n) a lgor i thm is g i ven b y
s o r t i n g the elements and then repor t ing the middle of the sor ted l ist. A median a lgo r i t hm
w i t h l inear expec ted t ime was f i rst descr ibed by C. A. R, Hoare in 1962. For over t en y e a r s
it w a s not known if there was an algorithm that had linear wors t -case t ime; one was f ina l l y
g i v e n by Blum et al. [1 9 7 3] . Much additional work has been done on this p rob lem, e x p l o r i n g
such facets as minimal s torage, detai led analysis of worst -case and expec ted runn ing t imes
(b o t h uppe r and lower bounds), and approximation algorithms.

Algebraic and Numeric Problems

Many aspects of algebraic and numeric problems have a d iscrete f lavor , and d i s c r e t e
a l g o r i t h m design can play a signif icant role in such problems. Matr ix mul t ip l icat ion is p e r h a p s
t h e c leares t example of such a problem; the fast algori thm can be desc r ibed (and
a p p r e c i a t e d) w i thout re fe rence to any of its numeric proper t ies . The FFT can also be v i e w e d
" n o n - n u m e r i c a l l y " . Another example of a numeric problem that can assume a pu re l y d i sc re te
c h a r a c t e r is the manipulat ion of sparse matrices (matrices in which almost all e lements are

17

z e r o) ; w e r e t u r n to this prob lem in our discussion of graph problems. Borod in and M u n r o
[1 9 7 5] g ive many appl icat ions of the principles of discrete algor i thm design to numer ic
p r o b l e m s such as polynomial manipulation, extended precision ar i thmet ic, and mu l t i p rocessor
imp lemen ta t i ons of numeric problems.

Graphs

Graphs are used to represent many di f ferent kinds of re la t ions, f r om the
i n t e r connec t i ons of an air l ine system to the conf igurat ion of a computer system. Tar jan ' s
[1 9 7 7] s u r v e y discusses many computational problems on graphs. One impor tant p r o b l e m
cal ls f o r de te rm in ing if a g iven graph can be imbedded in the plane wi thout any edges
c r o s s i n g . This might be used to check if the connections of a g iven circui t could be imbedded
o n a p r i n t e d c i rcu i t board or in tegrated circuit. The f i rst algorithms for test ing p lana r i t y r an
in O(n^) t ime on n-node graphs; after much ef for t on the part of many researchers had b e e n
spen t on the p rob lem, Hopcroft and Tarjan finally gave a l inear- t ime p lanar i ty a lgor i thm in
1 9 7 4 . Ano the r g raph prob lem is to construct the minimal spanning t ree of a we igh ted g r a p h ,
w h i c h is a min imal -we ight set of edges connecting all nodes. A wide var ie ty of a lgo r i thms
have b e e n p r o p o s e d and analyzed for this problem; some are super ior for v e r y dense
g r a p h s , o t he r s for re la t i ve ly sparse graphs, and stil l others for graphs which are p lanar .
Ef f ic ient g r a p h algor i thms have been given for problems such as the f low analys is of
c o m p u t e r p rograms and f inding maximal f lows in networks. A sparse matr ix is usua l ly
r e p r e s e n t e d by a g raph ; the algorithms for manipulating matrices are then g raph a lgor i thms.

Geometry

Shamos' [1 9 7 5] paper is an outstanding int roduct ion to the f ie ld of Computational
Geometry, wh ich is concerned w i th developing optimal algorithms for geometr ic p rob lems .
Many app l ica t ions are inherent ly of a geometric nature (such as laying out c i rcu i ts on a
b o a r d) and o the r prob lems can be v iewed geometrical ly (such as looking at a set of
mu l t i va r i a t e observa t ions as points in a multidimensional space). Shamos has desc r i bed an
i m p o r t a n t s t r u c t u r e cal led the Voronoi diagram which allows many geometr ic p r o b l e m s
dea l ing w i t h n points in the plane to be solved in 0(n log2 n) t ime. Among these p r o b l e m s
are de te rm in i ng the nearest neighbor of every point and construct ing the minimal spann ing
t r e e of the point sets (both of these are important tasks of many data analysis p r o c e d u r e s ,
and p r e v i o u s l y r equ i r ed O(n^) time). Many other important problems have been so lved a f te r
b e i n g cast in a geometr ic f ramework . One result obtained by this e f fo r t is that the s t a n d a r d
Simplex Me thod of l inear programming is not optimal for two and three var iab le p r o g r a m s
w i t h n cons t ra in ts . The simplex method has worst-case running t imes in the two p rob lems of
O(n^) and O(n^) , respec t i ve l y ; an 0(n log2 n) method has been g iven and p roved opt ima l f o r
b o t h the t w o - and th ree -va r i ab le case.

18

Other Areas

In th is sect ion we have glimpsed a few fields that have been s tud ied by a lgo r i thm
des igne rs . The resu l ts in many other areas must go unmentioned; these include a lgor i thms
fo r comp i l e rs , opera t ions research problems, data base management, s tat is t ics, and p rob lems
o n cha rac te r s t r ings. These results have led to both fast algori thms for so lv ing rea l
p r o b l e m s and to a new, algori thmic, understanding of the various f ields.

3.3 Fundamental Structures

Wander ing th rough a computer room one can not help but be impressed by the
c o m p l e x i t y of a large-scale computing system, and the novice might f ind it hard to be l i eve
tha t a human mind could design anything so complicated. The novice is not too far f r o m the
t r u t h , y e t many undergraduates are able to understand the basics of the o rgan iza t ion of a
c o m p u t e r a f te r only one or two semesters. They are able to comprehend the complex i t y not
b y sheer fo rce of concent ra t ion , but rather by understanding the "bui ld ing b locks" of wh i ch
c o m p u t e r s are made. A similar experience awaits the novice a lgor i thm des igner . The
a lgo r i thms ment ioned in Section 3.2 deal w i th many problem areas, but are ra ther s imple t o
c o m p r e h e n d once one understands the "building blocks" of algorithm design. In th is sec t ion
w e w i j l desc r ibe th ree important classes of these fundamental s t ructures.

Data Structures

Algor i thms deal w i t h data, and data st ructures are the tools the a lgor i thm des igner
uses to o rgan ize his data. In Section 2 we saw simple data s t ructures such as a r r ays and
ma t r i ces , and a fa i r l y complex data s t ructure, the hash table. There are many more exot ic
t y p e s of data s t ruc tu res , such as l inked lists, stacks, queues, p r i o r i t y queues, and t r ees , to
name a f ew . Each of these provides an appropr iate way to s t ruc ture data for a pa r t i cu la r
task. Ta r jan [1 9 7 7] gives a brief descr ipt ion of many of these s t ruc tu res ; a de ta i l ed
d e s c r i p t i o n of a large number of interest ing structures is prov ided by Knuth [1 9 6 8] .

Algorithmic Techniques

S t r u c t u r e d programming demands that a programmer express a compl icated sequence
of commands as a ser ies of ref inements by which the program can be unders tood at d i f f e r e n t
l eve ls . In each of these ref inements a basic, well understood method is app l ied to a we l l
d e f i n e d p rob lem. Good programmers used this technique long before it was voca l i zed ; good
a l go r i t hm des igners use a similar s t rategy even though they in f requent ly discuss i t . The
c o n s t r u c t s avai lable to the algori thm designer are similar to those in s t r uc tu red p rog ramming
languages , though somewhat more power fu l . We wil l describe some of these cons t ruc ts v e r y
b r i e f l y ; more deta i l can be found in Tarjan [1977] and Aho, Hopcrof t , and Ullman [1 9 7 4 ,
C h a p t e r 2] .

19

. W e have al ready seen many common algorithmic techniques in Sect ion 2. Most of t he
a l g o r i t h m s we descr ibed used iteration in one form or another—this s t ra tegy says "do x o v e r
and o v e r unt i l the task is accomplished". I terat ion is present in almost all p rog ramming
languages as do and whi le loops. A more powerfu l construct is recursion, wh ich gives* us a
w a y to exp ress recurs ive prob lem solving in programming languages. To def ine a r e c u r s i v e
s o l u t i o n to a p rob lem one says (essential ly), "to solve a problem of a cer ta in s ize, so lve the
same p r o b l e m of a smaller s ize." We used recursion to descr ibe b inary search : to b i n a r y
s e a r c h a table of size n we b inary searched a table of size n /2 . A part icu lar app l i ca t ion of
r e c u r s i o n is usual ly cal led divide-and-conquer, and says, "to solve a prob lem of size n, 1)
d i v i d e it in to subprob lems each of size only a f ract ion of n, 2) solve those s u b p r o b l e m s
r e c u r s i v e l y , and 3) combine the subsolutions to y ie ld a solut ion to the or ig ina l p r o b l e m . "
M e r g e s o r t can be v iewed as a textbook example of d iv ide-and-conquer : to sor t a l ist of n
e l emen ts we 1) break the list into two sublists each of n /2 elements, 2) sor t t hose
r e c u r s i v e l y , and 3) merge those together. The Fast Fourier Transform and the 0 (n ^ " ^)
ma t r i x mul t ip l ica t ion algor i thms are other application of the d iv ide-and-conquer techn ique .
Once one unders tands the fundamental principles of d iv ide-and-conquer a lgor i thms, each of
t h e s e instances becomes ra ther easy to grasp.

Many o ther algor i thmic techniques have been ident i f ied and studied. Dynamic
programming is a technique f rom operat ions research that has found many appl icat ions in
a l g o r i t h m design. Search s t ra teg ies such as breadth-first search and depth-first search have
b e e n used to y ie ld ef f ic ient g raph algorithms. Transformation allows us to tu rn an ins tance
of one p rob lem into another ; we saw in Section 2.4 that there are many t rans fo rmat ions to
t u r n almost to ta l ly unre la ted problems into instances of matrix mult ip l icat ion. Perhaps the
s ing le most impor tant algori thmic technique is to use optimal tools to solve the subp rob lems
w e c r e a t e for ourse lves in designing a new algorithm. To do so an algor i thm des igner must
k e e p abreast of the cu r ren t resul ts in his f ield.

Proof Techniques

Once an a lgor i thm designer has given an algori thm and "knows in his h e a r t " that it
has c e r t a i n p rope r t i es , he must prove that it does. (Perhaps it is this s tep wh ich sepa ra tes
p r a c t i t i o n e r f rom theor is t .) His f i rst task is to prove that his algor i thm indeed computes wha t
it p u r p o r t s to ; he wi l l use many of the tools of program ver i f icat ion in this s tep . Next he
must ana lyze the resource requirements of his algor i thm, dur ing which he wi l l use many
d i f f e r e n t mathematical tools. Finally he can prove his algor i thm optimal by g iv ing a l o w e r
b o u n d p roo f . The d i f fe ren t methods of analysis used in these var ious steps are d iscussed b y
We ide [1 9 7 7] .

20

4. CURRENT DIRECTIONS

The f ie ld of a lgor i thm design has exper ienced a meteoric r ise in the past decade.
Essent ia l ly u n k n o w n as a f ield ten years ago, it is now one of the most act ive areas in
t heo re t i ca l compute r science and has seen widespread use in applications. A l though the f i e l d
has come a long w a y , it has much fur ther to go. In this section we wil l examine some of t he
d i rec t i ons in wh i ch the f ie ld is cur ren t ly moving.

One constant d i rec t ion of the field has been from " toy " problems to " r e a l " p rob lems .
This invo lves many deta i led analyses and expected-resource analyses, for in appl icat ions w e
a re o f t en se r ious ly concerned about twenty percent di f ferences in average runn ing t ime.
A long w i t h these e f f o r t s much has been done recent ly on approximat ion a lgor i thms, s ince
many appl icat ions do not require exact answers. On the more theore t ica l s ide, t he
ou ts tand ing ques t ion is the complexi ty of the NP-complete problems—are they exponen t ia l o r
not? Ano ther impor tan t theoret ical problem is the search for some under ly ing t h e o r y of
a lgor i thm des ign. Though many individual results have been achieved to date, we st i l l have
no theore t i ca l exp lanat ion for what makes a class of problems easy or hard. Tar jan has
ment ioned the need for a "calculus of data structures"—a set of rules that wi l l a l low us to
deve lop the (p r o v a b l y) best possible st ructure for a given si tuat ion.

An impor tan t ou tg row th of this work wil l be the development of "A lgo r i t hm ic
Eng ineer ing" . This f ie ld wi l l supply the programmer wi th tools similar to those Elect r ica l
Eng ineer ing g ives the circuit designer. Before Algori thm Design turns into A lgo r i thm ic
Eng ineer ing w e w i l l need to develop many more particular results and g ive a t heo re t i ca l
basis for the f i e ld . We wi l l know that the f ield has become an engineer ing discip l ine as soon
as theore t i ca l compute r scientists assert that designing algorithms is no longer bona fide
r esea rch because " i t ' s such a wel l understood process."

5. CONCLUSIONS

In th is pape r we have looked at the f ie ld of algorithm design f rom a number of
d i f f e ren t v i e w p o i n t s . In Section 2 we invest igated part icular computat ional p rob lems and
the i r a lgor i thmic solut ions. We saw interest ing techniques used to solve the p r o b l e m s ,
l ea rned of many coun te r - i n tu i t i ve results, and glimpsed some of the pract ica l bene f i t s of
a lgor i thm des ign. We tu rned f rom "war s tor ies" to a systematic v iew of the f ie ld in Sect ion 3.
In Sect ion 3.1 w e deve loped a set of terms which can be used to def ine a computa t iona l
p r o b l e m , in Sect ion 3.2 we used those terms to sketch some of the resul ts ach ieved in t h e
f i e ld to da te , and in Sect ion 3.3 we mentioned some of the tools used to achieve the resu l t s .
Having looked at what has already been done in Sections 2 and 3, we t u r n e d to t he
dangerous task of p rophecy in Section 4.

In summary I wou ld like to describe what algorithm design has to o f fe r to v a r i o u s

21

ind iv idua ls . The mathematician and theoret ical computer scientist can v iew the f ie ld as a r i ch
s o u r c e of p rob lems that need precise mathematical t reatment ; these prob lems are
mathemat ica l l y fascinat ing and requi re the use of some of the most power fu l tools of d i sc re te
mathemat ics . The appl icat ions programmer w i th l i t t le interest in beaut i fu l theorems can also
b e n e f i t f r o m this wo rk , for the proper application of its products can occasionally- be v e r y
r e w a r d i n g f inancia l ly . Final ly, I feel that anyone involved w i th comput ing, regard less of his
p o s i t i o n on the p rac t i ca l - to - theore t i ca l continuum, should be at least somewhat famil iar w i t h
th is f i e ld . The s tudy of algorithms is the study of computing, and th rough it we gain a
f undamen ta l unders tand ing of what computers are all about.

ACKNOWLEDGMENTS

The p resen ta t i on of this paper has prof i ted from the helpful cr i t ic ism of many p e o p l e ;
t he comments of Dave Jef ferson, Len Shustek, and Bruce Weide have been pa r t i cu l a r l y
h e l p f u l .

REFERENCES

A h o , A. V., J. E. Hopcrof t , and J. D. Ullman [1974] . The design and analysis of computer
algorithms, Add ison-Wesley , Reading, Mass.

B lum, M., R. F loyd , V. Prat t , R. Rivest, and R. Tarjan [1973] . M Time bounds for se lec t i on , "
Journal of Computer and Systems Sciences 7, 4 (August 1973), 4 4 8 - 4 6 1 .

B o r o d i n , A. and 1. Munro [1975] . The computational complexity of algebraic and numeric
problems, Amer ican Elsevier, N. Y.

B o y e r , R. S. and J S. Moore [1977] . "A fast str ing searching a lgor i thm," Communications of
the ACM 20, 10, (October 1977), 7 6 2 - 7 7 2 .

B r i l l i nge r , D. R. [1 9 7 5] . Time series: Data analysis and theory, Holt, Rinehart , and Wins ton ,
N.Y.

C o o l e y , J. M. and J. W. Tukey [1965] . "An algorithm for the machine calculat ion of complex
Fou r ie r ser ies , " Math. Comp. 19, pp. 2 9 1 - 3 0 1 .

Ga rdne r , M. [1 9 7 7] . "Mathematical games," Scientific American 236, 8 (August 1977) , p p .
1 2 0 - 1 2 5 .

G a r e y , M. R. and D. S. Johnson [1976] . "Approximat ion algorithms for combinator ia l p r o b l e m s :
an anno ta ted b ib l iography , " in Algorithms and complexity: New directions and recent
results, J. F. T raub , [Ed.], Academic Press, N. Y., pp. 41 -52 .

22

H o p c r o f t , J. E. [1 9 7 4] . "Complexi ty of computer computat ions," in Proceedings IFIP Congress
74, v o l . 3, Nor th-Hol land Publishing Company, Amsterdam, The Nether lands, pp. 62 .0 -626 .

K a r p , R. M. [1 9 7 2] . "Reducibi l i ty among combinatorial problems," In Complexity of computer
computations, R. E. Miller and J. W. Thatcher, [Eds.], Plenum Press, N. Y., pp. 8 5 - 1 0 3 .

K n u t h , D. E. [1 9 6 8] . The art of computer programming, voL 1: Fundamental algorithms,
Add ison -Wes ley , Reading, Mass.

K n u t h , D. E. [1 9 6 9] . The art of computer programming, voL 2: Seminumerical algorithms,
Add i son -Wes ley , Reading, Mass.

K n u t h , D. E. [1 9 7 1] . "Mathematical analysis of algorithms," in Proceedings IFIP Congress 71,
v o l . 1, Nor th-Hol land Publishing Company, Amsterdam, The Nether lands, pp. 1 3 5 - 1 4 3 .

K n u t h , D. E. [1 9 7 3] . The art of computer programming, voL 3: Sorting and searching,
Add i son -Wes ley , Reading, Mass.

K n u t h , D. E. [1 9 7 7] . "A lgor i thms", Scientific American 236, 4, (Apr i l 1977), 6 3 - 8 0 .

K n u t h , D. E., J. H. Morr is , and V.' R. Pratt [1977] . "Fast pa t te rn matching in s t r i ngs , " SI AM
Journal of Computing 6, 2 (June 1977), 323 -350 .

Kung , H. T, [1 9 7 6] . "Synchron ized and asynchronous paral lel algori thms for mu l t i p rocesso rs , "
in Algorithms and complexity: New directions and recent results, J. F. T r a u b , [Ed.] ,
Academic Press, N. Y., pp. 153-200 .

Rab in , M. 0 . [1 9 7 6] . "Probabi l ist ic Algorithms," in Algorithms and complexity: New directions
and recent results, 1 F. Traub, [Ed.], Academic Press, N. Y., pp. 2 1 - 3 9 .

Re ingo ld , E. M. [1 9 7 2] . "Establ ishing lower bounds on algori thms: A survey , " in AFIPS 1972
Spring Joint Computer Conference, vol . 40, AFIPS Press, Montvale, N. J., pp. 4 7 1 - 4 8 1 .

R ives t , R. L , A. Shamir, and L Adleman [1978] . "A method for obtain ing digital s igna tu res and
pub l i c -Key c ryp tosys tems, " Communications of the ACM 21, 3 (February 1978) , p p .
1 2 0 - 1 2 6 .

Shamos, M. I. [1 9 7 5] . "Geometric Complexity," in Proceedings of the Seventh ACM Symposium
on the Theory of Computing, ACM, N. Y., pp. 224 -233 .

S t r a s s e n , V. [1 9 6 9] . "Gaussian elimination is not opt imal," Numerische Mathematik 13, pp .
3 4 5 - 3 4 6 .

T a r j a n , R. E. [1 9 7 7] . Complexity of Combinatorial Algorithms, Stanford Computer Sc ience
Depar tmen t Report STAN-CS-77-609. To appear in SIAM Review.

23

T r a u b , J. F., [Ed.] [1 9 7 6] . Algorithms and complexity: New directions and recent results,
Academic Press, N. Y.

Va l ian t , L. G. [1 9 7 5] . "General con tex t - f ree recogni t ion in less than cubic t ime," Journal of
Computer and Systems Sciences iO, 2 (Apr i l 1975), 3 0 8 - 3 1 5 .

W e i d e , B. [1 9 7 7] . "A su rvey of analysis techniques for discrete a lgor i thms," Computing
Surveys 9, 4 (December 1977), pp. 291-313 .

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
1 . R E P O R T N U M B E R 2 . G O V T A C C E S S I O N N O .

CMU-CS-78-121

3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (a n d Subtitle)

AN INTRODUCTION TO ALGORITHM DESIGN

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

Interim
4. T I T L E (a n d Subtitle)

AN INTRODUCTION TO ALGORITHM DESIGN
6. P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R f t)

Jon Louis Bentley

8. C O N T R A C T O R G R A N T N U M B E R S

N00014-7.6-C-0370

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. P R O G R A M E L E M E N T . P R O J E C T . T A S K
A R E A & W O R K U N I T N U M B E R S

1 1 . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S •

Office of Naval Research
Arlington, VA 22217

12. R E P O R T D A T E

May 1978
1 1 . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S •

Office of Naval Research
Arlington, VA 22217 13. N U M B E R O F P A G E S

?L
14. M O N I T O R I N G A G E N C Y N A M E & A D D R E S S ^ / dilioront from Controlling Office)

same as above

1 5 . S E C U R I T Y C L A S S , (of thia report)

.UNCLASSIFIED

14. M O N I T O R I N G A G E N C Y N A M E & A D D R E S S ^ / dilioront from Controlling Office)

same as above 15* D E C L A S S I F l C A T I O N / D O W N G R A D I N G
S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (oi thia Report)

Approved for Public Release; Distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the ebetrmct entered in Block 20. it different from R.port) ^

1 8 . S U P P L E M E N T A R Y N O T E S '

1 9 . K E Y W O R D S (Conttnu. o n « v . r . . . i d . it n . e . . . « y «n<* Id.ntlty by B l o c k numb.r)

"20V A B S T R A C T (Contlnum o n r . v . r . . mido It n . c . . . « T * n d Id.ntlty by block n t a n b . f i . . .

The f i e ld of a lgor i thm design is concerned w i th the deve lopment of e f f . c e n t me thods
f o r so l v i ng computa t iona l p rob lems. Al though the f ield t races i ts roo ts to t r * o r « t i c a
c o m p u t e r sc ience, recent algor i thmic advances have drast ical ly reduced the costs of r ea
c o m p u t a t i o n s . For this reason it is important that anyone invo lved w i t h comput .ng have at
leas t a c u r s o r y knowledge of the area. This paper surveys the he ld of a lgor i thm des .gn i n
t w o w a y s : f i rs t b y the s tudy of a few problems in detai l , and then by a sys temat ic v i e w o f
t h e f i e l d The o r i en ta t i on of this paper is towards the pract i t ioner of comput .ng (in e i t h e r

nn F O R M

VV 1 J A N \ 7 3

T473 E D I T I O N O F 1 N O V 6 5 I S O B S O L E T E

S / N 0 1 0 2 - 0 1 4 - 6 6 0 1 I
UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Wnen Date Entered)

http://ntanb.fi

TTN CLASSIFIED
w l ^ U U m T v C L A S S I F I C A T I O N O F T H I S P A G E f ^ h t n D.tm Entmrmd)

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAGZ(Whmn Dmtm En

