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ABSTRACT 

The f ie ld of algori thm design is concerned wi th the development of e f f ic ient methods 
f o r so l v i ng computat ional problems. Although the f ield traces its roo ts to theore t i ca l 
c o m p u t e r science, recent algorithmic advances have drastical ly reduced the costs of rea l 
c o m p u t a t i o n s . For this reason it is important that anyone involved w i th comput ing have at 
leas t a c u r s o r y knowledge of the area. This paper surveys the f ield of a lgor i thm des ign in 
t w o w a y s : f i rs t by the study of a few problems in detai l , and then by a systemat ic v i ew of 
t h e f i e l d . The or ien ta t ion of this paper is towards the pract i t ioner of comput ing ( in e i t he r 
s o f t w a r e or hardware) ; the goals of the paper are to provide both an unders tand ing of t he 
f i e l d and a fee l ing for "what it can do for me H . 

An ear l ie r vers ion of this paper was given as an inv i ted paper at the Compute r 
Sc ience and Stat is t ics: Eleventh Annual Symposium on the Inter face, and appears in t he 
p r o c e e d i n g s thereof . 
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1. INTRODUCTION 

"A lgo r i t hm design—that 's the f ield where people talk about programs and prove 
theorems about programs instead of writing and debugging programs." Statements a long 
t h o s e l ines have been u t te red by applications programmers and academicians al ike. But 
t h e r e are also some who say, "No! Proper algorithm design has helped us to save k i lobucks 
at o u r ins ta l la t ion eve ry month." In this paper we wil l invest igate the f ie ld of a lgor i thm 
d e s i g n (wh i ch also is known as "Analysis of Algor i thms" and "Concrete Computat iona l 
C o m p l e x i t y " , among other names) and bet ter equip the reader to judge the f ie ld for himself . 

The author t rus ts that anyone who has even the sl ightest love for mathemat ics 
b u r n i n g somewhere inside his heart (however deeply) , wi l l continue to read this paper to see 
h o w mathemat ica l tools can be appl ied to the problems of programming. But for the res t of 
t he r e a d e r s (whose interest in mathematics was probably squelched in f reshman calculus) I 
w o u l d l ike to o f fe r the same bait that drew me into this f ield. I can t race my in te res t in the 
des i gn of e f f i c ien t algori thms to the time when I was a Business Data Processing p rog rammer 
and had jus t f in ished reading an in t roductory text on "Data Structures" . A col league of mine 
had jus t had his p rogram cancelled—the operators had estimated (by count ing the t u r n i n g 
r a t e of the tapes) that it would take about three hours to process his one ree l of data. The 
p r o g r a m i tsel f was fa i r ly short and a quick glance told us that all of the t ime was spent in 
scann ing a one thousand element table. I suggested that instead of scanning we t r y a 
n e w - f a n g l e d technique- I had just read about—binary search. We d id , and the mod i f ied 
p r o g r a m p rocessed the reel of tape in five minutes (and spent almost all of i ts t ime wa i t i ng 
f o r t he tape!) . A round that same time I was asked to help another programmer w h o had 
a l r e a d y spent one month of time and produced over a thousand cards of code for a par t i cu la r 
p r o g r a m . A simple change in data s t ructure and a few day's wo rk (s ta r t ing over f r o m 
s c r a t c h ) a l lowed us to redo the program in less than two hundred lines of code. The 
r e s u l t i n g p r o g r a m was faster than the original would have been, used far less code, and was 
much eas ier to understand. So even if you have no aesthetic in terest in a lgor i thm des ign 
( y e t ) , p lease read on—the pract ical benef i ts alone can sometimes be reward ing enough! 

Th roughou t this paper we wil l refer only to the discrete aspects of a lgor i thm des ign . 
We w i l l not ment ion numeric problems such as stabi l i ty , t runcat ion e r ro r , e r r o r p ropaga t i on 
and o t h e r issues that are in the domain of numerical analysts. Even w i t h this r es t r i c t i on , w e 
s t i l l inc lude some v e r y numeric problems, such as the manipulation of sparse matr ices ( in 
w h i c h almost all elements are zero) and the Fast Fourier Transform. 

A number of survey papers on the field of discrete algori thm design have appea red 
r e c e n t l y . Hopcro f t [ 1 9 7 4 ] and Tarjan [ 1977 ] both give a broad and tho rough p ic tu re of the 
f i e l d . Weide 's [ 1 9 7 7 ] survey concentrates on the techniques used for analyz ing d i sc re te 
a l go r i t hms , and accomplishes that task exper t ly . For those who are skept ica l of sweep ing 
s u r v e y s and p re fe r to see a couple of problems examined in detai l , Knuth 's in t roduc t ions 
[ 1 9 7 1 , 1 9 7 7 ] w i l l p rove enl ightening and fascinating. And if one is ready to become a 
s e r i o u s s tudent of the f ie ld, the standard texts are prov ided by Aho, Hopcrof t and Ullman 
[ 1 9 7 4 ] (a one-semeste r , graduate level introduct ion) and Knuth [ 1968 , 1969, 1 9 7 3 ] w h o has 
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c o m p l e t e d t h ree volumes of his seven volume definitive work on computer a lgor i thms. This 
p a p e r a t tempts to supplement those works by providing a broad su rvey for the novice. The 
b i b l i o g r a p h y has been kept exceptional ly short ; both Tarjan [ 1 9 7 7 ] and Weide [ 1 9 7 7 ] con ta in 
exce l len t b ib l iog raph ies for those interested. 

This paper is d iv ided into f ive sections. In Section 2 we wi l l examine f i ve p rob lems 
and some a lgor i thms for solving them. Having examined those concrete examples we t u r n to 
a sys temat i c v i ew of the f ie ld in Section 3. In Section 4 we wi l l ment ion some of the c u r r e n t 
d i r e c t i o n s in wh ich the f ield is now moving. Finally, we tie together the main points of th is 
p a p e r in* Sect ion 5. 

2. EXAMPLES OF FAST ALGORITHMS 

Sweep ing general izat ions without support ing examples are o f ten c o n t e n t - f r e e , so 
b e f o r e w e go on to sweeping generalizations in Section 3 we wi l l s tudy a few examples of 
fas t a lgor i thms. For each example we wil l specify a problem, mention some of i ts r e a l - w o r l d 
app l i ca t ions , g ive an algori thm to solve the problem, analyze the ef f ic iency of the a lgo r i thm, 
and t h e n discuss in teres t ing issues which have surfaced. We wi l l s tudy the "subset t e s t i n g " 
p r o b l e m of Sect ion 2.1 in a fair amount of depth and then treat the o ther four p rob lems at a 
m o r e super f i c ia l leve l . Af ter discussing these examples, and be fore we move on to t he 
s t a t e m e n t s about the f ie ld of algorithm design in Section 3, we wil l summarize what all of ou r 
w o r k bought us in Sect ion 2.6. 

But f i rs t a w o r d on why we are examining these part icular prob lems. The subset 
t e s t i n g p rob lem of Sect ion 2.1 wil l raise a number of familiar issues and should cover some 
o ld g r o u n d for many; it also gives us a nice i l lustrat ion of the t remendous t ime sav ings 
ach ievab le w i t h p r o p e r algorithms. The substr ing searching problem of Sect ion 2.2 p rov ides 
an e x t r e m e l y in te res t ing blend of theory and practice. The Fast Four ier T rans fo rm of 
Sec t i on 2.3 is k n o w n to many, uses some important algorithmic techniques, and is eminen t l y 
p rac t i ca l . In Sect ion 2.4 we examine a very old problem (matrix mul t ip l icat ion) and a recen t 
and remarkab l y coun te r - in tu i t i ve solut ion; we wil l also see some myster ious re la t ions among 
v e r y dissimi lar prob lems. In Section 2.5 we wil l investigate algor i thmic aspects of a 
p u b l i c - k e y c r y p t o s y s t e m that has recent ly revolut ionized the wo r l d of c r y p t o g r a p h y , and 
p rom ises to have a substant ial impact on "secure" computing. 

2.1 Subset Testing 

Given a set A (of size n) and a set B (of size m < n), is B a subset of A ? 1 This "subset 
t e s t i n g " p rob lem can be stated as a programming exercise: given ^n a r ray A [ L : n ] and B [ l : m ] , 

1 This p rob lem is discussed by Knuth [1973, p. 3 9 f ] . 
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b o t h of ( say ) 3 2 - b i t wo rds , is eve ry wo rd in B also In A? Disguised vers ions of th is p r o b l e m 
ar ise in many con tex ts : A could be an employee master fi le, B a list of week l y t ransac t ions , 
and w e wan t to f ind whether a master- f i le record exists for each week l y t ransac t ion . Or A 
mfght be a tab le of real numbers x and have an associated table S wh ich contains sine x, t hen 
B w o u l d be a set of x values at which the sine function is to be eva luated. A l t hough th is 
p r o b l e m does have some pract ical appl icat ion, that is not our main mot iva t ion fo r examin ing it 
h e r e . We w i l l see that it leads to many of the basic issues in so r t ing and search ing , and 
po in t s to i n te r - re la t i onsh ips be tween those problems. We wil l also get an exposure to some 
of the common methods of algori thm design. 

We w i l l examine th ree ways of solving this problem. In o rde r to compare the 
methods w e wi l l f ind the running time of each by counting the number of compar isons 
b e t w e e n e lements . The fo l lowing enticement might encourage the reader as he l abo rs 
t h r o u g h the d i f f e ren t methods: fo l lowing our discussion of the methods we wi l l see an 
app l i ca t i on in wh i ch our f i rs t algorihm would require over six days of CPU t ime, wh i le ou r 
f ina l a lgo r i thm can solve it in four seconds. 

Brute Force 

The simplest way to accomplish this task is to compare e v e r y element in B to each of 
t he e lements of A unt i l e i ther its equal is found or we have examined all of A and d e t e r m i n e d 
that it has no equal in A (in which case B is not A's subset); this approach gives a s imple , 
t w o - l o o p p r o g r a m . If B is indeed contained in A, then each scan for an element that is B's 
mate in A takes n /2 comparisons on the average (you have to look ha l fway d o w n the l is t ) . 
Since t h e r e are m such scans made, the total number of comparisons made by this p r o g r a m is 
abou t m(n /2 ) . So if m is ve r y close to the size of n, then we wi l l make about n ^ / 2 
compar i sons on the average^ . Al though this algorithm is except ional ly simple to u n d e r s t a n d 
and to code , i ts s low running time might prohib i t its use in cer ta in appl icat ions. We wi l l now 
t u r n our a t t en t i on to a faster algori thm. 

Sorting 

If y o u w e r e g iven a randomly o rdered list of phone numbers B (say a l ist of phone 
n u m b e r s in a t o w n ) and another randomly ordered list A (say all phone numbers in the 
c o u n t y ) and y o u w e r e asked to check whether B was a subset of A (make sure e v e r y t o w n 
p h o n e number is included in the county l ist), then you might use the b r u t e - f o r c e a lgo r i t hm 
jus t d iscussed. If, however , you were handed a town phone book and a coun ty phone book 
and asked to p e r f o r m the same task, then your job would be much easier. Since the t w o 
p h o n e books are a l ready sor ted (by name) we can just scan th rough the t w o bojoks t o g e t h e r , 
i nsu r i ng tha t the coun ty book contains ail the town names. This of course immediate ly g i ves 
us ano ther a lgor i thm for subset tes t ing: sor t A, sort B, then sequent ia l ly scan t h r o u g h the 
t w o , check ing fo r matches. To analyze the run time of this s t ra tegy we obse rve tha t t he 

2 We w o n ' t t r y to analyze the case that B is not a subset of A; to do so w e wou ld have to 
say exac t l y how it is not a subset, and that is ve ry dependent on the par t icu lar p rob lem. 



scan w i l l take about m+n comparisons, and we heard somewhere that y o u can sor t a l ist of 
s i ze n in about n log2 n comparisons, so the total running time is (n log2 n) + (m log2 m) + 
m+n compar isons . 

We could pull a sor t ing rout ine out of thin air, but it is not much more d i f f i cu l t t o 
d e s c r i b e one cal led Mergesor t . The basic operat ion of Mergesort is merging t w o s o r t e d l is ts 
of n u m b e r s , say X and Y ( the l ists could either be s tored as arrays or l inked t oge the r w i t h 
p o i n t e r s ) . To do this we compare the f irst element of X w i th the f i rst element of Y and g i ve 
t he smal lest as the f i rst element of the new list, delet ing it f rom its source. We repea t th is 
r e m o v e - t h e - s m a l l e s t step unt i l bo th X and Y are empty. Since we used one compar ison fo r 
each s t e p , if the re were a to ta l of m elements in X and Y, we wi l l have used about m 
compar i sons . We can now use this tool of merging to Mergesort a set S of n e lements . We 
s t a r t b y v i ew ing S as a set of n sor ted one-element l ists. We then merge adjacent pa i rs of 
o n e - e l e m e n t l ists, g iv ing n /2 2-element sor ted lists. The next step is to merge adjacent pa i rs 
of t hose l ists g iv ing n/4 4-e lement l ists, and the process continues. A f te r log2 n i t e ra t i ons 
w e have one so r ted n-element l ist, and our task is complete. To analyze this we no te tha t 
w e use about n comparisons for the merges at each of the log2 n i te ra t ions , so the to ta l 
n u m b e r of comparisons used is the promised n log2 n. 

We have thus shown how to solve the subset problem wi th . n ( log2n + 1) + 
m( log2m • 1) comparisons. If m is about the same size as n then our a lgor i thm takes 
a p p r o x i m a t e l y 2n log2 n comparisons. Can we do bet ter? 

Hashing 

I n t rospec t ion as to how we would solve the phone book problem led to an i n t e r e s t i n g 
s o r t i n g approach to the subset prob lem; if we rephrase the phone book p rob lem then the 
" h u m a n " approach wi l l lead to an even faster subset algori thm. Suppose that the c o u n t y 
p h o n e book (A) was sor ted and the town phone list (B) was not; to ensure that A conta ins B 
w e can " look u p " in A each number in B by the name of the subscr iber. For each of the m 
e lemen ts in B we would do a "b inary search"^ among the n elements of A. It is not ha rd to 
see tha t a b ina ry search in an n-element sor ted table takes at most log2 n compar isons , so 
th i s a lgo r i t hm is easi ly analyzed: it takes n log2 n + m log2 m comparisons, or app rox ima te l y 
2 n l og2 n if m is the same size as n. We therefore have a searching solut ion to the subse t 
p r o b l e m : s to re the elements of A in a table, then for each element of B ensure that it is in 
t h e t ab le . 

A l t hough b inary search is the best searching method for many p rob lems, t h e r e is 
a n o t h e r search ing s t ra tegy even more appropr iate for this prob lem: hashing. Using hash ing 
w e can s t o r e an element in a table or check to see if an element is a l ready in a tab le in 

3 A b i n a r y search for a n.ame in a phone book f i rst compares that name to the middle name 
in t he book. If that name is less than the middle we restr ic t our search to the f i r s t half of 
t h e book , o therw ise we search the last half, and so on. 



abou t t w o compar isons, on the average 4 4 . With this approach we wi l l be able to do subse t 
t e s t i n g in 2n + 2m compar isons—2n to store A and then 2m to look up each element of B. To 
s t o r e the n e lements of A we wi l l have to allocate a hash table wh ich is an a r ray of l e n g t h 
( 1 . 5 ) n . ^ We t hen s tore the elements of A in the table o n e - b y - o n e by the use of a hash 
function. This func t ion maps a data value into an integer in the bounds of the hash tab le . If 
tha t pos i t i on in the hash table is empty, f ine: insert the element. If the pos i t ion w a s 
o c c u p i e d , h o w e v e r , we have a collision, and must employ a collision resolution strategy, such 
as scann ing up the elements of the array unti l a free posit ion is found. Analysis has s h o w n 
tha t a p r o p e r col l is ion resolut ion s t ra tegy allows one to f ind an empty spot v e r y qu ick ly (say , 
in t w o compar isons) . When an empty spot is finally found the element is inser ted . A f t e r 
i n s e r t i n g all of A 's elements into the table we then look up all of B's e lements. For any 
pa r t i cu l a r e lement we calculate its hash funct ion and look in that pos i t ion. If that pos i t i on is 
e m p t y t h e n it is not in A; if the element is in the posit ion then we have found i t ; o t h e r w i s e 
w e must emp loy the same coll ision resolut ion strategy to see whe re it should be . The 
techn ique of hashing is something that a human would never use in searching (humans a re 
much b e t t e r at compar ing things and then looking in one of two d i rect ions than at ca lcu la t ing 
w e i r d hash funct ions) , but it leads to a ve ry eff icient algori thm. If m is about the same s ize 
as n then the hashing approach uses only about 4n comparisons (on the average) to do 
subse t tes t i ng . 

Summary 

The subset test ing problem is stated very simply but has led us s t ra ight to some of 
t h e fundamenta l issues in algor i thm design. We very quickly a r r i ved at search ing—the scan 
of the b r u t e fo rce algor i thm is just a naive search. From there we moved to so r t i ng , t h e n to 
b i n a r y search , and f inal ly to hashing, which introduced us to a non-obv ious data s t r u c t u r e 
( the hash table).** The approaches that we used to solve these problems are some of t he 
f undamen ta l tools of algor i thm designers. We have also touched on a number of i n t e r e s t i n g 
aspec ts of a lgor i thmic problems such as time and space analyses and wors t - case v e r s u s 
e x p e c t e d - t i m e analysis. We wi l l s tudy these issues fur ther in Section 3. 

But what has all this gained us? We certainly have a more def in i te unders tand ing of 
some of the fundamental computat ional issues involved, but does it make any d i f f e rence in 
p rac t i ce? To answer this quest ion let 's assume that we are w r i t i ng a p rogram for subse t 
t e s t i n g w h e r e A and B both contain one million elements, and for the sake of a rgument 
assume that one compar ison takes one microsecond of computer t ime. By these assumpt ions , 
t h e n ^ / 2 compar isons requ i red by b ru te force translates to 138 hours (or a l i t t le shy of six 
d a y s ) of machine t ime; the 2n l o g 2 n for sort ing wil l give 40 seconds; and the 4n of hash ing 

4 For pess imis ts , however , we note that the worst case of hashing is as bad as b r u t e 
f o r c e — w e might have to look at all of the elements in the table. 

5 We can even use a smaller array; (Ll)n would probably work almost as welL 

6 A more t h o r o u g h examinat ion of searching is contained in Knuthfs [1977] su rvey . 
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w i l l y i e l d 4 seconds. A l though we haven't calculated all the costs of Imp lementa t ion , th is 
examp le shows how sometimes a simple analysis is all one needs to make an i n fo rmed choice. 

2.2 Substring Searching 

Does a g i ven string contain a specif ied substr ing pattern, and if so, where? This is the 
s u b s t r i n g search ing prob lem. This problem is familiar to most who have used compu te r tex t 
e d i t o r s ; as the author sat down to type this paragraph he told the ed i tor to f i nd t he 
s u b s t r i n g " 2 . 2 " in his text f i le so he would know where to inser t this t e x t ! 7 This same 
o p e r a t i o n is used by in format ion ret r ieval systems as they ident i fy abstracts wh i ch con ta in 
c e r t a i n k e y w o r d s . Similar problems are encountered in many text fo rmat t ing and macro 
p rocess ing p rograms. 

It is not hard to w r i t e a program to solve this problem. We f i rs t ho ld p a t t e r n ' s 
le f tmost charac ter under string's leftmost character and start comparing. If all the cha rac te rs 
of pattern match the characters above them, f ine—we have found the subst r ing in pos i t i on 1. 
If w e f ind a mismatch then we slide pattern over one and do the same th ing again. This 
con t i nues unt i l we e i ther f ind a match or come to the end of the string. The w o r s t - c a s e 
behav io r of this a lgor i thm is v e r y slow—for each of the n positions of string we might have 
to compare all m posi t ions of pattern. Thus in the wors t case we might have to make mn 
compar isons . Strings and patterns that realize this worst -case behav ior are f a i r l y 
pa tho log ica l and the per formance of this algorithm in pract ice is fa i r ly good, but the ques t i on 
s t i l l haunts us—can we g ive an algorithm that wil l a lways do better? 

Knuth , Mor r i s and Pratt [ 1977 ] give an algori thm that beats the mn p e r f o r m a n c e . 
T h e y p rep rocess pattern in to a data st ructure that represents a program; that p r o g r a m t h e n 
looks for pattern in string. Preprocessing pattern by their algorithm takes only m o p e r a t i o n s 
( w h e r e m is the leng th of pattern) and the "p rogram" they produce looks at each cha rac te r of 
string on ly once, so the tota l running time of their algori thm is p ropor t iona l to m+n, i ns tead 
of mn. (Of course if the pa t t e rn is in the str ing in posi t ion i, then their a lgor i thm takes t ime 
p r o p o r t i o n a l to i+m.) This result is exceptionally in terest ing from a theoret ica l v i e w p o i n t , and 
also p rov ides a fas ter subst r ing searching algorithm in pract ice. 

Boyer and Moore [ 1 9 7 7 ] recent ly used the basic idea of the Knuth, Mor r i s and Pra t t 
a l go r i t hm to g ive an even faster method of substr ing searching. Their method has the same 
w o r s t - c a s e per fo rmance (propor t iona l to m+n), but is somewhat faster on the ave rage . T h e y 
accompl ish th is by making it unnecessary. to examine every element of string. They have 
imp lemen ted the i r a lgor i thm on a PDP-10 so ef f ic ient ly that when string conta ins t yp i ca l 
Engl ish text and pattern is a f ive letter word in string, the number of PDP-10 i ns t ruc t i ons 
e x e c u t e d is less than i+n. This is at least an o rde r of magnitude faster than the na ive 
a lgo r i t hm. 

7 The tex t ed i to r he uses looks at his fi le as one long st r ing of text , sp r ink led w i t h spec ia l 
cha rac te rs rep resen t i ng "carr iage re turn" . 



7 

The h i s t o r y of the subst r ing searching problem provides an in te res t ing ins ight i n to 
t he re la t i on of t h e o r y and pract ice in Computer Science. Knuth relates that he was led to his 
d i s c o v e r y of the a lgor i thm by the use of a machine f rom automata t heo ry ca l led the 
" t w o - w a y de termin is t i c pushdown automaton". The easiest way to unders tand the fas t 
a lgo r i t hms is t h r o u g h the use of f in i te state automata, which are commonly used in d ig i ta l 
s y s t e m s des ign. It is no tewor thy that in this one problem we talk about such d i ve rse ideas 
as abs t rac t automata and PDP-10 instruct ions, w i th a lot of combinator ial analysis in b e t w e e n ! 

2.3 The Fast Fourier Transform 

The Four ie r T rans fo rm is o f ten studied in mathematics and eng ineer ing. It can be 
v i e w e d in a number of ways , such as transforming a funct ion f rom the "t ime domain" in to t he 
" f r e q u e n c y doma in " or as the decomposit ion of a funct ion into fts "sinusoidal componen ts " . 
The con t inuous Four ie r Transform has a discrete counterpar t , which calls for app l y i ng an 
o p e r a t i o n to one set of n reals y ielding a " t ransformed" set of n reals. This p r o b l e m has 
app l i ca t ions in signal processing, in terpolat ion methods, and many discrete prob lems. 

The naive a lgor i thm for computing the Fourier Transform of n reals r e q u i r e s 
a p p r o x i m a t e l y n^ ar i thmet ic operat ions (adds and multiplies). The Fast Four ier T r a n s f o r m of 
C o o l e y and Tukey [ 1 9 6 5 ] accomplishes this task in approximately n log2 n ar i thmet ics . It 
ach ieves this by do ing about n ari thmetics on each of log2 n levels; in this sense it is qu i t e 
s imi lar to the Mergesor t algor i thm of Section 2 .1 . There are many d i f fe ren t expos i t i ons of 
t he a lgo r i thm; see Aho, Hopcroft and Ullman [ 1 9 7 4 ] or Borodin and Munro [ 1 9 7 5 ] . ( I t is 
i n t e r e s t i n g to no te that in addit ion to being faster to compute, many of the numer i c 
p r o p e r t i e s of the FFT are bet ter than those of the naive transform.) 

The Fast Four ier Transform has had a substantial impact on comput ing. It f o rms the 
b a c k b o n e of many "numer ic" programs. The FFT has been used in d iverse f ie lds to f i n d 
h i dden per iod ic i t i es of a s ta t ionary time series. In signal processing it is used in f i l t e r s t o 
r e m o v e noise f r o m signals and eradicate b lur r ing in digital p ic tures. It is used in numer ica l 
ana lys is fo r the in te rpo la t ion and convolut ion of functions. Appl icat ions of the FFT in such 
d i v e r s e areas as e lectr ical engineer ing, acoustics, geophysics, medicine, economics, and 
p s y c h o l o g y are l i s ted by Bri l l inger [1975 , Section 1.5]. Many spec ia l -purpose p r o c e s s o r s 
have been bui l t wh ich implement this algorithm; some of those are mul t ip rocessors w h i c h 
o p e r a t e in para l le l . The FFT is also widely used in the design of "d isc re te" a lgor i thms. It is 
the p r i m a r y too l in many algorithms which operate on polynomials, pe r f o rm ing such 
o p e r a t i o n s as mul t ip l ica t ion, div is ion, evaluation and interpolat ion. Not su rp r i s ing ly , it is also 
e m p l o y e d in some of the fastest known algorithms for operat ing on v e r y long i n tege rs (such 
as mu l t i p l y i ng t w o one- thousand bit integers; we wi l l see an appl icat ion of this p r o b l e m in 
Sec t i on 2.5). 
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2.4 Matrix Multiplication 

One of the most common ways of represent ing many di f ferent kinds of data is in a 
ma t r i x , and one of the most common operat ions on matrices is mult ip l icat ion. How hard is it 
to mu l t i p l y t w o n x n matrices? Using the standard high school method takes about 2n 
a r i t hmet i c opera t ions to calculate each of the n 2 elements of the product matr ix , so the to ta l 
amount of t ime requ i red by that algorithm is propor t ional to n^. People have b e e n 
m u l t i p l y i n g matr ices by this method for a century. Surely this must be the best poss ib le w a y 
t o mu l t i p l y mat r ices—our intu i t ion tells us that we just can't do any bet te r . 

The h igh school algor i thm for mult iplying t w o - b y - t w o matrices uses 8 mul t ip l i ca t ions 
and 4 addi t ions. It is fa i r ly counter - in tu i t ive to learn that the product can be computed us ing 
o n l y 7 mul t ip l icat ions at the cost of an increase to 15 addit ions. But if that is 
c o u n t e r - i n t u i t i v e , then it is absolutely mind-boggl ing to f ind that this fact alone a l lows us to 
cons t ruc t an a lgor i thm for mult ip ly ing n x n matrices that runs in less than n ^ t ime! This 
a lgo r i t hm is due to Strassen [ 1969 ] and works by decomposing each n x n matr ix in to f ou r 
( n / 2 ) x ( n / 2 ) matr ices. To f ind the product of the original matr ices it does seven 
mu l t ip l i ca t ions of ( n /2 ) x (n /2 ) matrices and then f i f teen additions on matr ices of that s ize. 
No t i ce , h o w e v e r , that the cost of those additions is propor t ional to n 2 . If we let T(n) be the 
t ime r e q u i r e d to mul t ip ly n x n matrices, then T(n) satisfies the recurrence 

T(n) = 7T(n /2 ) + 0 ( n 2 ) , 
T ( l ) = 1 

w h i c h has the so lu t ion T(n) » 0 ( n 2 - 8 * ) (where 2.81 is an approximation to log2 7). Using the 
na ive imp lementa t ion of this algorithm proves less eff ic ient than the high school a lgo r i thm 
un t i l n is in the thousands; recent work , however, has shown that it can be pract ica l w h e n n 
is as small as 40 . But pract ice aside, who can help but be amazed by the fact that w e can 
mu l t i p l y mat r ices fas ter than we thought we could? 

The fast matr ix mult ipl icat ion algorithm prov ided the basis for one of the a l l - t ime 
g rea t revo lu t i ons in the h is tory of " theoret ica l " algorithm design, dur ing wh ich a number of 
" b e s t " k n o w n algor i thms were toppled from their re ign. Many of these w e r e n ^ mat r i x 
a lgo r i thms wh i ch we can now do in 0 ( n 2 , 8 1 ) t ime; among these are matr ix i nve rs ion , LU 
decompos i t i on , so lv ing systems of linear equations, and calculating determinants. A number 
of p rob lems wh ich seemed to be total ly unrelated to matrices were phrased in that language 
and 0 ( n 2 * 8 1 ) a lgor i thms fo l lowed for such diverse problems as f inding the t rans i t i ve c losure 
of a g r a p h , pars ing con tex t - f ree languages (an important problem in compi lers) and f i nd ing 
d is tances b e t w e e n n points in Euclidean n-space. All of these algorithms stem f r o m the fact 
tha t t w o - b y - t w o matr ices can be mult ipl ied w i th seven mult ipl ications! 

2.5 Public-Key Cryptography 

Communicat ions systems which deal w i th the problem of t ransmi t t ing a message f r o m 
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a sender to a receiver across an insecure (possibly bugged) channel whi le p r o t e c t i n g the 
p r i v a c y of the message are known as cryptosystems. Such coding problems ar ise o f t e n in 
m i l i t a r y app l ica t ions, and they promise fo play an ever increasing role in computer sys tems 
such as e lec t ron ic mail and electronic banking, among others. A c r yp tosys tem is usua l ly 
imp lemen ted b y encoding and decoding algorithms which t ransform their inputs accord ing to 
t h e keys t hey are g iven. To send person X message M we use the encoding a lgo r i thm and 
k e y to p roduce message M' and transmit M' across the ( insecure) channel to X. When X 
r e c e i v e s fvT he can use the decoding algorithm and key to determine M, and any 
" e a v e s d r o p p e r " on the line wi l l be left w i th only M\ One di f f icu l ty w i t h this sys tem is that 
t h e a p p r o p r i a t e keys must somehow be given to the var ious par t ies, and this must usua l ly be 
accompl ished by the use of expensive secure channels such as human cour iers . 

An a l te rna t i ve to such a system was recent ly invented by Hellman and Di f f ie and is 
ca l led a public-key c r yp tosys tem. In a publ ic-key system each person has an encod ing key 
and a decod ing key , as be fo re ; to send a message to person X we encode it w i t h his encod ing 
k e y , and then he can decode it w i th his decoding key. The novel aspect of this sys tem is 
tha t the encoding key can be made public without reveal ing the cor responding decod ing key . 
The encod ing key can then be v iewed as the address of person X's mail box, and anyone can 
pu t mail in to that box simply by encoding it. To actually unlock the box, howeve r , r e q u i r e s 
t he decod ing key , wh ich only X possesses. Such a system solves almost all of the d i f f i cu l t i es 
of p rev i ous c r yp tosys tems , but there is one major obstacle yet to overcome: for most codes , 
k n o w l e d g e of the enc ryp t i on key immediately reveals the decryp t ion key. Thus all w e need 
to comp le te our pub l i c - key c ryp tosys tem is an appropr ia te encoding/decoding a lgo r i thm, bu t 
is it poss ib le for such a funct ion to exist? 

A su i tab le encod ing/decod ing method was recent ly developed by Rivest, Shamir, and 
Ad leman [ 1 9 7 8 ] . Their method is based on algorithmic issues in the t heo ry of numbe rs . 
T h e y v i ew messages as mult iprecis ion (long) integers, of ( for example) 200 decimal d ig i t s . 
The cod ing p rocedu re then t ransforms these messages by sophist icated use of modular 
a r i t hmet i c and pr ime number theory . The transformat ions requi re many soph i s t i ca ted 
a lgor i thms. For instance, the process of key selection is based on fast a lgor i thms f o r 
mu l t i p l y i ng mul t ip rec is ion integers and testing such integers for pr imal i ty ; encod ing and 
decod ing is t hen pe r f o rmed by fast mult iprecision exponent iat ion algori thms. The s e c u r i t y of 
t he sys tem is ind icated by the fact that any method that "b reaks" the sys tem must 
(essen t ia l l y ) f ind the factors of a ve ry large number. Al though no one knows p rec i se l y how 
d i f f i cu l t th is is, mathematicians have been working on this problem for many cen tu r ies , and no 
one y e t knows of a fast method. To put this in perspect ive, if we deal w i t h 200 decimal d ig i t 
i n t e g e r s , then the key select ion, encoding, and decoding algorithms requ i re on ly a f e w 
seconds of CPU t ime, whi le the best known method for breaking the sys tem w o u l d r e q u i r e 
ten million centuries of CPU time. This method thus appears to be reasonably secure against 
code b r e a k e r s ! 

We have on ly scratched the surface of the fascinating f ie ld of p u b l i c - k e y 
c r y p t o g r a p h y . In addi t ion to use in cryptosystems, these methods can also be used to 
p r o v i d e "e lec t ron ic s ignatures" , or veri f icat ions of ident i ty . This c r yp tosys tem is ano the r 
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i n t e r e s t i n g example of the interact ions between theory and pract ice. The sys tem is based on 
n u m b e r t h e o r y (perhaps the purest of the areas of pure mathematics) and complex i t y t h e o r y 
(an area of theoret ica l computer science), yet it promises to revolut ion ize the p rac t i ce of 
c r y p t o g r a p h y . The in te res ted reader should re fer to the art icle by Rivest, Shamir , and 
Ad leman [ 1 9 7 8 ] or the exposi t ion in Gardner [ 1977 ] . Al though the a lgor i thms w e have 
m e n t i o n e d d id not rea l ly solve exist ing computational problems, they solve a p r o b l e m in a 
t o t a l l y d i f f e ren t area by cast ing it in a computational l ight. 

2.6 So What? 

We have now examined f ive cases in which proper algori thm design has led to a 
soph i s t i ca ted a lgor i thm which is much faster than a naive algorithm. A lot of w o r k has b e e n 
i n v e s t e d in deve lop ing these algorithms; what d i f ference wi l l all this wo rk make in prac t ice? 

To be honest , most of the time a fast algorithm makes no d i f ference at al l . Knu th has 
g a t h e r e d empir ica l ev idence which shows that most of the run time of a p rog ram is spen t in 
j us t t h r e e percent of the code (a similar result is o f ten mentioned by s ta t is t ic ians: t w e n t y 
p e r c e n t of the popu la t ion accounts for eighty percent of the beer consumed). If the p r o b l e m 
to be so lved is not in the cri t ical three percent of the code (as about 97 percen t of t he 
p r o b l e m s are) then it makes l i t t le di f ference if that algorithm is fast or not . A more 
comp l i ca ted a lgor i thm can o f ten be a l iabil i ty rather than an asset. It wi l l usual ly mean more 
c o d i n g and more debugging t ime, and can sometimes even increase the run t ime ( w h e n the 
o v e r h e a d of "s ta r t ing u p " a fancy algorithm costs more than the time It saves). 

Sometimes, however , a fast algorithm can make all the di f ference in the w o r l d . If t he 
c o m p u t a t i o n be ing pe r fo rmed is indeed the bott leneck in the system f low, then an a lgo r i t hm 
of hal f the runn ing time almost doubles system throughput . In many text ed i to rs the vas t 
m a j o r i t y of the time is spent in s t r ing searching; the fast algorithm of Sect ion 2.2 can s p e e d 
u p many tex t ed i to rs by a factor of f ive. The author's exper ience w i t h the search ing 
p r o g r a m ment ioned in the int roduct ion (when the running time of a p rogram was r e d u c e d 
f r o m t h r e e hours to f ive minutes) is another classic example of an appropr ia te use fo r a fast 
a l go r i t hm . In the inner loops of many programs, proper algori thm design is c r i t i ca l . 

An analogy wi l l perhaps clar i fy these issues. It is fa i r ly easy to wa lk , it is more 
comp lex to d r i ve , and it is even more complex yet to learn to f ly a modern je t a i rp lane . 
Wa lk ing is the best way to get f rom one room of a house to another, d r i v ing is supe r i o r f o r . 
g e t t i n g f r o m one t o w n to another, and f ly ing is hard to beat for get t ing f rom one par t of the 
c o u n t r y to another . There is no "best " mode of t ranspor ta t ion—the best mode in a pa r t i cu la r 
case depends s t rong ly on that case. For most of us the time we spend t rave l l i ng in j e t 
a i rp lanes is v e r y small compared to the time we spend walking—but it sure Is nice to k n o w 
abou t j e t s w h e n we need them! 

A l though the e f fo r t of fast algorithm design only occasionally g ives us la rge f inanc ia l 
sav ings , it a lways gives us something of a d i f ferent value—a fundamental unde rs tand ing of 
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o u r computa t iona l prob lems. This is usually re f lected in cleaner programs, but e v e n more 
i m p o r t a n t is the unders tand ing of how diff icult it is to compute something. A f t e r a s tuden t 
has spen t a month or two invest igat ing the problem of searching, he not only knows how to 
s e a r c h fast but also w h y he can do it that fast and why he can't do It any fas te r . Such a 
s t u d e n t has learned something of the foundations of his f ie ld. 

3. A SYSTEMATIC VIEW 

In Sect ion 2 we saw a number of specif ic problems and a number of spec i f i c 
so lu t i ons ; in this sect ion we wi l l show that there is more to the f ield than iso lated examples . 
In Sec t ion 3.1 we wi l l discuss the concepts one needs to def ine a computat ional p r o b l e m , and 
in Sec t ion 3.2 we wi l l use those concepts to descr ibe the kinds of problems for w h i c h fas t 
a l go r i t hms have been designed. In Section 3.3 we wi l l peek into the algor i thm des igner ' s too l 
b a g . 

3.1 Dimensions of a Problem—A Microscopic View 

The subset test ing prob lem of Section 2.1 showed that there can be many d i f f e r e n t 
a l go r i t hms for so lv ing a par t icu lar problem. In order to say which one is best in a pa r t i cu la r 
app l i ca t i on we have to know cer ta in dimensions along which to measure p r o p e r t i e s of the 
a l go r i t hm . For example, in one application we may need a subset algori thm that must be v e r y 
s p a c e - e f f i c i e n t and have good wors t -case running t ime; in another context we might have a 
lo t of avai lable space and only require good expected running t ime, not ca r ing if w e 
i n f r e q u e n t l y must take a lot of time. We have thus ident i f ied three d imensions of a 
compu ta t i ona l p rob lem: time analysis, space analysis, and expected vs. wo rs t - case ana lys is . 
In th is subsec t ion we wi l l discuss these and other dimensions of computat ional p rob lems . 

Time and Space Analysis 

The two most important resources in real computational systems are t ime (CPU 
c y c l e s ) and space (memory words) used, and these are there fore the two d imensions of a 
p r o b l e m most f r equen t l y s tudied. The running time was the pr imary subject we examined in 
t h e examples of Sect ion 2. Most of the algorithms we examined use ve ry l i t t le e x t r a space 
a f t e r s to r i ng the inputs and outputs ; the hashing algori thm of Section 2.1 was the on l y 
e x c e p t i o n . In large computer systems huge quant i t ies of ex t ra space (megawords) can be 
h a d fo r the asking and the pay ing ; for that reason the space requirements of a lgor i thms have 
o f t e n been ignored . Wi th the r ise in popular i ty of m in i - and microprocessors w i t h v e r y small 
memor i es , howeve r , space analysis is once again an ext remely important issue. 
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Model of Computation 

Throughou t Sect ion 2 we were able to make reference to the t ime and space 
requ i r emen ts of var ious algorithms without reference to their implementat ion on any 
pa r t i cu la r computer . Our intui t ive notions were robust enough to lead to soph is t i ca ted 
a lgor i thms that w i l l cer ta in ly beat their naive competi tors on any exist ing machine. But to 
ana lyze an a lgor i thm in detai l we must have a precise mathematical model of the machine on 
w h i c h the a lgor i thm wi l l run . 

We could choose as our model a part icular computer, such as an IBM 650 or a DEC 
P D P - 1 0 , and then ask how many microseconds of time or bits of s torage a pa r t i cu l a r 
a lgo r i t hm requ i res . There are two problems w i th this approach. First, we wi l l p r o b a b l y be 
ana lyz ing the expe r t i se of the implementor of the algorithm more than the a lgo r i thm 's 
in t r ins ic mer i t , and second, once we have completed such an analysis using the IBM 6 5 0 w e 
st i l l know v e r y l i t t le about the algorithm's behavior on a PDP-10. One way of deal ing w i t h 
th is d i f f i cu l t y is to invent a representat ive computer and then compare the pe r fo rmances of 
compe t ing a lgor i thms on that machine. Knuth [ 1 9 6 8 ] has descr ibed one such machine w h i c h 
he named the MIX computer ; it has much in common wi th most exist ing machines w i t h o u t 
many id iosyncrac ies of its own. If algorithm A is faster than algori thm B when imp lemen ted 
o n MIX, then it is v e r y l ikely to be faster on most real machines, too. 

Ano the r so lu t ion to the model of computat ion problem is not to analyze, the 
imp lemen ta t i on of the algori thm on any part icular machine at all, but to count on ly t he 
number of t imes some critical operation is per formed. For the analysis of the FFT and mat r i x 
mu l tp l i ca t ion we chose to count the number of arithmetic operat ions. We know that the FFT 
uses exac t ly n log2 n mult ipl icat ions; to estimate its running time for a g iven imp lementa t ion 
w e can look up the execut ion speeds of the instruct ions around the mult ip l icat ion i n s t r u c t i o n , 
sum those, and then mult ip ly by n log2 n to get an estimate for the running t ime. It is 
usua l ly easy to de te rm ine the running time of a part icular program if we know the number of 
t imes the cr i t ica l ope ra t i on is to be p e r f o r m e d 8 . Once we have chosen a cr i t ical o p e r a t i o n t o 
coun t it is v e r y easy to speci fy a model of computat ion. To count ar i thmetic ope ra t i ons w e 
usua l ly employ the "s t ra igh t - l ine program" model in which an algori thm for a par t icu lar va lue 
of the p rob lem size (n) is represented by a sequence of statements of the fo rm 

Xj <- Xj OP x k 

w h e r e OP is add, sub t rac t , mult iply, or divide. If the sequence for a part icular value of n is m 
i ns t ruc t i ons long then we say that the execution time of our program is T(n) = m. If o u r 
c r i t i ca l ope ra t i on w e r e comparison, then we would probably choose the "decis ion t r e e " 
mode l . These and o ther models are descr ibed by Aho, Hopcrof t , and Ullman [ 1 9 7 4 , 
Chap te r 1]. 

The above models allow us to analyze algorithms for their su i tab i l i ty as " i n - c o r e " 
p r o g r a m s on s ing le -p rocessor machines. If a program has ve ry l i t t le main memory ava i lab le 

8 Though w e must be careful not to ignore certa in "bookkeeping" opera t ions that may 
become cr i t ica l in implementat ions. 
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and must s to re most of its data on tape, then some tape-or ien ted model such as the " T u r i n g 
mach ine " is the most accurate model of the computation. If a program is to be r u n on a 
mu l t i p rocesso r machine then one's model must express this fact; the par t icu lar model 
e m p l o y e d wi l l v a r y w i th the mult iprocessor archi tecture^. Many other models of compu ta t i on 
have b e e n p roposed to descr ibe diverse computing devices. The two impor tant th ings in 
choos ing a model are that it be realistic, so the results wi l l apply to the s i tuat ion it p u r p o r t s 
to mode l , and that it be mathematically tractable, so we can der ive those resul ts . 

Exact or Approximate Analysis 

Once we have chosen a model of computation we can analyze the per fo rmance of an 
a lgo r i t hm by count ing the resources (time or space) it uses as a funct ion of n, the p r o b l e m 
s ize. How accura te ly should we do that counting? We could be .very, precise, ca lcu lat ing the 
answer exac t l y , o r we might sett le for an approximate answer. There are leve ls of 
app rox ima t i on , all the way f rom the f irst two terms of the answer to rough upper and l owe r 
bounds . It is ce r ta in ly desirable to get the exact answer, but this is sometimes v e r y d i f f i cu l t . 
The f i r s t one or t w o terms of the cost function are adequate for most purposes, and in many 
cases on ly the asymptot ic g r o w t h rate of the functions is needed. We saw in the subse t 
t e s t i n g p rob lem an example in which the run time for one program for a task was 138 hours 
wh i l e another p rog ram took just 4 seconds. Even if our analysis had missed a fac tor of t e n , 
tha t cou ld not af fect our choice for large problems.. 

We o f t e n use the " b i g - o h " notat ion to describe the complexi ty of a p rob lem. No 
ma t te r what the respect ive constants are, an 0(n log? n) algor i thm wil l be fas ter than an 
O(n^) a lgor i thm for large enough n. As larger and larger problems are being so l ved b y 
c o m p u t e r we are more and more f requent ly in the domain of " large enough n". 
A s y m p t o t i c a l l y fast algori thms also have another advantage. If we get a new machine one 
h u n d r e d t imes fas ter than our cur rent , using an 0(n log? n) algor i thm wil l allow us to so lve a 
p r o b l e m almost one hundred times larger in the same per iod of t ime. Using an O(n^) 
a lgo r i t hm w e wi l l on ly be able to increase the problem size by a factor of ten . Thus the 
asymp to t i c g r o w t h ra te of a funct ion alone is usually enough to tel l us how much an inc rease 
in p r o b l e m size wi l l cost. 

Average or Worst-Case Analysis 

Many a lgor i thms per fo rm a sequence of operat ions independent of thei r Input da ta ; 
t he FFT and matr ix mult ip l icat ion algorithms of Section 2 are bo th da ta - independent . The 
analys is of a data- independent algori thm is s t ra igh t fo rward—we simply count the number of 
o p e r a t i o n s used. The operat ion of other algorithms (such as the sor t ing and s u b s t r i n g 
a lgo r i t hms) are dependent on their input data; one algori thm can have ve ry d i f f e ren t r u n n i n g 

9 The i n t e r e s t e d reader should re fer to Kung [1976] for a discussion of some of these issues 
f r o m an a lgor i thmic v iewpoin t . 
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t imes fo r t w o inputs of the same size. How do we describe the running t ime of such an 
a lgor i thm? Pessimists would like to know the worst-case of the running time ove r all i npu t s 
and rea l is ts wou ld like to know the average running time. (We are ra re ly concerned w i t h the 
b e s t - c a s e runn ing t ime, for there are very few optimists involved w i th computing.) 

Most of the mathematical analysis of algorithms has been done for the w o r s t case. 
Even in da ta -dependent algori thms it usually easy to ident i fy the worst possible o c c u r r e n c e , 
and then analyze that as in a data-independent algorithm. In cer ta in appl icat ions (Air T ra f f i c 
C o n t r o l is o f ten c i ted) it is ve r y important to have an algorithm w i th which we are n e v e r 
s u r p r i s e d by a v e r y slow case. For most applications, however , we are more i n t e r e s t e d in 
w h a t w i l l usual ly happen; expec lcd- t ime analysis provides us w i th this i n f o r m a t i o n . 
Re la t i ve ly l i t t le w o r k has been done on expected-t ime analysis. The two major s tumb l i ng 
b locks appear to be in the choice of a realistic and tractable probabi l i ty model of the i npu ts 
and the inst r ins ic d i f f i cu l ty of dealing wi th expectations instead of single cases. It w o u l d be 
v e r y des i rab le to have a single algorithm that is ve ry eff ic ient in bo th e x p e c t e d and 
w o r s t - c a s e per formances. 

Upper and Lower Bounds 

Most naive sor t ing algori thms (such as "Bubble Sort") requi re 0 ( n 2 ) compar isons in 
the w o r s t case; in Section 2.1 we investigated Mergesort , which never uses more t han 
0 ( n log2 n) compar isons. Should we continue our search, hoping to f ind an a lgor i thm that 
uses pe rhaps on ly 0(n) comparisons? The answer to this, quest ion is no, for it can be s h o w n 
tha t every sorting algorithm must take at least 0(n log2 n) comparisons in the worst case. The 
p r o o f of th is theorem uses the "decision t ree" model of computat ion and is desc r ibed n ice ly 
b y Aho , Hopcro f t , and Ullman [1974 ] . The Mergesort algorithm gave us an upper bound of 
0 ( n log2 n) on the complex i ty of sor t ing; this theorem gives us a lower bound. Since the t w o 
have the same g r o w t h ra te , we can say that Mergesort is optimal to w i th in a constant f ac to r , 
under the decis ion t ree model of computation. Notice that we have now made the impo r t an t 
j ump f rom speaking of the complexi ty of an algorithm to speaking of the comp lex i t y of a 
p r o b l e m . 

Lower bound resul ts are usually much more diff icult to obtain than upper bounds . To 
f i nd an upper bound on a prob lem one need only give a part icular algori thm and then ana lyze 
i t . For a lower bound, however , one must show that in the set of all algorithms for solving 
the problem, t he re are none which are more efficient than the lower bound. There are some 
t r i v i a l l ower bounds which can be achieved easily: most problems requi re examinat ion of all 
t he i r inputs so we usually have an easy lower bound of the input size. The number of 
non t r i v i a l lower bounds d iscovered to date is very small. 

In p rov i ng lower bounds it is important to be ve ry precise about the model of 
compu ta t i on . In Sect ion 2.1 we gave three algorithms that can be used for t es t i ng set 
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e q u a l i t y 1 0 : b r u t e fo rce, sor t ing, and hashing. The importance of computat ional model 
becomes c lear w h e n we learn that each of those algorithms can be p roved opt imal under 
d i f f e r e n t computa t iona l models! The O(n^) performance of b ru te force is opt imal if o n l y 
e q u a l / n o t - e q u a l comparisons can be made between elements of the two sets. If the model of 
c o m p u t a t i o n inludes only less- than/not - less- than comparisons then the 0 (n log2 n) 
compar i sons of so r t ing are opt imal. If the model is a random access computer (such as MIX), 
t h e n the average-case linear performance of hashing is provably best . 

Exact and Approximation Algorithms 

The re are many problems for which the bes t -known algor i thms are qu i te s l ow , 
r e q u i r i n g (say) 0 ( 2 n ) t ime. A ve ry few of these problems have actual ly been p r o v e d to have 
e x p o n e n t i a l l ower bounds. Others belong to a fascinating class cal led the NP-comple te 
p r o b l e m s wh ich are ei ther all solvable in polynomial time or all of exponen t i a l 
c o m p l e x i t y — u n f o r t u n a t e l y nobody yet knows which (but most of the money is on 
exponen t i a l ) . Examples of NP-complete problems include the Travel l ing Salesman P rob lem 
( f i nd ing a min imal - length tour through a set of cities), Bin Packing, and the Knapsack P rob lem; 
l i t e ra l l y hundreds of problems are known to be NP-complete. There are o ther p rob lems 
w h i c h have not been p roved to be hard, yet no one has been able to design fast a lgor i thms 
fo r them. When we have a problem which we do not know how to solve e f f i c ien t l y , what can 
w e do? 

The answer is amazingly simple: don't solve it. Solve a re la ted p rob lem ins tead . 
I ns tead of des ign ing an algor i thm to produce the exact answer, one can bui ld an a lgo r i thm 
tha t w i l l p roduce an approximat ion to the exact answer. So instead of f inding a minimal t ou r 
f o r the T rave l l i ng Salesman, we might provide him wi th a tour which we know to be no more 
t han f i f t y pe rcen t longer than the t rue minimum. Or if someone asks us to de te rm ine if a 
number is pr ime or composi te, instead of providing the t rue answer we might r e s p o n d " I 
don ' t k n o w , but Fm 99 .999999 percent sure that it's prime." Examples abound in wh i ch the 
best k n o w n exact algori thms for a problem require exponent ial t ime, but app rox ima te 
so lu t ions can be found v e r y quickly. Garey and Johnson [ 1 9 7 6 ] examine these issues. 

Summary 

These p rob lem dimensions are the categories in which a lgor i thm des igners th ink . 
W h e n someone br ings a prob lem to an algorithm designer, the a lgor i thm des igner 's f i r s t task 
is to unde rs tand the abstract problem. His second task is to unders tand what k ind of so lu t i on 
the p e r s o n wan ts , and he uses these dimensions to describe the des i red so lu t ion. Using the 
v o c a b u l a r y of this sect ion it is easy to describe concepts such as a "fast expec ted t ime and 
low w o r s t - c a s e s torage approximat ion algorithm for task X wh ich is to be r u n o n a 

10 We gave them or ig ina l ly for subset test ing, but recall that two sets are equal if and o n l y if 
each is a subset of the other . 



16 

m u l t i - p r o c e s s o r machine". There are other infrequent ly used dimensions which we have not 
c o v e r e d (such as code complex i ty—how long is the shortest program to solve this p rob lem?) 
b u t these dimensions are adequate to describe most algorithmic resul ts . 

3.2 Problem Areas—A Macroscopic View 

In Sect ion 3.1 we developed a vocabulary which we can use to descr ibe a pa r t i cu la r 
a lgo r i t hm ic p rob lem at a v e r y precise level of detail . In this sect ion we wi l l change our 
p e r s p e c t i v e and examine large classes of problems, using the terminology of the last sec t ion . 
We w i l l descr ibe each area by a br ief summary and one or two i l lus t ra t ive problems. 

Ordered Sets 

There are many problems on sets that depend only on a "less than" re la t i onsh ip 
b e i n g de f i ned be tween the elements of the set. In many cases the set contains i n tege rs o r 
rea l numbers ; in o ther cases we define a "less than" re lat ion be tween character s t r i ngs 
(JONES is less than SMITH). The problems which arose in Section 2.1 are all p rob lems on 
o r d e r e d se ts—these include sor t ing, searching, merging, and subset test ing. The a lgor i thms 
of tha t sect ion are appropr ia te if the elements of the sets to be processed are numbe rs , 
c h a r a c t e r s t r ings , or any other type of "orderable" object . J<nuth [ 1 9 7 3 ] p rov ides an 
exce l l en t i n t roduc t ion to the applications of and algorithms for o rde red sets. 

The "median p rob lem" is another problem def ined for o rde red sets: g i v e n an 
n -e lemen t set we are to f ind an element which is less than half the elements and not less 
t h a n the o ther half. A naive algori thm would count for each element the number of e lements 
less t han i t , and then repo r t the median as the element w i th exact ly half the o thers less t h a n 
i t . Th is a lgor i thm makes approximately n 2 comparisons. An 0(n log2 n) a lgor i thm is g i ven b y 
s o r t i n g the elements and then repor t ing the middle of the sor ted l ist. A median a lgo r i t hm 
w i t h l inear expec ted t ime was f i rst descr ibed by C. A. R, Hoare in 1962. For over t en y e a r s 
it w a s not known if there was an algorithm that had linear wors t -case t ime; one was f ina l l y 
g i v e n by Blum et al. [ 1 9 7 3 ] . Much additional work has been done on this p rob lem, e x p l o r i n g 
such facets as minimal s torage, detai led analysis of worst -case and expec ted runn ing t imes 
( b o t h uppe r and lower bounds), and approximation algorithms. 

Algebraic and Numeric Problems 

Many aspects of algebraic and numeric problems have a d iscrete f lavor , and d i s c r e t e 
a l g o r i t h m design can play a signif icant role in such problems. Matr ix mul t ip l icat ion is p e r h a p s 
t h e c leares t example of such a problem; the fast algori thm can be desc r ibed (and 
a p p r e c i a t e d ) w i thout re fe rence to any of its numeric proper t ies . The FFT can also be v i e w e d 
" n o n - n u m e r i c a l l y " . Another example of a numeric problem that can assume a pu re l y d i sc re te 
c h a r a c t e r is the manipulat ion of sparse matrices (matrices in which almost all e lements are 
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z e r o ) ; w e r e t u r n to this prob lem in our discussion of graph problems. Borod in and M u n r o 
[ 1 9 7 5 ] g ive many appl icat ions of the principles of discrete algor i thm design to numer ic 
p r o b l e m s such as polynomial manipulation, extended precision ar i thmet ic, and mu l t i p rocessor 
imp lemen ta t i ons of numeric problems. 

Graphs 

Graphs are used to represent many di f ferent kinds of re la t ions, f r om the 
i n t e r connec t i ons of an air l ine system to the conf igurat ion of a computer system. Tar jan ' s 
[ 1 9 7 7 ] s u r v e y discusses many computational problems on graphs. One impor tant p r o b l e m 
cal ls f o r de te rm in ing if a g iven graph can be imbedded in the plane wi thout any edges 
c r o s s i n g . This might be used to check if the connections of a g iven circui t could be imbedded 
o n a p r i n t e d c i rcu i t board or in tegrated circuit. The f i rst algorithms for test ing p lana r i t y r an 
in O(n^) t ime on n-node graphs; after much ef for t on the part of many researchers had b e e n 
spen t on the p rob lem, Hopcroft and Tarjan finally gave a l inear- t ime p lanar i ty a lgor i thm in 
1 9 7 4 . Ano the r g raph prob lem is to construct the minimal spanning t ree of a we igh ted g r a p h , 
w h i c h is a min imal -we ight set of edges connecting all nodes. A wide var ie ty of a lgo r i thms 
have b e e n p r o p o s e d and analyzed for this problem; some are super ior for v e r y dense 
g r a p h s , o t he r s for re la t i ve ly sparse graphs, and stil l others for graphs which are p lanar . 
Ef f ic ient g r a p h algor i thms have been given for problems such as the f low analys is of 
c o m p u t e r p rograms and f inding maximal f lows in networks. A sparse matr ix is usua l ly 
r e p r e s e n t e d by a g raph ; the algorithms for manipulating matrices are then g raph a lgor i thms. 

Geometry 

Shamos' [ 1 9 7 5 ] paper is an outstanding int roduct ion to the f ie ld of Computational 
Geometry, wh ich is concerned w i th developing optimal algorithms for geometr ic p rob lems . 
Many app l ica t ions are inherent ly of a geometric nature (such as laying out c i rcu i ts on a 
b o a r d ) and o the r prob lems can be v iewed geometrical ly (such as looking at a set of 
mu l t i va r i a t e observa t ions as points in a multidimensional space). Shamos has desc r i bed an 
i m p o r t a n t s t r u c t u r e cal led the Voronoi diagram which allows many geometr ic p r o b l e m s 
dea l ing w i t h n points in the plane to be solved in 0(n log2 n) t ime. Among these p r o b l e m s 
are de te rm in i ng the nearest neighbor of every point and construct ing the minimal spann ing 
t r e e of the point sets (both of these are important tasks of many data analysis p r o c e d u r e s , 
and p r e v i o u s l y r equ i r ed O(n^) time). Many other important problems have been so lved a f te r 
b e i n g cast in a geometr ic f ramework . One result obtained by this e f fo r t is that the s t a n d a r d 
Simplex Me thod of l inear programming is not optimal for two and three var iab le p r o g r a m s 
w i t h n cons t ra in ts . The simplex method has worst-case running t imes in the two p rob lems of 
O(n^ ) and O(n^) , respec t i ve l y ; an 0(n log2 n) method has been g iven and p roved opt ima l f o r 
b o t h the t w o - and th ree -va r i ab le case. 
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Other Areas 

In th is sect ion we have glimpsed a few fields that have been s tud ied by a lgo r i thm 
des igne rs . The resu l ts in many other areas must go unmentioned; these include a lgor i thms 
fo r comp i l e rs , opera t ions research problems, data base management, s tat is t ics, and p rob lems 
o n cha rac te r s t r ings. These results have led to both fast algori thms for so lv ing rea l 
p r o b l e m s and to a new, algori thmic, understanding of the various f ields. 

3.3 Fundamental Structures 

Wander ing th rough a computer room one can not help but be impressed by the 
c o m p l e x i t y of a large-scale computing system, and the novice might f ind it hard to be l i eve 
tha t a human mind could design anything so complicated. The novice is not too far f r o m the 
t r u t h , y e t many undergraduates are able to understand the basics of the o rgan iza t ion of a 
c o m p u t e r a f te r only one or two semesters. They are able to comprehend the complex i t y not 
b y sheer fo rce of concent ra t ion , but rather by understanding the "bui ld ing b locks" of wh i ch 
c o m p u t e r s are made. A similar experience awaits the novice a lgor i thm des igner . The 
a lgo r i thms ment ioned in Section 3.2 deal w i th many problem areas, but are ra ther s imple t o 
c o m p r e h e n d once one understands the "building blocks" of algorithm design. In th is sec t ion 
w e w i j l desc r ibe th ree important classes of these fundamental s t ructures. 

Data Structures 

Algor i thms deal w i t h data, and data st ructures are the tools the a lgor i thm des igner 
uses to o rgan ize his data. In Section 2 we saw simple data s t ructures such as a r r ays and 
ma t r i ces , and a fa i r l y complex data s t ructure, the hash table. There are many more exot ic 
t y p e s of data s t ruc tu res , such as l inked lists, stacks, queues, p r i o r i t y queues, and t r ees , to 
name a f ew . Each of these provides an appropr iate way to s t ruc ture data for a pa r t i cu la r 
task. Ta r jan [ 1 9 7 7 ] gives a brief descr ipt ion of many of these s t ruc tu res ; a de ta i l ed 
d e s c r i p t i o n of a large number of interest ing structures is prov ided by Knuth [ 1 9 6 8 ] . 

Algorithmic Techniques 

S t r u c t u r e d programming demands that a programmer express a compl icated sequence 
of commands as a ser ies of ref inements by which the program can be unders tood at d i f f e r e n t 
l eve ls . In each of these ref inements a basic, well understood method is app l ied to a we l l 
d e f i n e d p rob lem. Good programmers used this technique long before it was voca l i zed ; good 
a l go r i t hm des igners use a similar s t rategy even though they in f requent ly discuss i t . The 
c o n s t r u c t s avai lable to the algori thm designer are similar to those in s t r uc tu red p rog ramming 
languages , though somewhat more power fu l . We wil l describe some of these cons t ruc ts v e r y 
b r i e f l y ; more deta i l can be found in Tarjan [ 1977 ] and Aho, Hopcrof t , and Ullman [ 1 9 7 4 , 
C h a p t e r 2 ] . 
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. W e have al ready seen many common algorithmic techniques in Sect ion 2. Most of t he 
a l g o r i t h m s we descr ibed used iteration in one form or another—this s t ra tegy says "do x o v e r 
and o v e r unt i l the task is accomplished". I terat ion is present in almost all p rog ramming 
languages as do and whi le loops. A more powerfu l construct is recursion, wh ich gives* us a 
w a y to exp ress recurs ive prob lem solving in programming languages. To def ine a r e c u r s i v e 
s o l u t i o n to a p rob lem one says (essential ly), "to solve a problem of a cer ta in s ize, so lve the 
same p r o b l e m of a smaller s ize." We used recursion to descr ibe b inary search : to b i n a r y 
s e a r c h a table of size n we b inary searched a table of size n /2 . A part icu lar app l i ca t ion of 
r e c u r s i o n is usual ly cal led divide-and-conquer, and says, "to solve a prob lem of size n, 1) 
d i v i d e it in to subprob lems each of size only a f ract ion of n, 2) solve those s u b p r o b l e m s 
r e c u r s i v e l y , and 3) combine the subsolutions to y ie ld a solut ion to the or ig ina l p r o b l e m . " 
M e r g e s o r t can be v iewed as a textbook example of d iv ide-and-conquer : to sor t a l ist of n 
e l emen ts we 1) break the list into two sublists each of n /2 elements, 2) sor t t hose 
r e c u r s i v e l y , and 3) merge those together. The Fast Fourier Transform and the 0 ( n ^ " ^ ) 
ma t r i x mul t ip l ica t ion algor i thms are other application of the d iv ide-and-conquer techn ique . 
Once one unders tands the fundamental principles of d iv ide-and-conquer a lgor i thms, each of 
t h e s e instances becomes ra ther easy to grasp. 

Many o ther algor i thmic techniques have been ident i f ied and studied. Dynamic 
programming is a technique f rom operat ions research that has found many appl icat ions in 
a l g o r i t h m design. Search s t ra teg ies such as breadth-first search and depth-first search have 
b e e n used to y ie ld ef f ic ient g raph algorithms. Transformation allows us to tu rn an ins tance 
of one p rob lem into another ; we saw in Section 2.4 that there are many t rans fo rmat ions to 
t u r n almost to ta l ly unre la ted problems into instances of matrix mult ip l icat ion. Perhaps the 
s ing le most impor tant algori thmic technique is to use optimal tools to solve the subp rob lems 
w e c r e a t e for ourse lves in designing a new algorithm. To do so an algor i thm des igner must 
k e e p abreast of the cu r ren t resul ts in his f ield. 

Proof Techniques 

Once an a lgor i thm designer has given an algori thm and "knows in his h e a r t " that it 
has c e r t a i n p rope r t i es , he must prove that it does. (Perhaps it is this s tep wh ich sepa ra tes 
p r a c t i t i o n e r f rom theor is t . ) His f i rst task is to prove that his algor i thm indeed computes wha t 
it p u r p o r t s to ; he wi l l use many of the tools of program ver i f icat ion in this s tep . Next he 
must ana lyze the resource requirements of his algor i thm, dur ing which he wi l l use many 
d i f f e r e n t mathematical tools. Finally he can prove his algor i thm optimal by g iv ing a l o w e r 
b o u n d p roo f . The d i f fe ren t methods of analysis used in these var ious steps are d iscussed b y 
We ide [ 1 9 7 7 ] . 
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4. CURRENT DIRECTIONS 

The f ie ld of a lgor i thm design has exper ienced a meteoric r ise in the past decade. 
Essent ia l ly u n k n o w n as a f ield ten years ago, it is now one of the most act ive areas in 
t heo re t i ca l compute r science and has seen widespread use in applications. A l though the f i e l d 
has come a long w a y , it has much fur ther to go. In this section we wil l examine some of t he 
d i rec t i ons in wh i ch the f ie ld is cur ren t ly moving. 

One constant d i rec t ion of the field has been from " toy " problems to " r e a l " p rob lems . 
This invo lves many deta i led analyses and expected-resource analyses, for in appl icat ions w e 
a re o f t en se r ious ly concerned about twenty percent di f ferences in average runn ing t ime. 
A long w i t h these e f f o r t s much has been done recent ly on approximat ion a lgor i thms, s ince 
many appl icat ions do not require exact answers. On the more theore t ica l s ide, t he 
ou ts tand ing ques t ion is the complexi ty of the NP-complete problems—are they exponen t ia l o r 
not? Ano ther impor tan t theoret ical problem is the search for some under ly ing t h e o r y of 
a lgor i thm des ign. Though many individual results have been achieved to date, we st i l l have 
no theore t i ca l exp lanat ion for what makes a class of problems easy or hard. Tar jan has 
ment ioned the need for a "calculus of data structures"—a set of rules that wi l l a l low us to 
deve lop the ( p r o v a b l y ) best possible st ructure for a given si tuat ion. 

An impor tan t ou tg row th of this work wil l be the development of "A lgo r i t hm ic 
Eng ineer ing" . This f ie ld wi l l supply the programmer wi th tools similar to those Elect r ica l 
Eng ineer ing g ives the circuit designer. Before Algori thm Design turns into A lgo r i thm ic 
Eng ineer ing w e w i l l need to develop many more particular results and g ive a t heo re t i ca l 
basis for the f i e ld . We wi l l know that the f ield has become an engineer ing discip l ine as soon 
as theore t i ca l compute r scientists assert that designing algorithms is no longer bona fide 
r esea rch because " i t ' s such a wel l understood process." 

5. CONCLUSIONS 

In th is pape r we have looked at the f ie ld of algorithm design f rom a number of 
d i f f e ren t v i e w p o i n t s . In Section 2 we invest igated part icular computat ional p rob lems and 
the i r a lgor i thmic solut ions. We saw interest ing techniques used to solve the p r o b l e m s , 
l ea rned of many coun te r - i n tu i t i ve results, and glimpsed some of the pract ica l bene f i t s of 
a lgor i thm des ign. We tu rned f rom "war s tor ies" to a systematic v iew of the f ie ld in Sect ion 3. 
In Sect ion 3.1 w e deve loped a set of terms which can be used to def ine a computa t iona l 
p r o b l e m , in Sect ion 3.2 we used those terms to sketch some of the resul ts ach ieved in t h e 
f i e ld to da te , and in Sect ion 3.3 we mentioned some of the tools used to achieve the resu l t s . 
Having looked at what has already been done in Sections 2 and 3, we t u r n e d to t he 
dangerous task of p rophecy in Section 4. 

In summary I wou ld like to describe what algorithm design has to o f fe r to v a r i o u s 
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ind iv idua ls . The mathematician and theoret ical computer scientist can v iew the f ie ld as a r i ch 
s o u r c e of p rob lems that need precise mathematical t reatment ; these prob lems are 
mathemat ica l l y fascinat ing and requi re the use of some of the most power fu l tools of d i sc re te 
mathemat ics . The appl icat ions programmer w i th l i t t le interest in beaut i fu l theorems can also 
b e n e f i t f r o m this wo rk , for the proper application of its products can occasionally- be v e r y 
r e w a r d i n g f inancia l ly . Final ly, I feel that anyone involved w i th comput ing, regard less of his 
p o s i t i o n on the p rac t i ca l - to - theore t i ca l continuum, should be at least somewhat famil iar w i t h 
th is f i e ld . The s tudy of algorithms is the study of computing, and th rough it we gain a 
f undamen ta l unders tand ing of what computers are all about. 
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