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Abstract. The XWand is a wireless UI device that enables styles of natural in-
teraction with intelligent environments. The XWand system exploits human in-
tuition, allowing control of everyday objects through pointing and gesturing. We
describe the hardware device and then examine several approaches to gesture
recognition. We discuss results from experiments using a linear time warping
method, a dynamic time warping (DTW) method, and a hidden Markov model-
based method (HMM).

1 Introduction

A multitude of intelligent devices increasingly pervade modern environments. Often we
have access to an intimidating variety of these specialized interfaces, each controlling
one device. For example, today's living room coffee table is typically cluttered with
multiple user interfaces in the form of IR remote controls (Figure la). In the near future
we can look forward to these devices becoming more interconnected, more numerous
and more specialized as part of an increasingly complex and powerful integrated intelli-
gent environment. The challenge is to find ways of naturally and efficiently interacting
with this environment.

We introduce the XWand, a hardware device (Figure 1b) and associated signal pro-
cessing algorithms for an integrated interface capable of controlling multiple connected
devices in a natural manner. The XWand hardware represents a wireless sensor pack-
age that transmits information useful for orientation and gesture recognition. Most re-
cent work in gesture recognition uses machine vision to accomplish the same purpose.
However, the XWand does not suffer from sensitivity to lighting conditions, camera
movement, or larger privacy issues inherent in vision-based approaches. For example,
the XWand may be used in a home where a camera network may be infeasible or un-
wanted. The XWand would also be more suitable outdoors as it is immune to lighting
variation and atmospheric conditions (dust & debris).

Using the XWand a user can point at any device of interest and control it using sim-
ple gestures. The intelligent environment system interprets the user's manipulation of



(a) State of the art. (b) The XWand.

Fig. 1. Many specialized interfaces vs. a single multipurpose tool.

the wand to determine an appropriate action in context. The ultimate goal is to provide
an interface so simple that it requires no particular instruction or special knowledge to
use, and instead relies on the intelligence of the environment to determine an appropri-
ate action.

2 Hardware Device

2.1 Design Specification

We have constructed an early hardware prototype of the XWand (Figure 2). A variety
of sensors are mounted onto an 8"xl" circuit board that fits inside a clear lucite tube,
making the device easy to grasp and intuitive to point. The XWand has the following
features:

- Analog Devices ADXL202 2-axis MEMS accelerometer. This measures both dy-
namic and static acceleration. When held motionless, the sensor detects the angle
of the wand relative to the constant downward acceleration of gravity. The sensor
is mounted so that it reports pitch and roll.

- Honeywell HMC1023 3-axis magnetoresistive permalloy magnetometer. This sen-
sor reports the direction of the Earth's magnetic field in 3 dimensions, and con-
tributes to computation of the yaw angle of the device.

- Murata ENC-03 1-axis piezoelectric gyroscope. This is an angular rate sensor, and
is centered on the XWand to sense motion about the vertical axis (yaw).

- Pushbutton. The button is used to indicate when a gesture is being made. On this
prototype the button is placed on top of the XWand, just under the ball of the thumb.
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Fig. 2. XWand hardware prototype.

It is pressed by squeezing the hand or by using the thumb.

BIM 433 MHz FM transceiver (38.4kbps). The transceiver sends information to
a similarly equipped base station, which then communicates with a host PC via
RS232. The base and the wand use a command/response protocol; i.e., the wand
only sends a data packet when the base requests it. Continual polling by the host
yields a 50Hz frame rate. The transceiver design permits simultaneous use of mul-
tiple wands that share the same bandwidth, as well as real-time two-way interaction
with the host PC.

PIC 16F873 flash-programmable microcontroller (20MHz). The microcontroller
collects sensor values via digital and analog-to-digital inputs and sends data to the
transceiver. It also formats outgoing data communication packets, decodes received
packages, controls timing, and performs power management.

Infra-red (IR) LED. Invisible to the naked eye, this LED can be seen by cameras
equipped with an IR pass filter. This may be used to support position tracking of
the XWand.

Green and red visible LEDs. These deliver feedback to the user and may be lit in
response to commands received from the host PC. A green LED indicates whether
the wand is 'asleep' or 'awake'. A red LED indicates when the wand is communi-
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Fig. 3. Yaw and pitch directions.

eating with the base station.

- 4 AAA batteries. Quiescent power when awake is approximately 52mA, and is less
than 1 mA while asleep (thousands of hours of standby operation).

There are caveats related to this combination of sensors. For example, the accelerom-
eter only delivers true pitch and roll information when the device is motionless. For
pointing tasks this problem is avoided by relying on the orientation information only
when the device is motionless, as indicated by the magnetometer output. The inaccu-
racies are constant, so for gesture recognition purposes they simply become part of a
learned pattern.

3 Gesture Interpretation

3.1 Features

A user makes a gesture with the wand by holding the wand motionless, squeezing the
button, waving the wand in the desired pattern, and then releasing the button. The ges-
ture is stored as a sequence of sensor values over time. During the training phase we
form gesture models by combining many different examples of the same gesture col-
lected from the XWand. During testing we perform classification (recognition) of a new
gesture sequence by comparing it to each existing gesture model and then choosing the
model with the highest score above some cutoff threshold.

The XWand is designed for both pointing and gesturing tasks. For gesture recogni-
tion purposes we are interested in how gestures are made with the wand (i.e., velocities),
not orientation. We use velocities so that the same gesture sequence will remain con-
stant regardless of the wand orientation. Specifically, we use changes in pitch and yaw.



Roll velocity is not used because rolling motions do not contribute distinctly to most
gestures that we use. We use velocity of pitch and yaw as features for gesture recog-
nition. The gyroscope provides angular rate of change along the vertical axis of the
device (yaw), corresponding to turning the wand left or right. Up and down wrist mo-
tions are represented by changes in pitch provided by the accelerometer. See figure 4
for clarification.

3.2 Gesture Vocabulary

Our goal is to provide a multipurpose set of gestures useful for interacting with a mul-
titude of interconnected devices in an intelligent environment. We detect the following
gestures: up, down, left, right, clock-wise circle, counter-clockwise circle, and take ges-
tures. These actions correspond to several commonly used actions on current remote
controls. They map intuitively to common concepts such as turning up/down volume,
turning to the next/previous channel, and rewind/fast forwarding a movie . The take
gesture is useful in an intelligent environment where a user may wish to carry services
from device to device. For example, a user might take a computer login and carry it to
another computer, take a movie from one television to another, or music from one set
of speakers to another. For each of these seven actions we train an associated gesture
recognition model.

4 Gesture Recognition

Every person has a unique gesturing style. Although we have established a finite set of
gestures, they can each be performed at different speeds and with different amplitudes.
Consider the clock-wise circle gesture. One user may quickly make a small circle, and
another might slowly make a large circle. Still another user might quickly make half a
circle, then slowly make the other half. Sequences are comprised of derivative values,
so the faster a gesture is performed the higher the amplitude. Automatic recognition
of new gesture sequences must account for these variations in time and scaling. We
consider three approaches: linear time warping (LTW), dynamic time warping (DTW)
, and an HMM based approach.

4.1 Linear Time Warping Approach

This algorithm matches a given sequence of sensor values, s = {si , ...ST, }, to a stored
prototype, p = {pi, ...,prP}. This stored prototype is collected earlier during a special
training procedure. To account for the fact that the gesture made by the user during
runtime may differ from the prototype in terms of speed and amplitude, the sequence
matching algorithm tries matching various versions of the prototype that are stretched
in time and scaled in amplitude. Sensor readings from the prototype and input sequence
are then compared using squared Euclidean distance. This match score is then computed
over the whole sequence for a given scale and time warp. The final match score is
the maximum score out of all the scales and time warps. The sequence is classified
according to the prototype with the highest match score.
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Fig. 4. Demonstration of UP, DOWN, LEFT, RIGHT, TAKE, CLOCKWISE, and COUNTER-
CLOCKWISE gesures.



During the training procedure we combine training examples to create a model for
each gesture. Initially one example of each gesture is chosen as the prototype. A subse-
quent training example s is first linearly scaled to fit the prototype, and then we compute
the mean /i between the two sequences at each time step t and store them as a vector of
length Tp: M = {//i, . . . , / i 2 } .

The temporal match up provided by LTW is often a rough approximation and the
corresponding feature vectors may only be approximately related. Scoring based strictly
upon location in the time sequence places too much trust in LTW. A solution is to
distribute the scoring function between neighboring time slots in a Gaussian fashion.
Instead of comparing only feature vectors that share a time slot, (i.e., st and pt), we
calculate the score between each feature vector for t = 1,..., Tp, weighted by a Gaus-
sian centered on the current time slot t. The size of the variance on our Gaussian is
inversely proportional to our trust in the warp provided by LTW. We chose our value by
cross-validation.

This template matching approach allows the user to train the prototype template
rather than setting it up by hand. Also, the model gesture may be arbitrarily complex.
For example, this technique can model a left to right motion of two complete periods.
A drawback of this approach is that runtime variations of the gesture may involve more
than constant scaling of amplitude and linear time warps.

4.2 Dynamic Time Warping Approach

This approach is similar to linear time warping except that DTW can account for non-
linear time-alignment differences between test and reference patterns. These may occur
when a user performs a gesture with variable speed. As in LTW our goal is to match a
given sequence of sensor values to a stored prototype. The stored prototype is collected
earlier during a special training procedure. Again, training sequences are combined into
prototype sequences for each type of gesture. Training sequences are aligned temporally
using DTW before combination. To account for amplitude differences, the sequence
matching algorithm tries matching several versions of the prototype with differently
scaled amplitudes. Sensor readings from the prototype and input sequence are then
compared using Mahalanobis distance. The sequence is classified as the gesture with
the highest score.

DTW provides an efficient way to temporally align two sequences of different
lengths. Suppose we are given an input sequence s = {S\,...,STS} and prototype
sequence p = {pi, ..-,PTP}- The problem can be thought of in terms of a grid with
horizontal axis associated with s, and vertical axis associated with p. The sequence s is
a k-dimensional feature vector with values collected from k sensors (in our case k = 2).
Each element of the grid contains a Euclidean distance measure Dij representing the
distance between the Si and pj. The best time warp will be the optimal path (minimized
accumulated distance) from point (0,0) to (TS,TP) on a finite grid. The optimal solu-
tion can be found efficiently by dynamic programming in O(TS TP) time. For a more
detailed description of DTWs see [?]



Training. We use DTW to align a training sequence s to the prototype length Tp. We
compute the mean /JL between the two sequences at each time step t and store them as a
vector of length T : M — {/ii,..., fir}-

Scoring. Given a test pattern s we compare it to a prototype sequence p representing
each gesture. We use DTW to align the input sequence s to the prototype sequence p.
For each time step t we gather a cumulative score. The score is computed by summing
the Mahalanobis distance between feature vectors from each time step. Given a test
sequence s = {si , . . . , sjP} and reference sequencep = {pi, ...,prP} the Mahalanobis
distance between Si and pj is :

Where ^2~1 is the inverted covariance matrix. This distance metric removes several
limitations of the Euclidean metric. Specifically, the Euclidean distance does not pro-
vide any statistical measurement of how well the unknown sequence matches the train-
ing set. In addition, the Euclidean distance only measures a relative distance from the
mean point in the sequence. It does not take into account the distribution of the values
in the sequence. In our case the added computation is manageable. For each prototype
sequence our input sequence is aligned and then scored. The input sequence is classified
as the model with the highest score.

4.3 Hidden Markov Model Approach

We also tried using an HMM recognizer to train and later classify gestures. Although
originally developed for problems in speech recognition [?], [?], HMMs have become
a popular approach to gesture recognition [?] as well. HMMs provide a probabilistic
framework that can account for dynamically time-varying gesture sequences. See [?] for
a detailed description of how HMMs work. Our implementation is based on the public
domain HTK toolkit version 3.0 [?]. We modified the code to handle a continuous data
stream. This toolkit has been used in several other gesture recognition applications [?].

The approach works by using examples collected during a training phase to create
a Markov model describing the temporal structure of the gesture. The Markov model
is composed of several states that represent different temporal sections of the gesture
sequence. For example, the right gesture can be broken into two states : (A) moving to
the right and (B) returning to the original position. Our Markov models each have six
states. This number was chosen using cross-validation. Each Markov model is given
several training sequences and associates sections of these sequences with the different
states (e.g., A to B).

Before the model is trained, however, the initial topology must be consistent with the
gesture vocabulary. None of our gestures exhibit periodicity, therefore each state tran-
sitions either to itself or to the next state. During runtime a new sequence is compared
to each Markov model and scores are collected. The model with the highest probability
is chosen.



5 Experiments and Results

5.1 Process

Six male subjects were selected from around the research lab to participate in training.
None of the subjects had ever used the XWand. Each subject was shown how to per-
form each gesture, and was then allowed to practice each gesture once. Afterwards, ten
examples of each of the seven gestures were collected. For every subject the entire pro-
cess was complete in well under fi\e minutes. This amounted to seventy examples from
each user, and 420 examples total. The users performed gestures at a variety of speeds,
facing different directions, and with distinct overall styles. Two users were left-handed,
and the rest right.

Each algorithm used the same test and training sets. We tested on one instance of
seven gestures from six users, for a total of 42 instances. For each user we discarded
the first two instances of each gesture, due to learning effects. The remaining seven
instances of the seven gestures from six users were used for training, leaving a total of
294 examples. See Table 1 for a summary of the results.

Table 1. Comparison of recognizer performance

Algorithm Accuracy Correct / Total

Linear Time Warping 40.42% 17 / 42
Dynamic Time Warping 71.64% 30 / 42
Hidden Markov Model 90.43% 3 8 / 4 2

6 Discussion

The performance of LTW is probably due to the inability of LTW to compensate for
dynamic time warps. DTW performance was better, but not nearly as good as HMMs.
The order in which LTW and DTW receive training examples can directly affect per-
formance. If the original prototype sequence for a gesture has noise or is cut short, then
that model will be flawed from the beginning.

The use of the button is a major factor affecting performance. The starting and end-
points of gesture sequences were roughly known, but there is room for improvement.
A gesture is collected when the user squeezes and releases a button, which leaves a
variation in button press time. For example, one user may hold down the button longer
than another before starting a gesture or hold it down longer after the gesture is com-
pleted. Sequences may be skewed, which would have a serious effect on LTW, but not
on HMMs. This could be solved in future work, as it has been shown that these linear
trends can be efficiently removed [?], [?]. Often users completed part of a gesture before
pressing the button, or let go of the button before a gesture was completed. Again, this



poses a problem for LTW, but less for HMM. For an HMM both problems are solved

by using extra states, which can then represent button pressing behavior.

Performance in the HMMs was heavily affected by the take gesture. This gesture

accounted for all four misclassifications. Initially the take gesture was formulated as

a pull towards the left shoulder. Left-handed users naturally performed the gesture to-

wards the right shoulder. The difference in feature vectors was too great to be encom-

passed in a single model. Ideally, either the gesture should be the same for both right and

left-handers, or two models should be trained. Barring this miscalculation, the HMM

approach performed perfectly.

7 Conclusion

We have introduced the XWand, a UI capable of pointing and gesturing in an intelligent

environment. The XWand relies on the natural tendency to point and gesture at objects

that we wish to control. We describe three approaches to gesture recognition with the

XWand. We report positive results indicating that the XWand can be a useful interface

for controlling the many interconnected devices populating environments of the future.
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