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1 Introduction

The ability to locate network bottlenecks along end-to-end paths on the Internet is very useful for
both the end users and the Internet Service Providers (ISPs). End users can use it to estimate the
performance of an ISP, while an ISP can use it to quickly locate the position of network problems,
or to guide traffic engineering either at the interdomain or intradomain level.

Unfortunately, it is very hard to identify the location of bottlenecks unless one has access to
link load information for all the links along the path. This is a problem, especially for regular users,
because the design of the Internet does not provide explicit support for end users to gain informa-
tion about the network internals. Existing bandwidth measurement tools fall short in at least two
ways. First, they focus on end-to-end performance, while providing no location information for
the performance bottleneck. Typical examples include the work on available bandwidth measure-
ments [1, 2, 3, 4, 5]. Second, for tools that do measure hop-by-hop performance, the measurement
overhead is often very high. This category includes Pathchar [6] and BFind [7].

In this paper, we present a novel active probing tool - Pathneck - based a novel probing tech-
nique called Recursive Packet Train (RPT). It allows end users to efficiently and accurately locate
bottleneck points on the Internet. The key idea is to combine measurement packets and load pack-
ets in a single probing packet train. Load packets emulate the behavior of regular data traffic, and
RPT relies on the fact that congestion builds up as load packets queue on the router interface, thus
changing the packet train length on the link. By measuring this change using the measurement
packets, the position of the congestion can be inferred. Two important properties of RPT are that
it has low overhead and does not require access to the destination.

Equipped with Pathneck, we conduct extensive measurements on the Internet among carefully
selected, geographically diverse probing sources and destinations to study the diversity and stabil-
ity of bottlenecks on the Internet. Our main findings include

1. Pathneck is capable of locating the bottleneck for 70% - 95% of paths from most of our
probing sources.

2. Unlike the common knowledge that bottleneck locations are mostly on the edge links or
peering links, we find that roughly over 50% of the bottleneck locations are within a single
AS.

3. In terms of stability, intra-AS bottlenecks are more stable than inter-AS bottlenecks, while
AS-level bottlenecks are more stable than router level bottlenecks.

4. With the bottleneck location information, and the rough estimation for the absolute available
link bandwidth, we can successfully infer the bottleneck locations for 40% of arbitrary paths
for which we do not have measurement data.

5. Using Pathneck results from a diverse set of probing sources to randomly selected destina-
tions, we found that over half of all the overlay routing attempts to avoid bottlenecks are
successful. The success of multihoming in avoiding bottleneck links is over 78%.



This paper is organized as the following. We first present the details of the Pathneck design and
the algorithms' details (Section 2), followed by the tool's validation (Section 3). Using Pathneck,
we probed a large number of destinations to obtain several different data sets. Based on these data,
we study the properties of Internet bottlenecks (Section 4), how to avoid the bottlenecks on the
Internet (Section 5), and the implications on multihoming and overlay routing (Section 6). Related
work is discussed in Section 7. Finally, Section 8 conclude the paper together with a discussion of
future work.

2 Inferring Bottleneck Location

Our goal is to develop a tool that is light-weight, does not require access to the destination, and
provides a ranking of the detected bottlenecks. In this section we first provide some background
in available bandwidth measurement techniques and we then describe the concept of Recursive
Packet Trains and the Pathneck tool.

2.1 Measuring Available Bandwidth

In this paper, we define the "bottleneck link" of a network path as the link with the minimum
available bandwidth, i.e. it is the link that determines the end-to-end throughput on the path. In
our algorithm description below, we will also use the concept of "choke point", which we define
as follows. Assume an end-to-end path from source S = Ro to destination D = Rn passes routers:
/?!, i?2,..., Rn-i- Link Li = (i?i_i, Ri) has available bandwidth Ai(l < i < n). We define the set
of choke links as:

CHOKEL = {Lk\Ak = min{Au ...,Ak}kAk < Ak-U 1 < k < n}

and the corresponding set of choke routers are

CHOKER = {Rk\Lk e CHOKEL, I < k < n}

We also use choke point as an equivalent term for choke router. Intuitively, the choke points on
a network path are the links with the minimum available bandwidth from the source to that link's
downstream router. Based on this definition, the bottleneck link is the choke link that has the
smallest available bandwidth. Clearly, choke points will have less available bandwidth as they get
closer to the destination. We will refer to the choke point has the smallest available bandwidth as
"the primary choke point" (the bottleneck), the next choke point is the "second choke point", then
the "third choke point", etc.

Let us now review some earlier work on available bandwidth estimation. A number of projects
have developed tools that estimate the available bandwidth along a path [1, 2, 4, 5, 8]. This is
typically done by sending a probing packet train along a network path and by measuring how
competing traffic along the path affects the length of the packet train (or the gaps between the
packet pairs). Intuitively, when the packet train traverses a link where the available bandwidth is
less than the transmission rate of the train, the length of the train will increase. This increase can be



caused by higher packet transmission times (on low capacity links), or by the interleaving between
the probing packets and the background traffic packets (heavily loaded links). When the packet
train traverses a link where the available bandwidth is higher than the packet train rate, the train
length should stay the same since there should be little or no queuing at that link. As a result, the
packet train length can be used to estimate the available bandwidth on the bottleneck link; details
can be found in [2]. Using the definition introduced above, the links that increase the length of the
packet train correspond to the choke points since they represent the links with the lowest available
bandwidth on the partial path traveled by the train so far.

Unfortunately, current techniques can only estimate end-to-end available bandwidth since they
can only measure the train length at the destination. In order to identify the bottleneck location,
we would like to know the available bandwidth on each link along the path, so we need a probing
technique that can measure the train length on each link. In this section, we introduce a novel
packet train design — Recursive Packet Train (RPT), that provides train length estimates for each
hop.

2.2 Recursive Packet Train

An example of a Recursive Packet Train is shown in Figure 2.2. In this figure, every box is a UDP
packet and the number in the box is its TTL value. The probing packet train is composed of two
types of packets. First, we have the measurement packets, which are standard traceroute packets,
i.e., they are 60 bytes UDP packets, with properly filled-in payload fields. The figure shows 20
measurement packets at each end of the packet train, which allows us to measure network paths
with up to 20 hops; more measurement packets should be used for a longer path. The TTL values
of the measurement packets changes linearly, as is shown in the figure.
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Figure 1: Recursive Packet Train (RPT). The number in each packet is the TTL value.

Second, we have the load packets that are used to generate a packet train with a measurable
length along the network path. Similar to the PTR method [2], the load packets should be large
packets that represent an average traffic load. We use 500 byte packets as suggested in [2]. The
number of packets in the packet train determines the amount of background traffic that the train
can interact with, so it pays off to use a fairly long train. In our experiment, we set it empirically in
the range of 30 to 100. Automatically configuring the number of probing packets is future work.

RPT works as follows. The user sends out the probing packets back-to-back. When they arrive
at the first router, the first and the last packet of the train will expire, since their TTL values are
1. As a result, the packets are dropped and the router will send two ICMP packets back to the
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Figure 2: Hill/valley point

source [9]. The other packets in the train are forwarded to the next router, after their TTL is
decremented. Since the TTL values in a RPT are set recursively, the above process is repeated on
each subsequent router. The source can now use the time gap between the two ICMP packets from
each router to estimate the packet train length on the incoming link of that router. This is because:
(1) the ICMP packets were generated when the head and the tail packets of the train were dropped,
and (2) the measurement packet size is much smaller than the total length of the train, i.e., the
change in packet train length due to the dropping of the measurement packets can be neglected.
We will refer to the time interval between the arrival of the two ICMP packets from a router as the
gap value.

2.3 Pathneck — The Bottleneck Location Inference Tool

RPT provides a way to estimate the probing packet train length on each link along the path. We
can now use this sequence of gap values to identify the location of bottleneck links — we expect
the train length to change significantly at the bottleneck. This is the basis for the Pathneck tool.

Pathneck uses three steps to detect and rank bottlenecks along a path:

1. Labeling of gap sequences: we use a sequence of RPT trains to collect gap sequences, and
identify links where the gap value changes significantly. These are at the candidate choke
points.

2. Averaging across gap sequences: using the labeled gap sequences from step (1), we identify
links that frequently generate significant gap changes as choke links.

3. Ranking: since network paths can have multiple choke points, Pathneck ranks these choke
points with respect to the available bandwidth.

In the remainder of this section, we describe the algorithms that are used in each of the three steps
in more detail.

Labeling of Gap Sequences
Under ideal circumstances, a sequence of gap values would only increase (if the available

bandwidth on a link is not sufficient to sustain the rate of the incoming packet train) or stay the



same (if the link has enough bandwidth for the incoming packet train), but it should never drop. In
reality, the burstiness of competing traffic and reverse path effects add noise to the gap sequence,
and before we can identify candidate choke points we have to clean up gap sequence. The first step
is to remove any data for routers from which we do not receive both ICMP packets. If we miss
over half of the gap values due to that, we discard the entire sequence.

The second step is to modify the hill and valley points in the gap sequence (Figure 2). A
hill point is defined as a point p2 in a three-point group: pi,P2,P3, with gap values satisfying
9i < 92 > 93- A valley point is defined similarly, except the condition is changed to gx > g2 < g$.
Both hill and valley points contain a drop in gap value, which should not happen. Since in both
cases, it is a short-term (one sample) disturbances in the sequence, we assume they are caused by
noise, and we replace the hill or valley point (g2) with the closer gap value of its two neighbors.

We are now ready to run the core part of the labeling algorithm (Figure 3). The idea is to
match the gap sequence to a graph consisting of a sequence of steps (Figure 4), where each step
corresponds to a candidate choke point. Easy to see, this is a typical clustering problem. But since
the number of hops in our problem is very limited, generally less than 30 points, we use a simple
brute-force algorithm to identify the candidate choke points. Given a gap sequence with len gap
values, we generate all possible step functions with n = round(len/2) steps. We pick the step
function that is the best fit for the gap sequence. The "best fit" is defined as the step function
for which the sum of difference between the gap sequence and the step function across all point
is minimal (refer to the computation of distsum in Figure 3). If that step function has clearly
defined steps (i.e. all n steps are larger than 100 microseconds (fis)) then we take this as our fit
for the gap sequence, and we identify these steps as a set of candidate choke points. If not, we
repeat the process with a function with (n — l)-steps. This process is repeated until we find a
segmentation where each step has a gap change larger than 100//S, or when n = 0. In the latter
case we mark the first hop as the bottleneck router. The requirement that steps must be larger than
100/as is used to filter out noise. The threshold value is relatively small compared with possible
sources of error (see Section 2.4). However, at this point we want to be conservative in discarding
candidate choke points.

Averaging across gap sequences
In order to filter out effects caused by bursty traffic on the forward and reverse path, we typically

use the results from multiple probing trains (e.g. 6-10) to compute confidence information for each
detected choke point. In this paper, we will use the term "probing" to refer to a probing with
a single RPT, i.e. one train. We will use the term "probing set" for a group of probings. The
outcome of Pathneck is the summary result of the probings in the probing set; we will sometimes
refer to this as the probing set result.

Intuitively, the confidence is denoted as the percentage of available bandwidth change implied
by the gap value change. The reason is that a large gap value change is less likely to be caused by
short-term burstiness in the traffic, so the link is more likely to be a real bottleneck. We compute
the confidence for each candidate choke point as the follows:

abs(l/gi -
confi =

For i = 1, we let confi = 1.



algorithm Labeling(gap)
/* gap is an gap sequence with len values */

{
return if len < 4;
return if over half of the gap values is 0;
fix the hill/valley point;

/* brute force search for the choke points */
n — round(len/2)\
while (n > 1) {

for any segmentation with n splitting points {
distsum = 0;
for each segment between two adjacent splitting points {

gavg = avg(gi in the current segment);
distsum+ = sum(\gi - gaVg\)*

}
record the distsum;

}
pick the segmentation with the minimum distsum;
if (all the splitting points in this segmentation

have a gap value change > lOOus)
return the splitting points as the set of choke points;

else
n = n-l;

}
if ( n = = 0 ) {

return the first hop as the choke point;

Figure 3: Labeling Algorithm for a gap sequence.

For the set of choke points detected in each probing, we pick out the candidate choke points
with conf > 0.1, for which we further calculate the detection rate d-rate. Here d-rate is defined
as the frequency with which a candidate choke point appears in the probing set. Finally, we select
those choke points with d-rate > 0.5, i.e. the final choke points for a path are the high confident
candidates that appear in at least half of the probings in the same probing set.

Ranking
For each path, we rank the choke points based on the average gap values in the probing set.

Because the packet train transmission rate R has the following relationship with the gap value g:

R = datasize-of .train/ g
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Figure 4: Matching the gap sequence to a step function.

where data.size.of drain is the total size for all the packets in the train. That is, the larger the gap
value, the more the packet train was stretched out by the link, thus the lower the available band-
width on the corresponding link. The link with the lowest available bandwidth is the bottleneck of
the path.

The average gap values can also provide a rough upper and lower bound on the available
bandwidth. We have to consider three cases:

1. For a link which is identified as a choke point, i.e. its gap change is an increase, we know
that the available bandwidth is less than the packet train transmission rate. That is, the rate
R computed above is an upper bound for the available bandwidth on the link.

2. For a link which is not a choke point and has a decrease in gap value, we cannot say anything
about the available bandwidth, because the decrease is probably caused by traffic burstiness.

3. For a link which is not a choke point and maintains its gap, the available bandwidth is higher
than the packet train transmission rate R, i.e., R is a lower bound for the available bandwidth.

Considering that we cannot control the format of the probing train at every link in the path and
that the available bandwidth on a link is a dynamic property, these are only very rough bounds.
However, they proved to be useful in our analysis in Section 5.

2.4 Properties of Pathneck

Since a single packet train is used to estimate the available bandwidth on all links along a path,
we get a consistent set of measurements. This, for example, allows Pathneck to identify multiple
choke points and to rank them. Note however Pathneck is biased towards early choke points: once
a choke point early in the path has increased the length packet train, it may no longer be possible
to "see" links downstream with similar or higher available bandwidth.

Pathneck also meets the design goals we identified in the beginning of this section. Pathneck
does not need the cooperation of the destination, so it can be widely used by regular network user.
Pathneck also has low overhead. Each measurement typically uses 6 to 10 probing trains of 60
to 100 packets each. This is very low overhead compared with tools such as pathchar [6] and
BFind [7]. Finally, Pathneck is fast. For each probing train, it takes about a roundtrip time to get
the result. However, to make sure we receive all the returned ICMP packets, Pathneck generally

8



waits for 3 seconds — the longest RTT we have observed on Internet — after sending out the
probing trains, and then exits. As a result, one measurement generally takes less than 5 seconds.

A number of factors influence the accuracy of Pathneck. First, we have to consider the ICMP
packet generation time on routers. This time is different for different routers, and possibly for
different packets on the same router. As a result, the measured gap value for a router will not
exactly match the packet train length at that router. Fortunately, measurements in [10] and [11]
show that the ICMP packet generation time is pretty small; in most cases it is between 100/LLS and
500/zs. Since most Internet paths have a bottleneck link with a capacity of less than lOOMbps, if
we use 100 load packets, then the corresponding packet train length is larger than 4ms, which is
large enough to ignore the ICMP packet generation time. Second, as ICMP packets travel to the
source, they may encounter queue delay caused by reverse path traffic. Since this delay can be
different for different packets, it is a source of measurement error. We are not aware of any work
that has measured this value. In our algorithm, we try to reduce the impact of this factor by filtering
out the measurement outliers.

Pathneck also has some deployment limitations. First, we discovered that network firewalls
often only let through 60 bytes UDP packets that strictly conform to the traceroute packet format,
while they drop any other UDP probing packets, such as the load packets in a RPT. If the sender
is behind such a firewall, Pathneck will not work. Similarly, if the destination is behind a firewall,
no measurements for links behind the firewall can be obtained by Pathneck. Second, even without
any firewalls, Pathneck may not be able to measure the packet train length on the last link, because
the ICMP packets sent by the destination host cannot be used. In theory, the destination should
generate a "destination port unreachable" ICMP message for each packet in the train. However, due
to ICMP rate limiting, the destination network system will typically only generate ICMP packets
for some of the probing packets, which often does not include the tail packet. Even if an ICMP
packet is generated for both the head and the tail packet, the accumulated ICMP generation time
for the whole packet train makes the returned interval worthless.

3 Validation

We use both the Emulab testbed [12] and Internet paths to evaluate Pathneck. The Emulab testbed
provides a fully controlled environment that allows us to evaluate Pathneck with known traffic
loads, while Internet experiments are necessary to study Pathneck with realistic background traffic.

3.1 Testbed Validation

Figure 5 shows our testbed configuration. The physical Emulab link capacity is lOOMbps, and we
set the bottleneck link capacity to 20Mbps in the experiments, using the dummynet [13] function-
ality provided by Emulab. The link delays are roughly set based on a traceroute measurement from
a CMU host to yahoo.com.

The background traffic is generated based on two real packet traces, light-trace and heavy-
trace. The light trace is sampled from a outgoing link of a data center connected to a Tier-1 ISP.
Its load varies from around 500Kbps to 6Mbps, with a median load 2Mbps. The heavy-trace is



Figure 5: Testbed configuration. Hop 0 is the probing sender, hop 9 is the probing destination. Hop
1 - 8 work as routers, and we use Rl - R8 to denote them in the paper. The blank boxes are used
for background traffic generation. The dashed lines show the background traffic flow directions for
the evaluations in "single bottleneck" and "two bottlenecks".

sampled from a trace collected in front of a corporation network. Its bandwidth varies from 4
Mbps to 36Mbps, with a median load 8Mbps. Since the traces are very bursty, this is a particularly
challenging scenario. We send traffic between each pair of routers and also between routers 0 and
9, as is shown by the dashed arrows in the figure. By assigning different traces to different links,
we can emulate different scenarios to evaluate Pathneck. Note that all the hosts on the testbed are
PCs, not routers, so the properties such as the ICMP generation time are different from those of a
real router. As the result, the testbed results ignore some of the router related factors.

We ran three sets of experiments using this configuration:

1. Single Bottleneck: In this experiment, we use light-trace for all the load generators, but the
starting times within the trace are randomly selected. For the 100 single-train probings that
we did, we always detect hop 7 (i.e., link (i?6, Rl)) as the bottleneck. The other candidate
choke points detected are all filtered out due to small confidence value (less than 0.1).

2. Two Bottlenecks: In this experiment, we reduce the link capacity of (i?2, R3) from 50Mbps
to 20Mbps, and use the heavy-trace for link (i?6, Rl), the other links keep using the light-
trace. We probed 100 times; 14 probings had to be discarded due to ICMP packet loss.
Among the remaining valid 86 single-train probings, 72 probings correctly detected these
two links as the top two choke points, in the correct order. The other 14 probings only iden-
tified (i?2, RS) as the choke point. Careful examination of the probing data shows that, for
these 14 cases, (i?6, Rl) actually is the second choke point detected, but with a confidence
less than 0.1. The reason is that the probing packet train has already been stretched by the
first choke point, so the second choke point is easily hidden. This is the result of the biasing
of Pathneck in favor of the earlier choke point.

3. Reverse Path Queueing:

To study the effect of reverse path queueing, we replaced the trace-based traffic generator by
a simple UDP traffic generator so that we can control the average load placed on a link. The
instantaneous load generated by this generator follows an exponential distribution, which is
used to emulate the burstiness. We use the topology of the "single bottleneck" experiment,
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Table 1: Per-link results of reverse-path traffic experiment on Emulab

routerid
2
3
4
5
6
7
8

detectecLtimes
24
18
5

21
20
75
34

d_rate
0.245
0.184
0.051
0.214
0.204
0.765
0.347

i.e., the bottleneck link is (i?6, Rl). On all links (except the two edge links) we sent back-
ground traffic in both directions, with the average load set to 30% of the link capacity. With
this setup, we got 98 valid probing results. The derate for each router, i.e., the frequency of
that router being detected as a candidate choke point with conf > 0.1, is shown in Table 1.
We see that, while reverse path queueing disturbs the detection to some extend, only the real
bottleneck hop (R7) has a d.rate > 0.5. That is, Pathneck will output R7 as the only choke
point, thus the bottleneck.

3.2 Internet Validation

This section evaluates the performance of Pathneck on Internet paths. For a thorough evaluation we
would need to know the actual available bandwidth on all the links of the network path. Of course,
this information is impossible to obtain for most operational networks. The Abilene backbone [14],
however, publishes its backbone topology and the traffic load (5-minute SNMP statistics) [15], so
we decide to probe Abilene paths. We ran experiments from two sources: a CMU machine and a
host at the University of Utah.

The experiment is carried out as the follows. Based on Abilene's backbone topology, we chose
22 probing destinations for each probing source. We make sure that each of the 11 major routers
on the Abilene backbone is included in at least one probing path. From each probing source, we
probed every destination 100 times. We insert a 2 seconds sleeping time between two consecutive
probings. To avoid interference, the CMU and the Utah based experiments were run at different
times.

Using the conf > 0.1 and derate > 0.5 requirements, we only detected 4 none-first-hop
bottleneck routers on the Abilene paths. This is not surprising since Abilene paths are well known
to be over-provisioned, and we selected paths that were as much as possible in the Abilene core.
It turns out that the probes from both sources identify exactly the same four bottleneck routers
(Table 2). The derate for probes originating in Utah and CMU are very similar, possibly because
we took all measurements in the same 24 hours period so experiments saw similar congestion
conditions. By examining the IP addresses, we found that in 3 of the 4 cases (www.ogig.net is the
exception), both the Utah and CMU based probings are passing through the same bottleneck link;
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Table 2: Bottlenecks detected on Abilene Paths. Here the last column "AS Path" has the format
AS1-AS2, where AS2 is the bottleneck router's AS, AS1 is its pre-hop router's AS.

Probe Dst
www.calren2.net
www.princeton.edu
www.sox.net
www.ogig.net

d_rate (Utah)
0.71
0.64
0.62
0.71

d_rate (CMU)
0.70
0.67
0.56
0.72

Bottleneck Router IP
137.145.11.46
198.32.42.66
199.77.194.6
198.32.163.13

AS Path
2150-2150
10466-10466
10490-10490
210-4600 (Utah)
11537-4600 (CMU)

an explanation is that the bottlenecks are very stable, possibly because they are constrained by link
capacity.

Unfortunately, except for the bottleneck to www.ogig.net, all three bottlenecks are outside of
Abilene, so we cannot get the load data. For the path to www.ogig.net, the bottlenecks appear to
be two different peering links. For the path from CMU to www.ogig.net, the incoming link to the
bottleneck router 198.32.163.13 is an OC-3 link. Based on the SNMP data that we have, which
includes all links on that path except one link inside PSC (with a capacity of at least lGbps), we
are sure that the OC-3 link is indeed the bottleneck.

4 Internet Bottleneck Measurement
The primary function of the Pathneck tool is to report the location of the bottlenecks along end-
to-end paths. It has been a common assumption in many studies that the bottlenecks often occur
at edge links and the peering links. In this section, we evaluate this widely used assumption using
Pathneck, which is sufficiently light-weight and non-intrusive that it allows us to conduct large
scale measurements on Internet. Using the same set of data, we also look at the stability of Internet
bottlenecks.

4.1 Data Collection
We chose a set of geographically diverse nodes from Planetlab [16] and RON [17] as the probing
sources. Table 3 lists all the probing nodes that we used for this paper: node 1-25 are used for
Section 4.2 and 4.3, node 26-35 are used for Section 4.4, node 36-58 and some nodes from 1-35
are used for Section 6. They reside in 47 distinct ASes and are connected to 31 upstream providers,
providing good coverage for north America and parts of Europe.

We carefully chose a large set of destinations to cover as many distinct inter-AS links as possi-
ble, using the following simple sampling algorithm. The key idea is making use of the local BGP
routing table information of the probe sources to select destination IP addresses. In most cases, we
do not have access to the local BGP table; however, we almost always have the BGP table from
the corresponding upstream provider from public BGP data sources such as Route Views [18]. The
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upstream provider information can be obtained by performing traceroute to a few randomly chosen
locations such as www. g o o g l e . com and www. cnn . com from the probe sources. Note that we
may not be able to obtain the complete set of upstream providers in case of multihomed customers.
Given the routing table, we first pick a " . 1 " or ".129" IP address for each prefix possible. The
prefixes that are completely covered by its subnets are not selected. We then subsequently reduce
the set of IPs by eliminating the ones whose AS paths starting from the probe source is part of
other AS paths. Here we make the simplification that there is only a single inter-AS link. This
assumption does not hurt, as the core of the Internet is repeatedly traversed for the roughly 3500
destinations we selected from each source. For instance, some links between tier-1 providers such
as AT&T and UUnet are traversed several thousand times in our probing.

We run Pathneck on each source node as follows. For each destination, Pathneck continuously
probes 10 times, with 2 seconds idle time in between. These 10 probings form a probing set,
for which Pathneck reports the location of the choke points as well as a rough estimation of the
available bandwidth for the corresponding choke links. Due to the small measurement time, we
were able to finish probing around 3500 destinations within 2 days. In this section, we set conf >
0.1 and d.rate > 0.5 in Pathneck as the thresholds to select choke points.

4.2 Popularity

As described in previous sections, Pathneck is able to detect multiple choke points for a network
path. In our measurements, we observed that up to 5 choke points can be detected. Figure 6 shows
the number of paths that have 0 to 5 choke points. We found that, for all probing sources, very
few probe sets report more than 3 choke points. Fewer than 2% of the paths have 4 or more choke
points. We also noticed that a good portion of the paths have no choke point. This number varies
from 3% to 60% across the different probing sources. This is generally because the traffic on
those paths are bursty enough that Pathneck could not reach a decision under the conf > 0.1 and
d.rate > 0.5 requirements.

In our measurements, we observe that some links are detected as choke points in a large number
of paths. For a given link 6, we define positive probes of b to be the subset of probes in a probe set
for which b is a choke point. Let NumProbe(b) denote the total number of probes that traverse
the link b and NumPositiveProbe(b) denote the total number of positive probes of 6 in all probe
sets. We compute the Popularity(b) of a link b as follows:

_ . /1N NumPositiveProbe(b)
Popularity (b) = —-——yy } NumProbe(b)

Figure 7 shows the cumulative distribution of the popularity of a link being detected as a bot-
tleneck (the solid curve) and as a choke point (the dashes curve) for all the links observed as choke
points in our measurements. We observed in Figure 6 that about 30% of the links never become
choke points in the probes that traverse them. Half of the choke point links have the probability
of 20% or less to be a choke point in the probes that traverse them. About 5% of the choke point
links are detected in all the probes. The same observation holds on the cumulative distribution of
the popularity of a link being detected as a bottleneck (i.e., primary choke point).
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Table 3: Probing sources from PlanetLab (PL) and RON (RON). "-" denotes two probing hosts
obtrained privately.

ID
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
29
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Probing Source
aros
ashburn
bkly-cs
Columbia
diku
emulab
frankfurt
grouse
gs274
bkly-intel
intel
jfkl
jhu
nbgisp
nortel
nyu
princeton
purdue
rpi
uga
umass
unm
Utah
uw-cs
vineyard
rutgers
harvard
depaul
toronto
hal i fax
unb
umd
dartmouth
Virginia
upenn
depaul-p
kaist
cam-uk-p
ucsc
princeton-p
jhu-p
ku
snu-kr
bu
bkly-cs2
northwestern
bkly-cs3
emu
dartmouth2
mit-pl
umd
rpi
Stanford
wustl
msu
uky
ac-uk
caltech

AS Number
6521
7911
25
14

1835
17055
3356
71
9

7018
7018
3549
5723
18473
11085

12
88
17
91

3479
1249
3388
17055

73
10781

46
11

20130
239
6509
611
27

10755
225
55

20130 •
1781
786
5739

88
5723
2496
9488
111
25
103
25
9

10755
3
27
91
32

2552
237

10437
786
31

Location
UT
DC
CA
NY

Denmark
UT

Germany
GA
PA
CA
CA
NY
MD
OR

Canada
NY
NJ
IN
NY
GA
MA
NM
UT
WA
MA
NJ
MA
CH

Canada
Canada
Canada

MD
NH
VA
PA
CH

Korea
UK
CA
NJ

MD
KS

Korea
MA
CA
CH
CA
PA
NH
MA
MD
NY
CA
MO
MI
KY
UK
CA

Upstream Provider* s)
701

2914
2150,3356,11423,16631

6395
2603
210

1239,7018
1239,7018

5050
1239
1239

1239,7018
7018
3356
14177

6517,7018
7018
19782
6395
16631
2914
1239
210
101

209, 6347
7018
16631

6325, 16631
16631
11537
855 •

10086
13674
1239

16631
6325, 16631

9318
8918
2152
7018
7018
11317
4766
209

2150,3356, 11423, 16631
6325

2150,3356, 11423, 16631
5050
13674

1
10886
6395
16631
2914
3561
209
3356
226

Testbed
RON
PL
PL
PL
PL

PL
PL

PL
RON
PL
PL
PL

RON
RON
PL
PL
PL
PL
PL
PL
PL
PL

RON
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL

4.3 Location
We define a link b as an intra-AS link if both ends of b belong to the same AS; otherwise, b is
an inter-AS link. Figure 8 shows the ratios of intra-AS bottlenecks vs. inter-AS bottlenecks (the
top figure) and that of intra-AS choke points vs. inter-AS choke points (the bottom figure) across
different probing sources. We found that, for both bottlenecks and choke points, over half of them
occur at intra-AS links. This is in contrast to the widely used assumption that bottlenecks often
occur at the boundary links between networks.

For a choke point b in a probe set P, we compute its normalized location (denoted by NL(b, P))
in the corresponding network path in the following way. Let A1, A2,..., Ak denote the AS-level
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Figure 6: For each probing source, the num- Figure 7: The popularity of a link being de-
ber of probe sets that have 0 to 5 choke points, tected as a bottleneck/choke point.

10 15
probing source id
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probing source id

Figure 8: For each probing source, the ratio of intra-AS bottlenecks vs. inter-AS bottlenecks (the
top figure) and that of intra-AS choke points vs. inter-AS chock points (the bottom figure).

path, where k is the length of the AS path, (i) If b is in the i-th AS along the path, then NL(b, P) =
i/k. (ii) If b is the link between the i-th and (i + l)-th ASes, then NL(b, P) = (i+0.5)/fc. Note that
the value of NL(b, P) is in the range of [0, 1]. The smaller the value of NL(b, P) is, the closer the
choke point b is to the probing source. Thus, the normalized location of b in all its positive probes
Pi, P2,..., Pm (0 < m < 10) is computed as

P.)

m
Since the bottleneck is the primary choke point, the definition of normalized location also
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applies to the bottleneck.
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Figure 9: Cumulative distribution of the nor-
malized locations of bottlenecks and choke
points.

Figure 10: Cumulative distribution of the nor-
malized location of intra-AS and inter-AS
choke points.

Figure 9 shows the cumulative distribution of the normalized locations for both bottlenecks
and chock points. The curves labeled "(unweighted)" show the distribution of the normalized
location. The curves labeled "(weighted)" in Figure 9 show the distribution of the normalized
location weighted by the number of probe sets in which a link is detected as a bottleneck or a
choke point, because we have observed in Figure 7, some links are much more likely to be a
bottleneck or a choke point than others.

We first observe that about 65% of the choke points appear in the first half of an end-to-end
path (i.e., NL(b, P) < 0.5). Second, both the bottleneck and the choke point that are close to
source are likely to be detected. This is possibly because Pathneck is biased to the earlier choke
points. Third, by compared the curves for the choke points and the curves for the bottlenecks, we
found that bottleneck location are more evenly distributed along the end-to-end path.

Figure 10 shows the cumulative distribution of the normalized location for intra-AS and inter-
AS choke points, weighted by the number of probe sets in which a link is detected as a choke
point. We observe that there is no significant bias on the location of choke points for inter-AS
and intra-AS. Compared to the inter-AS choke points, the intra-AS choke points are slightly likely
to appear later in an end-to-end path. This observation also holds on the intra-AS and inter-AS
bottleneck links.

4.4 Stability
Due to the burstiness of the Internet traffic and occasional routing changes, the bottlenecks on an
end-to-end path may change over time. In this section, we study the stability of the bottlenecks.
In our measurements, we randomly selected 10 probing sources from the PlanetLab nodes (node
26 - 35 in Table 3). We sampled 30 destinations randomly from the set of destinations obtained
in Section 4.1. Figure 11 shows the pseudo-code for the experiments conducted at each probing
source. The measurement lasts three hours. From a given source, there are 45 probes to each of the
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l.For each epoch {
2.
3.
4.
5.
6.
7.
Q
O.

9.
10.
11.
12.
13.
14.
15.}

Repeat {
Randomize the destination sequence;
For each destination {

Probe once;
Sleep 1 second;

}

if (end of epoch) {
For each destination {

Detect choke points based on probes
in the current epoch;

}
}

Figure 11: Experiments for stability evaluation.

destinations. We divide these 45 probes into 9 epochs of length 20 minutes, the probe set in each
epoch contains 5 probes between a pair of source and destination. Pathneck then reports choke
points for each probe set.

Let NumPositiveProbei(b) denote the number of probes where b is a choke point in probe
set i. The stability of the choke point b over a period of n epochs is defined as

Stability(b) = y^ NumPositiveProbei(b)

The same definition applies to bottlenecks.
Note that the range of Stability(b) is [0.5, n] because djrate > 0.5. The dash curve in

Figure 12 shows the cumulative distribution of the stability (at router level) for choke points over
9 measurement epochs. We observed that there are few links that are choke points in all of the 9
epochs. Compared with the stability of choke points, the bottlenecks (the solid curve in Figure 12)
shows similar stability over measurement epochs.

Figure 13 shows the stability (at router level) of the intra-AS and inter-AS choke points over
time. We found that inter-AS choke points are more stable than the intra-AS choke points. Com-
paring the top and the middle curves in Figure 13, we found that the intra-AS choke points are
more stable at the AS level (the curve labeled "intra-AS-level") than at the router level. Similar
observations apply to the bottlenecks (not shown in Figure 13).
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Figure 12: The stability of bottlenecks and Figure 13: The stability of intra-AS vs inter-
choke points. AS choke points over time.

5 Building a Bottleneck Map for Inference

In this section, we look at the problem of inferring a network path bottleneck without really probing
that path. This ability can significantly reduce the amount of probing traffic.

5.1 Methodology

One naive approach is to first gather the layer-3 Internet topology, probe large number of destina-
tions from varies vantage points to cover all links, and annotate each link with estimated bounds
on available bandwidth. As exemplified by the Rocketfuel project [19], inferring the topology of a
single ISP is already a difficult task. The scale of the Internet precludes us from using a complete
layer-3 topology.

Although there are millions of layer-3 routers, the number of autonomous systems (AS) is
significantly smaller. It is thus tempting to use an AS level graph and to annotate the edges to
neighboring ASes with bandwidth estimates. However, by doing this, we over-simplify the diver-
sity of links between a pair of ASes since we combine multiple peering links into a single path.
Instead, we preserve all the peering links between a pair of ASes by treating them as parallel links,
and we annotate separately them with available bandwidth measurement obtained from our tool.
Since the number of intra-AS links can be huge, we cannot hope to get measurements for all of
them. Instead, our data collection focuses on getting measurements for most of the peering links
between ASes based on the BGP routing table information.

Since a router may have multiple links numbered by different IP addresses, we have to deal
with the router alias issue. To figure out whether two IP addresses belong to the same router, we
make use of the tool ally to resolve alias. The tool is described in detail in [19].
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5.2 Inference method and experimental results

We divide the data we gathered into two parts. The first part of the probing data is used to annotate
our inference graph. That is, we label links in the inference graph using an upper bound Bu(Li)
and lower bound Bi(Li) for the available bandwidth of each link Li obtained by using the algo-
rithm presented in Section 2. The second part of the data is used for inference validation, i.e. we
evaluate how well the available bandwidth information obtained from the inference graph matches
the second set of probing results.

We use a pair of source and destination to identify a path. Let us denote the set of paths in
the second part of the data as / , the inference set. For each path P in the inference set 7, we look
at Bu(Li) and Bi(Li) of each link Lt G P in our annotated topology. We use the link L{ with
the lowest Bu(Li) as the inferred bottleneck link. We then compare the bound for the inferred
bottleneck Li with the probing result.

We define three types of inferences based on the information we have available in our annotated
map. A type-0 inference corresponds to the case where we have upper bound estimates Bu(Li) for
each IP link Li in P in our annotated map. A type-1 inference corresponds to the case where we
do not have upper bound estimation for at least one intra-AS link in P, but, we have upper bound
estimation Bu(Li) for each inter-AS link Li in P. Finally, a type-2 inference corresponds to the
case where we do not have upper bound estimate for at least one inter-AS link in P, but we have
Bu{Li) information for each intra-AS link Li in P . In the remaining case we are missing both
inter-AS and intra-AS links in the path and we do not try to infer the bottleneck because of lack of
information. This eliminates 33% of the paths, leaving 67% to be used in the evaluation.

Table 4: Percentage of Correct and Incorrect Inferences

Type
0
1
2

Total

Correct
19%
15%
6%

40%

Incorrect
11%
13%
3%

27%

We first randomly select 60% of the probing sets (or paths) for annotating the AS-level topology
map, leaving the remaining 40% for inference validation. There are 13,292 paths for which we have
enough confidence that the bottleneck is inside the network (i.e. not on the first hop), according to
the Pathneck algorithm. We focus on these paths that have bottlenecks. Table 4 shows the correct
and incorrect percentages of our inference. We correctly inferred the bottleneck locations of 19%
of the 13,292 paths for type-0 inference. Sum up all three types of inference, we can correctly
infer 40% (out of 67%) of the total bottleneck paths, while in 27% (out of 67%) the inference is
incorrect, i.e. the bottleneck link is off by one or more hops.

We decided to investigate the cases where we identified the wrong bottleneck more carefully.
For type-0 inferences, 60% of the incorrect inferences are due to the fact that we do not have much
information on the true bottleneck link, i.e. the true bottleneck link only appears as a bottleneck
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for fewer than 2 paths in the set of data we used to annotate the map because the link was covered
by very few probings. For the incorrect inferences of type-1, 41% of them are due to the fact that
we do not have any information of the true bottleneck link in our bottleneck map. Overall, this
leaves only about 10% (out of 67%) of the paths with incorrect results.

6 Avoiding Bottlenecks

6.1 Overlay Routing

Overlay routing or application layer routing refers to the idea of going through one or more in-
termediate nodes before going to the destination. The intermediate nodes act as application layer
routers or overlay nodes so they forward traffic but usually do not do any additional processing.
Previous studies [20, 17] have shown that by going through an intermediate node, the round trip
delay can be significantly improved and routing failures can be bypassed. In such cases, the part of
the network experiencing congestion or routing problems is avoided. Note that between any two
overlay nodes or between an overlay node and either the source or destination, regular IP routing
is used to route traffic. One of the reasons why such "triangular" routing works is that BGP-the
Inter-domain Routing Protocol, does not optimize for network performance in terms of delay, loss
rate or bandwidth. Shortest AS-path-based routing does not always yield the best performing paths
because of path inflation [21, 22].

Overlay routing can thus be used to avoid bottleneck links in the underlying IP path, thereby
improving application level performance in terms of throughput or available bandwidth. So far, no
studies have quantified the benefit overlay routing provides in avoiding bottleneck links. To the best
of our knowledge, this study presents the very first large scale analysis of how overlay routing can
improve the available bandwidth of a path. Most of the nodes from which we performed probing
are well connected, i.e., they receive upstream Internet service from a tier-1 ISP. We would like
to understand the usefulness of overlay routing when the probe nodes serve as overlay routers for
paths destined to arbitrary locations in the Internet. We used the following probing methodology
to gather the data for this study.

Methodology: We select 27 RON and Planetlab nodes as both the source nodes and overlay
nodes. Using a BGP table from a large tier-1 ISP, we sampled 200 random IP addresses from a
diverse set of prefixes in the BGP table; each IP address originates from a different AS and ends
with " . 1 " to minimize the chance of triggering alarms at firewalls. From each probing source we
performed the probing process described below during the same time period to minimize the effect
of transient congestion or any other causes for non-stationary bottleneck links. Given the list of
200 target IP addresses, each source node S probes each IP address 10 times using Pathneck. After
probing each target IP address, it randomly selects 8 nodes from the set of 27 source nodes. For
each of these 8 nodes, S again probes each of them 10 times. This probing methodology is designed
to study the effectiveness of overlay routing in avoiding bottleneck links in a fair manner, as the
probing of the following three paths occur very close in time: S1 —> D, Si —• 52 , and S2 —* D.
The bottleneck link available bandwidth is calculated based on the largest gap value in the path
across the 10 probing results.
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Figure 14: Improvement in reducing lower Figure 15: Improvement in reducing upper
bound of the bottleneck link available band- bound of the bottleneck link available band-
width by overlay routing. width by overlay routing.

For each destination from a given source, we calculate the lower bound and upper bound of the
bottleneck link available bandwidth. When composing two paths such as S± —• S2 with S2 —> D9

the lower bound of this overlay path is assumed to be the minimum of the two lower bound values
from the individual paths. The upper bound of an overlay path is calculated in the same manner.
We only consider the effectiveness of overlay routing by going through a single intermediate node,
similar to previous studies.

Results: We now present the results of our overlay routing study. Of the 63,440 overlay at-
tempts, i.e., routing to a destination by going through an intermediate node, 52.72% are successful.
We define success loosely as either the lower bound of the bottleneck link increasing or the upper
bound increasing. If we require both bounds to increase, the success rate is 15.92%; 17.39% and
19.40% are the breakdown for the cases when only the lower bound of the bottleneck bandwidth
value increases or only the upper bound increases. The biggest difference in the increase of the
upper bound of the bottleneck link available bandwidth is more than 900Mbps; the corresponding
value for the lower bound is 77Mbps. The distribution of the improvement in bottleneck available
bandwidth values for upper bound and lower is shown in Figures 14 and 15. The two figures show
that most improvement in the upper bound is below lOOMbps; that for the lower bound is 20Mbps.

We now examine more closely how useful the overlay nodes are for each source node for the
200 randomly selected destinations. We studied whether only specific overlay nodes are helpful
for a given source node and found that at almost all 27 locations, more than 90% of the overlay
nodes can be used for reaching some destinations with improved performance. A few exceptions
stand out: mazul finds only 8 out of 27 nodes useful in terms of improving available bandwidth,
and the Cornell site finds 67% or 18 nodes helpful. It is worthwhile to investigate these two sites
further. Most likely the path between these two sites and the chosen destinations have quite good
performance already, hence overlay routing does not help. Among the other sites, where most of
the randomly selected overlay nodes seem to help in reducing the bottleneck link bandwidth, we
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studied the data in more details to see whether any particular overlay nodes are always helpful for
a given source node. Surprisingly, the answer is yes. In fact, for most source nodes, there are at 2
to 3 overlay nodes that can improve performance for more than 90% of the cases examined. For
example, when using Vineyard as a source, jfkl, bkly-cs, and purdue all achieve over 92% success
rate when used as overlay nodes. Such information is very helpful in making overlay routing
decisions, as we discuss below.

Discussion: The study presented here has several important implications for how to select
overlay nodes and for improving overlay routing strategies. Typically overlay node selection re-
quires continuous probing and monitoring between the source node and the overlay node, and
between the overlay node and the destination node. This solution is not scalable if one has to do
probing exhaustively for every combination of destinations and candidate overlay nodes. To mini-
mize measurement overhead, one can make use of the topology information to predict how likely
an intermediate overlay node can help improve performance to a particular destination. Pathneck
presents two opportunities here: (1) Pathneck is very helpful in identifying both the location of
static bottleneck links and overlay nodes that always seem helpful in avoiding such links. (2) Path-
neck is light-weight enough to be used on-demand to decide which upstream provider to use for
routing bandwidth-intensive applications or applications requiring a minimal amount of bandwidth
to function e.g., multimedia streaming.

6.2 Multihoming

Large enterprise networks often multihome to different providers. The multihomed network usu-
ally has its own Autonomous System (AS) number and it exchanges routing information with its
upstream providers via Border Gateway Protocol (BGP). The original motivation for multihoming
is to achieve resilient network connectivity or redundancy in case the connectivity to one ISP fails
or one of the ISP experiences severe routing outages. Enterprise networks usually require higher
level of reliability for their connectivity to the rest of the Internet. Multihoming can not only in-
crease the availability of network connectivity, but it can also improve performance by allowing
multihomed customers to route traffic through different upstream providers based the routing per-
formance to a given destination. A recent study [23] has shown that, by carefully choosing the
right set of upstream providers, high-volume content providers can gain significant performance
benefit from multihoming.

The reliability benefit offered by multihoming depends highly on the routing path diversity and
the location of failures or performance bottlenecks. For example, if a network is multihomed to two
providers that route large portions of its traffic via paths with significant overlap, then the benefits
of multihoming will be sharply diminished since it will not be able to recover from failures in the
shared paths. As a result, we consider the following two problems: (1) Given the set of popular
destinations a network frequently accesses, which upstream provider should the network consider
using? (2) Given a set of upstream providers, which provider should be used to reach a given
destination. Clearly we would like to do the selection without expensive probing. We show that
Pathneck can help answer both these questions.To the best of our knowledge, this is the first study
to examine the benefit of multihoming on avoid bottleneck links by quantifying the reduction the
bottleneck link available bandwidth.
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Table 5: Grouping based on coarse-grained geographic close proximity.

Group name

sf
nyc

kansas
Chicago
britain
korea

Group member

bkly-cs, ucsc, Stanford, caltech
princeton-p, jhu-p, bu

umd, rpi, mit-pl, dartmouth, emu
ku, wustl

depaul-p, umich, uky, northwest, msu,
cam-uk-p, ac-uk
kaist-kr, snu-kr

success
rate
94%
99%

90%
98%
17%
74%

Methodology: To understand the effect of multihoming on avoiding bottleneck links, one
would ideally probe from the same location by going through different upstream providers to
several selected destinations. A previous study [23] simulated this by probing from nodes within
the same city but connected through different upstream providers. Unfortunately, very few of our
probe nodes are located in the same city and have different upstream providers. We simulate this
by choosing 24 geographically close probe sources belonging to different organizations as shown
in Table 5. We approximate the members in the same group to be nodes within the same city.
Arguably this is a simplification; however, the geographic distance between any two nodes within
the same group is small enough relative to the diverse set of 7,090 destinations we selected for
probing.

To evaluate the effectiveness of multihoming, for each geographic group, we examine the bot-
tleneck link available bandwidth of the path to the same destination from each member in the
group. If the improvement or increase in the lower bound or the upper bound from the worst path
compared with any other path in the group is more than 50% of original value, then we declare it
a success.

Results: Among all 42,285 comparisons we are able to make across all probe locations, more
than 78% of them are successful cases. This is very encouraging and shows that multihoming sig-
nificantly helps in avoiding bottleneck links. However, we emphasize that the result is artificially
inflated by the way the probe destinations are selected in reducing the chance of discovering the
last mile bottleneck link at the destination site. Many of the probe destinations selected are not
stub networks and most of them do not correspond to addressable end hosts. Furthermore, fire-
walls often prevent outgoing ICMP packets and thus rendering Pathneck ineffective at identifying
last mile bottleneck links near the destination site. We plan to improve the tool in this regard in the
near future. Nevertheless, our results also indicate that multihoming is very effective at avoiding
any last-mile bottleneck links near the source or bottleneck links inside the core. To be more con-
servative, if we require both the upper bound as well the lower bound to improve by 50%, then the
success rate is reduced to exactly 50%.

Examining the success rate for each group in Table 5 reveals some interesting characteristics.
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Figure 16: Improvement in avoiding bottleneck links giving increase in providers.

First of all, the bigger the group, the higher the success rate. For the two non North American
sites - Britain and Korea, the success rate is significantly lower. Our conjecture to explain this is
that the transoceanic links become the main bottleneck link and cannot be avoided by choosing a
nearby source node within the same country.

It is intuitive that there is diminishing returns in multihoming to more providers in improving
performance. A previous study [23] has shown this with respect to reducing Web object download
time. We now examine such effect in reducing the bottleneck link bandwidth value. Figure 16
shows that there is steady improvement in reducing bottleneck link bandwidth values as the success
rate continuously to increase. We plan to investigate this further with more probe source locations.

Discussion: The results in the multihoming study is quite encouraging in terms validating the
usefulness of Pathneck in understanding the benefit of multihoming as well as the actual benefit.
Similar to overlay routing, Pathneck is extremely useful in making route selection decisions.

7 Related Work

Bandwidth estimation techniques, specifically available bandwidth estimation algorithms [8, 1, 3,
2, 4, 5], measure network throughput, which is very closely related to congestion. However, they
provide no location information for the congestion point. Also, all these tools, except cprobe [8],
need the cooperation of the destination. That makes them very hard to deploy.

Packet loss rate is another metric that is related to user traffic performance, especially for TCP
traffic [24]. Besides tools that can directly measure the network path loss rate, such as Sting [25],
the tool Tulip [26] can accurately pin point the packet loss position.

The tools that are most closely related to Pathneck include Cartouche [27], Packet Tailgat-
ing [28], BFind [7] and pathchar [6]. Cartouche uses a packet train with different packet size to
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measure the bandwidth for any segment of the network path. Packet Tailgating works by setting
the packet interval within the same packet train. It also combines the load packets and measure-
ment packets, but instead of letting measurement packets expire, it lets load packets expire. Both
Cartouche and Packet Tailgating need two end control.

BFind adds a steady UDP flow to the network path, and gradually increases its throughput. At
the same time, traceroute is used to monitor the RTT changes from all the routers on the path. When
the UDP flow throughput approaches the available bandwidth along the path, the RTT from the
source to the bottleneck router is expected to change more significantly than that to non-bottleneck
routers. One of the problems of BFind is that the UDP flow generates a heavy measurement
overhead, which is undesirable for a general purpose probing tool.

Pathchar [6] estimates the capacity of each link on a network path. The main idea is to measure
the data transmission time on each link. This is done by taking the difference between the RTTs
from the source to two adjacent routers. To filter out measurement noises due to factors such as
queueing delay, pathchar needs to send a large number of probing packets, picking out the smallest
RTT values for the final calculation. As a result, pathchar also has a large probing overhead.

Due to the lack of a measurement tool, there is not a lot of analysis on Internet bottlenecks.
We are only aware the analysis in [7], which shows that most of the bottlenecks are in the edge
links and peering links. Due to the limitation of BFind, the results are inconclusive. Pathneck
overcomes many of the limitations in BFind. Based on the large BGP database that we can access,
we can also probe the Internet in a more systematic way, thus giving our analysis a broader scope.

Several studies have shown that overlay routing [17, 20], multi-path routing [29, 30, 31], and
multihoming [32, 33] benefit end user data transmission by reducing the packet loss rate and in-
creasing end-to-end throughput. Their experiments mainly focused on link failure or packet loss.
In contrast, our work takes a complete different angle looking at this problem by identifying the
location of the tightest links and by examining the use of overlay routing and multi-homing to
avoid bottlenecks. Our work shows the benefit of overlay routing and multihoming and suggest
efficient route selection algorithms.

8 Conclusion and Future Work

In this paper, we present a novel light-weight, single-end active probing tool - Pathneck - based
a novel probing technique called Recursive Packet Train (RPT). Pathneck allows end users to effi-
ciently and accurately locate bottleneck points to destinations on the Internet. We show that Path-
neck can successfully detect bottlenecks for over 70% of paths from most of our Internet probing
sources. Based on the extensive Internet measurements we find that over 50% of the bottlenecks
are within a single ISP, and most of the bottlenecks are pretty stable. We also achieve fairly good
performance on the bottleneck inference for those paths where we do not have probing data. With
the bottleneck location information, we also find over half of the overlay routing attempts to avoid
bottlenecks are successful, and multihoming can successfully avoid bottlenecks in over 78% of the
cases.

In this paper, we only analyze some aspects of Internet bottlenecks. There are many other
important research issues we can look at:
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1. The time properties of bottleneck changes. All the results studied in this paper are col-
lected within two weeks. Although we already see some interesting bottleneck dynamics,
we can not make conclusive statement on the dynamic properties yet. We hope to do longer
time scale probing in the future to study this property.

2. The impact of Internet topology on bottleneck locations. We know that the Internet topol-
ogy keeps changing, and it would be very interesting to know how that impacts the bottleneck
positions. Knowing that is very useful for network maintenance planning.

3. Improvement on Pathneck. An attractive feature of Pathneck is its low probing overhead.
It allows us to quickly collect the probing results for a large amount of Internet paths. But in
this paper, we did not study the properties related with the load packet size and the number
of load packets in a RPT. For example, how do they affect the measurement accuracy, and
how to automatically set their value based on different path properties. That will help us to
further reduce the overhead both of the probing itself, and of the management of the probing.
That is the key to make Pathneck a general purpose tool like ping and traceroute.

4. AS-based bottleneck analysis. We treat different tiers of ASes the same in this paper,
focusing on understanding the bottleneck properties in the whole Internet. It would also be
very intriguing to understand the bottleneck properties for different tiers of ASes, and the
difference among different ASes in the same tier.
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