
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Planning in the JAVELIN QA System

Laurie S. Hiyakumoto

May 2004

CMU-CS-04-132^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research has been conducted under the supervision of Jaime G. Carbonell and Manuela M. Veloso. This research was
supported in part by the Advanced Research and Development Activity (ARDA)'s Advanced Question Answering for Intelligence
(AQUAINT) Program under contract MDA908-02-C-0009, and by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under Grant No. F30602-00-2-0549. The content of this publication does not
necessarily reflect the position of the funding agencies and no official endorsement should be inferred.

"\ rslty
; J;!90

Keywords: planning, execution, question-answering, PLEXIS , JAVELIN

Abstract

The Planner Module of the JAVELIN Question-Answering system is responsible for sequencing actions
in the question-answering process and controlling their execution. This document describes the current
implementation of the Planner Module based on the PLEXIS (Planning and Execution for Information
Spaces) planner, the protocols it uses to communicate with the rest of JAVELIN, and the model of the
question-answering process on which planning and execution is based. Instructions for installing and testing
the server are provided, along with a brief discussion of future research directions.

Contents

1 Introduction 3

2 Planner Module Design 4
2.1 Typical System Interaction 4
2.2 The PLEXIS Planning Algorithm 5
2.3 Execution 7
2.4 Termination 7

3 Modeling the QA Process as a Planning Domain 9
3.1 Types 9
3.2 Constants and Objects 9
3.3 Predicates and Features 9
3.4 Metrics 10
3.5 Operators 10
3.6 Domain Functions for Operator Parameter Estimation 11
3.7 Problem Generation 12

4 Communication 14
4.1 Server Protocol 14
4.2 GUI-Planner Commands 14
4.3 Planner-EM Commands 17

5 Installation and Execution Instructions 24
5.1 CVS Directory Organization 24
5.2 Compiling the Planner Module Server 24
5.3 Creating a Configuration File 25
5.4 Running the Planner Module Server 26
5.5 Troubleshooting 27

5.5.1 Exceptions 27
5.5.2 Logfiles 27

5.6 Supplemental Test and Evaluation Scripts 27
5.6.1 p l a n n e r C l i e n t . p i : A Command-line Planner Client 27
5.6.2 dummyEMServer.pl: An EM Server Based on Cached XML 28
5.6.3 a n s w e r O r a c l e . p i : A Submodule for Controlled Evaluation of Planner Behavior 29

5.6.4 b a t c h P l a n n e r T e s t . p i : Batch Test Support for TREC Question Evaluation . . 29

6 Discussion and Future Research Directions 31

A The JAVELIN domain specification: QA. domain 33

B GUI-Planner DTDs and Field Descriptions 40
B.I Question XML sent by the GUI 40
B.2 Answer XML returned by the Planner 41
B.3 Dialog XML sent by the Planner 41
B.4 Load XML sent by the GUI 41

Planner-EM DTDs and Field Descriptions 42
C.I Session ID XML returned by the EM 42
C.2 Execution XML sent by the Planner 42
C.3 Results XML returned by the EM 43
C.4 Object modification request XML sent by the Planner 44
C.5 Planner data XML to be stored in the repository 46
C.6 Batch request XML sent by the Planner 48
C.7 Batch data XML returned by the EM 49

1 Introduction

The goal of a question-answering (QA) system is to provide a user with an appropriate and succinct answer,
given an information request expressed in unrestricted natural language. Systems to date have been remark-
ably successful at answering trivia-type questions (e.g., "Where is Belize located?") employing ad-hoc
combinations of NLP techniques in fixed pipeline architectures. However, such fixed-strategy approaches
are likely to fall short when presented with complex requests involving sequences of related questions and
user-interaction. Indeed, recent work has demonstrated that even for trivia questions, the use of feedback
loops [3] and the incorporation of multiple QA strategies [1,2] can improve performance. Moreover, it is
desirable that future QA systems provide the flexibility to incorporate new NLP tools and knowledge re-
sources as they become available, dynamically selecting the subset whose performance characteristics best
match the current request.

The JAVELIN (Justification-based Answer Valuation through Language Interpretation) system aims to
address these issues by combining a utility-based planner with a modular, object-oriented QA architecture
[4]. As depicted in Figure 1), JAVELIN is implemented as a set of modular QA components, each perform-
ing one of the four major QA processing stages distinguished by the system: question analysis, document
retrieval, answer candidate extraction, and selection of a final answer. The planner serves as the overall
controller, selecting and invoking QA components to maximize the expected utility of the information pro-
duced.

This document describes our initial implementation of JAVELIN's planning component, based on the
PLEXIS (Planning and Execution for Information Spaces) planner. Its focus is the integration of the plan-
ner with the rest of the JAVELIN system: the communication protocols the planner uses, the model of
the question-answering process on which planning and execution is currently based, and instructions for
installing and testing the server. Although a brief overview of the planning and execution algorithm is pro-
vided, this document is not intended as a user-guide or tutorial for PLEXIS ; we expect to address that aspect
of our work in a future publication.

Web
Browser

Answer
Justification

QA process features
and action models

JAVELIN
GUI

question

ack

dialog

response

answer

Domain
Model

Planner

exe

results

store

exe

results

modify

exe

results

Data
Repository

Execution
Manager

process hisiory and data

Retrieval
Strategist

Question
Analyzer

Proximity
Extractor

FST
Extractor

KNN
Extractor

SVM
Extractor

Answer
Generator

Figure 1: The JAVELIN QA architecture.

2 Planner Module Design

The Planner Module operates as a service for the JAVELIN GUI, and communicates with the rest of the
system via the Execution Manager (EM). Internally, it is comprised of two components (Figure 2): the
server interface and the P L E X I S forward-chaining state-space planner. The server implements the QA
domain-specific functionality, handling communication with the GUI and EM and translating information
produced by the QA system into the planner's internal state representation. P L E X I S provides all of the
domain-independent planning and execution functionality. Shared between the two are a domain model of
the QA process, a problem model of the current question, the server's interface to the EM, which is called
by the planner when it needs to execute a step in the plan or save data to the system repository, and an object
database for the current planning session, which the planner uses to look up attributes of the information
state.

QA Components

JAVELIN GUI

I t
Question Answer

XML XML

Execution Manager

1 I
Execute XML Results XML

Server EMInterface

QA domain model
updates

Domain,
Operators

Problem

PlannerOutput

State, ' ,
Action S t a t e ObjectWithFeatures

_ i L ±

BetiefState & State
plan representation

Planner

Object
Database

J
session storage for
numeric & symbolic
features of state
objects

Figure 2: Component and data relationships within the Planner Module. The server component provides the
QA domain-specific functionality, and the PLEXIS planner provides domain-independent planning func-
tionality. Major data classes are identified by boldface sans-serif labels. For clarity, user-interaction dialogs
and EM data storage requests have been omitted.

2.1 Typical System Interaction

Figure 3 presents an event sequence diagram for a typical question-answering interaction between the plan-
ner, the GUI, and the EM (for clarity, data storage requests between the Planner Module and EM are omit-
ted). Upon receiving a new question from the GUI, the Planner Module instructs the EM to call a question
analysis component, and uses the resulting analysis to generate a planning problem describing the initial
state and information goal. Internally, the Planner Module then calls the P L E X I S planner to begin the plan-
ning and execution process, which continues until the goal criteria is met (an answer or set of answers with
sufficiently high expected utility is found), or available resources are exhausted. It then returns the answer
or a failure message to the GUI.

GUI Planner EM
I question

|< — * execution request to QuestionAnalyzer„

analysis results

planning begins

execution request to RetrievalStrategist

retrieval results

| planning state updated

feedback request

user response

planning state updated

execution request to RetrievalStrategist
retrieval results

planning state updated

execution request to FSTExtractor

extraction results

planning state updated

execution request to AnswerGenerator
selection results

planning terminates

Figure 3: A typical question-answering session event diagram. For clarity, EM data storage requests have
been omitted.

Each call made by the Planner Module to the EM represents the execution of a single action in its plan.
The planner specifies which QA component the EM should call, and what data should be used to construct
the component's input. Results are passed back to the Planner Module, and used to revise the internal model
of the information state on which PLEXIS bases subsequent planning decisions.

When PLEXIS is supplied with a model of the QA process that includes user-feedback amongst its
possible actions, it can also choose to gather more information from the user using simple dialogs. A
detailed description of all communication protocols and data passed between the modules is provided in
Section 4.

2.2 The P L E X I S Planning Algorithm

The PLEXIS planner is based on an integrated planning and execution algorithm that performs a best-first
search across belief states, the set of possible states representing the information content the system may
currently possess. The algorithm, presented in Table 1, is supplied with a domain model V of the QA
process, a problem statement defining an initial belief state 7, a utility function U9 an information goal
condition G, a utility threshold 7 , a satisfiability threshold a , and an applicability threshold a . The
domain model defines the set of data features that represent information states and the set of atomic actions,
or operators, the planner has control over. The initial state defines the information (e.g., question attributes)
that is known at the start of the planning session. Collectively, the utility function and thresholds determine
how the planner searches the space and under what conditions it terminates.

PLANANDEXECUTE(D,/,C/,G,7,cr,a)

C <= SUCCESSORS(b/D,[/,a)
p 4= UNEXECUTEDACTIONS(b)

while TRUE

while PROBSATlSFlES(b,[/,G,7,cr) and -i EMPTY(p)
b'<= EXECUTE(POPFRONT(P))

ifREPLAN(b',b,C))
PLANANDExECUTE(£>,b',E/,G,7,cr,a)

else
(b,C) 4= UPDATE(b',b,C)

if PROBS ATISFIES(b,[/,G,7,<7)
return success

else if(EMPTY(C) and EMPTY(p)) orLlMlT()
return failure

else if (CHOOSEEXTEND(b,C,D,C/,a))
b <= CHOOSEBESTONE(C)

C 4= (C - b) U SucCESSORS(b,£>,[/,a)
else

bf<= EXECUTE(POPFRONT(P))

ifREPLAN(b',b,C))
PLANANDEXECUTE(X>,b',[/,G,7,cr,a)

else
(b,C) 4= UPDATE(b',b,C)

Table 1: The PLEXIS planning and execution algorithm.

Beginning with the initial belief state as the root, the algorithm evaluates all successor belief states reach-
able from the current state via a single action and selects the one with the highest expected utility, which is
equal to the weighted sum of the estimated utilities of each state comprising the belief state:

EU(b) = £ P(s)U(s)
sGSTATES(b)

The current belief state is updated to reflect the belief state projected by the SUCCESSORS function, and the
selection process repeats. The actual plan, the sequence of actions that transforms the initial state into the
current belief state, is implicitly maintained within each belief state by storing its generating operator and
parent belief state.

A pictorial view of what happens during a single step of the belief state projection process is presented
in Figure 4. The SUCCESSORS function simulates every possible effect eja. that operator a\ may have when
applied to every state within the current belief state b. The resulting belief state b ' consists of all possible
outcome states (possibly contradictory) and their associated likelihoods.

= P(Sj)P(eJai)

= P(s2) P(eIa.)

P(s6) = P(s2) P(e2a.)

Figure 4: A pictorial view of the belief state projection process.

2.3 Execution

At each step, the PLEXIS algorithm considers the trade-off between executing the first unexecuted action
in the plan and continuing to plan with the uncertain outcomes of the projected belief states. If execution is
chosen, it is followed by an update of the information state and an assessment of the need for replanning.

The main advantage of interleaving execution is that it can provide additional information about how
well the information-gathering process is going, reducing the uncertainty and the number of possible states
the planner must consider during forward projection. It may also allow the planner to terminate earlier if it
discovers the true information state was much better than its original projections. The main disadvantage
of early execution is that resources (e.g., time) cannot be recovered once they are consumed, potentially
leading to a less useful result than if planning had continued. In the worst case, where resources are severely
limited, executing steps without sufficient look-ahead could result in failure to find any solution because the
resources are no longer available to complete the task.

Currently, the Planner Module runs PLEXIS with a reactive execution strategy: each step is executed
immediately after its addition to the plan. Our rationale for making this simplification was twofold. First,
in this initial development phase we have been concerned primarily with improving the quality of answers
produced rather than the cost of producing them. Executing after each step provides the planner with the
maximum amount of information possible during the decision-making process. Second, executing after each
step eliminated the need for replanning decisions, enabling us to defer development of a suitable model to a
later date.

2.4 Termination

Planning terminates when one of the following three conditions is met: all steps in the plan have been
executed and the resulting information state meets the goal satisfaction criteria; the process hits a predefined
search limit (e.g., a time limit); or there are no additional planning or execution actions PLEXIS can perform.
Note that satisfying the goal criteria does not guarantee the system has produced a correct answer. It only
means that the model in use by the Planner Module predicts the answer is correct. Figure 5 presents two
plans produced and executed by the Planner Module illustrating this point and demonstrating the planner's
ability to produce different plans.

Q: What movie won the Academy Award for best picture in 1989?
A: Driving Miss Daisy (correct)

<retrieve_documents DS6024 RO6637>

<extract_SVM_candidate_fills FS18637 RO6637 DS6024>

<rank_candidates AL5184 RO6637 FS18637>

<check_answers A5046 AL5184 Q2694>

Q: In which country is Timbuktu?
A: Japan (wrong)

<retrieve_documents DS6265 RO6880>

<extract_FST_candidate_fills FS21076 RO6880 DS6265>

<extract_SVM_candidate_fills FS21080 RO6880 DS6265>

<rank_candidates AL5420 RO6880 FS21080>

<extract_Light_candidate_fills FS21085 RO6880 DS6265>

<rank_candidates AL5421 RO6880 FS21085>

<extract_KNN_candidate_fills FS21087 RO6880 DS6265>

<rank_candidates AL5422 RO6880 FS21087>

<check_answers A5268 AL5422 Q3618>

Figure 5: Action sequences generated and executed by the JAVELIN Planner Module.

3 Modeling the QA Process as a Planning Domain

This section describes the components of the current JAVELIN QA planning domain model: the types of
manipulable objects and resources defined, the relationships and features of objects used to model the pos-
sible information states, and the actions representing calls to the individual components of the QA system.
Collectively, it defines a world model for the task of interest (i.e., a model of the question-answering pro-
cess), capturing characteristics common to all problem-solving sessions within the domain. A copy of a
sample domain file for the JAVELIN QA system is provided in Appendix A.

3.1 Types

Types define the categories of objects created and manipulated by the QA process, plus four types automat-
ically defined by PLEXIS for all domains: a generic toptype that serves as the root for all closed-class sets
of objects, and a separate three-class hierarchy for numeric values consisting of fluent, int, and float. Each
type may have one or more subtypes, defining category specializations. These parent-child relationships are
equivalent to ISA relations. For example, any organization-name ISA proper-name.

Figure 6 presents a partial listing of the type hierarchy implemented for the JAVELIN QA domain. In
addition to defining the major data objects produced by the system, it also incorporates the system-wide
question type (as subtypes of qtype) and answer type hierarchies (as subtypes of atype).

3.2 Constants and Objects

Every information state of a planning problem may contain specific objects, instances of a particular type,
identified by a unique id. They define the session-specific data used as input to or created as the product a
particular action. For example, a specific document set instance may be denoted as docset DS123. Constants
denote special, persistent objects in the planning domain. They are present in all information states of the
planning session, and although they can influence the decisions made, they are neither created nor destroyed
by the actions taken.

3.3 Predicates and Features

Predicates define data relationships (e.g., denoting which document set produced a particular answer can-
didate) and features of the question context and process that we wish to track (e.g., whether or not a ses-
sion is interactive, and the network availability of a particular module). Each predicate is defined in terms

toptype—

I— question
|— entity
I— relationship
I— location

— atype — i— person-name
I—proper-name—

I— organization-name
— docset
— fillset
— anslist

I— int
fluent-j

float

Figure 6: Partial type hierarchy for JAVELIN. The three numeric types (fluent, int, float) and toptype are
automatically defined by the PLEXIS planner.

of the relation it represents, and a list of typed arguments (possibly empty), declaring the classes of ob-
jects that may possess the relationship. For example, the predicate (c a n d i d a t e - f i l l s ? f i l l s e t
?qtype ?docset ? ix-name) is used to track which document set (?docset), question analysis ob-
ject (?qtype) and extractor version (?qtype) were used to create a particular set of answer candidates
(?fillset).

Features are similar to predicates, but define only intra-object characteristics rather than inter-object
relationships. For example, every docset is defined to possess a min_docs . r e q u e s t e d feature of type int.
The rationale behind this representation was that it would reduce the complexity of the state representation:
rather than explicitly enumerating all features of each object in the state, this construct enables them to be
implicitly maintained and defined in terms of referring expressions. However, it should be noted that the
current PLEXIS implementation doesn't correctly postulate features for projected objects (it is only aware
of features of objects that actually exist). Consequently, this construct can only be used in the domain model
if the planner executes after every planning step.

3.4 Metrics

In contrast to predicates and features, which define object-level relationships and characteristics, metrics de-
fine state-level system resources and information quality estimates based on all information objects present
in the state. Their primary role is to serve as the arguments to the utility function used to estimate the
state's information utility. The JAVELIN QA domain currently defines five metrics: SYSTEM TIME, RE-
QUEST_QUALITY, DOCSET_QUALITY, FILLSET.QUALITY, and ANSWER_QUALITY.

3.5 Operators

Operators define the set of QA processing actions that the Planner Module can control. As illustrated by the
sample retrieval operator in Figure 7, each operator consists of preconditions, a set of dynamic bindings, a set
of probabilistic effects, and an execution specification. Preconditions are logical expressions describing the
predicates and metric value constraints that must hold before an operator is considered applicable in a state.
Dynamic bindings define variables in the effects sets whose values are determined at run-time and depend
on attributes of the state in which the action is applied. Probabilistic effects define all possible changes to
the information state the operator may enact, in terms of its effects on predicates and metric values.

Currently, the Planner Module's domain defines a single operator for each QA component subsequent to
question analysis, an additional check_answer operator used to compare the answer's confidence against a
predefined confidence threshold, and three experimental operators to request feedback. The names of each
operator are listed in Table 2. Our choice of operator set was driven primarily by an interest in evaluating
system performance at the component-level. With this operator set, we can use the Planner Module to
dynamically select one or more of the four extraction components using a model of their relative success
rate for different types of questions.

It is important to recognize this is not the only set of operators that can be used to represent the JAVELIN
system. We could choose to give the planner finer-grained control with operators corresponding to different
parameter settings for a component (e.g., defining a separate retrieval operator for each different retrieval
method available). We could also choose to give the planner less control by defining macro operators that
call sequences of modules. Deciding what is appropriate depends primarily on: whether the operators result
in different outcomes that we care about distinguishing between; and whether we can identify appropriate
state features that reliably predict the context in which each operator should be used.

10

(: action RETRIEVE-DOCUMENTS
:param (?q - question Pro - qtype)
rprecond (and (request ?q ?ro)

(not (no_docs_found Pro))
(not (exists (?d - docset)

(retrieved.docs ?d Pro)))
(> (extracted.terms Pro) 0)
(> request_quality 0))

:dbind (Pdocs (genDocsetID)
Pdur (estTimeRS (expected.atype Pro))
Ppnone (probNoDocs Pro)
Ppgood (probDocsHaveAns Pro)
Ppbad (probDocsNoAns Pro)
Pdqual (estDocsetQual Pro))

:peffect (Ppnone ((no_docs-found Pro)
(scale-down request .quali ty 2)
(assign docset.quality 0)
(increase system_time Pdur))

Ppgood ((retrieved_docs Pdocs Pro)
(assign docset.quality Pdqual)
(increase system.time Pdur))

Ppbad ((retrieved_docs Pdocs Pro)
(scale-down request .quali ty 2)
(assign docset.quality 0)
(increase system_time Pdur)))

:execute (Retr ievalStrategis t Pdocs Pro 10 15 300))

Figure 7: Sample document retrieval operator.

RETRIEVE_DOCUMENTS
EXTRACT_KNN_CANDIDATEJF1LLS
EXTRACT_FST_CANDIDATE_FILLS
EXTRACTJLIGHT_CANDIDATE_FILLS
EXTRACT_SVM_CANDIDATE_FILLS
RANKXANDIDATES
CHECK_ANSWERS
RESPOND_TO_USER
ASK_USER_FOR_ANSWER_TYPE
ASK.USER_FOR_MORE_KEYWORDS

Table 2: Summary of the operators currently used by the Planner Module to control the JAVELIN QA

system.

3.6 Domain Functions for Operator Parameter Estimation

Dynamic bindings for variables in the operator effects are provided via a set of predefined domain functions.

Prototypes of these functions are declared as part of the domain specification (loaded at run-time). The func-

tions implementations themselves, however, must be provided when the Planner Module server is compiled.

11

Function prototypes declare argument and return types, and are used to perform simple type-checking of the
domain operators that make use of them. All domain functions are currently implemented as C++ functions
that inherit from a common DomainFunction class.

3,7 Problem Generation

For each new question it receives, the Planner Module must construct a new problem instance to seed
the planning process. It does so by translating the output of the question analysis into a question-specific
problem statement composed of: an initial state, a utility function U(s)9 a minimum goal utility threshold
Gthresh for successful termination, a minimum satisfiability threshold S'thresh, and an optional symbolic
goal condition that must hold in the final state. The initial state defines the set of information objects that
exist, the literals (instantiated predicates) that are currently true, and the initial values of each metric. The
utility function defines the relative importance of each metric and resource, and is used to estimate progress
towards the user's information goal. To be useful, the utility function must define values consistent with the
user's underlying preferences, correctly mapping goal states to high utility values and non-goal states to low
values.

Utility functions are defined in the PLEXIS domain language as weighted combinations of functions for
individual metric values m in the domain, each of which produces a normalized value between zero and
one:

U(s) = ^

The utility threshold Gthresh specifies the minimum utility value required for a solution. Any executed
sequence with a utility value greater than this is assumed to have achieved the goals. The satisfiability
threshold defines how confident the planner must be that the current belief state actually satisfies the goal
condition.

A sample problem statement is shown in Figure 8. The : u t i l - f u n c t i o n s declaration specifies
which domain functions to call to produce normalized metric values, and the : u t i l declaration determines
the relative weight to assign to each constituent of the utility function. Currently, the Planner Module only
knows how to generate problem statements that have this general form (e.g., it can only generate a single
goal for a question; it does not know how to automatically decompose a question into multiple subgoals).
The only components of the statement that vary from one question to the next are the literals and types of
objects included in the initial state, and the threshold values to use.

12

(define (problem QA_test.problem)
(:util-functions (QA_fn RE QUEST-QUALITY)

(RS.fn DOCSET.QUALITY)
(RF.fn FILLSET.QUALITY)
(AG_fn ANSWER-QUALITY)
(ST.fn SYSTEM-TIME))

(:objects QO - question
ROO - entity)

(: init-state (1.0 (interactive-session)
(request QO ROO)
(expected_ans-format QO ranked)
(SYSTEM-TIME 1.1)
(REQUEST-QUALITY 0.4)
(DOCSET-QUALITY 0.0)
(FILLSET-QUALITY 0.0)
(ANSWER-QUALITY 0.0))

(:util (1 QA_fn)
(3 RS.fn)
(4 RF.fn)
(6 AG_fn)
(3 ST_fn))

(:Sthresh 0.9)
(:Gthresh 0.1)

(:goal (exists (?a - atype ?al - anslist)
(satisfies Q0 ?a Pal))))

Figure 8: Sample problem statement.

13

4 Communication

The Planner Module communicates with both the GUI and Execution Manager via TCP/IP sockets. This
section describes the commands currently supported by the Planner Module and provides examples of their
use. Formal specifications of all XML data can be found in Appendices B and C.

4.1 Server Protocol

The basic communication protocol used by the Planner, EM, and GUI consists of ASCII text messages
prefixed by the number of bytes in the message and a single space:

<#bytes> <message>

The space serves as a delimiter and is not included in the byte count (e.g., the message 'OK' would be sent
as 42 OK'). Each message consists of a single uppercase word denoting a command, possibly followed by a
single space and plain text or XML data, depending on the command:

<message> := <command>(<data>)l

4.2 GUI-Planner Commands

Communication between the GUI and Planner Module consists of three types of exchanges: question pro-
cessing, user feedback, and general process and planning task control. Table 3 summarizes the GUI com-
mands currently recognized by the Planner and the contexts in which they are valid. Table 4 lists responses
the Planner may return to the GUI and the contexts in which they occur. Many of these commands can be
issued asynchronously (e.g., a single question command from the GUI typically receives multiple messages
from the Planner during the course of generating an answer). Consequently, it is assumed that both the GUI
and the Planner regularly poll their communication ports for new data.

COMMAND

QUESTION <question XML>

RESPONSE <response text>

PAUSE
RESUME

QUIT
STOP

STATUS

LOAD <loadxml>

RUN

DESCRIPTION

Initiate a question-answering session with
the Planner
Provide a response to a Planner dialog

Pause Planner processing
Resume the Planner processing when
paused
Stop the current planning session
Stop the current question-answering pro-
cess (if any) and restore the Planner to the
ready state (does not terminate the planning
session)
Request Planner status and parameter set-
tings.
Change the current domain or problem in
the Planner's working memory
Start planning and execution process on the
domain and problem currently in working
memory

CONTEXT

Valid when the Planner is not currently working
on another question.
Valid when the Planner has issued a dialog to the
GUI and is waiting for a response.
Valid at any point in the session.
Valid if the Planner is currently paused.

Valid at any point in the session.
Valid at any point in the session.

Valid at any point in the session.

Valid when the Planner is not currently working
on a question.
Valid only when the Planner is not working on an-
other question and when both a domain and prob-
lem have previously been loaded.

Table 3: GUI inputs supported by the Planner Module

14

COMMAND DESCRIPTION CONTEXT

OK

ERROR <errortext>

STATUS <status text>
ANSWER <answerXML>

DIALOG <dialog XML>

Acknowledge request receipt and initia-
tion of processing

Signal an error condition caused by in-
valid GUI input or a planning or execu-
tion failure (e.g., a module is down)
Displays Planner status and settings.
Return an answer to the GUI

Request user input in the form of a
yes/no, multiple-choice, or free text
query

Issued in response to QUESTION, LOAD, and
RUN requests, or PAUSE, RESUME and STOP
control messages.
May be issued during an active question-
answering session or in response to a GUI com-
mand.
Issued in response to a STATUS request.
Issued at the end of an active question-answering
session. Returning this to the GUI entails the
Planner is again available to service new requests.
May be issued when a question-answering session
is active and running in interactive mode.

Table 4: Responses and requests returned by the Planner Module to the GUI

Question Processing A sample question-answering exchange is illustrated in Figure 9. The GUI initiates
a question-answering session with the Planner by issuing a 'QUESTION' command followed by XML
data. The question XML contains the text of the user's question and optional user-defined values for several
system parameters.1 If the Planner is available to service the request, it will respond immediately with 'OK'.
Otherwise, it will return an 'ERROR' command, followed by a plain text message describing the reason for
failure. If the 'log' attribute is included in the request, the Planner will write (plain text) diagnostic messages
to the specified host and port during the question-answering session. Otherwise, the Planner will not provide
any diagnostic feedback to the GUI. The 'collection' argument enables the user to specify which document
collection to search for an answer. If omitted, the default document collection of the RetrievalStrategist will
be used. The two thresholds and time limit set termination criteria for the planner.

After a question request has been initiated and acknowledged, the Planner will construct and execute
a plan to produce an answer. Upon completing this process, it returns an 'ANSWER' command followed
by answer XML containing the data repository id assigned to the question and an ordered list of answers

'Besides those shown in the question example, several additional attributes (used for test-purposes) are recognized by the
Planner. These attributes are documented in Appendix B.

GUI: QUESTION <ANSWERQUESTION type ='new' interactive^true' log='128.2.Ill.11:1111'
collection^ TREC utility-thresh='0.7' success-thresh='0.8'
time='600'><![CDATA[What year did the Titanic sink?]]></ANSWERQUESTION>

75623">April 14, 1912</ANSWER>
69612">May 27, 1941</ANSWER>
28777">May 24, 1941</ANSWER>
21414">October</ANSWER>
1912 8">1985</ANSWER>
10506">November</ANSWER>
010 94">July</ANSWER>
>1954</ANSWER>

Planner:

Planner:

OK

ANSWER <ANSWERLIST question_id="73945
<ANSWER
<ANSWER
<ANSWER
<ANSWER
<ANSWER
<ANSWER
<ANSWER
<ANSWER

id=
id=
id=
id=
id=
id=
id=
id=

</ANSWERLIST>

"1656111"
"1656112"
"1656113"
"1656114"
"1656115"
"1656116"
"1656117"
"1656118"

confidence="
confidence="
confidence="
confidence="
confidence="
confidence="
confidence="
confidence="

0.
0.
0.
0.
0.
0.
0.
0"

Figure 9: Sample XML illustrating a GUI question request and subsequent responses returned by the Planner
Module.

15

Planner: DIALOG <DIALOG type='yes/no' default='no'>
<QUESTION>

JAVELIN has interpreted your question as a request for a single answer.
Is this correct?
</QUESTION>

</DIALOG>

GUI: RESPONSE Yes

Planner: <DIALOG type='multiple-choice' def ault='object7 >
<QUESTION>Please select the answer category that best matches the infor-

mation you are seeking.</QUESTION>
<CHOICE>object</CHOICE>
<CHOICE>temporal</CHOICE>
<CHOICE>location</CHOICE>
<CHOICE>proper-name</CHOICE>
<CHOICE>person-name</CHOICE>
<CHOICE>organization-name</CHOICE>

</DIALOG>

GUI: RESPONSE temporal

Planner: <DIALOG type='text'>
<QUESTION>Current query terms are 'Titanic' 'sink'. Please enter an

additional term (or leave blank if there are no additions).</QUESTION>
</DIALOG>

GUI: RESPONSE iceberg

Figure 10: Examples of planner-initiated dialogs.

(possibly empty), their associated repository ids, and confidence scores. Return of an answer also signals
that the Planner is again available to service new questions from the GUI.

Feedback If the question-answering session is running in interactive mode, the Planner may issue 'DI-
ALOG' commands to the GUI, requesting user feedback (Figure 10). A dialog command is accompanied
by XML data specifying the type and content of the feedback request. Supported types consist of yes/no
questions, multiple-choice questions, and requests for textual input. Both yes/no and multiple-choice di-
alogs also provide default responses. The GUI displays the received dialog to the user, and returns the user's
response to the Planner via a 'RESPONSE' command followed by the text of the user's reply.

Process Control 'PAUSE', 'STOP', and 'QUIT' commands will suspend the Planner, abort the current
question process, or abort the session, respectively. The Planner Module will acknowledge 'PAUSE' and
'STOP' commands with 'OK' or return an 'ERROR' message if it is unable to comply with the request.
When paused, the session can be resumed by sending a 'RESUME' command to the Planner. No ac-
knowledgments or error messages are sent in response to a 'QUIT' request, and there are no provisions for
resuming a stopped question process or terminated session. The GUI may also retrieve the server status and
parameter settings at any point in time via the 'STATUS' command.

Planning Task Control 'LOAD' commands enable the GUI to change the current domain or problem in
the Planner's working memory (Figure 11). The Planner reads in the domain or problem specification from
the file provided in the load XML, and responds to the GUI with 'OK' or an 'ERROR' message if it cannot
complete the request. The Planner first looks for the filename as given, but failing that, it also looks for a

16

GUI: LOAD <DOMAINFILE>/usrO/javelin/sandbox/javelin/planner/server/QA.domain</DOMAINFILE>

Planner: OK

GUI: LOAD <PROBLEMFILE>Trec_ql.problem</PROBLEMFILE>

Planner: OK

GUI: RUN

Planner: OK

Figure 11: Loading and running a planning domain and problem.

file of that name with respect to the default domain search path $ JAVELIN J lOOT/planner /domains .
If both a domain and problem are currently defined, the Planner can then be invoked using the 'RUN'
command.2

4.3 Planner-EM Commands

The Planner calls the EM to execute specific actions in the QA process, to modify information objects, and
to store planning data in the repository for later use. Unlike communication between the GUI and Planner
Module, communication between the Planner and EM always consists of single request-response pairs.
Table 5 summarizes the commands used by the Planner for these tasks, along with the replies it expects the
EM to return.

Session ID Management At any given point in time, there may be multiple copies of the Planner server
sharing an Execution Manager and QA system. In order to ensure a unique correspondence between repos-
itory ids and planner ids of information objects, the Planner obtains a unique numeric session id from the

2 Although implemented, the 'RUN' command is not functional because the Planner Module does not currently support execution
initiated with data read from a static problem file, only via problem statements dynamically generated from question input.

COMMAND

GETID

EXECUTE <execution XML>

STORE <planner data XML>

MODIFY <modifi cation XML>

BATCH <batch request XML>

DESCRIPTION

Request a new session id from the
repository
Call one of the QA modules using
the specified data as input
Save planning state information
in the repository
Modify/update an information
object in the repository
Perform a data storage operation
related to a Planner batch test

EM RESPONSE

NEWID <planner id XML>
ERROR <error text>
RESULTS <results XML>
ERROR <error text>
OK
ERROR <error text>
OK
ERROR <error text>
SAVED <batch data XML>
ERROR <error text>

or

or

or

or

or

Table 5: Commands issued by the Planner Module and corresponding responses returned by the Execution
Manager.

17

Planner: GET ID

EM: NEWID <PlannerID id="2 331">

Figure 12: A Planner request for a session id.

EM at the start of each planning session, which is then included on all data the Planner produces during the
session. Within a session, the Planner is responsible for ensuring any information object ids it generates are
unique, but these planner-generated ids need not be unique between sessions. We define a planning session
as any sequence of planning and execution steps performed by a single Planner instance that we wish to
group together (for a typical trivia-type question, this translates to a new session id for each question, while
both complex and contextual questions will typically have multiple questions associated with a single ses-
sion). The Planner obtains this session ID by issuing a 'GETID' command, to which the EM responds with
'NEWID' followed by XML containing the numeric identifier (Figure 12).

Execution Control The Planner maintains an abstract representation of the information state and is un-
aware of the details required to actually call the individual QA modules. To execute an action, the Planner
relies on the Execution Manager to reconstruct the input required by the QA module, supplying it only with
the planner repository ids for the information objects to use as inputs, a new planner repository id for each in-
formation object the planner expects the execution to create, and module-specific arguments and constraints
(e.g., upper bounds on execution time, the minimum and maximum number of documents to retrieve). Once
the EM has called the appropriate QA module and received a response, it will construct a reply to send back
to the Planner using a 'RESULTS' message followed by XML data. With the exception of output from
calls to the AnswerGenerator, the results XML is just the raw XML output produced by the QA module,
wrapped within a pair of 'Results' tags and annotated with the EM's processing time (in seconds), plus the
session and exeid of the EXECUTE request it is in response to. AnswerGenerator XML output is modified
to include the data repository ids assigned to each answer.3 If an error condition occurs (e.g., the requested
QA module does not respond), then the EM returns an 'ERROR' message followed by a text description of
the failure. Note that error conditions do not include module exceptions, which are treated as results.

Figure 13 illustrates a sample execution call to the document retrieval module (RS) and the response
returned by the Execution Manager. The Planner has instructed the EM to call the RS using the RequestOb-
ject with a planner id of 'RO4695' as input. It has also specified that the RS should retrieve between 10-15
documents from the 'AQUAINT collection within a time limit of 300 seconds. The DocumentSet produced
by this call will be saved in the system repository by the EM under planner id 'DS4475'.

Data Storage The Planner issues 'STORE' requests to save three types of planning process information
in the Repository: the initial planning problem, the outcome of a planning step (any new candidate actions
that are generated and the action the Planner has chosen to add to the current partial plan), and outcomes of
executing actions in the plan. Each is formatted in XML distinguished by the outermost tags: initial state
information is contained within 'InitialState' tags, planning step information is contained within 'Planning-
Step' tags, and execution outcome information is contained within 'ExecutionOutcome' tags. Examples of
each are presented in Figures 14 through 16.

3The Planner passes this information along with any answers it returns to the GUI, enabling the GUI to create hyperlinks
between the answers and their source.

18

Planner: EXECUTE <Execute vers ion="0.3" exe_id="17 975" session_id="6044">
<Command name="Retr ievalStrategis t">

<As s igns obj ect ="Document Set">DS4 4 7 5 </As s igns >
<Arg name="Collection">AQUAINT</Arg>
<Arg name="Maxdoc">15</Arg>
<Arg name="Mindoc">10</Arg>
<Arg name="RequestObject">RO4 6 95</Arg>
<Arg name="Time">300</Arg>

</Command></Execute >

EM: RESULTS <Results version="0.3" exe_id="17975" session_id="6044" EM_time="l">
<RetrievalStrategist version="2.1" status="OK">
<ResourceStats>

<Time unit="sec">6.55</Time>
</ResourceStats>
<RequestObject id="15552"/>
<Constraints>
<Source>AQUAINT</Source>
<Mindoc>10</Mindoc>
<Maxdoc >15 </Maxdoc >

</Constraints>
<DocumentSet>

<Document source="AQUAINT" trecID="NYT19990721.0145" docID="405900"
score="0.52831">
<Query>#UW10(book #3(rachel carson) 1962 write *work_of_art)</Query>

</Document>
<Document source="AQUAINT" trecID="NYT19990811.0149" docID="413653"
score="0.605419">
<Query>#UW10(#3(rachel carson) 1962 write *work_of_art)</Query>

</Document>
<Document source="AQUAINT" trecID="NYT19990901.0198" docID="421374"
score="0.507894">
<Query>#UW10(#3(rachel carson) 1962 write *work_of_art)</Query>

</Document>

<Document source="AQUAINT" trecID="NYT19991230.0073" docID="462648"
score="0.4 92 014">
<Query>#UW10(#3(rachel carson) 1962)</Query>

</Document>
</DocumentSet>
</RetrievalStrategist></Results>

Figure 13: A call to retrieve documents from the RetrievalStrategist. Results have been truncated to conserve
space.

Object Modification To modify an information object (e.g., to revise the contents of a document set), the
Planner issues a 'MODIFY' request accompanied with XML describing the object to be changed, and the
change to make (Figure 17). This function is used when we have additional information, such as feedback
from the user, that must be incorporated into the information state. All modifications are made by cloning
the objects to maintain traceability in the Repository.

19

Planner: STORE <InitialState version="0.1" question_id="15553" session_id="6044">
<Action id="A0">
<![CDATA[INITIALIZE QuestionAnalyzer RO4695 180

'What book did Rachel Carson write in 1962?']]>
</Action>
<BeliefState id="B89">

<State id ="S202" prob="l" util="0.130831">
<MetricSet>

<Metric name="ANSWER_QUALITY" value="0"/>
<Metric name="DOCSET_QUALITY" value="0"/>
<Metric name=nFILLSET_QUALITY" value=n0"/>
<Metric name="REQUEST_QUALITY" value="0.4"/>
<Metric name="SYSTEM_TIME" value="15.765"/>

</MetricSet>
<Objects>RO4695:entity,NEW:context,RANKED:aformat,Q15553 :question,
DICT:ix-name,DT:ix-name,FST:ix-name,KNN:ix-name,LIGHT:ix-name,SVM:ix-name
</Objects>
<Literals>(expected_ans_format RANKED),(request Q15553 RO4695)</Literals>
</State>

</BeliefState>
<Goal Gthresh="0.1" Sthresh="0.1">(exists (?a:atype ?al:anslist)
(satisfies Q15553rquestion ?a:atype ?al:anslist))</Goal>

<UtilityFunction>
<Function name="AG_fn" param="ANSWER_QUALITY" weight="0.333333"/>
<Function name="QA_fn" param="REQUEST_QUALITY" weight="0.0952381"/>
<Function name="RF_fn" param="FILLSET_QUALITY" weight="0.285714"/>
<Function name="RS_fn" param="DOCSET_QUALITY" weight="0.190476"/>
<Function name="ST_fn" param="SYSTEM_TIME" weight="0.0952381"/>

</UtilityFunction>
</lnitialState>

EM: OK

Figure 14: Sample InitialState XML. Object fields are truncated to conserve space.

20

Planner: STORE <PlanningStep version="0 . 1 " session_id="6044 ">
<CandidateAction applicable_in="B89" EU="0.176704">

<Action id="A61">RETRIEVE_DOCUMENTS
RetrievalStrategist DS4475 RO4695 10 15 300</Action>
<BeliefState id="B90">
<State id ="S203" prob="0.2" util="0.110037">
<MetricSet>
<Metric name="ANSWER_QUALITY" value="0"/>
<Metric name="DOCSET_QUALITY" value="0"/>
<Metric name="FILLSET_QUALITY" value="0"/>
<Metric name=nREQUEST_QUALITY" value="0.2"/>
<Metric name="SYSTEM_TIME" value="26.765"/>
</MetricSet>
<Objects>R04695:entity,NEW:context,RANKED:aformat,...,Q15553 :question,
DS4475 :docset,DICT:ix-name,DT:ix-name, FST:ix-name, KNN: ix-name,
LIGHT:ix-name,SVM:ix-name</Objects>
<Literals>(expected_ans_format RANKED),(request Q15553 RO4695),
(retrieved_docs DS4475 RO4695)</Literals>

</State>
<State id ="S204" prob="0.7" util="0.205275">
<MetricSet>
<Metric name="ANSWER_QUALITY" value="0"/>
<Metric name="DOCSET_QUALITY" value="0.4"/>
<Metric name="FILLSET_QUALITY" value="0"/>
<Metric name="REQUEST_QUALITY" value="0.4"/>
<Metric name="SYSTEM_TIME" value="26.765"/>
</MetricSet>
<Objects>RO4695:entity,NEW:context,RANKED:aformat,...,Q15553:question,
DS4475:docset,DICT:ix-name,DT:ix-name,FST:ix-name,KNN:ix-name,
LIGHT:ix-name,SVM:ix-name</Objects>
<Literals>(expected_ans_format RANKED),(request Q15553 RO4695),
(retrieved_docs DS4475 RO4695)</Literals>

</State>
<State id ="S205" prob="0.1" util="0.110037">
<MetricSet>
<Metric name="ANSWER_QUALITY" value="0"/>
<Metric name="DOCSET_QUALITY" value="0"/>
<Metric name="FILLSET_QUALITY" value="0"/>
<Metric name="REQUEST_QUALITY" value="0.2"/>
<Metric name="SYSTEM_TIME" value="26.765"/>
</MetricSet>
<Objects>RO4 695:entity,NEW:context,RANKED:aformat,...,Q15553:question,
DICT:ix-name,DT:ix-name,FST:ix-name,KNN:ix-name,LIGHT:ix-name,
SVM:ix-name</Objects>
<Literals>(expected_ans_format RANKED),(request Q15553 RO4695),
(no_docs_found RO4695)</Literals>

</State>
</BeliefState>

</CandidateAction>
<0utcome status="OK" addedToPlan="A61"/>

</PlanningStep>

EM: OK

Figure 15: Sample PlanningStep XML. Object fields are truncated to conserve space.

21

Planner: STORE <ExecutionOutcome version="0.1" exe_id="17 975" applied_to="B8 9" ses-
sion_id="6044">
<Action id="A61">RETRIEVE_DOCUMENTS RetrievalStrategist DS4475 RO4695 10 15 300</Action>
<BeliefState id="B91">
<State id ="S206" prob="l" util="0.225029">
<MetricSet>

<Metric name="ANSWER_QUALITYn value="0"/>
<Metric name="DOCSET_QUALITY" value="0.5"/>
<Metric name=MFILLSET_QUALITY" value="0"/>
<Metric name="REQUEST_QUALITY" value="0.4"/>
<Metric name="SYSTEM_TIME" value="22.315"/>

</MetricSet>
<Objects>RO4695:entity,NEW:context,RANKEDraformat,...,Q15553:question,
DS4475:docset,DICT:ix-name,DT:ix-name,FST:ix-name,KNN:ix-name,LIGHT:ix-name,
SVM:ix-name</Objects>
<Literals>(expected_ans_format RANKED),(request Q15553 RO4695),
(retrieved_docs DS4475 RO4695)</Literals>

</State>
</BeliefState>

</ExecutionOutcome>

EM: OK

Figure 16: Sample ExecutionOutcome XML. Object fields are truncated to conserve space.

Planner: MODIFY <ObjectModif ication version="0 . 3" session_id="lll">
<ObjectToUpdate type="RequestObject" id="RO4 52" newid="RO453">
<Replace><AnswerType confidence="0.9">numeric</AnswerType></Replace>
<Replace><QuestionType confidence="0.9">entity</QuestionType></Replace>
<Remove><Keyword type="word">inhabitants</Keywordx/Remove>
<Add><Keyword type="word">people</Keyword></Add>
<RequirexKeyword type="proper">Ushuaia</Keyword></Require>

</ObjectToUpdate>
</ObjectModification>

EM: OK

Planner: MODIFY <ObjectModif ication version="0 . 3" session_id="lll">
<ObjectToUpdate type="DocumentSet" id="DS123" newid="DS124">

<ReplacexDocument trecID="FT922-7671" confidence="l.0" /></Replace>
<RemovexDocument trecID="FT933-12217" confidence="0.458005" /></Remove>

</ObjectToUpdate>
</ObjectModification>

EM: OK

Planner: MODIFY <ObjectModif ication version="0 . 3" session_id="lll">
<ObjectToUpdate type="RequestFillSet" id="FS234" newid="FS235">
<ReplacexRequestFill id="1234" confidence="0.9" /></Replace>
<RemovexRequestFill id="1235" confidence="0.223" /></Remove>

</ObjectToUpdate>
</ObjectModification>

EM: OK

Figure 17: Sample object modification XML illustrating changes to a RequestObject, DocumentSet, and
RequestFillSet.

22

Planner: BATCH < B a t c h R e q u e s t v e r s i o n = " 0 . l " >
<Command name="Initialize">

<Arg name="TestCategory">Location</Arg>
</Command>

</BatchRequest>

EM: SAVED <BatchData version="0.l">

<BatchDir>/usrO/htdocs/javelin/Planner/0402_6 01</BatchDir>

</BatchData>

Planner: BATCH < B a t c h R e q u e s t v e r s i o n = " 0 . l " >
<Command name="StartQuestion">
<Arg name="TrecID">lll</Arg>

</Command>
</BatchRequest>

EM: SAVED

Planner: BATCH <BatchRequest version="0.1">
<Command name="EndQuestion"></Command>

</BatchRequest>

EM: SAVED <BatchData version="0.l">
<CachedXMLs>
<File>QA_Input_qlll_rol2345.txt</File>
<File>QA_Output_qlll_rol2345.txt</File>

</CachedXMLs>
</BatchData>

Planner: BATCH <BatchRequest version="0 . l">
<Command name="Terminate">

<Arg name="MRR">0.25</Arg>
<Arg name="TrecScore">0.15</Arg>
<Arg name="QuestionFile">questions.PL001</Arg>
<Arg name="DomainFile">QA.domain.PLO01</Arg>
<Arg name="Description"><![CDATA[Test description]]></Arg>

</Command>
</BatchRequest>

EM: SAVED

Figure 18: Sample batch test exchanges with the EM illustrating test initialization, the start and end of a
question within the test, and test termination.

Batch Test Data Storage The Execution Manager handles Repository storage of Planner batch test results
and local caching of data created during these tests via the 'BATCH' command. Each 'BATCH' command is
issued with a single XML-formatted request. There are currently four types of batch requests recognized by
the EM: test initialization, test termination, and requests signaling the start and end of individual questions
within the batch test (Figure 18). The EM will respond to these commands with a 'SAVED' message if the
request was successfully carried out, or (as with all other commands) an 'ERROR' message if an unexpected
error occurs while processing any of the BATCH requests.

An 'Initialize' request is sent at the start of each batch test, and indicate the Execution Manager should
start caching all of the input and output produced in subsequent calls to individual QA modules. The EM also
takes care of assigning a new batch id to this test, and creates the directory where the input and output files
will be saved.4 The EM uses the 'TestCategory' argument to determine where the new directory should be

4The root of the XML cache directory path used by the EM is determined by the L o g F i l e D i r variable in the E x e c u t i o n -
M a n a g e r . p r o p e r t i e s file and can only be changed by modifying the property file and restarting the EM server.

23

created in the JAVELIN web site (e.g., under the set of "Location" tests or under the "Planner" test category).
If the EM successfully completes these initialization steps, it will respond with a 'SAVED' message followed
by BatchData XML specifying the absolute path of the cached XML directory (this directory information is
used to construct links in the html file produced at the end of the batch test).

A 'StartQuestion' request is sent before each question in the batch test set. It provides the EM with the
TREC id of the current question, which is then included in the names of all cached XML data files the EM
saves for that question. The EM acknowledges receipt of this id by returning a 'SAVED' message without
any XML data. A corresponding 'EndQuestion' request is issued immediately after processing the question,
indicating the EM should return a list of all the XML data files it saved for the most recently processed
question.

After the last question of the batch test has been processed, a 'Terminate' request is sent to the Execution
Manager. In addition to signaling the EM to stop caching module data, it also provides the EM with the mean
reciprocal rank (MRR) and accuracy (referred to as the 'TREC score') computed for the test, the names of
the question and planning domain files used by the test, and an optional test description. This information
is saved by the EM in the Repository and used to update the Planner test results table maintained on the
JAVELIN web site. Successful termination of the batch test is indicated by the return of a 'SAVED' message.

It should be noted that while batch processing support is part of the Planner-EM communication pro-
tocol, the current implementation of the Planner Module has no knowledge of or support for the 'BATCH'
command and its responses. All batch commands are issued by a meta-level perl script that controls the
batch test and interacts with the Planner Module to simulate GUI behavior (see Section 5.6.4 for details).

5 Installation and Execution Instructions

5.1 CVS Directory Organization

All of the Planner Module source code and test scripts reside within the p l a n n e r subdirectory of the main
JAVELIN CVS directory. This directory is organized into the following six subdirectories:

• eng ine - C++ source files implementing the planning functionality

• s e r v e r - C++ source files implementing the server, JAVELIN-specific and QA-domain-specific
functions (e.g. XML parsing, translation between the QA system and internal planner data repre-
sentations)

• e t c - general run-time data files (i.e., a default conf ig file)

• domains - sample planning domain and problem specification files

• t o o l s - perl modules, miscellaneous perl scripts for debugging batch test results, TREC datasets
(questions, answer patterns and document judgements)

• t e s t - perl implementations of the AnswerOracle and DomainTranslator submodules, plus perl
scripts for run-time testing

5.2 Compiling the Planner Module Server

The Planner Module is written in C++, and has been compiled and tested with Linux RedHat 7.1 using g++
version 3.0.1. It requires the Xerces C++ library (version 2.5.0) for XML parsing support, and uses Flex++
and Bison to build the domain parser used by the planner.

24

The build process is controlled by a m a k e f i l e in the p l a n n e r directory, which in turn depends on
Makef i l e . common in the top-level j a v e l i n directory. You must edit the Planner Module makefile to
reflect the local source and library paths for the machine you are using. Compilation and installation of the
Planner Module server can then be initiated using 'make b u i l d ' and 'make d e p l o y ' commands, re-
spectively. By default, the resulting executable and all supporting run-time scripts and default configuration
files are placed in the d e p l o y / p l a n n e r directory of the j a v e l i n directory.

5.3 Creating a Confi guration File

At run-time, the Planner Module loads its default settings from a configuration file. By default, the Planner
searches for a file named c o n f i g in the same directory as the server executable. Alternatively, a configu-
ration filename can be supplied as a run-time argument when the server is started.

A sample configuration file is provided in Figure 19. Each line consists of a single parameter name
and its corresponding default value, separated by whitespace. Text beginning with a '#' character is treated
as a comment and ignored (up to the end of the current line), as are lines consisting solely of whitespace
characters. All of the parameters related to server and submodule settings can only be altered at server
startup by changing this configuration file. However, several of the parameters defining planner and GUI
defaults may be overridden subsequently on a per-question basis by providing new values as part of the
question processing request. A detailed summary of the parameters currently recognized by the Planner
Module and their use is provided in Table 6.

Server and submodule settings

Port 2003
LogFile server.log
LogLevel 3
EMHost localhost:2002
AnswerOracleHost localhost:2011
DomainTranslatorHost localhost:2022
UseOracleFor none

Planner defaults
#
DomainDirDefault /usrO/j avelin/sandbox/javelin/planner/domains
DataDirDefault /usrO/javelin/sandbox/javelin/planner/domains/data
DomainDefault QA.domain
DomainParamDefault QA.params
GthreshDefault 0.1
SthreshDefault 0.1
TimeDefault 600
ExecutionStrategy RES
ReplanningStrategy always
StoppingCriteria nop

GUI interaction defaults

InteractiveDefault false
AnswerFormatDefault ranked
AnswerLength short
AnswerMaxCount 30
AnswerMinUtil 0.05

Figure 19: Sample Planner Module configuration file.

25

Parameter

Port

LogFile

LogLevel
EMHost
AnswerOracleHost

DomainTranslatorHost

UseOracleFor

DomainDirDefault

DataDirDefault

DomainDefault
DomainParamDefault

GthreshDefault *

SthreshDefault *

TimeDefault *

ExecutionStrategy
ReplanningStrategy
StoppingCriteria
InteractiveDefault *

AnswerFormatDefault

AnswerLength

AnswerMaxCount

AnswerMinUtil

Possible Values

integer between 2000 and 9999

fi lename

integer between 1 -3
<hostname>: <port>
<hostname>: <port>

<hostname>:<port>

none|QA|RS|IX|AG|all

unix-style directory (absolute path)

unix-style directory (absolute path)

fi lename
fi lename

float between 0 and 1

float between 0 and 1

positive integer

see PlannerSettings . hfar options
see PlannerSettings .hfar options
see PlannerSettings .hfar options
true | false

ranked | single

short | long

positive integer

float between 0 and 1

Description

Port where the Planner Server will reside.
The standard JAVELIN configuration expects
the Planner Module to use port 2003.
File to which the Planner Module will write

log message.
Controls log message verbosity (3=high)
Host and port for the Execution Manager.
Host and port for the AnswerOracle submod-

uie.
Host and port for DomainTranslator submod-
uie.
Specifies which modules' output should be
corrected by the AnswerOracle prior to pass-
ing the results to the planner.
Default domain directory to search for plan-
ning domain and problem specification files.
Default directory used by the DomainTrans-
lator to store/retrieve execution results for op-
erator parameter estimation.
Default planning domain file to load.
Default file containing domain parameter

models (see DomainFunc t ions . cpp and
DomainPa rame te rTab le . cpp)
Default utility threshold to use during dy-
namic planning problem generation.
Default satisfiability threshold to use during
dynamic planning problem generation.
Default time limit to assign to a planning and
execution session.
Sets the Planner's execution strategy.
Sets the Planner's replanning strategy.
Sets the Planner's failure criteria.
Default setting to enable/disable user-
interaction during planning.
Default results format to use when returning
answer(s) to the GUI.
How much supporting information to display
with each answer.
Maximum number of answers to display (rel-
evant only for ranked answer format).
Minimum utility value for selected/displayed
answers.

Table 6: Configuration parameters recognized by the Planner Module. * denotes parameters that can be
overridden for an individual request.

5.4 Running the Planner Module Server

Once you have set the LD-LIBRARY_PATH environment variable to include the Xerces C++ library direc-
tory and revised the Planner configuration file to reflect your local installation, the server may be started

26

from the command line by typing:

. / p l anne rRun t ime c o n f i g &

Alternatively, the server can be started using the run . p l anne r script. This shell script is automatically
created in the d e p l o y / p l a n n e r directory during the build process, and takes care of setting both the path
and starting the server process.

5.5 Troubleshooting

The Planner Module provides both exceptions and a logging utility to help the user identify the root cause
of processing failures.

5.5.1 Exceptions

Run-time errors in the Planner Module are signaled by five top-level exceptions: ServerFailureExceptions,
JAVELINSocketExceptlons, ConfigurationExceptions, QAExceptions, and PlannerExceptions. A Configura-
tionException is thrown when the server is unable to parse the configuration file at startup. A JAVELINSock-
etException signals an error with the TCP/IP socket communication, and a ServerFailureException is thrown
when some other unrecoverable error occurs within the server code. A QAException indicates a problem
related to interaction with the GUI, Execution Manager, or QA data processing. A PlannerException sig-
nals a failure within the planner itself, typically arising from errors in the domain or problem specifications.
Both QAExceptions and PlannerExceptions encompass more specific exception subcategories, the details of
which can be found in the QAExceptions . h and P l a n n e r E x c e p t i o n s . hheader files, respectively.

5.5.2 Logfiles

Generally, all errors resulting in an exception are also recorded in the server log file. However, by setting
the LogLevel parameter to its highest value, the log file can also be used to trace the planning session and
intermediate data results. Each entry in the log is labeled with a timestamp and the name of the source file
from which the log message originated. A sample excerpt is shown in Figure 20.

5.6 Supplemental Test and Evaluation Scripts

All of the perl scripts described in this section reside in the t e s t subdirectory of the p l a n n e r CVS
subtree. Supporting JAVELIN-specific perl modules used by these scripts can be found in the t o o l s
subdirectory.

5.6.1 plannerClient .pi: A Command-line Planner Client

This perl script enables a user to interact with the Planner Module from the command line. The script is
invoked with two arguments specifying the host and port of the Planner Module you wish to communicate
with, e.g.:

. / p l a n n e r C l i e n t . p i o r i s s a 2003

After starting the script, any of the GUI commands (defined previously in Table 3) may be sent to the
Planner Module by typing the command at the prompt and pressing [RET] . Responses received from the
Planner will be printed to stdout. The script can be terminated by sending an empty message (hitting [RET]
at the prompt), or by typing either q u i t or e x i t followed by [RET].

27

PLServer [5/4/2004 15:51:05] *** PlannerModule 2.0 May 4 2004 13:45:54 (g++ 3.0.1)
PLServer [5/4/2004 15:51:05] [Server process 5823 started]
PLServer [5/4/2004 15:51:13] [Child process 5832 started]
PLServer [5/4/2004 15:51:16] Received client request:
QUESTION <ANSWERQUESTION interactive='f'>Where is Big Ben?</ANSWERQUESTION>
GUIDataTypes [5/4/2004 15:51:16] Parsing the GUI request params...
GUIDataTypes [5/4/2004 15:51:16] Created request:
[REQUEST Where is Big Ben?
trecID:
context: new
collection:
amount constraint:
atype constraint:
interactive: 0
log: 0
util: 1
succ: 0.5
time limit: 600]

EMInterface [5/4/2004 15:51:16] Calling the EM with: GETID
PLServer [5/4/2004 15:51:16] Requesting new session id from EM
EMInterface [5/4/2004 15:51:16] Calling the EM with:
EXECUTE <Execute version="0.3" exe_id="14 98" session_id="44444">
<Command name="QuestionAnalyzer"><Assigns object="RequestObject">RO300</Assigns>
<Arg name="Question"><![CDATA[Where is Big Ben?]]></Arg>
<Arg name="Time">120</Arg></Commandx/Execute>
EMDataTypes [5/4/2004 15:51:16] Parsing EM response...
EMDataTypes [5/4/2004 15:51:16] EM time: 0.2
XMLTools [5/4/2004 15:51:16] Reading question type
XMLTools [5/4/2004 15:51:16] Reading answer type(s)
XMLTools [5/4/2004 15:51:16] Reading keyword(s)
QADataTypes [5/4/2004 15:51:16] [RequestObject
questionID: Q1671
Qtype: entity (0.9)
Atype: location (1)
parent:
super:
order:
qty: 1
eval:
terms: 'Big Ben']

XMLTools [5/4/2004 15:51:16] Reading module execution time
XMLTools [5/4/2004 15:51:16] Elapsed time: 100
DomainTranslator [5/4/2004 15:51:16] Completed planner problem creation

Figure 20: Excerpt from the Planner Module log file.

5.6.2 dummyEMServer • p i : An EM Server Based on Cached XML

This perl script implements a simple server that mimics the EM server behavior by returning cached XML
output from previous runs on the TREC question sets. It is intended for use by the planner server during
debugging (to avoid time delays associated with QA module execution, and to enable continued development
work when any of the system components are unavailable.)

It can only be used with the TREC question sets, and all test questions must be typed exactly as they
appear in the TREC question files. (It relies on a simple text match with the TREC questions to look up
the TREC id, which in turn is used to retrieve the cached XML files for that question.) Moreover, since
the script relies on cached XML to recreate the outputs, you can only use it to rerun the same sequence of

28

EXECUTE requests used to create the XML initially; you cannot use it to create new sequences or data. The
script also does not include repository support. It will gracefully handle any STORE or MODIFY request
by returning "OK", but the requests themselves are simply ignored. As with the real EM server, only one
client request is processed per connection (i.e., the server always disconnects after processing a request).

The script takes one optional argument specifying the port to start the server on. If no port is specified,
it will attempt to use port 2002. Before running this script, you must modify the variables specifying the
location of the cached XML output for the individual modules, and the directory containing the individual
questions split by answer-type (e.g., $ JAVELIN J l O O T / e m / t e s t / t r e c /) . The script assumes that each
question file uses the naming convention <type> . l i s t . You also may need to modify the setSubDir()
subroutine within the perl script.

5.6.3 answer-Oracle. p i : A Submodule for Controlled Evaluation of Planner Behavior

This perl script provides a server (submodule) the Planner Module may call to repair select features and
confidence scores of the data objects produced during the QA process. Its purpose is to enable a developer
to perform controlled studies of the Planner behavior using the TREC questions: to confirm the Planner
does the right thing (in an algorithmic sense) for different confidence/quality score distributions, to study
how sensitive the planning process is to perturbations in these distributions, and to provide feedback on the
degree of disparity between "ideal" scores and the "real" scores the QA components produce.

Currently, the oracle assigns scores to each document and answer candidate using the NIST document
judgements and answer patterns. Confidence scores are assigned to question and answer types based on files
containing manually assigned answer type classifications and correspondence maps between the question
types and answer types. The supported oracle commands and rules used by the oracle to assign scores in
response to each command are listed in Table 7. Note that the vertical bar character ' | ' is interpreted by the
server as an argument delimiter in multi-argument commands.

The script is invoked by typing:

. / a n s w e r O r a c l e . p i [-1 <judgement d i r >] [<port>]

The two optional arguments enable the user to specify the port to start the server on, and whether to
operate the oracle in an "interactive" mode. If the server is started in interactive mode, then requests that
would receive a score of 0.5 using the default oracle behavior will instead be presented to the user to judge.
These judgements are saved in the directory specified, and added to the working set of judgements.

5.6.4 ba tchPlannerTes t . p i : Batch Test Support for TREC Question Evaluation

This script enables execution of the TREC questions in batch mode. It interacts with both the Planner and
the EM to control question execution, and automatically generates two files: a plain-text summary of the
results (BatchLog.summary. t x t) and a more detailed log file in html (BatchLog. html) . The script
is invoked at the command line by typing:

./batch_planner_test.pi [-c] [-k] [-t <test type>] <PL host> <PL port> \
<EM host> <EM port> <question file> <domain file> \
<PL server log> ['<description>']

For example,

./batch_planner_test.pi -c -t Trec9 orissa 2003 orissa 2002 \
trec9_main_questions.txt QA.domain server.log 'Trec9 Qs' &

29

The first two arguments specify the host and port of the Planner Module, followed by arguments speci-
fying the host and port of the EM server that will be used by the Planner, the file containing the set of TREC
questions to run, the name of the planning domain file in use, the name of the Planner Module's logfile, and
a brief description (optional) of the test to be run, enclosed in single quotes. The optional 4 - c ' flag indicates
the resulting html file should be color-coded, the *k' flag indicates the answer patterns developed by the
JAVELIN team should be used to evaluate performance (the default is to use the NIST-supplied patterns),
and the ' - 1 <test type>" option indicates how the EM should classify the test (the default classification is
'Planner').
The assumed input format for each line of the question file is:

Command

TRECID <question text>

DOCUMENT <extjdocID>\<treclD>

CANDIDATE <candidate>\<trecID>

ANSWER <answer>\<trecID>

QTYPE <qtype>\<trecID>

ATYPE <atype>\<treclD>

any of the above

Response

VALUE <trecID>
VALUE

VALUE 1

VALUE 0.5

VALUE 0

VALUE 1

VALUE 0

VALUE 1

VALUE 0.5

VALUE 0

VALUE 1

VALUE 0

VALUE 1

VALUE 0

ERROR <error text>

Generated When

The question is identified as a TREC question.
All other cases.

The document is included in NIST's list of rele-
vant documents for <trecID>.
The document body matches the answer pattern
for <trecID>.
All other cases.

The TREC answer pattern for <trecID> matches
the candidate (including inexact matches).
All other cases.

The TREC answer pattern for <trecID> matches
the answer exactly.
The answer is an inexact match with the answer
pattern for <trecID>.
All other cases.

The answer type for <treclD> has a correspond-
ing question type of <qtype>, as defined in the
q t y p e . map file.
All other cases.

The answer type for <trecID> matches
<atype> (either exactly or via a correspondence
defined in the a t y p e . map file),
All other cases.

The oracle receives a request it cannot process or
an internal error occurs.

Table 7: Commands recognized by the oracle, possible responses, and their corresponding score generation
rules.

30

<trecID>\<spc><question text>

This script must be run on the same machine as the Planner Module it calls, and the Planner must be
running with logging set to the highest level, as the batch script relies on the log's contents to extract the
document sets and execution times for each question. It also assumes that the active planning domain does
not contain any interactive operators.

At the end of the batch test, the script will try to copy the two summary files it generates to the batch
directory directory created by the EM. This step will only succeed when the EM also resides on the same
machine as the script. If the copy fails, the resulting BatchLog* files must be manually copied from the
script's invocation directory to the EM's batch archive directory.

6 Discussion and Future Research Directions

The long-term goal of the JAVELIN research is to provide a flexible QA architecture that enables advanced
question-answering tasks including: automated question decomposition and answer synthesis, knowledge
reuse, user-interaction, and context-sensitive QA. To this end, we have described our initial implementation
of the JAVELIN Planner Module, designed with these challenges in mind. Our choice of a utility-based
planning paradigm is motivated by the need to support partial-satisfaction of information goals, both singly
and within the context of planning for multiple question subgoals, as well as the need to provide strategies
that are sensitive to the question context and a user's preferences. Our representation of the QA process
reflects the need to decouple the common elements of the QA task from non-essential details of individual
questions.

The Planner Module was successfully used to control the JAVELIN QA system during the TREC 2003
QA evaluation [4]. Although we did not spent much time tuning the planning parameters or operator models,
the planner-based system achieved accuracy comparable to the single-best strategy without the Planner
Module, and provided more robust handling of unexpected errors in redundant components such as the
extractors.

However, much work remains if we are to actually realize the long-term goals. Future directions include:

• developing better models of the QA components' performance, including models of their execution
time, and integrating a learning component into the Planner Module

• supporting sequences of planning requests in which multiple questions have a shared planning session
and information context

• providing support for automated question decomposition

• better support for user-feedback, including support for user-initiated feedback to repair planning de-
cisions or data produced by the QA components

• providing a mechanism to restart a planning session midway, to enable a user to run an alternate
scenario or correct an error made by the system.

31

References

[1] J. Chu-Carroll, K. Czuba, J. Prager, and A. Ittycheriah. In question answering, two heads are better than
one. In Proceedings ofHLT-NAACL 2003, pages 24-31, 2003.

[2] A. Echihabi, U.Hermjakob, E. Hovy, D. Marcu, E. Melz, and D. Ravichandran. Multiple-engine ques-
tion answering in textmap. In Proceedings of the Twelfth Text REtrieval Conference (TREC2003), 2003.

[3] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. The role of lexico-semantic feedback in open-domain textual question-answering. In
Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL-2001),
pages 274-281, July 2001.

[4] E. Nyberg, T. Mitamura, J. Callan, J. Carbonell, R. Frederking, K. Collins-Thompson, L. Hiyakumoto,
Y. Huang, C. Huttenhower, S. Judy, J. Ko, A. Kupsc, L. V. Lita, V. Pedro, D. Svoboda, and B. Van
Durme. The javelin question-answering system at tree 2003: A multi-strategy approach with dynamic
planning. In Proceedings of the Twelfth Text REtrieval Conference (TREC2003), 2003.

32

A The JAVELIN domain specifi cation: QA. domain

(define (domain QA)

(:types entity - qtype
causation - qtype
activity - qtype
procedural - qtype
vocabulary - qtype
meaning - qtype
biographic - qtype
relationship - qtype
temporal - atype
location - atype
numeric-expression - atype
regexp - atype
person-bio - description
definition - description
description - atype
object - atype
lexicon - atype
person-name - proper-name
organization-name - proper-name
proper-name - atype
relation - atype
causal-antecedent - atype
causal-consequence - atype
process - atype
action - atype
qtype
atype
context
aformat
constraint
atypename
question
docset
fillset
anslist
ix-name

:constants
dt knn fst svm diet light - ix-name
new - context
ranked set known-qty - aformat
temporal_t location_t numeric-expression_t - atypename
person-bio_t definition_t lexicon_t description_t - atypename
person-name_t organization-name_t proper-name_t - atypename
regexp_t object_t relation_t process_t action_t - atypename
causal-antecedent_t causal-consequence_t atype_t - atypename

(predicates
(interactive_session)
(satisfies ?q - question ?a - atype Pal - anslist)
(expected_ans_format ?f - aformat ?i - int)
(request ?q - question ?r - qtype)
(retrieved_docs ?d - docset ?r - qtype)
(no_docs_found ?r - qtype)
(no_more_docs ?r - qtype)
(candidate_fills ?f - fillset ?r - qtype ?d - docset ?ix - ix-name)
(no_fills_found ?r - qtype ?d - docset ?ix - ix-name)
(ranked_answers ?a - anslist ?r - qtype ?f - fillset)
(no_answers ?r - qtype ?f - fillset)
(displayed ?a - anslist)

33

(asked_about_atype ?r - qtype)
(asked_about_keywords ?r - qtype)
(server down ?ix - ix-name)

:metrics
system_time
request_quality
docset_quality
fillset_quality
answer_quality

:features
(question_id ?q - qtype) - question
(request_context ?q - qtype) - context
(superlative_value ?q - qtype) - constraint
(evaluation_value ?q - qtype) - constraint
(quantity_value ?q - qtype) - int
(ordinal_value ?q - qtype) - constraint
(expected_atype ?q - qtype) - atypename
(atype_confidence ?q - qtype) - float
(qtype_confidence ?q - qtype) - float
(extracted_terms ?q - qtype) - int
(docset_size ?d - docset) - int
(min_docs_requested ?d - docset) - int
(max_docs_requested ?d - docset) - int
(max_doc_score ?d - docset) - float
(min_doc_score ?d - docset) - float
(ave_doc_score ?d - docset) - float
(fillset_size ?f - fillset) - int
(max_fill_score ?f - fillset) - float
(min_fill_score ?f - fillset) - float
(ave_fill_score ?f - fillset) - float
(alist_size ?a - anslist) - int
(min_ans_score ?a - anslist) - float
(max_ans_score ?a - anslist) - float
(ave ans score ?a - anslist) - float

:domain-functions
(genReqObjID) - qtype
(genDocsetID) - docset
(genFillsetID) - fillset
(genAnslistID) - anslist
(genAnsID) - atype
(estTimeRS ?a - atypename) - float
(estTimelX ?a - atypename ?ix - ix-name) - float
(estTimeAG ?a - atypename) - float
(estTimeResponse ?f - aformat) - float
(probNoDocs ?q - qtype) - float
(probNoMoreDocs ?q - qtype) - float
(probDocsHaveAns ?q - qtype) - float
(probDocsNoAns ?q - qtype) - float
(probServerDown ?ix - ix-name) - float
(probNoFills ?a - atypename ?d - docset) - float
(probGoodFills ?a - atypename ?d - docset ?ix - ix-name) - float
(probBadFills ?a - atypename ?d - docset ?ix - ix-name) - float
(probNoAns ?q - qtype ?f - fillset) - float
(probGoodAns ?q - qtype ?f - fillset) - float
(probBadAns ?q - qtype ?f - fillset) - float
(probAcceptAns ?q - qtype ?a - anslist) - float
(probRejectAns ?q - qtype ?a - anslist) - float
(estRequestQual ?r - question) - float
(estDocsetQual ?q - qtype) - float
(estFillsetQual ?q - qtype ?d - docset ?ix - ix-name) - float
(estAnslistQual ?q - qtype ?f - aformat ?c - fillset) - float

34

(:action RETRIEVE_DOCUMENTS
:param (?q - question Pro - qtype)
rprecond (and (request ?q ?ro)

(not (no_docs_found Pro))
(not (exists (?d - docset)
(> (extracted_terms Pro) 0)
(> request_quality 0))

(retrieved docs ?d Pro)))

:dbind (Pdocs
Pdur
Ppnodocs
Ppgood
Ppbad
Pdqual

(genDocsetID)
(estTimeRS (expected_atype Pro))
(probNoDocs Pro)
(probDocsHaveAns Pro)
(probDocsNoAns Pro)
(estDocsetQual Pro))

rpeffect
(Ppnodocs

Ppgood

Ppbad

[(no_docs_found Pro)
(scale-down request_quality 2)
(assign docset_quality 0)
(increase system_time Pdur))
[(retrieved_docs Pdocs Pro)
(assign docset_quality Pdqual)
(increase system_time Pdur))
; (retrieved_docs Pdocs Pro)
(scale-down request_quality 2)
(assign docset_quality 0)
(increase system_time Pdur)))

rexecute (RetrievalStrategist Pdocs Pro 10 15 300))

(:action EXTRACT_KNN_CANDIDATE_FILLS
:param (Pro - qtype Pdocs - docset)
:precond (and (retrieved_docs Pdocs Pro)

(not (exists (?f - fillset)
(candidate_fills ?f Pro Pdocs knn)]

(not (no_fills_found Pro Pdocs knn))
(not (server_down knn))
(> docset_quality 0.3))

:dbind (Pfills
Pdur
Ppdown
Ppnofills
Ppgood
Ppbad
Pfqual

(genFillsetID)
(estTimelX (expected_atype Pro) knn)
(probServerDown knn)
(probNoFills (expected_atype Pro) Pdocs)
(probGoodFills (expected_atype Pro) Pdocs knn)
(probBadFills (expected_atype Pro) Pdocs knn)
(estFillsetQual (expected_atype Pro) Pdocs knn))

:peffect
(Ppdown ((server_down knn)

(assign fillset_quality 0)
(increase system_time Pdur))

Ppnofills ((no_fills_found Pro Pdocs knn)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time Pdur))

Ppgood ((candidate_fills Pfills Pro Pdocs knn)
(assign fillset_quality Pfqual)
(increase system_time Pdur))

Ppbad ((candidate_fills Pfills Pro Pdocs knn)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)

35

(increase system_time ?dur)))

:execute (KNNRequestFiller ?fills ?ro Pdocs 300))

(:action EXTRACT_FST_CANDIDATE_FILLS
:param (?ro - qtype ?docs - docset)
rprecond (and (retrieved_docs ?docs ?ro)

(not (exists (?f - fillset)
(candidate_fills ?f Pro ?docs fst)))

(not (no_fills_found ?ro ?docs fst))
(not (server_down fst))
(> docset_quality 0.3))

:dbind (?fills (genFillsetID)
?dur (estTimelX (expected_atype ?ro) fst)
Ppdown (probServerDown fst)
Ppnofills (probNoFills (expected_atype ?ro) ?docs)
?pgood
?pbad
Pfqual

(probGoodFills (expected_atype ?ro) ?docs fst)
(probBadFills (expected_atype ?ro) ?docs fst)
(estFillsetQual (expected_atype Pro) ?docs fst))

:peffect
(Ppdown ((server_down fst)

(assign fillset_quality 0)
(increase system_time ?dur))

?pnofills ((no_fills_found Pro ?docs fst)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time ?dur))

?pgood ((candidate_fills ?fills Pro Pdocs fst)
(assign fillset_quality Pfqual)
(increase system_time Pdur))

Ppbad ((candidate_fills ?fills Pro Pdocs fst)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time Pdur)))

rexecute (FSTRequestFiller Pfills Pro Pdocs 300))

(:action EXTRACT_SVM_CANDIDATE_FILLS
:param (Pro - qtype Pdocs - docset)
:precond (and (retrieved_docs Pdocs Pro)

(not (exists (?f - fillset)
(candidate_fills ?f Pro Pdocs svm)))

(not (no_fills_found Pro Pdocs svm))
(not (server_down svm))
(> docset_quality 0.3))

rdbind (Pfills (genFillsetID)
Pdur (estTimelX (expected_atype Pro) svm)
Ppdown (probServerDown svm)
Ppnofills (probNoFills (expected_atype Pro) Pdocs)
Ppgood (probGoodFills (expected_atype Pro) Pdocs svm)
Ppbad (probBadFills (expected_atype Pro) Pdocs svm)
Pfqual (estFillsetQual (expected_atype Pro) Pdocs svm)]

:peffect
(Ppdown

Ppnofills

((server_down svm)
(assign fillset_quality 0)
(increase system_time Pdur))
((no_fills_found Pro Pdocs svm)
(scale-down request_quality 2)
(scale-down docset_quality 2)

36

(assign fillset_quality 0)
(increase system_time ?dur))

?pgood ((candidate_fills ?fills ?ro ?docs svm)
(assign fillset_quality ?fqual)
(increase system_time ?dur))

?pbad ((candidate_fills ?fills Pro ?docs svm)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time ?dur)))

rexecute (SVMRequestFiller ?fills ?ro ?docs 300))

(:action EXTRACT_LIGHT_CANDIDATE_FILLS
:param (?ro - qtype Pdocs - docset)
:precond (and (retrieved_docs Pdocs Pro)

(not (exists (?f - fillset)
(candidate_fills ?f Pro Pdocs light))

(not (no_fills_found Pro Pdocs light))
(not (server_down light))
(> docset_quality 0.3))

:dbind (Pfills
Pdur
Ppdown
Ppnofills
Ppgood
Ppbad
Pfqual

(genFillsetID)
(estTimelX (expected_atype Pro) light)
(probServerDown light)
(probNoFills (expected_atype Pro) Pdocs)
(probGoodFills (expected_atype Pro) Pdocs light)
(probBadFills (expected_atype Pro) Pdocs light)
(estFillsetQual (expected_atype Pro) Pdocs light)]

:peffect
(Ppdown ((server_down light)

(assign fillset_quality 0)
(increase system_time Pdur))

Ppnofills ((no_fills_found Pro Pdocs light)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time Pdur))

Ppgood ((candidate_fills Pfills Pro Pdocs light)
(assign fillset_quality Pfqual)
(increase system_time Pdur))

Ppbad ((candidate_fills Pfills Pro Pdocs light)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(assign fillset_quality 0)
(increase system_time Pdur)))

rexecute (LIGHTRequestFiller Pfills Pro Pdocs 300))

(:action RANK_CANDIDATES
rparam (Pro - qtype Pdocs - docset Pfills - fillset

Pform - aformat ?ix - ix-name Pi - int)
rprecond (and (candidate_fills Pfills Pro Pdocs ?ix)

(expected_ans_format Pform Pi)
(not (no_answers Pro Pfills))
(not (exists (Pa - anslist)

(ranked_answers Pa Pro Pfills)))
(> fillset_quality 0))

:dbind (Pans (genAnslistID)
Pdur (estTimeAG (expected_atype Pro))
Ppnone (probNoAns Pro Pfills)
Ppgood (probGoodAns Pro Pfills)
Ppbad (probBadAns Pro Pfills)
Paqual (estAnslistQual Pro Pfills Pform))

37

rpeffect
(?pnone ((assign answer_quality 0)

(assign fillset_quality 0)
(no_answers Pro ?fills)
(increase system_time ?dur))

?pgood ((assign answer_quality ?aqual)
(ranked_answers ?ans Pro ?fills)
(increase system_time ?dur))

?pbad ((scale-down docset_quality 2)
(scale-down fillset_quality 2)
(assign answer_quality 0)
(ranked_answers ?ans ?ro ?fills)
(increase system_time ?dur)))

:execute (AnswerGenerator ?ans Pro ?fills ?ix 300))

(:action CHECK_ANSWERS
:param (?q - question ?ro - qtype Pfills - fillset

?ans - anslist ?form - aformat ?i - int)
:precond (and (not (interactive_session))

(request ?q ?ro)
(ranked_answers Pans Pro ?fills)
(not (displayed Pans))
(expected_ans_format Pform Pi)
(> answer_quality 0))

:dbind (Pa
Pdur

(genAnsID)
(estTimeResponse Pform))

rpeffect
(1.0 ((satisfies ?q Pa Pans)

(displayed Pans)
(assign answer_quality 1)
(increase system_time Pdur)))

:execute (CheckAnswers Pa Pans ?q Pform))

(:action RESPOND_TO_USER
rparam (?q - question Pro - qtype Pfills - fillset

Pans - anslist Pform - aformat Pi - int)
:precond (and (interactive_session)

(request ?q Pro)
(ranked_answers Pans Pro Pfills)
(not (displayed Pans))
(expected_ans_format Pform Pi)
(> answer_quality 0))

rdbind (Pa (genAnsID)
Pdur (estTimeResponse Pform)
Ppgood (probAcceptAns Pro Pans)
Ppbad (probRejectAns Pro Pans))

:peffect
(Ppgood ((satisfies ?q Pa Pans)

(displayed Pans)
(assign answer_quality 1)
(increase system_time Pdur))

Ppbad ((displayed Pans)
(scale-down request_quality 2)
(scale-down docset_quality 2)
(scale-down fillset_quality 2)
(assign answer_quality 0)
(increase system_time Pdur)))

:execute (RespondToUser Pa Pans ?q Pform))

38

(:action ASK_USER_FOR_ANSWER_TYPE
:param (?q - question Pro - qtype ?docs - docset

?fills - fillset Pans - anslist ?form - aformat)
:precond (and (interactive_session)

(request ?q Pro)
(not (asked_about_atype Pro))
(or (and (ranked_answers Pans Pro Pfills)

(< (max_ans_score Pans) 0.1))
(no_docs_found Pro)
(exists (Pix - ix-name)

(no_fills_found Pro Pdocs Pix))
(exists (?f - fillset ?x - ix-name)

(and (candidate_fills ?f Pro Pdocs ?x)
(no_answers Pro ?f)))))

(genReqObjID)
(estTimeResponse Pform))

:dbind (Pro2
Pdur

:peffeet
(0.2

0.8

((increase system_time Pdur)
(request ?q Pro2)
(asked_about_atype Pro))
((increase system_time Pdur)
(asked_about_atype Pro)))

:execute (AskUserForAtype ?q Pro Pro2))

:action ASK_USER_FOR_MORE_KEYWORDS
:param (?q - question Pro - qtype Pdocs - docset

Pfills - fillset Pans - anslist Pform - aformat)
rprecond (and (interactive_session)

(request ?q Pro)
(not (asked_about_keywords Pro))
(or (and (ranked_answers Pans Pro Pfills)

(< (max_ans_score Pans) 0.1))
(no_docs_found Pro)
(exists (Pix - ix-name)

(no_fills_found Pro Pdocs Pix))
(exists (?f - fillset ?x - ix-name)

(and (candidate_fills ?f Pro Pdocs ?x)
(no answers Pro ?f)))))

(genReqObjID)
(estTimeResponse Pform))

tdbind (Pro2
Pdur

:peffeet
(0.1 ((increase system_time Pdur)

(asked_about_keywords Pro))
0.9 ((increase system_time Pdur)

(request ?q Pro2)
(asked_about_keywords Pro)))

:execute (AskUserForKeywords ?q Pro Pro2);

39

B GUI-Planner DTDs and Field Descriptions

B.I Question XML sent by the GUI

< IELEMENT ANSWERQUESTION
<! ATTLIST ANSWERQUESTION

type
interactive
log
collection
amount
atype
trecID
utility-thresh
success-thresh
time

(#PCDATA)>

(new | continuation)
(true | false)
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED>

Three of the optional attributes are provided for test purposes in conjunction with the AnswerOracle: the
'trecID' attribute can be used to pass the TREC id of the question to the Oracle; the 'amount' and 'atype'
attributes are used to correct list and definition question classifications produced by the question analysis
(by modifying the corresponding RequestObject produced by the QuestionAnalyzer).

Attribute Possible Values Description

type new | continuation

interactive true I false

log <IPaddress>: <port>
e.g., 128.2111.11:1111

collection any of the predefi ned RS document col-
lection names, e.g. TREC, AQUAINT,
CNS, DICT

utility-thresh float between 0 and 1
success-thresh float between 0 and 1
time positive integer

amount multiple

atype any of the predefi ned QA answer-type
categories, e.g., definition

trecID L?[l-9][0-9]*

Specifies whether the question context is new
or a continuation of the previous request.
Indicates whether the planner is allowed to
request feedback from the user during ques-
tion processing.
Specifies a host and port to which the planner
should send log messages during processing.
If omitted, no log messages are sent.
Specifies the collection to search.

Sets the planner goal utility threshold.
Sets the planner success-likelihood threshold.
Sets a time limit (in seconds) for the question-
answering process.
Specifies the number of answers being
sought. Currently, the Planner recognizes the
value 'multiple' as indicating the question is
a list question.
Specifies the expected answer type of the
question.
Provides the TREC ID of the question (used
in tests with the AnswerOracle).

40

B.2 Answer XML returned by the Planner

<!ELEMENT ANSWERLIST (ANSWER*)>
<! ATTLIST ANSWERLIST

questionJd CDATA #REQUIRED>

<!ELEMENT ANSWER
<! ATTLIST ANSWER

id
confidence

(#PCDATA)>

CDATA
CDATA

#REQUIRED
#REQUIRED>

Element/Attribute Possible Values Description

questioned

ANSWER
id
confidence

positive integer Unique repository identifier for the question
being answered.

text An answer string extracted by the QA system.
positive integer Unique repository identifier for the answer.
float between 0 and 1 Confidence score assigned to the answer.

B.3 Dialog XML sent by the Planner

< .'ELEMENT DIALOG
<! ATTLIST DIALOG

type
default

(QUESTION, CHOICE*)>

(yes/no | multiple-choice | text) #REQUIRED
CDATA #IMPLIED>

<!ELEMENT QUESTION (#PCDATA)>
< [ELEMENT CHOICE (#PCDATA)>

Element/Attribute Possible Values Description

type yes/no | multiple-choice | text
default text

QUESTION text
CHOICE text

Declares the type of dialog the GUI should display.
Used with yes/no or multiple-choice dialogs to spec-
ify a default response.
The question to pose to the user.
Used with multiple-choice dialogs; defines one of
the choices to display.

B.4 Load XML sent by the GUI

<!ELEMENT DOMAINFTLE (#PCDATA)>
<!ELEMENT PROBLEMFILE (#PCDATA)>

The value of each element is a unix-style filename, either with a full path specification or a path relative to
the default domain directory (i.e., the value of DomainDirDefault in the configuration file).

41

C Planner-EM DTDs and Field Descriptions

C.1 Session ID XML returned by the EM

<!ELEMENT PlannerlD EMPTY>
<!ATTLIST PlannerlD

id CDATA #REQUIRED>

The PlannerlD id attribute is a positive integer specifying the unique repository identifier assigned to the
current planning session.

C.2 Execution XML sent by the Planner

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

< '.ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

Execute
Execute
version
exeJd
session_id

Command
Command
name

Assigns
Assigns
object

Arg
Arg
name

(Command+)>

CDATA
CDATA
CDATA

(Assigns?, Arg*)>

CDATA

(#PCDATA)>

CDATA

(#PCDATA)>

CDATA

#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED>

#REQUIRED>

#REQUIRED>

Element/Attribute Possible Values Description

version
exeJd
sessionJd

Command name

object

Assigns

Arg
Arg name

positive float
positive integer
positive integer

QuestionAnalyzer | RetrievalStrategist
(KNN | FST | S VM | LIGHT)RequestFiller
AnswerGenerator
RequestObject | DocumentSet
RequestFillSet | AnswerList

(see table below)
(see table below)

XML DTD version id.
Planner-generated id for this execution request.
Repository id for this planning session. In com-
bination with the exeid, this uniquely identifies
the execution request in the repository.
Name of the QA module to call.

Type of object the Planner expects the execution
call to produce.
Planner-generated id to assign to the
object being produced by the execu-
tion call (e.g., 'DS4475' in '<Assigns
object="DocumentSet'>DS4475</Assigns>')
Module-specific input value.
Name of the module-specific input.

42

The following table defines the module arguments currently in use for the JAVELIN system. Because these
arguments are subject to relatively frequent changes as new QA components become available and exist-
ing components are revised, all module-specific argument name/value pairs are determined by the operator
execution specifications in the planning domain file loaded at run-time rather than defined as full-fledged
elements in the DTD. This has the advantage of obviating the need to recompile the Planner Module exe-
cutable when these input arguments change; revisions can be incorporated just by updating domain file used
by the planner (and making any necessary updates to the EM).

Arg name Supplied To Req'd? Possible Arg Values Description

Question QA
RequestObject RS,IX,AG

Collection

Mindoc

Maxdoc

Filter

DocumentSet

RequestFillSet

IXType

Time

RS

RS

RS

RS

IX

AG

AG

all

Y text
Y RO[0-9]+

N any of the predefi ned RS docu-
ment collection names

N positive integer

N positive integer

N positive integer specifying an
internal document id

Y DS[0-9]+

Y FS[0-9]+

Y FST | KNN | LIGHT | SVM

N positive integer

Question text sent by the GUI.
Planner id of the RequestObject to
supply as input.
Specifies the collection to search.

Minimum number of documents the
RS should return.
Maximum number of documents the
RS should return.
Specifies a document to filter out from
the results set.
Planner-generated id of the Docu-
mentSet to extract candidates from.
Planner-generated id of the Request-
FillSet to select an answer from.
Specifies which version of the IX
module generated the candidates.
Timeout limit (sees) for a response.

C.3 Results XML returned by the EM

<!ELEMENT
<!ATTLIST

Results
Results
version
exeJd
session_id
EM _time

(#PCDATA)>

CDATA
CDATA
CDATA
CDATA

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

Attribute Possible Values Description

version positive float XML DTD version id.
exeid positive integer Planner-generated id for this execution request,
session Jd positive integer Repository id for this planning session.
EM_time positive float EM's self-estimated processing time (in seconds)

taken to service the execution request.

43

The contents of the 'Results' element is the XML produced by the module that was executed.

C.4 Object modifi cation request XML sent by the Planner

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

ObjectModification
ObjectModification
version
sessionJd

ObjectToUpdate
ObjectToUpdate
type
id

newid

Replace

Remove

Add

Require
QuestionType
QuestionType
confidence

AnswerType
AnswerType
confidence

Keyword
Keyword
type

Document
Document
trecID
confidence

RequestFill
RequestFill
id
confidence

Answer
Answer
rank
confidence

(ObjectToUpdate+) >

CDATA #REQUIRED
CDATA #REQUIRED>

(Replace*, Remove*, Add*, Require*)>

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED>

(QuestionType | AnswerType | Document | RequestFill | Answer) >

(Keyword | Document | RequestFill | Answer) >

(Keyword) >

(Keyword) >

(#PCDATA)>

CDATA

(#PCDATA)>

CDATA

(#PCDATA)>

(word | phrase | proper)

EMPTY>

CDATA
CDATA

EMPTY>

CDATA
CDATA

EMPTY>

CDATA
CDATA

#REQUIRED>

#REQUIRED>

#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

44

Element/Attribute Possible Values Description

ObjectModification version positive float
ObjectModification session, id positive integer
ObjectToUpdate type RequestObject | DocumentSet

RequestFillSet | AnswerList
ObjectToUpdate id [A-Z]+[0-9]+

ObjectToUpdate newid

QuestionType

QuestionType confidence

AnswerType

AnswerType confidence

Keyword
Keyword type
Document trecID

Document confidence

RequestFill id

RequestFill confidence

Answer rank
Answer confidence

any of the predefl ned QA question-
type categories, e.g., entity
float between 0 and 1

any of the predefl ned QA answer-
type categories, e.g., location
float between 0 and 1

text
(word | phrase | proper)
external document id, e.g.,

NYT19981215.0157

float between 0 and 1

positive integer

float between 0 and 1

positive integer
float between 0 and 1

XML DTD version id.
Repository id for this planning session.
Type of object to update.

Planner id associated with object being up-
dated.
New planner id to associate with the cloned
and updated copy of the object
New question-type to assign.

Confidence in the accuracy of the new ques-
tion type.
New answer-type to assign.

Confidence in the accuracy of the new answer
type.
Term or phrase related to the question.
Type of the keyword.
Unique id of a document (in the TREC
and AQUAINT collections, the id within the
DOCNO tag of the document).
Score to assign to the document indicating its
relevance likelihood.
List order in which the candidate was re-
turned by the IX (i.e., the first candidate listed
in the IX output is given an id of ' V).
Score to assign to the candidate indicating the
likelihood it is an answer.
Rank order for the answer in the AG output.
Score to assign to the answer indicating the
likelihood it is correct.

45

C.5 Planner data XML to be stored in the repository

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

InitialState
InitialState
version
question Jd
sessionJd
Action
Action
id
BeliefState
BeliefState
id
State
State
id
prob
util
MetricSet
Metric
Metric
name
value
Objects
Literals
Goal
Goal
Gthresh
Sthresh
UtilityFunction
Function
Function
name
param
weight

ExecutionOutcome
ExecutionOutcome
version
exeJd
applied_to
sessionJd
PlanningStep
PlanningStep
version
sessionJd
CandidateAction
CandidateAction
applicableJn
EU
Outcome
Outcome
status
addedToPlan

(Action, BeliefState, Goal, UtilityFunction)>

CDATA
CDATA
CDATA
(#PCDATA)>

CDATA
(State+)>

CDATA
(MetricSet?, Objects?, Literals?)>

CDATA
CDATA
CDATA
(Metric+)>
EMPTY>

CDATA
CDATA
(#PCDATA)>
(#PCDATA>
(#PCDATA)>

CDATA
CDATA
(Function*) >
EMPTY>

CDATA
CDATA
CDATA

(Action, BeliefState)>

CDATA
CDATA
CDATA
CDATA
(CandidateAction*, Outcome)>

CDATA
CDATA
(Action, BeliefState)>

CDATA
CDATA
EMPTY>

(OK | NoCandidates)
CDATA

#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED>

#REQUIRED>

#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

#REQUIRED
#REQUIRED>

46

Element/Attribute Possible Values Description

InitialState version
InitialState question Jd
InitialState session Jd
Action

Action id

positive float
positive integer
positive integer
text

A[0-9]+

BeliefState id
State id
State prob
State util
Metric name

Metric value
Objects

Literals
Goal

Goal Gthresh
Goal Sthresh
Function name

Function param

Function weight

ExecutionOutcome version
ExecutionOutcome exe Jd
ExecutionOutcome session Jd
ExecutionOutcome applied Jo

PlanningStep version
PlanningStep session Jd
Candidate Action applicable Jn

CandidateAction EU

Outcome status

B[0-9]+
S[0-9]+
float between 0 and 1
float between 0 and 1
[A-ZJ+

float
text

text
text

float between 0 and 1
float between 0 and 1
[A-Za-z_]+

[A-ZJ+

float between 0 and 1

positive float
positive integer
positive integer
B[0-9]+

positive float
positive integer
B[0-9]+

float between 0 and 1

(OK 1 NoCandidates)

Outcome addedToPlan A[0-9]+

XML DTD version id.
Repository id for the current question.
Repository id for this planning session.
Planner-generated text description consisting of
the planning operator's name and execution speci-
fication.
Planner-generated id for the action; unique within
a planning session.
Planner-generated id for a planning belief state.
Planner-generated information state id.
Likelihood of being in the state.
Estimated utility of being in the state.
Name of a planning metric defined in the planning
domain.
Associated value of the planning metric.
Comma separated list of planning state objects (as
name: type pairs).
Comma separated list of planning state literals.
Literal condition the planner must satisfy to
achieve the goal.
Planner goal utility threshold.
Planner success-likelihood threshold.
Name of a planning utility function defined in the
planning domain.
Name of the planning metric used as the argument
to the function.
Relative weight assigned to this function in the
overall calculation of the utility.
XML DTD version id.
Planner-generated id for this execution request.
Repository id for this planning session.
Planner-generated id of the planning belief state in
which the action was executed.
XML DTD version id.
Repository id for this planning session.
Planner-generated id for the planning belief state in
which the candidate action applies.
Expected utility of executing the candidate action
in the belief state.
Indicates whether the planner was able to extend
the plan or failed to extend the plan (because no
candidate actions were available).
Planner-generated id of the action selected to ex-
tend the plan.

47

C.6 Batch request XML sent by the Planner

<!ELEMENT
<!ATTLIST

< '.ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

BatchRequest
BatchRequest
version

Command
Command
name

Assigns
Assigns
object

Arg
Arg
name

Element/Attribute Possible

(Command) >

CDATA

(Assigns?, Arg*)>

CDATA

(#PCDATA)>

CDATA

(#PCDATA)>

CDATA

Values

#REQUIRED>

#REQUIRED>

#REQUIRED>

#REQUIRED>

Description

BatchRequest version positive float
Command name Initialize | Terminate | StartQuestion

EndQuestion
Arg (see table below)
Arg name (see table below)

XML DTD version id.
Type of batch test request.

Command-specific input value.
Name of the command-specific input.

Arg name Used With Req'd? Possible Arg Values Description

TrecID
MRR

TrecScore

QuestionFile

DomainFile

Description

StartQuestion
Terminate

Terminate

Terminate

Terminate

Terminate

Y
Y

Y

Y

Y

Y

L?[l-9][0-9]*
positive float between 0 and 1

positive float between 0 and 1

text

text

text

The TREC ID of the question.
Average mean-reciprocal rank score
for the batch test.
Average accuracy score for the batch
test.
Name of the file containing the list
of questions tested.
Name of the QA domain file the
planner used during the test.
Description of the batch test; used as
a label on the JAVELIN test results
web page.

48

C.7 Batch data XML returned by the EM

< {ELEMENT BatchData
<!ATTLIST BatchData

version

(BatchDir | CachedXMLs) >

CDATA #REQUIRED>

< JELEMENT BatchDir (#PCDATA)>

<!ELEMENT CachedXMLs (File*)>

< {ELEMENT File (#PCDATA)>

Element/Attribute Possible Values Description

BatchData version positive float
BatchDir unix directory (full path)

File [A-Z]+_(In|Out)putjqL?[0-9]+_ro[0-9]+.txt

XML DTD version id.
Name of the directory where the
EM will write the cached files, e.g.,
VusrO/htdocs/javelin/Planner/0402_60r
Cached input or output file name con-
sisting of an uppercase module identifier
(e.g., 4QA' or 'IXF'), input/output desig-
nation, the TREC id of the question, and
its corresponding RequestObject id.

49

